

Wageningen University & Research Centre

Introduction to CLIB

Februari 13th, 2014. Ruud A. Weusthuis, Gerrit Eggink

Introduction

Prof. Dr. Gerrit Eggink
Professor Industrial Biotechnology
Bioprocess Engineering group

Dr. Ruud A. Weusthuis
Associate Professor Microbial Biotechnology
Bioprocess Engineering Group

Wageningen UR mission

‘to explore the potential of nature to improve the quality of life’

The Wageningen UR domain: healthy food and living environment

Research

- Top 3 in our domains
- Top 100 worldwide in university ranking
- Exploitation and valorisation of research

Education

- > 11,000 students
- > 6,000 faculty and staff
- Turnover € 710 million

Our challenges

- Increasing global population: 9 billion in 2050
- Environment, nature, climate and food supply under pressure
- Need of sustainable breakthroughs in knowledge and technology
- Economic crisis is limiting the investment capacity

Our strengths

- Combination of university and market-oriented research institutes
- Cooperation between technological and social science disciplines
- Strong international position
- Strong cooperation Government-Industry-University
- Wageningen Campus

Wageningen Campus

Our strengths

- Major interest in our themes:
 - 21st century agro-production
 - Water
 - Sustainable use of space
 - Bio-based systems and products
 - Food, health and behaviour

Strong position in the rankings

- 75th position on the Times Higher Education World University Rankings (23 in Europe)
- 37th position on the Shanghai Index ranking for 'Life and Agriculture Sciences'
- The best university according to Dutch students in the Dutch guide for higher education (Keuzegids Hoger Onderwijs) for five years running
- The second best university worldwide for agricultural research according to the Taiwanese government

Partners

Wageningen
University

9 applied Research
Institutes of
Wageningen UR

- 8.000 BSc/MSc-students from >100 countries
- >1.700 PhD
- 2.475 fte Faculty and staff
- Turnover 2011: €304 million

Partners

Wageningen
University

9 applied Research
Institutes
of Wageningen UR

- 2.825 fte Faculty and Staff
- Turnover 2011: €353 miljoen

Organisational structure

Our position in the world

Embedded in Food Valley

- A great network
- Close collaboration:
 - Business
 - Education & research
 - Government
 - Partnerships
- Aiming at innovation
- Facility sharing

Wageningen in the world

- Offices in Brazil, China, Chile and Ethiopia

Proximity Wageningen – NRW

Our education

Our vision: inspiring young people

- Blended – various learning methods
- Content – new global challenges
- Various, dynamic and flexible learning tracks
- Personal attention – contact, involvement,
- Talent assessment, counseling

Cultural diversity at Wageningen University

MSc students 2010-2011
Total 3000

PhD students 2010-2011
Total 1500

Bachelor Biotechnologie

222 students

Bij de Bachelor of Science opleiding Biotechnologie leer je om biologische en technische processen te doorgronden en toepasbaar te maken op industrieel niveau. Deze breed georiënteerde opleiding strekt zich

Vragen over deze opleiding?

Opleidingsdirecteur Biotechnologie
[dr.ir. S \(Sonja\) Isken](#)

[Contactformulier](#)

Master Biotechnology

199 students

Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Its practical applications include age-old techniques such as brewing and

Questions about this programme?

Programme Director Biotechnology
[dr.ir. S \(Sonja\) Isken](#)

[Contact form](#)

Master Bioinformatics

42 students

Bioinformatics is a new scientific discipline with roots in computer science, statistics and molecular biology. It was developed to cope with the output of genome sequencing initiatives, that result in an ever-increasing

Questions about this programme?

Administration
P (Petra) van Dijk

[Contact form](#)

Our research

Industrial Biotechnology @ WU

Cees Buisman
Huub Rijnaarts

Environmental
Technology

René Wijffels

BioProcess
Engineering

Harry Bitter

Biobased
Commodity
Chemistry

Willem de Vos

Microbiology

Vitor Martins
dos Santos

Systems &
Synthetic
Biology

Industrial Biotechnology @ WU

- Scales: From molecule to environment
- Strong cooperation between groups
- People: 217
 - Staff: 80
 - PhD: 116
 - Technical support: 21

Strategy Environmental Technology

- Convert agro industrial waste streams
- Into chemicals
- By means of mixed cultures

- Past: Anaerobic waste water treatment – upflow anaerobic sludge blanket reactor (UASB) (prof. Gatze Lettinga)

Examples Environmental Technology

- Waste2Chemical:
Production of medium chain fatty acids
- Shell/Paques process
Microbial desulfurisation of natural gas to elemental sulfur

Strategy Bioprocess Engineering

- Research in the context of a complete process
- Identification of bottle necks
- In depth research on these bottle necks

- Bioreactor design, Biorefinery, Metabolic engineering

Example Bioprocess Engineering

- From reactor engineering to metabolic engineering
- Anaerobic production of chemicals
 - Aerobic conditions result in low yield and low productivity
 - Anaerobic product formation – redox balance

- 3-hydroxybutyric acid
- PHB competes with polyethylene
- Anaerobic production:

$2 \text{ glucose} \rightarrow 3\text{-hydroxybutyric acid} + 2 \text{ ethanol} + 4 \text{ H}_2 + 4 \text{ CO}_2$

Bioprocess Engineering: AlgaePARC

- Interaction between basic research and pilots
- Multidisciplinary approach
- Research topics
 - Efficient use of sunlight
 - Reduction of energy input
 - Use of residual nutrients
 - Lipid accumulation
 - Strain improvement
 - Scale-up
 - Biorefinery
 - Design scenarios/LCA's

Strategy Biobased Commodity Chemistry

- Converting amino acids into N-chemicals
 - Nitrogen functionalisation is expensive
 - But already present in amino acids
 - Amino acid separation
 - Chemical and enzymatic conversions

Example Biobased Chemistry: Glutamate

Strategy of Microbiology

- Exploitation of thermophiles (bacteria and archaea)
 - Thermostable biocatalysts
 - Biohydrogen production
 - More favorable at elevated temperatures
 - Platform organism for 'green' chemicals
 - ability to hydrolyze lignocellulosic substrates to enable simultaneous saccharification and fermentation
- Engineering of Clostridia for the production of chemicals or biofuels
 - N-butanol and other alcohols

Thermophilic H_2 production

Introduction of 4 heterologous genes, combined with 2 gene knockouts should give extra reducing equivalents. Effect on the formation of reductant sinks (H_2 , ethanol, alanine) is investigated.

Net reaction: $Glucose + 8 H_2O \rightarrow 1 Acetate^- + 4 HCO_3^- + 5 H^+ + 8 H_2$

Strategy Systems & Synthetic Biology

- Re-programming microbes for tailored biocatalysis
 - Through:
 - Model-driven network re-design
 - Intertwining model and experiment
 - Genome-scale engineering and re-factoring
- Using fungi
 - Model system for higher eukaryotes
 - High level of
 - Protein secretion
 - Metabolite production
 - Metabolic versatility

Example Systems & Synthetic Biology

Cooperation with CLIB partners

Cooperating in research and education

Keywords:

Technologies: metabolic engineering, systems biology, synthetic biology, reactor engineering, cultivation, biorefinery

Microorganisms: thermophiles, fungi, fermentative microorganisms, algae, mixed cultures

Products: enzymes, fuels, chemicals, N-chemicals, industrial strains, biomass (protein, oil)

More info

E-mail: ruud.weusthuis@wur.nl; gerrit.eggink@wur.nl

Websites:

www.wur.nl

Bioprocess engineering:

www.bpe.wur.nl

Environmental Technology:

www.ete.wur.nl

Systems & Synthetic Biology:

www.ssb.wur.nl

Biobased Commodity Chemistry:

www.vpp.wur.nl

Microbiology:

www.mib.wur.nl/uk

Thank you for
your attention!

