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Summary 

The research presented in this thesis focuses on the wildfires and wildfire ignition types in 

Southern Africa. The fire data used in the thesis is derived from the L3JRC product, which 

consists of detected burnt areas for seven fire years, from 2000 till 2006, with a moderate 

spatial resolution and a high temporal resolution. Three analyses are performed on the 

L3JRC product in order to derive spatiotemporal patterns about wildfire in the study area. 

For the analyses the theory of Exploratory Data Analysis is used. Behaviour of wildfire is 

made visible by means of map representations. Subsequently there are in each analyses 

cluster patterns described by investigating the map visualisations. The first analysis aims on 

the comparison of yearly fire frequency. The second analysis performs a correlation of 

burned area with two other variables, namely herbaceous vegetation cover and human 

influence index. The last analysis looks at the variation of monthly fire frequency. One of the 

results comprehends that fires are mainly occurring in a large cluster between 5° and 15° 

latitude south, and there are two large clusters that have no or almost no fire, i.e. an area 

near the equator and a large area in and around the Kalahari. Also we found that the 

correlation between fire and herbaceous vegetation cover is moderate positive, and the 

correlation between fire and human influence is negative and small. 

Concerning the causes of wildfire we distinguished two ignition types: natural caused 

fire, which means ignited by lightning, and anthropogenic caused fire, which means ignited 

by human. In order to assign the two ignition types to wildfires that are represented in the 

L3JRC product, the so called Ignition Type Model is created. This model aims on assigning 

ignition types by considering the location in space and time of each wildfire. The Ignition 

Type Model consists of four steps. In the first step the burned areas of the L3JRC are 

converted to individual wildfires, and further the starting point of each wildfire is selected. 

In the second step thunderstorms, which are derived from the Lightning Imaging Sensor 

product, are selected that might reproduce strikes that ignite wildfire. In the third step of the 

model these thunderstorms are allocated to wildfires if they comply with certain parameters 

for distances in space and time. The fourth and last step of the Ignition Type Model implies 

the allocation of wildfires with human object, like roads and urban areas, based on certain 

distance parameters. 

The Ignition Type Model resulted in 1690546 wildfires. 19.3% of these fires are allocated 

to either lightning or human objects and therefore received an ignition type. In total 34215 

wildfires are assigned as natural caused and 292695 wildfires are assigned as anthropogenic 

caused. Based on these results the percentage of natural caused and anthropogenic caused 

wildfires in Southern Africa is calculated as respectively 31.7% and 68.3%. 

Two analyses are performed in order to derive spatiotemporal characteristics from the 

two ignition type datasets that are the result of the Ignition Type Model. The first analysis 

aims on the monthly fire frequency of both natural caused and anthropogenic caused 

wildfire. The second analysis performs an investigation of natural caused fire and the land 

cover type on which these fires occurred. These two analyses revealed that there are 

differences in spatial clustering of both ignition types. Both the spatial and temporal 

clustering of natural caused fires is smaller. We also found that 82% of all lightning caused 

fires are located in woodland areas. 
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Chapter 1 

Introduction 

1.1 Motivation 

1.1.1 Context and background 

Wild land fire is considered as one of the most important disturbance factors in natural 

ecosystems. Each year several biotopes are completely lost because of the four million square 

kilometres wildfire that is consumed each year (Amatulli et al., 2007; Tansey et at., 2004). 

Burning also leads to emission of vast amounts of gaseous and particulate matter (Andreae 

& Merlet, 2001). It is estimated that up to 40% of CO2 production due to human activities 

may be due to biomass burning (Dwyer et al., 1997). These consequences among others make 

that the influence of wildfire on environment and climate is large (Guyette et al., 2002). This 

brings about that the subject of wildfire is investigated many times by researchers. 

Africa is often referred to as fire continent or fire centre of our planet, because it has more 

biomass burning on an annual basis than anywhere else (Sheuyange et al., 2005). African 

savannah fires may produce as much as a third of the total global emissions from biomass 

burning (Cahoon et al., 1992). Therefore the implication of African fires on the global climate 

system is significant (Silva et al., 2005). 

Burning vegetation can be caused by humans as well as by natural incidents. Nearly all 

natural ignitions are caused by lightning strikes. Other possible natural causes are for 

example volcanic eruptions and spontaneous heating, but they are not treated in this 

research. From a global perspective, the majority of fires are man-made (Duncan & 

Schmalzer, 2004; Dwyer et al., 2000). They are used for many reasons such as grassland 

management, burning of crop residues, elimination of disease bearing insects and snakes, 

hunting, land clearance and negligence (Andreae & Merlet, 2001; Dwyer et al., 1997). In this 

thesis the exact reason human ignite wildfire is not of interest. The only two causes of 

wildfire that we distinct are the natural, which means initiated by lightning, and 

anthropogenic, which means initiated by human. 

Because information about wildfire has been identified as an essential climate variable 

there are made several attempts to monitor fire activity or burn scars (Carmona-Moreno et 

al., 2005c). The high demand for long-term, globally consistent records of global fire activity 

has been satisfied for a short time now. This because the data gap was filled by the L3JRC 

that came available in the year 2008 (Tansey et at., 2008). The L3JRC is a long-term, moderate 

spatial resolution, high temporal resolution global burnt area product. 
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1.1.2 Problem definition 

There has been a request from the international science community for information on fire 

(Dwyer et al., 1997). These include scientists that improve understanding of the role of 

vegetation fire emissions in atmospheric chemistry, scientists that are involved in 

environmental policy and management and scientists with land management mandates. 

Their information requirements include global fire distribution, timing, extent, severity, 

cause, and return frequency (Amatulli et al., 2007; Dwyer et al., 1997). These descriptors of 

global wildfire are nevertheless poorly documented (Sheuyange et al., 2005.). The new L3JRC 

burned area product makes it possible to satisfy to the demands of the scientific community. 

Therefore in this research we make use of the L3JRC to document a few of the descriptors of 

wildfire that are not documented yet. 

Many research is done on spatiotemporal characteristics of wildfire on local and regional 

level (e.g. Amatulli et al., 2007; Sheuyange et al., 2005; Forsyth & van Wilgen, 2008; Larjavaara 

et al., 2005). However, only a few researches described the patterns of wildfire on continental 

or global scale. Carmona-Moreno et al. (2005) and Moreno-Ruiz et al. (2006) described the 

spatiotemporal patterns of global wildfire. Only this is done with a very low spatial and 

temporal resolution. The new L3JRC product consists of much better spatiotemporal 

resolutions. Therefore it is necessary to investigate what spatiotemporal patterns can be 

derived from this product. 

Only a few researches are done on the characteristics of wildfires per ignition type. These 

few researches are working on local scale, and the ignition type are obtaining per fire by 

consulting registrations or involved parties. Obtaining of ignition type per wildfire, on e.g. 

continental scale, by involving independent variables, is never tried. In order to get 

knowledge about causes of wildfire it is necessary to investigate if it is possible to obtain 

ignition types in this way. 

Characteristics of wildfires per ignition type on continental or global scale are unknown 

in the scientific world. Therefore it is necessary to find out if it is possible to gain knowledge 

about for example spatiotemporal patterns about both natural and anthropogenic fires. 

1.2 Research objectives 
Based on the described problems in the previous section the following three research 

questions are defined: 

� What spatiotemporal patterns of wildfires can be derived from the L3JRC burned area 

product? 

� Can the distinction between natural and anthropogenic caused fires be made by 

independent variables? 

� What are the spatiotemporal patterns of natural and anthropogenic caused fires? 

Also for the thesis there are three hypotheses defined, which are the starting point of the 

thesis. The three hypotheses are explained hereafter. 

� There is not much known about the characteristics of the content of the new L3JRC 

product. Therefore the first defined hypothesis is that wildfires are completely 
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spatiotemporal random, i.e. the amount of burned areas is constant over space and time 

and the areas are neither clustered nor regularly spaced. 

� Previously Buitrago (2008) performed a research in order to describe the statistical 

correlation between fire frequency and several anthropogenic variables in Southern 

Africa. The research concluded, because of a low correlation, that the influence of 

humans on the total fire regime is limited. Therefore this finding is used as the second 

hypothesis. 

� Describing the spatiotemporal patterns of both natural and anthropogenic caused 

wildfire has never been investigated in science. These patterns and the differences 

between these patterns are unknown. Therefore the third hypothesis is that both natural 

caused and anthropogenic caused wildfires contain identical spatiotemporal patterns. 

1.3 Thesis outline 
The structure of the thesis is as follows. 

Chapter 2 explains the methodology of this research, including the definitions of the research 

area and period, the datasets that are used, and the used methodology concerning the 

analyses. 

Chapter 3 provides an answer on the first research question by investigating the L3JRC 

burned area product for spatiotemporal patterns by using several visualisation tools for 

mapping spatiotemporal data. 

Chapter 4 presents the new to build Ignition Type Model that attempts to assign the ignition 

type to wildfires that are derived from the L3JRC burned area product. By means of this 

model the second research question will be answered. 

Chapter 5 covers the converging of the third and fourth chapter in the sense of using the 

results of the Ignition Type Model and deriving spatiotemporal patterns in the way it is done 

with the burned areas. 

Finally, Chapter 6 gives an overview of the conclusions of this work and recommendations 

for future research on this topic. 
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Chapter 2 

Methodology 

2.1 Research area and period 
For this research the territory of Southern Africa is chosen as research area. This means the 

African continent on the Southern hemisphere, including Madagascar (see Figure 2.1). The 

Northern boundary of the study area is the equator and the other boundaries are formed by 

the coastlines. This study area has a surface area of 9.43x106 sq km, which is about 6% of the 

total earths land surface. Because the whole region is located on one hemisphere we deal in 

the thesis with only one wildfire cycle (above the equator the fire cycle displaced six 

months). 
 

 
Figure 2.1: Topographical map of the study area (adapted from the CIA Factbook). 

 

The time span for which the research is executed starts at April 1, 2000 and ends at March 31, 

2007. That means that the research period covers a time span of exactly seven fire years (a 

fire year starts at April 1st). 

2.2 Data management 
During the research several data products are used to retrieve the demanded input data in 

order to perform the analyses. The collected products are ordered in four categories (fire-, 
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lightning-, anthropogenic- and land cover datasets) and are briefly described per category. In 

the last paragraph of this section the major remarks about the preparations of the datasets 

are mentioned. 

2.2.1 Description of the datasets 

Fire dataset 

The most important dataset used during the research is the global burnt surface multi-year 

product called L3JRC (in Appendix A the explanation of choosing the L3JRC product instead 

of other burned area and fire products is elaborated). The product consists of all burn scars 

that are detected worldwide in seven fire years between the fire years of 2000 and 2006, with 

a resolution of 1 sq km, and a high temporal resolution of daily intervals (Tansey, 2008; JRC-

TEM, 2008). The burnt surfaces of the L3JRC are obtained from Spot Vegetation S1 

reflectance data, which is available on a global and daily basis and corrected for atmospheric 

transmissibility. The L3JRC product is released as a binary file with for each burnt pixel the 

geographic coordinate of the pixel centre and a Julian date of the first detection. 
 

Lightning dataset 

The data concerning lightning flashes are from the Lightning Imaging Sensor (LIS) 

instrument, which is a component of the scientific measurement equipment on board of the 

Tropical Rainfall Measuring Mission (TRMM). This satellite observes from a nearly circular 

orbit with an inclination of 35 degrees and an altitude of 350 km (NASA-GHCC, 2005). The 

LIS is designed for detecting terrestrial lightning activity. The instrument records the time of 

occurrence, the measured radiant energy, and the location of the lightning events. 
 

Anthropogenic datasets 

For the representation of human attendance there are three datasets used. The first 

anthropogenic dataset is called Human Footprint Map and. This dataset gives a quantitative 

indication of human influence across the globe (CIESIN, 2008). The second anthropogenic 

dataset is the Vector Smart Map Level 0 (VMap0) from 2000, that provides us with almost all 

roads and trails. The VMap0 is currently the best available public domain spatial global road 

network dataset because it captures between one-quarter and one-third of the global road 

network (Nelson et al., 2006). The VMap0 also provides us in this research with all human 

settlements. The third anthropogenic dataset is called GRUMP (CIESIN, 2008), what stands 

for Global Rural-Urban Mapping Project (CIESIN-SEDAC, 2008). This dataset is used as a 

representation of all built-up areas. 
 

Land cover datasets 

The thesis makes use of the Global Land Cover 2000 (GLC2000). This product consists of 

approximately 1 km resolution land cover map of the whole globe. The map consists of 25 

different classes, with special attention to the forest and savannah biomes (JRC-TEM, 2003). 

Also a land cover product from the MODIS Vegetation Continuous Fields is used. This 

product is called the Herbaceous Cover and contains a percent herbaceous cover layer 

(UMD-GLCF, 2007). The herbaceous vegetation cover is calculated for the period 2000 till 

2001. 

2.2.2 Preparation of the datasets 

The datasets that are mentioned in the previous section are all converted to a shapefile 

format that is readable by ArcGIS 9.2 and they are stored in a geographical database. In case 
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of the L3JRC product this implied that a conversion was necessary from text format (that is 

how it is available, free of charge, at the JRC web portal) to a point feature file. Concerning 

the LIS product, which is free of charge obtainable at the NASA’s Data Pool, this implied that 

a conversion was necessary from HDF format to text file and subsequently to a point feature 

file. During the process of making the burned area and lightning data readable in ArcGIS, all 

attributes that were present in the original data are preserved. In contrast to the fire- and 

lightning datasets, all other datasets were already available in feature file format. Also these 

datasets are placed in a geographical database. The lasts action was the process of masking 

every dataset to the correct spatial extent and transforming the datasets to the same 

geographical coordinate system (which in this case is WGS84). 

2.3 Data analyses 
The methods of data analyses are hereafter explained per research question (RQ). 

2.3.1 RQ 1: Exploring the L3JRC 

The first research question, which is answered in Chapter 3, is aiming on what 

spatiotemporal patterns of wildfires can be derived from the L3JRC burned area product. In 

order to answer this question the used method comes from the Exploratory Data Analysis 

(EDA), which is an approach of getting acquainted with in this case the wildfire data. The 

EDA approach consists of several techniques for statistical and visually analysing large 

datasets. However, the technique that is in particular used in this research is the graphical or 

visual analytics by means of map representations. With the map visuals the goal is to open-

mindedly explore the contents of the L3JRC burned area product. 

By using the EDA methods we want to answer the first research question and test the 

first hypothesis. The aspect of the L3JRC product in which we are most interested is therefore 

fire frequency. The three analyses that are performed in Chapter 3 are all aiming on the 

patterns of fire frequency in the study area. Recognition of patterns of fire frequency takes 

place on the basis of natural capabilities that we all possess. The second of the three analyses 

is performed in order to test the second hypothesis, which is performing a correlation of fire 

frequency with other variables. 

2.3.2 RQ 2: Producing a model for assigning ignition types 

The second research question asks if it is possible to use independent variables to make a 

distinction between the two main ignition types of wildfire. In Chapter 4 we therefore do an 

attempt to assign to each wildfire that it is ignited by lightning, ignited by human, or that the 

ignition type is unknown. This is done by the so called Ignition Type Model. The model uses 

several independent variables that represent lightning or human objects. Based on the spatial 

and temporal location of a wildfire one of the three categories is assigned to the fire. The 

verification and discussion sections of Chapter 4 will subsequently answer the second 

research question. 

2.3.3 RQ 3: Exploring the model results 

The third research question, which is answered in Chapter 5, is aiming on the spatiotemporal 

patterns of the two main wildfire ignition types, namely wildfire ignited by lightning and 

wildfire ignited by human. Therefore it uses the results of the Ignition Type Model. The 
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method that is used in order to answer this question is for majority the same as the method 

for answering the first research question. That means we will use the EDA approach. 

However it is not necessary to explore the structure of the data, because that is already done 

in Chapter 3. Deriving of patterns will again be done by performing visual analytics by 

means of map representations. Besides answering the third research question, Chapter 5 also 

performs the test of the third hypothesis. 
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Chapter 3 

Pattern finding in the fire dataset 

This chapter gives answer on the first research question, i.e. the question about what 

spatiotemporal patterns can be (visually) derived from the L3JRC fire dataset. The 

investigation that is necessary to answer the research question consists of two parts and both 

parts are respectively discussed as sections in this chapter. Section 3.1 starts with elaborating 

on the concerned properties of the fire dataset. When the properties of the data are clear it is 

necessary to take a couple of decisions before the actual analysis can be performed. These 

decisions consist of: the way of approaching the dataset, defining the tasks, and choosing 

proper tools for the analyses. Section 3.1 is based on the theory of Exploratory Data Analysis 

that is described in Andrienko & Andrienko (2006). 

Section 3.2 treats the actual data analyses that are performed on the fire dataset. There are 

three analyses described and executed and together they give a general indication about how 

spatiotemporal patterns can be derived from the L3JRC. The analyses are executed by using 

different visualisation tools to create map images of certain fire behaviour. As a result for 

each analysis the main patterns from these images are described. Some of these patterns are 

then in Section 3.3 discussed and related with other researches. 

3.1  Theory about analysing spatiotemporal fire data 

3.1.1  Perspective on the data 

Before the actual analyses can be performed on the L3JRC fire product, it is necessary to know 

a few things about this dataset. The L3JRC fire product consists of one data file for each of 

the seven fire years. In this research the focus is on all fire years. Therefore, for the sake of 

convenience, all seven fire years in the L3JRC product are considered as being in one data 

file. This data file then consists of 6067178 items, which is the number of burned areas that 

are detected in a period of seven fire years. Because all these records are in one file, all these 

records have the same components, and each component has the same meaning in each of all 

the records. The characteristics of these components form the structure of the dataset. 

 The fire dataset characterizes by a set of properties, which are theme (fires), space (Africa 

below the equator), and time (from April 2000 till March 2007). Those three properties are the 

components of the data, which can be divided into referential components (indicating the 

context) and characteristic components (representing results or observations). Table 3.1 

presents some brief characteristics of the three components from the fire dataset. The location 

and time are typically treated as referential and the remaining data components are treated 

as characteristics or attributes referring to location and time. For the fire data the intention is 
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to study the spatiotemporal patterns, i.e. the variation of the theme over a territory and a 

time span. Therefore it is appropriate to switch the common division of referential and 

characteristic components, with a fire occurrence as the context and the location and the 

moment in time as its attributes. 
 

Table 3.1: Overview of the properties of the three components of the L3JRC fire dataset. 

Name: FIREnb loc JulianDay 

Description: Identity of a fire Location of the fire Julian day of detection 

Component type: Referential Characteristic Characteristic 

Ordering Linear (fully) Partial Linear (fully) 

Continuity Discrete Continuous Continuous 

Element type: Integer Referrer Integer 

Element values: 0 till 6067177 References to points 1 till 2556 

 

The first component, FIREnb, takes its values from a fully linearly ordered set of integer 

elements with each element representing one fire. This set consists of elements starting with 

zero and subsequently consists of all integer numbers until 6067177. Because all attributes 

characterising the phenomenon are referring to only one element of this component with a 

finite set of values, the phenomenon is called a discrete. The underlying set of the location 

component consists of references to points and the set is therefore continuous. The points 

represent the centre of the cells of a two dimensional grid overlay, and because the grid has 

more than one dimension the location set is partially ordered. An item that is referring to a 

grid cell means that the corresponding fire was detected within the area of the concerned 

cell. The last component, JulianDay, is the time component with a set of linearly 

continuously ordering with distances of one day. The set has integer values and the 

component can choose a value between 1 and 2556, which represents the Gregorian dates 

from April 1st 2000 till May 31st 2007. 

3.1.2  Other relevant principles 

The next step of the analysis is formulating questions. The questions that are involved in the 

data analysis, from here on they are called tasks, are for this research merely synoptic tasks. 

That means that the tasks that we use are not referring to single items in the dataset but are 

referring to more then one item simultaneously as well as the relations between these items. 

 A synoptic task is involved with one or more reference (sub)sets and the relations 

between these (sub)sets. A reference (sub)set contains a particular range of values of an 

attribute, and if this is considered in its entirety, it can be defined as behaviour. So it is a task 

that involves behaviour and the relations between behaviours. A synoptic task deals in this 

research with the behaviour of fire frequency over space and time. 

 A pattern is something resulting from observation or analysis. It is defined as a construct 

that reflects essential features of behaviour in a shorter and simpler way, rather then 

considering and comparing every single feature separately. If essential features of behaviour 

are detected by means of mental mapping the behaviour is considered as a pattern. While 

doing analyses with the fire dataset it is important to explicitly distinguish behaviour and 

pattern. 

 There are different kinds of Patterns that can be derived from the wildfire dataset 

concerning fire frequency. To make the different kinds of patterns visible, by means of map 

visualizations, is mostly not a problem. On the other hand, describing all kinds of patterns is 

in some cases difficult, time consuming and useless. For example patterns about the course 
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of changing fire frequency between two locations are often hard to describe. But they are 

easy to visualize and moreover visualizations in contrast to text do better explain the course 

of change. Therefore we will not go into detail about these patterns. The kind of patterns we 

do describe extensively are clusters, that are groups of cells that contain roughly the same 

value (whether high or low) of fire frequency. Clusters will be described by its location and 

size. 

3.1.3  Visualisation tools 

Only the human mind actually does the analysis, and the computer tools supply the 

necessary material. Tools visualise the behaviour and the observer converts the visualised 

behaviour to patterns. The behaviours are made visible with the help of visualisation tools. 

That means that the elements of the fire dataset are translated into graphical features. The 

graphics that are created in this research are various map images. Therefore the tools that 

construct map images are the main focus for this research. 

 More specifically, we are using tools that come under the category of display 

manipulation. Tools within this category are interactive, and support the dynamic 

modification of the appearance of visual displays. The general purpose of display 

manipulation is to enhance the image that is created in that way that it is clearer and easier 

for human to perceive the behaviours. Concerning the display manipulation there are three 

main definitions that need to be discussed in order to perform the analyses of this research. 

These definitions are classification, focusing and aggregation; they are shortly explained 

hereafter. 

 Classification is an approach that is often used to simplify data by means of generalising 

data characteristics. The purpose of applying classification to the map is to facilitate the 

revealing of distinctive features of the spatial distribution of the attribute values and the 

finding of an appropriate pattern within those features. In cartography the classified 

choropleth is often used as a way to simplify a visualisation. In contrast to an unclassified 

choropleth a considerable amount of information is lost when putting features in classes 

based on its attribute value. On the other hand the classified choropleth shows more clearly 

some distinctive features of the spatial distribution of the attribute values than the 

unclassified map does. The most important notice of classification is the choice about the 

number of classes and the class breaks. 

 Data focusing is a way of zooming in the dataset. It involves selection of a data subset 

rather than viewing all data. The advantage of focusing is that the portrayed data subset can 

be explored with the maximum possible expressiveness. This technique is used in the first 

analysis of this chapter (see Paragraph 3.2.1). The advantages of this technique are explained 

in more detail at the concerned section in this chapter. 

 Data aggregation tools reduce the amount of data by grouping individual component 

values into subsets and computing some collective characteristics of each subset. Especially 

when dealing with very large datasets it is more useful to analyse aggregated data, instead of 

the original data. Data aggregation is a way of simplification just like classification, with the 

difference that data aggregation is computing a value out of the characteristics of each 

subset. This technique is used in all three analyses of Section 3.2 as a kind of pre-processing 

step. 
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3.2 Performing analyses 
In this section the actual analyses (three in total) are performed. Every paragraph in this 

section consists of the elaboration of one of the analyses. The paragraphs start with the 

explanation of the task, subsequently the selection and description of the visualisation tools 

are given, and finally the main patterns are given as the result of each task. The three tasks 

together should give a broad overview of what tasks are possible to perform for visually 

extracting spatiotemporal patterns from the L3JRC. The similarity for the tasks is that they all 

focus on fire frequency. Therefore each burned area from the L3JRC product is assumed as 

one fire. So if fire frequency is mentioned then actually the sum of detected burned areas is 

meant. 

3.2.3 Task 1: Comparison of yearly fire frequency 

The goal of the first analysis is to investigate the spatial variation between the fire 

frequencies of different fire years. Thanks to the L3JRC fire dataset we have the disposal of 

the fire frequency of seven fire years. Therefore the task of the first analysis is formulated as 

follows: Visualize and compare the fire frequency of Southern Africa for the fire years of 2000, 2001, 

2002, 2003, 2004, 2005 and 2006. The target of this task is the L3JRC fire dataset from which 

the fire frequency will be computed. The spatiotemporal constraints of this task are the same 

as given in Section 2.1. 

 At first, before the visualisation tool is used, the L3JRC is aggregated to grid segments 

with a cell size of 200 kilometres and for each cell the fire frequency in a particular week is 

computed. This aggregated dataset is then visualised by means of multiple unclassified 

choropleths, and the result map can be seen in Figure 3.1. Each map in this figure portrays the 

fire count of one particular fire year. Some brief statistics of the seven attribute components 

are given in Table 3.2. The choropleths have a gradual colour scale of decreasing brightness 

that is matched to the full range of the seven components, with 0 as minimum and 21528 as 

maximum (occurring in the fire year of 2003). 
 

Table 3.2: Result of univariate statistics on each component of the yearly fire count dataset. The dataset has a cell 

size of 200 km and for each cell the fire frequency of that particular fire year is counted. The statistics consists of 

the minimum, maximum, mean and standard deviation of all cell values. 

Statistical parameter: 2000 2001 2002 2003 2004 2005 2006 

Minimum 0 0 0 0 0 0 0 

Maximum 20321 20331 19102 21528 18029 18507 20957 

Arithmetic mean 3225 3599 3205 3611 2998 2918 3598 

Standard deviation 4281 4053 3667 4345 3766 3695 4370 
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Figure 3.1: Seven maps of Southern Africa with for each map the fire frequency during a fire year for 2000, 2001, 

2002, 2003, 2004, 2005 and 2006. The maps have cell sizes of 200 km and are portrayed by means of unclassified 

choropleths with gradual colour scale of decreasing brightness that is matching the full range of the components 

minimum and maximum. 

 

The seven portrayed maps of Figure 3.1 show that the behaviour of fire frequency per fire 

year in Southern Africa. From these behaviours the main patterns will be described hereafter. 

The first patterns that attract attention are the large clusters in every fire year with high fire 

frequency in the northern part of the study area, i.e. Zambia, southern part Congo and 

northern part of Angola. Near the equator there are some areas that do not have fires. Also in 

the Kalahari Desert there are, at least for 2003, 2004 and 2005 large areas without wildfire. 

For the rest it seems that each fire year has in general the same distribution of fire frequency. 

Only the overall shading for the maps of 2004 and 2005 is slightly brighter, which indicates 

that there are less fires in that fire year. This can also be derived from the yearly statistics that 

are shown in Table 3.2. 

 Further it is hard to derive patterns based on these maps because the largest part of each 

map has almost equal colouring. The few very high values (outliers) cause that all lower 

values are shown in very light shades and look almost identical. To solve this problem a 

technique called focusing is used. Focusing can be explained as zooming into the data, 

selecting a data subset and portraying this subset with the maximum possible 

expressiveness. 
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The image of Figure 3.2 shows the result of the focusing tool that was used on the identical 

dataset for Figure 3.1. Again in this image the fire frequency is portrayed by means of 

choropleth maps for the years 2000 till 2006. The focussing tool resulted in a new colour scale 

range of 0 – 7500. That means that there is zoomed into the data by excluding the high fire 

frequencies from the visualisation. The colours of these removed cells are now replaced on 

the map by triangular symbols. The maximum value of 7500 fires is chosen to remove all 

cells that are mainly located in the cluster of high fire frequencies. In this way the contrast of 

shades outside this cluster is maximal. 
 

 
Figure 3.2: Seven maps of Southern Africa with for each map the fire frequency during a fire year for 2000, 2001, 

2002, 2003, 2004, 2005 and 2006. The maps have cell sizes of 200 km and are portrayed by means of unclassified 

choropleths with gradual colour scale of decreasing brightness that is matching the range of 0 till 7500. Cells with 

a fire frequency of more than 7500 are represented with a triangular symbol. 

 

The maps of Figure 3.2 look much less uniform than the maps of Figure 3.1 for areas outside 

the cluster with high fire frequencies. Because of the focusing tool the map became for most 

areas much more expressive. Therefore the spatial variation in the map can be described in 

much more detail and the temporal variation between the seven maps can better be derived. 

Now it becomes clear that in and near Mozambique in the year 2001 and 2002 there were 

many more wildfires than in the other years. Also from the maps can be derived that there is 

a notable difference between the fire frequencies in South Africa during the years. These 

patterns could not have been derived from the maps of Figure 3.1. 
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 Another advantage that is involved with performing the focussing tool is that the new 

maximum value is a sort of threshold that can also be used for comparing. The cells above 

this threshold are represented with a triangular symbol, and the amount of triangular 

symbols in each map can be compared with each other. In this way it seems that in general 

every year the same amount of cells have a fire frequency of more then 7500 wildfires per fire 

year. 

3.2.2 Task 2: Correlation of burned area with other variables 

In the research of Buitrago (2008) several environmental, climatic and anthropogenic 

variables are used to calculate the correlation with fire frequency. As a result, of all variables 

the herbaceous vegetation has the highest (positive) correlation with fire frequency (founded 

Pearson correlation coefficient: 0.60). The anthropogenic variables have the lowest 

correlation with fire frequency (coefficient of population density: 0.003). As a sequel on this 

finding the following task for the second analysis is formulated: Visualize an overall view of the 

correlation of burned area with herbaceous vegetation and burned area with human influence. The 

target of this task consists of three different datasets. In both correlation analyses the L3JRC 

fire data is used from which the average area burned is derived. Besides that, for the one 

analysis the quantitative herbaceous land cover is used. This data was also used by Buitrago 

(2008) and has a values ranging from 0, meaning no herbaceous vegetation, till 255, meaning 

full herbaceous vegetation (UMD-GLCF, 2007). For the second analysis the Human 

Footprint, a quantitative human influence map, is used. This data is not used by Buitrago 

(2008) but it is produced with datasets that are used by Buitrago (2008), like population 

density and land use (CIESIN, 2008). In this dataset the human impact is rated from 0, 

meaning minimum human influence, till 100, meaning maximum human influence (NASA-

GHCC, 2005). 

 At first, before performing the visualisation tool, an aggregation on all three datasets is 

performed. The datasets need to have the same segment sizes and for each segment a value 

is obtained from one of the datasets. A grid overlay with cell sizes of approximately 8 

kilometres is used. For each cell the average percentage of burned area per year, the average 

herb value, and the average human influence value are calculated.  

 For the two analyses we use classification, as a simplification tool, for generalising 

quantitative characteristics. Because for each analysis we are dealing with two quantitative 

characteristics the actual tool that is used is the cross-classification method. The idea of this 

method is to divide the value ranges of each of the two attribute components into 

subintervals, in the same way as the classification of a single numeric attribute would be 

performed. If the value range of the first attribute has been divided into M subintervals and 

the value range of the second attribute into N subintervals, it leads to M × N different classes. 

Each class is then a combination of two intervals, one for the first attribute and one for the 

second attribute. Finally each class is visualised with an own colour. 
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Figure 3.3: Both diagrams show the selection of class breaks and colouring scheme of the cross-classification 

technique. The left diagram shows the correlation of fire with herbaceous vegetation cover and the right diagram 

shows the correlation of fire with human influence. 

 

For both cross-classification analyses the percentage of burned area is divided into four 

subintervals. The division is done on the basis of equal group sizes for each subinterval. The 

three class breaks, which are visualized in Figure 3.3, of burned area are 0.5, 5.5 and 17.5. The 

other two variables are divided into three subintervals, and also this is done by dividing into 

equal group sizes. The class breaks of herbaceous vegetation cover are 63.5 and 75.5; the class 

breaks of human influence are 20.5 and 45.5. This means that for both cross-classification 

analyses twelve classes are created. The colours that are given to the classes of both analyses 

are visualised in Figure 3.3. 
 

 
Figure 3.4: Result map of the cross-classification technique of burned area per year with herbaceous vegetation 

cover. The concerned classification choices are visualised in the left diagram of Figure 3.3. 
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Figure 3.5: Result map of the cross-classification technique of burned area per year with human influence. The 

concerned classification choices are visualised in the right diagram of Figure 3.3. 

 

The map images of the cross-classification techniques of fire with herbaceous vegetation and 

with human influence are respectively shown in Figure 3.4 and Figure 3.5. These two maps 

give the behaviour of the correlated variables. For deriving patterns from these results there 

are made two simplified representations with only the main patterns of the colours. These 

can be seen in Figure 3.6. 
 

   
Figure 3.6: A simplified representation of the main patterns of the cross-classification results of fire with 

herbaceous vegetation on the left side and fire with human influence on the right side. 
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What can be seen in the left map of Figure 3.6 are two large areas that consist of merely 

yellow colouring. This means that in these areas, which are located near the equator and 

around the Kalahari Desert, there is no herbaceous vegetation cover and also no wildfire. 

Furthermore there are large unbroken planes with mostly green colouring with big 

concentration in the central part of the study area. These green planes mean that in these 

areas there is much herb vegetation but there are almost no fires counted. Further there are 

two areas with many red colouring. Red means that there are a lot of fires but there is no 

herbaceous vegetation. Apparently it is in these areas something else than herbaceous 

vegetation that is burning. The brown areas, which are concentrated in small planes in the 

middle of the study area, indicate that there are many fires and there is high herbaceous 

cover. The fuel for the fires in the brown areas is probably herbaceous vegetation. 

 Concerning the cross-classification with human influence we see in the left map of Figure 

3.6 three large areas with peach colouring. These indicate that in these areas there is both a 

low fire frequency and low human influence. The areas are found in the Kalahari Desert and 

its surroundings and near the equator at the east part of the study area, i.e. in tropical 

climates. Further in the results some concentrations of green are found with at some 

locations adjoining small dark green areas. These green colourings represent that there are 

many fires but the influence of human is very low. Also in the simplified representation we 

see places with salmon colouring. This colour means the opposite of the green colours, i.e. 

few fires and large human footprints. The red spots are located on places that have a really 

high human influence, which mostly represent the urban districts. 

 By comparing the locations of the main patterns of both cross-classification results we see 

some similarities. The location of the yellow colouring in the first correlation is mainly 

represented by peach colouring in the second correlation. This means that locations with a 

very low fire frequency have no herbaceous vegetations but also no human influence. Red 

and brown colouring in the result of the first correlation analysis is mainly replaced by green 

and dark green colouring in the result of the second correlation analysis. This indicates that 

areas with a high percentage of yearly burned area have no herbaceous vegetation and a 

very small human footprint. Areas with green colouring in the first analysis are in many 

situations replaced by peach and salmon colouring in the second analysis. That means that 

there are many locations that have no fires, high herbaceous vegetation cover, and low or 

moderate human influence. 

 The correlation between fire frequency and one of the two variables would be high if the 

biggest part of the map is coloured by the colours that are near the diagonal of the table in 

Figure 3.3. That means the colours yellow, orange and brown or dark green. Yellow 

colouring is representing areas with low fire frequency and a low variable value, and orange 

and brown or dark green colouring represents areas with moderate to high fire frequency 

and higher variable value. Concerning the result of the correlation with herbaceous 

vegetation we see that the map is not dominated by yellow, orange and brown. Therefore it 

can be concluded that there is indeed a moderate positive correlation. Concerning the result 

of the correlation with human influence we see that half of the map is coloured peach and 

salmon, i.e. low fire frequency and low human influence. Also there is very few dark green 

colouring. That indicates that there are very few spots that have both a high fire frequency 

and a high human influence. Therefore it can be concluded that the correlation between these 

variables is probably negative and very low. 
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3.2.1 Task 3: Monthly fire frequency 

For the third and last analysis there is again another task defined that will be performed and 

also for this task a visualisation tool is used. The task for this analysis is formulated as 

follows: Describe the monthly variation of fire frequency in Southern Africa between the fire years of 

2000 and 2006. The target of this task is the monthly fire frequency, which can be derived 

from the L3JRC fire product. 

 It is necessary to first use a tool that counts the number of fires for all 84 months 

(multiplication of seven years and twelve months) for a certain area. Because the task is 

aiming at a variation over a large area, it would be appropriate to use as segmentation a two-

dimensional grid with large cell sizes. Therefore again the cells of 200 kilometres are used. 

This means that before the actual visual analysing tool is performed, a data aggregation tool 

is necessary to derive the monthly fire count from the fire dataset. The aggregated data then 

consists of 260 nearly equal sized cells with for each cell the fire count of all 84 months. 

 Because we are dealing with a large number of data, to be precise 21840 values 

(multiplication of 260 cells and 84 months), from which we want to achieve some 

understanding, it is necessary to use an image simplification technique. The visualisation 

tool that is used to execute the task is called the class mosaic mapping technique. With this 

technique the image simplification can be achieved by ordering marks, i.e. the elements that 

became graphical, in a convenient order. In the aggregated data, the fire count is placed in 

the characteristic component, and these are referring to two referential components. The one 

referential component is the corresponding grid cell and the other is the corresponding 

month. That means that each fire count value is referring to a temporal component, and 

because time is a linearly ordered set, it can serve as the referrer that orders the values. A 

linearly ordered set can be represented within one-dimension. But time can also be seen as a 

cyclic ordered set, because a certain month comes back every year. In that case, with time as 

a cyclic ordered set, time elements can be represented within two-dimensions. In our 

situation it is indeed more relevant to order fire counts by means of a cyclic ordering, with 

one dimension used to represent a cycle, i.e. twelve months of a fire year, and the other 

dimension used to represent the subsequent cycles. The marks of each segment are 

accordingly placed in a two-dimensional arrangement, which we call mosaics. When these 

mosaics are placed on the map, a single image (see Figure 3.7) represents the monthly fire 

count at each segment during seven fire years. 

 As shown in the map of Figure 3.7, for each of the 260 segment cells there is a 

corresponding mosaic. Each mosaic consists of 84 small square tiles that correspond to the 

fire count in that segment during that month. Tiles within a mosaic are organised in seven 

rows and twelve columns. Each row represents a fire year, and each column represents a 

certain month (starting with April) of the fire year. A tile is shaded according to the number 

of fires during that month: the higher the number, the darker red the colour. A green tile 

indicates that there were no fires during that month. The tiles that do have a fire count of 

more than zero are classified into four classes, because this number is about the maximum of 

different colours on one gradual colour scale a human can distinguish (Bertin, 1984). The 

class breaks are 5, 500 and 5000 fires, according to an almost equal distribution of the number 

of tiles belonging to each class. 
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Figure 3.7: Map image of the result of the class mosaic tool performed on the monthly fire frequency of the fire 

years 2000 till 2006. Each segment cell has a mosaic. The mosaics have 84 tiles that are organised in seven rows, 

which correspond to the seven fire years, and twelve columns that correspond to the months within a fire year. 

Each tile has a colour that represents the classified fire frequency. Green means no fire, white means between one 

and five fires and further the more red the colour the higher the number of fires. 

 

As result, Figure 3.7 shows the behaviour of the monthly fire frequency in Southern Africa 

during seven fire years from 2000 till 2006. The patterns that can be derived from this image 

can give a description of the variation of fire frequency. For that reason there are hereafter 

three major patterns described that are found in the image. 

 Roughly three types of interpretations of the mosaics can be found, as can be seen in 

Figure 3.8. Firstly, the mosaics that show no or almost no fires in the seven years time span 

(indicated with a 1). This type can be found in areas with tropical climate near the equator 

and in areas with no vegetation, like the Kalahari Desert. Secondly, the mosaics that show 

only fires during a certain half of the year, but does not show fires during the other half of 

the year (indicated with a 2). This type is mainly present at the middle part of the study area, 

between 5° and 15° latitude south. Thirdly, mosaics can be found that show fires throughout 

the whole year (indicated with a 3). This type of mosaic is particularly present in the most 

southern part of the study area and in a small area near the equator. 
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Figure 3.8: Simplified visualisation of the result class mosaic map of Figure 3.7. The fire seasons in the study area 

are divided in three classes based on the spread of the monthly fire frequency during a fire year. Areas indicated 

with a 1 have no or almost no fires during the year. Areas indicated with a 2 have mainly their fires during a one 

half of the year. Areas indicated with a 3 have fires during the whole fire year. 

 

Within a mosaic, the colouring of the seven rows can be compared with each other. By doing 

this comparison it seems that most patterns of fire frequency throughout the years look 

almost identical. That means that every fire year within a segment has a fire distribution with 

mainly the same trend, i.e. a fire season and the fierce of the fire season almost equally every 

year. Off course these conclusions are dependent on the choices made concerning the 

classification. 

 In the image can be seen that there is a difference in the fire season between certain areas. 

The middle of the fire season is for the whole Southern Africa around September and 

October. For describing the pattern of fire season we introduce two properties that together 

describe can roughly characterize fire season. The first characteristic is the temporal length of 

the fire season. The second characteristic is the fierceness of a fire season, which means the 

number of fires that burn at the same time. Both properties are strongly related: short fire 

seasons are fiercer and long fire seasons are less fierce, i.e. less fires at the same time. 

Southern Africa can roughly be split horizontally in two, with as separator the parallel of 15° 

latitude south. Above this line most fire seasons are short and fierce (indicated with a 2) and 

beneath this line the fire seasons are mostly long and moderate (indicated with a 3). 

3.3 Discussion 
In the last section of this chapter we discuss some patterns about wildfire that we found in 

the previous sections. At first the found patterns are compared with findings of other 

researches. The second paragraph considers the fire regime in one specific ecological region, 

namely the Fynbos Biome.  
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3.3.1 Patterns of wildfire in other researches 

In this paragraph we shortly elaborate on the findings of other researchers about wildfires in 

Southern Africa in relation to the spatial patterns, the inner-year temporal patterns, the 

multi-year temporal patterns, and at last, the correlation with other variables. 

The spatial patterns of fire frequency in Southern Africa found in this chapter, e.g. the 

clustering between 5° and 15° latitude and the absence in the Kalahari Desert and near the 

equator, are also described in several other researches (Moreno-Ruiz et al., 2004/2006; Cahoon 

et al., 1992; Dwyer et al., 1997/2000; Carmano-Moreno et al., 2005a/2005b/2005c; Riano et al., 

2007; Barbosa et al., 1999; Giglio et al., 2006; Justice et al., 2002; Tansey et al., 2004). These 

researches used burned area or fire products other then L3JRC to describe spatial clusters in 

(Southern) Africa. But in all cases they used datasets with smaller spatial resolutions. The 

high spatial resolution of the L3JRC product makes it possible to describe spatial patterns of 

wildfire in much more detail (Tansey et al., 2008). 

Concerning the temporal clustering there are several researches that investigated the 

inner year fire frequency, and found in general the same patterns (Moreno-Ruiz et al., 2006; 

Korontzi et al., 2003; Dwyer et al., 1997/2000; Carmano-Moreno et al., 2005a/2005b/2005c; 

Riano et al., 2007; Barbosa et al., 1999). Almost all of these researches describe the monthly 

change of fire frequency in a fire year. With the L3JRC product it is however possible to 

describe the weekly change with a high accuracy. In this research we described fire 

frequency in much more detail then other researches did. In that way the start and ending of 

the fire season for a specific region can be described in more detail. Besides that, from these 

researches only Korontzi et al. (2003) describes, just like we did, the multi-year inter-annual 

variation of fire frequency, which gives much more information about fire frequency. 

Differences in fire frequency during multi-year time periods in (Southern) Africa are also 

investigated in several researches (Moreno-Ruiz et al., 2006; Cahoon et al., 1992; Carmano-

Moreno et al., 2005a/2005b/2005c; Riano et al., 2007; Korontzi et al., 2003; Tansey et al., 2004). 

Compared to the fire datasets that are used in other researches, in order to investigate multi-

year fire frequency, the L3JRC covers a relatively short period. Seven years is for example too 

short for analysing the influence of El Niño on fire regimes. 

Relating fire frequency with other variables for the African continent is done by Lehsten 

et al. (2008) and Korontzi et al. (2003). Both researches correlated fire frequency in order to 

estimate wildfire emissions. The researches investigated respectively the yearly and seasonal 

variation with a low spatial resolution. That means that with the L3JRC the estimations can 

be estimated with both a higher spatial and temporal accuracy.  

3.3.2 Wildfire in the Fynbos Biome 

This paragraph elaborates on the reflection of the results that are given in the previous 

sections by means of knowledge that is found in scientific research. But in this paragraph the 

focus is on relatively small part of the study area that is called the Cape Floristic Region 

(located in the far south of the African continent), which is mostly covered with Fynbos. This 

consists of shrubland or heathland vegetation types and is characterized by its high richness 

in plant species and its high endemicity (Low & Rebelo, 1996; Forsyth & van Wilgen, 2008). 

An important issue of the Fybos vegetation is that it must burn every 6 to 45 years of age in 

order to sustain its plant species. Many species store their fruit in fire-safe cones for release 

after a fire, and ants are enticed to bury fruit where they are safe from rodents and fire (Low 

& Rebelo, 1996). 
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If we investigate the result of the mosaic-mapping technique of Paragraph 3.2.1 we see in the 

Fynbos region that there are wildfires detected throughout the whole year. There is only a 

small increase of fire frequency in the fire season, which is in Augustus, September and 

October. This finding does not correspond with the findings of other researches. Forsyth & 

van Wilgen (2008) state that 90% of the Fynbos area burnt was due to fires in summer or 

autumn. The difference in findings is probably caused by the inaccuracy in which we made 

our conclusion, which is by considering the map of Figure 3.7, i.e. the segment sizes are too 

large to conclude about the Fynbos Biome. However the mosaic-map shows fires throughout 

the whole year and that corresponds to the finding of Scott (1993), who stated that Fynbos 

fires occur in all seasons. Fires in summer and autumn are regarded as optimal for the health 

of fynbos ecosystems (Van Wilgen et al., 1992). Further research by using visualisations with 

smaller segment sizes can report whether or not the current fire regime should be a cause for 

concern. 



 
 

24 



 
 

25 

 

Chapter 4 

The Ignition Type Model 

This chapter elaborates on the Ignition Type Model. We developed this model to assign the 

ignition type to wildfires. By that this chapter gives answer to the second research question, 

which is formulated as: Can the distinction between lightning ignited and human ignited fires be 

made by independent variables? 

This chapter consists of four sections. The first section gives the aim of the Ignition Type 

Model and gives an explanation of the processes that are part of the model. The processes are 

divided into four distinct parts that are called steps. For each step of the Ignition Type Model 

in section 4.1 the processes and parameters are explained. Section 4.2 gives the results of all 

four executed steps and thus the outcome of the model. The third part of this chapter, Section 

4.3, elaborates on the verification of the model. Verification is done by analysing the outcome 

of the model and by comparison of the outcome with the results of the literature review. The 

last section of Chapter 4 gives some points of discussion about the Ignition Type Model. 

4.1  Explanation of the model 

4.1.1 Aim of the model 

For this research the distinction of ignition types is made by considering all possible causes 

of wildfires in two groups. The first group contains the natural-causes of fire. For this group 

the primary ignition source is lightning. Other possible natural ignition types, like 

spontaneous heating and volcanic activity, are not considered in this research. Further, the 

second group of wildfire causes is the human-caused fires, or anthropogenic fires. This 

includes all kinds of human actions, like land management, arson and human carelessness 

(Andreae & Merlet, 2001). However, for this research we are not interested in the actual form 

of human ignition, that a fire is human ignited is enough. 

The goal for this chapter is to make a distinction between the two ignition types. This is 

done by developing the Ignition Type Model. The main input of this model is the L3JRC 

burned area product, which delivers all wildfires in Southern Africa during seven fire years. 

For all these fires the model will investigate the ignition type. The processes that are part of 

the Ignition Type Model can be divided into four steps. Figure 4.1 gives a graphical overview 

of the processes of the model and the four steps. The first step realizes the extraction of the 

commencing fire areas from the L3JRC. At first in this step the burned areas from the L3JRC 

are converted to individual fires and thereafter only the areas of the first detected part of an 

individual fire is selected. The selection, i.e. the commencing fires, is then used for proximity 

analysis with both lightning (Step 3) and anthropogenic (Step 4) variables. Based on these 
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analyses, which are performed independently of each other, the fires that meet with certain 

conditions are then assigned as lightning or human ignited. Before Step 3 can be carried out, 

which is the proximity analysis with lightning variables, a selection on the attribute of the 

lightning dataset is necessary because not every lightning strike causes fire. This selection 

process is fulfilled in Step 2. The four steps are treated in the next part of this section and for 

each step the procedure is explained and the chosen parameters are founded. 
 

 
 

Figure 4.1: Process and dataflow diagram of the Ignition Type Model. The four processing steps are represented 

in dark grey rectangles and the pale grey rectangles represent the datasets required by the processes. The arrows 

represent the flow of data 

4.1.2 Step 1: Extracting commencing fires from L3JRC 

A wildfire originates, regardless of the ignition type, at a certain moment in time and space. 

From the location where the wildfire originated it will expand and or relocate in the course 

of time. For this research it is only relevant to know that wildfires of the L3JRC did expand, 

at least to a certain size so that detection of burned area is possible in the SPOT-VGT data. 

Because the fires are expanding and relocating it is possible to distinguish in the L3JRC 

dataset burned area of commencing fires from burned area of continuing fires. In this research we 

are only interested in the burned area of commencing fires because these can tell something 

about the situation in which the fire started. The problem is that the L3JRC does not indicate 

whether or not adjacent burned areas are caused by the same or by several fires. Therefore, 

to extract the commencing fires, it is necessary to do assumptions about which burned areas 

from the L3JRC dataset do and which do not belong to commencing fires. The assumptions 

are written hereafter and these form the prescriptions of the performed extraction. 

The first assumption is defined with the purpose of assigning multiple burned areas as 

caused by individual fires. This is done by assembling burned areas of adjacent grid cells at a 

particular time state with each other (see the example of Figure 4.2). The cell sizes have a 

surface area of 1 sq km, so burned area that is detected at the same time in two adjacent cells, 

that means within 2 sq km, is assumed to be assigned to the same fire. The detection of 

adjacent cells is based on the von Neumann neighbourhoods, which means that the four cells 

that are located one cell away, horizontally or vertically, are taken into consideration 

(Missoum et al., 2005). Of course there will be several situations in which this assumption is 
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not true. But for this research the assumption complies because even two fires within 2 sq km 

have most likely the same properties and consequently the same ignition type. 
 

 
Figure 4.2: The first step of the extraction of commencing fires consists of assembling adjacent burned areas. The 

day of detection (day one or day two) is given for each cell with burned area. All individual burned areas from 

the L3JRC fire dataset are assembled, based on the von Neumann neighbourhoods, to individual fires per day. 

 

  
Figure 4.3: In the second step of the extraction of commencing fires the individual fires per day are assembled 

with adjacent fires of the previous or next day. This results in new multiple day fires that are then split in 

commencing fires (red) and continuing fires (grey). Only the commencing fires are useful in this research. 

 

The second assumption is that burned areas are caused by the same fire, if they are in 

different time states, separated by one day maximum, and in addition to this also meet the 

first assumption. This step is illustrated with an example in Figure 4.3. With the second 

assumption fires at different time moments are assembled if they are detected in adjacent 

cells at adjacent days. Subsequently, the burned areas of a fire that are detected at first are 

assigned as commencing, and are selected for further use in the Ignition Type Model. 

4.1.3 Step 2: Attribute selection on LIS 

Lightning can be divided based on the target of a strike into cloud-to-ground (CG) and 

cloud-to-cloud (CC). The latter one occurs six times more often than the former one (Preston-

Whyte & Tyson, 1988). Of course the CC lightning can not cause a wildfire. Next, CG strikes 

can be divided based on its discharge into positive and negative. The lightning strikes with a 

positive discharge are far more treacherous for igniting wildfire because these strikes last 

longer and carry ten times more power with them. Of all CG strikes, about ten to twenty 

percent is a positive strike (NOAA, 2006). The lightning strike that is positively discharged 

can reach temperatures approaching 30000 °C (UCAR, 2007). There is little known about the 

form of lightning that ignites wildfire, like for example what percentages of positive CG 

lightning ignites wildfire.  

The LIS sensor detects both CG as CC lightning but does not make a distinction between 

them. The same is true for positive and negative strikes because they are also both detected 

but not distinguished. The LIS conversely does register for each item a couple of properties 

about the lightning strike that can be used to remove at least the items that do not consist of 

positive CG strikes, and therefore can not cause wildfire. The fact is that small 
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thunderstorms do not generate positive strikes and as the thunderstorm becomes larger the 

occurrence of positive CG strikes becomes more frequent (Larjavaara et al., 2005). And a 

higher density of CG strikes gives a higher chance for ignition (Fuquay et al., 1980). Now the 

intention is to perform a selection on one of the attributes of the LIS dataset. 

For each LIS item the following attributes are present: Groups, Events and Radiance. This 

corresponds to more familiar physical features such that an item is a thunderstorm, Groups 

are flashes, and Events are strikes. The other attribute, Radiance, is the measured cloud-top 

radiance of the thunderstorm. It is the radiance as seen from space, and not radiances 

directly from the lightning source. The detected value is a result of multiple scatterings of the 

lightning flash within the cloud and that makes the detected value dependent on the optical 

depth of the concerned cloud. Therefore this attribute is not valid for relating it to the size of 

a thunderstorm. By contrast, the other two attributes, Groups and Events, together do give 

an indication of the size of a thunderstorm. Event is a subdivision of Group, which means 

that Event is the sum of all strokes that occurred in all groups within a thunderstorm. A 

single attribute, named Events, is consequently used for deselecting the thunderstorm that 

does not bring about wildfire.  

So for the second step we need to define a threshold value for the selection of LIS items 

that can cause wildfire. This threshold value defines the amount of events a thunderstorm 

should consist of to involve the thunderstorm with the continuation of the Ignition Type 

Model. The frequency distribution of the Event attribute is visualised in Figure 4.4. Further a 

univariate analysis on the Events attribute of the LIS dataset, containing 1196012 records, is 

performed and the results are given in Table 4.1. In this table there are a number of 

parameters that quantify the central tendency of the attribute. The mean value and the 

median value differ strongly, which means that the univariate dataset consists of outliers. 

Therefore the mean is not useful as the threshold value. It is better to use the median 

parameter, i.e. 24 events, for it. The value of the median parameter of the Events attribute 

will be the threshold that represents the large thunderstorms that can consist of strikes that 

cause wildfire.  
 

 
Figure 4.4: Distribution histogram of the Events attribute from the LIS (lightning) dataset. On the X-axis the Event 

values are given and on the Y-axis with a logarithmic scale the frequency is portrayed. 
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Table 4.1: The Events attribute in the LIS dataset contains the number of lightning strikes a thunderstorm consists 

of. The results of the univariate analysis of this attribute are shown in this table. 

Statistical parameter: Result value: 

Minimum 1 

Median 24 

Arithmetic mean 49.51 

Standard deviation 78.97 

Maximum 3978 

4.1.4 Step 3: Proximity of wildfire with lightning 

For Step 3, the input datasets are the commencing fires that are extracted from the L3JRC 

product and the larger thunderstorms that are extracted from the LIS product. The aim of 

Step 3 is to create spatiotemporal relations between the lightning’s and wildfires. Therefore 

two parameters are of interest. These parameters indicate the threshold value of spatial 

distance and the threshold value of temporal duration between a thunderstorm and a fire. 

Having a distance and duration lower than the threshold value, then the fire can be assigned 

as lightning induced.  

The first parameter of interest is the distance threshold between a lightning and a fire. To 

define the parameter we should know something about the horizontal distance that a 

lightning stroke can cover between the anvil portion of a storm and the location on the 

ground where the stroke starts a fire. 

To determine this distance we first investigated the agility of the (larger) thunderstorms. 

The difficulty is that the LIS product observes a single thunderstorm for only 80 seconds 

(Christian et al., 1992). So the LIS does not register where the storm is moving to, with what 

speed and for how long it last. But besides the agility of a thunderstorm we can instead 

investigate the reach of a lightning strike. According to NOAA (2006) a lightning can strike 

the ground 16 to 24 kilometres from the anvil portion of a thunderstorm.  

But then, if we use as distance threshold of 16 kilometres, it means that around every 

single thunderstorm all grid cells within a radius of 16 kilometres can potentially be related. 

That means potentially that 804 sq km of burned area can be assigned as caused by one 

thunderstorm. Seeing that this is not realistic, the choice is made to use a smaller threshold, 

of exactly the half of the investigated distance, i.e. 8 kilometres. That means that lightning 

strike of a large storm can reach an area of 201 sq km. Because the size of this threshold value 

we can neglect other factors that could have influence on this parameter, like the accuracy of 

both datasets. 

The second parameter to create a relation between fires and lightning concerns the time 

span between the two. The question that we should ask to determine a threshold is how long 

it takes between the ignition of wildfire and the detection of burned area. On the one hand 

we should consider that the L3JRC detects burned area only when the circumstances are 

good enough. In many situations it can occur that the burned area is not detected at the very 

first satellite overpass (NASA-GHCC, 2005). On the other hand the fire needs some time to 

expand to a certain size at which it can be detected. The speed of expanding is depending on 

the fuel conditions. In substantial situations it can last a couple of days before a fire becomes 

visible (Rorig & Ferguson, 1999). The parameter value for the temporal duration between the 

induction of fire and the detection of burned areas is therefore assumed as maximum three 

days. 
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4.1.5 Step 4: Proximity of wildfire with anthropogenic  

The fourth step of the Ignition Type Model is the spatial proximity analysis between 

wildfires and anthropogenic variables. Based on the distance between a fire and a human 

object we can assign to a fire whether it is ignited by humans. For the representation of 

anthropogenic variables we use two datasets (VMAP0 and GRUMP) that together give the 

objects of roads, urban and settlements. The distance threshold for the proximity analysis for 

each variable is explained hereafter. 

The road network of the VMap0 is classified as divided highways, primary roads, 

path/trails and railroads. After investigating the dataset it appears that the classification is 

inconsistent across countries. As can be seen in Figure 4.5, there is a sharp interruption of the 

road network in the dataset between primary roads and path/trails. Highways do not seem 

to exist in Southern Africa according to the VMap0. That this inconsistency is caused by 

serious limitations with this dataset is stretched in Nelson et al. (2006). These interruptions 

across tile lines or country boundaries make it impossible to perform further analysis based 

on the initial classification. Therefore there is defined only one threshold value that is valid 

for all roads from VMap0. 
 

 
Figure 4.5: Map visualisation of the VMap0 road dataset. The initial classification is used, which is found 

inconsistent due to the sharp interruptions at tiles and boundaries. Primary roads are red, path/trails are blue, 

and railroad is represented with green. 

 

The distance threshold value of roads will be defined by performing a univariate statistics 

analysis on the Euclidean distances of all fires to the nearest road. The nearest distances are 

graphically displayed in a histogram as can be seen in the illustration of Figure 4.6. The 

frequency distribution is organized in classes of 0.2 km size. The distances of lower than 0.6 

km are excluded in this illustration. This is done because the structure of the fire dataset has 

a point feature that represents the state of a grid cell that is overlapping a radius of roughly 
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0.6 km from the point. Fires that are less than 0.6 km from a road are anyhow assigned as 

human ignited. The histogram shows a distribution with a positive skewness, which 

indicates that the distribution is spread out more to the right of the mean value. The idea is 

to define a threshold value based on the illustration of Figure 4.6. This threshold value 

should point the distinction between the fires that are human ignited and the fires from 

which the ignition type is unknown. Between the bars of 1.0 km and 1.4 km there is a slightly 

higher kurtosis than between other bars. This indicates that distances at the left of the 

beginning of this kurtosis representing fires near roads that are ignited by humans. Therefore 

1.2 km is the chosen as threshold value for roads. 
 

 
Figure 4.6: Distribution histogram of Euclidean distances between each fire and its nearest road. The histogram is 

set up with a value range from 0.6 till 10 km and it has class sizes of 0.2 km. Based on this histogram a threshold 

value of 1.2 km is defined for the proximity analysis with roads. 

 

 
Figure 4.7: Distribution of Euclidean distances between fires and the nearest urban areas. The histogram has a 

value range from 0 till 50 km and classes of 0.5 km. Based on this illustration the defined threshold for the urban 

proximity analysis is 5 km. 

 

The second part of the proximity processing of fires with anthropogenic variables is done 

with the means of the GRUMP dataset (see Section 2.1 for a description). This dataset consist 

of all urbanized areas in Southern Africa. The fires that occur within urban extents are 

assigned as human caused fires. Subsequently the same univariate analysis on the Euclidean 

distance between fires and the closest urban area is performed. The result, again a 
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distribution histogram, is shown in Figure 4.7. The frequency distribution is organized in 

classes of 0.5 km and the distances ranges from 0 till 50 km. The shape of the histogram 

shows a bimodal distribution, i.e. the histogram has two modes. The first mode has a strong 

negative skewness that peaks at 5 km and has a large drop in frequency thereafter. Therefore 

the first mode is used as the threshold value for the distance between a fire and urban areas 

for assigning the human ignition type. 

 The third and last part of this proximity process of anthropogenic variables concerns the 

nearest distance of fires to settlements. The settlements are point features that are gained 

from the VMap0 dataset. Feature elements that are overlapping with urban areas of GRUMP 

are removed. This resulted in total 13761 settlements. Also on this dataset the same analysis 

is performed as with the previous variables, and the result distribution histogram is shown 

in Figure 4.8. The histogram is in the same way organized as the one with the urban areas, so 

with a range from 0 till 50 and class sizes of 0.5 km. In the illustration can be seen that the 

distribution of distances from fire to settlement is totally different as the one with urban 

areas. Settlements are not attracting fires with the same force as urban areas do. Based on the 

illustration it seems that most fires are between 5 km and 10 km distance from a settlement. 

But when a random spread of 13761 points in the study area is used to measure the distance 

of each fire to the nearest random point it also results in a similar distribution. This can be 

seen in the frequency histogram that is shown in Figure 4.9. This figure shows the same 

distribution as Figure 4.8, with the difference that the nearest distance to settlements has a 

mode around 7 km and the random points around 12 km. That means that the settlements 

are noticeably attracting wildfire. But this also means that settlements are not useful for 

further use in the Ignition Type Model, because it is not possible to define a threshold value 

that represents wildfires that are ignited by humans. 
 

 
Figure 4.8: The histogram gives the distribution the Euclidean distances from each fire to its nearest settlement. 

The histogram has a value range from 0 till 50 km and classes of 0.5 km. 
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Figure 4.9: Distribution of Euclidean distances between each fire and one of the 13761 random points (which is 

the same amount as the amount of settlements). The histogram further has the same properties as the histogram 

of Figure 4.8. 

 

This means that for Step 4 two anthropogenic variables are used, namely roads and urban 

areas, to assign the human ignition type to wildfires. For both variables a threshold value is 

defined that declares whether or not the human ignition type can be assigned to a fire. 

4.2  Results 

4.2.1 Step 1: Commencing fires 

The 6067178 burned areas of the L3JRC dataset are transformed to individual fires based on 

the distances in space and time between burned areas. This resulted in a total of 1690546 

individual fires in Southern Africa in seven fire years (with an average of 3.6 assembled 

burned areas per fire). From these fires the locations of the firstly detected burned areas are 

selected for further use in the ignition type model. Table 4.2 shows the results of the 

extraction in numbers for each fire year. 
 

Table 4.2: For each fire year: (1) the amount of burned areas in the L3JRC dataset, (2) the amount of fires that are 

the result of the assembling of the burned areas, (3) the amount of burned areas that are assigned as commencing, 

and (4) the amount of burned areas that are assigned continuous. 

Fire year 

# of burned areas 

in L3JRC # of fires 

# of commencing 

burned areas 

# of continuous 

burned areas 

2000 843650 236480 730768 112882 

2001 945623 243844 832427 113196 

2002 839260 233777 743802 95458 

2003 946246 268791 833265 112981 

2004 783875 222108 693802 90073 

2005 765439 223133 686257 79182 

2006 943085 262413 823130 119955 

Total: 6067178 1690546 5343451 723727 
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4.2.2 Step 2: LIS attribute selection 

As threshold for the attribute selection, in order to deselect the thunderstorms from LIS that 

does not cause wildfire, the median value is chosen. Therefore exactly half of the original 

1196012 items remain, i.e. 598006 items, for further use in the ignition type model. 

4.2.3 Step 3: Lightning proximity 

For the processes of Step 3 we used the 1690546 (commencing) fires of Step 1 and the 598006 

thunderstorms of Step 2. The two datasets are related, and next, the fires are selected that 

meet the two threshold values of maximum spatial distance and maximum temporal 

duration. This process resulted in 35509 fires that are therefore assigned as ignited by 

lightning. A yearly overview of the results is shown in Table 4.3. 
 

Table 4.3: The results of Step 3 per year. First is given the number of fires, then the number of thunderstorms and 

last the number of fires that are assigned as ignited by lightning. 

Fire year # of fires # of thunderstorms # of lightning fires 

2000 236480 70538 5229 

2001 243844 97830 5701 

2002 233777 66614 3967 

2003 268791 104228 5364 

2004 222108 83778 4966 

2005 223133 73605 4016 

2006 262413 101413 6266 

Total: 1690546 598006 35509 

4.2.4 Step 4: Anthropogenic proximity 

The results of Step 4 are described in two parts, starting with the proximity analysis with the 

road variable and thereupon the proximity analysis with the urban area variable. In the first 

part the proximity analysis is performed to indicate which of the 1690546 fires are within a 

distance of 1.2 km from the road network with a total length of 713097 kilometres. It turned 

out that in seven fire years a total of 263551 fires start within this road buffer. This result 

counts for 15.6% of all fires. The results per fire year are given in the third column of Table 

4.4. The total buffer surface area around the roads in Southern Africa is 1007238 sq km. So 

the buffer area consists of 9.6% of the total study surface area (which is 10510527 sq km). 

That means that 15.6% of the fires are located in 9.6% of the area. Therefore we can conclude 

that roads do attract fire and that it is more certain that the fires we assigned as 

anthropogenic ignited are actually anthropogenic ignited. 

The second proximity analysis is done by means of the urban areas. From a total of 769 

urban areas spread over Southern Africa the fires are selected that overlap the objects or are 

within a buffer distance of 5 km from the objects. In this way a total of 44010 fires are 

selected and assigned to as human ignited. The results per year are given in the fourth 

column of Table 4.4. 
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Table 4.4: Given per fire year: (1) the number of wildfires, (2) the amount of fires that are the result of the road 

proximity analysis, (3) the amount of fires that are the result of the urban areas proximity analysis, and last (4) the 

total result of both proximity analyses. 

Fire year # of fires # of ‘road fires’ # of ‘urban fires’ # of anthrop. fires 

2000 236480 37882 5673 41741 

2001 243844 39833 7723 45133 

2002 233777 37783 6934 42512 

2003 268791 40560 6447 45044 

2004 222108 33452 4691 36804 

2005 223133 33597 5747 37608 

2006 262413 40444 6795 45147 

Total: 1690546 263551 44010 293989 

 

The last column of Table 4.4 shows the total number of fires that are assigned as human-

caused as a result of the proximity analyses with both variables. For the seven fire years 

period there are 293989 wildfires assigned as human ignited, which is 17.4% of the total 

number of wildfires. Note that the values of the last column are not the sum column (1) and 

(2). This because lots of fires are both near roads and near urban areas and therefore double 

assigned as human-caused. 

4.3  Verification 
In this section we verify the Ignition Type Model based on the results as they are shown in 

Section 4.2. Part of the verification is already performed in the previous sections of this 

chapter. For example the verification of some parameters is done while choosing the 

parameters by considering its distribution. Also in Section 4.2, in which the results of the 

human proximity analysis are given, there is verification performed. This concerns the 

comparison of the buffer surface area ratio with the ratio of selected fires that received the 

anthropogenic ignition type. This section contains five different parts and for each part a 

manner of verification is performed by considering the results of the Ignition Type Model. 

All amounts are still representing the seven fire year’s period. 

4.3.1 Sensitivity of the parameters 

For each step in the Ignition Type Model one or more parameters are defined and used. 

These parameters form the most important aspects of the model because these contain the 

criteria for which a fire receives an ignition type or not. In Section 4.1 where the parameters 

are chosen there is a justification included. In case of the lightning selection and proximity 

analysis this is done by performing multivariate statistics and consulting other research. In 

case of the proximity analysis with anthropogenic objects the parameters are chosen with the 

help of distribution analyses of Euclidean distances. For additional justification it is 

necessary to investigate the sensitivity of the parameters. This can be done by performing the 

model with other parameter values and then by comparing the model outputs the sensitivity 

of each parameter can be described. The problem herein is that executing the model is time 

consuming because of the complexity of the model and the extension of the input datasets. 

Therefore it is for this research not possible to further describe the sensitivity of the 

parameter values that are used in the Ignition Type Model. 
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4.3.2 Double assigned ignition types 

All fires that are produced in the first step of the Ignition Type Model make up the input for 

Step 3, which is the proximity analysis with thunderstorms. The identical dataset with fires is 

also used for Step 4, which is the proximity analysis with human objects. Theoretically this 

means that it is possible that a fire is assigned as both natural and anthropogenic, i.e. the fire 

is related with a thunderstorm and also near to a road or urban area. The first way of 

verifying the Ignition Type Model concerns the investigation of double assigned ignition 

types. None or little double assignments signify that the steps are processing the two ignition 

types separately, which will result in reliable results. Many double assignments signify that 

there is something wrong in the model, like for example that the parameters are not correct. 

Investigation of the double assignments in the results as shown in Section 4.3 shows that 

there are 1294 fires that received two different ignition types (see also Figure 4.10). 

Concerning the lightning fires this implies 3.6% and concerning the anthropogenic fires this 

implies 0.4%. This means that the assignments are reliable, and that the anthropogenic 

assignment is little more reliable then the lightning assignments. For the record, we remove 

the double assigned fires from the results of the Ignition Type Model. The results of the total 

lightning and anthropogenic fires are altered to respectively 34215 and 292695 fires. 
 

 
Figure 4.10: The total amount of wildfires for which an ignition type is assigned by the Ignition Type Model (i.e. 

328204). The yellow bar represents the 34215 lightning ignited fires and the red bar represents the 292695 

anthropogenic ignited fires. A total of 1294 fires (represented by the narrow brown bar, in between the yellow 

and red bar) received both the lightning as the anthropogenic ignition type. 

4.3.3 Performing the model with and without Step 1 

The first step of the Ignition Type Model performs the assembling of burned area and the 

selection of the commencing areas. The model can also be executed without performing Step 

1, so that each single burned area is treated as one single fire. By comparing the results of an 

executed model with and without performing Step 1 might give a verification of the first 

step. Therefore in this paragraph the comparison is carried out. The results of the Ignition 

Type Model with and without Step 1 are shown in Table 4.5. 
 

Table 4.5: Results of Ignition Type Model with and without performing of Step 1, i.e. the assembling of burned 

area and the selection of the commencing areas. The percentages in parentheses for lightning fires and 

anthropogenic fires give the proportions in relation to the total number of fires. The percentages in parentheses 

for double assigned fires give the proportions in relation to the sum of lightning fires and anthropogenic fires. 

 Step 1 included Step 1 excluded 

# fires 1690546 6067178 

# lightning fires 34215   (2.0 %) 127777   (2.1 %) 

# anthropogenic fires 292695   (17.3 %) 785049   (13.0 %) 

# double assigned fires 1294   (0.4 %) 3801   (0.4 %) 

 

When comparing the values of the executed model ‘Step 1 included’ and ‘Step 1 excluded’ 

(see Table 4.5) the first thing to notice is that there is a large difference between the total 

number of fires that form the input of the Ignition Type Model. For the lightning proximity 
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part of the model this difference does not give a significant discrepancy in the results. With 

or without performing Step 1 gives the same proportion of lightning fires that are output in 

relation to the number of fires that are input. What was more likely to expect is that the 

proportion of lightning fires in ‘Step 1 excluded’ is much larger. This because lightning fires 

are in general larger (Podur et al., 2003), so cause more burned area, and therefore it was 

expected that a single lightning fire in ‘Step 1 included’ exists of multiple lightning fires in 

‘Step 1 excluded’. In other words, against our expectations, the input of ‘Step 1 included’ 

consists on average of 3.6 burned areas and the lightning-output of ‘Step 1 included’ consists 

on average of almost the same, i.e. 3.7,  burned areas. 

In contrast to the lightning fires, the anthropogenic fires have a difference in proportion 

between the input and output. Of the input of ‘Step 1 included’ 17.3% is anthropogenic and 

of the input of ‘Step 1 excluded’ 13.0% is anthropogenic. This means that the fires that are 

assigned as human ignited in ‘Step 1 included’ are small fires, i.e. fires with relatively few 

burned area cells. This finding corresponds with earlier research that concluded that 

anthropogenic fires are typically smaller is size (Pyne, 1994; Larjavaara et al., 2005). 

The double assigned fires form in both ways of performing the model the same 

proportion in relation to the input of the models. These are therefore most likely the same 

group of fires, that are both assigned as lightning and human ignited. To conclude about this 

verification process, we can say that assembling of burned area, i.e. Step 1, is not crucial. 

4.3.4 Fire frequency versus thunderstorm size 

In the Ignition Type Model a selection is performed on the LIS dataset (containing 1196012 

thunderstorms) because not all thunderstorms do bring forth lightning strikes that can cause 

wildfire (see Paragraph 4.1.3). For the selection a parameter is defined, which we verify in 

this paragraph, that represents a minimum number of strikes a thunderstorm should consist 

of. The thunderstorms that belong to this selection, that are 598006 thunderstorms, are then 

used for the proximity analysis with wildfires. This resulted in 34215 thunderstorms that 

produced lightning that ignited a wildfire. 

So there are in the model three lightning datasets: the initial LIS thunderstorms, the 

selected thunderstorms and the thunderstorms that ignited wildfire. These three datasets all 

consist of the Event attribute, which signifies the amount of lightning strikes coming from 

each thunderstorm. From these three datasets the correlation between Events attribute and 

fire frequency is calculated and visualised. The goal of this analysis is investigating if there 

actually is a positive relation between the size of a thunderstorm and natural caused 

wildfires, as been stated in Larjavaara et al. (2005). If this is indeed true then we correctly 

included Step 2 in the Ignition Type Model. 

In these three correlation analyses one variable that is used in all three cases is the fire 

frequency. Actually we are only interested in the natural caused wildfires, but we do not 

have a dataset with only natural wildfires. We can however exclude the anthropogenic 

results from the whole fire dataset. That means that from the total 1690546 wildfires in the 

study area the anthropogenic model results, i.e. 292695 fires, are removed. This results in a 

new fire dataset with 38.4% lightning fires and 61.6% anthropogenic fires, which is then the 

best available fire dataset for the analyses. From this fire dataset we make an aggregated set 

with average number of fires per year per segment of 40000 sq km. An unclassified 

choropleth map of this variable is shown in figure 4.11. 
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Figure 4.11: Unclassified choropleth map of the average yearly fire frequency per segments of 200 by 200 

kilometres. Seven segments have on average of zero fires a year. The other 253 segments have an average fire 

frequency per year ranging from 1 to 15000. 

 

Also for the three lightning datasets an aggregation is performed. The segment size for these 

aggregations is also 40000 sq km and for each segment the average number of lightning 

strikes per thunderstorm is calculated. The three aggregated datasets, i.e. respectively (1) all 

LIS data, (2) the results of the selection (Step 2 of the Ignition Type Model), (3) and the results 

of the proximity analysis (Step 3 of the Ignition Type Model), are visualised in Figure 4.12 by 

means of identical choropleth mapping techniques. By investigating the three lightning 

strike maps in comparison with the fire frequency map it becomes clear that visual analysing 

is very hard because of the indistinct patterns. 
 

 
Figure 4.12: The average Event attribute values (number of strikes in a thunderstorm) visualised by means of 

choropleth maps of respectively all LIS data, the result of the attribute selection (Step 2), and the result of the 

proximity analysis (Step3). 

 

By just considering the four maps it is impossible to conclude about the relation between the 

sizes of thunderstorms and fire frequency. Therefore an additional technique is used, which 

are the three correlation graphs that are shown in Figure 4.13. The graphs contain a linear 

regressed trend line, which in this case visualises to what extent the two variables are 

related. By investigating the three trend lines it becomes clear that the third graph has a 

steeper positive line. This indicates that the sizes of thunderstorms are positively related to 

fire frequency for thunderstorms that are already allocated with fires. The sizes of 

thunderstorms that are not allocated have only a very small positive relation with fire 

frequency, as can be seen in the first two graphs of Figure 4.13. 
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Figure 4.13: Correlation graphs of fire frequency with the thunderstorm size of respectively all LIS data, the result 

of the attribute selection, and the result of the proximity analysis. Each graph is set up with the average number 

of lightning events per thunderstorm per segment cell on the Y-axis and the average yearly number of fires per 

segment cell on the X-axis. Additionally a linear regressed trend line is added to each graph. 

 

Based on this analysis it can be concluded that the assertion of Larjavaara et al. (2005) is 

partly true. The size of a thunderstorm is positively related with fire frequency, but this 

prevails only for larger thunderstorms that are allocated with wildfire. Furthermore we can 

also conclude that the use of lightning attribute selection is correctly used in the Ignition 

Type Model 

4.3.5 Effectiveness of the model 

In Paragraph 4.4.2 the calculations are given that results in the knowledge that for 19.3% of 

the input fires the ignition type is defined. Also in that Paragraph the total ratio of both 

ignition types is calculated and with that we can calculate the effectiveness of the Ignition 

Type Model per ignition type. The total number of lightning fires is 535897 (see Paragraph 

4.4.2 for the calculation) but the outcome of the model contains 34215 lightning fires, so the 

effectiveness of the model concerning lightning fires is 6.4%. This low outcome for lightning 

fires is mainly caused by the fact that the LIS dataset, having 59240018 lightning strikes, 

contains only 6.4% of the total amount of lightning in the study area, which are almost one 

billion lightning strikes (see Paragraph 4.5.3 for more information hereabout). The same 

percentage can also be calculated for human fires. The amount of human fires is the 

difference between the total amount of fires and the total amount of lightning fire, which are 

then 1154649 fires. The outcome of the model contains 292695 human fires. That means that 

the effectiveness of the model concerning human fires is 25.4%. Now we know that one 

quarter of all human fires are located near roads and urban areas. The results that are given 

in this paragraph are summarized in Table 4.5. 
 

Table 4.5: Overview of the results of the model and the total amount in the study area per ignition type and the 

sum of the two ignition types. The last column gives the effectiveness of the model in percentages. 

 Model results Total in study area Model effectiveness 

Lightning ignited fire 34215 535897 6.4% 

Anthropogenic ignited fire 292695 1154649 25.4% 

Total 326910 1690546 19.3% 
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4.4 Discussion 
This section discusses three different aspects of the Ignition Type Model. This includes 

(§4.5.1) the percentage of lightning that ignites wildfire, (§4.5.2) the ratio of all wildfires in 

the study area that is lightning- or human ignited, and (§4.5.3) the assessment of the results 

of the Ignition Type Model. 

4.4.1 Lightning that ignites wildfire 

This paragraph elaborates on the comparison of lightning that ignites fire as found in 

literature and as calculated from the results of the Ignition Type Model. A lightning can be 

classified as either cloud-to-ground or cloud-to-cloud, where the latter outnumbers the 

former by a ratio of 6.3:1 near the equator and 4.2:1 at latitude of 30° (Collier et al., 2006). 

Based on this the average ratio is calculated for the whole study area by linearly 

interpolating and averaging by means of surface area. This resulted in a ratio of 5.17:1, which 

means that 16.2% of all lightning is CG. Next, the ratio of CG lightning that ignites wildfire is 

found in literature. By studying the ignition type of 17 000 naturally ignited wildfires in the 

United States, Hall (2007) found that 0.35% of all recorded CG lightning strikes are 

associated with these fires. By considering the results of the literature study (i.e. 6.2% of all 

lightning is CG and 0.35% of all CG lightning ignites wildfire), the ratio of all lightning that 

ignites wildfire is 0.0567%.  

The lightning dataset used as input for the Ignition Type Model contains a total of 

59240018 lightning strikes. The model assigned to 34215 fires that they are lightning-ignited, 

what means that the same amount of lightning strikes is responsible for the ignition of these 

fires. The percentage of all lightning that ignited a wildfire is therefore 0.0578%. This ratio 

does slightly differ from the ratio found in literature, i.e. 0.0567. Based on this the lightning 

part of the Ignition Type Model can be seen as reliable. 

4.4.2 Total ratio of natural-/anthropogenic fire 

The Ignition Type Model assigned an ignition type to a total of 326910 fires, which is 19.3% 

of all fires (i.e. 1690546) that form the input of the model. That means that based on the final 

results it is impossible to say something about the overall ignition type ratio, i.e. what 

percentage of all fires is lightning caused and what percentage is human caused. But it is 

possible to estimate this ratio by considering the percentage of lightning that ignites a 

wildfire. With this percentage and the number of lightning strikes the total amount of 

lightning fires can be calculated. The amount of lightning strikes in Southern Africa is 

according to Collier et al. (2006) 4.2 strikes per second, which is for a seven fire years period 

almost one billion lightning strikes. The calculation, using the percentage of lightning that 

ignites wildfire and the total amount of lightning, resulted in an occurrence of 535897 

lightning fires in seven fire years in the study area. Now we can finally calculate the ratio of 

the natural and anthropogenic ignition types. From the total number of fires (i.e. 1690546) the 

number of lightning fires is calculated as 535897, so the percentage of lightning fires in the 

project area is 31.7% (see Table 4.6). This percentage is not significantly different from the 

estimation of Van Wilgen et al. (1990), who calculated that 30 percent of all wildfires in 

Southern Africa are caused by lightning. 
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Table 4.6: The ratio of lightning ignited and human ignited wildfire in the study area based on the Ignition Type 

Model and based on literature review is given in this table. 

 According to Ignition Type Model According to Van Wilgen (1990) 

Lightning ignited fire 31.7% 30% 

Anthropogenic ignited fire 68.3% 70% 

 

4.4.3 Assessment of the model results 

The very last part of Chapter 4 aims on describing the usefulness of the final results of the 

Ignition Type Model. While doing this we will focus on the intentions of the third research 

question that is treated in Chapter 5. That research question has the goal to investigate 

spatiotemporal patterns of the two ignition types. Therefore the usefulness of the model 

results for this approach is described hereinafter. 

Concerning the lightning ignited fires that are the result of the Ignition Type Model it is 

possible to find patterns in space and time. However, the model resulted in only 6.4% of the 

total number of lightning fires. That means that for the pattern analyses roughly 5000 

lightning fires are available for an area of 10510527 sq km and a time span of one year. On 

the one hand it is therefore not possible to describe patterns in great detail and on the other 

hand the researcher should consider if the available lightning fires are a reliable sample from 

the actual number of lightning fires. Based on the characteristics of the LIS dataset and the 

verification of the Ignition Type Model we can ascertain that the result of the model is a 

reliable random sampling of all lightning fires. However one should be conscious of the fact 

that the sampling is relatively small. To conclude about the lightning fires we can say that it 

is possible to perform spatiotemporal analyses, while keeping in mind that describing 

patterns in great detail is not possible and that the sample is relatively small. 

The second dataset for which the usefulness needs to be defined is the anthropogenic 

part of the results of the Ignition Type Model. In contrast to the lightning part, the 

anthropogenic part has a large sampling of more than one quarter of all human fires. 

Therefore it is reasonable to make conclusions out of the anthropogenic fires dataset. The 

dataset consists of roughly 42000 human fires in the study area for each year, and therefore 

the detail in which the analyses can be performed is larger. However there is one important 

difficulty in performing spatial pattern finding that is caused by the methods that are used in 

the model. This implies the proximity analysis with human objects and therefore all 

anthropogenic fires in the dataset are located near these objects. Fires located near roads for 

example are assigned as anthropogenic caused and when doing spatial analysis the analyst 

will find that most human fires are located near roads. It is therefore not reasonable to make 

conclusions about the spatial patterns about anthropogenic fires based on the results of the 

Ignition Type Model. On the other hand there are no hindrances in finding temporal patterns 

in this dataset. 
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Chapter 5 

Patterns of natural-/anthropogenic fires 

This chapter performs analyses in order to find patterns about natural caused fires and 

anthropogenic caused fires. Therefore it uses the results of the Ignition Type Model that are 

explained in Chapter 4. The characteristics of the two result datasets are explained and 

assessed extensively in Chapter 4. Concerning the analyses that are executed in this chapter, 

the same theories and choices as given in Chapter 3 are applicable. That means, among 

others, that again a task is defined, techniques for map visualisation are chosen, 

spatiotemporal patterns are visualized and spatiotemporal clusters are described. In Section 

5.1 there is dealt with two tasks that together give the patterns that are possible to derive 

from the two ignition type datasets. The second section of this chapter contains the 

discussion of the results of the analyses. 

5.1  Performing analyses 

5.1.1 Task 1: Monthly fire frequency of all fires and per ignition type 

For the first analysis concerning the wildfires per ignition type the following task is defined: 

Visualize and compare the average monthly fire frequency of all wildfires, the natural caused wildfires, 

and the anthropogenic caused wildfires. The target of this task aims at three variables. These are: 

(1) all wildfires, i.e. the assembled burned areas from Step 1 of the Ignition Type Model, (2) 

the lightning caused fires, and (3) the human caused fires, which both are the result of the 

Ignition Type Model. The constraint is that the targets are analysed by means of the average 

monthly fire frequency that is calculated by considering seven fire years. 

At first it is necessary to perform an aggregation tool on all three variables in order to 

calculate the average monthly fire frequency for each segment cell. As segmentation we use a 

grid overlay with cell sizes of 200 kilometres. Secondly we choose a tool to visualize the 

variables. The most suitable tool for this task would be a bar charts map, so that each variable 

is portrayed in one map. The result maps of this tool are shown in Figure 5.1 (all fires), 

Figure 5.2 (lightning fires) and Figure 5.3 (anthropogenic fires). In these maps a two-

dimensional space is used to portray the geographical referrer, i.e. the 260 segment cells. 

Each segment cell has a chart, whose space is outlined by a frame. The values of the twelve 

attributes are represented by bar-shaped marks within these frames. The marks of one cell 

are arranged horizontally in an appropriate way, which in this case means that the marks of 

the twelve months are arranged in chronological order, starting with April. The vertical 

spatial dimension of the bar chart is used to represent the attribute values. The height of the 

bars is dependent on the maximum value of all twelve attributes, which fills the total vertical 
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space of the frame. Therefore it is not possible to compare the values of the three variables by 

means of the maps since the sizes of the bars are not proportional to the variable values. 
 

 
Figure 5.1: Bar chart map of the monthly fire frequency of all fires portrayed per segment with 200 km cell sizes. 

The charts for each segment are portrayed in frames with as horizontal dimension the twelve months and as 

vertical dimension the attribute values with as maximum value 9504 fires. 

 

 
Figure 5.2: Bar chart map of the monthly fire frequency of lightning fires portrayed per segment with 200 km cell 

sizes. The charts for each segment are portrayed in frames with as horizontal dimension the twelve months and 

as vertical dimension the attribute values with as maximum value 527 fires. 
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Figure 5.3: Bar chart map of the monthly fire frequency of anthropogenic fires portrayed per segment with 200 km 

cell sizes. The charts for each segment are portrayed in frames with as horizontal dimension the twelve months 

and as vertical dimension the attribute values with as maximum value 2855 fires. 

 

The three result maps portray a large amount of information, which makes it hard to 

interpret the behaviour. Therefore, before we describe the main patterns of the three 

variables, we perform a focussing tool, i.e. we zoom into the data by selecting only that 

information that is necessary to visualize the main patterns. In this case we remove all 

frames that are not relevant. As threshold for the focussing tool we take 10 percent of the 

total frame area that is filled with bar area. That means for the bar chart map of Figure 5.1 

that only the frames that contain in total of more then 11405 fires (10% of 12 times the frame 

height value, which is then for this variable 9501 fires) are selected by the focussing tool. For 

Figure 5.2 this is 632 fires and for Figure 5.3 this is 3426 fires. The results of the three 

focussing processes are respectively shown in Figure 5.4, Figure 5.5 and Figure 5.6. 

Another advantage of the focussing tool, besides eliminating the information overkill, is 

that visual comparison is based on a certain amount of yearly fires. Only the segments that 

meet this amount of yearly fires are provided with a chart. By considering which segments 

have a chart one can immediately know where the majority of the fires are located. 
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Figure 5.4: Bar chart map of the monthly fire frequency of all fires, with only the frames of Figure 5.1 that have 

more then 10%, which is more then 11405 fires per year, of the total frame area filled with bars. 

 

 
Figure 5.5: Bar chart map of the monthly fire frequency of lightning fires, with only the frames of Figure 5.2 that 

have more then 10%, which is more then 632 fires per year, of the total frame area filled with bars. 
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Figure 5.6: Bar chart map of the monthly fire frequency of anthropogenic fires, with only the frames of Figure 5.3 

that have more then 10%, which is more then 3426 fires per year, of the total frame area filled with bars. 

 

At first we investigate the result maps of Figure 5.1 and Figure 5.4, i.e. the bar chart maps of 

all wildfires that are produced by assembling adjoining burned areas by means of Step 1 of 

the Ignition Type Model. So the dataset used for this analysis is another dataset then the one 

used for the analysis in Chapter 3. Due to Step 1 there are less fires used in this analysis, and 

especially during periods in which lots of burned area was detected the number of 

assembled burned area per wildfires increased. This can be seen for example in some 

segment cells that have a dip during the fire season. This is probably caused because the 

numerous burned areas are assembled to one wildfire. This is obviously a defect in this 

analysis, but, as can be seen in the result maps, the general distribution during a fire year is 

kept intact. Moreover, the distribution within a fire year is much clearer in comparison with 

the mosaic-analysis, because of the averaging of fire frequency that is performed. 

When we investigate only Figure 5.4 we see that a little less then half of all segments 

comply with the 10% norm. That means that the total amounts of wildfire within all 

segments are relatively close to each other. Only the segments that have no or almost no fires 

and segments that have an unclear distribution of fire frequency are removed from this map 

by means of the 10% norm. This resulted in a map with two main clusters on the African 

mainland. The first cluster is located between 5° and 15° latitude south, in Congo and 

Angola. The second cluster is located vertically parallel to the east coast ranging from South 

Africa to Tanzania. 

Next, we consider the results of the lightning bar chart maps, which are shown in Figure 

5.2 and Figure 5.5. For this analysis a very small amount of fires is used in comparison with 

the other two analyses. Therefore the distribution of fire frequency might not be as clear as 

for the other two. This might be the reason that there are several lonely peaks in the charts. 

On the other hand, we used the average of lightning fire frequency of seven years, which 

would normally lead to a smoothed and solid distribution. Therefore the high isolated peaks 

might indicate that the lightning caused wildfires only occur during a small period in a year. 
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These periods do in most cases correspond to the centre of the fire season as been recognized 

in the analysis with all wildfires. 

After the segment selection based on the 10% norm we see that only a few, in total 43, 

segments remain (see Figure 5.5). This indicates that the total number of lightning fires per 

segment is disproportional, i.e. most segments have no or few lightning fires and some 

segments have lots of lightning fires. So the lightning fires, as been assigned by the Ignition 

Type Model, are located on only a few locations but within two main clusters. These clusters 

do have the same location as the two main clusters that have been described for all wildfires. 

Only the lightning clusters are much smaller. The last remark is about Madagascar, which 

seems to have relatively to surface area much more lightning fires then the mainland. 

When investigating the anthropogenic fires we should cautious conclude about the 

spatial patterns of this dataset. Because of the way of assigning human caused fires by the 

Ignition Type Model (see Paragraph 4.4.4). However we see in Figure 5.6 roughly the same 

cluster shapes and cluster locations as for analysis with all wildfires. This may indicate that 

the proportion of fire amount between segments is correct. However, we do not further 

conclude about spatial patterns of anthropogenic fires. Although we assume that the spatial 

patterns of anthropogenic wildfire is about the same as the spatial patterns of all fires. The 

two reasons for this are: (1) the results of the analysis (Figure 5.1 and 5.3) show roughly the 

same patterns, and (2) anthropogenic fires contribute a large portion (i.e. 68.3%) of all 

wildfires. 

The second aspect that we investigate concerning the anthropogenic fires is the monthly 

distribution of the average fire frequency. It seems that these do highly correspond to the 

distributions of all wildfires. One remarkable difference is that the monthly distributions of 

anthropogenic fire do not have the dips that we observed in the distribution of all wildfires. 

The reason for this is not clear. In contrast to the lightning fires the distribution of 

anthropogenic fires has no peaks. Its distribution is smoother, just like all wildfire result. 

Through that the season of anthropogenic fires is longer (in some places much longer) then 

the season of lightning fires. However, both seasons of lightning and human caused fires 

have their centre in the same month. 

5.1.2 Task 2: Lightning fires per land cover type 

The second task that is defined in order to investigate the spatiotemporal patterns of wildfire 

ignition types is aiming exclusively on the lightning caused fires. The task is formulated as: 

Visualize in which land cover types lightning caused wildfire occurs the most. This task has 

as target only the lightning ignited fires that were the result of the Ignition Type Model. In 

addition to this an independent dataset will be used, i.e. is the GLC2000 that delivers us of a 

map with the land covers that are present in the study area. The goal of this task is to 

investigate if there are certain characteristics in the relation between the lightning fires and 

the land cover type on which the lightning fire is burning. By that, we try to gain knowledge 

about notable behaviour lightning fires in relation with land cover. It is by this probably 

necessary to compare this finding with the characteristics of all wildfires in relation to land 

cover, in order to indicate whether the finding is indeed a characteristic of lightning fire. 

Therefore also the wildfire dataset that was the result of Step 1 of the Ignition Type Model is 

used during this research. 
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The GLC2000 dataset contains for the study area 24 different land cover types. In Figure 5.7 a 

cut out of this dataset concerning the study area is shown. The next step of this analysis is 

adding to each wildfire on which land cover type it is located. Because of the high resolution 

of the GLC2000 (i.e. 1 kilometre) the assigning of land cover type is performed very 

accurately. As a result, for both fire datasets, which are all wildfires and lightning caused 

wildfires, a 100% stacked histogram is produced (see Figure 5.8). For this histogram only 

eleven land cover types remain that are for that reason the land cover types on which most 

fires are occurring (i.e. contributing for more then 1%). 
 

 
Figure 5.7: Clip of the Global Land Cover 2000 product with its original classes and colouring scheme. 

 

 
Figure 5.8: 100% stacked histogram of the land cover types on which a wildfire occurs in the study area. The left 

bar represents all wildfires and the right bar represents lightning caused wildfires that are the result of the 

Ignition Type Model. 
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By investigate this histogram we first of all notice a difference in the amount of land cover 

types on which the fires of the two datasets occur. All wildfires are located mostly on eleven 

land cover types and lightning fires are located on only seven land cover types. That means 

that lightning fires occur on only a few specific land cover types in comparison to all 

wildfires (which also include lightning fires). The second aspect we notice is that lightning 

fires mainly occur on only two specific land cover types. These are closed deciduous forest 

(22%) and deciduous woodland (59). That means that a total of 82% of all lightning fires 

occur in woodland areas, in contrast to a total of 55% of all wildfires that occur in woodland 

areas. This difference would even be larger if instead of all wildfires we would consider only 

anthropogenic fires (the anthropogenic results of the Ignition Type Modal are not sufficient 

for this analysis). 

In the next step we try to perform the same analysis but this time by visualizing the 

behaviour of lightning wildfire with respect to land cover types. Let us consider the 

classified choropleth map in Figure 5.9, which gives the average yearly fire frequency of all 

lightning fires over seven fire years. What we could do is visually comparing this map with 

the land cover map of Figure 5.7 in order to find out on which land cover types these fires do 

and do not occur. Although this is quite difficult to do, we can however derive a pattern 

from this relation. There are several land cover types that have no or almost no lightning fire, 

e.g. the desert land covers and certain forest types. However, most lightning fires seem to 

occur in deciduous forest types. 
 

 
Figure 5.9: Classified choropleth map of the average yearly frequency of lightning caused wildfires that are the 

result of the Ignition Type Model (in total 34215 fires). Classification is based on three equal sized classes. 
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For better visual presentation of the contribution of lightning fires on the deciduous forest 

types we perform an attribute selection tool. In this case we select by means of the land cover 

type attribute, in order to represent in a map illustration only the elements of a certain 

attribute value. To perform this tool we consider the visualisation of Figure 5.9. To that we 

perform the attribute selection with the purpose to show merely the lightning fires that are 

located in deciduous forests (they are called deciduous woodland and closed deciduous 

forest). Also we perform this tool with the purpose to show the lightning fires that are not 

located in deciduous forests. The two result maps are shown in Figure 5.10. 
 

    
Figure 5.10: Classified choropleth maps of the average yearly frequency of lightning caused wildfires. The left 

map shows only the fires that occur in deciduous woodland and closed deciduous forest. The right map shows all 

other fires. Classification is based on same selection as the map of Figure 5.9. 

 

With the two illustrations of Figure 5.10 we can easily recognize that most lightning caused 

wildfires do occur in woodland areas. The large spatial cluster of lightning fires between 5° 

and 15° latitude south that we already described in the previous task is again visible. Now 

we know that this cluster is almost totally build up by lightning fires occurring in woodland 

areas. Also within this cluster an area with closed grassland that has a high fire frequency is 

clearly visible. Also on Madagascar it is this single land cover type that is burning the most. 

Further we see that near the south of the study area there are some fire concentrations that 

are not located in woodland areas but on grasslands. 

5.2 Discussion 
In the last section of this chapter we discus the findings with results of other researches. The 

first chapter elaborates on the characteristics of lightning caused fires as found in the Section 

5.1 in relation with patterns of lightning frequency that is found by Collier et al. (2006). The 

second paragraph shortly discusses the finding of lightning caused wildfires occurring in 

wooded areas. 

5.2.1 Comparison of lightning fire patterns and lighting patterns 

Collier et al. (2006) performed a research on the spatial and seasonal variation of lightning 

activity over Southern Africa. There are some strong similarities between his findings and 

the patterns of lightning caused wildfires found in this chapter. These similarities indicate 

that the flash rate is positively related to frequency of lightning ignited fire. Collier et al. 
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(2006) found that lightning activity is concentrated predominantly in the northern regions of 

the study area. We found large amounts of lightning caused fires in the northern regions, 

except from the tropical areas near the equator, which are obviously too wet to burn. Collier 

et al. (2006) also found large contributions of lightning frequency in the western part of South 

Africa and in Madagascar. Precisely in these areas we found more lightning caused fires then 

in other regions. 

Concerning the seasonal variation of lightning Collier et al. (2006) concluded that the 

maximum activity occurs in South Africa on the east and west in different seasons. The 

central and south part of South Africa has its maximum lightning activity in the autumn and 

the east part of South Africa has its maximum lightning activity in the spring and summer. 

Both conclusions do correspond with the frequency of lightning caused fires that we found. 

Especially in the south part of South Africa we saw peaks, which are occurring in the 

autumn. We also saw that on the east coast of South Africa the lightning caused fires are 

occurring in spring and summer. 

5.2.2 Lightning caused fires in wooded areas 

In this chapter we found that lightning caused fires in Southern Africa are mainly occurring 

on deciduous woodland and closed deciduous forest. It seems that there is little known in 

literature about our finding. So our finding can be seen as new scientific knowledge. 

Lightning caused fires have been investigating extensively for boreal forest areas, e.g. in 

Canada, Russia and Scandinavia (Larjavaara et al., 2005). Because of the differences in forest 

type, climate, etcetera, it is impossible to compare their findings with our results lightning 

ignited wildfire. 
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Chapter 6 

Conclusions and recommendations 

This chapter completes the thesis by giving the final conclusions concerning the presented 

work. In the first paragraph of the first section we return to the starting points of this thesis, 

which are the three hypotheses. Further in Section 6.1 the answers on the research questions 

and all conclusions are given. In the second section there are stated two recommendations 

for further research on the wildfire topic. 

6.1 Conclusions 

6.1.1 Hypotheses 

Hereafter the three hypotheses, formulated at the beginning of this thesis, are finalized. 

The first hypothesis presupposed that wildfires in the study area are completely 

spatiotemporal random. However, in all visualisations of the L3JRC product that are made in 

the thesis, we clearly see that this statement is false. The variation of fire frequency in the 

study area is large, with areas with no fires and areas with many fires. Concerning the spatial 

patterns we clearly observe for instance that there are two large areas with almost no fire and 

two large areas with lots of fire in every visualised map. Within these clusters there is a 

difference in total amount of fire but a similarity in temporal patterns. Also regarding the 

temporal patterns the seasonality of fire regimes are observed. Most areas have a clear 

seasonality but some small areas have a constant fire frequency throughout the year. Based 

on these findings the first hypothesis is declared as false. 

The second hypothesis stated that the influence of humans on the total fire regime is 

limited. Based on the findings of this thesis we can adapt this proposition because we found 

that the influence of humans is large. Buitrago (2008) concluded that on places where the fire 

frequency is high the population density is very low. In addition, this research found that the 

correlation between wildfire and human influence is very low. But that does not mean that 

all wildfires, that are located on places where almost no human lives are, not caused by 

humans. It only needs one human to set a wildfire in an remote area. The results of the 

Ignition Type Model showed that of all wildfires in the study area almost two third is human 

caused. Furthermore the model found that three quarters of all anthropogenic fires do not 

start near roads or urban areas. But most important of all, we found that roads, urban areas, 

and human settlements do attract wildfire. All these findings indicate that the hypothesis is 

false, i.e. the influence of humans on fire regime is large, and in fact is the most dominant 

ignition type for Southern Africa. 
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The third hypothesis described that natural and anthropogenic fires have the same 

spatiotemporal patterns. Because of the methods used for the Ignition Type Model there 

were some difficulties in deriving spatiotemporal patterns from both ignition type datasets. 

Nevertheless, we did found some differences in their behaviour. One of the analysis found 

that anthropogenic fires occur in larger spatial clusters in comparison with lightning fires. 

Lightning fires are mainly located in woodlands and forests. Concerning the temporal aspect 

we found that the fire season of lightning ignited fires are short in comparison with the fire 

season of anthropogenic fires that at some locations even occur during the whole year. 

6.1.2 Research questions 

In the introduction three research questions have been defined: 

� What spatiotemporal patterns of wildfires can be derived from the L3JRC burned area 

product? 

� Can the distinction between natural and anthropogenic caused fires be made by 

independent variables? 

� What are the spatiotemporal patterns of natural and anthropogenic caused fires? 

In the following the conclusions and answers on these research questions are presented. 

Concerning the first research question the L3JRC burned area product is investigated in 

order to describe spatiotemporal patterns of wildfire in Southern Africa. The patterns that 

are described are derived by means of analysing the behaviour in map visualisations. 

Concerning the spatial and temporal patterns these included fire clustering, fire absence, and 

change of fire frequency. New findings that are found by answering this question concerns 

the comparison of the spatial and temporal patterning of wildfire. Spatially the wildfires 

occur in clusters. Within these clusters the spatial fire amount differs, but the temporal 

distribution (seasoning) stays about the same. 

By means of the Ignition Type Model we tried in Chapter 4 to distinguish between 

natural and anthropogenic wildfire by considering the location of wildfire ignition in space 

and time. Therefore the model used the L3JRC burned area product as its main input and 

several independent variables to allocate fire to lightning ignited, human ignited or 

unknown ignition. This thesis showed that it is possible to distinguish in this way wildfires 

by ignition type to a certain extent. The wildfires that are allocated to thunderstorms (and 

therefore assigned as lightning ignited) form a reliable model output. The verification of the 

lightning fires show similar results as results found in literature, like the percentage of 

lightning that ignites wildfire and the ratio lightning versus human caused fires. On the 

other hand, concerning the anthropogenic fires, the Ignition Type Model performs mediocre. 

It seems hard to validate the human caused fires. Although the distribution of Euclidean 

distances between wildfire and human objects clearly show that these attract each other. 

Most of the fires that are close to human objects are most likely anthropogenic, but it is 

suggestive to state that all these fires are anthropogenic. The chosen threshold are still 

arbitrary and need more verification. Nevertheless, the human caused fires that are the result 

of the Ignition Type Model are, even as the lightning caused fires, appropriate for deriving 

spatiotemporal patterns. 

In Chapter 5 the spatiotemporal patterns of natural and anthropogenic fires are 

investigated. As a result of the analyses we can state that lightning fires in comparison with 

anthropogenic fires hold smaller spatial clusters and have shorter duration of fire seasoning. 
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However the location of the cluster and season is the same for both ignition types. At last we 

found that lightning fires in contrast to human caused fires occur in a great extent in woody 

areas. 

6.1.3 Main conclusions 

Based on the answers on the research questions three main conclusions of the thesis are 

defined. These conclusions are new findings that might be useful for further scientific 

research on wildfires. These three main conclusions are: 

� Although the spatial variance of fire frequency in Southern Africa is large, they mainly 

occur in a few large clusters. Within these clusters the total fire amount differs strongly 

per area. But the temporal distribution within the clusters is about the same, i.e. they 

have identical seasonal patterns. For further research on spatiotemporal fire patterning 

this conclusion should be the new hypothesis. 

� As a result of the thesis we can announce that it is possible to use independent variables 

to assign ignition types to some wildfires. With that we can supply the demand of the 

scientific community with a solution to obtain one of the wildfire descriptors. 

� For further research on lightning caused wildfire some findings that are found in this 

thesis are useful as new hypothesis. The most important finding that was not known yet 

is that lightning caused fires have a very short but fierce fire seasoning in comparison 

with anthropogenic wildfires. 

6.1.4 Other results 

Other results that can be drawn from the thesis are: 

� We found in Southern Africa one main spatial cluster in which most wildfires occur 

every fire year again. This is a large inland area that is roughly located between 5° and 

15° latitude south, i.e. extended out over the countries of Angola, Congo and Zambia. 

There are also two large areas found in which no or almost no fires occur. The first one is 

located near the equator in Congo; the second one is located in the Kalahari Desert in 

Namibia and Botswana. 

� The correlation between fire frequency and herbaceous land cover is moderate positive. 

There are large areas that have herbaceous vegetation and a high fire frequency, but there 

are also large areas that have something else burning then herbaceous vegetation. 

Further, there are very few spots that have both a high human influence and a high fire 

frequency. The correlation between these two is negative and very small. Most wildfires 

occur in areas with a small human footprint. 

� Concerning the fire frequency within the years we can distinguish three categories. The 

first one has almost no fires throughout the year. This category can mainly be found near 

the equator and in the desert. Secondly there are areas that have all their wildfires only in 

a small period in the year, which is the fire season. These areas are located between 5° 

and 15° latitude south. The third and last category consists of areas with wildfires 

throughout the whole year, without having a clear fire season. This category can be 

found in the southern part of the study area and near the equator in Kenya and a part of 

Tanzania. 
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� Human objects like roads, urban areas and settlements attract wildfire. A total of 15.6% of 

all wildfires are located within 1.2 km from a road (that implies a surface area of 9.6% of 

the study area). Also 2.6% of the wildfires are located in or near the few urban areas of 

Southern Africa. Concerning the human settlements we found that they also attract fire 

and that on average a wildfire is located 7 km away from a settlement. 

� There is a positive relation between lightning fire frequency and sizes of thunderstorms. 

It seems that thunderstorms that produce positive lightning strikes are on average larger 

at areas that have a high lightning fire frequency. That means that large thunderstorms 

that produce positive lightning strikes are most likely to ignite wildfire. 

� The percentage of all lightning strikes (including cloud-to-cloud and negative strikes) 

that ignites a wildfire (that is large enough to be detected) is calculated as 0.0578%. 

� The percentage of lightning caused and human caused wildfire in the study area is 

calculated as respectively 31.7% and 68.3%. 

� About 82% of all lightning caused fires are located on woodland areas (that are to be 

precise the deciduous woodland and closed deciduous forest classes of the GLC2000 

product). 

6.2 Recommendations 
In particular there are two issues that have been encountered that need attention in future 

research on this topic. These two recommendations are discussed hereinafter. 

The performed analyses on fire data in this thesis are focussed on using EDA techniques 

for visual analytics by means of two-dimensional maps. For every analysis there is one or 

more map visualisation produced and with that the patterns of fire behaviour are visualized 

and subsequently described. However, there are more EDA techniques, apart from map 

visualisations, that can be used for deriving patterns from fire data. For example the 

computational EDA techniques, that include both simple basic statistics and more advanced 

multivariate exploratory techniques. By that the patterns can be quantified. Also several 

other visualisation techniques are part of EDA, such as all kinds of graphs and plots. These 

techniques are sparsely used in the thesis because the choice was made to concentrate on 

visual analytics by means of maps. For further wildfire data exploring it is recommended to 

use the EDA techniques already used in the thesis in combination with the other 

abovementioned EDA techniques. By that it should be possible to improve the description of 

patterns and even find patterns that are not found during the thesis. 

The Ignition Type Model of this thesis assigns ignition types to wildfires by considering 

its location in space and time with respect to independent variables. There are several ways 

thinkable to extent and improve this model. The most appropriate way of doing this would 

be to include expert knowledge. This includes knowledge about behaviour of several fire 

aspects, i.e. behaviour of wildfire (e.g. in relation with precipitation), behaviour of humans 

(e.g. information about land clearance) in relation to wildfire, and behaviour of (positive 

cloud-to-ground) lightning strikes. All these knowledge can contribute in extending the 

model by improving the parameters, adding more criteria’s, and implementing better ways 

of validation. However, their will arise some difficulties while dealing with knowledge about 

behaviour of these aspects because of the large extent of the area. A good solution for this 

problem is to first use segmentation to explore the behaviour on regional scale. The 
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segmentation can be made by land cover and by country, because these have the most 

influence on the behaviour of the abovementioned aspects. By doing first the exploring on 

regional scale and then performing the continental processing the Ignition Type Model will 

improve in reliability and effectiveness. 
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Appendix A 

L3JRC and other global fire products 

In several research fields there is a high demand on global fire products (Tansey et al., 2008). 

Like for example for researches in modelling the carbon cycle, in understanding the 

relationship between fire regime and climate, or in investigating the impact of vegetation 

burning on land cover change. For those researches, the L3JRC is currently the most recent 

global fire dataset available. With the release of this dataset at the end of 2007 a data gap was 

filled. Before L3JRC became available there was a lack of accurate, consistent long-term 

information on global burnt area (Carmano-Moreno et al., 2005a). In my opinion, the new 

L3JRC global fire product provides the scientific community with a good useable, reliable, 

multi-annual product to strengthen the arguments of relationships between fire, vegetation 

and climate. 

Global fire products occur in two types: datasets with detected burn scars and datasets 

with detected active fires. The big advantage of the burn scars products are that a fire does 

not need to be detected at the time of burning but can be detected at the next satellite 

overpass with suitable viewing conditions. The drawback is that this can add a delay to the 

time of detecting. Examples of burn scars products are, besides the L3JRC, the ESA GlobScar 

and the GBA2000 (Korontzi et al., 2003). The latter product is developed by the Joint Research 

Centre and is the predecessors of the L3JRC. Moreover, the Global Burned Areas 2000 has 

been produced by the same algorithm as the L3JRC. The disadvantage of the GBA2000, as 

the name already suggests, is that it is limited to the year 2000 and therefore did not fulfil the 

need of scientist for a multi-year product (Moreno-Ruiz et al., 2004). 

The active fire datasets only contains information of fires that are burning at the time of 

the satellite overpass. The fires are usually presented in the form of bounded fire masks at a 

coarse spatial resolution. When the detected fires are counted for a time period of one month 

or the like, the ‘fire count product’ can familiarize with aspects like the spatial distribution 

and seasonality of burning. But it is difficult to use them for calculating actual area burned, 

because of the inadequate temporal sampling. Nevertheless, active fire datasets were often 

used as a proxy for burned area (Giglio et al., 2006), because of the lack of long-term and 

accurate fire products, like L3JRC. 

An example of an active fire product is the GBS1982-1999, which is produced by the Joint 

Research Centre, and is the predecessor of the GBA2000 and L3JRC. The Global Burned 

Surface, generated out of AVHRR (Advanced Very High Resolution Radiometer) daily 

global observations between 1982 and 1999, is a multi-year, weekly fire product at a 

resolution of 8 sq km (Moreno-Ruiz et al., 2006). Due to this product, which has also been 

used by Buitrago (2008), scientists obtained a better understanding of the characteristics of 

fire activity in both northern an southern hemispheres on the basis of average seasonal cycle 

and inter-annual variability (Riano et al., 2007). Other examples of active fire products are the 

Terra MODIS active fires (Giglio et al., 2006), the ATSR andATSR-2 active fire count (Lehsten 

et al., 2008), and further several other products received from AVHRR active fire data 

(Barbosa et al., 1999). 


