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SUMMARY

In this research, we pioneer in developing a method, based on optical microscopy, to probe the
mechanical properties of supersoft materials without making assumptions or perturbing the
material. Mechanical properties, such as shear modulus, are a commonly used parameter to
characterise materials. By fitting our experimental data to a screened Coulomb potential, a
Yukawa potential, we extract parameters characterising the interactions in our system, needed
for further calculations on interparticle forces. The derivative of the pair potential equation is
equal to the force between two particles at centre-to-centre distance r. We calculate the shear
relaxation based on particle-particle interactions and the mean square displacement to support
the validity of our method to probe the shear relaxation of a supersoft solid.
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1. INTRODUCTION

Numerous methods are known to probe the mechanical properties of solids. Dynamics can be
assessed through scattering experiments, phase transitions can be assessed through
calorimetry, and mechanical properties like responses to shear and stress can be assessed
through standard rheology. The properties of interest in rheological experiments are the
material’s moduli, which reflect the mechanical properties. The magnitude of the moduli scales
with the energy of interaction between two particles, multiplied by the density.[!] This means
that, for solids, moduli are in the order of GPa. For colloidal systems, such as those studied here,
according to the scaling theory, the mechanical moduli roughly fall in the pPa-mPa range, which
is too low to be assessed by classical rheology.

Several other methods have been developed to measure the moduli of supersoft solids. Micro-
rheologyl?l can be used to directly probe the mechanical properties of the medium surrounding
the probe particle, in this case a colloidal system. Micro-rheology cannot be used in this
research, as the theory of this method assumes a homogeneous mediuml3] or a hard-sphere
system,[*l which is not the case in our experiments. The dispersion relation, the study of the
dispersion of waves within a sample, is another method used to assess the mechanical
properties of supersoft solids.l5! This theory is based on the assumption that the system is
undamped, which is usually not the case, because particles are dispersed in a medium.

The research described here is aimed at developing a novel method to assess the mechanical
properties of supersoft solids without making any assumptions. To achieve this, we first have to
characterise the interactions between the Wigner particles studied here. Wigner particles are
like-charged and thus repel each other, following a screened Coulomb potentiall® 71 (Yukawa
potential, Equation 1). It is vital that the Wigner particles are suspended in an apolar medium,!l
so that dipoles of the medium do not interfere with the repellent charges of the particles. To
extract the relevant Yukawa parameters for our system without making assumptions, we use an
inversion based on the Ornstein-Zernike equation to obtain the pair potential from our
experimental data.l8]

% = ? -exp|—ko (g — 1)] (D
We use Wigner particles in this research because they form crystalline-like ordered structures at
low densities, but Brownian fluctuations prevent true long-range ordering. These features cause
Wigner crystals to fall in between classical solids and liquids, and make researching these
materials challenging but interesting.

An important part of the research reported here is based on characterising the forces between
particles. Measuring these forces is a laborious experiment. The forces may be directly measured
by optical tweezer experiments,[9 or extrapolated from a dilution series to correct for multi-
particle interactions.[?% In this research we use a facile method to calculate the force between
two neighbouring particles as a function of their separation distance. Using this method, only
particle positions are needed to calculate all interparticle forces in a sample. After we elucidate
the pair potential for our system, we calculate the interparticle forces using the derivative of the
equation which describes the pair potential (Equation 2).
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In a static crystal, forces are balanced and equal because of the regular structure in a crystal.
Here, we investigate colloidal crystals, and liquids, in which particles are free to move around
their lattice points. This causes variations in interparticle forces, and possibly sample spanning
networks of forces larger than average. Snoeijer and co-workers showed the existence of these
force networks in granular materials in stable, confined, static packings and under shear.[11l This
research aims at demonstrating the existence of force networks in the Wigner crystals studied
here. By doing so, we intend to show that the differences between granular and crystalline
materials are smaller than commonly accepted.

We use the possibility to calculate interparticle forces to assess the mechanical properties of the
Wigner crystals and liquids studied here. The Brownian fluctuations enable us to probe the time
dependent mechanical response to shear without active perturbation of the system. By assessing
the movement of particles, and the response of surrounding particles, we can probe the systems
response to (internal) shear and assess the relaxation of the system. The shear relaxation,
relaxation time and moduli that may be obtained by this analysis are the mechanical properties
of the system we intend to elucidate in this research. By analysing the mean square
displacement for the different phases, we can supplement the analysis of the shear stress
relaxation.



2. EXPERIMENTAL

2.1 MATERIALS

AoT (98%), HMDS (299%) and TEOS (99.999%) were purchased from Sigma-Aldrich. 4pm silica
particles were purchased from Cospheric innovations. Ammonia solution (25%) was purchased
from Emsure. Ethanol (absolute) was purchased from Merck. Decane was purchased from TCIL.
All chemicals were used as received. 3pum fluorescent PMMA particles were prepared by this lab
using a previously reported protocol.[12]

2.2 INSTRUMENTATION

FLUORESCENCE AND PHASE CONTRAST MICROSCOPE
Fluorescence and phase contrast microscopy is carried out on a Zeiss Axiovert 200 equipped
with a 20x objective and a Thorlabs DCU224 camera.

BRIGHTFIELD MICROSCOPE
Brightfield microscopy is carried out on a Nikon eclipse Ti-U equipped with a Nikon plan Apo A
20x0.75 WD1.0 objective and a Fastec Imaging HiSpec1 2G Mono camera.

2.3 SAMPLE PREPARATION

We prepare samples by introducing a suspension of PMMA particles in 10mM AoT in decane in
glass sample chambers, and hermetically sealing them with optical adhesive. Before filling,
sample chambers are flushed with acetone and propanol, dried under nitrogen flow and then
dried for 1hr at 60°C. The chambers are then plasma cleaned, filled with HMDS, and dried at
60°C. The crystals are confined to 2D by gravitation. The PMMA particles are charged by
enveloping them in AoT micelles.

2.4 DATA ANALYSIS
Several Matlab codes are used in the data analysis, the basics of each code are described in this
section.

PARTICLE LOCATING

The freely available Kilfoil particle locating algorithms,[13] are used to analyse image sequences.
The code searches for a local maximum in intensity, and then fits a Gaussian distribution to the
peak in intensity to locate the centre of the object at a sub-pixel resolution.

RADIAL DISTRIBUTION FUNCTION

The script we use to calculate the 2D radial distribution function determines the number of
particles in a shell of thickness dr at a distance r, up to a maximum ryq of each reference particle.
This number is then normalized for the surface of the shell so that g(r) converges to a value of 1
for larger.

PAIR POTENTIAL

The method we use in this research to calculate the pair potential from the RDF is based on
earlier research.l8] Because we do not work at infinite dilution, we have to take indirect
interactions between particles in account, which complicates calculation of the pair potential.
First, we calculate the total correlation function h(r) = g(r) — 1. Then, we use an optimized



method(!4 to Fourier transform h(r) and write the direct interactions in terms of the total and
indirect interactions (c(r)) using the Ornstein-Zernike equation in Fourier space. Through the
hypernetted chain function, we relate h(r), and thus g(r), to the pair potential. The solved
equation is inverse-Fourier transformed to real space to obtain the direct interactions. Then, we

calculate U(r) via the following relation: U(r) = h(r) - c(r) - log(g(r)).

FORCE DISTRIBUTION

The script we use to calculate the force distribution in a sample takes the Yukawa potential
parameters €, o and k as input, and with the particle coordinates for each frame, obtained from
the Kilfoil tracking algorithm, calculates the forces between each pair of nearest neighbours as
identified by a Delaunay triangulation. A probability distribution is calculated by logarithmic
binning of all obtained forces and normalizing for the number of particle pairs found.

FORCE MAPS

Using the same method to calculate forces between nearest neighbours as in the force
distribution code, and the particle coordinates in each frame as obtained from the Kilfoil
tracking algorithm, we can plot force maps, in which forces between nearest neighbours are
plotted for each frame. The code plots the forces between neighbours as thick, dark lines, of
decreasing thickness and darkness with decreasing force. For clarity, the script also plots the
scaled outline of the particles.

ORIENTATIONAL BOND ORDER PARAMETER
The script to calculate the orientational bond order parameter, W¢, uses the particle coordinates
in each frame to calculate the Wsvalue for each particle using Equation 3:[15]

_ 1 yne Lied(ij)
l»b6 - ne Zj:l e (3)
which is explained in detail in the next chapter. Again, nearest neighbours are identified using a
Delaunay triangulation.

DE-DRIFTING AND BEAD ID

The standard Kilfoil algorithm for de-drifting determines the collective motion of all particles in
one specific direction over the whole data-set, assumes a constant speed of the particles, and
uses this information to redefine the position of each particle at each time point so that only
Brownian motion remains. We use a modified method to de-drift the image sequences by
determining the collective motion of all particles in one specific direction per frame. The script
for de-drifting also connects particle positions between two subsequent frames, and appoints an
ID to every bead, so that each bead’s trajectory can be tracked in time.

SHEAR RELAXATION MODULUS

With the particle positions for each frame, the frame rate and a method to calculate the forces
between particles, we calculate the shear relaxation modulus, Gzp(t), by correlating two
dimensional shear stresses between particle pairs in time (Equation 4-6).

Gap @) = % |<Sxy(t) ! Sxy(t - t’))| + |(Syx(t) ' Syx(t - t,))l (4)

In Equation 4, A is the area of the field of view, k;the Boltzmann constant, T the temperature in
K, and s,, the two dimensional shear stress defined as:



1
Sxy = 7 Li<j FijyAxij (5)

with Ax; the difference in x-coordinates between particles i and j, and Fj;, the force in the y-
direction between particles i and j in k,T. Syx is defined as:

1
Syx = 7 Xi<j FijxBYij (6)

With Ay; the difference in y-coordinates between particles i and j, and Fjjx the force in the x-
direction between particles i and j in kyT.

The compression, Kop(t), is calculated via similar equations:

Kop(t) = % [(Sxx (£ * Sz (£ = £ + [{Syy () * Syy (€ = )] (7)

In which we take the force acting along the same axis as the one we use to calculate the distance
between particles.

MEAN SQUARE DISPLACEMENTS

This script uses the output file of the de-drifting algorithm because the particles each have an
appointed ID number. The squared displacements are calculated for each particle, between
every possible pair of frames, after which the average displacement (squared) is divided by the
number of data-points for that specific time-step to obtain the MSD in time.






3. RESULTS AND DISCUSSION

In this research, we pioneer in developing a method to probe the mechanical properties of
supersoft materials without making assumptions or perturbing the material. Mechanical
properties, such as the shear modulus, are a commonly used parameter to characterise
materials. We calculate shear relaxation based on particle-particle interactions (Equation 4-6).
In order to calculate the interactions, we need a way to measure the force between particles. The
existing methods, as described briefly in the introduction, require extensive experimental work;
we develop a facile method based on optical microscopy. We use the radial distribution function,
which is a probability distribution of finding a particle at a certain centre-to-centre distance r
(Section 3.1) to calculate the pair potential, the potential energy of two interacting particles at
centre-to-centre distance r (Section 3.2). By fitting our experimental data to a screened Coulomb
potential, a Yukawa potential, we extract parameters characterising the interactions in our
system, needed for further calculations on interparticle forces. The derivative of the pair
potential equation is equal to the force between two particles at centre-to-centre distance r
(Section 3.3). With this new method to assess the interparticle forces in our system, we
investigate the homogeneity of our samples by calculating force distributions (Section 3.3) and
by assessing the crystallinity of the samples through visualisation of forces in force maps
(Section 3.4). We use the orientational bond order parameter, Ws, as a measure for the
crystallinity of our samples (Section 3.4). Next, we calculate the 2D shear relaxation of samples
in the liquid and crystalline phase, based on particle-particle interactions (Section 3.5). We
calculate mean square displacements of the same two samples to support the validity of our
method to probe the shear relaxation of a supersoft solid (Section 3.6).

3.1RADIAL DISTRIBUTION FUNCTION

The first step in this research is to calculate the radial distribution function. The RDF, g(r), is a
visualisation for the level of crystallinity of a, in this case 2D, colloidal system. The RDF is a
probability distribution of finding a particle in a shell of thickness dr at distance r from a
reference particle, and is used to analyse the level of order in the system. If the particles form a
perfect static crystal lattice, the RDF will feature sharp peaks at distinct centre-to-centre
distance r. Because we analyse a soft crystal in which the particles can fluctuate around their
lattice points, the peaks in g(r) will broaden in comparison with a static crystal. If the system is
diluted to a liquid, we expect only local ordering to remain and the RDF to converge to 1 for
large r. In the RDFs shown here, we scaled the x-axis with the r-value of the first peak.

LIQUID PHASE

The RDF of a sample in the liquid phase (Figure 1a) shows evidence of local ordering, as
indicated by the large peak, but no long range ordering. The first peak is quite broad, because
the particle density is low enough in the liquid phase for the particles not to be ‘confined’ by
surrounding particles. At a certain distance, the ordering is lost and the RDF converges to 1.
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Figure 1|RDF of a sample in the liquid phase (a) with a density of 4.4-10" particles per pm2. The
image sequence is recorded at 15 fps. The first peak corresponds to an interparticle distance of
10.5pm. RDF of a sample in the crystalline phase (b) with a density of 1.8-10° particles per pm2. The
red vertical lines mark where we expect peaks for a hexagonal lattice. The image sequence is
recorded at 0.5 fps. The first peak corresponds to an interparticle distance of 7.2pum.

CRYSTALLINE PHASE

The RDF of a crystalline sample (Figure 1b) shows presence of long range ordering, as indicated
by the on-going peaks in the RDF at large distance from the reference particle. Due to the
plasticity of these crystals, the peaks in the RDF of a crystalline sample will, at sufficient r,
converge to 1, as in the liquid samples.

When comparing the peaks, especially the first, to the peak in the RDF of a liquid (Figure 1a), it is
clear that the first peak is much sharper in the RDF of the crystalline sample, indicating that
particles are ‘confined’ by their neighbours. For a perfect static hexagonal lattice, the first peaks
in the RDF would be very sharp. As the particles in these crystals are not fixed in a perfect crystal
lattice, but fluctuate around their lattice points, the peaks in the RDF of the Wigner crystal are
broader, and prevent the RDF from reaching 0 in between peaks indicating absence of true long-
ranged order.

Another feature that differs between the RDF of a liquid (Figure 1a) and a crystal (Figure 1b) is
that the first peak in the RDF of the crystal is shifted to a lower absolute r value in comparison to
the first peak in the RDF of the liquid, from 10.5pum in the liquid to 7.2um in the crystal. This is
explained by the higher density of particles in the crystal, causing the particles to be closer to
each other.

The red vertical lines in Figure 1b mark where we expect peaks in a perfect hexagonal lattice.
The peaks in our RDF agree well with the predicted values for the peaks, thereby proving we
have a hexagonal lattice.

3.2 PAIR POTENTIAL

We use the RDF as calculated in Section 3.1 to calculate the pair potential. We use fluorescence
microscopy and phase contrast microscopy data to measure the pair potential for the PMMA
Wigner particles, and brightfield microscopy to measure the pair potential for the silica Wigner
particles. The parameters we extract from fitting the pair potential are used to calculate
interparticle forces in Sections 3.3-3.5.



The pair potential describes the interaction between two particles at infinite dilution. The
particles in this system are like-charged, we thus expect purely repulsive interactions. Several
methods are reported to measure the pair potential.

The optical tweezers may be used to measure the interactions between two particles, as
described in literature.l9) Two particles are trapped using laser beams, and released when no
other particles are near. By analysing the displacements in time of these particles, one can
extract the pair potential.

The extrapolation method[10] is based on calculating the potential of mean force, W(r), from the
radial distribution function via Equation 8. The potential of mean force, W(r), is only valid at
finite dilution, whereas the pair potential, U(r), implies infinite dilution. By extrapolating the
potential of mean force for various volume fractions to infinite dilution, one can estimate U(r).

()
2= —lnlg()] (8)

The more facile approach we use here requires analysis of only one sample. From the radial
distribution function, g(r), we calculate the pair potential U(r) (Equation 1), provided the system
is sufficiently diluted. We use a Yukawa potential of the form

um _ g, o (T —

T = exp[—ko (6 1)] (1)
to fit the experimentally obtained pair potential to extract the parameters € (repulsion at contact
in kgT), o (particle radius in pm) and k (Debye length in pm-1). The Yukawa potential is only

valid for solely repulsive interaction between particles, and thus is positive over the entire
range, and decreases with increasing r.

FLUORESCENCE MICROSCOPY

The pair potential for PMMA particles obtained though fluorescence microscopy, Figure 2,
features a slight negative dip, indicating that the sample may be too concentrated as will be
discussed in more detail in this section. However, as the data fits the Yukawa potential quite
well, we choose to use the extracted parameters (Table 1) from this experiment in the next steps
of the data analysis of the PMMA particles in decane. We use experimentally obtained data for r
larger than 7um to fit the Yukawa potential (Equation 1) to.

Table 1|Values of parameters extracted from experimental data, obtained through fluorescence
microscopy, using a Yukawa potential.

Parameter (units) | Value
€ (ksT) 196
K (Lm-1) 0.844
o (um) 3.00
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Figure 2|Experimentally obtained pair potential of a sample in the liquid phase with a density of
4.410° particles per pm? (blue circles) and Yukawa potential modelled with obtained fitting
parameters (red line). The image sequence is recorded at 15 fps.

BRIGHTFIELD MICROSCOPY

When the same method is used to extract Yukawa parameters for a sample of silica particles in
tetralin from data obtained through brightfield microscopy, we were forced to use a modified
Yukawa potential (Um(r), Equation 9); we added an emperial power law to the Yukawa potential
enable fitting to the experimental data (Figure A1).The modified Yukawa potential allowed for
attractive interactions between the particles, and was of the form

20 2 ol E-1) - g

In which &, is repulsion at contact (in kgT), €, is attraction at contact (in kgT), o is the particle
diameter (in um), k is the Debye length (in pm-1), a is the powerlaw exponent, and r the centre-
to-centre distance between particles. It must be noted that obtained parameters cannot be
compared to those obtained in fluorescence or phase contrast mode. The extracted parameters
from the modified Yukawa potential (Table 2) are used in further analysis of this particle-solvent
system.

Table 2|Values of parameters extracted from experimental data using modified Yukawa model

Parameter (units) | Value
&r (ksT) 116.57
K (um1) 1.16

o (um) 3.98

€a (ksT) 7.45

o 3.61
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When our image sequences recorded though brightfield microscopy are used to calculate U(r),
the pair potential drops below zero, which would indicate attraction. The cause of this attractive
part in the pair potential is under debate in literature. Whereas some literature states that the
attraction is real, and caused by interaction between charged particles and like-charged
surfaces,l6 161 the attractive dip is also reported to be an optical artefact in brightfield
microscopy,[t7] caused by Airy disks.

We speculated it is neither; these explanations only hold true for attractions between nearest
neighbours. The attraction caused by interaction between particles and like-charged surfaces is
only possible if particles are very close to one another and would therefore exist at lower r than
we observe here. Likewise, Airy disks only overlap if the particles are very close. The attraction
in our system spans all r from two particle radii and above. We speculate that the sample from
which we obtained the pair potential though brightfield imaging was not sufficiently diluted,
introducing errors in the calculation of the pair potential from the RDF.

PHASE CONTRAST MICROSCOPY

The pair potential of a PMMA particle system in the liquid phase, recorded through phase
contrast microscopy did not exhibit a negative pair potential, but features a bump for large r
(Figure A2), and thus attraction for large r. We hypothesise the bump is caused by diluting too
far; the sample analysed through fluorescence microscopy has a number density of 4.4-107
particles per um?, whereas the sample used in the phase contrast measurements has a number
density of 2.0-10° particles per pm2. The absence of a negative dip supports our speculations of
the previous samples being too dense. The absence of the negative dip, and presence of a
positive bump for large r has a significant influence on the Yukawa parameters (Table 3). As
mentioned earlier, we use the parameters obtained from fluorescence microscopy experiments
for further analysis of the PMMA decane system.

Table 3|Parameters extracted from fit of Yukawa potential to calculated pair potential obtained
through phase contrast microscopy.

Parameter (unit) | Value
€ (ksT) 317
K (um1) 0.687
o (um) 3.00

As the parameters extracted from the phase contrast microscopy experiments are quite different
from those obtained though fluorescence microscopy experiments, the actual values used here
may not be accurate, but observed trends in further data-analysis are still valid.

3.3 FORCE DISTRIBUTION

The parameters extracted by fitting the Yukawa potential to our experimentally obtained pair
potential (Section 3.2) are used in this section to calculate the interparticle forces without
perturbation of the system. We calculate a probability distribution of the forces in a liquid and
crystalline sample, and use these to illustrate the difference in homogeneity between these
states.

The repellent forces between the particles originate from the charge on each particle. If we
assume every particle to have the same charge, both in sign and magnitude, the forces between

11



two particles vary only with their separation distance, following Coulombs laws. The derivative
of the pair potential (Equation 1) yields |F(r)| (Equation 2), with which we can calculate the
forces between two particles if we know their mutual distance.

U(r) _ eo . . T

o = e[ -xo (T 1)] (
F@I _ 1 U@, _ o _ ~
kgT _ kgT = 1=1-z Gr+l) exp[k(o —1)]| (2)

To visualise how |F| evolves with r and to get an estimate of the size of the interparticle forces in
this system, we plot |F(r)| (Equation 2) for relevant r using the parameters obtained in the
previous section (Table 1). As the diameter of the particles used in this research is 3um, this is
the smallest centre-to-centre distance we could achieve during experiments. The force should be
infinite for centre-to-centre distances than 3um, as this would indicate interpenetration of
particles. From Figure 3 we see that the forces associated with the smallest centre-to-centre
distances possible in these samples are extremely small, ranging several piconewtons. Nearest
neighbours separated by more than four times the particle diameter exert forces on each other
in the femtonewton range. The exponential increase in forces between particles calls for very
accurate particle tracking, as minute errors in interparticle distances have a major effect on the,
faulty, force measured.

10 T T T T T T

10 1

[F(I (IN)

10 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
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Figure 3|Evolution of |F| with increasing r.

By calculating all forces between nearest neighbours, we can construct a probability distribution
of forces in the sample. We expect peaks in the force distribution, which become broader with
decreasing density of the sample. The sharpness of the peak is indicative for the level of ordering
of the system. Sharp peaks indicate homogeneous samples, in this case crystals, and broad peaks
indicate low levels of ordering.
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LIQUID PHASE

A sample in the liquid phase has a low density and, as a result, large interparticle distances when
compared to the particle diameter. As the particles are free to move, the range of interparticle
distances is expected to be quite large, resulting in a broad distribution of small forces between
nearest neighbours. Due to the expected large range of forces present in this sample, we use
logarithmic binning of forces to enable proper sampling of the small forces.
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Figure 4|a) Distribution of forces in a sample in the liquid phase with a density of 4.4-10° particles
per umz2, b) Distribution of forces in a sample in the crystalline phase with a density of 1.810°
particles per pm?

From the force distribution of a sample in the liquid phase (Figure 4a), it is clear that the
particles are not ‘confined’ by their neighbours; the peak in the distribution is broad, spanning
roughly 20 orders of magnitude. Due to the low density in the liquid sample, the particles are
free to move, small forces are more abundant than the large forces, causing the tail of small
forces. The average force in this sample is 0.26fN.

CRYSTALLINE PHASE

For a crystal in which particles occupy their hexagonal lattice points at all times, the force
distribution is a delta-function. For an almost static crystal, we would expect a very sharp
Gaussian peak, because the forces increase exponential with centre-to-centre distance, and we
bin logarithmically. If the distribution of forces includes multiple orders of magnitude, as is the
case in this research, we expect a deviation from the Gaussian shaped peak, because the
exponential function and logarithm do not use the same number as a base.

For the PMMA crystal, however, we do not find a single peak (Figure 4b), but we rather find a
second and third peak at smaller forces than average and a shoulder at larger than average
forces. For a crystal of silica particles in tetralin we do find a sharp Gaussian peak (Figure A3).
The Gaussian peak is present in the silica crystals because the silica system forms denser and
more ordered crystals.

In a PMMA crystal, which is much denser than the liquid analysed in the previous section, the
interparticle distances are smaller, so that the forces between particles are larger (Figure 4b).
The average force for this sample is 8.22fN, approximately 30 times as high as in the liquid
sample.
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We hypothesise the extra peaks in the force distribution for the crystalline phase are caused by
errors in particle locating. The interparticle distances indicated by the forces at the extra peaks
roughly agree with the second and third peak in the RDF, indicating that the nearest neighbours
we use to calculate forces are two lattice spaces removed from one another. Considering the
plasticity of these crystals, and the size of this data set, in combination with the relatively high
probability supports this hypothesis, as opposed to the existence of deletions in this crystal.

3.4 FORCE MAPS AND ORIENTATIONAL BOND ORDER PARAMETER

To visualise the difference in homogeneity between the liquid and crystalline samples (Section
3.3), we construct force maps. Using the equation for |F(r)| (Equation 2) we can calculate the
forces between each pair of particles in a frame. By plotting the forces between neighbouring
particles through connecting them with lines that become increasingly dark and bold with
increasing force, we construct force maps. In these force maps the homogeneity or heterogeneity
of the force distribution in a snapshot of the sample can be visually analysed.

Heterogeneity in interparticle forces are caused by heterogeneities in distances between nearest
neighbours. With variations in interparticle distances, the bond angle between nearest
neighbours changes. To numerically analyse the (in-)homogeneity, or level of crystallinity, of a
sample, we calculate the 2D orientational bond order parameter, s, defined as:[15]

e = — X<, 600N 3)
Where n. is the number of nearest neighbours j around particle i with 8(r;) the bond angle
between particles i and j with an arbitrary yet fixed reference axis. In a perfect 2D hexagonal
crystal lattice the orientational bond parameter equals 1, which decreases with decreasing

sixfold symmetry.

In the rest of this section, it has to be taken into account that the colour coded s can be directly
compared between samples from the colours in the figures, but the forces were scaled per
sample for clarity of the homogeneity or heterogeneity in individual phases.

LIQUID PHASE

The liquid phase has a low density, so we expect relatively large interparticle distances and a
low average sixfold symmetry. Indeed, the average value of s in this data set is 0.3810. As can
be seen in the snapshot in Figure 5, most particles are separated by multiple particle diameters.
Because of the low density, the particle are extremely mobile, we thus expect high variation in
the average sixfold symmetry, as can be seen from the large variation in colour in Figure 5.
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Figure 5|Force map constructed from a snapshot of a sample in the liquid phase with a density of
4.4-10° particles per umz?, the particles are coloured to their s value.

CRYSTALLINE PHASE

A snapshot of the crystal (Figure 6), colour coded for ys, still shows some inhomogeneity
because of the fluctuations of the particles around their lattice points. The PMMA crystals are
not very dense, so the particles in these crystals are not confined by their neighbours, allowing
for relatively large displacements from the lattice points. The average s value for the whole
data set is 0.7524, which is quite low when compared with static crystals, but may be a
reasonable value for a Wigner crystal.
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Figure 6|Force map constructed from a snapshot of a sample in the crystalline phase with a density
of 1.8-10” particles per pm?, the particles are coloured to their yss value.

GRAIN BOUNDARY IN SI0z PARTICLE CRYSTAL

Because the PMMA particles form crystals with very few defects of only one specific type,18
defects are studied in another particle-solvent system; SiO, particles (for particle modification,
see Appendix Al) in 10mM AoT in tetralin sediment faster and have a lower mobility than the
PMMA particles which enables the system to have large and long term defects. The Yukawa
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parameters are different for this system, and we calculated the pair potential for this system
(Section 3.2), to extract the relevant parameters (Table 2).

When comparing a g colour coded snapshot of a silica particle crystal (Figure 7) with that of a
PMMA particle crystal (Figure 6), it is clear that, despite the defects, the silica sample has a
higher level of crystallinity, as evidenced by the difference in colour variety in the crystalline
parts of the samples. Despite part of the crystal taking part in the grain boundary defect, the
average s for this sample is 0.9240, which indicates a high level of crystallinity. Part of the
explanation of the higher level of crystallinity in the silica is the fact that the silica particles are
much heavier than the PMMA particles, and thus exhibit less Brownian movement. Another
explanation may be that the silica crystal has a number density of 4.0-107 particles per pm,
which is about twice as high as the number density in the PMMA crystal, causing the particles in
the silica crystal to be more ‘confined’.

y (um)

20 40 60 80 100 120 140 160 180
X (um)

Figure 7|Snapshot of particle positions in a SiO; particles crystal with a grain boundary, colour
coded for Y, value.

In the force map of the same sample (Figure 8), it is clearly visible that the largest imbalance in
forces is concentrated around the grain boundary. In bulk, the imbalance in forces, caused by the
irregular ordering of particles, forms a weakness in the material. Due to the irregularities,
applied forces and stress cannot be redistributed evenly over the entire sample, causing
mechanical failure to initiate at these sites.

From the force map in Figure 8, we can also more clearly see that the grain boundary mainly
consists of 5/7 defects. The defects in which 7 particles surround a central particle have,
relatively, large forces between the particles in the 7-membered ring, and small forces between
the particles in the ring and the central particle. In contrast, the defects in which only 5 particles
surround a central particle, the forces between the particles in the ring are, relatively, small, and
the forces between particles in the ring and the central particle are large.
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Figure 8|Force map constructed from a snapshot of the grain boundary in a crystal formed from
silica particles. Larger forces are plotted with increasingly bold and dark lines.

3.5 SHEAR RELAXATION MODULUS

The level of homogeneity, as investigated in Section 3.1-3.4, in a material has a large influence on
the dynamics and mechanical properties of a material. Key to understanding the dynamics of any
material, is understanding the time dependent mechanical response. Thus far, measuring the
mechanical properties of supersoft solids posed a challenge because the available methods are
based on assumptions which don’t hold in Wigner crystals. Here, we measure the shear
relaxation of a 2D colloidal crystal, to our best knowledge for the first time, without assumptions
or perturbations, and use our results to determine the phase of Wigner crystals.

In literature, the shear modulus of 3D colloidal dispersions is measured by perturbing the
bulklll, and a model is proposed to calculate the shear modulus.l'9] We use a different method
than previously reported, as described in Section 2.4. With the forces between every pair of
particles known, we can compute and evaluate the visco-elastic properties of a sample without
making any assumptions or actively perturbing the system. We propose a non-perturbative
method to measure the elasticity in 2D colloidal systems, and use Equations 2-4 to calculate the
shear modulus. We treat the fluctuations of the particles around their equilibrium positions as
imposed shear, and assess the reaction of the system to this local deformation.

Materials with long-range ordering tend to relax slower after applying shear when compared to
heterogeneous materials. When a deformation is applied, a material is not instantly in
equilibrium, i.e. relaxed. Relaxation of the material can follow different trends, through which we
can distinguish between phases. Solids don't relax after applying shear, whereas liquids have
very fast exponential relaxation. Visco-elastic materials are subdivided in visco-elastic solid,
which exhibits partial relaxation to a plateau, and visco-elastic liquid, which relaxes linearly.

Due to poor statistics at times relevant for relaxation, we are unfortunately unable to prove
whether the system studied here is a visco-elastic liquid or solid, or make an estimate of the zero
shear modulus in the case of a visco-elastic solid (Figure 9). We are, however, able to estimate
the infinite shear modulus by extrapolation: 10-20mPa, which is within the expected range of
puPa-mPa we hypothesised in the introduction. It is surprising that the infinite shear modulus for
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the liquid and crystal are the same according to this measurement, and that the shear modulus
for the liquid exceeds the modulus for the crystal between approximately 1 and 5 seconds.
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Figure 9|Relaxation of the shear modulus (Gzp(t), blue circle), and compression (K:p(t), red
square) in a crystal with a number density of 1.8:10” particles per pm2, and relaxation of the shear
modulus (Gzp(t), green plus), and compression (K:p(t), black cross) in a liquid with a number
density of 4.4-10° particles per pmz2.

For the liquid, when data-analysis is repeated with a larger data-set (data not shown), the shear
modulus is approximately 3 decades higher than the modulus for the crystal, but the relaxation
time does not change. This indicates that our algorithm is not error-free. For the liquid, we
expect full relaxation of the shear if measurements are repeated. We hypothesise that the Gzp(t)
for a solid does not fully relax, but rather relaxes to a finite plateau, indicative for visco-elastic
solids.

We also calculate the compression of the sample, using Equation 7. The compression does not
change over time, and is several orders of magnitude higher than the modulus, which further
enforces our claim of correctly measuring the shear modulus.

In the crystal we find a relaxation time of approximately 100 seconds(Figure 9). Because the
particles in the liquid have a higher mobility compared to particles in the crystalline phase, we
expect significantly faster relaxation in the liquid. In accordance with our expectations, we find a
relaxation time of approximately 10 seconds.

3.6 MEAN SQUARE DISPLACEMENTS

Irrefutably determining the phase of Wigner crystals in Section 3.5 is hindered by poor statistics
at time scales important for determining the relaxation time and the level of relaxation at long
time scales, which we need to distinguish between visco-elastic solid and visco-elastic liquid. We
supplement the information obtained by measuring the shear relaxation by calculating mean
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square displacements of particles in both phases. The MSD in two dimensions is related to t via
Equation 10:

(r?y = 4Dt% (10)

For a liquid we expect diffusive behaviour with a equal to 1, yielding a slope of 1 for the MSD
plotted on log-log scale. For a solid we expect to find a plateau in the MSD, which indicates
caging of particles by their neighbours. At short time scales, we expect to find subdiffusive
behaviour for the solid, as the fluctuations around the equilibrium positions are slowed down,
compared to diffusion, by repulsion by neighbouring particles.

In Figure 10 we plot the MSD for both the liquid and the crystalline samples. We find diffusive
behaviour for the particles in the liquid phase. For the crystal we find subdiffusive behaviour at
short times, and a plateau in the MSD for longer times, indicating that the crystalline phase of the
supersoft solid studied here is indeed a solid. This gives further credibility to our hypothesis that
Wigner crystals behave as visco-elastic solids under shear.

With establishing the solid phase of the Wigner crystals through analysis of the MSD, we can
make a prediction of the evolution of the shear modulus of the crystal at longer time scales
(Figure 10). We predict that, when measurements on this system are repeated and longer
recordings are analysed, the system will relax to a finite plateau in the shear, as is characteristic
of a visco-elastic solid.
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Figure 10|Mean square displacements for crystal (red squares) and liquid (blue circles). The black
line indicates the slope for diffusive behaviour.

In this research we demonstrate and validate a novel approach to measure the mechanical
properties of a supersoft solid. Using the parameters obtained from fitting our experimentally
obtained pair potential to a Yukawa-type screened-Coulomb potential, we calculate interparticle
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forces without making assumptions. We use the interparticle forces to calculate the 2D shear
without interactions or perturbations for the first time, to the best of our knowledge. To support
our hypothesis that Wigner crystals are supersoft solids, based on measurements of the shear
relaxation, we assess the mean square displacements of the particles. From analysis of the MSDs,
we conclude that Wigner crystals form visco-elastic solids, thus verifying our hypothesis.
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4. CONCLUSIONS

In this research we pioneer a facile method to measure system parameters, such as shear
modulus, without assumptions and perturbations. This method is based on our ability to directly
measure the force between particle pairs as a function of their separation distance, by using a
Yukawa-type screened Coulomb potential. The method described here requires considerably
less experimental work than the other briefly discussed methods, extrapolation from dilution
series and optical tweezer experiments. The only requirement for the method used in this thesis
is sufficient dilution of the sample and sufficient data statistics. We like to point out that the
exponential relation between interparticle force and centre-to-centre separation distance calls
for very accurate particle locating.

In this research we expected to find force networks in the crystalline phase, to the example of
the force networks found in granular materials by Snoeijer et al.l!ll Snoeijer and co-workers,
however, used hard spheres in their research, in which very small imperfections on the surfaces
of the particles cause an imbalance in forces upon contact, yielding a force network. The
particles used here, are not hard spheres, but have a shell surrounding each particle where other
particles hardly venture because of the repulsion between the particles. The force between two
particles brought closer together by thermal fluctuations is, of course, larger than the
equilibrium force in the crystal, but not significant enough to form measurable force chains.

The high plasticity of the PMMA Wigner particles studied here may also prevent force networks
from forming. The small difference in density between solvent and particle enables high
mobility, in all three dimensions. These particles are mobile enough to redistribute relatively
large forces, if the crystal is perturbed locally, by fast rearrangement of the surrounding
particles, thus distributing forces over multiple bonds, or out-of-plane movement. The crystals
studied here are not confined, but rather induced by gravitation acting on slightly tilted samples.
Confinement of a denser crystal may yield force chains, as will be discussed in the next section.

We report preliminary results of non-perturbing measurements of the elastic properties of a 2D
supersoft solid. Although we are not able to distinguish between visco-elastic liquid and visco-
elastic solid from shear relaxation measurements as presented here, in combination with the
MSD of the crystal we confirm our hypothesis: the crystalline phase is a visco-elastic solid. To
our knowledge, this is the first time the shear relaxation is measured in 2D systems without
active perturbation of or direct interaction with the material. We see a clear difference in
relaxation times between the liquid and the solid, and validate our method by comparison with
MSD analysis.
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5. FUTURE RESEARCH

To properly determine which method is most suited for extracting the Yukawa parameters from
experimental data, further experiments are needed. Image sequences should be recorded using
brightfield, fluorescence and phase contrast microscopy, and the obtained parameters should be
compared to each other and parameters obtained though optical tweezer experiments. These
measurements should be performed on the same sample to eliminate effects of the density on
the pair potential.

The force networks as described by Snoeijer et al. for granular matter(11] were realised in a hard
sphere system, which is by definition different from Wigner crystals. Maybe if we use Wigner
particles with a very steep pair potential, we could realise force networks. Another method
would be to have the particles approach each other more closely, thus increasing the
interparticle forces. To achieve this, we propose using particles with a larger difference in
densities between solvent and particles so that the system is not as plastic and can become more
dense than the PMMA crystals studied here. Another method to obtain force networks is
mimicking granular matter by using a bidisperse mixture of colloidal Wigner particles. By
experimenting with different ratios between the different sizes, and the volume ratio between
the populations, it should be possible to obtain force networks in Wigner systems. A better
understanding of these artificially obtained force networks may help in selecting criteria for
formation of force networks in monodisperse Wigner crystals.

If we are able to realise force networks in Wigner systems, the next step would then be to study
them in more detail. Force networks may, for example have strong directionality, indicating
compression or shear in a specific directions. It would also be interesting to study the
directionality of the force network surrounding large defects, such as grain boundaries. Studying
the networks surrounding defects may provide useful information on the stability of the defects,
and thus the ‘healing’ properties of the material. When actively manipulating the system, using
for example optical tweezers, one could investigate the effects of compression, shear and
confinement to finite sized crystals on the directionality and stability of the defects.

Preliminary results from this study indicate the existence of collective displacements of particles
through thermal excitation in Wigner crystals, as reported in literature.[!8] Further research may
be conducted to analyse the stability, directionality, patterns, and (auto-)correlation in space
and time of these collective movements.

This particular point may not be a matter of research, but more of the equipment used in these
experiments. For the study of, especially, the shear relaxation and (auto-)correlation, image
sequences covering more time are needed to obtain good statistics at time scales relevant for
relaxation. In this project, we are limited by storage space. By using real-time particle tracking
we would decimate the storage space needed for these data-sets, as the raw images wouldn’t
have to be saved. Using real-time tracking on the system used here poses more difficulties than
just acquiring the proper instrumentation. The image sequences recorded in this research have
been modified to enhance contrast and facilitate proper tracking. For real-time tracking, the raw
image quality would have to be improved to allow proper detection of the particles.

The method described here to assess the shear relaxation of colloidal systems is by no means
optimised. We pointed out that the comparison between shear moduli of a liquid and a crystal
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indicates that our algorithm still contains errors. In order to study the shear relaxation of these
systems in more detail, not only do we need to correct our algorithm and record longer data-
sets, a higher frame rate so that we can sample the shear and MSD at shorter timescales would
also benefit this particular part of the research. As the field of view would still need to be of
sufficient size, combination with real-time tracking poses a challenge. In any case, a very fast
computer is required to properly repeat these experiments.

Using optical tweezers, we can disrupt the ordering in the crystal at small and large scale. It
would be interesting to investigate the shear relaxation of such a disrupted crystal.

It may be argued that the sample in the crystalline phase could still exhibit diffusive behaviour at
longer time scales, but we do not expect this. By recording longer data-sets, we could establish
the phase, visco-elastic solid, with more certainty, using both the MSD and shear relaxation
analysis.
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APPENDIX

A1 S102 PARTICLES

PARTICLE MODIFICATION

This protocol is modified from an existing protocol.[20] Suspend ~1g 4um SiO2 particles in a
mixture of EtOH/NH4OH/H,0 with molar ratio 7/0.5/5.3 by sonication for 1hr. Add 0.35ml
(1.6mmol) TEOS and 1.34ml (6.39mmol) HMDS and sonicate for 10min, then stir the reaction
mixture for 16hrs at 60°C. Sonicate the mixture for 10 min, and allow reaction to continue for
3hrs. Stop the reaction by cooling to rt and sedimenting the particles. Wash the particles twice in
the EtOH/NH4+OH/H,0 mixture, then dry them in a 65°C stove for 22hrs, and then in a 50°C
vacuum oven for 1.5hrs. Resuspend the particles in 10mM AoT in tetralin by sonicating for 30
min and repeat the sedimentation step until the suspension is clean.
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Figure Al|Yukawa potential for SiO. particles in 10mM AoT in tetralin. The blue circles are
obtained experimental data, the red line is the fit with the modified Yukawa potential composed of
the modelled Yukawa potential with obtained fitting parameters (black dashed line) and a
powerlaw (black dash dot).



11



A2 PAIR POTENTIAL PMMA PHASE CONTRAST
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Figure A2|Pair potential obtained from a dataset recorded in brightfield mode with phase contrast
filter (blue circles) and the modelled Yukawa potential with obtained fitting paramters (red line).
Data-set is recorded at 15 fps. The number density of this sample is 2.0-10° particles per pmz.
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A3 FORCE DISTRIBUTION IN S102 CRYSTAL
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Figure A3|Force distribution of a crystal of silica particles, containing a grain boundary. The
number density in this crystal is 4.0-102 particles per pm-,



