Ea

Overview

. N Centre de Recherche Public
K. Gorgen ."'. Gabr?el Lipp’r‘nann

Project Coordinator
CRP-GL /EVA/GEOSAT
Belvaux, Luxembourg
http://www.lippmann.lu

H. Buiteveld
B PN Rijkswaterstaat
R. Lammersen XY inisterievan Vekeeren Watersaat

G. Brahmer x‘ll:bl’é

International Commission for the Hydrology of the Rhine Basin CHR

http://www.chr-khr.org KHR

RheinBlick2050

Joint Climate and Discharge Projections for the Rhine

0. de Keizer

J. Beersma
Enabling Delta Life k&i Koninklijk Nederlands
258 Meteorologisch Instituut

Ministerie van Verkeer en Waterstaat

P. Krahe bfg
M. Carambia
E. Nilson

C. Perrin @magref

Sciences, eaux & Tritoires

Schweizerische Eidgenossenschaft

D_ Volken g Confédération suisse

Confederazione Svizzera
Confederaziun svizra

Bundesamt fr Umiwelt BAFU

Deltas in Times of Climate Change, Rotterdam, 29 Sept - 1 Oct 2010; Scientific Programme / Deltas in Depth;
Theme 1: Regional climate, sea level rise, storm surges, river run-off and coastal flooding; Precipitation, discharge and flooding (part 2) (Session DD 1.4)

e Motivation
*  QGoals

¢ Research framework

* Climate change (CC) impacts
* Conclusions

e Outlook

Structure of the presentation KHR

CHR

* Data and model evaluation and suitability

(high flow = O. de Keizer’s follow-up presentation)




Motivation for the RheinBlick2050 project 7

Regional climate change does and will modify hydrological processes and the water balance
and discharge in the Rhine River basin and its tributaries

This has variable impacts, depending on respective sectors’ sensitivities and vulnerabilities
Decision makers need suitable information to develop adequate adaptation strategies
Existing publications / projects exist, albeit often either

— Small regional climate change projection ensemble size, potential undersampling of
“true” bandwidth; difficult assessment of uncertainties, or

— Focus often on only on subcatchments; methodologically difficult to combine, or
— Missing link to stakeholders (i.e. water managers)
Need for common coordinated discharge projections for the complete catchment

The CHR has a coordinating role in hydrological research in the Rhine River catchments (joint
research; exchange of data, methods, information; development of standardized procedures)

Close linkage to and cooperation with the ICPR / AG-H / EG Klima; CHR specifically
mentioned in ICPR’s tasks in Rhine ministers conference communiqué of 2007 under topic
“Climate change and its consequences”

Project goals ?iﬁﬁ

Overall objective: Assessment of regional climate change impacts on discharge in the
Rhine River basin (“classical” hydrological impact study)

Goals and results

1. Development of a common, consistent research framework across participating
countries (5) and institutions (8); “common” = agreement on suitability of data, methods,
models; “consistent” = data and models available for the complete catchment

2. Creation (acquisition, pre-processing, evaluation, bias-correction) of state-of-the-art
regional climate change projection ensemble for analyses and as forcing data to
hydrological models to generate specific discharge projections

3. Compilation of partly heterogeneous* information into applicable information and
quantifiable statements through scenario bandwidths and tendencies of future changes
in meteorological and hydrological key diagnostics (mean, low and high flow statistics)
for time-spans up to 2050 and 2100

* “meta” project, based on existing ongoing projects, results and data of the partners (e.g.
KLIWAS, CCHydro)
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Research framework KHR
Experiment design, data, modelling / processing chains

Ensemble of multi-model results shows an increasing bandwidth ( of contribution to overall uncertainty)
Emission- Global Regional Bias Regional Discharge
scenarios climate climate cormrection hydrology diagnostics

hydrol. year / summer / winter
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Validation datasets R
plus reference and CHR-CES .
“official” discharges =

KNMI weather generator
3000 yr time-series

CHR

Research framework KR
Study area and setup of hydrological model HBV134

* HBYV hydrological model for discharge
projections

* Version: HBV-96, implemented by BfG and
RWS-WD to Rhine River catchment

¢ Semi-distributed, 134 model catchments
(HBV134)

* Daily time-step

» Inputs: precipitation, air temperature,
potential evapotranspiration

* Limitations (excerpt)
— Hydrometeorological reference datasets
— Linear description of base flow
— No lake retention, not too sensitive

— Flood routing, no hydraulic model, no
overtopping of dikes = only with HQx




Research framework
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Results evaluation: “Scenario bandwidths and tendencies”

+ ... Discharge projections > specific diagnostics = how to evaluate and communicate bandwidth?

* - scenario bandwidths and tendencies; combining qualitative and quantitative measures

— Tendency: direction of change (/increase / no tendency / decrease ), 80% of

ensemble members point into same direction

— Bandwidth: bandwidth of change, [%], 80% of ensemble members are within that span
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» Existing results and knowledge of all partners may be easily integrated; adjustable; extensible

* In line with “good practice* recommendations of EU
*  Checked with ICPR stakeholders for usability

Data and model evaluation and suitability
Selection and bias-correction of RCM runs

37 control simulations (s) considered in total various combinations (c)

Step 1. | step2. | | [stepa. |\ [stena
26s/18¢c Spatial structure l A Annual cycle \ Outlier identification — ~ \| Seleclion
near and far future | Annual means [ L/ ‘ %

¢ Deviation of RCM results from observations (ctrl.)
* Hydrological models sensitive to such biases

* 4 bias-corrections methods are used
— Linear scaling (meteorology / mean / low flow)
— Non-linear scaling (high flow) = extreme multi-day precipitation
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20 s / 16 ¢ near future
17 s / 13 c far future

Through selection (before
bias correction)

> reduction of bandwidth
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Data and model evaluation and suitability
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Validation of HBV134 simulations, e.g. mean and low flow
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All discharge diagnostics validated (not shown), highest confidence in MQ
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Complete model chain (C20>GCM—>RCM->BC->HM) produces reliable results
HM performance and uncertainty: HBV134 most reliable, errors < 5%, > 90% variance explained
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CC impacts — Meteorological drivers, basin-wide

Air temperature changes, 30-yr seasonal means
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All seasons: increase of temperature, all
spatial domains (slightly higher in South);
more clearly defined in winter

Wi: 0.5°C to 2.5°C near future;
2.5°C to 5.0°C far future

Su: 0.0°C to 2.0°C near future;
2.5°C to 5.0°C far future
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Precipitation changes, 30-yr seasonal means
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Wi: increase of precipitation; 0% - 15%
near future; up to 25 % far future

Su: decrease of 10% to 30 % far future
Sp/Su/Au: no clear tendency near future

Spatially uniform in-/de-crease in near
future; larger heterogeneity in South in far
future




CC impacts — Mean flow changes

Modified discharge regimes throughout the basin

MQ [m?/s], 30-year long-term monthly mean discharge, annual cycles, Nov-Oct

1961 to 1990 2021102050 2071 to 2100
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Combined effects
Clear change signal
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CC impacts — Mean flow changes KHR
MQ changes, hydrological winter and summer
Projected relative changes of 30-year long-term mean hydrological winter / summer MQ
and scenario bandwidths and tendencies
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*  Wi: increase of mean discharge: near (0% to +25 %), far (+5% to +40%) future

* Su: opposite tendency: decrease of 30% to 5% far future; upstream: more rainfall-dominated

flow regime - more similar to regimes downstream; shift of maxima and minima

* Annual (not shown): increasing tendencies only for near future (Kaub, Kéln, Lobith,

Raunheim); in far future Wi and Su tendencies compensate each other
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CC impacts — Low flow changes KR
NM7Q changes, hydrological winter and summer

Projected relative changes of 30-year long-term mean hydrological winter / summer NM7Q

and scenario bandwidths and tendencies INCREASE = LESS SEVERE LOW-FLOW CONDITIONS
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*  Wi: increasing tendencies for near / far future (0% to 15%)
* Su: decrease of seasonal lowest 7-day mean discharge in far future (-30% to -10%)
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Conclusions cHa

* A concerted, international view of regional climate change impacts on the discharge regime of
the Rhine River is derived

* Individual results (mean, low, high* flow) have different magnitudes of uncertainties and
reliabilities assigned

* Hydrological projections and model chain components are based on a large proportion of
currently available data — which could still be extended (also in terms of gauges and
analyses)

* Many uncertainties and limitations still exist = possible projections rather than predictions
or forecasts

» Discharge analyses have been fed — among other sources — into the political process at ICPR
where eventually adaptation measures shall be prepared among the riparian countries of the
Rhine River




Outlook s

+ Still many limitations in the framework; how much bias-correction?, best approach for
extreme discharge modelling?, “ideal” model chain in the near future?

* New model datasets, emission scenarios upcoming: CMIPS, CORDEX (IPCC 5 AR)
* Higher complexity in earth-system models = increase in bandwidth
» Higher resolution RCM climate change projections (capture surface heterogeneities)

»  Still needed: further development of bias-correction methods, objective RCM evaluation
criteria

* Improvements in meteorological observation products (reference datasets)

* Additional hydrological model intercomparisons are needed (analogue to RCM ensemble
studies)

+ Extension of our hydrological modelling framework (flood routing, flood retention) =
important for adaptation, assessment of extreme discharges

* Extension of uncertainty assessment, contribution of model chain components to bandwidth

* Opverall framework shall be used for further studies with extended modelling components

International Commission for the Hydrology of the Rhine Basin CHR
KHR
CHR Climate change related reports via http://www.chr-khr.org
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Data and model evaluation and suitability KR
Selection and bias-correction of RCM runs

37 control simulations (s) considered in total various combinations (c)
20 s / 16 c near future

Step 1. | step2. | | /sepa. |\ [stena 17 s /13 c far future
26s/18¢c Spatial structure l A Annual cycle \ Outlier identification — ~\| Selection )
near and far future  Annual means i Y ‘ /| Through selection (before

bias correction)
- reduction of bandwidth

¢ Deviation of RCM results from observations (ctrl.)
* Hydrological models sensitive to such biases

* 4 bias-corrections methods are used
— Linear scaling (meteorology / mean / low flow)
— Non-linear scaling (high flow) = extreme multi-day precipitation

TMP, A_PCP bias, 1961 to 1990, wrt. CHR_OBS, AS2 BC CDF, 10-day precipitation, DJF, HADCM3Q0_CLM_25
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tructure of the presentation R
* Motivation
*  Goals
* Research framework
—  Data flow-path and modelling chains
—  Study area and setup of hydrological model HBV134
—  Scenario bandwidths and tendencies
* Data and model evaluation and suitability
—  Selection and bias-correction of RCM runs
—  Validation of HBV134 simulations
* Climate change (CC) impacts (high flow = O. de Keizer’s follow-up presentation)

—  Meteorological drivers
—  Mean flow changes
— Low flow changes

* Conclusions

*  Outlook
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Research framework KHR
Study area; setup of hydrological model HBV134

Typical discharge regimes, observed, long-term mean
25+ 1951 to 2000
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* HBV134 for discharge projections (HBV-96)
* Semi-distributed, 134 model catchments, daily
* Inputs: precip., air temp. , pot. evapotransp.

* Limitations
— Hydrometeorological reference datasets
— Linear description of base flow
— No lake retention, not too sensitive
— Flood routing, no hydraulic model, no
overtopping of dikes = only with HQx
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Data and model evaluation and suitability KHR
Selection of RCM runs [
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Data and model evaluation and suitability KR
Bias-correction of RCM runs

Precip. and Temp. biases "1990"
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Results — Meteorological changes KR
Basin-wide air temperature changes Robustness of A-PCP change signals: # proj. with A-PCP increase
30-yr seasonal means
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Comparison of HBV134-simulations with observed statistics
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Figure 3-29: Flood events 1993/1994 and 1994/1995 at Maxau: Observed discharge
(black line), simmlated discharge by HBV134 BFG forced by input 1 (red line), mnput
2 (blue lne) and by mput 3 (green lne). Datasource: BfG
Table 3-12: Deviations of discharge as simulated by HBV134_BfG and observations for the
flood events 1993/1994 and 1994/1995 at gauge Maxau
Date of Forcing: input 1 Forcing: input 2 Foreing: input 3
observed Deviation | Delay of Deviation | Delay of Deviation | Delay of
peak of peak peak [d] of peak peak [d] of peak peak [d]
discharge %] %] %)
1993-12-22 227 -1 11.1 -1 93 -1
1994-01-02 234 0 142 0 136 0
1994-01-05 182 0 10.9 0 10.7 0
1995-01-27 26.6 0 151 0 16.2 0
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Performance of HBV134 o
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BfG-1451 Technical Report, Koblenz, 2005 “Hydrological

Modelling in the River Rhine Basin” (daily HBV model), examp
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Uncertainties

SRES - GCM - RCM - BC > EVAP -> WBM
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Hydrological model performance and uncertainty analysis KR
Input / structural / parameter uncertainty
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Atmospheric data processing
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Bias-correction methods
Table 2-4: Characteristics of different bias-correction methods applied to precipitation fields
of RCMs. See text for details. LS 1s also used to correct fields of sunshine duration or global
radiation. The spatial domam is always the 134 HBV model catchments.
Short | Method Equation Temporal Statistical Applied for
domain domain
Ls Linear Scaling | p" = ;. p Monthly Mean of P amount | Mean and low
flow
AS1 Advanced p‘ =ax Pb S-day Mean and Mean flow and
Scalingl periods coefficient of occasionally
“evl_lim2” (including variation of P high flow
data from 30 | amount. For large
days before daily sums (P =
and after) 99th percentile)
linear scaling
based on average
excess
AS2 Advanced P =g« p? | Monthly Mean and Mean and high
Scaling 2 coefficient of flow
“fwet_cvwet” vanation of daily
P amount on P
days (davs =0.05
mm frequency
corrected)
AS3 Advanced p' =ax pb S-day 60. and 95 Mean and
Scaling 3 periods quantile of 5 day occasionally
“5d_quant_lim (including P amount. For high flow
2" data from 30 | large 5-day sums
days before (P5d = 95th
and after) quantile) linear
scaling based on
average excess
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Bias-correction methods

Table 2-5: Characteristics of different bias-correction methods applied to temperature fields
of RCMs. See text for details. The spatial domain is always the 134 HBV model catchments

Short | Method | Equation Tempor | Statistic | Applied
al al for
domain | domain

LS Linear T = T()+ (T, = Teng) Meonthly | Mean of | Mean and

Scaling o - T low flow

Asl Advance . O — — 5-day Mean Mean and

AS2 d Scaling T =—"-(T(t)~Tcw)+Ta: periods and high flow

AS3 1to3 e (includin | standard
g data deviation
from 30 of T
days
before
and after)
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