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SUMMARY 
In this research, we pioneer in developing a method, based on optical microscopy, to probe the 

mechanical properties of supersoft materials without making assumptions or perturbing the 

material. Mechanical properties, such as shear modulus, are a commonly used parameter to 

characterise materials. By fitting our experimental data to a screened Coulomb potential, a 

Yukawa potential, we extract parameters characterising the interactions in our system, needed 

for further calculations on interparticle forces. The derivative of the pair potential equation is 

equal to the force between two particles at centre-to-centre distance r. We calculate the shear 

relaxation based on particle-particle interactions and the mean square displacement to support 

the validity of our method to probe the shear relaxation of a supersoft solid. 
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1. INTRODUCTION 
Numerous methods are known to probe the mechanical properties of solids. Dynamics can be 

assessed through scattering experiments, phase transitions can be assessed through 

calorimetry, and mechanical properties like responses to shear and stress can be assessed 

through standard rheology. The properties of interest in rheological experiments are the 

material’s moduli, which reflect the mechanical properties. The magnitude of the moduli scales 

with the energy of interaction between two particles, multiplied by the density.[1] This means 

that, for solids, moduli are in the order of GPa. For colloidal systems, such as those studied here, 

according to the scaling theory, the mechanical moduli roughly fall in the μPa-mPa range, which 

is too low to be assessed by classical rheology.  

Several other methods have been developed to measure the moduli of supersoft solids. Micro-

rheology[2] can be used to directly probe the mechanical properties of the medium surrounding 

the probe particle, in this case a colloidal system. Micro-rheology cannot be used in this 

research, as the theory of this method assumes a homogeneous medium[3] or a hard-sphere 

system,[4] which is not the case in our experiments. The dispersion relation, the study of the 

dispersion of waves within a sample, is another method used to assess the mechanical 

properties of supersoft solids.[5] This theory is based on the assumption that the system is 

undamped, which is usually not the case, because particles are dispersed in a medium.  

The research described here is aimed at developing a novel method to assess the mechanical 

properties of supersoft solids without making any assumptions. To achieve this, we first have to 

characterise the interactions between the Wigner particles studied here. Wigner particles are 

like-charged and thus repel each other, following a screened Coulomb potential[6, 7] (Yukawa 

potential, Equation 1). It is vital that the Wigner particles are suspended in an apolar medium,[8] 

so that dipoles of the medium do not interfere with the repellent charges of the particles. To 

extract the relevant Yukawa parameters for our system without making assumptions, we use an 

inversion based on the Ornstein-Zernike equation to obtain the pair potential from our 

experimental data.[8]  

𝑈(𝑟)

𝑘𝐵𝑇
=  

𝜀𝜎

𝑟
∙ 𝑒𝑥𝑝 [−𝜅𝜎 (

𝑟

𝜎
− 1)]     (1) 

We use Wigner particles in this research because they form crystalline-like ordered structures at 

low densities, but Brownian fluctuations prevent true long-range ordering. These features cause 

Wigner crystals to fall in between classical solids and liquids, and make researching these 

materials challenging but interesting.  

An important part of the research reported here is based on characterising the forces between 

particles. Measuring these forces is a laborious experiment. The forces may be directly measured 

by optical tweezer experiments,[9] or extrapolated from a dilution series to correct for multi-

particle interactions.[10] In this research we use a facile method to calculate the force between 

two neighbouring particles as a function of their separation distance. Using this method, only 

particle positions are needed to calculate all interparticle forces in a sample. After we elucidate 

the pair potential for our system, we calculate the interparticle forces using the derivative of the 

equation which describes the pair potential (Equation 2).  
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|𝐹(𝑟)|

𝑘𝐵𝑇
=

1

𝑘𝐵𝑇
∙ |

𝑑𝑈(𝑟)

𝑑𝑟
| = | −

𝜀𝜎

𝑟2  ∙  (𝜅𝑟 + 1) ∙ exp[𝜅(𝜎 − 𝑟)] |  (2) 

In a static crystal, forces are balanced and equal because of the regular structure in a crystal. 

Here, we investigate colloidal crystals, and liquids, in which particles are free to move around 

their lattice points. This causes variations in interparticle forces, and possibly sample spanning 

networks of forces larger than average. Snoeijer and co-workers showed the existence of these 

force networks in granular materials in stable, confined, static packings and under shear.[11] This 

research aims at demonstrating the existence of force networks in the Wigner crystals studied 

here. By doing so, we intend to show that the differences between granular and crystalline 

materials are smaller than commonly accepted.  

We use the possibility to calculate interparticle forces to assess the mechanical properties of the 

Wigner crystals and liquids studied here. The Brownian fluctuations enable us to probe the time 

dependent mechanical response to shear without active perturbation of the system. By assessing 

the movement of particles, and the response of surrounding particles, we can probe the systems 

response to (internal) shear and assess the relaxation of the system. The shear relaxation, 

relaxation time and moduli that may be obtained by this analysis are the mechanical properties 

of the system we intend to elucidate in this research. By analysing the mean square 

displacement for the different phases, we can supplement the analysis of the shear stress 

relaxation.  
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2. EXPERIMENTAL 

2.1 MATERIALS 
AoT (98%), HMDS (≥99%) and TEOS (99.999%) were purchased from Sigma-Aldrich. 4μm silica 

particles were purchased from Cospheric innovations. Ammonia solution (25%) was purchased 

from Emsure. Ethanol (absolute) was purchased from Merck. Decane was purchased from TCI. 

All chemicals were used as received. 3μm fluorescent PMMA particles were prepared by this lab 

using a previously reported protocol.[12] 

2.2 INSTRUMENTATION 

FLUORESCENCE AND PHASE CONTRAST MICROSCOPE 
Fluorescence and phase contrast microscopy is carried out on a Zeiss Axiovert 200 equipped 

with a 20x objective and a Thorlabs DCU224 camera.  

BRIGHTFIELD MICROSCOPE 
Brightfield microscopy is carried out on a Nikon eclipse Ti-U equipped with a Nikon plan Apo λ 

20x0.75 WD1.0 objective and a Fastec Imaging HiSpec1 2G Mono camera. 

2.3 SAMPLE PREPARATION 
We prepare samples by introducing a suspension of PMMA particles in 10mM AoT in decane in 

glass sample chambers, and hermetically sealing them with optical adhesive. Before filling, 

sample chambers are flushed with acetone and propanol, dried under nitrogen flow and then 

dried for 1hr at 60oC. The chambers are then plasma cleaned, filled with HMDS, and dried at 

60oC. The crystals are confined to 2D by gravitation. The PMMA particles are charged by 

enveloping them in AoT micelles. 

2.4 DATA ANALYSIS 
Several Matlab codes are used in the data analysis, the basics of each code are described in this 

section.  

PARTICLE LOCATING 

The freely available Kilfoil particle locating algorithms,[13] are used to analyse image sequences. 

The code searches for a local maximum in intensity, and then fits a Gaussian distribution to the 

peak in intensity to locate the centre of the object at a sub-pixel resolution.  

RADIAL DISTRIBUTION FUNCTION 

The script we use to calculate the 2D radial distribution function determines the number of 

particles in a shell of thickness dr at a distance r, up to a maximum rmax of each reference particle. 

This number is then normalized for the surface of the shell so that g(r) converges to a value of 1 

for large r.  

PAIR POTENTIAL 

The method we use in this research to calculate the pair potential from the RDF is based on 

earlier research.[8] Because we do not work at infinite dilution, we have to take indirect 

interactions between particles in account, which complicates calculation of the pair potential. 

First, we calculate the total correlation function ℎ(𝑟) = 𝑔(𝑟) − 1. Then, we use an optimized 
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method[14] to Fourier transform h(r) and write the direct interactions in terms of the total and 

indirect interactions (c(r)) using the Ornstein-Zernike equation in Fourier space. Through the 

hypernetted chain function, we relate h(r), and thus g(r), to the pair potential. The solved 

equation is inverse-Fourier transformed to real space to obtain the direct interactions. Then, we 

calculate U(r) via the following relation: U(𝑟)  =  h(𝑟) –  c(𝑟) –  log(g(𝑟)). 

FORCE DISTRIBUTION 

The script we use to calculate the force distribution in a sample takes the Yukawa potential 

parameters ε, σ and κ as input, and with the particle coordinates for each frame, obtained from 

the Kilfoil tracking algorithm, calculates the forces between each pair of nearest neighbours as 

identified by a Delaunay triangulation. A probability distribution is calculated by logarithmic 

binning of all obtained forces and normalizing for the number of particle pairs found. 

FORCE MAPS 

Using the same method to calculate forces between nearest neighbours as in the force 

distribution code, and the particle coordinates in each frame as obtained from the Kilfoil 

tracking algorithm, we can plot force maps, in which forces between nearest neighbours are 

plotted for each frame. The code plots the forces between neighbours as thick, dark lines, of 

decreasing thickness and darkness with decreasing force. For clarity, the script also plots the 

scaled outline of the particles. 

ORIENTATIONAL BOND ORDER PARAMETER 

The script to calculate the orientational bond order parameter, Ψ6, uses the particle coordinates 

in each frame to calculate the Ψ6value for each particle using Equation 3:[15]  

𝜓6 =  
1

𝑛𝑐
∑ 𝑒𝑖6𝜃(𝑖𝑗)𝑛𝑐

𝑗=1      (3) 

which is explained in detail in the next chapter. Again, nearest neighbours are identified using a 

Delaunay triangulation.  

DE-DRIFTING AND BEAD ID 

The standard Kilfoil algorithm for de-drifting determines the collective motion of all particles in 

one specific direction over the whole data-set, assumes a constant speed of the particles, and 

uses this information to redefine the position of each particle at each time point so that only 

Brownian motion remains. We use a modified method to de-drift the image sequences by 

determining the collective motion of all particles in one specific direction per frame. The script 

for de-drifting also connects particle positions between two subsequent frames, and appoints an 

ID to every bead, so that each bead’s trajectory can be tracked in time. 

SHEAR RELAXATION MODULUS 

With the particle positions for each frame, the frame rate and a method to calculate the forces 

between particles, we calculate the shear relaxation modulus, G2D(t), by correlating two 

dimensional shear stresses between particle pairs in time (Equation 4-6). 

𝐺2𝐷(𝑡) =  
𝐴

2
∙ |〈𝑠𝑥𝑦(𝑡) ∙ 𝑠𝑥𝑦(𝑡 − 𝑡′)〉| + |〈𝑠𝑦𝑥(𝑡) ∙ 𝑠𝑦𝑥(𝑡 − 𝑡′)〉|  (4) 

In Equation 4, A is the area of the field of view, kb the Boltzmann constant, T the temperature in 

K, and sxy the two dimensional shear stress defined as: 
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𝑠𝑥𝑦 =  
1

𝐴
∑ 𝐹𝑖𝑗,𝑦∆𝑥𝑖𝑗𝑖<𝑗      (5) 

with Δxij the difference in x-coordinates between particles i and j, and Fij,y the force in the y-

direction between particles i and j in kbT. Syx is defined as: 

𝑠𝑦𝑥 =  
1

𝐴
∑ 𝐹𝑖𝑗,𝑥∆𝑦𝑖𝑗𝑖<𝑗      (6) 

With Δyij the difference in y-coordinates between particles i and j, and Fij,x the force in the x-

direction between particles i and j in kbT. 

The compression, K2D(t), is calculated via similar equations: 

𝐾2𝐷(𝑡) =  
𝐴

2
∙ |〈𝑠𝑥𝑥(𝑡) ∙ 𝑠𝑥𝑥(𝑡 − 𝑡′)〉| + |〈𝑠𝑦𝑦(𝑡) ∙ 𝑠𝑦𝑦(𝑡 − 𝑡′)〉|  (7) 

In which we take the force acting along the same axis as the one we use to calculate the distance 

between particles. 

MEAN SQUARE DISPLACEMENTS 

This script uses the output file of the de-drifting algorithm because the particles each have an 

appointed ID number. The squared displacements are calculated for each particle, between 

every possible pair of frames, after which the average displacement (squared) is divided by the 

number of data-points for that specific time-step to obtain the MSD in time. 
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3. RESULTS AND DISCUSSION 
In this research, we pioneer in developing a method to probe the mechanical properties of 

supersoft materials without making assumptions or perturbing the material. Mechanical 

properties, such as the shear modulus, are a commonly used parameter to characterise 

materials. We calculate shear relaxation based on particle-particle interactions (Equation 4-6). 

In order to calculate the interactions, we need a way to measure the force between particles. The 

existing methods, as described briefly in the introduction, require extensive experimental work; 

we develop a facile method based on optical microscopy. We use the radial distribution function, 

which is a probability distribution of finding a particle at a certain centre-to-centre distance r 

(Section 3.1) to calculate the pair potential, the potential energy of two interacting particles at 

centre-to-centre distance r (Section 3.2). By fitting our experimental data to a screened Coulomb 

potential, a Yukawa potential, we extract parameters characterising the interactions in our 

system, needed for further calculations on interparticle forces. The derivative of the pair 

potential equation is equal to the force between two particles at centre-to-centre distance r 

(Section 3.3). With this new method to assess the interparticle forces in our system, we 

investigate the homogeneity of our samples by calculating force distributions (Section 3.3) and 

by assessing the crystallinity of the samples through visualisation of forces in force maps 

(Section 3.4). We use the orientational bond order parameter, Ψ6, as a measure for the 

crystallinity of our samples (Section 3.4). Next, we calculate the 2D shear relaxation of samples 

in the liquid and crystalline phase, based on particle-particle interactions (Section 3.5). We 

calculate mean square displacements of the same two samples to support the validity of our 

method to probe the shear relaxation of a supersoft solid (Section 3.6). 

3.1RADIAL DISTRIBUTION FUNCTION 
The first step in this research is to calculate the radial distribution function. The RDF, g(r), is a 

visualisation for the level of crystallinity of a, in this case 2D, colloidal system. The RDF is a 

probability distribution of finding a particle in a shell of thickness dr at distance r from a 

reference particle, and is used to analyse the level of order in the system. If the particles form a 

perfect static crystal lattice, the RDF will feature sharp peaks at distinct centre-to-centre 

distance r. Because we analyse a soft crystal in which the particles can fluctuate around their 

lattice points, the peaks in g(r) will broaden in comparison with a static crystal. If the system is 

diluted to a liquid, we expect only local ordering to remain and the RDF to converge to 1 for 

large r. In the RDFs shown here, we scaled the x-axis with the r-value of the first peak. 

LIQUID PHASE 
The RDF of a sample in the liquid phase (Figure 1a) shows evidence of local ordering, as 

indicated by the large peak, but no long range ordering. The first peak is quite broad, because 

the particle density is low enough in the liquid phase for the particles not to be ‘confined’ by 

surrounding particles. At a certain distance, the ordering is lost and the RDF converges to 1. 
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Figure 1|RDF of a sample in the liquid phase (a) with a density of 4.4∙10
-3 particles per µm2. The 

image sequence is recorded at 15 fps. The first peak corresponds to an interparticle distance of 
10.5µm. RDF of a sample in the crystalline phase (b) with a density of 1.8∙10-2 particles per µm2. The 
red vertical lines mark where we expect peaks for a hexagonal lattice. The image sequence is 
recorded at 0.5 fps. The first peak corresponds to an interparticle distance of 7.2µm. 

CRYSTALLINE PHASE 
The RDF of a crystalline sample (Figure 1b) shows presence of long range ordering, as indicated 

by the on-going peaks in the RDF at large distance from the reference particle. Due to the 

plasticity of these crystals, the peaks in the RDF of a crystalline sample will, at sufficient r, 

converge to 1, as in the liquid samples. 

When comparing the peaks, especially the first, to the peak in the RDF of a liquid (Figure 1a), it is 

clear that the first peak is much sharper in the RDF of the crystalline sample, indicating that 

particles are ‘confined’ by their neighbours. For a perfect static hexagonal lattice, the first peaks 

in the RDF would be very sharp. As the particles in these crystals are not fixed in a perfect crystal 

lattice, but fluctuate around their lattice points, the peaks in the RDF of the Wigner crystal are 

broader, and prevent the RDF from reaching 0 in between peaks indicating absence of true long-

ranged order. 

Another feature that differs between the RDF of a liquid (Figure 1a) and a crystal (Figure 1b) is 

that the first peak in the RDF of the crystal is shifted to a lower absolute r value in comparison to 

the first peak in the RDF of the liquid, from 10.5µm in the liquid to 7.2µm in the crystal. This is 

explained by the higher density of particles in the crystal, causing the particles to be closer to 

each other.  

The red vertical lines in Figure 1b mark where we expect peaks in a perfect hexagonal lattice. 

The peaks in our RDF agree well with the predicted values for the peaks, thereby proving we 

have a hexagonal lattice.  

3.2 PAIR POTENTIAL 
We use the RDF as calculated in Section 3.1 to calculate the pair potential. We use fluorescence 

microscopy and phase contrast microscopy data to measure the pair potential for the PMMA 

Wigner particles, and brightfield microscopy to measure the pair potential for the silica Wigner 

particles. The parameters we extract from fitting the pair potential are used to calculate 

interparticle forces in Sections 3.3-3.5. 

a b 
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The pair potential describes the interaction between two particles at infinite dilution. The 

particles in this system are like-charged, we thus expect purely repulsive interactions. Several 

methods are reported to measure the pair potential.  

The optical tweezers may be used to measure the interactions between two particles, as 

described in literature.[9] Two particles are trapped using laser beams, and released when no 

other particles are near. By analysing the displacements in time of these particles, one can 

extract the pair potential.  

The extrapolation method[10] is based on calculating the potential of mean force, W(r), from the 

radial distribution function via Equation 8. The potential of mean force, W(r), is only valid at 

finite dilution, whereas the pair potential, U(r), implies infinite dilution. By extrapolating the 

potential of mean force for various volume fractions to infinite dilution, one can estimate U(r). 

𝑊(𝑟)

𝑘𝐵𝑇
=  −ln [𝑔(𝑟)]     (8) 

The more facile approach we use here requires analysis of only one sample. From the radial 

distribution function, g(r), we calculate the pair potential U(r) (Equation 1), provided the system 

is sufficiently diluted. We use a Yukawa potential of the form 

𝑈(𝑟)

𝑘𝐵𝑇
=  

𝜀𝜎

𝑟
∙ 𝑒𝑥𝑝 [−𝜅𝜎 (

𝑟

𝜎
− 1)]     (1) 

to fit the experimentally obtained pair potential to extract the parameters ε (repulsion at contact 

in kBT), σ (particle radius in μm) and κ (Debye length in μm-1). The Yukawa potential is only 

valid for solely repulsive interaction between particles, and thus is positive over the entire 

range, and decreases with increasing r.  

FLUORESCENCE MICROSCOPY 
The pair potential for PMMA particles obtained though fluorescence microscopy, Figure 2, 

features a slight negative dip, indicating that the sample may be too concentrated as will be 

discussed in more detail in this section. However, as the data fits the Yukawa potential quite 

well, we choose to use the extracted parameters (Table 1) from this experiment in the next steps 

of the data analysis of the PMMA particles in decane. We use experimentally obtained data for r 

larger than 7μm to fit the Yukawa potential (Equation 1) to.  

Table 1|Values of parameters extracted from experimental data, obtained through fluorescence 
microscopy, using a Yukawa potential.  

Parameter (units) Value 
ε (kBT) 196 
κ (μm-1) 0.844 
σ (μm) 3.00 
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Figure 2|Experimentally obtained pair potential of a sample in the liquid phase with a density of 
4.4∙10

-3 particles per µm2 (blue circles) and Yukawa potential modelled with obtained fitting 
parameters (red line). The image sequence is recorded at 15 fps.  

BRIGHTFIELD MICROSCOPY 
When the same method is used to extract Yukawa parameters for a sample of silica particles in 

tetralin from data obtained through brightfield microscopy, we were forced to use a modified 

Yukawa potential (Um(r), Equation 9); we added an emperial power law to the Yukawa potential 

enable fitting to the experimental data (Figure A1).The modified Yukawa potential allowed for 

attractive interactions between the particles, and was of the form 

𝑈𝑚(𝑟)

𝑘𝐵𝑇
=  

𝜀𝑟𝜎

𝑟
∙ exp [−𝜅𝜎 (

𝑟

𝜎
− 1)] − 𝜀𝑎(

𝑟

𝜎
)−𝛼   (9) 

In which εr is repulsion at contact (in kBT), εa is attraction at contact (in kBT), σ is the particle 

diameter (in μm), κ is the Debye length (in μm-1), α is the powerlaw exponent, and r the centre-

to-centre distance between particles. It must be noted that obtained parameters cannot be 

compared to those obtained in fluorescence or phase contrast mode. The extracted parameters 

from the modified Yukawa potential (Table 2) are used in further analysis of this particle-solvent 

system. 

Table 2|Values of parameters extracted from experimental data using modified Yukawa model 

Parameter (units) Value 
εr (kBT) 116.57 
κ (μm-1) 1.16 
σ (μm) 3.98 
εa (kBT) 7.45 
α 3.61 
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When our image sequences recorded though brightfield microscopy are used to calculate U(r), 

the pair potential drops below zero, which would indicate attraction. The cause of this attractive 

part in the pair potential is under debate in literature. Whereas some literature states that the 

attraction is real, and caused by interaction between charged particles and like-charged 

surfaces,[6, 16] the attractive dip is also reported to be an optical artefact in brightfield 

microscopy,[17] caused by Airy disks.  

We speculated it is neither; these explanations only hold true for attractions between nearest 

neighbours. The attraction caused by interaction between particles and like-charged surfaces is 

only possible if particles are very close to one another and would therefore exist at lower r than 

we observe here. Likewise, Airy disks only overlap if the particles are very close. The attraction 

in our system spans all r from two particle radii and above. We speculate that the sample from 

which we obtained the pair potential though brightfield imaging was not sufficiently diluted, 

introducing errors in the calculation of the pair potential from the RDF. 

PHASE CONTRAST MICROSCOPY 
The pair potential of a PMMA particle system in the liquid phase, recorded through phase 

contrast microscopy did not exhibit a negative pair potential, but features a bump for large r 

(Figure A2), and thus attraction for large r. We hypothesise the bump is caused by diluting too 

far; the sample analysed through fluorescence microscopy has a number density of 4.4∙10-3 

particles per μm2, whereas the sample used in the phase contrast measurements has a number 

density of 2.0∙10-3 particles per μm2. The absence of a negative dip supports our speculations of 

the previous samples being too dense. The absence of the negative dip, and presence of a 

positive bump for large r has a significant influence on the Yukawa parameters (Table 3). As 

mentioned earlier, we use the parameters obtained from fluorescence microscopy experiments 

for further analysis of the PMMA decane system. 

Table 3|Parameters extracted from fit of Yukawa potential to calculated pair potential obtained 
through phase contrast microscopy. 

Parameter (unit) Value 
ε (kBT) 317 
κ (μm-1) 0.687 
σ (μm) 3.00 
 

As the parameters extracted from the phase contrast microscopy experiments are quite different 

from those obtained though fluorescence microscopy experiments, the actual values used here 

may not be accurate, but observed trends in further data-analysis are still valid.  

3.3 FORCE DISTRIBUTION  
The parameters extracted by fitting the Yukawa potential to our experimentally obtained pair 

potential (Section 3.2) are used in this section to calculate the interparticle forces without 

perturbation of the system. We calculate a probability distribution of the forces in a liquid and 

crystalline sample, and use these to illustrate the difference in homogeneity between these 

states.  

The repellent forces between the particles originate from the charge on each particle. If we 

assume every particle to have the same charge, both in sign and magnitude, the forces between 
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two particles vary only with their separation distance, following Coulombs laws. The derivative 

of the pair potential (Equation 1) yields |F(r)| (Equation 2), with which we can calculate the 

forces between two particles if we know their mutual distance. 

𝑈(𝑟)

𝑘𝐵𝑇
=  

𝜀𝜎

𝑟
 ∙ exp [−𝜅𝜎 (

𝑟

𝜎
− 1)]    (1) 

|𝐹(𝑟)|

𝑘𝐵𝑇
=

1

𝑘𝐵𝑇
∙ |

𝑑𝑈(𝑟)

𝑑𝑟
| = | −

𝜀𝜎

𝑟2  ∙  (𝜅𝑟 + 1) ∙ exp[𝜅(𝜎 − 𝑟)] |  (2) 

To visualise how |F| evolves with r and to get an estimate of the size of the interparticle forces in 

this system, we plot |F(r)| (Equation 2) for relevant r using the parameters obtained in the 

previous section (Table 1). As the diameter of the particles used in this research is 3μm, this is 

the smallest centre-to-centre distance we could achieve during experiments. The force should be 

infinite for centre-to-centre distances than 3μm, as this would indicate interpenetration of 

particles. From Figure 3 we see that the forces associated with the smallest centre-to-centre 

distances possible in these samples are extremely small, ranging several piconewtons. Nearest 

neighbours separated by more than four times the particle diameter exert forces on each other 

in the femtonewton range. The exponential increase in forces between particles calls for very 

accurate particle tracking, as minute errors in interparticle distances have a major effect on the, 

faulty, force measured. 

 

Figure 3|Evolution of |F| with increasing r.  

By calculating all forces between nearest neighbours, we can construct a probability distribution 

of forces in the sample. We expect peaks in the force distribution, which become broader with 

decreasing density of the sample. The sharpness of the peak is indicative for the level of ordering 

of the system. Sharp peaks indicate homogeneous samples, in this case crystals, and broad peaks 

indicate low levels of ordering.  
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LIQUID PHASE 
A sample in the liquid phase has a low density and, as a result, large interparticle distances when 

compared to the particle diameter. As the particles are free to move, the range of interparticle 

distances is expected to be quite large, resulting in a broad distribution of small forces between 

nearest neighbours. Due to the expected large range of forces present in this sample, we use 

logarithmic binning of forces to enable proper sampling of the small forces. 

 

Figure 4|a) Distribution of forces in a sample in the liquid phase with a density of 4.4∙10
-3 particles 

per µm2. b) Distribution of forces in a sample in the crystalline phase with a density of 1.8∙10-2 
particles per µm2 

From the force distribution of a sample in the liquid phase (Figure 4a), it is clear that the 

particles are not ‘confined’ by their neighbours; the peak in the distribution is broad, spanning 

roughly 20 orders of magnitude. Due to the low density in the liquid sample, the particles are 

free to move, small forces are more abundant than the large forces, causing the tail of small 

forces. The average force in this sample is 0.26fN. 

CRYSTALLINE PHASE 
For a crystal in which particles occupy their hexagonal lattice points at all times, the force 

distribution is a delta-function. For an almost static crystal, we would expect a very sharp 

Gaussian peak, because the forces increase exponential with centre-to-centre distance, and we 

bin logarithmically. If the distribution of forces includes multiple orders of magnitude, as is the 

case in this research, we expect a deviation from the Gaussian shaped peak, because the 

exponential function and logarithm do not use the same number as a base. 

For the PMMA crystal, however, we do not find a single peak (Figure 4b), but we rather find a 

second and third peak at smaller forces than average and a shoulder at larger than average 

forces. For a crystal of silica particles in tetralin we do find a sharp Gaussian peak (Figure A3). 

The Gaussian peak is present in the silica crystals because the silica system forms denser and 

more ordered crystals. 

In a PMMA crystal, which is much denser than the liquid analysed in the previous section, the 

interparticle distances are smaller, so that the forces between particles are larger (Figure 4b). 

The average force for this sample is 8.22fN, approximately 30 times as high as in the liquid 

sample.  

b a 
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We hypothesise the extra peaks in the force distribution for the crystalline phase are caused by 

errors in particle locating. The interparticle distances indicated by the forces at the extra peaks 

roughly agree with the second and third peak in the RDF, indicating that the nearest neighbours 

we use to calculate forces are two lattice spaces removed from one another. Considering the 

plasticity of these crystals, and the size of this data set, in combination with the relatively high 

probability supports this hypothesis, as opposed to the existence of deletions in this crystal. 

3.4 FORCE MAPS AND ORIENTATIONAL BOND ORDER PARAMETER 
To visualise the difference in homogeneity between the liquid and crystalline samples (Section 

3.3), we construct force maps. Using the equation for |F(r)| (Equation 2) we can calculate the 

forces between each pair of particles in a frame. By plotting the forces between neighbouring 

particles through connecting them with lines that become increasingly dark and bold with 

increasing force, we construct force maps. In these force maps the homogeneity or heterogeneity 

of the force distribution in a snapshot of the sample can be visually analysed.  

Heterogeneity in interparticle forces are caused by heterogeneities in distances between nearest 

neighbours. With variations in interparticle distances, the bond angle between nearest 

neighbours changes. To numerically analyse the (in-)homogeneity, or level of crystallinity, of a 

sample, we calculate the 2D orientational bond order parameter, ψ6, defined as:[15] 

𝜓6 =  
1

𝑛𝑐
∑ 𝑒𝑖6𝜃(𝑖𝑗)𝑛𝑐

𝑗=1      (3) 

Where nc is the number of nearest neighbours j around particle i with θ(rij) the bond angle 

between particles i and j with an arbitrary yet fixed reference axis. In a perfect 2D hexagonal 

crystal lattice the orientational bond parameter equals 1, which decreases with decreasing 

sixfold symmetry.  

In the rest of this section, it has to be taken into account that the colour coded ψ6 can be directly 

compared between samples from the colours in the figures, but the forces were scaled per 

sample for clarity of the homogeneity or heterogeneity in individual phases. 

LIQUID PHASE 
The liquid phase has a low density, so we expect relatively large interparticle distances and a 

low average sixfold symmetry. Indeed, the average value of ψ6 in this data set is 0.3810. As can 

be seen in the snapshot in Figure 5, most particles are separated by multiple particle diameters. 

Because of the low density, the particle are extremely mobile, we thus expect high variation in 

the average sixfold symmetry, as can be seen from the large variation in colour in Figure 5. 
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Figure 5|Force map constructed from a snapshot of a sample in the liquid phase with a density of 
4.4∙10

-3 particles per µm2, the particles are coloured to their ψ6 value. 

CRYSTALLINE PHASE 
A snapshot of the crystal (Figure 6), colour coded for ψ6, still shows some inhomogeneity 

because of the fluctuations of the particles around their lattice points. The PMMA crystals are 

not very dense, so the particles in these crystals are not confined by their neighbours, allowing 

for relatively large displacements from the lattice points. The average ψ6 value for the whole 

data set is 0.7524, which is quite low when compared with static crystals, but may be a 

reasonable value for a Wigner crystal.  

 

Figure 6|Force map constructed from a snapshot of a sample in the crystalline phase with a density 
of 1.8∙10-2 particles per µm2, the particles are coloured to their ψ6 value. 

GRAIN BOUNDARY IN SIO2 PARTICLE CRYSTAL 
Because the PMMA particles form crystals with very few defects of only one specific type,[18] 

defects are studied in another particle-solvent system; SiO2 particles (for particle modification, 

see Appendix A1) in 10mM AoT in tetralin sediment faster and have a lower mobility than the 

PMMA particles which enables the system to have large and long term defects. The Yukawa 

0

1

0

1
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parameters are different for this system, and we calculated the pair potential for this system 

(Section 3.2), to extract the relevant parameters (Table 2).  

When comparing a ψ6 colour coded snapshot of a silica particle crystal (Figure 7) with that of a 

PMMA particle crystal (Figure 6), it is clear that, despite the defects, the silica sample has a 

higher level of crystallinity, as evidenced by the difference in colour variety in the crystalline 

parts of the samples. Despite part of the crystal taking part in the grain boundary defect, the 

average ψ6 for this sample is 0.9240, which indicates a high level of crystallinity. Part of the 

explanation of the higher level of crystallinity in the silica is the fact that the silica particles are 

much heavier than the PMMA particles, and thus exhibit less Brownian movement. Another 

explanation may be that the silica crystal has a number density of 4.0∙10
-2 particles per μm2, 

which is about twice as high as the number density in the PMMA crystal, causing the particles in 

the silica crystal to be more ‘confined’. 

 

Figure 7|Snapshot of particle positions in a SiO2 particles crystal with a grain boundary, colour 
coded for ψ6 value.  

In the force map of the same sample (Figure 8), it is clearly visible that the largest imbalance in 

forces is concentrated around the grain boundary. In bulk, the imbalance in forces, caused by the 

irregular ordering of particles, forms a weakness in the material. Due to the irregularities, 

applied forces and stress cannot be redistributed evenly over the entire sample, causing 

mechanical failure to initiate at these sites.  

From the force map in Figure 8, we can also more clearly see that the grain boundary mainly 

consists of 5/7 defects. The defects in which 7 particles surround a central particle have, 

relatively, large forces between the particles in the 7-membered ring, and small forces between 

the particles in the ring and the central particle. In contrast, the defects in which only 5 particles 

surround a central particle, the forces between the particles in the ring are, relatively, small, and 

the forces between particles in the ring and the central particle are large.  

 

0

1
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Figure 8|Force map constructed from a snapshot of the grain boundary in a crystal formed from 
silica particles. Larger forces are plotted with increasingly bold and dark lines. 

3.5 SHEAR RELAXATION MODULUS 
The level of homogeneity, as investigated in Section 3.1-3.4, in a material has a large influence on 

the dynamics and mechanical properties of a material. Key to understanding the dynamics of any 

material, is understanding the time dependent mechanical response. Thus far, measuring the 

mechanical properties of supersoft solids posed a challenge because the available methods are 

based on assumptions which don’t hold in Wigner crystals. Here, we measure the shear 

relaxation of a 2D colloidal crystal, to our best knowledge for the first time, without assumptions 

or perturbations, and use our results to determine the phase of Wigner crystals.  

In literature, the shear modulus of 3D colloidal dispersions is measured by perturbing the 

bulk[1], and a model is proposed to calculate the shear modulus.[19] We use a different method 

than previously reported, as described in Section 2.4. With the forces between every pair of 

particles known, we can compute and evaluate the visco-elastic properties of a sample without 

making any assumptions or actively perturbing the system. We propose a non-perturbative 

method to measure the elasticity in 2D colloidal systems, and use Equations 2-4 to calculate the 

shear modulus. We treat the fluctuations of the particles around their equilibrium positions as 

imposed shear, and assess the reaction of the system to this local deformation. 

Materials with long-range ordering tend to relax slower after applying shear when compared to 

heterogeneous materials. When a deformation is applied, a material is not instantly in 

equilibrium, i.e. relaxed. Relaxation of the material can follow different trends, through which we 

can distinguish between phases. Solids don’t relax after applying shear, whereas liquids have 

very fast exponential relaxation. Visco-elastic materials are subdivided in visco-elastic solid, 

which exhibits partial relaxation to a plateau, and visco-elastic liquid, which relaxes linearly. 

Due to poor statistics at times relevant for relaxation, we are unfortunately unable to prove 

whether the system studied here is a visco-elastic liquid or solid, or make an estimate of the zero 

shear modulus in the case of a visco-elastic solid (Figure 9). We are, however, able to estimate 

the infinite shear modulus by extrapolation: 10-20mPa, which is within the expected range of 

μPa-mPa we hypothesised in the introduction. It is surprising that the infinite shear modulus for 
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the liquid and crystal are the same according to this measurement, and that the shear modulus 

for the liquid exceeds the modulus for the crystal between approximately 1 and 5 seconds. 

 

Figure 9|Relaxation of the shear modulus (G2D(t), blue circle), and compression (K2D(t), red 
square) in a crystal with a number density of 1.8∙10

-2 particles per µm2, and relaxation of the shear 
modulus (G2D(t), green plus), and compression (K2D(t), black cross) in a liquid with a number 
density of 4.4∙10-3

 particles per µm2. 

For the liquid, when data-analysis is repeated with a larger data-set (data not shown), the shear 

modulus is approximately 3 decades higher than the modulus for the crystal, but the relaxation 

time does not change. This indicates that our algorithm is not error-free. For the liquid, we 

expect full relaxation of the shear if measurements are repeated. We hypothesise that the G2D(t) 

for a solid does not fully relax, but rather relaxes to a finite plateau, indicative for visco-elastic 

solids. 

We also calculate the compression of the sample, using Equation 7. The compression does not 

change over time, and is several orders of magnitude higher than the modulus, which further 

enforces our claim of correctly measuring the shear modulus. 

In the crystal we find a relaxation time of approximately 100 seconds(Figure 9). Because the 

particles in the liquid have a higher mobility compared to particles in the crystalline phase, we 

expect significantly faster relaxation in the liquid. In accordance with our expectations, we find a 

relaxation time of approximately 10 seconds. 

3.6 MEAN SQUARE DISPLACEMENTS 
Irrefutably determining the phase of Wigner crystals in Section 3.5 is hindered by poor statistics 

at time scales important for determining the relaxation time and the level of relaxation at long 

time scales, which we need to distinguish between visco-elastic solid and visco-elastic liquid. We 

supplement the information obtained by measuring the shear relaxation by calculating mean 



 

19 
 

square displacements of particles in both phases. The MSD in two dimensions is related to τ via 

Equation 10: 

〈𝑟2〉 = 4𝐷𝜏𝛼      (10) 

For a liquid we expect diffusive behaviour with α equal to 1, yielding a slope of 1 for the MSD 

plotted on log-log scale. For a solid we expect to find a plateau in the MSD, which indicates 

caging of particles by their neighbours. At short time scales, we expect to find subdiffusive 

behaviour for the solid, as the fluctuations around the equilibrium positions are slowed down, 

compared to diffusion, by repulsion by neighbouring particles. 

In Figure 10 we plot the MSD for both the liquid and the crystalline samples. We find diffusive 

behaviour for the particles in the liquid phase. For the crystal we find subdiffusive behaviour at 

short times, and a plateau in the MSD for longer times, indicating that the crystalline phase of the 

supersoft solid studied here is indeed a solid. This gives further credibility to our hypothesis that 

Wigner crystals behave as visco-elastic solids under shear. 

With establishing the solid phase of the Wigner crystals through analysis of the MSD, we can 

make a prediction of the evolution of the shear modulus of the crystal at longer time scales 

(Figure 10). We predict that, when measurements on this system are repeated and longer 

recordings are analysed, the system will relax to a finite plateau in the shear, as is characteristic 

of a visco-elastic solid. 

 

Figure 10|Mean square displacements for crystal (red squares) and liquid (blue circles). The black 
line indicates the slope for diffusive behaviour.  

In this research we demonstrate and validate a novel approach to measure the mechanical 

properties of a supersoft solid. Using the parameters obtained from fitting our experimentally 

obtained pair potential to a Yukawa-type screened-Coulomb potential, we calculate interparticle 
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forces without making assumptions. We use the interparticle forces to calculate the 2D shear 

without interactions or perturbations for the first time, to the best of our knowledge. To support 

our hypothesis that Wigner crystals are supersoft solids, based on measurements of the shear 

relaxation, we assess the mean square displacements of the particles. From analysis of the MSDs, 

we conclude that Wigner crystals form visco-elastic solids, thus verifying our hypothesis. 
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4. CONCLUSIONS 
In this research we pioneer a facile method to measure system parameters, such as shear 

modulus, without assumptions and perturbations. This method is based on our ability to directly 

measure the force between particle pairs as a function of their separation distance, by using a 

Yukawa-type screened Coulomb potential. The method described here requires considerably 

less experimental work than the other briefly discussed methods, extrapolation from dilution 

series and optical tweezer experiments. The only requirement for the method used in this thesis 

is sufficient dilution of the sample and sufficient data statistics. We like to point out that the 

exponential relation between interparticle force and centre-to-centre separation distance calls 

for very accurate particle locating. 

In this research we expected to find force networks in the crystalline phase, to the example of 

the force networks found in granular materials by Snoeijer et al.[11] Snoeijer and co-workers, 

however, used hard spheres in their research, in which very small imperfections on the surfaces 

of the particles cause an imbalance in forces upon contact, yielding a force network. The 

particles used here, are not hard spheres, but have a shell surrounding each particle where other 

particles hardly venture because of the repulsion between the particles. The force between two 

particles brought closer together by thermal fluctuations is, of course, larger than the 

equilibrium force in the crystal, but not significant enough to form measurable force chains.  

The high plasticity of the PMMA Wigner particles studied here may also prevent force networks 

from forming. The small difference in density between solvent and particle enables high 

mobility, in all three dimensions. These particles are mobile enough to redistribute relatively 

large forces, if the crystal is perturbed locally, by fast rearrangement of the surrounding 

particles, thus distributing forces over multiple bonds, or out-of-plane movement. The crystals 

studied here are not confined, but rather induced by gravitation acting on slightly tilted samples. 

Confinement of a denser crystal may yield force chains, as will be discussed in the next section. 

We report preliminary results of non-perturbing measurements of the elastic properties of a 2D 

supersoft solid. Although we are not able to distinguish between visco-elastic liquid and visco-

elastic solid from shear relaxation measurements as presented here, in combination with the 

MSD of the crystal we confirm our hypothesis: the crystalline phase is a visco-elastic solid. To 

our knowledge, this is the first time the shear relaxation is measured in 2D systems without 

active perturbation of or direct interaction with the material. We see a clear difference in 

relaxation times between the liquid and the solid, and validate our method by comparison with 

MSD analysis. 
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5. FUTURE RESEARCH 
To properly determine which method is most suited for extracting the Yukawa parameters from 

experimental data, further experiments are needed. Image sequences should be recorded using 

brightfield, fluorescence and phase contrast microscopy, and the obtained parameters should be 

compared to each other and parameters obtained though optical tweezer experiments. These 

measurements should be performed on the same sample to eliminate effects of the density on 

the pair potential. 

The force networks as described by Snoeijer et al. for granular matter[11] were realised in a hard 

sphere system, which is by definition different from Wigner crystals. Maybe if we use Wigner 

particles with a very steep pair potential, we could realise force networks. Another method 

would be to have the particles approach each other more closely, thus increasing the 

interparticle forces. To achieve this, we propose using particles with a larger difference in 

densities between solvent and particles so that the system is not as plastic and can become more 

dense than the PMMA crystals studied here. Another method to obtain force networks is 

mimicking granular matter by using a bidisperse mixture of colloidal Wigner particles. By 

experimenting with different ratios between the different sizes, and the volume ratio between 

the populations, it should be possible to obtain force networks in Wigner systems. A better 

understanding of these artificially obtained force networks may help in selecting criteria for 

formation of force networks in monodisperse Wigner crystals. 

If we are able to realise force networks in Wigner systems, the next step would then be to study 

them in more detail. Force networks may, for example have strong directionality, indicating 

compression or shear in a specific directions. It would also be interesting to study the 

directionality of the force network surrounding large defects, such as grain boundaries. Studying 

the networks surrounding defects may provide useful information on the stability of the defects, 

and thus the ‘healing’ properties of the material. When actively manipulating the system, using 

for example optical tweezers, one could investigate the effects of compression, shear and 

confinement to finite sized crystals on the directionality and stability of the defects.  

Preliminary results from this study indicate the existence of collective displacements of particles 

through thermal excitation in Wigner crystals, as reported in literature.[18] Further research may 

be conducted to analyse the stability, directionality, patterns, and (auto-)correlation in space 

and time of these collective movements. 

This particular point may not be a matter of research, but more of the equipment used in these 

experiments. For the study of, especially, the shear relaxation and (auto-)correlation, image 

sequences covering more time are needed to obtain good statistics at time scales relevant for 

relaxation. In this project, we are limited by storage space. By using real-time particle tracking 

we would decimate the storage space needed for these data-sets, as the raw images wouldn’t 

have to be saved. Using real-time tracking on the system used here poses more difficulties than 

just acquiring the proper instrumentation. The image sequences recorded in this research have 

been modified to enhance contrast and facilitate proper tracking. For real-time tracking, the raw 

image quality would have to be improved to allow proper detection of the particles. 

The method described here to assess the shear relaxation of colloidal systems is by no means 

optimised. We pointed out that the comparison between shear moduli of a liquid and a crystal 
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indicates that our algorithm still contains errors. In order to study the shear relaxation of these 

systems in more detail, not only do we need to correct our algorithm and record longer data-

sets, a higher frame rate so that we can sample the shear and MSD at shorter timescales would 

also benefit this particular part of the research. As the field of view would still need to be of 

sufficient size, combination with real-time tracking poses a challenge. In any case, a very fast 

computer is required to properly repeat these experiments. 

Using optical tweezers, we can disrupt the ordering in the crystal at small and large scale. It 

would be interesting to investigate the shear relaxation of such a disrupted crystal.  

It may be argued that the sample in the crystalline phase could still exhibit diffusive behaviour at 

longer time scales, but we do not expect this. By recording longer data-sets, we could establish 

the phase, visco-elastic solid, with more certainty, using both the MSD and shear relaxation 

analysis. 
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APPENDIX 

A1 SIO2 PARTICLES 

PARTICLE MODIFICATION 
This protocol is modified from an existing protocol.[20] Suspend ~1g 4μm SiO2 particles in a 

mixture of EtOH/NH4OH/H2O with molar ratio 7/0.5/5.3 by sonication for 1hr. Add 0.35ml 

(1.6mmol) TEOS and 1.34ml (6.39mmol) HMDS and sonicate for 10min, then stir the reaction 

mixture for 16hrs at 60oC. Sonicate the mixture for 10 min, and allow reaction to continue for 

3hrs. Stop the reaction by cooling to rt and sedimenting the particles. Wash the particles twice in 

the EtOH/NH4OH/H2O mixture, then dry them in a 65oC stove for 22hrs, and then in a 50oC 

vacuum oven for 1.5hrs. Resuspend the particles in 10mM AoT in tetralin by sonicating for 30 

min and repeat the sedimentation step until the suspension is clean. 

PAIR POTENTIAL SIO2 PARTICLES 

 

Figure A1|Yukawa potential for SiO2 particles in 10mM AoT in tetralin. The blue circles are 
obtained experimental data, the red line is the fit with the modified Yukawa potential composed of 
the modelled Yukawa potential with obtained fitting parameters (black dashed line) and a 
powerlaw (black dash dot). 
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A2 PAIR POTENTIAL PMMA PHASE CONTRAST 

 

Figure A2|Pair potential obtained from a dataset recorded in brightfield mode with phase contrast 
filter (blue circles) and the modelled Yukawa potential with obtained fitting paramters (red line). 
Data-set is recorded at 15 fps. The number density of this sample is 2.0∙10

-3 particles per µm2.  
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A3 FORCE DISTRIBUTION IN SIO2 CRYSTAL 

 

Figure A3|Force distribution of a crystal of silica particles, containing a grain boundary. The 
number density in this crystal is 4.0∙10-2 particles per µm-2. 


