
Centre for Geo-Information 

 

   Thesis Report GIRS-2009-07 

 

 

Habitat modelling as a predictive tool in human-wildlife conflicts 
Brown bear (Ursus arctos) and free-ranging cattle in central Sweden  

 

 

 

Sam M.J.G. Steyaert 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

A
pr

il 
20

09
 

 

 
   



 

 

II  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Habitat modelling as a predictive tool in human-wildlife conflict 
Brown bear (Ursus arctos) and free-ranging cattle in central Sweden 

 
 

Sam M.J.G. Steyaert 

 

Registration number 82 08 31 805 040 

 

 

 

 

Supervisors: 

 

Dr. ir. Ron J.A. van Lammeren 

Dr. ir. Jan Bokdam 

 

 

 

 

A thesis submitted in partial fulfilment of the degree of Master of Science at Wageningen 
University and Research Centre, The Netherlands. 

 

 

 

 

 

April 2009, 

 Wageningen, The Netherlands 

 
 
 
Thesis code number: GRS-80436 
Wageningen University and Research Centre 
Laboratory of Geo-Information Science and Remote Sensing 
Thesis Report: GIRS-2009-07 



 

 

IV  



 

 

V 

Preface 

 

My career as a Wageningen student began in 2000. Driven by a passion for nature and the 

awareness of its additive value in the quality of life; I enrolled in the ‘forest and nature 

conservation programme’ of Wageningen University. This programme offered me the 

opportunities to experience true wildlife and the outdoors.  Tracking wolves and bears in 

knee deep snow in Slovakia felt like a child’s dream come true, and pinpointed my ideas and 

wishes considering the future. I wanted to work with these impressive flagship and indicator 

species as large carnivores are, and because of natural curiosity; in a scientific context. After 

graduating, the lack of proper GIS skills showed to be an obstacle hard to bypass if I wanted 

to focus on this field. It was during a beautiful beach walk in New Zealand’s Marlborough 

Sounds that I decided to take a second master, in GIS (MGI), again at Wageningen 

University, which turned out to be a very good decision. 

 

In my search of a wildlife related MGI thesis project, I contacted the Scandinavian Brown 

Bear Research Project (SBBRP; www.bearproject.info), a world leading bear research 

project. I could join in a SBBRP and Swedish Wildlife Damage Center (Viltskadecenter; 

www.viltskadecenter.se) collaborative project on human wildlife conflicts in Sweden, with 

brown bears and free ranging dairy cattle as case study species. The thesis turned out to be an 

internship-thesis combination, with a wonderful 4-month fieldwork period at the SBBRP 

field station in Sweden full of great experiences and people. This report is the end product of 

this thesis-internship combination, and finalizes my MGI programme. It as well marks the 

end of my Wageningen student life and residence in the Netherlands.  

 

In the first place, I would like to thank Dr. Ole-Gunnar Støen, and the SBBRP in general, for 

offering me the thesis- internship opportunity. I would like to thank Dr. Ron van Lammeren 

for his valuable comments and supervision on the GIS side of this thesis.  I thank Dr. Jan 

Bokdam for his inspiring theoretical and ecological thoughts and teaching, the supervision 

during this and my former thesis. Anne Doeksen reviewed this document, which I am very 

grateful for. I thank my parents, family and friends for all the support and opportunities they 

gave me. Furthermore, the people at the field station all contributed to the great period it was!  
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Summary 

 

Livestock depredation is a fundamental aspect altering human’s perception of large 

carnivores and in the past has contributed to justify large carnivore eradication programs with 

local extirpations as a consequence. In central Sweden, brown bears (Ursus arctos) coexists 

with traditional livestock husbandry of dairy cattle, which range freely during daylight hours 

during the grazing season, from mid May to mid September. Bear-cattle conflicts in Sweden 

were reported to be amongst the lowest in Europe. We hypothesized that bears in the study 

area do not actively prey on cattle, and that conflicts occur by chance through coexistence.We 

analyzed and related resource selection of 7 GPS marked cattle herds, co-existing with 11 

GPS marked bears during the grazing season, to define encounter –and potential conflict- risk 

areas and determinative factors. We found that bears and cattle utilize their resources in a 

spatiotemporal different way, driven by inverse responses to human activity related variables, 

vegetation densities and land cover types. Additionally, the type of livestock husbandry 

prevented nocturnal free-ranging, avoiding the activity peaks of bears, and reducing 

encounter probabilities. The traditional way of cattle husbandry appeared to be suitable to co-

exist with brown bears in Scandinavia. Depredation losses can however not be excluded. 

Livestock managers should be willing to absorb potential losses or take additional preventive 

measures such as electric fencing, aversive repellents or guarding animals.  The reappearance 

of wolves (Canis lupus) will probably challenge future co-existence between livestock 

managers and large carnivores. It is therefore stressed that predatory behavior by wolves on 

livestock should become a primary research need, in order to facilitate future coexistence 

between humans and large carnivores.  
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1 Introduction 

 

The Scandinavian brown bear population is currently expanding in size and distribution 

(Swenson et al. 1998a, Nellemann et al. 2007). The bear is classified as a carnivore, and its 

presence is therefore often considered as being in conflict with human interests, i.e. bear 

depredation on livestock and game, damage to crops, orchards and beehives; and as a threat for 

human safety (Swenson et al. 1998b, Swenson et al. 1999, Zimmerman et al. 2003). Furthermore, 

bear habitat –and habitat quality in general- has been gradually degrading in Scandinavia over 

the years due to human induced habitat fragmentation. The simultaneous occurrence of these two 

spatially opposing developments is expected to result in an increase in human-wildlife conflicts 

and challenge future co-existence between humans and brown bears –and other wildlife- in these 

regions (Nellemann et al. 2007, Zabel and Holm-Muller 2007).  

 

Human-carnivore conflicts can lead to negative human attitudes towards large carnivores, which 

could result in the adoption of legal and illegal eradication programs (Kaczensky 1999, Linnell et 

al. 1999, Goldstein et al. 2006). For example, in many states of the USA, wolves (Canis lupus) 

were completely removed as a result of state-sponsored eradication programs (Treves et al. 2004). 

Solving or minimizing human-carnivore conflicts is essential for the conservation of large 

carnivores and for biodiversity in general (Rondinini and Boitani 2007, Zabel and Holm-Muller 

2007).  

 

Free-ranging livestock husbandry systems –as are common in many parts of Scandinavia- in bear 

or other large carnivore habitat involve a risk of depredation losses. However, this risk differs 

across regions. In Norway for instance, bears were estimated to kill an average of about 50 sheep 

per bear annually (Swenson and Andrén 2005). Most bear species are also known to be able to 

kill large domestic ungulates such as cattle and horses. The Andean bear (Tremarctos ornatus) 

was reported to sporadically prey on free-ranging, unguarded cattle (Goldstein et al. 2006). 

Grizzly bears (Ursus arctos horribilis) in the USA have been considered as famous cattle killers. 

Murie (1948) and Knight and Judd (1983) however reported that a large part of these claimed 

grizzly bear kills in fact concerned scavenging, taking place after cattle had died a natural cause 

of death due to age, poisoning or disease. In many parts of Europe, brown bears have been 
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reported to prey on cattle. For some regions, cattle but also horses have even been reported to 

represent the preferred prey item. In the Dinaric Mountains in Croatia and Bosnia for instance, 

87% of the bear damage claims concerned cattle, representing 619 cases during one year. Also in 

Spain, the Cantabrian brown bear tends to prefer cattle (Kaczensky 1999). In contrast, in other 

European countries, sheep appears to be the preferred domestic prey.  

 

As the study of Murie (1948) and Knight and Judd (1983) already emphasized, bear predation 

figures should be interpreted with care. Since it is difficult to discern between direct bear related 

kills and scavenged prey, and since direct depredation events have only rarely been directly 

observed, bear damage claims are often considered overestimated.  Murie (1948) further 

concluded that ‘a bear story ranks with a fish story so far as reliability is concerned’, suggesting 

caution is required when interpreting bear damage claims. For instance, an impressive 81% of 

the livestock damage claims caused by black (Ursus americanus) and brown bears in Alberta 

concerned cattle. When considering however that this 81% only represented 0.02% of the total 

cattle population in the area this figure is relatively low, and much lower than for other domestic 

species such as sheep (for which bear-related damage was estimated at 0.11% of the total 

population) (Horstman and Gunson 1982). 

 

Besides direct predation effects, such as death or injury, predation can lead to secondary related 

predation effects. These effects may include lactation problems, higher occurrence of mastitis, 

calf abortion, and livestock control difficulties  (Murie 1948, Zimmerman et al. 2003) but also 

shifting ungulate grazing routines and habitat use, and even land degradation (Howery and 

DeLiberto 2004). The economic impacts of these secondary effects are considered by some 

authors to be potentially even more far-reaching than those associated with direct predation. 

Secondary predation effects are however, extremely difficult to quantify.  

 

1.1.  Livestock depredation preconditions 

 

The conditions that lead to predation are unclear and prove very difficult to predict  and vary 

depending on the eco-region, predator- and prey characteristics, seasonality, food availability, etc 
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(Murie 1948). The study of Kaczensky (1999) suggests that most depredation events occur at 

night, during mist or heavy rain, and in the vicinity of forest, with unguarded livestock herds. 

 

With respect to predator characteristics and predation, there seems to be a strong indication that 

livestock depredation varies between male and female bears and concerns predominantly mature 

or adult male bears. This is related to the fact that solitary large carnivore species –such as brown 

bears- are generally sexually dimorph, implying that sexes differ in diet and habitat preferences. 

Solitary socially organized large male carnivores tend to have larger home ranges, and wider 

movement patterns; and therefore have an increased potential to encounter livestock. On the 

other hand, intrinsic individual behaviour could explain this male bias (Horstman and Gunson 

1982, Linnell et al. 1999, Goldstein et al. 2006).  

 

Cyclic patterns of recurring depredation was reported to often temporally cease after a particular 

predator individual was hunted down (Goldstein et al. 2006). This removal of so called ‘problem 

individuals’ is rather non-selective because of individual identification difficulties and human 

attitudes of preventative killing; and can therefore result in unnecessary over-hunting (Murie 

1948, Linnell et al. 1999, Goldstein et al. 2006, Rondinini and Boitani 2007).  

 

Depredation rates seem to be related to natural food availability. Higher rates of sheep 

depredation were reported in Targhee National Forest when bear food failures occurred 

(Jorgensen 1983). Similarly, damage statistics in Europe reveal higher depredation rates 

coinciding with years of soft mast, when bears lack a bulk forage item such as acorns and berries 

(Kaczensky 1999). Following the optimal foraging theory, it appears that bears shift to livestock 

when natural foods are scarce, and by doing so make a trade-off between food quality and 

foraging risk (Jorgensen 1983, Knight and Judd 1983).   

 

Domestic livestock generally lack natural anti-predator behaviour and therefore make easy prey. 

This is especially true for young animals. Murie (1948) for instance, reported an observation in 

which cattle calves approached a grizzly bear, scavenging on a cattle carcass, indicating calve 

curiosity and naivety. Furthermore, most damage claims originate from newly colonized predator 

areas or zones around conservation areas, where domestic animals are not yet habituated to 
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coexist with predators (Murie 1948, Horstman and Gunson 1982, Kaczensky 1999, Linnell et al. 

1999). 

 

Most authors conclude that depredation rates are closely related to the system of livestock 

husbandry (Horstman and Gunson 1982, Knight and Judd 1983, Kaczensky 1999, Linnell et al. 

1999, Goldstein et al. 2006). Most damages were reported for free-ranging, unguarded herds and 

at larger distances from human settlements. To make a comparison: in Norway, free-ranging, 

unguarded sheep husbandry in predator area is common. The depredation rate was reported to be 

amongst the highest worldwide. In contrast, in Sweden where sheep are usually fenced or 

guarded, depredation losses are very low (Kaczensky 1999, Zimmerman et al. 2003). Reports of 

bears breaking into sheds taking prey are rare, but occur (Horstman and Gunson 1982, 

Kaczensky 1999).  

 

1.2.  Prevention and compensation measures 

 

Livestock damage can be attempted to minimize by a range of prevention measures, of which 

success depend on the predator species, eco-regions and intensity of use. Electric fencing has 

shown to be successful at protecting beehives and livestock herds to some extent, but 

effectiveness varies across predator species. The use of livestock-guarding dogs has shown to be 

efficient in guarding sheep in many European countries, but has the drawback that it requires 

training and causes potential danger to people and its use therefore declines. Donkeys and 

Llames are also used as guarding animals, as they have a natural herding behaviour and 

aggression towards intruders (Smith et al. 2000b, Rigg 2001).  Experiments with deterring 

collars and projectiles, audio and visuals, and aversive repellents (aversive tasting compounds 

with which bait and animals may be treated) have shown to be unreliable and little promising at 

large scales and for longer time periods (Smith et al. 2000a). Lethal measures, i.e. the killing of 

the culprit, were concluded to be non-selective and only temporarily effective.   

 

In most countries where large carnivores coexist with livestock, state or NGO governed funds 

are in place to compensate farmers for predator inflicted livestock damages. Depending on the 

country and region, these compensations have been claimed to be inadequate, fraudulent and 
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cumbersome (Zabel and Holm-Muller 2007). They also described a promising alternative 

compensation regulation, based on carnivore conservation performance payments rather than 

post-priori carnivore damage compensation payments. This method was successfully tested in 

Northern Sweden, where Sami people endure carnivore damage on their semi domestic reindeer 

(Rangifer tarandus). Despite the fact that there are a range of carnivore damage compensation 

regulations, losses or damages can be of significant importance for individual farmers, and 

contribute to negative attitudes towards carnivores. 

 

1.3.   Project specific: context and setting 

 

In the Dalarna-Gavleborg region in Sweden, a traditional dairy cattle husbandry system coexists 

with a bear population. The farmers take their cattle to so called cattle summer farms (in Swedish: 

fäbod) during the grazing season, from around mid May to mid September. The cattle summer 

farms are traditionally situated in the forest. Cattle is released every morning and range freely 

during daytime. As –in the study area- it involves dairy cattle, they return to the farm every 

evening for milking, where they will stay throughout the night. Conflicts between bears and 

cattle in the study  area –as for whole Sweden- were reported to occur only rarely (Støen, 

personal communication) In 2007, in Sweden, three cows were killed by bears, and in 2008, only 

one got injured (Viltskadecenter 2008;2009). Total livestock losses (cattle, sheep, goats and 

horses) by predators (wolves, bear, wolverine (Gulo gulo) and lynx) in Sweden were estimated to 

be the lowest in Europe, with an average annual loss of 0.1 livestock per capita predator 

(Kaczensky 1999). Secondary depredation effects are however unknown. Despite these low 

predation rates, knowledge questions regarding bear-cattle coexistence and potential direct and 

indirect predation effects became imbedded in a proactive long-term livestock-carnivore conflict 

study conducted by the Swedish Wildlife Center (Viltskadecenter).  

 

Considering the particularly low conflict rate in the Dalarna-Gavleborg region, we hypothesized 

that bears in this area do not actively predate on cattle and that encounters –which could 

potentially lead to conflict- between coexisting bears and cattle occur by chance, as a result of 

habitat use or resource selection by both species. This working hypothesis is supported by a 

preliminary research conducted in Sweden by the SBBRP. This study found that bear diet 
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depends predominantly on berries, and although ungulates did form a small part of the bear diet, 

this concerned mostly sheep and carrion of moose (Alces alces) (Dahle et al. 1998). This 

working hypothesis was further on in line with Knight and Judd’s (1983) their statement; i.e. that 

most bears that do encounter livestock do not kill; and with the concluding hypothesis of Linnell 

et al. (1999), that most individuals of large carnivores species will at least occasionally kill 

accessible livestock that they encounter.   

 

According to the optimal foraging theory, animals are assumed to optimize habitat use in order to 

meet all primary life requirements (e.g. food, shelter and mates). The specificity of these needs 

and therefore habitat usage varies across species: whilst generalist species may exploit a broad 

range of habitats; specialist species have a much more narrow and specific ecological niche 

(Townsend et al. 2000a). With regard to bears and cattle, (respectively, a large carnivore1 and a 

large free-ranging, domestic, herbivorous ungulate) large differences in primary needs and thus 

habitat use were assumed between the species: both spatially and temporally. This assumption is 

based on the following reasoning: Firstly, cows and bears have strongly different dietary 

requirements. This, in combination with landscape heterogeneity makes differences in habitat 

usage very likely. Secondly, cattle in the study area range freely during day time only. In contrast, 

bears in this region tend to be nocturnal and are mainly active in the crepuscular hours (Moe et al. 

2007). These behavioural differences reduce the likelihood of an encounter between bears and 

cows. Finally, differences in spatiotemporal habitat usage patterns have been strengthened by a 

history of human-animal interactions: Bears in Sweden have a history of being intensively 

hunted. Swenson (1990) suggested that bears in hunted areas appear to be more wary of humans 

and that this may have resulted from selective hunting, in which less wary individuals have a 

higher probability of being selected or hunted. The study of Moe et al. (2007) showed that bears 

in the study area do in fact tend to avoid human infrastructures (i.e. tourism resorts and 

settlements). In contrast to bears, domestic species associate humans with safety –anti-predator 

behaviour- and forage, and may therefore be expected to remain in the vicinity of human 

infrastructure.   

 

                                                           
1
 A classification based on craniometry. Bears are however largely vegetarian, and thus a rather omnivorous species.  
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1.3.1. Main methodology: Resource Selection Functions and Geographical Information 

Systems 

 

In this study, habitat use by brown bears and free-ranging cattle has been modeled with ‘resource 

selection functions’ (RSF). The concept of RSF has its origin in the theory of natural selection, 

and was applied to characterize resource utilization by animals (Boyce et al. 2002). Resource 

selection is a fundamental ecological process in which animal species attempt to optimize the 

utilization of their natural environment, taking into consideration conditional factors such as food 

availability (Townsend et al. 2000a), predation risk (Ciarniello et al. 2006), terrain characteristics 

(Walker et al. 2007) and climatic conditions.  In this process, life history characteristics, 

individual preferences and competition play a key role (Kittle et al. 2008). Manly et al. (1993) 

defined an RSF as “a function of characteristics measured on resource units (e.g. a pixel or an 

area of land) such that its value for a unit is proportional to the probability of that unit being 

used”. Resource usage was defined by these same authors as “the quantity of resources being 

used by an animal –or population- in a given period of time”. Quantifying this resource use (u), 

relative but independent to its availability (a), determines whether that resource is being selected 

(u/a >> 1), avoided (u/a<<1) or neglected (u/a ~ 1) by an individual or a population of animal(s) 

(Manly et al. 1993, Alldredge and Griswold 2006).  

 

Other than many other –mainly expert-opinion based- habitat suitability indices, RSFs are 

statistical models, determined with empirical data (Boyce et al. 2002). In animal ecology, data 

types that suit RSF application/development are usually binary presence/absence data or 

use/availability data. In presence/absence studies, the complete study area is divided into 

resource units (pixels) and assigned a 0 or a 1 according to presence or absence of a certain 

organism. This design is commonly used for non-mobile organisms and often suffers from non-

symmetrical errors. This implies that although used units can be determined with some certainty, 

unused units may be observed as being ‘used’ when increasing the sampling intensity (Johnson 

et al. 2006). The use/availability design is more rigid towards this asymmetrical error: it assigns 

a 1 to each true observation, i.e. an animal print, a direct observation or a telemetry position; and 

a 0 to a random number of point locations drawn in the study area. In a Geo Information System 
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(GIS), attribute data of relevant covariates can  be derived (Boyce et al. 2002) for each point 

location and can be used for model building.  

 

Many studies, in different application fields have successfully used RSFs to model species’ 

distribution, density and interactions. In combination with GIS, Boyce et al (2002) and Walker et 

al. (2007) respectively modeled grizzly bear (Ursus arctos) and female Stone sheep (Ovis dalli 

Stonei) distribution in relation to a range of habitat variables. Grizzly bear distribution and 

densities have been modeled by Ciarniello et al. (2006). Species interactions, like wolf-elk 

(Canis lupus, Cervus elaphus) predator-prey relations have been modeled through RSFs by 

Hebblewhite et al. (2005). Also in fishery sciences, RSFs are a commonly used tool, e.g. in stock 

distribution and density estimates (Manly et al. 1993). 

 

Since RSFs are highly scale dependent –spatially and temporally- the design of the model setup 

and sampling plan is of crucial importance for the model outcomes (Alldredge and Griswold 

2006, Boyce 2006, Ciarniello et al. 2007). This especially applies when considering species 

showing high diel and seasonal variation in behavior (Moe et al. 2007). Therefore, an appropriate 

sampling plan needs to be established in accordance with the proposed objective of the study. 

Manly et al. (1993) defined three design types for resource selection studies: design I, II and III. 

Design I suits population related research questions, in which unique identification of individuals 

is not necessary or possible. In this type of design, samples of used, unused or available resource 

units can be drawn from the complete study area. The second design, design type II, identifies 

each individual study animal, but samples the availability over the whole study area. With design 

type III, all study individuals are identified, and the used, unused or available resource units are 

sampled for each individual. This design makes it possible to analyze variation in resource 

selection between individuals according to gender, age classes etc. 

 

Geographical Information Science/Systems as well as and Remote Sensing (RS) have become 

indispensable in ecological research (Raffaeta et al. 2008). Their application ranges from spatial 

data infrastructures (SDI’s) for ecological data (Cagnacci and Urbano 2008) to RS applications 

in predicting wildlife habitats (Osborne et al. 2001), as well as general GIS applications to derive 

relevant spatial data in modeling studies (Clevenger et al. 2002). Some rather fundamental GIS 
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related topics were even covered in the ecological literature (Girard et al. 2002, Hansen and 

Riggs 2006). Recently, satellite telemetry by Global Positioning Systems (GPS) has become an 

extremely valuable tool in tracking animals, for a number of purposes (Buerkert and Schlecht 

2008). In this study, the main source-data was obtained by tracking both cattle and brown bears 

with GPS-GSM technology. 

 

1.3.2. Research objective and questions 

 

The working hypothesis of this study states that bear-cattle conflicts arise by chance through 

coexistence. The objective of this research project is therefore to relate bear and cattle resource 

selection in order to define and map encounter-risk zones between coexisting brown bears and 

free-ranging cattle.  

 

In order to meet this research objective, two main research questions were formulated: 

I. How does resource selection of co-existing free-ranging cattle and bears relate to each 

other? 

a. Which variables define resource selection by both species? 

b. What are the responses of both species to these variables? 

c. Is there spatiotemporal variation in these responses? 

II.  Which variables determine bear-cattle encounter probabilities? 

 

The outline of this report is as follows: chapter 2 covers the research methodologies. Resource 

selection functions and habitat use are discussed in general, whilst habitat use modeling for bears 

and cattle is dealt with in more detail. In addition, methodological approaches applied for each 

research question are elaborated on.  Chapter 3 covers the research results. Study results are 

presented of: resource selection by bears and cattle, relations between bear and cattle habitat use 

and bear and cattle responses to environmental variables included in the models. The chapter 

concludes with a presentation of the encounter-risk results. Chapter 4 provides a methodological 

and ecological discussion of the research results, and includes the general conclusion and some 

management implications. Appendices present additional study results that were not included in 

the report. The appendices include: model selection procedures and background, the general 
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working plan that was followed in order to obtain the results, a detailed description of the land-

cover classification procedure that was developed for the purpose of this study and a summary of 

all model coefficients.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 

 

2 Methods 

 

2.1 Study site 

 

The research field station is located in Tackåsen, 61° 32’ N and 15° 02’ E, in the hilly Dalarna 

region of Central Sweden. The SBBRP study area encompasses about 13000 km2 and about 95% 

is covered with intensively managed boreal forest. Dominant tree species are Scots pine (Pinus 

sylvestris) and Norway spruce (Picea abies), but deciduous species like Silver birch (Betula 

pendula), mountain birch (Betula pubescens), gray alder (Alnus incana) and European aspen 

(Populus tremula) are common. Understory vegetation consists mainly of juniper (Juniperus 

communis) or of species of the willow family (Salix spp.).  The forest floor is covered mainly 

with lichens, blueberry (Vaccinium myrtillis), mountain crowberry (Empetrum hermaphroditum), 

common heather (Calluna vulgaris) and cowberry (Vaccinium-vitis-idaea). The elevation ranges 

from about 200 m to 1000 m above sea level. Road density is ca. 0.3 km/km2 and consists mainly 

of smaller gravel logging roads. There are 6 towns in the study area, with a population of 3000 to 

11000 inhabitants. Two major tourist resorts are situated in the study area, which together 

account for over 1,000,000 visitor nights annually (Nellemann et al. 2007).  

 

Brown bears in the area have an estimated population density of 0.030/km2 and are dispersing to 

the  South, West and East sides of the study area (Solberg et al. 2006). There are 7 traditional 

cattle summer farms in the study area, with cattle free-ranging during daytime from mid May to 

mid September (Nelleman et al. 2007, Støen, personal communication). Elk (Alces alces) is the 

dominant ungulate species in the study area, roe deer (Capreolus capreolus) are common, and 

red deer (Cervus elaphus) occur rarely.  

 

The operational study area around the cattle summer farms was defined as the area in which 

bears and free-ranging cattle coexist. It was defined after cattle resource selection was modelled. 

The operational study area included all pixels for which the average cattle resource selection 

value exceeded 0.5, and thus the relative probability of use higher than 50%.  Map 2.1 shows an 

overview of the operational study area, with the 7 cattle farms and the 100% MCP (Minimum 

Convex Polygon) home range per cattle herd. 
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Map 2.1: detail of the study area, and its location in Sweden 
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2.2 Data acquisition 

 

To create resource selection functions, two types of data are necessary. Firstly, animal positions, 

(from sign data, radio and satellite telemetry), and secondly, digital GIS layers with 

environmental variables to relate the animal positions to. The acquisition of this data is dealt with 

in this section.  

 

2.2.1. Positioning data 

 

2.2.1.1.    Cattle location data 

    

From the 14th of June until the 20th of September 2008, 10 Televilt Tellus Domestic GPS-SMS 

SystemTM collars were fitted on free-ranging dairy cattle from 7 different cattle summer farms, 

forming 7 herds. At least 1 collar was provided per herd.  Televilt collar performance was very 

low; the GPS fix rate averaged 38.2%, and ranged between 4.55% and 78.53%. These figures 

were calculated between 7:00 and 17:00, and for periods when cattle were free-ranging. 

Additional collar “time outs” frequently occurred, with data loss as a consequence. Because of 

the poor collar performance, 5 Vectronic Aerospace GmbH GPS PLUS collars with SMS 

function were additionally fitted on cattle from three herds from mid July until the end of the 

grazing season. The fix ratio of these collars was excellent, and on average close to 100% 

(SBBRP, personal communication). The collars were scheduled on 30 minute time-intervals. The 

SMS function of the collars –both Televilt and Vectronic- made it possible to download real time 

data from a web service. After the field season, all collars were returned to their company, in 

order to download positioning data straight from the collar to bypass SMS transmittance failures.    

 

Cattle herds were relatively small and usually comprised of 5-12 adult cows. The herds ranged 

free from early morning (earliest ~ 6:00) until the evening (latest ~ 21:00), upon which they 

returned the farm to be milked. A 50m buffer zone –which was assumed to include the complete 

farm- was drawn around each cattle farm. Positions falling within the buffer were withdrawn 

from further analysis, in order to prevent contamination from ‘on farm’ positions in the ‘free-

ranging’ sample. A dilution of precision (DOP) value of 5 was considered as the upper-limit to 
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include positions into the analysis. The data was further harmonized with respect to space and 

time. This was done by preparing a final dataset, in which only 1 collar per cattle farm at a time 

was taken into account. One cattle farm was completely taken out for analysis because of the low 

number of valid positions (N=12, from July 25 to September 15). In total, 3012 cattle locations 

were selected for further analysis.  

 

The cattle data was pooled and  divided into seasons: the pre-berry (before 6  July), intermediate 

(7 July – 15 July) and berry season (from 16 July onwards) (Dahle et al. 2003), following 

Manly’s design type I (Manly et al. 1993). As it was assumed that diel behavior in cattle was less 

important than for brown bears, and because of the low data availability, daytime was divided in 

morning (5:00 -  9:30), midday (10:00 -14:30) and afternoon/evening (15:00 – 20:00), instead of 

hourly intervals. Table 2.1 summarizes frequency data per cattle farm. Note that the farm of Stor-

Vasselnas was excluded out from the data set. 

 

Table 2.1: distribution of point locations per cattle farm per season (Pre-berry, Intermediate and Berry season)  

and per time of the day (Morn. = mornings, Mid.= midday and Aft.= afternoon/eve).  

Cattle farm Monitoring 

period 

Pre-berry Intermediate Berry Total 

Morn. Mid. Aft. Morn. Mid. Aft. Morn. Mid. Aft. 

Arterasen 14/06 - 13/08 39 35 8 32 51 33 48 59 11 316 

Brindberg 19/06 - 20/09 49 45 4 49 49 5 257 429 58 945 

Kveksel 14/06 - 02/07 39 10 5 32 14 3 99 63 7 272 

  10/07 - 04/08                

Risberg 16/06 - 22/08 73 43 7 152 109 23 170 148 41 766 

Skadar Djuberga 19/06 - 19/08 69 47 5 62 40 11 130 185 41 590 

Torrlid 25/07 - 09/08 0 0 0 33 26 1 27 29 7 123 

Total 269 180 29 360 289 76 731 913 165 3012 

 

 

2.2.1.2.     Bear Location data 

 

During the annual bear-marking campaign, bears are located by VHF telemetry and/or snow 

tracking, and darted and drug-immobilized using an air gun from out of a helicopter. A detailed 

marking protocol is given in Arnemo (2006). Captured bears were provided with GPS-PLUS 

collars (VECTRONIC Aerospace GmbH, Berlin, Germany). The collars were scheduled on a 30 
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minute time-interval. Special effort was made by the capturing team to mark bears in the vicinity 

of the cattle farms in the study area.  

 

An intersection of the operational study area with all valid bear positions (with a DOP < 5, 

obtained in the study period (14/06 – 20/09)) resulted in 9347 positions of 11 bears useful for 

further analysis (Table 2.2). Two of the cattle farms did not overlap with marked bear home 

ranges and were excluded from the sampling area. Of these 11 bears (6 males and 5 females), 4 

bears frequented the study area only sporadically. The bear position data was pooled and divided 

into three seasons, when coexisting with free-ranging cattle:  the pre-berry, intermediate and 

berry season (as defined in 1.2.1.1.), following Manly’s design type I (Manly et al. 1993).  

During the pre-berry and intermediate season the data was further separated in 6 time frames: 

00:00 – 02:30, 03:00 – 04:30, 05:00 – 9:30, 10:00 – 14:30, 15:00 – 20:00 and 20:30 – 23:30; and 

further referred to as respectively: ‘night’, ‘late night’, ‘morning’, afternoon’, ’evening’, late 

evening’. The data availability from the berry season allowed the data to be divided in hourly 

time-intervals. Data distribution per time step is shown in table 2.3. 

 

Table 2.2: number of valid GPS positions per bear per season.   

Bear name ID sex age N pre-berry N intermediate N berry Total 

Oda W0004 f 14 683 242 1999 2924 

Bose W0228 m 10 0 65 678 743 

Hirva W0010 f 9 63 76 245 384 

Jamta W0422 f 5 623 265 1406 2294 

Lillen W0718 m adult 0 14 9 23 

Noen W0802 m adult 0 1 0 1 

Nacka W0303 f 6 21 58 6 85 

Roudin W0012 m 17 44 0 0 44 

Tjabe W0827 m ? 96 0 458 554 

Tvaska W0620 f 3 361 132 1039 1532 

Vattun W0805 m adult 92 94 577 763 

Total 1983 947 6417 9347 
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Table 2.3: distribution of pooled bear positions over the seasons and time steps 

Timestep  Pre-berry Intermediate  Berry  

1 227 120 816 (256+279+281) 

2 248 131 874 (299+290+281) 

3 406 159 1068 (271+281+252+254) 

4 521 155 1302 (233+227+260+286+296) 

5 306 265 1626 (295+276+261+250+289+255) 

6 275 117 731 (250+249+232) 

Total 1983 947 6417 

 

 

2.2.2. Spatial data layers 

 

This section elaborates on the acquisition of source data and the derivation of spatial data layers 

that were assumed necessary for modeling resource selection by brown bears and free-ranging 

cattle.  

 

2.2.2.1.     Source data 

 

The variables to model resource selection of bears and free-ranging cattle were selected based on 

literature (2.2.2.2.), expert knowledge and field experience. The variables –further on referred to 

as covariates- were derived from three source layers (satellite imagery, a topographical map and 

a digital elevation model) that were obtained through the Swedish Land Survey (Lantmateriet) 

clearinghouse.  

 

I. IRSP6-LISS3 satellite imagery 

Two satellite images, obtained through the LISS3 sensor of the IRSP6 satellite, were 

used to create an up-to-date land-cover classification of the study area, and to derive 

the Normalized Difference Vegetation Index (NDVI). The images dated from the 2nd 

and 7th July of 2007. The spatial resolution of the images was 23.5 m. Two image 

tiles were needed in order to cover the entire study area. A detailed description of the 

land-cover classification based on these images is given in appendix 3.  The images 

were registered in the Swedish RT90 2.5 gon West reference system.  
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II.  “ Gronkarta” topographical map 

A vector based topographical map, referenced in the RT90 2.5 gon West system, was 

used to derive project source data such as road classes, creeks, lakes and rivers, tracks, 

villages, settlements and single buildings. Furthermore, the land-use classes “build 

up”, “agriculture”, “other open land”, “water” and “roads” were derived from the 

topographical map, converted to raster format and added to the land-cover 

classification in order to improve its accuracy. Last revision dates from 1997, but the 

rather static nature of the project source data derived from the topographical map 

minimizes this shortcoming.  

III.  DEM – Digital Elevation Model 

A 50*50 m raster-based digital elevation model of the area was used as a source to 

derive terrain ruggedness indices (3 scales), and aspect and slope data. The DEM was 

generated based on digitizing altitude curves and profile measurements, and was 

published in 2001. The DEM was referenced in the RT90 2.5 gon West reference 

system.  

 

The RT90 2.5 gon West reference system is the Swedish standard reference system. This 

Transverse-Mercator projection has a false easting at 1500000 m. The false northing is 0.0 and is 

based on Bessels’ earth dimensions. The longitude of the central meridian is 15°48’29.8”, with a 

scaling factor of 1 (Source: Lantmateriet).  

 

2.2.2.2.     Derived data layers 
 

15 covariates were derived from the source data. Because of the nominal nature of two of the 

variables, i.e. land-cover and aspect, dummy variables for these two classes were created. This 

resulted in 27 candidate covariates to include in the models (8 dummy variables for aspect and 5 

for land-cover) (Table 2.4). This section provides a motivation for each chosen covariate, how 

the covariates were derived from the source data, and discusses some data characteristics. The 

derivation of the data layers was performed with ESRI ArcGis 9.2 and/or Leica Geosystems 

ERDAS IMAGINE 9.1 software packages. Protocols and data action models are included in 

appendix 1.  
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Land-cover 

An up-to-date land-cover classification is indispensable in resource selection studies. Animals –

both species and individuals- use their physical environment in spatiotemporally differential 

ways, in order to fulfill primary life requirements such as food availability, predation avoidance, 

microclimate selection, etc (Townsend et al. 2000a). As has already been proven for female 

brown bear’s habitat use in the study area, spatiotemporal variation in land-cover type selection 

can be large in the short-term (Moe et al. 2007). The following land-cover classes were defined 

after image classification and integration of topographical map data: bog, young dense forest, 

young open forest, older forest, road, main road, agriculture, build-up, water and other open land. 

As this data is nominal, each land-cover type was derived from the land-cover map, and handled 

as a binary dummy variable in the modeling procedure.   

 

Slope 

Steepness has been shown to be determinative in resource selection by female black bears (Ursus 

americanus) in Orogon (Vander Heyden and Meskow 1999), and in grizzly bears (Ursus arctos) 

(Ciarniello et al. 2007). Black bears tend to prefer steeper slopes. The reasons behind this vary 

from food availability to shelter or predator avoidance, as well as species and individual specific 

preferences. In this study, slope was derived from the DEM and reclassified in 9 ordinal classes 

of 5°.  

 

Aspect  

The slope aspect is determinative for plant species composition and phenology due to 

microclimatic variation. Slope aspect therefore alters many ecological processes, including 

resource selection by animals (Badano et al. 2005). Slope aspect has been included as a variable 

in modeling habitat use for a range of species, e.g. elk in the Greater Yellowstone ecosystem 

(Creel et al. 2005), elk, wolf (Canis lupus) and black bear in Banff National Park  (Clevenger et 

al. 2002, Hebblewhite et al. 2005).  Slope aspect was derived from the DEM, classified in 8 

cardinal –and nominal- direction classes (N, NE, E, SE, S, SW, W and NW), and included in the 

modeling procedure as dummy variables.  

 

 



27 

 

Terrain ruggedness (TRI) 

Like slope and aspect, terrain ruggedness influences plant species composition, structure and 

phenology (Nellemann and Thomson 1994). Moreover, Nellemann et al. (2007) have shown that 

terrain ruggedness affects habitat use by brown bears in the study area. Rugged forested terrain, 

far from human settlements was used significantly more than expected. This was ascribed to 

various inherent benefits such as food availability, abundance of denning- and-cover sites and the 

lower accessibility for humans. In this research, the terrain ruggedness index was calculated 

based on, but adapted from the index developed by Riley et al. (1999). Rather than taking the 

sum-change of a central pixel towards its eight neighboring cells of a DEM, the variety of aspect, 

slope and curvature in a 3*3 kernel was included as well. Curvature was derived from the DEM 

and classified in 6 classes: from maximum upward concave to maximum upward convex. The 

terrain ruggedness index was calculated as follows [equation 1]: 
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In which: 

• TRIr =  terrain ruggedness index for a given pixel based on the 3*3 sized kernel 

• σr  =  variation in elevation in the r-sized kernel 

• σ max =  maximum observed variation in elevation in the study area 

• Sr  = relative variety in slope classes for a central pixel and its neighbors (variety of 

slope classes/ maximum variety of slope classes in a 3*3 kernel in the study area (= 7)).  

• Cr =  relative variety in curvature classes for a central pixel and its neighbors (variety 

of curvature classes / maximum variety of curvature classes in a 3*3 kernel in the study 

area (= 6)) 

• Ar  = relative variety in aspect classes for a central pixel and its neighbors (variety of 

aspect classes / maximum variety of aspect classes in a 3*3 kernel in the study area (= 9)) 

• TRImax  = maximum observed terrain ruggedness index value in the study area 

 

The resulting TRI values were scaled from 0 to 1, and classified in quartiles. Considering the 

50*50 m DEM and a 3*3 kernel, the TRI was thus calculated for a pixel, centering a 150*150 m 
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area. To include terrain ruggedness at larger scales as covariates, the average TRI for each cell 

over a circular area with a radius of 500 and of 1000 m was calculated, classified into quartiles, 

and further on referred to as TRI500 and TRI1000. 

 

Normalized Difference Vegetation Index (NDVI) 

The NDVI is a spectral vegetation index that strongly correlates with net primary above-ground 

production. NDVI is being increasingly used as a covariate in ecological studies, with many 

applications; e.g. monitoring primary production, predicting animal movements and habitat use 

(Osborne et al. 2001, Pettorelli et al. 2005). The NDVI –and other spectral vegetation indices- is 

based on contrasting reflectance of vegetation in the red (R) and near infra red (NIR) part of the 

optical spectrum (Gamon et al. 1995), and calculated according to equation 2. 
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In which:  

• NIRr  = reflectance in the near infrared part of the spectrum 

• Rr  = reflectance in the red part of the spectrum 

 

The NDVI was calculated based on the IRSP6-LISS3 satellite imagery. Each pixel returned a 

value ranging from -1 to 1. Negative values indicate pixels free of vegetation cover and high 

pixel values correspond with dense vegetation cover (Chen and Brutsaert 1998).  

 

Human presence 

A number of human presence related variables were derived from a topographical map and 

included as covariates. For each of these 6 variables (tracks, unpaved roads, roads, cattle farms, 

single standing buildings and settlements with less than 200 inhabitants), the Euclidean distance 

from each 20*20 m pixel to the specific feature was calculated. For all of the human presence 

related covariates, an inverse response between bears and cattle was expected. Bears have been 

shown to avoid human presence –as is the case in the study area- as a kind of anti-predator 
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behavior (Ciarniello et al. 2006, Moe et al. 2007). For cattle, and domestic livestock, the opposite 

is most likely true, as human presence can provide shelter, predator protection and forage.    

 

Creeks and open water 

Access to water is a primary life requirement for mammals in general. Therefore, as has been 

done for human-presence proxies, the Euclidean distance from each 20*20 m pixel in the study 

area to creeks and open water was calculated. These covariates are further referred to as ‘Water’ 

and ‘Creeks’. All the selected covariates are summarized in table 2.4. 
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Table 2.4: summary of the selected model covariates.  The X’s indicate the covariates that were considered to 

include in respectively bear and cattle resource selection, and encounter risk modeling. 

Category Covariate Scale Remarks Bear 
RSF 

Cattle 
RSF 

Risk 

Terrain 
ruggedness  

TRI Ordinal, quartile classes between 0 and 1 TRI for a center 50*50m 
cell of a 3*3 kernel. 

X X X 

TRI500 Ordinal, quartile classes between 0 and 1 Averaged TRI in circle of 
500m radius 

  X 

TRI1000 Ordinal, quartile classes between 0 and 1 Averaged TRI in circle of 
1000m radius 

X  X 

Slope Slope Ordinal, 9 classes of 5 degrees - X X X 
Aspect N Nominal, 8 classes, all included in the 

models as dummy variables 
- X X X 

NE X X X 
E X X X 
SE X X X 
S X X X 
SW X X X 
W X X X 
NW X X X 

Land-cover Bog Nominal, 5 classes, all included in the 
models as dummy variables 

Bog and tree rich bogs X X X 
Young dense 
forest 

< 7m trees, > 10000 
stems/ha 

X X X 

Young open forest < 7m trees, < 10000 
stems/ha 

X X X 

Older forest > 7 m trees X X X 
Road Unpaved and paved 

merged 
X X X 

Other open land Forest meadows, 
settlement land, etc 

X X X 

NDVI NDVI Ratio, between -1 and 1 Negative values indicate 
vegetation absence 

X X X 

Distance to: Water Ratio, continuous Larger lakes and rivers X  X 
Creeks Small streams X X X 
Tracks Inaccessible < 1m hiking 

track 
X X X 

Unpaved roads Usually gravel road X X X 
Paved roads Concrete roads X  X 
Cattle farms - X X X 
Single buildings Single standing buildings, 

hunting cabines etc. 
X X X 

Settlements Settlements< 200 
inhabitants 

X X X 

RSF cattle - Interval scale, between 0 and 1 Cattle resource selection 
function values 

X   
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2.3.  Data analysis 
 

This section gives a general description of the modeling procedure that was applied to create 

resource selection functions; and the model selection and the model validation process. This 

section further describes the modeling procedure in specific for cattle and bear resource selection. 

The cattle and bear RSFs served as a basis for further analysis, to answer the proposed research 

questions which are elaborated on in sections 2.3.2 and 2.3.3. Figure 2.1 presents a simplified 

flowchart of the process: from GIS and point location data towards the end results –encounter 

risk maps-. Bear and cattle resource selection modeling followed the same procedure, with the 

exception that cattle RSF estimates were included as a covariate in bear RSFs.  A more detailed 

flowchart is presented in appendix 1. 

 

 
Figure 2.1: simplified flowchart of the modeling procedure. 

 

2.3.1.  RSF modeling procedure 
 

Considering the nature of the dependent variable (binomial, 1’s and 0’s for used/available 

locations), and the aim of an RSF, i.e. to give a value proportional to the probability of use, 

logistic regression is an appropriate approach in the modeling process (Manly 2002, Keating and 
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Cherry 2004). Following Boyce and McDonald (1999), the relation between the relative 

probability of use of a resource unit ω(x), and a vector of n covariates, x= x1, x2, x3, …,xn can be 

estimated by the log-linear form [eq. 3]:  

 

)X + … + X + X + exp()( n22110 ⋅⋅⋅= nx ββββω      [eq. 3]  

   

The mathematical relation between the Poisson- and the binomial distribution allows for 

estimating the β coefficients of equation 3 from logistic regression. The estimation function is 

than estimated by (Manly et al. 1993, Boyce et al. 2002) [eq. 4]:  
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All covariates were first tested for co-linearity with a Spearman Rho correlation test. For pairs of 

covariates that had a correlation coefficient greater than 0.6, one of the variables from the pair 

was excluded from the regression. The estimates of the β coefficients could then be implemented 

in a GIS, in the form of the estimation function τ(x) [equation 4]. As a result, a raster based map 

with values for each cell proportional to the probability of use of that cell was then created.  

 

Model selection was based on the information theory approach, with Akaike’s Information 

Criteria scores (AIC) as a measure to select the most parsimonious a priori defined candidate 

model. In brief, the AIC score expresses for each candidate model the amount of information lost, 

due to the approximation of reality. A mathematical and statistical elaboration of the information 

theory approach and model selection based on AIC is given in appendix 2.  

 

4 candidate models for modeling resource selection and encounter risk were defined (see section 

2.6). These models were defined based on expert knowledge and literature. A land-cover model 

was defined, assuming that land-cover types were most determinative for bears’ and cattle’s 

resource selection. Similarly, a human presence model was defined, with the assumption that 

anthropogenic ‘sources’ as roads, settlements etc. were most determinative in resource selection 

by both bears and cattle. Additionally, an expert model was defined, including only the 
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covariates that were expected to be most determinative for both species’ resource selection. 

Finally, an all-inclusive model was decided to be included as well.  

  

Each candidate model was cross validated by the default 10-fold cross validation procedure for 

generalized linear models (GLM’s) of the binary family of “R”, of the DAAG package. This 

implies that the dataset was randomly assigned to a number of ‘folds’ (i.e. a random part of the 

data set). Each fold was removed once, while the remaining data was used to refit the GLM, and 

to predict the excluded observations. The procedure returned a cross-validation estimate of 

accuracy, i.e. a percentage that indicates how well the model predicted on the excluded n-fold 

data.   

 

When standard errors (SE) of the estimates of covariates (β) showed extreme values (>10 times 

the value of the SE), the variable was excluded from the analysis, and the model rerun.   

 

The estimates of the covariates were evaluated by plotting them with standard errors or 95% 

confidence intervals over appropriate time steps, and checking the level of significance for each 

estimate of the covariate. Significantly positive β-values indicated true preference for a given 

variable, and vice-versa with negative values. β-coefficients with non-significant p-values (which 

include 0 in their confidence interval) could not be considered as preferred or avoided. In 

contrast with the information theory approach (see appendix 2), p-values –were here considered 

as meaningful and informative, in order to evaluate the importance of the covariates in resource 

selection.   

 

2.3.1.1.     Cattle resource selection modeling 
 

RSFs for cattle were determined according to Manly’s sampling design type I. This implies that 

cattle data was pooled over cattle farms –with each herd still identifiable-, and created RSFs per 

season and per time step  (Manly 2002). All cattle locations were assigned a “1”, or a “used 

position”. 100% MCP home ranges were created for each cattle herd. Overlapping home ranges 

were merged into one. Map 2.1. shows the 100% MCP home range per cattle herd. This 100% 

MCP dissolved home range area was defined as the “cattle study area”. Unused land use classes 
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(open water, build-up and unclassified, agriculture and main road) were masked prior to drawing 

a random number of points from the cattle study area. The random points had a density of ~ 1/0.5 

ha and were assigned a “0”. This density of random points was chosen following Ciarniello et al. 

(2006).  

 

The following covariates were assumed to be relevant for resource selection by cattle: 

- TRI  

- Slope  

- Distance to tracks (Tracks) 

- Distance to unpaved roads  (Unpaved) 

- Distance to cattle farms (Farms) 

- Distance to single standing buildings (Buildings) 

- Distance to small settlements (Settlements) 

- Distance to creeks (Creecks) 

- NDVI  

- Land-cover (Bog, Young dense forest, Young open forest, Older forest, Road, Other open 

land) 

 

These covariates were extracted in ArcGis for the cattle point locations and the random points. 

For each model, a dataset was created, comprising of the appropriate selected cattle locations 

(e.g. pre-berry - afternoon), and for each cattle location, 4 random points. Aspect was excluded 

out of the analysis for cattle RSF, as high autocorrelation was expected, considering the farm 

location, and the point density in relation to distance to the farms. 

 

Using 15 covariates, 4 candidate models were defined: 

1. All-inclusive: all 15 above mentioned variables  

2. Land-cover: Bog + Young dense forest + Young open forest + Older forest + Road + 

Other open land 

3. Human presence:  Tracks + Unpaved + Farms + Buildings + Settlements 

4. Expert: TRI + Unpaved + Farms + Bog + Young open forest + Older forest + Road + 

Other open land 
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2.3.1.2.     Bear resource selection modeling 
 

Bear RSFs were modeled following a protocol similar to that used for cattle resource selection 

modeling. Random locations, representing resource availability in the study area were drawn in a 

4/1 ratio in respect of the “used” locations within the coexistence study area. Again, unavailable 

land use classes or environmental variables not present in this area were withdrawn from the 

analysis. The following variables were assumed relevant for bear habitat use: 

 

- Terrain ruggedness (TRI, TRI500, TRI1000) 

- Slope 

- Aspect (N, NE. E, SE, S, SW, W, NW) 

- Distance to tracks (Tracks) 

- Distance to unpaved roads (Unpaved) 

- Distance to  paved roads (Car) 

- Distance to cattle farms (Farm) 

- Distance to single buildings (Building) 

- Distance to small settlements (Settlement) 

- Distance to creeks (Creek) 

- Distance to open water (Water) 

- NDVI  

- Land-cover  (Bog, Young dense forest, Young open forest, Older forest, Road, Other 

open land) 

- Resource selection functions by cattle, for each particular modeling time step  (RSF) 

 

Using the 28 covariates, 4 candidate models were predefined and run in “R” for each of the 

defined time steps: 

1. All-inclusive: includes all 28 above mentioned variables  

2. Land-cover: NDVI + Bog + Young dense forest + Young open forest + Older forest 

3. Human presence:  Building + Settlement + Tracks + Unpaved + Car + Farm 

4. Expert: Building + Settlement + Tracks + Unpaved + Car + NDVI + Bog + Young dense 

forest + Young open forest + Older forest 
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2.3.2. Research question I: How does bears’ and free-ranging cattle resource selection 

relates? 

 

The outputs of the resource selection modeling procedures for both cattle and brown bears served 

as an input to answer this research question. In order to visualize resource selection of both 

species for each defined time step, the estimates of the covariates were entered into a single map 

algebra expression in ESRI ArcGIS 9.2 following the logistic regression equation [2]. The first 

step in assessing this research question was a visual interpretation of resource selection maps.  

 

Encounter risk maps were created by multiplying the resource selection values for each pixel of a 

given RSF map. The encounter risk maps were visually interpreted to get a better understanding 

in bear-cattle resource selection relations.  

 

To strengthen further analysis, a more confined area was selected, in which the relative 

probability for bear-cattle encounters was found to exceed the 5% (further on referred to as the 

“encounter-risk area”). This threshold was chosen according to traditional statistical testing –as 

5 % can still be a significant risk-, and to avoid over-sampling in low co-existence areas.  

 

The relation between cattle and bear resource selection was numerically expressed by correlating 

resource selection maps of both species for any given time step. Therefore, the encounter risk 

area was randomly sampled with point density of 0.5 points/ha, resembling 9848 random points. 

Bear and cattle resource selection values for these 9848 points were extracted from each RSF 

map. The resulting dataset, a bear-cattle resource selection value paired sample dataset, enabled 

further statistical testing. As the data was non-parametric, Spearman Rho Correlation tests were 

performed between each time step for bear and cattle resource selection values. Additionally, 

Sign tests and Marginal Homogeneity tests were performed for each appropriate time step, to test 

whether general bear and cattle resource selection was statistically different. These tests were 

performed in the SPSS 16.0 statistical software package after the dataset was binned into 0.05 

probability classes. The use of significance testing was believed to be justified here, as in 

combination with the correlation coefficients, the p-values have an informative meaning.  
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Additionally, significance levels of estimated covariates were evaluated, and time-series of 

estimates of covariates (and standard errors) of both cattle and/or brown bear resource selection 

were plotted to visualize and evaluate covariate behavior over time. These plots were made in the 

open source statistical software package of R for every covariate and time step.  

 

2.3.3.  Research Question II: Which factors determine encounter risk probabilities? 
 

A GLM of the Poisson family was chosen to derive the determinative covariates for bear-cattle 

encounter probabilities. The encounter risk values of the encounter risk maps were therefore 

binned into ordinal 0.05 probability classes, and served as the dependent variable in the 

regression process.  

 

All covariates defined in section 2.2.2.2 were assumed as independent variables. Both the values 

of the dependent and independent variables were extracted by a random point sample of 2 

points/ha in the encounter risk area (thus again resembling 9848 points).  

 

All models were 10-fold cross validated. Based on AIC scores, the most parsimonious model of 

4 a priori defined models was selected for each time step and season. The candidate risk models 

had the following forms: 

 

1. All-inclusive: includes all variables as mentioned in 2.2.2.2. 

2. Human presence: Building + Settlement + Tracks + Unpaved + Car + Farm + Road + 

Other open land 

3. Land Use: Road + Bog + Young dense forest+ Young open forest + Older forest + Other 

open land 

4. Expert: Building + Settlement + Unpaved + Water + NDVI + Farm + Road + Young 

dense forest + Other open land 

 

The significance levels of the estimated coefficients for each covariate were then evaluated and 

plotted over time in the “R” statistical software package. 
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3.  Results 
 

3.1.  Model selection 
 
The all-inclusive, a priori defined candidate models generally performed best in predicting 

resource selection by bears and cattle. For all time steps during the pre-berry and the berry 

season, the all-inclusive model for bear resource selection was selected. Only once, during the 

intermediate season in the afternoons, the expert model for bear resource selection had the lowest 

AIC score and was chosen as the most parsimonious. The expert model was selected twice for 

cattle resource selection, during the “evening” time step in the pre-berry and berry season. For all 

selected models, the likelihood or the plausibility of having selected the model with the 

minimum of information loss relative to reality was 1 (on a scale from 0 to 1, see appendix 2). 

The probability of having selected the most parsimonious model was in all but one case very 

close to 1 (0.6527 for cattle in the  intermediate season, in the evening period). Sample sizes for 

bear resource selection models ranged between 565 (intermediate season, from 21:30 to midnight) 

to 2595 (pre-berry season, from 10:30 to 15:00). Model accuracy ranged from 76.2 to 88.2% 

after a 10 fold cross validation. Sample size of the cattle resource selection models ranged from a 

minimum of 145 points (pre-berry season, evening) to 4565 sample points (berry season, 

afternoon). All selected cattle resource selection models had an estimated accuracy between 86.3 

and 92.4% after a 10-fold cross validation.  

 

For the encounter risk models, the all-inclusive candidate model performed best. The human 

presence model was selected three times, in the evening periods of the pre-berry and 

intermediate season, and from the 13:00 to 14:00 time-interval during the berry season. Sample 

size was equal for all models (N = 9848), as this Poisson regression did not depend directly on 

animal positions, but on a random sample of points within a predefined area. The accuracy, here 

expressed as the estimation of the prediction error (i.e. the standard error of the prediction) was 

generally lower than 1. Note that 1 represents one 0.05 binned risk probability class.  Details of 

each model selection procedure are given in appendix 4.  The resulting selected RSFs, encounter 

risk models and their coefficients are given in appendix 5. 
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3.2.       Cattle resource selection 
 

Implementing the regression coefficients of a 

selected RSF in a GIS resulted in cattle 

resource selection maps, in which each pixel 

represents a probability relative to the use of 

that pixel by cattle during the particular study 

period. Cattle resource selection is shown in 

maps 3.1, 3.2 and 3.3, which represents the 

eastern part of the bear-cattle coexistence area, 

for morning, afternoon and evening time steps 

in the pre-berry, intermediate and berry 

season.  

 

The most obvious pattern that was observed 

in each map is the somehow concentrically 

diminishing pattern in resource selection 

around a central area. These cores are located 

around the cattle summer farms. The 

probability that a pixel will be used by cattle 

seems to be negatively related with the 

distance to a cattle farm. In all maps, linear 

patterns can be observed in certain extent. 

These lines represent unpaved roads or tracks.  

 

Not all the cattle maps originated from the all-

inclusive candidate model.  Cattle pre-berry 

and intermediate ‘evening’ maps therefore 

differed somehow from the others, as NDVI, 

slope, young dense forest, distance to creeks, 

buildings, settlements and tracks were not 

  

Map 3.2: 
resource 
selection of 
free-ranging 
cattle in the 
intermediate 
season, 
during 
mornings 
(upper map), 
afternoons 
(middle map) 
and evenings 
(lower map). 

Mornings 

Afternoons 

Evenings 

  

Map 3.1: 
resource 
selection of 
free-ranging 
cattle in the 
pre-berry 
season, 
during 
mornings 
(upper map), 
afternoons 
(middle 
map) and 
evenings 
(lower map). 

Mornings 

Afternoons 

Evenings 
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included as covariates in these models. 

However, these ‘expert’ models were 

chosen by AIC scores and weights, and 

were considered the most suitable to 

describe cattle resource selection at these 

specific times. The resource selection 

patterns for cattle during afternoons in the 

intermediate season deviated from all other 

models. The land-cover covariates (bog, 

young dense, young open, etc) were 

excluded from the model, as the standard 

error of these estimated covariate 

coefficients reached extreme values. 

Without these covariates, the all-inclusive 

model scored better than the other 

candidates and was thus selected.  

 

Numerical expression of covariates gives a more profound insight in cattle responses to 

environmental variables. Table 3.1 shows the response of cattle to each selected covariate. 

During the pre-berry season, cattle showed a clear negative relation with distance to cattle farms, 

thus preferring closer distances to these farms. There was a similar relation for distances to single 

standing buildings, tracks or unpaved roads, in the mornings or afternoons. In the evenings, these 

preferences were unknown or had no direct influence on cattle resource selection. The habitat 

classes “road” and “other open land” influenced cattle resource selection in a positive way. It 

therefore suggests that cattle were attracted by these land-cover types, at least during mornings 

and afternoons. Slope remarkably affected cattle resource selection in a positive way as well. The 

other covariates, NDVI, distance to settlements, bogs, older forests, young forests, distance to 

creeks and TRI did not have a significant influence on cattle resource selection during the pre-

berry season.  

 

  

Map 3.3: 
habitat use of 
free-ranging 
cattle in the 
berry season, 
during 
mornings 
(upper map), 
afternoons 
(middle map) 
and evenings 
(lower map). 

Mornings 

Afternoons 

Evenings 
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During the intermediate season, we observed a similar pattern as in the pre-berry season, for 

distance to farms and unpaved roads, and for the land-cover type ‘other open land’. TRI and 

creeks as well, were determinative covariates. Cattle avoided creeks during mornings and 

afternoons, and selected more rugged terrain during afternoons and evenings. Because of the 

occurrence of many unknown responses to covariates, it was unreliable to evaluate other 

covariates.  

 

Slope, distance to creeks and settlements, the land-cover types ‘young dense forest’ and ‘older 

forest’ had no strong influence on cattle resource selection in the berry season. Cattle preferred 

closer distances to cattle farms, tracks and unpaved roads. Roads and other open land were 

preferred land-cover type, as well as bogs. Young open forests seemed to be selected during 

mornings. Areas with a high NDVI were avoided during mornings and afternoons, and rugged 

terrain was preferred by cattle in the berry season. 

 

In general, over the whole study period, we found that the distance to cattle farms and to 

unpaved roads, as well as the land-cover types ‘roads’ and ‘other open land’ were determinative 

for cattle habitat use and resource selection.  

Table 3.1: influence of model covariates on cattle habitat use in during mornigs (m), afternoons (a) and 
evenings (e) in the pre-berry season, the intermediate season and the berry season.  - , 0 and + indicate 
respectively negative, none and positive influence of the covariate with a significance level of 0.05. ‘?’ 
indicates unknown, as the covariate was not included in the most parsimonious model. 

  Pre-berry Intermediate Berry 

  Covariate m a e m a e m a e 

D
is

ta
n

ce
 t

o
: 

buildings - - ? - - ? 0 + 0 

cattle farms - - - - 0 - - - - 

creeks 0 0 ? + + ? 0 0 0 

settlements 0 0 ? 0 0 ? 0 0 0 

tracks - - ? 0 + ? - - - 

unpaved roads - - 0 - 0 - - - - 

L
an

d
 c

o
ve

r 

Young dense forest 0 0 ? 0 ? 0 0 0 0 

Young open forest 0 0 0 0 ? - + 0 0 

Bog 0 0 ? 0 ? ? + + + 

Older forest  0 0 0 0 ? - 0 0 0 

Road + + 0 0 ? 0 + + + 

Other open land + + 0 + ? + + + + 

T
er

ra
in

 Slope + + ? - 0 ? 0 0 0 

NDVI 0 0 ? 0 - ? - - 0 

TRI 0 0 0 0 + + + + + 
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Two determinative covariates, influencing cattle resource selection in a positive way –distance to 

cattle farms and unpaved road- were plotted for the three seasons, to give an impression of the 

magnitude of cattle response to these covariates. The responses of bears to these variables were 

included in the plots as well (fig. 3.1). 
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Figure 3.1: cattle –and bear- response to distance to cattle farms (left) and distance to unpaved 
roads (right) during the pre-berry, intermediate and berry season. Bars indicate standard errors of 
model coefficient estimates (Beta ‘covariate’, on the y-axis). 
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Cattle responses at night, late night and late evening was put 0, as the cattle were inside the farm 

enclosures and thus not coexisting with bears at these times. During mornings, afternoons and 

evening, or the hourly intervals during these time steps (during the berry season), all cattle 

responses to distance to farms and unpaved roads over each season and time step were –if not 

strongly- negative.  

 

3.3.       Bear resource selection 
  

3.3.1. Pre-berry season 

 

Visual interpretation of bear resource selection maps during the berry season showed that the 

probability that a pixel was used by bears during the pre-berry season was most evenly 

distributed over the study area at night and gradually decreased –and thus showed more 

‘clustered’ patterns- in the late night and mornings. This implies that bear habitat use became 

less random over these time steps. The clustered pattern remained during afternoons, evenings 

and late evenings (map 3.4).  

 

 
Map 3.4: bear resource selection in the pre-berry season, for each time step of the day. 

Nights Late nights 

Mornings Afternoons 

Evenings Late evenings 
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Two parts of the study areas seemed to be selected more than other areas by bears, i.e. northwest 

in the western study area and west in the eastern area. These two areas were situated around 2 of 

the cattle farms included in this study.  

 

Expressing the responses of bears to each covariate included in the RSF numerically (see 

appendix 4), and summarizing each response into negative, no and positive effect classes (-, 0 

and +) according to a α = 0.05 significance level gave more insight in bear resource selection 

(Table 3.2). Open water and paved roads were avoided during each time step. Settlements and 

single standing buildings were avoided at certain time steps, and otherwise did not affect bear 

resource selection. Unpaved roads had no effect on bear resource selection, except during the 

morning time. Tracks seemed to attract bears, except during mornings and afternoons, when 

tracks did not strongly affect bear’s resource selection. Creeks seemed to have a positive effect 

on bears’ habitat selection, but not during nighttime, evenings and late evening. Bears avoided 

cattle farms during the mornings, but seemed to be attracted to them at nighttime. Distance to 

cattle farms otherwise did not significantly affect bears’ habitat selection. 

 

Young open and young dense forests were selected during night time and the latter during 

mornings as well. Otherwise young forests did not show any selection influence. Bogs and older 

forest were avoided during the afternoons. The NDVI showed to be a strong determinative 

covariate; bears selected pixels with high NDVI values, except during nighttime, when NDVI 

appeared to have no strong effect on bear habitat selection.  

 

Terrain features as slope, aspect, TRI and TRI1000 were not determinative in bears’ resource 

selection during the pre-berry season.   

 

The response of bears to single standing buildings, settlements, open water and paved roads was 

plotted and shown in figure 3.2 and 3.3 to give an impression of the magnitude of the response 

by bears to these covariates. These graphs revealed that bears avoided paved roads and open 

water strongly during each time step in the pre-berry season.  
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Figure 3.2: bear response to distance to settlements (left) and distance to open water (right) 
during the berry season. Bars indicate standard errors of model coefficient estimates. 

Table 3.2: influence of model covariates on bear habitat use during the pre-berry 
season, for 6 time steps.  - , 0 and + indicate respectively negative, no and positive 
influence of the covariate on resource selection with a significance level of 0.05. ‘?’ 
indicates unknown, as the variable was not included in the most parsimonious model.  

 Covariate Night Late 
night 

Morning Afternoon Evening Late 
evening 

D
is

ta
n

ce
 t

o
: 

buildings 0 + 0 0 0 0 

cattle farms 0 0 + ? 0 - 

creeks - - - - 0 0 

open water + + + + + + 

paved roads + + + + + + 

settlements 0 + 0 + + + 

tracks - 0 0 - - - 

unpaved roads 0 0 + 0 0 0 

A
sp

ec
t 

N 0 0 ? 0 0 0 

NE 0 0 ? 0 0 0 

E 0 0 ? 0 0 0 

SE 0 0 ? 0 0 0 

S 0 0 ? 0 0 0 

SW 0 0 ? 0 0 0 

W 0 0 ? 0 0 0 

NW 0 0 ? 0 - - 

L
an

d
 c

o
ve

r 

Young dense forest + ? + 0 0 0 

Young open forest + ? 0 0 0 0 

Bog 0 ? 0 - 0 0 

Older forest  0 ? 0 - 0 0 

Other open land ? ? ? ? 0 0 

T
er

ra
in

 

Slope 0 0 0 0 0 0 

NDVI 0 + + + + + 

Cattle RSF ? ? + 0 0 ? 

TRI 0 0 0 0 0 0 

TRI1000 0 0 0 0 0 0 
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3.3.2. Intermediate season 

 

 
Similar as during the pre-berry season, bears seemed to use the study area most evenly during 

nighttime, and more clustered patterns in habitat use appeared during the other time steps (map 
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Figure 3.3: bear response to distance single buildings (left) and distance to paved roads (right) 
during the pre-berry season. Bars indicate standard errors of model coefficient estimates. 

 

Map 3.5: bear resource selection in the intermediate season, for each time step of the day. 

Nights Late nights 

Mornings Afternoons 

Evenings  Late evenings 
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3.5). The two heavily used areas, as mentioned in 3.3.1. were used again frequently, except 

during evenings, when bear’s habitat use was situated more to the north of the study area.  

 

Land-cover types, as well as slope aspect were often excluded in the models, due to extreme 

standard errors. Table 3.2 expresses bear responses to the covariates included in the models. 

Distance to unpaved and paved roads, and to open water were strong determinants for bears’ 

resource selection during the intermediate season. Bears selected areas preferably further away 

from these covariates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bears were attracted by creeks, except during night time, when they avoid them. Settlements 

were avoided as well, during mornings, evenings and late evenings, and did otherwise not 

Table 3.3: influence of model covariates on bear habitat use during the intermediate 
season, for 6 time steps. - , 0 and + indicate respectively negative, none and positive 
influence of the covariate with a significance level of 0.05. ‘?’ indicates unknown, as 
the variable was not included in the most parsimonious model. 

 Covariate Night Late 
night 

Morning Afternoon Evening Late 
evening 

D
is

ta
n

ce
 t

o
: 

buildings 0 + 0 0 + 0 

cattle farms - 0 0 ? + 0 

creeks + - - ? - - 

open water + + + ? + + 

paved roads + + + + + + 

settlements 0 0 + 0 + + 

tracks 0 0 - 0 - - 

unpaved roads + + + + + + 

A
sp

ec
t 

N 0 ? ? ? 0 ? 

NE 0 ? ? ? 0 ? 

E 0 ? ? ? 0 ? 

SE 0 ? ? ? 0 ? 

S 0 ? ? ? 0 ? 

SW 0 ? ? ? 0 ? 

W 0 ? ? ? 0 ? 

NW + ? ? ? 0 ? 

L
an

d
 c

o
ve

r 

Young dense forest ? ? ? ? 0 ? 

Young open forest ? ? ? ? 0 ? 

Bog ? ? ? ? 0 ? 

Older forest  ? ? ? ? 0 ? 

Other open land ? ? ? ? ? ? 

T
er

ra
in

 

Slope 0 0 - ? 0 0 

NDVI 0 + + + + 0 

Cattle RSF ? ? 0 ? + ? 

TRI 0 0 + ? + 0 

TRI1000 0 0 0 ? 0 - 
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significantly affect bears’ resource selection. Similar for single standing building, bears selected 

areas further away from them during late nights and evenings. NDVI again showed to be a strong 

determinant for bear habitat use. Figure 3.4. (left) shows the trend of the estimated covariate 

‘NDVI’ during the scope of the day in the intermediate season. Similar as in the pre-berry season, 

bears preferred areas with high NDVI values, especially during daytime (mornings, afternoons 

and evenings). As examples, the behavior of distance to paved roads, tracks and buildings as 

covariates are presented in figure 3.4 and 3.5.  
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Figure 3.4: influence of model covariates on bear habitat use during the intermediate season, for 
6 time steps. - , 0 and + indicate respectively negative, none and positive influence of the 
covariate with a significance level of 0.05. ‘?’  indicates unknown, as the variable was not 
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Figure 3.5: bear response to distance settlements (left) and distance to paved roads (right) 
during the intermediate  season. Bars indicate standard errors of model coefficients estimates. 
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3.3.3. Berry season 

 

Map 3.6 shows bear’s resource selection in the berry season for each hourly time-interval during 

a day, from the eastern part of the study area. In all of the time-intervals, some clear patterns can 

be observed. Habitat use can be considered clustered and non random. One area is used by bears 

in higher proportion than other areas (the Western part). This area is situated around the cattle 

farms of Skadar Djuberga and Kveksel. Numerically expressed responses to covariates gave a 

better understanding of bear’s resource selection (table 3.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Map 3.6: bear resource selection in the berry season, from each hour of the day, from midnight (upper left) 
onwards.  
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Similar as in the pre-berry and the intermediate season, bears –if not strongly- avoided 

settlements, paved and unpaved roads, and open water. Single standing buildings did not show a 

strong influence on bears’ resource selection, as well as distance to the cattle farms and tracks. 

Creeks attracted bears during mornings and early afternoons.  

 

Aspect, slope, TRI and TRI1000 did not strongly affect resource selection by bears in the study 

area and period. Young forests and older forests appeared to be selected during mornings, from 

about 7:00 to 10:00. Other land-cover types did not strongly affect bears habitat use. The NDVI 

again showed to be a relatively strong determinant in bears’ resource selection, and influenced 

bear’s resource selection positively, mainly during daytime.   

 

Figures 3.6 and 3.7 present bear responses to NDVI, distance to settlements, young dense forests 

and open water; in estimated values for their regression coefficients. The NDVI shows a clear 

pattern of increasing significance in resource selection from night to midday, and decreases again 

from midday towards the evening.  
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Figure 3.6: bear –and cattle- response to NDVI (left) and distance to settlements (right) during 
the berry season. Bars indicate standard errors of model coefficient estimates. 
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Table 3.4: influence of model covariates on bear habitat use during the berry season, for hourly time steps (1- 24). -, 0 and + indicate 
respectively negative, none and positive influence of the covariate with a significance level of 0.05. ‘?’ indicates unknown, as the 
variable was not included in the most parsimonious model. 
  Night Late night Morning Afternoon Evening Late evening 

  Covariate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

D
is

ta
n

ce
 t

o
: 

buildings - 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 
cattle farms - 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
creeks + 0 0 0 0 0 0 0 - - - - - 0 0 0 0 0 0 0 0 0 0 0 
open water + + + + + + + + + + + + + + + + + + + + + + + + 
paved roads + + + + + + 0 + + + + + + + + + + + + + + + + + 
settlements 0 0 0 + + 0 + + 0 0 + + + + 0 + + + + 0 + + 0 0 
tracks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
unpaved roads + + + + + + + + + + + + + + + + + + + + + 0 + + 

A
sp

ec
t 

N - 0 0 0 ? 0 0 ? ? ? 0 ? 0 0 0 0 0 0 0 ? 0 0 ? 0 
NE - 0 0 0 ? 0 0 ? ? ? 0 ? 0 0 0 0 0 0 0 ? 0 0 ? 0 
E - 0 0 0 ? 0 0 ? ? ? 0 ? 0 0 0 0 0 0 0 ? 0 0 ? 0 
SE - 0 0 0 ? 0 0 ? ? ? 0 ? 0 0 0 0 0 0 0 ? 0 0 ? 0 
S - 0 0 0 ? 0 0 ? ? ? 0 ? 0 0 0 0 0 0 0 ? 0 0 ? 0 
SW - 0 0 0 ? 0 0 ? ? ? 0 ? 0 0 0 0 0 0 0 ? 0 0 ? 0 
W - 0 0 0 ? 0 0 ? ? ? 0 ? 0 0 0 0 0 0 0 ? 0 0 ? 0 
NW - 0 0 0 ? 0 0 ? ? ? 0 ? 0 0 0 0 0 0 0 ? 0 0 ? 0 

L
an

d
 c

o
ve

r Young dense forest ? 0 0 0 0 0 + + + 0 + ? ? + 0 0 ? 0 0 0 0 0 0 0 
Young open forest ? 0 0 0 0 0 + + + 0 0 ? ? 0 0 0 ? 0 0 0 0 0 0 0 
Bog ? 0 0 0 0 0 ? ? ? 0 ? ? ? 0 0 0 ? 0 0 0 0 0 ? 0 
Older forest  ? 0 0 0 0 0 + + + 0 0 ? ? 0 0 0 ? 0 0 0 0 0 0 0 
Other open land ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 

T
er

ra
in

 

Slope + 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 + 0 0 0 0 0 0 0 
NDVI 0 0 0 0 + + + + + + + + + + + 0 0 0 0 + 0 0 0 0 
Cattle RSF ? ? ? ? ? ? 0 0 0 0 0 0 0 0 0 + 0 0 0 + + ? ? ? 
TRI + 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 0 0 + 0 0 + 0 0 
TRI1000 + 0 0 + 0 0 0 0 + 0 0 + + 0 0 0 0 0 0 0 0 0 0 + 

 

 

5 10 15 20

-1
0

1
2

3
4

5

time (h)

Y
ou

ng
de

ns
e

5 10 15 20

-0
.0

00
5

0.
00

00
0.

00
05

0.
00

10
0.

00
15

time (h)

di
st

an
ce

 to
 o

pe
n 

w
at

er

Figure 3.7: bear –and cattle- responses to young dense forests (left) and distance to open water 
(right) during the berry season. Bars indicate standard errors of model coefficient estimates. 
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3.3.4. Bear vs. cattle resource selection 
 

Resource selection values from pixels selected by a 

random draw of 9848 points in a predefined > 0.05 

risk probability area from cattle and bears were 

extracted from the resource selection maps and binned, 

for each time step and season. With the resulting data 

set, the relation between cattle and bear resource 

selection was tested. Table 3.5 shows the test results. 

The Sign tests and the progressive Marginal 

Homogeneity test revealed that bear and cattle 

resource selection strongly differed from each other, in 

each time step and season.  The p-values of the 

Spearman rho correlation test as well, all showed a 

strong level of significance. The correlation 

coefficients were negative in general, except for 5 

time-intervals, at evenings in the intermediate season, 

and at 4 time-intervals in the evening period during the 

berry season. During the three seasons, the correlation 

coefficients increased during the scope of the day 

(figure 3.8).  Even dough the correlation coefficients 

all had a strong level of significance, the correlation 

coefficients itself were close to 0.    

 

 

 
 
 
 
 
 
 
 

Table 3.5: Test results of a Spearman ’s Rho 
correlation test (Srho), its p values and 
correlation coefficients (CC); and P values of a 
marginal homogeneity test (p. MH) and Sign test 
(p. S) between 0.05 binned pixel values of cattle 
and bear resource selection maps, in the pre-
berry, intermediate and berry season (pb, I and 
b) during mornigs, afternoons and evenings (m, 
a, e) or hourly time steps (7, 8, …, 21). 
Season T Srho CC p,  Srho p, MH p, S 

pb m -0.348 < 0.001 < 0.001 < 0.001 

pb a -0.283 < 0.001 < 0.001 < 0.001 

pb e -0.058 < 0.001 < 0.001 < 0.001 

i m -0.089 < 0.001 < 0.001 < 0.001 

i a -0.126 < 0.001 < 0.001 < 0.001 

i e 0.037 < 0.001 0.006 < 0.001 

b 7 -0.048 < 0.001 < 0.001 < 0.001 

b 8 -0.059 < 0.001 < 0.001 < 0.001 

b 9 -0.036 < 0.001 < 0.001 < 0.001 

b 10 -0.139 < 0.001 < 0.001 < 0.001 

b 11 -0.152 < 0.001 < 0.001 < 0.001 

b 12 -0.126 < 0.001 < 0.001 < 0.001 

b 13 -0.021 < 0.001 < 0.001 < 0.001 

b 14 -0.042 < 0.001 < 0.001 < 0.001 

b 15 -0.040 < 0.001 < 0.001 < 0.001 

b 16 -0.036 < 0.001 < 0.001 < 0.001 

b 17 0.044 < 0.001 < 0.001 < 0.001 

b 18 0.019 < 0.001 < 0.001 < 0.001 

b 19 -0.025 < 0.001 < 0.001 < 0.001 

b 20 0.097 < 0.001 < 0.001 < 0.001 

b 21 0.028 < 0.001 < 0.001 < 0.001 

 

 

-0,2

-0,15

-0,1

-0,05

0

0,05

0,1

0,15

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21C
o

rr
e

la
ti

o
n

 c
o

e
ff

ic
ie

n
t

Time step (h) 

-0,4

-0,3

-0,2

-0,1

0

0,1

morning afternoon evening

C
o

rr
e

la
ti

o
n

 c
o

e
ff

ic
ie

n
t

Time step

Pre berry 

Intermediate

Figure 3.8:  Spearman’s rho correlation coefficients between cattle and bear resource selection, plotted over time 
during the pre-berry and intermediate season (left), and during the berry season (right). 
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Besides the differences in resource selection between cattle and bears observed by the correlation, 

the Sign and the Marginal Homogeneity test, bear and cattle responded in an inverse or different 

way to some of the covariates. Bear and cattle response to NDVI was inverse or strongly differed 

(significant for one of the species, and no strong effect for the other) during all time steps and 

seasons, except during evenings in the berry season. This relation was visualized for the berry 

season in figure 3.6. Especially during morning and afternoon hours, the relation was inverse. 

During late afternoon and evenings, NDVI was not a significant determinant for both bears and 

cattle.  

 

A similar response behavior was observed for the distance to unpaved roads. In most of the time 

steps, cattle selected areas closer to unpaved roads (except pre-berry evenings, and intermediate 

afternoon). Bears avoided unpaved roads totally during the intermediate and berry season. 

During the berry season, bears only avoided unpaved roads during morning hours.  

 

Cattle preferred areas closer than random to the cattle farms. Bears in contrast usually were not 

affected by the distance to cattle farms, or showed an inconsistent response regarding this 

covariate. In two cases (pre-berry, mornings; and intermediate, evenings), bears selected areas 

further than random from the cattle farms. Bears did select areas closer to cattle farms in a few 

time steps as well; i.e. at night during the berry and intermediate season, and during late evenings 

in the pre-berry season. During daytime (mornings, afternoons and evening), bears tended to be 

attracted by creeks. Cattle in contrast avoided these, or were not strongly influenced by the 

distance to creeks.     

 
Cattle resource selection was included in bear RSFs as a covariate, in order to test whether bears’ 

resource selection was influenced by the likelihood that a pixel was used by cattle during a given 

period of time. It thus served as a proxy for cattle presence and could indicate if bears were 

attracted by it. During the pre-berry season, bears were attracted by areas with a high probability 

of use by cattle during the mornings only. No strong relation was found during afternoons and 

evenings (fig. 3.9, upper left). During the intermediate season, bears were not attracted by cattle 

presence during morning time. During the evening period however, bears seemed to be attracted 

by areas selected by cattle. Cattle RSF was not taken into account in bear RSF during afternoons, 
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as it was not selected as a covariate in the most parsimonious candidate model. The estimates of 

the covariate values of cattle resource selection values during the berry season ranged amongst 

both positive and negative values, but were only significantly positive in some occasions, from 

15:00 – 16:00 and from 19:00 – 21:00. Bears seemed more attracted by areas with a higher cattle 

presence probability in the late afternoon and evening time (fig. 3.9. lower left). The responses of 

bears towards cattle resource selection values was however inconsistent, compared per season, 

and over time steps per season, which makes it a rather unreliable covariate in bear RSFs.  
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Figure 3.9: estimates of cattle 
resource selection, as a covariate in 
bear resource selection models in 
the pre-berry season (upper left), 
the intermediate season (upper 
right), and the berry season (lower 
figure). 
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3.4.  Encounter risk 

 

Encounter risk was defined as the relative probability of use of a pixel by both cattle and bears 

during the study period (i.e. time steps per season). It was calculated by multiplying resource 

selection probability values per pixel for bear and cattle resource selection maps per time step 

and season. The encounter risk maps were considered as proxies for potential conflict. Note that 

the actual encounter risk was undoubtely much lower as expressed in the results, as here we dealt 

with large time frames (mornings, afternoons or evenings, or hourly intervals), pooled over 

seasons. 

 

3.4.1. Pre-berry season 

 

Encounter risk during the pre-berry 

season is visualized in map 3.7. 

Encounter risk is centered around 

the cattle farms. Similar –but in 

lesser extent- as in the cattle 

resource selection maps, linear 

features can be observed, again 

representing tracks and unpaved 

roads. The encounter risk area 

decreased gradually in size and 

probability magnitude, from the 

mornings towards the evenings.   

 

The estimates of model covariates, 

evaluated as significantly (α=0.05) 

positive (+), negative (-) or not 

influencing (0) bear-cattle 

encounter probabilities during the  

Map 3.7: 
Cattle – bear 
encounter 
risk maps 
during the 
pre-berry 
season in the 
western part 
of the study 
area, during 
mornings 
(upper map), 
afternoons 
(middle 
map) and 
evenings 
(lower map) 

Mornings 

Afternoons 

Evenings 



57 

 

pre-berry and the intermediate season were summarized in table 3.6., and provided better insight 

to determine encounter risk factors. 

 

Distance to cattle farms and tracks showed an inverse relation with encounter risk during the day.   

This was similar for distance to single standing buildings and unpaved roads, except during the 

evening hours. Distance to open water and paved roads showed a positive relation with 

encounter risk during mornings and afternoons. Encounter risk was thus higher closer to tracks 

and farms, and further away than random in the study area from open water and paved roads. 

The distance to settlements was only positive related to encounter risk during morning time. 

 

From the land-cover types, ‘other open land’ was the only type that did affect encounter risk; i.e. 

positively during mornings and evenings.  The other types, as well as slope aspects and TRI500 

did not strongly affected encounter risk.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table 3.6: influence of model covariates on encounter risk for the pre-berry and the intermediate 
season, during mornings, afternoons and evenings. -, 0 and + indicate respectively negative, none and 
positive influence of the covariate with a significance level of 0.05. ? indicates unknown influence, as 
the variable was not included in the most parsimonious model. 

   Pre-berry    Intermediate   

 Covariate Mornings Afternoons Evenings Mornings Afternoons Evenings 

D
is

ta
n

ce
 t

o
: 

buildings - - 0 - - 0 
cattle farms - - - - - 0 
creeks 0 + ? - + 0 
open water + + ? + + 0 
paved roads + + 0 + + 0 
settlements + 0 0 + - 0 
tracks - - - - - 0 
unpaved roads - - 0 - 0 0 

A
sp

ec
t 

N 0 0 ? 0 0 0 
NE 0 0 ? 0 0 0 
E 0 0 ? 0 0 0 
SE 0 0 ? 0 0 0 
S 0 0 ? 0 0 0 
SW 0 0 ? 0 0 0 
W 0 0 ? 0 0 0 
NW 0 0 ? 0 0 0 

L
an

d
 c

o
ve

r 

Young dense forest 0 0 ? 0 0 0 
Young open forest 0 0 ? 0 - 0 
Bog 0 0 ? 0 - 0 
Older forest  0 0 ? 0 - 0 
Road 0 0 0 0 0 0 
Other open land + 0 + 0 0 0 

T
er

ra
in

 TRI + + ? + + 0 
TRI500 0 0 ? - 0 0 
TRI1000 + + ? + 0 0 
NDVI + 0 ? + + 0 
Slope + + ? - - 0 
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The NDVI was determinative during mornings; otherwise its effect was unknown or not 

significant. Terrain ruggedness showed to be determinative on both the local, pixel scale, and the 

larger 1000m radius area, both during mornings and afternoons, and slope as well. Estimates of 

some covariates and 95% confidence intervals were visualized in figure 3.10 to give an 

impression on the magnitude of effect on encounter risk for each covariate during the scope of 

the day.  The distance to single standing buildings, cattle farms, paved and unpaved roads and 

tracks all showed a decreasing level of significance in the scope of the day.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.10: Estimates of 
covariates and 95% 
confidence intervals; 
affecting encounter risk 
between coexisting cattle 
and bears in the pre-berry 
season, for mornings, 
afternoons and evenings.  
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3.4.2. Intermediate season 
 
Bear-cattle encounter risk maps 

during the intermediate season 

(Map 3.9) showed some 

similarity with the pre-berry 

season. Encounter risk was again 

largest during morning times, and 

decreased during the scope of the 

day until relative probabilities 

proportional smaller than 0.1. 

Again, encounter risk decreased 

with distance somehow 

concentrically around the cattle 

farms.   

 
The most parsimonious model 

selected for the evenings of the 

intermediate season, was the all-

inclusive model. Remarkable was 

that none of the variables selected 

in the model showed a clear significant influence on encounter risk, indicating the 

unpredictability of encounters at this given time step. For the morning and afternoon periods, 

these significant influences were found.  Encounter risk was negatively related with distance to 

tracks, single standing building and cattle farms; and positively related with distance to open 

water and paved roads. Distance to settlements was positively related with encounter risk during 

the mornings, and negatively during the afternoons. Distance to creeks was negatively related 

with encounter risk during mornings, and positive during the afternoons. More open land-cover 

types as bogs, older forests and young open forests affected encounter risk negatively during the 

afternoons. Other land-cover types did not strongly affected encounter risk. TRI and NDVI both 

affected encounter risk in a positive way during the mornings and afternoons. In contrast to the 

pre-berry season, slope appeared to affect encounter risk in a negative way. Slope aspect again 

 

Map 3.8: 
Cattle – bear 
encounter 
risk maps 
during the   
intermediate 
season in the 
western part 
of the study 
area, during 
mornings 
(upper map), 
afternoons 
(middle 
map) and 
evenings 
(lower map) 

Mornings 

Afternoons 

Evenings 
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was not strongly affecting encounter risk.  Figure 3.11 shows the estimates and their 95 % 

confidence intervals for some variables selected to predict encounter risk. During the evenings, 

the estimates were systematically very close to 0, and had a relatively large confidence interval.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.11: Estimates of 
covariates and 95% 
confidence intervals; 
affecting encounter risk 
between coexisting cattle 
and bears in the intermediate 
season, for mornings, 
afternoons and evenings.  
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3.4.3. Berry season 
 
Encounter risk was predicted in hourly intervals during the berry season, starting from 6:00 - 

7:00. The concentric pattern of decreasing encounter risk can be observed again. In contrast to 

the encounter risk maps of the pre-berry and the intermediate maps, encounter risk during the 

berry season appeared to be higher in afternoon and evening hours in extent and magnitude. 

Encounter risk seemed lower during the late mornings and early afternoon hours (10:00 ~ 15:00) 

than during early mornings and late afternoons/evenings.  

 
The distance to cattle farms, tracks and unpaved roads affected encounter risks in a negative way, 

over all time steps (except for unpaved roads at 14:00) in the berry season. Encounters were thus 

more likely to occur close to these features.  The opposite was valid for the distance to open 

water and paved roads (table 3.7).  

 

Map 3.9: Cattle-bear 
encounter risk maps 
in the western part 
of the study area, 
during the berry 
season; in hourly 
intervals, from 6:00 
– 7:00 (upper left 
map), to 20:00 – 
21:00 (lower right 
map). 
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The distance to settlements and buildings in relation to encounter risk did not show a uniform 

pattern during the scope of the day. The distance to settlements strongly affected encounter risk 

in a positive way during mornings and afternoons until 14:00. During late afternoons and 

evenings, this distance became negatively related to encounter risk. The relation between 

distance to single standing buildings and encounter risk showed an ∩- shaped trend during the 

scope of the day, ranging from strong negative to strong positive estimation values for this 

covariate. Similar, but inverse to the distance to settlements, was the relation between distance to 

creeks and encounter risk. Here, encounter risk was negatively affecting risk encounter 

probabilities before 14:00, and positively after 14:00. The NDVI affected encounter risk in a 

similar, but less strong way as the distance to creeks.  The relations of the above four mentioned 

covariates with encounter risk probabilities are visualized in figure 3.12.  

Table 3.7: influence of model covariates on encounter risk for the berry season, in hourly intervals, 
starting from time step 7 (6:00 to 7:00). -, 0 and + indicate respectively negative, none and positive 
influence of the covariate with a significance level of 0.05. ‘?’ indicates unknown influence, as the 
variable was not included in the most parsimonious model,. 

 

 Mornings Afternoons Evenings 

 Covariate 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

D
is

ta
n

ce
 t

o
: 

buildings - - 0 0 0 + + 0 0 - 0 - - - - 
cattle farms - - - - - - - - - - - - - - - 
creeks - - - - 0 0 - ? + + + + + + + 
open water + + + + + + + ? + + + + + + + 
paved roads + + + + + + + + + + + + + + + 
settlements + + + + + + 0 + 0 - - 0 - - - 
tracks - - - - - - - - - - - - - - - 
unpaved roads - - - - - - - 0 - - - - - - - 

A
sp

ec
t 

N 0 0 0 0 0 0 0 ? 0 0 0 0 0 - 0 
NE 0 0 0 0 0 0 0 ? 0 0 0 0 0 - 0 
E 0 0 0 0 0 0 0 ? 0 0 0 0 0 - 0 
SE 0 0 0 0 0 0 0 ? 0 0 0 0 0 - 0 
S 0 0 0 0 0 0 0 ? 0 0 0 0 0 - 0 
SW 0 0 0 0 0 0 0 ? 0 0 0 0 0 - 0 
W 0 0 0 0 0 0 0 ? 0 0 0 0 0 - 0 
NW 0 0 0 0 0 0 0 ? 0 0 0 0 - - 0 

L
an

d
 c

o
ve

r 

Young dense forest 0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 
Young open forest 0 0 0 0 0 0 0 ? + 0 0 0 + 0 0 
Bog 0 0 0 0 0 0 0 ? + 0 0 0 + + 0 
Older forest  0 0 0 0 0 0 0 ? - 0 0 0 0 0 0 
Road 0 0 0 0 0 0 0 0 + 0 0 0 + + 0 
Other open land 0 0 0 0 + + 0 0 + + + + + + + 

T
er

ra
in

 

TRI + + + 0 + 0 0 ? + + + + + + + 
TRI500 0 0 0 0 0 0 0 ? 0 0 0 0 0 - 0 
TRI1000 + + + + + + + ? 0 + + + 0 + + 
NDVI 0 + + 0 0 0 0 ? - - - 0 - - - 
Slope + 0 0 0 + + 0 ? + + + 0 + + 0 
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Land-cover types did generally not strongly affect encounter risk, except for the class of ‘other 

open land’, which affected the encounter risk in a positive way during most hourly intervals of 

the day. The classes ‘road’, ‘bog’ and ‘young open forest’ showed an increasing level of 

importance in determining encounter risk towards the evening. Figure 3.13 shows the estimates 

of land-cover –and distance to unpaved roads- covariates. Estimation behavior during the scope 

of the day for the three land-cover type was remarkably similar.  

Figure 3.12: estimates of the regression coefficients of distance to single standing buildings (upper left), 
distance to settlements (upper right), NDVI (lower left) and distance to creeks (lower right) during the berry 
season. Bars indicate standard errors.  
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Terrain ruggedness at local –3*3 pixel neighborhood- scale and averaged over a circular area 

with 1000m radius generally affected encounter risk in a positive way, while the TRI500 did not 

show a clear relation with encounter risk. Slope aspect was not strongly affecting encounter risk. 

Slope steepness however, did affected encounter risk probabilities in general in a positive way.   
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Figure 3.13: estimates of the regression coefficients of distance to unpaved roads (upper left), and the land 
cover types ‘roads’ (upper right), ‘bog’ (lower left) and ‘other open land’ (lower right) during the berry 
season. Bars indicate standard errors.  
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4.    Conclusion, discussion and recommendations 
 

This section discusses the methodological flaws, drawbacks and justifications of this research 

project, and gives an ecological interpretation of the results. It concludes with the main findings 

with regard to the proposed research hypothesis and aims, and gives recommendations 

considering management and further research needs.  

 

4.1.  Methodology 
 

4.1.1.  Point location data distribution  
 

The main data source, on which the resource selection modeling procedure was based were the 

point locations of bears and cattle, obtained by satellite telemetry on a 30 minute time-interval 

schedule. As mentioned in the methodology, collar performance of the Vectronic collars on bears 

was excellent, and the data distribution over the seasons and time steps was reasonably good. It 

almost exclusively depended on the number of marked bears ranging in the operational study 

area.The distribution of bear point locations over the study area was not uniform: some areas 

contained a high density of point locations, while other areas had a low density. Map 4.1 gives 

the observed point distribution of marked bears in the study area, the derived Kernel density and 

a predicted standard resource selection map of bears. There are similarities: the highly frequented 

area by bears in the Kernel image resembles somehow with the Eastern part of the study area. In 

the Western part, in contrast, areas with a higher predicted resource selection were frequented 

less by the marked bears. The question then arises: did bears select these areas because of habitat 

quality an sich? Or was the bear location density skewed because of social organization reasons 

within the bear population in the study area? The presence of unmarked bears in the study area 

could have influenced bears’ spatial behavior in the study area, and altered the use/availability 

and thus the real and the predicted resource selection of the marked bears. The presence of 

unmarked bears was confirmed in the operational study area, by 2 direct observations during the 

field season. Nevertheless habitat quality suggests to be the main drive behind resource selection 

rather than biases because of social organization. Field observations strengthen this idea. The 

area around Skadrar Djuberga and Kveksel (2 cattle farms) was, as predicted, heavily used by 
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bears. A small area, of about 4 km2, was simultaneously used by 2 adult males (Vattun and Bose), 

a female with 2 yearlings (Oda and offspring) and 2 sub adult females (Jamta and Tvaska). In 

addition, Scandinavian brown bears were reported to have intra- and inter sexually overlapping 

home ranges (Dahle and Swenson 2003, Støen et al. 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Map 4.1: Bear point location distribution in the study area (lower map), bear position Kernel  
density (middle map) and a bear resource selection map (upper map). 
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Because of the poor Televilt collar performance, a significant part of potential cattle data was 

lost, and data of one cattle farm was excluded out of the modeling procedure. The cattle data 

distribution over seasons and time steps, as presented in the methodology was largely skewed.  

 

Results were rather difficult to compare. Firstly, bear resource selection during the berry season 

was modeled in 24 hourly time-intervals, while all other models were on a different temporal 

resolution. The choice for the 24 hourly time-intervals for bear resource selection felt justified, as 

the data allowed for it, and covariate behavior could then be evaluated over the scope of a day. 

Interesting patterns, which could have been evened out in larger time frames could then be 

revealed. Moe et al. (2007) stressed the importance of dividing data in small time frames, 

especially for species that show a lot of variation in diel behavior, as is the case with the brown 

bear. Moreover, a more general comparison with the other time steps could still be made; be it 

carefully. Secondly, differences amongst the selected, most parsimonious candidate models and 

the exclusion of non-used dummy variables (with extreme standard errors) make RSFs difficult 

to compare. 

 

Bear and cattle data was pooled, and followed Manly’s resource selection design type I. Sex and 

age biased behavior effects –as was suggested for predation- were therefore evened out over the 

study population of bears and cattle.  This choice felt justified, as the aim of this research was 

based on bear-cattle conflicts on a population level. 

 

4.1.2.  Arbitrariness 
  

Model selection based on the information theory approach originated from a skeptical view of 

statisticians and mathematicians towards traditional hypothesis testing, that was considered as 

uninformative, its liability for type I errors, arbitrary and a priori stated false (see appendix 3) 

(Akaike 1973, Anderson et al. 2000, Burnham and Anderson 2002).  Covariate evaluation in this 

research was based on traditional null hypothesis testing, with an arbitrary α-level of 0.05.This 

may appear as inconsistent. The null-hypothesis stated for covariate evaluation was as follows: 

“covariate x has no effect on resource selection by species y at a given time z” . These hypotheses 

were clearly stated false, considering that covariates were initially included in the candidate 
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models assumed to be determinative. Even dough the hypotheses were stated falsely, the 

significance levels were in this case informative. The estimated values and confidence intervals 

for covariates were evaluated over time, reflecting the importance of that covariate over time in 

resource selection for the study species. In an ecological context, this does contain useful 

information. Therefore, this approach was justified. The inconsistency feeling however remained. 

The information theory model choice, in combination with traditional statistical testing of 

covariates is the common method as presented in literature (Boyce and McDonald 1999, Boyce 

2006, Ciarniello et al. 2006). Personal communications with Prof. M. Boyce (University of 

Alberta) did not clarify this inconsistency. He stated that model selection and covariate 

evaluation are different matter, and that individual covariate evaluation with its linked 

significance levels can be useful. Furthermore, for covariate evaluation, the use of traditional 

statistics is justified, as there is no real quantitative alternative.  

 

The candidate models that were defined in advance of the analysis can be considered arbitrary as 

well, because of the decisions and assumptions that were made relative to the importance of 

covariates, and because of the dependency of the available spatial data.  Spatial data or proxies 

for food availability, predator densities, ungulate densities, etc., most likely to affect species’ 

resource selection, were not available. 

 

The seasons were chosen according to Dahle and Swenson (2003) based on an important 

phenology in bear habitat use, i.e. the availability of berries, and berries are an important food 

item in the Scandinavian brown bear diet. The arbitrary selected time steps for cattle data and 

bear data in the pre-berry and intermediate season (mornings, afternoons and evenings) were 

chosen in order to get reasonable sample size per time step to create the models. To cover a 

complete temporal scale, it would have been ideal if the data allowed creating hourly models for 

cattle in all seasons and for bears in the pre-berry and intermediate season.  

 

A major question considering the sampling scheme in the use/availability approach remains; i.e. 

what is the optimal sample size of random points, given the number and distribution of animal 

positions, and on what scale should the random sample be drawn.  Boyce (2006)  and Ciarniello 

et al. (2007) evaluated sampling schemes and scale in resource selection studies, outgoing from 



69 

 

two fundamental considerations: 1) that the scale of the sampling scheme influences the strength 

of habitat associations, and 2) that ecological processes including habitat selection can occur on 

different spatio- temporal scales. The latter –the temporal scale- was also stressed by Moe et al. 

(2007). No single clear answer on this scale question could be given, as it depends on the study 

objective. In this case, the scale of the study area was chosen arbitrary as the area in which bears 

occur, with a relative probability of cattle use higher than 0.5, a level that is of course discussable. 

Choosing a smaller area (e.g. a relative probability of use by cattle > 0.7) would undoubtedly 

have led to different model coefficients estimates, and be more accurate for the small area, as 

less environmental variation would have been included. On the other hand, the number of bear 

positions would have been smaller. A trade off thus exists between scale, sample size and 

predictive validity. Walker et al. (2007) bypassed the ‘large scale’ drawback by sampling 

random points within a variable buffer area around each animal position and estimated track, to 

model Stone’s sheep (Ovis dalli stonei) resource selection. Their approach, in contrast to this 

research, had a higher predictive accuracy, but on a smaller scale.  

 
Random points were sampled with a density of 2/ha, according to Ciarniello et al. (2006),  and 

was assumed to capture the environmental variation in the study area. In order to compare 

various models, the ratio on random points per animal point location was kept constant. This 

however was not the optimal design. An empirical power analysis in order to define the number 

of random points necessary to capture the environmental variation would have strengthened this 

research.  

 

The dilution of precision (DOP) is a measure of accuracy that depends on satellite triangulation 

geometry.  Multiplying the DOP value for each point with the GPS device’s accuracy, indicates 

the standard deviation of the position (Langley 1999, Hansen and Riggs 2006). A threshold value 

of 5 might have been too inaccurate for this research.  

 

4.1.2.  Spatial data quality 
 

The quality of the base spatial data layers defines the accuracy of the end result. The standard 

topographical map and DEM were obtained, but –despite efforts in requesting- without any 
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measure or proof of accuracy. As both are commonly used in Sweden, for various purposes, we 

assumed the quality as workable, as there was no alternative. The highly dynamic character of 

the intensively managed forest did in some unknown extend affect the accuracy of the 

topographical map. Some logging roads in the study area were not yet developed at the time that 

the map was produced. These new logging roads, if observed, were tracked with a GPS and 

edited on the topographical map. Without any doubt, some of these roads have been omitted and 

not edited on the map, which could have resulted in an underestimation of the availability of 

unpaved roads in the study area.     

 

The land-cover map created from the IRSP6-LISS 3 satellite sensor images had an estimated 

accuracy >85%, before topographical map features were added. 15% of the pixels used for a 

maximum likelihood classification were thus misclassified. This error is likely to have been 

propagated to the resource selection results, even dough the tests with additional ground cover 

points showed no significant differences between ground truth and the land-cover map (appendix 

2). Furthermore, the land-cover classes were chosen arbitrary, and based on ground truth 

observations of various project participants. It must be stressed that land-cover is often a rather 

continuous than a discrete phenomenon, with often more land-cover types per pixel, and that 

classifying land-cover types will therefore never be error free (Foody 1995;2002, Lillesand et al. 

2004). As an example, ‘young dense forest’ and ‘young open forest’ were arbitrary divided by 

the tree density (threshold of 10000 stems/ha) in each ground control plot. ‘Older forest’ was 

classified based on a tree height threshold level of 7 meter. The class of ‘bog’ included both bogs 

and forested bogs. This drawback might have led to the relative insignificance of land-cover 

types in the habitat models considering other variables. A strict sampling protocol with well 

defined classes and sufficient collected ground control points per class might have increased the 

accuracy and validity of the land-cover classification. The arbitrariness in choosing land-cover 

types could further be reduced, and results optimized by including non arbitrary measures for 

vegetation densities as the NDVI in the classification procedure.  

 

The NDVI, one of the covariates included in the models, shows in reality temporal variation, 

depending on the primary production and growing season. The NDVI was derived from the 

satellite imagery, and thus originated from one momentum (for both image tiles), and its 
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temporal variation was thus not captured.  The NDVI layer was assumed to be valid to serve as a 

proxy for the complete season, and was not considered as a serious drawback.  

 

4.1.3.  Spatial autocorrelation 
 

Autocorrelation is a property of all environmental variables, and  observed to correlate over 

time-series or across geographical space (respectively temporal and spatial autocorrelation) 

(Legendre 1993). On landscape levels, spatial autocorrelation appears most common as patches 

or gradients. In ecological research, spatial and temporal autocorrelation are usually considered 

to bias the results. Autocorrelation violates the assumption of stochastical independency of, and 

between variables, and is considered a form of pseudo-replication. This can, if  positive, increase 

the chance on type I errors, in which the null hypothesis of ‘having no effect’ is falsely rejected 

(Legendre 1993, Boyce 2006). Currie (2007) stated that if autocorrelation in abundance (e.g. 

point locations), is exogenous, resulting from environmental drivers that are spatially structured, 

traditional non spatial statistics describe the abundance perfectly well. In habitat studies, it is thus 

hoped that present autocorrelation in resource selection is the result of autocorrelation in the 

available covariates, and that it will be captured by the models (Aarts et al. 2008). Following the 

assumptions of Currie (2007) and Aarts et al. (2008), autocorrelation was not expected to have a 

strong effect on the model outcomes. Moe et al. (2007) tackled the ‘problem’ –or ecological 

property- of autocorrelation in the SBBRP study area for six female bears’ habitat use.  They 

reasoned as follows: the median of bears’ movement distances between two 30 minute time-

interval GPS fixed was 361 m and sometimes exceeded 2.5 km, while the average maximum exit 

distance for each habitat patch was only 85 m (< 0.1% of the habitat patches exceeded 2 km 

across). Bears –and cattle as well- should thus be able to move out of every habitat patch, and 

cross several habitat types within 2 subsequent GPS fixes, reducing the effect of spatial and 

temporal autocorrelation. 

 

Despite the methodological flaws as mentioned in this section, the predictive accuracy of all 

RSFs was relatively high, ranging from 76.2 % to 92.4% and were considered valid and 

satisfactory for further analysis and interpretation. 
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4.2.  Ecological interpretation  
 

4.2.1.  Cattle resource selection 
 

Cattle response towards the distance to the cattle farms was consistent over the three seasons. 

Areas closer to the cattle farms were preferred. As it involved dairy cattle, there was an urge for 

the cattle to return to the farm on a daily basis. The livestock husbandry type thus restricted cattle 

free-ranging behavior, and most likely caused this distance to the farm response rather than a 

predator effect. As cattle were thus in a ‘safe area’ throughout the night –when bears are most 

active-, driven by the husbandry type, conclusions on the predator effect for this response can not 

be drawn. Pratt et al. (1986) and Putman (1986) reported that some free-ranging cattle herds of  

the large predator-free New Forest returned to the farm site at evenings,  during full grazing 

season. This suggests that returning to the farms site is rather intrinsic behavior of domestic 

livestock, than predator avoidance. 

 

There was a strong and consistent response of cattle 

towards distance to unpaved roads and tracks over the 

seasons. During most of the observations of free-

ranging cattle during the field period, cattle was 

travelling or browsing in the roadside verges (Picture 

1). The reasons behind are two folded. Roath and 

Krueger (1982) reported that cattle made extensively 

use of a dense logging road network and trails  in 

Oregon, USA. They reported that some use of the 

roadside verge vegetation was made, but not 

intensively. They ascribed this to a travel function of 

roads to preferred grazing ranges. Preferred grazing 

habitats were even avoided when logging roads were 

not in the vicinity of them. The roadside verge 

vegetation on the other hand, was assigned as a 

preferred, and a main habitat type for free-ranging 

 

Picture 1: Cattle grazing and traveling on road 
side verges 
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cattle in New Forest (Pratt et al. 1986, Putman 1986).  

 

Cattle is classified as a preferential grazer, and have their preferred foraging grounds on green 

lush vegetation (Guevara et al. 1996). This was in line with results of this study, as during most 

time steps in all seasons, the land-cover types ‘other open land’ and ‘road’ were heavily selected, 

above all other land-cover types. The land-cover type of ‘other open landscape’ was extracted 

from the topographical map, and mainly consisted of forest meadows. The use/availability 

indices for other open landscapes were extremely high, and 92.7, 65.3 and 47.4 respectively for 

the pre-berry-, the intermediate- and the berry season. For ‘road’, the indices were respectively 

7.0, 4.4 and 5.2 (values >1 indicate a preference). In other words, during the pre-berry season, 

30.8% of the cattle locations were situated in other open landscapes, comprising only 0.33 % of 

the 100% MCP cattle home range. The strong decrease in the index level over the seasons for 

other open land could indicate a depletion of resources, and higher preference for other resources. 

This is reflected in the resource use of bogs. Bogs were significantly selected during the berry 

season only, and the use/availability index increased from the pre-berry season towards the berry 

season, from 2.1 to 3.6. This could indicate a shift towards foraging on the Calluna dominated 

vegetation on bogs and tree rich bogs. The use/availability index for land-cover type ‘roads’ 

remained stable and mostly significant, and could indicate that behalf their grazing function, 

roads were used as travel routes between cattle farms and grazing grounds. Woodlands (young 

dense, young open and older forest) showed no strong effect on resource selection during all time 

steps and seasons (with use availability indices ranging between 0.26 and 1).  

 

Free-ranging cattle does show a diel behavior patterns (Roath and Krueger 1982, Pratt et al. 1986, 

Putman 1986), with two peaks of activity, during mornings and evenings. Afternoons were 

characterized by bedding and ruminating in the vicinity of grazing grounds and nights by 

bedding and ruminating in more covered habitat types as woodlands. This diurnal behavior was 

not reflected in this study. Seasonal changes in resource selection were reported to show little 

variation  (Pratt et al. 1986).  This is in line with our findings: responses to most covariates were 

consistent over seasons. Responses however towards slope steepness, terrain ruggedness and 

NDVI did show seasonal variety. Steeper slopes were mainly selected during the pre-berry 

season, while rugged terrain was more selected during the intermediate and berry season. 
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Responses of cattle resource selection towards NDVI tend to be negative, especially during the 

berry season. Adaptive learning behavior, keeping in mind the response of bears towards NDVI, 

leading to predator avoidance may have caused this seasonal variation. 

 

We can conclude that cattle in the study area select their resources non randomly, preferable in 

the vicinity of the cattle farms, tracks and roads, driven by the livestock husbandry system of 

milk production. Roads and tracks were selected for both traveling between cattle farms and 

grazing areas, and to forage on the roadside verges. ‘Other open land’, including mainly forest 

meadows, was selected disproportionally, but showed a decreasing trend in selection over the 

seasons. Tree rich bogs and bogs were in contrast more selected towards the end of the grazing 

season. Diel behavior was not reflected in the results, and seasonal variation in resource selection, 

as in line with other research, was little.  

 

4.2.2.  Bear resource selection 
 

The human avoidance behavior of brown bears has been reported in the study area by Nelleman 

et al. (2007). Bears avoided tourist resorts and human settlements, and selected their resources 

further away in rather undisturbed rugged terrain. In North America, similar bear responses 

considering human activity were reported. Ciarnielo et al. (2006, 2007) showed that distances to 

logging roads and highways, as well as human induced mortality significantly negative affected 

bears’ resource selection. Kaczensky et al. (2003) reported the negative effect of highways on 

bear’s movement patterns in Slovenia. Numerous other authors come to the same conclusion:  

habitat fragmentation and related increased human activity affects bears –and wildlife in general- 

strongly in a negative way (Townsend et al. 2000a, Clevenger et al. 2002).  In addition, a higher 

level of human presence is likely to correlate with hunting intensity, which could alter wildlife’s 

wariness (Swenson 1999). Our results strongly support above mentioned research. Bears selected 

their resources significantly further than random from settlements, paved roads and unpaved 

roads. Single buildings were avoided in a lesser extent. Small tracks seemed to attract bears 

during the pre-berry and the berry season, most likely as travel routes. Bears used small tracks 

less during the berry season. This coincides with increased outdoor activities as hunting, fishing, 

berry and mushroom picking, when these tracks are frequented more by humans (Nellemann et 
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al. 2007). Bears selected their resources on larger distances from open water (lakes and rivers), 

during all but one time step over the three seasons. Reasons behind could again be an increased 

human activity close to water (because of the idyllic settings for summer cabins and related 

tourism), or simply because open water does not offer any supplementary resource for bears, 

especially as small creeks and wet bogs are abundant in the area to fulfill in the needs of water.   

 

Moe et al. (2007) showed that bears in the study area 

show a strong diel behavior, and stressed the 

importance of selecting time frames as small as 

possible in habitat selection studies. They monitored 

bears activity patterns with activity data loggers, and 

found that bears’ activity peaked twice a day, from 

around 3:00 – 7:00, and from 19:00 – 12:00. The 

active periods –mainly crepuscular and nocturnal 

hours- are followed by a bedding period, in which 

bears show low activity. Bear day beds are typically 

located under dense vegetation, in woodlands (Moe et 

al. 2007). The day bed locations are as a consequence 

characterized with high NDVI values. Vegetation 

density seemed to be less determinative for bedding 

locations during the night rest (SBBRP personal 

communication, and personal observations). Rather 

than the habitat types, as we expected dense forest 

types to be selected by bears during daytime, the NDVI showed to be a strong determinative 

covariate in bear resource selection. Moreover, bear response towards NDVI followed the 

midday-dip in bear activity. During nighttime and night rest, the NDVI did not appear to be 

significant in bear resource selection (see Box 1). NDVI was also shown to be a strong predictor 

in bear resource selection in grizzly bear resource selection in British Columbia (Ciarniello et al. 

2006). The land-cover classes as defined in this study did show very little effect on bear resource 

selection. Forests (young dense, young open and older forests) were selected in some occasions, 

while bogs and older forests were avoided in some occasions. The classes ‘roads’ and ‘other 

 

Picture 2: Typical daybed (center picture) with 
bear scats. 
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open landscape’ were excluded from most of the models, due to extreme standard errors, as these 

dummy variables were not selected at all.  

 

Terrain characteristics as slope steepness and aspect did not show to be straight forward 

predictors in bear habitat selection. In a few occasions, steeper slopes appeared to be selected, 

and in some occasions, less steep slopes were selected. Generally, slope steepness was of non-

significant influence on bear resource selection. It must be stated, that with the arbitrariness of 

the chosen α-level, covariates will sometimes appear to be significant because of type I errors (in 

5% of the occasions).Terrain ruggedness revealed to be a significant habitat use altering factor 

for 106 bears monitored by radio tracking in the study area as presented by Nelleman et al (2007). 

 

Box 1: diel bear behavior and relation 
with NDVI 
 

Graph (A) and (B) are scanned from Moe et al. 
(2007) 

 
Graph A and B illustrate diel behavior of five female 
brown bears in the study area during the pre-berry 
season (A) and the berry season (B). Activity was 
measured with activity sensors that register the 
number of two directional head movements, during 
5 minute time intervals. Data was pooled per season 
and 30 minute interval for the 5 female bears. When 
the mean index value exceeded 50, bears were 
assumed active. The shaded bars indicate activity; 
the full bars indicate the inactivity.  
 
The lower graph shows bear response to NDVI 
during the berry season. It follows the pattern of 
daytime low activity of the five female brown bears 
in the berry season (B) as presented by Moe et al. 
(2007). It indicates that bears select locations with 
high NDVI values during the day rest, and do not 
specifically select high NDVI locations during the 
night rest and night activity. 
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In this study, terrain ruggedness was not found to be a strong predictor for resource selection. 

The reason for this might lay in the different terrain ruggedness index that was used in this study.  

 

Bears in the study area showed a rather unpredictable response towards the distance to the cattle 

farms. In general, no effect was found. In some occasions however, bears did select areas closer 

than random to the cattle farms, while in others further. Again here, the type I error might have 

caused this significant responses. The same was valid for the response of bears to cattle resource 

selection values. No clear answer can be given on the question whether bears were attracted by 

or avoided areas with a high probability of use by cattle.  

 

We can conclude that bear resource selection in the study area is driven by avoiding human 

activity, i.e. selecting resources further than random from settlements, unpaved and paved roads. 

During the day rest, bears strongly select locations with high NVDI values, while during night 

rest, NDVI appears to have no strong effect on their resource selection.  

 

4.2.3.  Research question I: How does bears’ and cattle resource selection relates?  
 

Human activity was shown to strongly affect both coexisting bears’ and free-ranging cattle 

resource selection, but in an inverse way. Bears avoided human activity (settlements, single 

buildings, unpaved and paved roads), while cattle were attracted by unpaved roads for forage and 

travel, and showed no avoidance of human related landscape features whatsoever. Open land-

cover types, as forest meadows, roads and bogs –the latter during the berry season- were 

preferred habitat for cattle during daytime hours, when cattle was active, and tended to avoid 

dense vegetation. Bears in contrast, showed preferences for dense vegetation during day rest. The 

correlation coefficients for resource selection values were negative during mornings and 

afternoons during all seasons, and showed an increase towards slightly positive values during the 

evenings. This indicates spatial avoidance during daytime, when bears are inactive, and less 

avoidance towards the evenings, when bears start to be active and roam to fulfill in their resource 

needs. The Sign and Marginal homogeneity test showed however that bears and cattle strongly 

differ in resource selection during all time steps. To answer the first research question: 

spatiotemporal overlap in resource selection between coexisting free-ranging cattle and bears in 
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the study area is very low because of inverse responses towards human activity proxies and 

vegetation density. 

 

The reverse situation, at nocturnal and crepuscular hours, when cattle were reported to be less 

active and select denser vegetation to ruminate and rest, and bears are active (Pratt et al. 1986, 

Putman 1986, Moe et al. 2007) would probably show a different picture, in which spatial and 

temporal overlap in resource selection occurs more. Kaczensky (1999) mentioned higher rates of 

depredation of large predators on livestock during nocturnal hours. However, the husbandry 

practice of dairy cattle which restricted free-ranging prevented from this hypothetical situation in 

the study area.  

 

This study did not reveal any social or behavioral insight in cattle anti-predator or avoidance 

behavior, and how this could affect cattle resource selection. Predation induced altered  resource 

selection was proven in the Yellowstone National Park (Brown et al. 1999, Ripple and Beschta 

2004). After reintroduction wolves in 1995, elk numbers were expected to drop, but did not. Elk 

shifted their foraging strategy, and formerly preferred lush river banks (open areas with a high 

predation risk) became avoided and developed to woody browse due to natural succession. This 

process is referred to as the ecology of fear. Other fear- ecology research pointed in the same 

direction. Shrader et al (2008) found that predator presence altered resource selection of free-

ranging goats and other free-ranging domestic species, in a experimental setup with predator 

urine and dung. Similar, owls affected gerbils’ foraging behavior in Israel, and many more 

examples are found in literature (Brown et al. 2000). On the other hand, how fear- ecology could 

alter resource selection of bears in the study area remains unknown, as there is no reference for 

human absence, or a hunting-ban.  

 

4.2.4.   Research question II: Which factors determine encounter risk probability? 
 

Despite the low spatiotemporal overlap in resource selection between bears and free-ranging 

cattle, the low conflict rate in Sweden in general (Kaczensky 1999, Viltskadecenter 2008;2009) 

and the assumption that bears do not actively prey on free-ranging cattle (Knight and Judd 1983), 

encounters and predation risk in the study area are not excluded. In line with the hypothesis of 
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Linnell et al. (1999), that individuals of large carnivores will at least occasionally kill accessible 

livestock, the factors that do influence encounter risk were determinmed, in order to optimize the 

predation aspect in cattle management. 

 

The general trends in resource selection by bears and cattle are as a logical consequence reflected 

in bear-cattle encounter risk probabilities. Encounter risk was highest –with a few exceptions- in 

areas close to cattle farms, single standing buildings, tracks and unpaved roads, which are 

situated on larger distances from paved roads and open water during all seasons. Land-cover 

types did not appear to strongly affect encounter probabilities. Open landscapes (bogs, roads and 

other open land) were the only land-cover types that occasionally showed to have a positive 

effect on encounter risk. NDVI strongly affected encounter risk during the three seasons. During 

mornings, NDVI positively affected encounter risk, and in a lesser extend as well during 

afternoons. During evening periods, NDVI had no strong effect on encounter risk in the pre-

berry and intermediate season, but did affect encounter risk in a strong negative way during the 

berry season. Again, this seems to coincide with bears’ diel behavior. Risk appeared to be higher 

in rugged terrain, both on local scale, and larger landscape scale over all seasons. No consistent 

response of encounter risk towards the distance to creeks, –remarkably- to settlements and slope 

steepness was observed. Aspect did not show to be determinative. 

 

It is important to stress, that the encounter risks as presented here are relative and not absolute, 

for each time step and season. Moreover, an encounter does not necessarily result in an attack 

and an attack not necessarily in a kill. Actual predation risk is without any doubt much lower 

than the encounter risk relative probabilities. Hebblewhite et al. (2005) decomposed the 

predation chain from encounter to potential attack and kill, based on radio- and continuous 

ground  tracking data in a wolf-elk predator-prey system in Banff National Park. Encounter risk 

was similarly as in this study, determined with RSF. They however, had references of true 

encounters and attacks (based on track patterns), and actual kills due to ground tracking. In this 

study, we did not track continuously on ground, and did not have the reference of true kills. 

 

We conclude that bear-cattle encounter risk in the study period during daytime was very low. 

The determinative factors reflect important covariates for both cattle and bear resource selection, 
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as human activity proxies and vegetation densities. Seasonal differences in covariate response of 

encounter risk appeared to be relatively low. Variation in response during the day was observed 

for vegetation density only. Terrain ruggedness was not strongly determining resource selection 

for both cattle and bears, but it positively affected encounter risk relative probabilities. Encounter 

risk is the first step in the predation chain and should be considered as a predation proxy, when 

reference materials on true conflicts (attacks/kills) are not available.  

 

4.3.  General conclusion  
 

The low spatiotemporal overlap in resource selection and thus encounter risk between bears and 

free-ranging cattle, in addition with the absence of actual predation events during the study 

period support the hypothesis that bears in the study area do not actively prey on free-ranging 

cattle during daytime, and if conflicts would occur, it would rather be by chance after an 

encounter.    

 

According to the expectations, we observed inverse relations between cattle and bears 

considering human activity proxies, in which bears avoided human activity, and cattle were 

attracted to it, be it for cattle rather for traveling and foraging purposes than for predator 

avoidance. Encounter risk was further minimized because of the strong preference for dense 

vegetation by bears during daytime, while dense vegetation was rather avoided by free-ranging 

cattle.    

 

Spatial overlap in resource selection was low during daytime, but remains unknown during 

nighttime, as cattle stayed at the farm site overnight. The livestock husbandry practice of dairy 

cattle in the Dalarna –Gavleborg region, which restricts free-ranging of cattle, can therefore be 

considered suitable for the area, where bears and cattle coexist during daytime only.  Conflicts 

can however not be excluded, and livestock husbandry managers, coexisting with large 

carnivores should be willing to accept potential livestock losses and secondary effects due to 

depredation.   
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4.4.  Management implications and recommendations 
 

This research showed that a dairy cattle livestock husbandry system, that restricts free-ranging 

during nighttime, can coexist with a bear population in Scandinavia, with a minimum of direct 

predation losses. Therefore, it suggests that cattle livestock managers can minimize depredation 

losses by adapting to this particular system, in which cattle is kept at the farm site overnight.  

 

As suggested by Zimmerman et al. (2003), and with the findings of this research, cattle is not 

very liable for bear depredation. It can therefore serve as an alternative for other livestock 

husbandry systems, like sheep and goat herding, for managers that do face direct depredation 

losses.  

 

The efficiency of preventive measures, as already discussed (section 1.2.) varies conditionally. 

For farmers facing depredation losses, experimenting with deterrents, electric fencing or 

livestock guarding animals in order to minimize losses is therefore recommended, but they 

should keep in mind the cost-balance between actual losses (and compensation regulations) and 

preventative measures. 

 

The recolonization of wolves in central Sweden –which is great from a conservational point of 

view-, will most likely question further coexistence between large carnivores and free-ranging 

livestock husbandry. Therefore, it is highly recommended to focus research on this new predator, 

and its potential impacts on free-ranging livestock and people’s perception of large carnivores. 

 

This study was rather descriptive than explanatory.  Explanatory studies are however a necessity 

to gain more knowledge about secondary depredation effects. Experimental setups, in which e.g. 

stress-hormone levels, a milk production volumes, disease occurrence etc. are measured and 

compared between a study population coexisting with large carnivores, and a reference 

population could reveal more knowledge about  production related secondary depredation effects. 

On a landscape level, these secondary effects could be determined with experimental trails with 

e.g. predator scent (dung and urine).  
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As a methodological research suggestion: the arbitrariness in land-cover classification class 

definition can probably be minimized by adding non arbitrary measures as the NDVI in the 

classification process.    
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Appendix 1: Data action model  
 

Step 1: derivation of the project source data.  
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GIS and RS data derivation: 

 

1.1.Derive the NDVI from the satellite imagery according to equation 2 (section 2.2.2.2.). 

1.2.A maximum likelihood supervised classification from the satellite imagery. 

1.3.Topographical map: from vector to raster. 

1.4.Derive relevant data layers from the topographical raster map. 

1.5. Merge the classified satellite images with the rasterized topographical map. The result is a 

land-cover classification. 

1.6.Query relevant data layers from the topographical map. 

1.7.Create Euclidean distance maps from the source data. Each pixel value gives the distance to 

the source data (e.g. roads).  

1.8.Derive the slope, curvature and aspect out of the DEM. 

1.9.Single map algebra expressions to create the terrain ruggedness indices at local level 

(equation 1). Focal statistics were used to average the TRI values in a circular area with a 

radius of 500m and of 1000m for respectively TRI500 and TRI1000. 
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Step 2: create resource selection functions for cattle 
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Create resource selection functions for cattle. 

 

2.1. Create a 100% MCP home range around the positions of each cattle herd 

2.2. Sample a number of random points in the MCP (here, with a density of 2/ha) 

2.3. Extract data values for each covariate derived in step 1 –assumed necessary for the        

modeling purpose- for each random point and for each cattle point location. 

2.4. Create appropriate datasets, with all covariates and the dependent variable (0/1) 

2.5. Export the datasets from Arcgis to a statistical software package (here R) and run the 

appropriate GLM (here binomial, logistic regression) 

2.6. Enter the estimates of covariances in the appropriate regression form in GIS or RS software 

to create the RSF maps. 
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Step 3: create bear RSFs and determine encounter risk variables. 
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Create Bear RSF and encounter risk maps, and derive determinative encounter risk 

factors. 

 

3.1. Define a coexistence area (RSF cattle > 0.5) based on the average cattle RSF map. 

3.2. Draw a random sample of data points in the coexistence area, and interest the co existence 

area with all bear positions. 

3.3. Extract the covariate data for each random and bear point, and create a tabular dataset. 

3.4. Export the dataset to a statistical software package and run the appropriate GLM. 

3.5. Enter the resulting estimates of covariates in bear resource selection in a map single map 

algebra expression according to the form of the GLM to create bear resource selection maps.  

3.6. Multiply the bear and the cattle resource selection maps to obtain risk maps.  

3.7. Extract all covariates assumed important in predicting conflict risk with a random number of 

points. Fit an appropriate GML through the data (here it was a Poisson GLM, as binned risk data 

can be considered count data).  
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Appendix 2: Model selection  
 

Selecting variables to include in a model that best describes reality is a critical step in a modeling 

procedure (Hosmer and Lemeshow 1989). Traditional statistical ways of variable selection –

stepwise methods based on statistical significance testing- increasingly face criticism considering 

the strength and validity of these selection procedures. Anderson et al. (2000) present a range of 

shortcomings and problems considering null hypothesis testing for variable selection for 

modeling purposes and statistics in general. They claim that almost all null hypotheses are a 

priori stated false, and results are often completely uninformative. They thus question the 

scientific meaning of null hypothesis states as “differs”, “correlates”, “equals”, etc based on a 

completely arbitrary α – level (usually 0.1, 0.05 or 0.01) lacking any theoretical background. 

Shifting the arbitrary α – level, from e.g. 0.01 to 0.05 can as a consequence alter results, and as p 

– values depend on sample size, ‘significant’ results can always be obtained with large enough 

samples. The debate on the validity of traditional statistics is still ongoing in the scientific 

community. As an example, the authors of Anderson et al. (2000) listed citations on pro’s and 

con’s about traditional statistics in null hypothesis testing and model selection. An impressive list 

of over 400 citations and references can be found on: www.cnr.colostate.edu/~anderson/thom- 

pson1.html and www.cnr.colostate.edu/~anderson/nester.html. Their focus is mainly on variable 

selection in modeling procedures, and they confirm that the use of traditional statistics after the 

most parsimonious model has been selected can be justified if hypothesis are at least stated 

correctly (Burnham and Anderson 2002).    

 

The information – theoretic approach bypasses these traditional statistical shortcomings, and is 

based on a priori reasoning and defining a set of scientifically sound candidate models. Hirotugu 

Akaike developed a method to quantify the loss of information of candidate models in relation to 

reality. He published his findings in his pioneering 1973 publication: “Information theory and an 

extension of the maximum likelihood principle”. With his method, further on referred to as 

Akaike’s Information Criteria (AIC), he linked Fisher’s maximum likelihood theory –a 

maximized log likelihood function- with the Kullback-Leiber information, and so found a sound 

mathematical and statistical way of quantifying information losses in modeling (Akaike 1973, 

Anderson et al. 2000, Burnham and Anderson 2002). The mathematical derivation of the AIC 
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goes way beyond the scope of this study, but some key concepts of AIC are given below, 

following Akaike (1974) and Anderson et al. (2000).  

 

The Kullback-Leiber information, between conceptual truth f and model g attempting to 

approximate f, quantifies the amount of information lost by this approximation, and is denoted as 

I(f,g) [eq. 5].  
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The integral can be interpreted as the statistical expectation of the natural logarithm of the ratio 

of full reality (f) and the model (g), and thus be written as [eq. 6]: 
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and transformed due to logarithmic properties to [eq. 7]:  

 

))]|(([log))](([log),( θxgxfgfI efef Ε−Ε=       [eq. 7] 

 

as full reality f is unknown, kept constant C across all models [eq. 8]: 

 

))]|(([log),( θxgCgfI efΕ−=        [eq. 8] 

 

The Ef[loge(g(x|θ))] term of the equation is the part to focus on in selecting a model out of a set 

of candidate models in order to minimize the information loss I(f,g). The theoretical Kullback-

Leiber information however, is based on true reality and its parameters, and is thus unknown. An 

estimation of the expected or relative Kullback-Leiber information was obtained by linking it 

with a maximum log likelihood function (Akaike 1973) and is referred to as AIC and written as 

[eq. 9]: 
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KdataAIC e 2))|((log2 +−= θl        [eq. 9]   

 

Where loge (ℓ(θ|data)) is the value of the maximized log likelihood over the unknown parameters 

θ, with given data and a –candidate- model. K represents the number of variables included in the 

model. When applied on a set of a priori defined candidate models, the candidate model with 

lowest AIC value loses least information in respect to reality and can be considered as the ‘best’ 

model out of the candidates.   

 

The AIC is known to be biased when the number of parameters K is large in respect to the 

sample size n (n/K < 40). Sugiura derived a modified AIC, named AICc, or a small sample AIC 

in 1978. Burnham et al. (2002) suggested being conservative and applying AICc in case of any 

doubt [eq. 10]. n Represents the sample size of the data set. 
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As no single ‘best’ model exists, the candidate models each need to be evaluated and ranked. The 

simplest way doing that is by taking the AIC (or AICc) differences between each model and the 

model with the lowest AIC score [eq. 11]. The absolute sizes of the AIC values are thus 

practically meaningless, it are the differences between AIC scores that determine model 

suitability given the candidate model and the dataset. A rule of thumb suggests that models with 

Δi < 2 gives substantial empirical support to the ‘best’ selected model, and should thus be ranked 

relatively high.  

 

minAICAIC ii −=∆          [eq. 11] 

  

The likelihood (L) of a model (g), given the data (x), is a measure that quantifies the plausibility 

of each candidate model, of being the actual Kulback-Leiber model. It is calculated as follows: 
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The likelihood (L) of each model, normalized over R candidate models is defined as the Akaike’s 

Weight, ω(i). The weights are considered as the weight of evidence in favor of each model i, 

being the best model amongst the set of candidates and is calculated as [eq. 13]: 
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Appendix 3: Creating the Land-cover Map 
 

Introduction  

In habitat modeling studies, up-to-date land-cover maps are a necessity, especially when the 

study area consists of a highly dynamic ecosystem (e.g. intensively managed forest area). The 

most recent land-cover maps covering the study area are the Swedish Corine Land-cover, the 

Corine Land-cover and the detailed Svenska Marktäckedata (Ahlcrona et al. 2002). These land-

cover classifications date from 2000. The time lag between their publication and this study is 

relatively large: during these 8 years, habitat patches were liable to natural succession, 

disturbances or management measures; with differences in resource availability as a consequence. 

An example: during this period clear-cut areas can evolve from poorly productive almost bare 

soils to young primary forests with a high primary production; or old grown forests could have 

been harvested.  These changes in habitat types and resource availability consequently alter 

animals’ decisions in habitat and resource selection (Townsend et al. 2000b).  

 

To bypass this time lag problem, an up-to-date land-cover map of the study area was decided to 

be created, by merging non or less dynamic landscape features (e.g. roads, build up, 

agriculture, …) from a topographical map and more dynamic landscape features (e.g. forest types) 

from a satellite imagery based supervised classification.   

 

 
Picture A11: the 2 IRS-P6-LISS3 images covering the study area.  
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Methodology 

 

GIS and Remote sensing data acquisition 

The SBBRP obtained a 1:50.000 GSD-Topographic Map (GSD - Geographical data for Sweden) 

and 2 IRS-P6-LISS3 satellite images from the study area through the “Saccess” clearinghouse 

(Hosmer and Lemeshow 1989)(Hosmer and Lemeshow 1989)(Hosmer and Lemeshow 

1989)(Hosmer and Lemeshow 1989)(Hosmer and Lemeshow 1989)of the Swedish Land Survey 

(Lantmateriet). The satellite imagery originated from the Indian Remote sensing Satellites IRS-

P6 (RESOURCESAT1). This sun synchronous satellite orbits 14 times per day at 817 km height 

at an inclination of 98.7 degrees. Its payload consists of 3 sensors, of which the LISS3. The 

swath width of the LISS 3 sensor covers 141 km, and it has a spatial resolution of 23.5 m and a 

repetition time of 24 days. The sensor operates in 3 spectral bands in the VNIR (green: 0.52-0.59 

µm, red: 0.62-0.68 µm, and near infrared: 0.77-0.86 µm) and in 1 spectral band in the SWIR 

region (1.55-1.70 µm). The band selection and spatial resolution of this sensor make it a 

comparable with LANDSAT imagery and suitable for vegetation and land-cover mapping (Furby 

and Wu 2007). Both the satellite imagery and the topographical maps were obtained in the local 

Swedish RT90 2.5 gon West projection reference system. The partly overlapping IRS-P6_LISS3 

images were acquired on respectively July 2nd and 7th 2007.  Both images were needed for a 

classification of the complete study area, because of the extent and some could cover on one of 

the images. The images were geometrically corrected by Lantmateriet. 

 

Ground truth data collection 

From late spring to late autumn 2008, 395 ground control points (GCP’s) were collected in the 

study area. A GCP was considered valuable when it consisted of a single habitat type (>95%) in 

a radius of minimum 30m. For each GCP, tree density, average tree height and tree species 

composition was measured or estimated, and the location classified in a predefined habitat type 

(initial forest categories defined by (Karlsson and Westman 1991). The field procedure followed 

the habitat assessment protocol of the SBBRP.  Based on these habitat assessments, the 

following classes were defined to initiate a supervised classification:  
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- S1 p, s and m: Old grown forest ca. 10 years before final harvest, consisting of >90 % 

pine (p, N = 11) or spruce(s, N=13). Class S1m refers to old grown mixed forest, and was 

defined when 1 species group was represented a maximum of 70% in the habitat patch 

(N=22).  

- G1 p, s and m: A broad class of medium aged forest, where the medium tree diameter at 

breast height exceeded 10 cm and tree height on average exceeded 7m.  Definition of “p”, 

“s”, and “m” are equivalent to these of class S1 (Np= 40, Ns= 26 and Nm= 77). 

- SF: Swamp forest; a forested waterlogged ground (not on peat), often with broadleaf tree 

species, grasses, herbs and sedges, with in- and outflow of groundwater (N=11).  

- B: Bog; often very wet ground, on peat with low productivity. Lacking trees or just very 

few trees, without any in-or out flow of ground water (N= 5).  

- TRB: Tree rich bog; similar as a bog, but sparsely forested (N= 13). 

- R2 vd, d and nd: Young forest, prior to primary thinning. Vd, d and nd refer to the tree 

density (vd, > 5 stems/m2, N=26; d, <5 and >1 stem/m2, N=60 and nd, <1 stem/m2, 

N=78). 

- K= Clear-cut areas or bare soil, with trees <1.3m (N=13). 

 

An additional number of GCP’s were derived from a topographical map and field knowledge of 

the classes Bog (N=20), Build-up (N=20), Water (N=20) and Agriculture (N=15). A similar 

dataset, dating from 2007 with 498 GCP’s was available and kept for validation. 

 

The classification procedure 

We followed the procedure for a supervised classification as explained in Lillesand et al.  (2004) 

with the Erdas Imagine 9.1 software package of Leica Geosystems Inc; after the images were 

atmospherically corrected through the “darkest pixel” method. Training areas were defined by 

the GCP’s, and both satellite images were classified with a maximum likelihood classifier. Class 

separability was assessed visually through histogram check, a Euclidean Distance separability 

measure and through the error or contingency matrix results. The classification and class 

merging process was iterated until the highest total accuracy for each image was reached. 
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Making the map complete: GIS and RS integration 

After the best classification results were obtained, the classified images were resampled to 

10x10m raster cell size, made a mosaic off, and clipped according to the extent of the study area. 

Non dynamic anthropogenic classes like roads build up area and agricultural land and pastures, 

which have a high accuracy on topographical maps, were derived from the Gronkarta data and 

converted to a raster (10x10m).  Combining the Gronkarta with the classified images would 

undoubtedly increase general end result accuracy.  The final result was then validated towards 

the validation dataset from 2007 with a nonparametric paired sample test for homogeneity in the 

SPSS 16.0 software package. 

 

Results 

The best classification result obtained was after merging S1 and G1 forests together in a class 

“Older”, TRB and B into “Bog”, R2vd, R2d into the class “young dense (Y dense)” and K and 

R2nd into “young open”.  The easternmost image contained a relatively large amount of cloud 

cover, which was classified as well, to be extracted later. The overall accuracy for the 

easternmost image was 95%, and 85% after clouds were excluded. The overall accuracy for the 

western image was 87%.  The results are summarized in the contingency matrix of table A 3.1.  

 

The relatively high training data accuracy levels do not mean an overall high accuracy. It 

indicates that the chosen training classes are homogenous and spectrally separable, and that the 

classification procedure worked well for the training pixels (Lillesand et al. 2004, Chang 2008).  

The users’ accuracy (the number of correctly classified pixels of a category divided by the total 

number of pixels classified in that category) was in both images highest for the category “water” 

(1) and lowest in both pictures for the category “young open forest” (0.67 and 0.72). The 

producers’ accuracy (the proportion of correctly classified pixels of each category) was in both 

images highest for the category “water” (0.99 in the western image and 1 in the eastern image), 

and lowest for “young open forest” in the western image (0.66) and for both “bog” and “young 

open forest” in the eastern image (both 0.77). It should be mentioned that 0.05% of the pixels 

were classified as “unclassified” or “cloud” in the end result. These two classes were merged into 

the class “unclassified”.  
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Table A 3.1: Contingency matrix of the classification results of the IRS-P6-LISS3 images (abbreviations: acc. = 

accuracy, Y = young).  

Westernmost image 
Reference data     

Cloud Bog Y open Y dense Water      Older Row Total Users' acc. 

C
la

ss
ifi

ed
 d

at
a 

Cloud - - - - - - -   

Bog - 632 13 0 0 4 649 0.97 

Y open - 28 148 24 0 22 222 0.67 

Y dense - 0 29 159 0 8 196 0.81 

Water - 0 0 0 154 0 154 1.00 

Older - 0 35 23 1 194 253 0.77 

  Column Total - 660 225 206 155 228 1474   

  Producers' acc. - 0.96 0.66 0.77 0.99 0.85 ACC. 0.87 

Easternmost image 
Reference data     

     Cloud      Water        Bog Y dense Y open      Older  Row Total Users' acc. 

C
la

ss
ifie

d 
da

ta
 

Cloud 2640 0 0 0 0 0 2640 1.00 

Water 0 173 0 0 0 0 173 1.00 

Bog 6 0 140 0 16 3 165 0.85 

Y dense 0 0 0 113 10 21 144 0.78 

Y open 0 0 33 6 200 39 278 0.72 

Older 0 0 9 2 34 368 413 0.89 

  Column Total 2646 173 182 121 260 431 3813   

  Producers' acc. 1.00 1.00 0.77 0.93 0.77 0.85 ACC.  0.95 

excl. cloud 0.85 

 

The classes “agriculture”, “build-up”, “main road”, “road” and “other open land” were derived 

out of the topographical map and added to the classification. “Agriculture” and “build-up” were 

derived and each aggregated (polygons separated <100m away from each other) in order to 

prevent misclassification of non-anthropogenic land use classes within these areas. Other open 

land was chosen to include as well, because open land-cover types like pastures, forest meadows 

and some grasslands in and around settlements –which are interesting for grazers as cattle- were 

not represented in the classified images. Map A 3.1 shows the final result of the classification 

process.  

 

The 498 GCP’s dating from 2007 were projected on the newly created map. 77% of the GCP’s 

were correctly identified by the new map. A Marginal Homogeneity test revealed no significant 

differences between the 2007 validation data and the land-cover types as expected by the 2008 

map (N=498, p= 0.649).   
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Map A11: Land-cover classification of the study area, a result of combining image classification and GIS data 

derivation.  

 

Figure 1 shows details of the community of Orsa and a summer farm “Skadar Djuberga” on both 

a topographical map and on the newly created land-cover map. Road networks, build-up area and 

agriculture resemble –logically- very well on both maps; and open water and other open land as 

well. On the topographical map, the striped forest patterns –due to forest management- are less 

visible than on the land-cover map, as well as the different non anthropogenic land-cover types.  
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Figure A11: Orsa community (upper two maps) and Skadar Djuberga area (lower two maps) on the topographical 

map (left) and on the newly created land-cover classification map (right).  
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Discussion 

Considering the high classification accuracy and the validation results, we consider the land-

cover classification as workable for our purposes. 100% accuracy cannot, or maybe never be 

obtained through remote sensing and imagery classification. The sensor characteristics, like 

temporal and spatial resolution play an important role in this, as well as the on ground dynamics 

(Foody 2002, Lillesand et al. 2004).  

 

The initial defined set of classes eventually resulted in a classification of only 3 forest types: 

older, young dense, and young open forest.  We could not classify according to species or 

species composition. The three classes we defined were thus a continuum of forest ages and 

density, and arbitrary defined. Bogs and tree rich bogs were merged as well. If bogs were 

misclassified according to the confusion matrix, the missed pixels fell in the class of young open 

forest. A priori definition of non arbitrary classes can be seen as ideal, but is very difficult in 

semi-natural ecosystems, where habitat types are varying more in e.g. stand age, species 

composition, soil water content and tree stem density (Lieng et al. 2005).  

 

The number of GCP’s per class differed considerably. Only a small part of the GCP’s originated 

from a randomly drawn sample (N= 36) of points over the study area. The other GCP’s were 

collected during bear habitat related fieldwork. Thus, GCP’s were taken relative to bear habitat 

use. Avoided habitat types were thus underrepresented in the sample of GCP’s. This problem 

was partly bypassed through extracting additional GCP’s from topographical maps. Another 

obstacle is that the GCP’s were clustered in areas with concentrated fieldwork activities. These 

areas were thus relatively well represented in the classification process, but other parts of the –

large, 12500 km2- study area were not sampled at all. A stratified random sampling plan to cover 

most of the variation in the area of interest would have improved results.  

 

We can conclude that the map is suitable for this study, i.e. as a variable in modeling cattle and 

bear habitat use, and to predict high encounter risk areas. However, care has to be taken with the 

map interpretation of land-cover and habitat results (e.g. misclassified bogs). As long as no up-

to-date land-cover classification with proven high accuracy is available, land-cover mapping 
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from freely available satellite imagery in combination with topographical GIS data can provide a 

good and cheap alternative.  
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Appendix 4: Model selection results 
 
Model selection:  Cattle in the pre-berry (pb), intermediate (i) and berry season (b), for 
mornings (m), afternoons (a) and evenings (e). 
 

R
S

F
_c

_p
b

_m
 

Model Type AIC K c AICc ∆AICc Likelihood Probability Accuracy N 
ALL 764.77 16 0.41 765.18 0.0 1.0000 0.9993 0.883 1345 
Expert 779.69 9 0.13 779.82 14.6 0.0007 0.0007 0.876 
Human P. 968.68 6 0.06 968.74 203.6 0.0000 0.0000 0.866 
Land-cover 1038.5 7 0.08 1038.58 273.4 0.0000 0.0000 0.849 

 1.0007 

 
R

S
F

_c
_p

b
_a

 

Model Type AIC K c AICc ∆AICc Likelihood Probability Cvbinary N 
ALL 462.3 16 0.62 462.92 0 1.0000 1.0000 0.889 900 
Expert 496.68 9 0.20 496.88 33.97 0.0000 0.0000 0.884 
Human P. 589.38 6 0.09 589.47 126.6 0.0000 0.0000 0.866 
Land-cover 637.41 7 0.13 637.54 174.6 0.0000 0.0000 

 1.0000 

 
R

S
F

_c
_p

b
_e

 

Model Type AIC K c AICc ∆AICc Likelihood Probability Cvbinary N 
ALL 54.144 16 4.25 58.39 7.0 0.0304 0.0295 0.883 145 
Expert 50.076 9 1.33 51.41 0.0 1.0000 0.9705 0.924 
Human P. 74.38 6 0.61 74.99 23.6 0.0000 0.0000 0.917 
Land-cover 82.916 7 0.82 83.73 32.3 0.0000 0.0000 0.931 

 1.0304 

 
R

S
F

_c
_i

_m
 Model Type AIC K c AICc ∆AICc Likelihood Probability Cvbinary N 

ALL 1006.9 16 0.31 1007.21 0 2.7183 1.0000 0.887 1800 
Expert 1037.4 9 0.10 1037.50 30.3 0.0000 0.0000 0.883 
Human P. 1094.5 6 0.05 1094.55 87.34 0.0000 0.0000 0.816 
Land-cover 1600.4 7 0.06 1600.46 593.3 0.0000 0.0000 0.827 

 2.7183 

 
R

S
F

_c
_i

_a
 Model Type AIC K c AICc ∆AICc Likelihood Probability Cvbinary N 

ALL 923 10 0.12 923.12 0 1.0000 1.0000 0.882 1445 
Expert 962.01 6 0.05 962.06 38.93 0.0000 0.0000 0.841 
Human P. 1439.3 2 0.01 1439.31 516.2 0.0000 0.0000 0.8 
Land-cover 1230.1 6 0.05 1230.15 307 0.0000 0.0000 0.807 

 1.0000 1.0000 

 
R

S
F

_c
_i

_e
 Model Type AIC K c AICc ∆AICc Likelihood Probability Cvbinary N 

ALL 187.16 16 1.50 188.66 1.262 0.5320 0.3473 0.892 380 
Expert 186.91 9 0.49 187.40 0 1.0000 0.6527 0.903 
Human P. 215.55 6 0.23 215.78 28.38 0.0000 0.0000 0.895 
Land-cover 279.25 7 0.30 279.55 92.15 0.0000 0.0000 0.863 

 1.5320 

 
R

S
F

_c
_b

_m
 Model Type AIC K c AICc ∆AICc Likelihood Probability Cvbinary N 

ALL 2210 16 0.15 2210.15 0 1.0000 1.0000 0.872 3655 
Expert 2275.9 9 0.05 2275.95 65.8 0.0000 0.0000 0.867 
Human P. 2666.2 6 0.02 2666.22 456.1 0.0000 0.0000 0.844 
Land-cover 2942.7 7 0.03 2942.73 732.6 0.0000 0.0000 0.836 

 1.0000 
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R
S

F
_c

_b
_a

 Model Type AIC K c AICc ∆AICc Likelihood Probability Cvbinary N 
ALL 2843.2 16 0.12 2843.32 0 1.0000 1.0000 0.864 4565 
Expert 2968.5 9 0.04 2968.54 125.2 0.0000 0.0000 0.858 
Human P. 3771.7 6 0.02 3771.72 928.4 0.0000 0.0000 0.808 
Land-cover 3486.2 7 0.02 3486.22 642.9 0.0000 0.0000 0.832 

 1.0000 

 
R

S
F

_c
_b

_e
 Model Type AIC K c AICc ∆AICc Likelihood Probability Cvbinary N 

ALL 527.42 16 0.67 528.09 0 1.0000 0.9882 0.863 825 
Expert 536.73 9 0.22 536.95 8.858 0.0119 0.0118 0.862 
Human P. 663.13 6 0.10 663.23 135.1 0.0000 0.0000 0.842 
Land-cover 650.22 7 0.14 650.36 122.3 0.0000 0.0000 0.848 

 1.0119 

 
 

Model selection: bear in the pre-berry season, for 6 time steps (in hours, indicated behind 
the model name) 
 

R
S

F
_b

_p
b

_1
-3

 Model 
Type AIC K c AICc ∆AICc Likelihood Probability accuracy N 

ALL 886.21 25 1.175 887.385 0.000 1.000 1.000 0.82 1135 

Human P. 1016 7 0.101 1016.101 128.716 0.000 0.000 0.799 

Land-cover 1023.3 6 0.076 1023.376 135.991 0.000 0.000 0.797 

Expert 931.94 11 0.239 932.179 44.793 0.000 0.000 0.814 

 1.000 

 
R

S
F

_b
_p

b
_4

_6
 Model 

Type AIC K c AICc ∆AICc Likelihood Probability 
CV 
accuracy N 

ALL 905.75 21 0.796 906.546 0.000 1.000 1.000 0.831 1190 

Human P. 1131.8 7 0.096 1131.896 225.351 0.000 0.000 0.797 

Land-cover 1054.6 2 0.010 1054.610 148.064 0.000 0.000 0.793 

Expert 1016.8 7 0.096 1016.896 110.351 0.000 0.000 0.8 

 1.000 

 
R

S
F

_b
_p

b
_7

_1
0  Model 

Type AIC K c AICc ∆AICc Likelihood Probability 
CV 
accuracy N 

ALL 1116.3 18 0.351 1116.651 0.000 1.000 1.000 0.882 1980 

Human P.  1717.4 7 0.057 1717.457 600.807 0.000 0.000 0.784 

Land-cover 1314.9 6 0.043 1314.943 198.292 0.000 0.000 0.852 

Expert 1217.8 11 0.135 1217.935 101.285 0.000 0.000 0.86 

 1.000 

 
R

S
F

_b
_p

b
_1

1_
15

 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1960.5 26 0.547 1961.047 0.000 1.000 1.000 0.847 2595 

Human P. 2407.2 7 0.044 2407.244 446.196 0.000 0.000 0.793 

Land-cover 2271.4 6 0.033 2271.433 310.386 0.000 0.000 0.813 

Expert 2169.8 11 0.103 2169.903 208.856 0.000 0.000 0.811 

 1.000 
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R
S

F
_b

_p
b

_1
6_

21
 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1064.4 27 1.162 1065.562 0.000 1.000 1.000 0.828 1330 

Human P. 1148.6 7 0.086 1148.686 83.124 0.000 0.000 0.813 

Land-cover 1239.8 7 0.086 1239.886 174.324 0.000 0.000 0.799 

Expert 1129.9 11 0.203 1130.103 64.541 0.000 0.000 0.804 

 1.000 

 
R

S
F

_b
_p

b
_2

2_
00

 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1063.1 26 1.079 1064.179 0.000 1.000 1.000 0.829 1330 

Human P. 1148.6 7 0.086 1148.686 84.507 0.000 0.000 0.812 

Land-cover 1239.8 7 0.086 1239.886 175.707 0.000 0.000 0.797 

Expert 1129.9 11 0.203 1130.103 65.924 0.000 0.000 0.804 

 1.000 

 

 

Model selection: bear in the intermediate season, for 6 time steps (in hours, indicated 
behind the model name) 
 

R
S

F
_b

_i
_1

_3
 

Model Type AIC K c AICc ΔAICc Likelihood Probability 
CV 
accuracy N 

ALL 510 21 0.835 510.835 0.000 1.000 0.987 0.777 575 

Human P. 519.58 7 0.101 519.681 8.846 0.012 0.012 0.803 

Land-cover 570.04 2 0.011 570.051 59.215 0.000 0.000 0.8 

Expert 523.62 7 0.101 523.721 12.886 0.002 0.002 0.807 

 1.014 

 
R

S
F

_b
_i

c_
4_

6 

Model Type AIC K c AICc ΔAICc Likelihood Probability 
CV 
accuracy N 

ALL 484.73 13 0.314 485.044 0.000 1.000 1.000 0.803 600 

Human P. 554.24 7 0.096 554.336 69.293 0.000 0.000 0.795 

Land-cover 546.85 2 0.010 546.860 61.817 0.000 0.000 0.805 

Expert 514.54 7 0.096 514.636 29.593 0.000 0.000 0.8 

 1.000 

 
R

S
F

_b
_i

c_
7_

10
 

Model Type AIC K c AICc ΔAICc Likelihood Probability 
CV 
accuracy N 

ALL 498.99 14 0.215 499.205 0.000 1.000 1.000 0.866 770 

Human P. 665.77 7 0.057 665.827 166.622 0.000 0.000 0.782 

Land-cover 631.61 2 0.006 631.616 132.411 0.000 0.000 0.791 

Expert 558.86 7 0.057 558.917 59.712 0.000 0.000 0.83 

 1.000 

 
R

S
F

_b
_i

c_
11

_1
5  

Model Type AIC K c AICc ΔAICc Likelihood Probability 
CV 
accuracy N 

ALL 567.45 14 0.164 567.614 27.760 0.000 0.000 0.82 745 

Human P. 655.44 7 0.044 655.484 115.630 0.000 0.000 0.783 

Land-cover 606.39 2 0.005 606.395 66.541 0.000 0.000 0.799 

Expert 539.81 7 0.044 539.854 0.000 1.000 1.000 0.836 

 1.000 

 

 
 
 
 
 



109 

 

R
S

F
_b

_i
c_

16
_2

1 

Model Type AIC K c AICc ΔAICc Likelihood Probability 
CV 
accuracy N 

ALL 989.78 26 1.079 990.859 0.000 1.000 1.000 0.813 1305 

Human P. 1153 7 0.086 1153.086 162.227 0.000 0.000 0.792 

Land-cover 1223.4 6 0.065 1223.465 232.605 0.000 0.000 0.789 

Expert 1104.1 12 0.240 1104.340 113.481 0.000 0.000 0.802 

 1.000 

 
R

S
F

_b
_i

c_
22

_0
0  

Model Type AIC K c AICc ΔAICc Likelihood Probability 
CV 
accuracy N 

ALL 545.45 13 0.280 545.730 0.000 1.000 1.000 0.762 565 

Human P. 575.83 7 0.086 575.916 30.186 0.000 0.000 0.755 

Land-cover 624.23 2 0.009 624.239 78.509 0.000 0.000 0.759 

Expert 584.88 7 0.086 584.966 39.236 0.000 0.000 0.743 

 

      
1.000 

   
 

Model selection: bear in the berry season, for hourly time steps 
 

R
S

F
_b

_b
_1

 Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1141.4 21 0.7345 1142.1 0.00 1.000 1.000 0.818 1280 

Human P. 1207.1 7 0.0881 1207.2 65.05 0.000 0.000 0.78 

Land-cover 1330.5 2 0.0094 1330.5 188.37 0.000 0.000 0.784 

Expert 1207.9 11 0.2082 1208.1 65.97 0.000 0.000 0.775 

 1.000 

 
R

S
F

_b
_b

_2
 Model 

Type AIC K c AICc ∆AICc Likelihood Probability 
CV 
accuracy N 

ALL 1135.9 25 0.9496 1136.8 0.00 1.000 1.000 0.824 1395 

Human P. 1221 7 0.0807 1221.1 84.23 0.000 0.000 0.797 

Land-cover 1396.1 6 0.0605 1396.2 259.31 0.000 0.000 0.8 

Expert 1216.2 11 0.1909 1216.4 79.54 0.000 0.000 0.787 

 1.000 

 
R

S
F

_b
_b

_3
 Model 

Type AIC K c AICc ∆AICc Likelihood Probability 
CV 
accuracy N 

ALL 1155.3 25 0.9427 1156.2 0.00 1.000 1.000 0.825 1405 

Human P. 1260.1 7 0.0802 1260.2 103.94 0.000 0.000 0.802 

Land-cover 1368.2 6 0.0601 1368.3 212.02 0.000 0.000 0.8 

Expert 1245.4 11 0.1895 1245.6 89.35 0.000 0.000 0.802 

 1.000 

 
R

S
F

_b
_b

_4
 Model 

Type AIC K c AICc ∆AICc Likelihood Probability 
CV 
accuracy N 

ALL 1182.8 25 0.8850 1183.7 0.00 1.000 1.000 0.833 1495 

Human P. 1276.6 7 0.0753 1276.7 92.99 0.000 0.000 0.809 

Land-cover 1427.8 6 0.0565 1427.9 244.17 0.000 0.000 0.797 

Expert 1270 11 0.1780 1270.2 86.49 0.000 0.000 0.801 

 1.000 
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R
S

F
_b

_b
_5

 Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1137.2 17 0.4274 1137.6 0.00 1.000 1.000 0.83 1450 

Human P. 1253.5 7 0.0777 1253.6 115.95 0.000 0.000 0.803 

Land-cover 1348.6 6 0.0582 1348.7 211.03 0.000 0.000 0.794 

Expert 1220.9 11 0.1836 1221.1 83.46 0.000 0.000 0.806 

 1.000 

 
R

S
F

_b
_b

_6
 Model 

Type AIC K c AICc ∆AICc Likelihood Probability 
CV 
accuracy N 

ALL 1128 25 0.9292 1128.9 0.00 1.000 1.000 0.84 1425 

Human P. 1248.4 7 0.0790 1248.5 119.55 0.000 0.000 0.801 

Land-cover 1320.2 6 0.0592 1320.3 191.33 0.000 0.000 0.804 

Expert 1194.9 11 0.1868 1195.1 66.16 0.000 0.000 0.818 

 1.000 

 
R

S
F

_b
_b

_7
 Model 

Type AIC K c AICc ∆AICc Likelihood Probability 
CV 
accuracy N 

ALL 992.93 25 0.9782 993.9 0.00 1.000 1.000 0.845 1355 

Human P. 1246.5 7 0.0831 1246.6 252.67 0.000 0.000 0.795 

Land-cover 1116.4 5 0.0445 1116.4 122.54 0.000 0.000 0.83 

Expert 1079.8 10 0.1637 1080.0 86.06 0.000 0.000 0.835 

 1.000 

 
R

S
F

_b
_b

_8
 Model 

Type AIC K c AICc ∆AICc Likelihood Probability 
CV 
accuracy N 

ALL 981.53 17 0.4412 982.0 0.00 1.000 1.000 0.852 1405 

Human P. 1257.1 7 0.0802 1257.2 275.21 0.000 0.000 0.805 

Land-cover 1105.2 5 0.0429 1105.2 123.27 0.000 0.000 0.823 

Expert 1027 10 0.1578 1027.2 45.19 0.000 0.000 0.834 

 1.000 

 
R

S
F

_b
_b

_9
 Model 

Type AIC K c AICc ∆AICc Likelihood Probability 
CV 
accuracy N 

ALL 883.92 16 0.4377 884.4 0.00 1.000 1.000 0.854 1260 

Human P. 1141 7 0.0895 1141.1 256.73 0.000 0.000 0.8 

Land-cover 977.27 5 0.0478 977.3 92.96 0.000 0.000 0.844 

Expert 927.63 10 0.1761 927.8 43.45 0.000 0.000 0.851 

 1.000 

 
R

S
F

_b
_b

_1
0 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 869.06 17 0.4888 869.5 0.00 1.000 1.000 0.863 1270 

Human P. 1151.5 7 0.0887 1151.6 282.04 0.000 0.000 0.791 

Land-cover 982.72 6 0.0665 982.8 113.24 0.000 0.000 0.845 

Expert 922.97 11 0.2099 923.2 53.63 0.000 0.000 0.857 

 1.000 

 
R

S
F

_b
_b

_1
1 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 779.45 27 1.3298 780.8 0.00 1.000 1.000 0.87 1165 

Human P. 1034.3 7 0.0968 1034.4 253.62 0.000 0.000 0.812 

Land-cover 939.17 5 0.0518 939.2 158.44 0.000 0.000 0.839 

Expert 871.89 10 0.1906 872.1 91.30 0.000 0.000 0.838 

 1.000 
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R
S

F
_b

_b
_1

2 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 865.27 14 0.3750 865.6 0.00 1.000 1.000 0.824 1135 

Human P. 1029.5 7 0.0994 1029.6 163.95 0.000 0.000 0.804 

Land-cover 1027.7 2 0.0106 1027.7 162.07 0.000 0.000 0.793 

Expert 942.98 7 0.0994 943.1 77.43 0.000 0.000 0.814 

 1.000 

 
R

S
F

_b
_b

_1
3 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1013.9 21 0.7230 1014.6 0.00 1.000 1.000 0.843 1300 

Human P. 1189.7 7 0.0867 1189.8 175.16 0.000 0.000 0.812 

Land-cover 1253.5 2 0.0093 1253.5 238.89 0.000 0.000 0.797 

Expert 1144.2 7 0.0867 1144.3 129.66 0.000 0.000 0.815 

 1.000 

 
R

S
F

_b
_b

_1
4 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1080.2 26 1.0007 1081.2 0.00 1.000 1.000 0.838 1430 

Human P. 1256.5 7 0.0788 1256.6 175.38 0.000 0.000 0.81 

Land-cover 1301.3 6 0.0590 1301.4 220.16 0.000 0.000 0.806 

Expert 1192 11 0.1862 1192.2 110.99 0.000 0.000 0.812 

 1.000 

 
R

S
F

_b
_b

_1
5 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1114 26 0.9663 1115.0 0.00 1.000 1.000 0.852 1480 

Human P. 1290.8 7 0.0761 1290.9 175.91 0.000 0.000 0.806 

Land-cover 1358 6 0.0570 1358.1 243.09 0.000 0.000 0.808 

Expert 1227.1 11 0.1798 1227.3 112.31 0.000 0.000 0.814 

 1.000 

 
R

S
F

_b
_b

_1
6 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1172.8 26 0.9696 1173.8 0.00 1.000 1.000 0.835 1475 

Human P. 1299.5 7 0.0763 1299.6 125.81 0.000 0.000 0.804 

Land-cover 1410.9 6 0.0572 1411.0 237.19 0.000 0.000 0.798 

Expert 1276.4 11 0.1805 1276.6 102.81 0.000 0.000 0.801 

 1.000 

 
R

S
F

_b
_b

_1
7 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1111.9 22 0.7458 1112.6 0.00 1.000 1.000 0.828 1380 

Human P. 1225.1 7 0.0816 1225.2 112.54 0.000 0.000 0.802 

Land-cover 1370 2 0.0087 1370.0 257.36 0.000 0.000 0.8 

Expert 1230.8 7 0.0816 1230.9 118.24 0.000 0.000 0.793 

 1.000 

 
R

S
F

_b
_b

_1
8 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1056.4 26 1.0817 1057.5 0.00 1.000 1.000 0.827 1325 

Human P. 1127.2 7 0.0850 1127.3 69.80 0.000 0.000 0.81 

Land-cover 1282.9 6 0.0637 1283.0 225.48 0.000 0.000 0.798 

Expert 1120.5 11 0.2011 1120.7 63.22 0.000 0.000 0.808 

 1.000 
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R

S
F

_b
_b

_1
9 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1040 26 1.1480 1041.1 0.00 1.000 1.000 0.832 1250 

Human P. 1116.7 7 0.0902 1116.8 75.64 0.000 0.000 0.8 

Land-cover 1233.3 6 0.0676 1233.4 192.22 0.000 0.000 0.8 

Expert 1118.5 11 0.2132 1118.7 77.57 0.000 0.000 0.795 

 1.000 

 
R

S
F

_b
_b

_2
0 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1102.2 18 0.4971 1102.7 0.00 1.000 1.000 0.843 1395 

Human P. 1200.9 7 0.0807 1201.0 98.28 0.000 0.000 0.814 

Land-cover 1376.2 6 0.0605 1376.3 273.56 0.000 0.000 0.8 

Expert 1212.8 11 0.1909 1213.0 110.29 0.000 0.000 0.799 

 1.000 

 
R

S
F

_b
_b

_2
1 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1050.5 26 1.1250 1051.6 0.00 1.000 1.000 0.839 1275 

Human P. 1122.2 7 0.0884 1122.3 70.66 0.000 0.000 0.823 

Land-cover 1243.5 6 0.0662 1243.6 191.94 0.000 0.000 0.801 

Expert 1130.9 11 0.2090 1131.1 79.48 0.000 0.000 0.801 

 1.000 

 
R

S
F

_b
_b

_2
2 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1089.1 25 1.0621 1090.2 0.00 1.000 1.000 0.813 1250 

Human P. 1133.8 7 0.0902 1133.9 43.73 0.000 0.000 0.801 

Land-cover 1244.9 6 0.0676 1245.0 154.81 0.000 0.000 0.8 

Expert 1142.4 11 0.2132 1142.6 52.45 0.000 0.000 0.798 

 1.000 

 
R

S
F

_b
_b

_2
3 

Model 
Type AIC K c AICc ∆AICc Likelihood Probability 

CV 
accuracy N 

ALL 1071 24 1.0042 1072.0 0.00 1.000 1.000 0.789 1220 

Human P. 1104.9 7 0.0924 1105.0 32.99 0.000 0.000 0.792 

Land-cover 1205.6 5 0.0494 1205.6 133.65 0.000 0.000 0.801 

Expert 1103 10 0.1820 1103.2 31.18 0.000 0.000 0.788 

 1.000 

 
R

S
F

_b
_b

_0
 Model 

Type AIC K c AICc ∆AICc Likelihood Probability 
CV 
accuracy N 

ALL 986.51 25 1.1464 987.7 0.00 1.000 1.000 0.81 1160 

Human P. 1057.3 7 0.0972 1057.4 69.74 0.000 0.000 0.796 

Land-cover 1134.9 6 0.0729 1135.0 147.32 0.000 0.000 0.8 

Expert 1045.7 11 0.2300 1045.9 58.27 0.000 0.000 0.794 

 1.000 
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Model selection: risk in the pre-berry season (N = 9848 for all risk model) 
 

R
_P

B
_M

 

Model 
Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 23739 0 1.0000 1.0000 0.861 
HP 24273 534 0.0000 0.0000 
LC 25088 1349 0.0000 0.0000 
Expert 24171 432 0.0000 0.0000 

1.0000 

R
_P

B
_A

 

Model 
Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 21309 0 1.0000 1.0000 0.258 
HP 21468 159 0.0000 0.0000 
LC 21729 420 0.0000 0.0000 
Expert 24171 2862 0.0000 0.0000 

1.0000 

R
_P

B
_E

 

Model 
Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 20206 27 0.0000 0.0000 
HP 20179 0 1.0000 0.8808 0.083 
LC 20223 44 0.0000 0.0000 
Expert 20183 4 0.1353 0.1192 

1.1353 

 
Model selection: risk in the intermediate season (N = 9848 for all risk models) 
 

R
_I

_M
 

Model 
Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 25591 25591 1.0000 1.0000 1.694 
HP 26434 26434 0.0000 0.0000 
LC 27301 27301 0.0000 0.0000 
Expert 26595 26595 0.0000 0.0000 

1.0000 

R
_I

_A
 

Model 
Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 22045 22045 1.0000 1.0000 0.337 
HP 22169 22169 0.0000 0.0000 
LC 22578 22578 0.0000 0.0000 
Expert 22192 22192 0.0000 0.0000 

1.0000 

R
_I

_E
 

Model 
Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 19753 19753 0.0000 0.0000 
HP 19715 19715 1.0000 0.7311 0.001 
LC 19745 19745 0.0000 0.0000 
Expert 19717 19717 0.3679 0.2689 

1.3679 
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Model selection: risk in the berry season (N = 9848 for all risk models) 
 

R
_B

_7
 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 25348 0 1.0000 1.0000 0.948 
HP 26029 681 0.0000 0.0000 
LC 27861 2513 0.0000 0.0000 
Expert 26372 1024 0.0000 0.0000 

1.0000 

R
_B

_8
 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 22160 0 1.0000 1.0000 0.369 
HP 22398 238 0.0000 0.0000 
LC 22820 660 0.0000 0.0000 
Expert 22532 372 0.0000 0.0000 

1.0000 

R
_B

_9
 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 22429 0 1.0000 1.0000 0.429 
HP 22776 347 0.0000 0.0000 
LC 23179 750 0.0000 0.0000 
Expert 22904 475 0.0000 0.0000 

1.0000 

R
_B

_1
0 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 21328 0 1.0000 1.0000 0.213 
HP 21425 97 0.0000 0.0000 
LC 21532 204 0.0000 0.0000 
Expert 21458 130 0.0000 0.0000 

1.0000 

R
_B

_ 
11

 Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 26123 0 1.0000 1.0000 1.104 
HP 26935 812 0.0000 0.0000 
LC 27215 1092 0.0000 0.0000 
Expert 27278 1155 0.0000 0.0000 

1.0000 

R
_B

_1
2 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 22437 0 1.0000 1.0000 0.397 
HP 22796 359 0.0000 0.0000 
LC 23032 595 0.0000 0.0000 
Expert 22997 560 0.0000 0.0000 

1.0000 

R
_B

_1
3 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 21021 0 1.0000 1.0000 0.158 
HP 21109 88 0.0000 0.0000 
LC 21201 180 0.0000 0.0000 
Expert 21174 153 0.0000 0.0000 

1.0000 

R
_B

_1
4 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 20283 9 0.0111 0.0108 
HP 20274 0 1.0000 0.9714 0.059 
LC 20307 33 0.0000 0.0000 
Expert 20282 8 0.0183 0.0178 

1.0294 

R
_B

_1
5 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 29566 0 1.0000 1.0000 2.087 
HP 31860 2294 0.0000 0.0000 
LC 31796 2230 0.0000 0.0000 
Expert 32144 2578 0.0000 0.0000 

1.0000 
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R
_B

_1
6 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 23282 0 1.0000 1.0000 0.605 
HP 23947 665 0.0000 0.0000 
LC 24149 867 0.0000 0.0000 
Expert 24022 740 0.0000 0.0000 

1.0000 

R
_B

_1
7 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 21669 0 1.0000 1.0000 0.267 
HP 22010 341 0.0000 0.0000 
LC 22075 406 0.0000 0.0000 
Expert 22020 351 0.0000 0.0000 

1.0000 

R
_B

_1
8 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 21759 0 1.0000 1.0000 0.308 
HP 22002 243 0.0000 0.0000 
LC 22187 428 0.0000 0.0000 
Expert 22083 324 0.0000 0.0000 

1.0000 

R
_B

_1
9 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 27048 0 1.0000 1.0000 1.359 
HP 29083 2035 0.0000 0.0000 
LC 28880 1832 0.0000 0.0000 
Expert 29176 2128 0.0000 0.0000 

1.0000 

R
_B

_2
0 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 26766 0 1.0000 1.0000 1.607 
HP 28385 1619 0.0000 0.0000 
LC 28645 1879 0.0000 0.0000 
Expert 28560 1794 0.0000 0.0000 

1.0000 

R
_B

_2
1 

Model Type AIC ∆AIC Likelihood Probability CV k=10 
ALL 23805 0 1.0000 1.0000 0.746 
HP 24603 798 0.0000 0.0000 
LC 24926 1121 0.0000 0.0000 
Expert 24756 951 0.0000 0.0000 

1.0000 
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Appendix 5: Model coefficients 
 

I. Cattle RSF 
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II.  Bear, pre-berry season 
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III.  Bear, intermediate season 
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IV.  Bear, berry season  

 
 
 

 
 
 

 



120 

 

 

 
 

 
 
  
 
 
 



121 

 

 
V. Risk functions, pre-berry season 

 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 



122 

 

 
VI.  Risk functions, intermediate season 
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VII.  Risk functions, berry season 
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