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Summary 
 
To prepare for the unlikely event of a nuclear emergency, atmospheric dispersion models are used to 
assess possible release concentrations and radionuclide deposition rates. In the Netherlands, the 
NPK-PUFF dispersion model is used to provide critical information about the radioactive plume during 
the first phase of a nuclear accident. By combining NPK-PUFF model predictions with spatial analyses 
of real-time gamma (γ) dose rate measurements from the Dutch National Radioactivity Monitoring 
Network (153 stations and 14 α/β air sampling monitors), informed intervention decisions can be 
made. In an emergency, additional mobile devices can be deployed to increase the accuracy in spatial 
estimates of radiation exposure. The main objective of this research was to determine where to 
optimally locate mobile devices in order to minimize costs associated with uncertain estimates of the 
radioactive plume. A Monte Carlo approach was used to account for uncertainty in the NPK-PUFF 
model. First probability distribution functions of model input parameters that contribute most to 
uncertainty in the predictions were investigated. Next many possible developments of these input 
parameters could be simulated and used to create various model outputs. To account for uncertainty 
in the model itself, a stochastic residual was generated and added to the NPK-PUFF model output. 
This resulted in a set of simulated realities. The optimal location of mobile measuring devices was then 
determined using spatial simulated annealing. The optimisation criterion selected for this research was 
the cost of making incorrect decisions due to prediction uncertainty. This uncertainty was quantified by 
comparing predicted maps with simulated realities. The predicted maps were created by adding a 
residual to a reference dose map. The residual was calculated by interpolating the differences 
between observations of the simulated reality and reference dose map using Inverse Distance 
Weighting. The cost function took population density into account and permitted a weighting of false 
positive (predicted concentrations greater than intervention thresholds when the actual value is below) 
and false negative values. Results indicate that optimal placement of mobile devices in the event of an 
accident tend to be in areas at the edge of the advancing radioactive plume, in densely populated 
areas. However, the Inverse Distance Weighting interpolation gave unsatisfactory results in improving 
the predicted maps.  
 
Keywords: Emergency; Uncertainty; Meteorological predictions; Radioactivity; Sampling design; 
Spatial simulated annealing 
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1 Introduction 

 
1.1 Background 
 
After the Chernobyl accident the necessity of an early warning monitoring system for radioactive 
contamination became even more evident. In the Netherlands, this resulted in the improvement of both 
the national organization for nuclear emergency planning and the technical infrastructure necessary 
for collection and representation of (radiological) information (Smetsers and van Lunenburg 1994). 
The first Dutch National Radioactivity Monitoring Network (NRM) was designed, and the National 
Institute for Public Health and Environment (RIVM) played a crucial role in the development of this 
network. The monitoring network has improved considerably over the last two decades and in 2005 
the operation of the third generation network was initiated (Twenhöfel et al. 2005).  

During nuclear emergencies, the RIVM runs the Back Office for Radiological Information 
(BORI). BORI is part of the Unit Planning and Advice nuclear (EPAn), which organises the national 
(off-site) nuclear emergency management (Twenhöfel et al. 2005). BORI provides information as good 
and fast as possible about radiation levels. During the first phase of an accident BORI focuses on 
issues like the prediction and establishment of the properties and shape of a radioactive plume, 
whether or not the emission is larger than a critical threshold and what the consequences are for 
inhabitants of the contaminated area. Estimation of the radiation level is based on model calculations 
and analysis of radiation measurements (Smetsers 2005).  

Model calculations are made by the atmospheric dispersion model NPK-PUFF (Verver et al. 
1990). The model simulates the emission of a source by hourly released puffs. The trajectory of each 
puff is computed by either analysed or forecast wind fields (van Pul 1992). NPK-PUFF can calculate 
both the concentration and deposition of radionuclides (Eleveld et al. 2007), and is of great importance 
for the GIS-based decision support system at the RIVM. 

The measurements are made by the third generation of the NRM, consisting of 153 ambient  
γ-monitors and 14 α/β air sampling monitors. Both device types measure ambient dose rates in nSv/h 
(nanoSievert / hour), which are also the units used for threshold warning levels (Twenhöfel et al. 
2005). Monitors cover the whole of the Netherlands, with an increased density around power plants 
and in the Dutch border region, near foreign power plants (Twenhöfel et al. 2005).  

In case of an emergency at a nuclear power plant, the actual release of radioactive nuclides 
can usually be delayed a few hours. During this delay, RIVM can add extra measuring points to the 
static network by using mobile devices. RIVM has two vans which transport mobile devices to the area 
around the emergency (Smetsers 2005). As it is preferred that mobile measuring devices are placed 
before the anticipated accident, the location of these devices should be determined quickly. This leads 
to the main objective of this research; where to put mobile devices in order to improve measurements 
of a radioactive plume in the event of an emergency?  
 

1.2 Problem definition 
 
The main problem of this research is determining optimal locations of mobile measuring devices, in 
order to support the monitoring system (i.e. NPK-PUFF + static stations). In this work a possible 
combination of locations of mobile devices is referred to as a sampling design. As this research was a 
continuation of the work of Jiang (2007), it followed that the problems were extensions of his work.  

In order to find a suitable sampling design it was crucial to examine uncertainty in the NPK-
PUFF prediction of the radioactive plume. There are many sources for this uncertainty and these had 
to be explored and taken into account when determining the optimal location of mobile measuring 
devices. Obviously, not only the NPK-PUFF output is used in the prediction of the radioactive plume 
as there are mobile and static measuring devices to support the model. This leads to the question how 
to use observations of devices to adjust the plume predicted by NPK-PUFF. As we wanted to know 
real measurement values before actually placing the devices, the observations had to be simulated. 
These observations were used to improve the prediction of the plume. After implementing a way to 
adjust the predicted plume, it was possible to compare different (predictions of) sampling designs. This 
comparison enabled the calculation of the suitability of a sampling design. How good is a sampling 
design compared with other sampling designs? In other words, what is the optimisation criterion? 
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Jiang (2007) introduced a cost function which compared a true plume with a predicted plume and 
assigned costs to the areas that were wrongly predicted (false positives and false negatives). This 
function was improved by taking into account population density at areas where predictions are wrong. 
When it was possible to determine the suitability of a sampling design the final step could be taken: 
implementing a methodology for optimising the sampling design. 

In order to test the methodology a fictitious accident at Borssele, a nuclear power plant in the 
southwest of the Netherlands (Figure 1), was simulated. The accident had a release size of         
1e+17 Bq 131I (radioactive iodine). We were interested in the radioactive plume six hours after the 
release, because we wanted the mobile devices to improve the prediction of the radioactive plume in 
the first phase after the accident. The wind direction was southwest with a wind speed of four m/s, 
resulting in a plume heading towards Rotterdam. The study area was defined by the maximum 
distance radioactive nuclides could be transported in the six hours after the initial release. Figure 1 
shows the 100 x 100 km large study area with an overlay of the radioactive plume, which indicates the 
dispersion of the plume six hours after the accident.  
 

 
Figure 1: Study area with in grey shades a hypothetical radioactive plume originating from Borssele  

 
1.3 Objective and research questions 
 
Objective:  
To minimize the risk of making wrong decisions in the first phase after a nuclear accident by optimizing 
the locations of mobile measuring devices.  
 
Research questions: 
1. What are the sources of uncertainty in the prediction of the radioactive plume and how can these 

be quantified?  
2. How can measurements of mobile devices be used to locate the predicted plume more 

accurately?  
3. How can the costs of wrong decisions associated with the sampling design be calculated?  
4. What is a suitable methodology to optimise the locations of mobile devices? 
5. How does the optimisation method perform in practice? 
 
Chapter 2 discusses the first four research questions, forming the methodology of this study. The 
results (research question 5) of this study are given in chapter 3.  After showing the results the major 
issues that were raised during this research are discussed in chapter 4. The final chapter provides 
recommendations for further research and concluding remarks. 



 11 

2 Methodology 
 
A Monte Carlo simulation approach (Heuvelink et al. 2008) was used for representing the uncertainty 
in NPK-PUFF model outcomes. A large number of possible realities were simulated and the costs of 
each of these simulated realities were calculated. If the amount of simulated realities was sufficient the 
average costs would be a reasonable indication for the suitability of the sampling design. Figure 2 
provides an overview of the methodology to determine the costs, along with references to the sections 
where the separate steps are explained in more detail.  
 

 
Figure 2: Overview of the methodology to determine the suitability of a sampling design; N represents the 
number of Monte Carlo simulations 
 
Assessing the suitability of the sampling design was crucial for determining the optimal configuration of 
mobile devices. This chapter concludes with an explanation of the method used to optimise the 
sampling design (section 2.4).  

2.1 Determining and quantifying sources of uncertainty in the 
predicted radioactive plume 
 
The atmospheric dispersion model NPK-PUFF was used to assess the concentration and deposition 
of radionuclides (Eleveld et al. 2007). But how certain of this output are we? We distinguish between 
two sources of uncertainty in the model output: model uncertainty and input uncertainty.  
Input uncertainty is associated with uncertainty in values of model input parameters, whereas model 
uncertainty is associated with discrepancies between the computational model and real processes 
(Karssenberg and De Jong 2005). For this research, model uncertainty was represented by a 
stochastic residual, which was simulated as a spatially correlated random field. This residual was 
added to the output of the NPK-PUFF model and an uncertainty analysis was performed to examine 
the effects of uncertainty in model input parameters. The dose map is the sum of a deterministic 
dispersion process model and a stochastic residual, i.e.: 
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Dose(x, t) = NPK-PUFF(x, t, input) + residual(x, t)   [1] 
 
where input represents NPK-PUFF input parameters, x a location in space and t a moment in time.   
Figure 3 shows a visualization of the generation of various dose maps. 
 

 
Figure 3: Realization of uncertain dose maps, which are the sum of NPK-PUFF output as a function of a 
realized set of input values and a sampled residual 
 
Please be aware that the dose map is a simulation of a possible reality; the actual dose map 
cannot be known, as it is impossible to look ahead in time to see what the real radiation levels will be 
and we can never measure the actual radiation levels at all locations. Therefore, the dose map will    
be referred to with the term simulated reality. In short, we focus on simulating possible realities, taking 
into account as much knowledge as possible about uncertainty in the prediction of the output plume. 

The following sections explain how input uncertainty and model uncertainty were modelled.  
First a selection of uncertain input sources of the NPK-PUFF model was made (2.1.1), along with data 
needed to analyze uncertainty in these sources (2.1.2). Next uncertainty in the NPK-PUFF parameters 
was modelled using probability distribution functions (pdfs), discussed in section 2.1.3. After modelling 
the pdfs, random simulation was used to generate model input parameters using a geostatistical 
approach (section 2.1.4). The last section of this chapter discusses the implementation of model 
uncertainty (2.1.5). 
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2.1.1 Selection of sources of uncertainty 
 
A first step in quantifying the sources of uncertainty was to determine which inputs can be adjusted in 
the NPK-PUFF model. It was important to understand which and to what extent input values can be 
varied, because this limited the possibilities of the uncertainty analysis.     

The NPK-PUFF model was used to simulate a number of possible realities by modifying the 
model input text file to read relevant parameters for determining the output plume. There are two 
categories of input parameters – source parameters and meteorological parameters. The source 
parameters, e.g. height and strength of the emission can only be set once in an input file, and 
therefore had to be constants. 

The meteorological parameters can be either manually altered in the input file, or the NPK-
PUFF model can be instructed to use output of meteorological models for the prediction of the plume. 
We chose to manually create the input files, because we wanted to vary these meteorological 
parameters to account for uncertainty. Manual input allows the user to set meteorological parameters 
in time steps of an hour, thus providing the opportunity for implementing temporal variation. 
Unfortunately the manual input file does not provide the possibility to vary meteorological parameters 
in space. In other words, NPK-PUFF assumes that these parameters are constant in space. 
Therefore, we focused on temporal variability.  

After consulting experts (Twenhöfel1 and van Dijk2, pers. comm) it became clear that the most 
important model inputs contributing to uncertainty in the prediction of a radioactive plume are:  

• wind speed 
• wind direction  
• mixing layer height 
• atmospheric stability 
• release height 
• emission rate / release strength 

The first four parameters are related to meteorological circumstances and the last two are related to 
the source of radionuclide emission. The NPK-PUFF model calculates the dispersion of the radioactive 
plume using wind-vectors at three different heights (10, 382 and 1387 meters), thus uncertainty in the 
wind-vector parameters are to be estimated at each of these heights.  
 

2.1.2  Data-analysis of sources of uncertainty 
 
In order to research uncertainty in the meteorological parameters, an analysis of meteorological data 
was performed. The data used were the same data that the RIVM uses to predict a potential 
radioactive plume with the NPK-PUFF model. KNMI (the Royal Dutch Meteorological Institute) 
provides RIVM with meteorological data every six hours, which consists of an estimation of the current 
and predicted meteorological situation. The predictions are made for several time steps of six hours, 
thus a prediction is made for six hours ahead in time, 12 hours, 18 hours and so on. For this research 
the six-hour prediction is most relevant as this prediction covers the first phase of a nuclear accident. 
The predictions of the meteorological parameters are made by the High Resolution Limited Area 
Model (HIRLAM), a numerical short-range weather forecasting system (About HIRLAM Programme, 
n.d.). HIRLAM calculates values of the meteorological parameters for each cell on a grid with a cell 
size of 55 by 55 kilometres.  

The KNMI provided a dataset with the data of various meteorological parameters for one year. 
This dataset contained both the six-hour HIRLAM prediction and the actual value estimated six hours 
later - for each parameter and only for the grid-cell on which the nuclear power plant of Borssele is 
located. The HIRLAM-dataset included all parameters which contribute to uncertainty in the prediction 
of the radioactive plume; wind speed and wind direction (at 10, 382 and 1387 meters height), mixing 
layer height and atmospheric stability. By comparing the six-hour prediction and the actual value 
estimated six hours later, the accuracy of the six-hour prediction was analyzed.  

Because meteorological conditions vary structurally both throughout the year and during the 
day, temporal variation and prediction accuracy are time-dependent. For instance, it is known that the 
development of mixing layer height is different in summer than in winter, and variance in wind direction 

                                                 
1 C.J.W. Twenhöfel, RIVM, Bilthoven, Personal Communication,  July 16, 2007 
2 A. van Dijk, RIVM, Bilthoven, Personal Communication, October 11, 2007 
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during the day differs from the variance during the night (Wieringa and Rijkoort 1983). Therefore, we 
selected a certain time period for our analysis, and the statistical properties of only part of the dataset 
were determined. The spring-day scenario was chosen, which restricted the data to daytime values 
(8:00 to 18:00) for March, April and May. The practical implication of using this differentiation in 
scenarios is that the statistical models estimated from this dataset are only valid for this time-period.  

 

2.1.3 Modelling the uncertainty 
 
In order to model uncertainty in the input values it was necessary to explore how uncertainty of these 
values could be defined. Heuvelink et al. (2007) described a framework in which uncertain 
environmental variables are represented and simulated with pdfs, which is one of the most frequently 
used approaches for representing uncertainty. He distinguishes between positional uncertainty and 
attribute uncertainty of variables. Because the location of the radioactive source is fixed and the 
meteorological parameters cannot be defined by certain locations, describing positional uncertainty is 
ineffectual. The defined attribute uncertainty is useful however. Heuvelink et al. (2007) distinguished 
between space and time variability of an attribute. Because the NPK-PUFF model only provides the 
possibility to vary meteorological parameters in time, we focused on the temporal variability of the 
meteorological parameters. The source parameters (height and strength of the emission) were fixed in 
the input file of the NPK-PUFF model, and thus could only be varied between different input files.  

 Temporal variability in the meteorological variables represents possible changes of the 
variables over time. For instance, wind speed can be four m/s at a certain moment in time, but one 
hour later it can be five m/s. The probability that wind speed will change from four to eight m/s within 
one hour is small in the Netherlands. By modelling temporal variability it is possible to simulate 
developments of meteorological variables in time. Temporal variability is discussed in section 2.1.3.1. 

 In addition to uncertainty in the development of meteorological NPK-PUFF input variables, 
there is uncertainty in the six-hour meteorological prediction that RIVM receives from KNMI. How 
certain can we be of these HIRLAM-predictions? What is the pdf of the uncertainty in this prediction? 
Section 2.1.3.2 deals with this question. 

 Figure 4 illustrates the overall approach to modelling input uncertainty. The blue dashed lines 
show the range in which 95% of the normally distributed input values (e.g. wind speed) fall. As can be 
seen from the graph there is no uncertainty in the value at t = 0, i.e. it is assumed that the initial value 
is exactly known. Up till a temporal distance of three hours, the input value becomes more and more 
uncertain. The range of possible values, represented by the area within the blue dashed lines, 
increases. But uncertainty does not grow continuously, as the six-hour prediction is known, which 
limits the range of possible values six hours ahead in time. The red dotted line represents the mean 
value of all simulations of this parameter.  
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Figure 4: Input uncertainty caused by temporal variation and uncertainty in the six-hour HIRLAM 
prediction 

 
2.1.3.1 Modelling the temporal variability 

 
The temporal variability in the input values was estimated by means of a variogram. Normally a 
variogram is used to describe spatial continuity as a function of distance and direction (Isaaks and 
Srivastava 1989). However it is also possible to estimate a variogram for changes in temporal 
continuity, by replacing distance with time. As time is a one-dimensional variable, direction is 
irrelevant. The GStat R-package (Pebesma 2004) was used to calculate variograms of the 
meteorological parameters. 

After calculating temporal semivariance, a variogram model was fitted. Variogram models 
were necessary to randomly simulate many possible developments of meteorological parameters. This 
general approach was suitable for estimating variogram models for wind speed at three different 
heights, shown in Appendix 1. The variogram models of the other meteorological parameters were 
more difficult to estimate. 

Wind direction: Calculating the variogram model for wind direction caused problems because 
it is a circular variable (i.e. between 0 and 360 degrees). In order to make a variogram of wind 
direction, the data were transformed into two continuous variables, representing “northness” and 
“eastness” (Palmer, n.d.). This was done by calculating the sine and cosine of wind direction. A 
variogram model for both the sine and cosine of wind direction was estimated; together these models 
represented the temporal variability in wind direction. After the calculations, the components were 
back transformed to wind direction in degrees. Appendix 1 shows the variogram models for 
cosine(wind direction) and sine(wind direction). 

Mixing layer height: Estimating the variogram model for mixing layer height was problematic 
because the quality of the data was low. The mixing layer height data were only rough estimates; the 
hourly increase during daytime was constant, there was no gradual decrease between day and night, 
and the six-hour prediction was equal to the estimated current value six hours later. Therefore another 
approach to determining the variogram model was taken. First four sets of possible developments of 
the mixing layer height, using four different variogram models with varying sill and range, were 
generated. Based on expert judgment, the sill and range of the set which best resembled reality was 
chosen. This resulted in the following model: variogram(mixing layer height) = 10000 * Exp(6)  

Atmospheric stability: The Pasquill-classification was used to model the stability of the 
atmosphere. This is a classification of atmospheric stability in six (or sometimes seven) ordinal classes 
(Pasquill 1974 in (Kok 2005)). Using the HIRLAM-dataset the temporal semivariances of the Pasquill 
values were calculated and the following variogram model was estimated:  
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variogram(atmospheric stability) = 0.62 * Linear(10) 
 

2.1.3.2 Modelling the uncertainty in the HIRLAM-prediction 

 
Next to uncertainty in the development of input parameters in the NPK-PUFF model, there is 
uncertainty in the six-hour HIRLAM predictions. The statistical properties of the uncertainty were 
estimated by comparing measured and predicted values of the same time-instance, using the 
HIRLAM-dataset that KNMI provided. This was done by determining the histograms of differences 
between predicted and actual values. The analyses were based on a spring-day scenario; therefore 
only the daytime data of March, April and May were compared.  

Appendix 2 shows SPSS-results of this analysis. The mean and standard deviations shown in 
the appendix were used to generate, using a normal distribution, different possible predictions. The 
assumption of a normal distribution was statistically valid for the wind speed parameters, but the 
prediction error of the wind direction was not normally distributed. The distribution of the prediction 
error in wind direction had a positive kurtosis, but was not significantly skewed.  However, improving 
the distribution function for the wind direction would be complex and the assumption of a normal 
distribution resulted in similar prediction errors as the errors obtained by the six-hour HIRLAM 
predictions.  

There was no histogram for mixing layer height, as all prediction values were exactly the same 
as the measured values. This is not realistic, as it is unfeasible that all predictions of this complicated 
parameter are 100% accurate. For the distribution of the prediction error a normal distribution with a 
mean of 0 (no bias) and a standard deviation of 50 meters was assumed.  

The last histogram shown in Appendix 2 depicts the error in the prediction of atmospheric 
stability using the Pasquill-classification. The usage of the statistical parameters of this histogram is 
questionable, as the Pasquill values are on an ordinal scale while the data are treated as continuous 
and normally distributed values. But the HIRLAM predictions were quite good, as the prediction error 
had a small standard deviation and a negligible bias. Therefore a normal distribution was assumed 
with a standard deviation of 0.4 and a mean of 0.  

Representing uncertainty in both mixing layer height and atmospheric stability input 
parameters using a Gaussian pdf was simplistic. However, as this study focuses on the overall 
methodological framework, the used approach was thought to be a reasonable starting point. 
Nevertheless, limitations along with suggestions for further research are addressed in chapter 5.    
 

2.1.3.3 Modelling uncertainty in the source variables 
 
Modelling of uncertainty in the source variables (source height and emission rate) was more 
straightforward, as these were assumed to be constant in time. For emission height, the same 
approach was used as in (Kok 2005). He made a distinction between a low and a high emission 
source scenario. The values used for a low emission source were in the range of 10-30m, and values 
for the high source between 200-600m, both uniformly distributed.  
 The uncertainty in the source emission rate is substantial. According to Twenhöfel3, very little 
is known about the emission rate in early phase risk estimates. Therefore the RIVM uses reference 
scenarios to handle this uncertainty. The scenario approach was also applied in this research by using 
a fixed emission of 1e+17 Bq for all input files, i.e. uncertainty in this variable was not accounted for. 
 

                                                 
3 C.J.W. Twenhöfel, RIVM, Bilthoven, Personal Communication,  November 27, 2007 
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2.1.4 Simulating possible output plumes 
 
After determining the statistical properties of temporal variation and uncertainty in the prediction of the 
input variables, the next step is to simulate possible developments of these parameters using random 
simulation. For the meteorological parameters the following steps were taken: 
 
1. Define temporal variation using the estimated variogram models (see 2.1.3.1). 
2. Set the current and six-hour HIRLAM prediction of this parameter. 
3. Generate possible six-hour predictions with estimated pdf’s of the prediction uncertainty (see 

2.1.3.2). 
4. Simulate values for time steps between the current and predicted parameter value. 
 
The simulation was done using conditional sequential Gaussian simulation (Deutsch and Journel 
1998; Pebesma 2004). The conditional simulation process creates alternative developments of the 
meteorological variable, honouring the estimated variogram model of the variable. The simulation was 
“conditional” because the resulting realizations reproduced data values (current and predicted value) 
at their location, and Gaussian because the variables were represented by continuous data which 
were assumed normally distributed. Sequential simulation extends the conditioning of new data values 
by including the original and all previously simulated values (Deutsch and Journel 1998). 

Figure 5 visualizes the results of 15 simulations of possible developments of mixing layer 
height and wind speed at 382m height. These graphs resemble the shape of Figure 4, indicating a 
successful implementation of the approach to modelling the development of meteorological 
parameters. The simulations were based on the estimated variogram models and pdfs of the 
uncertainty in the six-hour HIRLAM prediction.  
 

 
 
Figure 5: Simulation results of mixing layer height and wind speed at 382m height 
 

2.1.5 Model uncertainty 
 
Unlike input uncertainty, little was known about model uncertainty; therefore the model error was 
represented by a stochastic residual. We made two assumptions about the model uncertainty. Firstly, 
it seems reasonable to assume that the NPK-PUFF model was calibrated properly, thus without a 
systematically over- or underestimate of the true concentration (Heuvelink et al. 2008). Therefore we 
used a mean of zero for the additive residual. Secondly, we made the assumption that there is a 
spatial correlation in model uncertainty, which means that model errors at nearby locations are similar. 
This spatial correlation was represented by the following variogram model: 
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 variogram(model uncertainty) = 0.04 * Spherical(40 km) 
The residual was generated using unconditional sequential Gaussian simulation (Deutsch and 

Journel 1998; Pebesma 2004). This simulation process was closely related to the simulation of 
possible developments of meteorological parameters (see 2.1.4). Although this time the simulation is 
unconditional, as there are no observations of the model error to condition the simulation process. 
Figure 6 shows two simulation results, which provide an indication of the spatial distribution and values 
of the model error.  

 
Figure 6: Two model error residuals, created using unconditional simulation 
 

2.2. Use of mobile device measurements to adjust the predicted 
plume 
 
In case of a nuclear accident, the atmospheric dispersion model NPK-PUFF is used to predict the 
progression of a radioactive plume. If there is no other information about radioactivity levels available, 
NPK-PUFF provides the best prediction possible. The output of a single NPK-PUFF model was used 
as a reference dose map, which had no input uncertainty or model uncertainty. However, NPK-PUFF 
predictions can be validated by measurements of mobile and static devices (section 2.2.1). These 
measurements can be used to adjust the NPK-PUFF outcome in order to get the best possible 
prediction of a radioactive plume. A data assimilation approach was used to combine model 
predictions with measured data (Heuvelink et al. 2008), as described in section 2.2.2. 
 

2.2.1 Simulating measurements of the devices 
 
We want to know the values of mobile devices before actually placing them, hence real measurement 
values of mobile devices are unknown. Real measurement values of the static devices are also 
unknown, because we are interested in the dose values six hours in the future. Therefore both mobile- 
and static device measurements had to be simulated. A suitable simulation of measurements of 
mobile and static devices can be acquired by sampling from the set of simulated realities (see 2.1). 
This set of “real” dose maps represent possible dose values six hours ahead, thus sampling 
measurements from points on these maps provides realistic unknown dose values.   
 

2.2.2 Using simulated measurements to adjust the predicted plume 
 
After obtaining (simulated) values of the devices the reference NPK-PUFF dose map was used to 
improve the quality of the predicted map. This was done by taking the following steps:  
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1. Sample the dose value at the locations of measuring devices; both at the reference dose map and 
the simulated reality. 

2. Subtract the sampled values of the reference dose map from the sampled values of the simulated 
reality.  

3. Interpolate the subtracted dose values using Inverse Distance Weighting (IDW), resulting in a map 
representing the deviations from the reference plume. 

4. Add the interpolated map to the reference map, resulting in a predicted dose map. 
  
Figure 7 illustrates the above steps to create a predicted map from the reference dose map and the 
simulated reality.  
 

 

 
Figure 7: Methodology to create the predicted dose map 
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2.3 Optimisation criterion 
 

2.3.1 Introducing the cost function 
 
The optimization of the locations of mobile measurement devices (the sampling design) seeks to 
minimize uncertainty in the predicted plume. As Jiang (2007) mentioned, the best estimation may not 
be the result with the lowest spatially averaged error, because the decision-maker could be interested 
more in minimizing the costs of making a wrong decision due to uncertainty in the prediction. 
Therefore Jiang (2007) introduced an optimisation criterion based on the idea of false positive values 
(predicted dose value larger than the intervention level while the real value was smaller than the 
intervention level) and false negative values (predicted dose value smaller than the intervention level 
while the real value was larger than the intervention level). This distinction between an overestimation 
(false positive) and underestimation (false negative) of the dose was made because these result in 
different costs. An overestimation could lead to unnecessary actions, like evacuating a town where the 
dose does not exceed the intervention level, whereas an underestimation could lead to serious 
dangers for the health of people in an area where the intervention level is unknowingly exceeded. This 
resulted in the following cost function (Jiang 2007): 
 
C(S) = E[α · Afalse positive  + β · Afalse negative]  [2] 
 
Here, C(S) is the expected costs at a single time instant with sampling design S; E is the mathematical 
expectation (the expected value of the function); α and β are the cost impact parameters and A 
represents the area occupied by false predictions.  
Figure 8 illustrates this approach. 
 

 
Figure 8: The costs are based on differences between the predicted dose map and the simulated reality  
 

2.3.2 Extending the cost function with a population density map 
 
Equation [2] provided the basis for a more elaborate cost calculation. This extended cost calculation 
also took into account population density, because the costs of a wrong decision in a densely 
populated area are higher than in a scarcely populated area. Therefore a map was created, which 
consisted of weights resembling the population density. This was done by combining information from 
a table with the total population size of each Dutch municipality, a polygon map with the borders of the 
municipalities and a polygon map with built-up areas. The following steps were taken to create a 
suitable, weighted population density map: 
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1. Add the population information of the municipality to the municipality map. 
2. Intersect the built-up polygons with the municipality polygons, resulting in polygons of built-up area 

containing the name and number of inhabitants of the corresponding municipality. 
3. Calculate the total size of built-up area of each municipality. 
4. Divide the number of inhabitants of the municipality with the total built-up area of the 

corresponding municipality, resulting in a population density map. 
5. Create a grid of the population density map, using the population density to set the values of the 

grid cells. 
6. Reclassify the population density grid values to create a weighted population density map. Water 

was given a weight of 0, non-built-up areas weight 1 and built-up areas a weight between 5 and 
11, depending on the population density. Figure 9 shows a cut-out of the weighted population 
density map.  

 
 

 
Figure 9: Cut-out of the weighted population density map 
 

2.3.3 Calculating the costs associated with the sampling design 

 
The intervention levels are based on the effective dose, as the effective dose determines the effects of 
the radioactive plume on the population. The unit of the effective dose is the sievert (Sv). We chose a 
(fictitious) intervention level of 2.5 mSv, which is in the same order of magnitude as the intervention 
level for sheltering, 5 mSv (Bader4, pers. comm). NPK-PUFF is not able to directly determine the 
effective dose, therefore the effective dose had to be calculated from the NPK-PUFF output. Exact 
dose calculations are very complicated (Bader4, pers. comm). However, for this research a rough 
estimate was good enough, because predicting exact dose values was not the main purpose of our 
methodology. Therefore we only focused on the inhalation dose - i.e. effective dose from inhalation - 
which accounts for about 70% to more than 90% of the total effective dose in the first phase after an 
accident, depending on circumstances (Bader4, pers. comm). The inhalation dose was calculated with 
the following equation (ICRP 1995; ICRP 1996): 
 
D[Sv] = TIC[Bq.h/m3] · Q[m3/h] · DCC[Sv/Bq]   [3] 
 
D is the dose, TIC the Time Integrated Concentration at ground level, Q the human breathing rate and 
DCC the Dose Conversion Coefficient. The reference value for Q is 1 m3/h. DCC's vary for different 
nuclides, absorption classes and standards. For 131I a DCC of 7.4e-9 Sv/Bq was selected. This is valid 
for calculating the adult effective dose from inhalation, according to the EU-base regulations (ICRP 
1995; ICRP 1996). The NPK-PUFF model was used to compute the TIC, thus the effective dose was 

                                                 
4 S. Bader, RIVM, Bilthoven, Personal Communication, January 15, 2008 
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calculated by multiplying the NPK-PUFF output by Q * DCC (= 1 * 7.4e-9). In this study the values of 
all NPK-PUFF outputs were converted from time integrated concentration to effective dose using 
equation 3, enabling the comparison of the plume values with the intervention level.  

In order to calculate the average costs of a sampling design, the costs for all N realisations (the 
combinations of simulated realities and predicted dose maps) had to be calculated. This was done by 
taking the following steps:  
 
1. For each cell, check if it is false negative or false positive by comparing the predicted map with the 

simulated reality. 
2. If the cell is false negative or false positive, obtain the weight from the population density map and 

multiply this weight with the cost impact parameter, resulting in the cost of this cell. 
3. Add the cell-cost to the total costs of this realisation. 
 
After calculating the costs of all realisations, the average costs could be computed by dividing the total 
costs by the number of realisations.  

 
2.4 Optimising the locations of mobile devices 
 
Jiang (2007) applied a method to find the sampling design with the least costs by using simulated 
annealing (Kirkpatrick et al. 1983). Simulated annealing (SA) is an algorithm which was developed to 
solve non-linear optimization problems. Van Groenigen (1998) extended the SA algorithm to optimise 
spatial sampling schemes. He describes three core components of the spatial simulated annealing 
(SSA) algorithm: 
 

• Fitness function; calculates the optimization criterion, defined by the cost-function (2.3). 
• Generation mechanism; randomly perturbs a new sampling design by moving one sampling 

point. 
• Probabilistic acceptance criterion; chance of accepting a new sampling design. 

 
First our implementation of SSA and the three core components are discussed in section 2.4.1. 
Section 2.4.2 deals with the practical issue of creating a map with suitable locations for mobile 
devices, which limited the movement of sampling points by the generation mechanism. 

 
2.4.1 Spatial Simulated Annealing (SSA) 
 
Our implementation of the SSA algorithm consisted of the following steps: 
 
1. Start with an arbitrary sampling design. 
2. Construct a new sampling design by changing the location of one of the mobile devices.  
3. Create N predicted dose maps (see 2.2). 
4. Calculate the average costs using the optimisation criterion (see 2.3).  
5. Compare these costs with the costs of the previous sampling design. 
6. Accept the new design if current cost are lower than previous. If the new design is worse then 

accept it with a probability defined by the probabilistic acceptance criterion.  
7. A new sampling design is chosen and loop back to step 1. The SSA-algorithm finishes when the 

maximum amount of iterations is reached.  
 
Figure 10 shows the total distances over which mobile devices were moved for one SSA process of 
1500 iterations. The movement is done by first selecting two random values between a predefined 
minimum and maximum shift size (one for the x and one for the y dimension) and then adding these 
shifts to the current location of a randomly selected sample point. As can be seen from this figure the 
maximum shift size decreases as iterations continue, which follows from the assumption that the 
sampling design gets closer to an optimum with increasing iterations, and therefore moving sampling 
points over large distances would not be helpful (Van Groenigen and Stein 1998).  
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Figure 10: Distances over which mobile devices were moved to create a new sampling design 
 
The cooling schedule denotes the progress of the optimisation. This optimisation takes place by 
calculating the costs of a newly perturbed sampling design with the fitness function, and accepting this 
design if the costs are lower. However, the design can also be accepted with a low probability if the 
costs are higher. The chance of accepting a new sampling design Pc(Si � Si+1) was determined by the 
probabilistic acceptance criterion [4] (adapted from (3.6) from (Van Groenigen and Stein 1998)):  
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N represents the total number of iterations, n is the current iteration and C(Si) the fitness (or cost) 
function.  
 

 
Figure 11: Acceptance probability when costs of the new sampling design are higher 
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2.4.2 Selecting candidate sampling locations 
 
In SSA, at every iteration a new sampling design was created by moving one of the mobile devices. 
Not all locations however were suitable for placement of mobile devices. The locations had to be close 
to a road and on open land. Therefore a suitable locations map was created, which consisted of a grid 
with the spatial extent of the study area. Each cell had either the value 0 (not-suitable) or 1 (suitable). 
Two topographic vector data sets (a polygon map with the land cover objects and a line map 
representing the road network) were used to implement the geographical constraints. The map was 
made as follows: 
 
1. Select suitable land covers from the polygon land cover map; these were all areas except water 

and forest.   
2. Create a buffer of 300 meter (the maximum distance from a road which a mobile device can be 

placed) around all paved roads.  

3. Intersect the buffer and suitable land covers, creating a polygon map with all suitable areas. 

4. Rasterise the polygon map with suitable areas, and set these cell values to 1. 

5. Set the remaining cell values to 0.  
 
Figure 12 shows the suitable locations map. The dense Dutch road network made it possible to place 
the devices on most land areas. 
 

 
Figure 12: Suitable locations map 
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3 Results 
 
In order to test the optimisation procedure many SSA-runs with varying settings were done. Appendix 
3 shows the cost and settings of all results; interesting comparisons are highlighted with different 
colours. Varying these settings gave different results and helped to gain insight in the end results. The 
main parameters that were varied are (in brackets is the abbreviation used to refer to these 
parameters): 
 

• Number of mobile devices (nrMob) 
• SSA: number of iterations (nrIter) 
• SSA: number of simulated realities (nrSim) 
• SSA: maximum shift size; the maximum distance at the start of the SSA-run that the mobile 

device could be moved (see 2.4.1).This distance decreased every iteration (maxShift) 
• IDW: inverse distance power (IDP) 
• IDW: maximum distance; only devices within this distance from the location were used for 

prediction (maxDist) 
• False negative cost impact parameter (see equation [2]): the weight of the areas that were 

wrongly classified by underestimation (FNweight) 
 
This chapter provides an overview of the most important results. First the results of the implemented 
methodology are given by showing optimised sampling designs in section 3.1. Next the results of SSA-
runs with different IDW-parameters are shown in section 3.2. Section 3.3 shows the effects of varying 
the optimisation criterion.  
 

3.1 Optimisation of the sampling design  
 
Figure 13 shows a graph of the development of the total costs for an SSA-run with 1500 iterations. It is 
clearly visible that the acceptance criterion ([4]) enables the approval of a sampling design with higher 
costs, especially in the beginning (see also Figure 11). With increasing iterations, costs are eventually 
lower than before, which indicates that simulated annealing is able to escape local optima  (Van 
Groenigen and Stein 1998). 

 
Figure 13: Development of the total costs of an SSA-run 
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Figure 14 shows the result of an SSA-run. The following settings for this optimisation procedure were 
used: nrMob = 8; nrIter = 1500; nrSim = 80; maxShift = 170; IDP = 3; maxDist = 20; FNweight = 5. 
The mobile devices are placed at the edge of the reference map threshold (depicted by the grey line), 
where the probability of making a wrong decision is large. Furthermore most devices are located in the 
north, in order to reduce the costs around the populated areas of Rotterdam and surrounding cities. 
The static devices are also considered in the optimisation procedure; i.e. the mobile devices are 
placed at gaps in the monitoring network and never near a static device.  
 

 
Figure 14: Optimised locations of eight mobile devices 
 

3.2 Varying the IDW-parameters 
 
In order to get the best possible results out of the SSA optimisation procedure, different IDW-settings 
were tested. Figure 15 shows the start and end cost maps of an SSA-run, with the following settings:  
nrMob = 8; nrIter = 1500; nrSim = 50; maxShift = 200; IDP = 2; maxDist = unlimited; FNweight = 5.  
Thus there was no limitation to the distance that sampled dose values affect the estimation of 
surrounding locations. The costs are shown in red and the blue crosses depict the mobile devices. Be 
aware that the costs are relative values and dependent on the amount of simulated realities (nrSim), 
the cost impact parameters and the use of the population density map. On the left a random sampling 
design prior to optimisation, which illustrates the costs resulting from deviations of the simulated 
realities and the reference dose map very well. Consequently the shape of the reference plume can 
easily be distinguished.  
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Figure 16 shows the final sampling designs with varying maximum distance values used for the IDW-
interpolation. All other settings were fixed and the same as used for the SSA-run with no limitations to 
the maxDist (see Figure 15).  
 

 
Figure 16: Overview final sampling designs with varying maxDist values and a fixed IDP of  3   
 

Figure 15: Comparison of the start- and end cost map of an SSA-run with no maxDist; on the left the 
random start,  on the right the final sampling design  
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The sampling designs show an interesting pattern. It seems that higher maximum distances resulted in 
mobile devices being placed outside the area of possible plumes. Apparently placing devices in the 
plume sometimes resulted in higher costs than placing them outside the plume. Only for a maxDist of 
30 and 20 the devices were placed more sensible. The resulting average costs were: 
no maxDist:  2422 
maxDist 50:  2453 
maxDist 40: 2381 
maxDist 30: 2207 
maxDist 20: 2114 
 
Next to the maxDist parameter, the Inverse Distance Power (IDP) could also be varied. In IDW, the 
influence of a sampling point (i.e. the location of a device) on the estimation of the value at the 
surrounding locations was determined by its weight. The weights of the sampling points are inversely 
proportional to the distance, but the weights can be inversely proportional to any power of the distance 
(Isaaks and Srivastava 1989). The costs of three SSA-runs with different IDPs and the same 
remaining settings were as follows: 
IDP 2:  2160 
IDP 3:  2075 
IDP 4:  2131 
 
Thus decreasing the maxDist to a size in which there was often only one device responsible for 
prediction and using a large inverse distance power resulted in the lowest costs. This resembled a 
nearest neighbour interpolation. It is not what we anticipated, and will be discussed in section 4.2. In 
order to make fair comparisons, the IDW-settings for all further SSA-runs were an IDP of 3 and a 
maxDist of 20. 
 

3.3 Varying the cost calculation settings 
 
It was important to analyse the effect of changing the optimisation criterion on the determination of the 
optimal sampling design. First the results of varying the cost impact parameters are shown, to check 
whether the mobile designs were actually placed in a way that the probability of a false negative 
prediction was the smallest (3.2.1). Then the effect of extending the cost calculation by including a 
population density map is shown (3.2.2). 
 

3.3.1 Comparing different cost impact parameters 
 
In order to provide insight in the costs of a sampling design when varying the cost impact parameters, 
we needed to visualize both false negative and false positive costs. Therefore two different cost maps 
of each sampling design were created; one showing the probability (between 0 and 1) of making a 
false negative decision and a similar map for false positive decisions. Figure 17 shows the resulting 
sampling designs with the cost impact parameters FNweight = 1 and FNweight = 5.  The other settings 
were as follows: nrMob = 8; nrIter = 1500; nrSim = 50; maxShift = 200; IDP = 3; maxDist = 20;  
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Figure 17: Probability cost maps for FNweight  1 (above) and FNweight 5 (below) 
 
The resulting probability maps show that the chance of making a false positive decision with an 
FNweight of 5 is higher than making a false negative decision, especially compared with the 
probability maps with FNweight 1. Another way of comparing the placement of mobile devices was 
overlapping both sampling designs (Figure 18), with the intervention level (threshold) of the reference 
plume on the background. It can be inferred from Figure 18 that, on average, an FNweight of 5 
resulted in the placement of mobile devices a bit outside the threshold of the reference plume. For the 
FNweight of 1 this was not the case. Apparently the probability of making a false negative decision 
was smaller when the mobile devices were placed just outside of the reference plume threshold.  
Similar results were found by Jiang (2007).  
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Figure 18: Comparison results SSA-run FNweight 1 (red) and FNweight 5 (blue) 
 

3.3.2 Comparing results with and without population density map 
 
Next to distinguishing between the costs of an over- and underestimation of the dose around the 
intervention level, a distinction was made between making a wrong decision in a populated and less 
populated area.  
 

 
Figure 19: Cost maps without (left) and with (right) population density taken into account 
 
Figure 19 shows the effects of considering population density on the cost calculation. To better 
visualise the costs, only two devices were used in this example. On the left cost map population 
density is not taken into account, resulting in smooth cost areas. 
 The right cost map shows the effect of the use of a population density map in the cost 
calculation. The grey line is the threshold of the reference dose map and shown for orientation. The 
non-inhabited areas (sea and rivers) in the areas around the intervention level can easily be derived, 
as they did not have any costs. These are the white areas between the red areas, whereas the highly 
populated areas can be distinguished by the deep red colour.  

Figure 20 shows the effect of adding population density to the cost-function on the 
optimisation of the sampling design. The settings for both SSA-runs were:  
nrMob = 8; nrIter = 1500; nrSim = 80; maxShift = 170; IDP = 3; maxDist = 20; FNweight = 5. 
When population density was not taken into account (left cost map), the devices were placed in a 
uniform way around the threshold of the reference plume. However, when population density did affect 
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the optimisation (right cost map), the devices were placed more to the North, in the highly populated 
area of Rotterdam and its surrounding cities.  
 

 
Figure 20: Results SSA-run without (left) and with (right) population density taken into account 

 
3.4 Computation time 
 
In case of an emergency, the locations of the mobile devices have to be predicted within half an hour 
(Heuvelink et al. 2008). Within this time the following computations have to be made:  
 
1. Create input files for the NPK-PUFF model with the HIRLAM data of the current and predicted 

meteorological circumstances (five minutes) 
2. Run the NPK-PUFF model with all these input files (four hours). 
3. Create the simulated realities by loading NPK-PUFF output files and adding the simulated model 

error residual (one hour).  
4. Execute the SSA-algorithm with 1500 iterations (42 hours). 
 
The time mentioned in brackets gives an estimation of the current computation time for 100 simulated 
realities. The calculations were executed on a PC with an Intel Dual Core 2 CPU, 1.68 Ghz and 3 GB 
of RAM, using Windows XP as operating system. In total the whole procedure took about two days. 
Obviously this is much too long for operational use. Although the creation of a practical implementation 
was not the main purpose of the thesis, this is a serious problem which should be addressed and 
taken into account for future research.  
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4 Discussion of results 

 
4.1 Optimisation of the sampling design 
 
The optimisation procedure of the sampling design is dependent on the settings of the SSA-
parameters, i.e. the number of simulated realities, the amount of iterations, the maximum shift (the 
maximum distance a mobile device can be moved to generate a new sampling design, see 2.4.1) and 
the probabilistic acceptance criterion ([4]). Fine tuning these parameters in order to get the best results 
was a delicate process, because some parameters affect each other.  

The maximum shift size was chosen in a way that all mobile devices will be placed in an area 
where there are costs. If the maximum shift is too small, then there is a probability that one or more 
mobile devices get stuck in an area without costs and thus are of no use (e.g. when placed on an 
island with no suitable locations nearby). This seems unlikely with for example 1500 iterations, but 
considering that there are about eight mobile devices, only one device is moved every iteration and 
the shift size decreases each iteration, it becomes more probable (see Figure 10 for absolute values of 
the shift sizes of one SSA-run). However, lowering the maximum shift size in general results in a better 
sampling design as there are more iterations for fine-tuning the device-locations. Thus a balance had 
to be found between a large enough maximum shift size to locate all mobile devices in the right area, 
but small enough to optimise the location. Furthermore, the decrease in maximum shift size is 
dependent on the number of iterations: increasing the maximum number of iterations could decrease 
the maximum shift size, because there are more iterations with large enough values to avoid getting 
stuck in no-cost areas. 
 Another questionable component of SSA is the probabilistic acceptance criterion. What should 
be the probability of accepting a worse design and how should this probability decrease in time? We 
chose for an exponential function [4], which resulted in an increasingly slower decreasing probability of 
accepting a worse design (see Figure 11). This acceptance criterion function was judged by looking at 
the development of the costs (one example is Figure 13). The resulting graphs show that, especially at 
the start, the costs regularly increase and thus a worse design is accepted. But eventually the costs 
are always lower than at the start, which indicates the evasion of possible local optima. However, this 
did not prove that this acceptance criterion was the most suitable and the question remains open for 
discussion. Similarly to the maximum shift size, increasing the number of iterations enables 
decreasing the chance of accepting a worse design, as more iterations result in more possible 
evasions of local optima.   
 

4.2 Varying the IDW-parameters 
 
Before adjusting the IDW-parameters, the outputs of SSA-runs gave seemingly erroneous results. 
Mobile devices were placed far outside potential cost areas (= areas where dose values of simulated 
realities are near the intervention level and deviate from the reference plume). How could this be? If 
the SSA worked properly, this meant that the costs had to be lower when one or more devices were 
placed outside cost-areas. After testing several sampling designs it indeed seemed the case that a 
mobile device could lower the costs of a sampling design more when placed outside of the plume, 
instead of being placed at a logical location in the high cost areas. Moreover, the costs could even be 
higher when one or multiple extra mobile devices were placed in a high cost area. Figure 21 shows the 
effect of adding two devices (pointed out by the arrows) in a cost area. When looking closely at the 
redness around the devices it can be seen that the costs in the immediate vicinity of the added mobile 
devices are lowered, but further away are sometimes higher. This could mean that the total costs 
increased.  
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Figure 21: Addition of two devices could result in higher costs by affecting areas further away from the 
devices 
 
Clearly, this was not anticipated and resulted in peculiar sampling designs which should not be used in 
reality. In order to find the reason for these results the process of calculating the costs was explored. 
In short, costs are the result of a wrong prediction of the dose value around the intervention level, 
calculated by comparing the predicted dose maps with the simulated realities. The better the 
prediction, the lower the costs. Could it be that the predicted map became worse after adding a 
device? Figure 22 provides insight in this question. It shows two cut-outs of the absolute difference of 
the dose values of a predicted map and a simulated reality. On the left the initial situation is shown, on 
the right the effect of the addition of a mobile device in an area where the prediction could be 
improved. Upon close inspection it can be seen that the addition of one device (indicated by the black 
arrow) improves the prediction in the immediate neighbourhood, but makes the prediction further away 
(in this case east of the added device) worse. This can lead to higher costs if the prediction further 
away results in an over- or underestimation of the intervention level. 
   

 
Figure 22: Effect of adding one device on absolute difference between predicted map and simulated reality 
  
Apparently the IDW interpolation has it drawbacks. The cause of the problem is the influence of 
devices relatively far away from the estimated location. In short, a device that is closest to a high-cost 
area is not the only device that influences the prediction there, also a device with a possibly very 
different dose a bit further away influences the prediction. Increasing the Inverse Distance Power (IDP) 
parameter improves the situation, as this gives higher weights to devices most nearby. Another way to 
overcome possible wrong influences on the prediction is to set the maximum distance parameter. This 
ensures that in a sparsely sampled area (e.g. near Belgium) one device cannot have influence on the 
prediction at the edge of the plume far away.   

This explains the results from section 3.2, where setting the IDW-parameters maxDist and IDP 
in a way that the IDW-interpolation resembles nearest neighbour interpolation resulted in the lowest 
costs and the most logical sampling designs. This approach greatly decreased the influence of other 
measurements further away from the plume.    

An explanation for these difficulties in interpolating the measurements is the spatial distribution 
of dose values, i.e. the shape of the plume. There are high dose values in the centre of the plume, but 
a few cells away (especially nearby the source) the values drop rapidly. Thus there is much variation 
at small distances, which makes it troublesome to adjust dose values based on observations far away.  
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4.3 Varying the cost calculation settings 
 
The costs are the result of differences in dose values around the intervention level between the 
predicted dose map and the simulated reality, thus the more the reference dose map is adjusted to the 
simulated reality, the better the prediction. Around the devices the costs are lower, as the reference 
dose map can be adjusted with information of the “true” dose from the simulated reality obtained by 
the mobile measuring device.  

Improving the prediction however does not necessarily result in lower costs, as we are purely 
interested in making the right decision; whether or not the dose value is above or below the 
intervention level. The prediction can be exceedingly wrong, but if both the predicted- and the 
simulated reality dose value are below or above the intervention level there are no costs. This explains 
that there are no costs at the centre of and far away from the reference plume, but only at the edges of 
the reference plume where dose values are close to the intervention level. Therefore the devices are 
most effective when placed in these areas. 

The cost impact parameter influences the placement of devices. When the false negative 
weight is five and the false positive weight is one, the mobile devices are placed just outside of the 
reference plume threshold (see Figure 18). This can be explained as follows: when sampling dose 
values just outside the threshold of the reference map, the sampled reference dose value is smaller 
than the intervention level but the simulated reality value could be larger than the intervention level. 
When the value of the simulated reality is larger than the threshold, the adjustment of the reference 
dose map results in a predicted map with values around the device which are larger than the 
threshold. In case the simulated reality values further away from the device are larger than               
the threshold this resulted in an overestimation (false positive).  

Similarly, it can also be the case that the sampled simulated reality value just outside the 
threshold of the reference map is smaller than the intervention level. Then the adjustment of the 
reference map results in lowering the values around the device. In this case, both the values of        
the predicted and the simulated reality map are larger than the intervention level and there are no 
costs. Thus the probability that there is an underestimation (false negative) is smaller than the 
probability of an overestimation (false positive).  
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5 Conclusion and recommendations 
 
Research objective 
The overall objective of this study was similar to the work of Jiang (2007): to find a methodology to 
optimise the locations of mobile measuring devices (sampling designs) in order to minimize the risk of 
making a wrong decision. This study also used spatial simulated annealing to determine the best 
sampling design; i.e. the sampling design with the lowest costs according to the optimisation criterion. 
The research questions are discussed below. 
 
What are the sources of uncertainty in the prediction of the radioactive plume? 
Several extensions of the work of Jiang were successfully implemented. A major refinement  was 
extending and applying knowledge about the sources that contribute to uncertainty in the prediction of 
the radioactive plume. This was achieved by modelling pdfs of uncertainty in the input parameters of 
the NPK-PUFF model. Using these pdfs many possible developments of meteorological 
circumstances and source conditions were simulated. Subsequently the NPK-PUFF model was run, 
resulting in a set of model outputs. To account for the uncertainty in the model itself, a stochastic 
residual was generated and added to the NPK-PUFF model output. This resulted in a set of simulated 
realities which played a considerable role in the optimisation process.  

Many simplifications were made in determining the probability distribution functions of the 
source uncertainty variables. The most important simplification was leaving out uncertainty in the 
spatial distribution of meteorological parameters, which was necessary due to the limited input-
possibilities of the NPK-PUFF model. This was a serious drawback as for example wind speed and 
wind direction are not the same over the whole study area. Therefore we still added a fairly large 
residual to the NPK-PUFF outputs in order to create the simulated realities (equation [1]). It is likely 
that in the near future the spatial resolution of the meteorological input data of the NPK-PUFF model 
will be increased (Kok 2005), which is a first step towards a possible implementation of spatial 
variability. 

Another simplification was omitting the correlation between different meteorological variables. 
There are many complicated relationships and interactions between these variables. For example, 
mixing layer height has a decisive influence on the temperature profile in the atmosphere, which 
affects the relationship between wind direction at different heights (Bijvoet et al. 1979). Another 
example is the influence of atmospheric stability on the development of mixing layer height (Wieringa 
and Rijkoort 1983). Modelling correlations between meteorological variables is a complicated task and 
should preferably be done by an expert in the fields of meteorology and spatial statistics. 
 Furthermore the method used to simulate temporal variation in atmospheric stability was not 
ideal, as Pasquill values are on an ordinal scale and we treated them as if it was a continuous 
variable. Perhaps a better way to model atmospheric stability would be to use the Monin-Obukhov 
length, which is a more recent and suitable method to indicate the stability (Kok 2005). Another 
solution could be to use a more appropriate way to simulate temporal variation of Pasquill values, e.g. 
by using Markov-chains to model the probability of transitions between different Pasquill-classes 
(Heuvelink5, pers. comm.).  

Next to the meteorological parameters the release strength was difficult to model, as we were 
unable to determine its probability distribution function. Therefore a fixed value of 1e+17 Bq was 
chosen. Furthermore we focussed on the release of only one nuclide (131I), which was not realistic but 
a logical first step in modelling the source uncertainty.   
 Another point for consideration is uncertainty in the model error. Because our knowledge of 
model uncertainty was limited, the model error was created by unconditional Gaussian simulation 
using a variogram model. However, both the simulation and the variogram model were mere 
speculations about the actual model error. Researching the parameters of the model error was 
problematic as no real disaster took place to test the NPK-PUFF model. Kok (2005) did a sensitivity 
analysis of the NPK-PUFF model using concentration data from  the Kincaid-experiment,  a controlled 
“accident” to research dispersion of a tracer gas. However, the results of his sensitivity analysis did not 
provide insight in the size and spatial distribution of the difference between the NPK-PUFF outcome 
and the true measured values. Therefore this analysis was not suitable to infer useful information 
about the model error.  
 

                                                 
5 G.B.M. Heuvelink, Wageningen University and Research Centre, Wageningen, November 16, 2007 
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How can measurements of mobile devices be used to locate the predicted plume more accurately?  
Difficulties in creating predicted dose maps resulted in deficient sampling designs. The predicted map 
is created by adjusting the reference dose map with information from measurements obtained from 
simulated realities. This is done by first subtracting the sampled dose value (at the locations of the 
devices) of the simulated reality from the values of the reference dose map, then these subtracted 
values are interpolated with Inverse Distance Weighting (IDW) and finally this map is added to the 
reference dose map. Unfortunately the Inverse Distance Weighting interpolation did not always 
improve the overall prediction. The reason for the inadequacy of IDW is the spatial distribution of dose 
values of the plume; i.e. the variability and spatial continuity are dependent on the shape of the plume, 
especially in cost areas at the edge of the plume. Here the mobile devices have maximum effect. IDW 
takes the values of surrounding measurements into account, which can decrease the quality of the 
prediction in the cost areas. Therefore adapting the IDW settings in a way that only the nearest 
measurement influences the prediction (i.e. gets a weight of 1) results in the lowest costs, and thus in 
the best sampling design. We highly recommend to improve the interpolation method, as the IDW did 
not gave satisfactory results. 
 
How can the costs of wrong decisions associated with the sampling design be calculated?  
The optimisation criterion was successfully enhanced by taking population density into account. This 
criterion was used to assess the fitness of the sampling design and to make comparisons between 
different sampling designs possible. Extending the criterion with population density resulted in a 
preference for placing mobile devices in densely populated areas.  

Another extension to the work of Jiang (2007) was the implementation of dose calculations in 
order to comply with more realistic intervention levels used by the RIVM. This calculation is fairly 
straightforward; the dose is calculated by multiplying time integrated concentration (directly calculated 
by NPK-PUFF) with a Dose Conversion Coefficient (equation [3]). This study only focused on the 
dispersion of 131I, however in reality multiple nuclides will be released in case of a nuclear accident. 
Furthermore the calculation of the effective dose was greatly simplified. In order to adapt the 
methodology for practical purposes, both aspects should be considered.  
 
What is a suitable methodology to optimise the locations of mobile devices? 
Another important extension to the work of Jiang (2007) was the addition of the static device network 
in the optimisation procedure, which greatly improved the realism of the whole procedure. Results 
clearly showed that mobile devices were placed as an addition to the static device network, which is 
exactly their purpose. The optimisation of the sampling design by SSA worked well. The optimisation 
criterion, the perturbation of new sampling designs and the acceptance criterion were successfully 
implemented. The resulting sampling designs were not always satisfactory, this however was mainly 
because of the mentioned difficulties in updating the predicted dose map with IDW. The SSA-algorithm 
tries to find the sampling design with lowest costs, and if a sampling design with a mobile device 
placed outside the plume results in low costs the SSA-algorithm is not the reason for faulty sampling 
designs. However, there is room for improvement of the SSA-parameters by fine-tuning the generation 
of new sampling designs and the probability of accepting a worse sampling design. Increasing the 
number of simulated realities and iterations will also provide better results, but brings us to a drawback 
of the SSA-algorithm: the computation time. With a relatively small amount of 100 simulated realities 
and 1500 iterations it took about 40 hours to finish the SSA-procedure. However, there are many 
methods to speed up the computation which could dramatically lower the total time to calculate the 
optimal sampling design. Examples are the use of a faster computer, implement parallel computing 
(Heuvelink et al. 2008), write a more efficient algorithm and using a coarser grid for computationally 
demanding tasks. 
  
The two major recommendations are to further explore uncertainty in the meteorological predictions 
and NPK-PUFF model, and to improve the update of the predicted map with point observations. In 
spite of the mentioned problems the research objective has been reached. This methodology to 
optimise locations of mobile measurement devices provided promising and interesting results. It has 
the potential to be used in reality; not only for radioactive monitoring networks, but for various 
situations in which measurements of mobile devices could be used to improve model predictions.  
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Appendix I: Variogram models of the meteorological parameters 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Variogram model = 5.9Gaussian(7.2) Variogram model = 2.8Linear(10) 

Variogram model = 6.1Gaussian(6.7) 
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Variogram model = 0.2Linear(13) Variogram model = 0.2Linear(11) 

Variogram model = 0.14Gaussian(7) Variogram model = 0.15Gaussian(8) 

Variogram model = 0.12Gaussian(7) Variogram model = 0.08Gaussian(6) 
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Appendix II: HIRLAM prediction uncertainty 
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Appendix III: Overview results SSA-runs 
 

Static 
included? 

Population 
Density nrMob. FNweight nrSim. nrIter. MaxDist IDP maxShift 

Avg. 
Costs 

No No 16 5 70 2500 Unlimited 10 250 1734 
no no 16 5 70 2500 Unlimited 4 250 1882 
yes No 10 5 60 1500 Unlimited 2 250 2977 
No no 8 5 50 1500 20 3 200 2114 
no no 8 5 50 1500 30 3 200 2207 
no no 8 5 50 1500 40 3 200 2381 
No No 8 5 50 1500 50 3 200 2453 
No No 8 5 50 1500 Unlimited 3 200 2422 
yes No 8 5 50 1500 20 2 200 2160 
yes no 8 5 50 1500 20 3 200 2075 
yes no 8 5 50 1500 20 4 200 2131 
No No 8 5 50 1500 20 2 200 2143 
No No 8 5 50 1500 20 4 200 2202 
No No 8 1 50 1500 20 3 200 963 
No No 8 5 50 3000 20 3 200 2234 
No No 8 5 100 1500 20 3 200 2184 
No yes 10 5 70 1500 20 3 170 3444 
no yes 10 5 70 1500 20 3 170 3681 
No yes 10 5 70 1500 20 3 170 3428 
No yes 8 5 100 2000 20 3 170 4023 
No yes 12 5 100 2000 20 3 170 3439 
yes yes 8 5 70 1500 20 3 170 3483 
yes yes 8 5 80 1500 20 3 170 3439 
yes No 8 5 80 1500 20 3 170 2131 

 
 
Explanation colour scheme: 
  Comparison different maximum distances 
  Comparison different Inverse Distance Powers (with static devices) 
  Comparison different Inverse Distance Powers (no static devices) 
  Comparison costs final sampling design with same settings 
  Comparison different amount of mobile devices 
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Appendix IV: Commented R-script for creating NPK-PUFF input files 
 
#load libraries 
library(gstat) 
library(circular) 
          
nrSim = 100;  
 
# time parameters 
timeStart = 1; timeAnalysis = 1; timePrediction = 7  
timeEnd = 7; nrTimeSteps = timePrediction 
 
# date & time of disaster 
startYear = 7; startMonth = 4; startDay = 18; start Hour = 12 
       
# grid to simulate time series with a spatial compo nent 
timeGrid = expand.grid(x = 1:nrTimeSteps, y = 1:2) 
gridded(timeGrid) = ~x + y   
 
#------------------ FUNCTIONS --------------------- -----------# 
        
checkDegreeInRange = function(obj) 
{ 
  # checks if obj is between 0 and 360 degrees; if not then transform obj   
   
  if(obj < 0) 
    obj = obj + 360 
  if(obj > 360) 
    obj = obj - 360 
     
  return(obj) 
}     
   
simulateData = function(currentSim, predSim, vgm) 
{  
  # simulates values of time steps between current and predicted value      
   
  # create matrix to store results                                                                          
  simData = matrix(1,nrow = nrSim, ncol = nrTimeSte ps)  
 
  for(i in 1:nrSim) 
  {  
    # create spatial points data frame with current  and predicted values  
    tempData = data.frame(z=c(currentSim[i],predSim [i]),  
    x=c(timeAnalysis,timePrediction), y=c(1.0001,1. 0002)) 
    coordinates(tempData)=~x+y 
     
    # use conditional Gaussian simulation to simula te time step values   
    x = krige(z~1, tempData, timeGrid, model = vgm,  nsim=1)  
     
    simData [i,] = x$sim1[1:nrTimeSteps]    
  } 
   
  return(simData) 
}              
         
simulateWDData=function(currentSimX,currentSimY,pre dSimX,predSimY,cosVgm,sinVgm) 
{ 
  # simulates the values of the time steps between the current and predicted - 
  # sine and cosine value, afterwards calculate ang le using arctan function 
    
  wdData = matrix(1,nrow = nrSim, ncol=nrTimeSteps)  # create matrix to store data 
 
  for(i in 1:nrSim) 
  {  
    # create spatial points data frame with current  and predicted values      
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    tempData = data.frame(z=c(currentSimX[i],predSi mX[i]),  
      x=c(timeAnalysis,timePrediction), y=c(1.0001, 1.0002)) 
   coordinates(tempData)=~x+y 
    
    # use conditional Gaussian simulation to simula te time step values  
    dataX = krige(z~1, tempData, timeGrid, model = cosVgm, nsim=1) 
    
    tempData = data.frame(z=c(currentSimY[i],predSi mY[i]),  
      x=c(timeAnalysis,timePrediction), y=c(1.0001, 1.0002)) 
    coordinates(tempData)=~x+y 
    dataY = krige(z~1, tempData, timeGrid, model = sinVgm, nsim=1) 
    
    for(j in 1:nrTimeSteps) 
    { 
      # calculate angles from the cos and sin value s 
      angleTemp = deg(atan2(dataY$sim1[j], dataX$si m1[j])) 
       
      if(angleTemp < 0) 
        angleTemp = angleTemp + 360 
         
   wdData [i,j] = angleTemp 
     }         
   }   
                           
   return(wdData) 
}    
   
#---------------- SOURCE PARAMETERS --------------- ----------# 
 
# source emission strength: no uncertainty because of scenario-approach 
emStrength = 1e17 
 
# if no scenario is used the commented code below c an be used 
#emStrengthSim = rnorm(nrSim, emStrength, 1e16) # t est value 
#emStrengthData = as.array(emStrengthSim)    # conv ert to array 
 
# emission height: set a low or high source 
emHighSource = FALSE 
 
if(emHighSource == FALSE) 
  emHeightSim = runif(nrSim, 10, 30) 
 
if(emHighSource == TRUE) 
  emHeightSim = runif(nrSim, 200, 600) 
 
emHeightData = as.array(emHeightSim) 
   
        
#----------- METEOROLOGY PARAMETERS --------------- --------# 
  
# precipitation 
rain = 0.11 
 
#--------------- WINDSPEED ----------------------# 
 
ws10Current = 3; ws10Pred = 4;  
sillWs10 = 2.8; rangeWs10 = 10 
ws10Vgm = vgm(sillWs10,"Lin", rangeWs10)     # variogram model wind speed  
ws10CurrentSim = rnorm(nrSim, ws10Current, 0)    
ws10PredSim = rnorm(nrSim, ws10Pred-0.0523, 1.004)         
ws10Data = simulateData(ws10CurrentSim, ws10PredSim , ws10Vgm) 
 
# Wind speed 382 meter 
ws382Current = 4; ws382Pred = 4;  
sillWs382 = 5.9; rangeWs382 = 7.2 
ws382Vgm = vgm(sillWs382,"Gau",rangeWs382)     # variogram model wind speed 
ws382CurrentSim = rnorm(nrSim, ws382Current, 0)      
ws382PredSim = rnorm(nrSim, ws382Pred-0.195, 0.841)     
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ws382Data = simulateData(ws382CurrentSim, ws382Pred Sim, ws382Vgm) 
 
# Wind speed 1387 meter 
ws1387Current = 5; ws1387Pred = 5;  
sillWs1387 = 6.1; rangeWs1387 = 6.7 
ws1387Vgm = vgm(sillWs1387,"Gau",rangeWs1387)   # variogram model wind speed 
ws1387CurrentSim = rnorm(nrSim, ws1387Current, 0)      
ws1387PredSim = rnorm(nrSim, ws1387Pred-0.115, 0.77 9) 
ws1387Data = simulateData(ws1387CurrentSim, ws1387P redSim, ws1387Vgm) 
 
 
#---------------- WIND DIRECTION ---------------# 
 
# Wind direction 10 meter   
wd10Current = 250; wd10Pred = 190 
wd10CosVgm = vgm(0.2, "Lin", 13)      # variogram model wind direction  
wd10SinVgm = vgm(0.2, "Lin", 11)      # variogram model wind direction  
 
wd10CurrentSim = rnorm(nrSim, wd10Current, 0)       
wd10PredSim = rnorm(nrSim, wd10Pred-3.83, 19.4) 
 
wd10CurrentSimX = array(1, dim=nrSim); wd10CurrentS imY = array(1, dim=nrSim) 
wd10PredSimX = array(1, dim=nrSim); wd10PredSimY = array(1, dim=nrSim) 
 
for(i in 1:nrSim)    # calculate the sin and cos of the current and pred w ds  
{ 
  wd10CurrentSimX[i] = cos(rad(wd10CurrentSim[i])) 
  wd10CurrentSimY[i] = sin(rad(wd10CurrentSim[i]))      
  wd10PredSim[i] = checkDegreeInRange(wd10PredSim[i ])   
  wd10PredSimX[i] = cos(rad(wd10PredSim[i])) 
  wd10PredSimY[i] = sin(rad(wd10PredSim[i])) 
}    
 
wd10Data = simulateWDData(wd10CurrentSimX, wd10Curr entSimY, wd10PredSimX,  
  wd10PredSimY, wd10CosVgm, wd10SinVgm) 
 
# Wind direction 382 meter   
wd382Current = 240; wd382Pred = 200 
wd382CosVgm = vgm(0.14, "Gau", 7)      
wd382SinVgm = vgm(0.15, "Gau", 8)     
 
wd382CurrentSim = rnorm(nrSim, wd382Current, 0)      
wd382PredSim = rnorm(nrSim, wd382Pred-1.54, 12.2) 
 
wd382CurrentSimX = array(1, dim=nrSim); wd382Curren tSimY = array(1, dim=nrSim) 
wd382PredSimX = array(1, dim=nrSim); wd382PredSimY = array(1, dim=nrSim) 
 
for(i in 1:nrSim)    # calculate the sin and cos of the current and pred  wds  
{ 
  wd382CurrentSimX[i] = cos(rad(wd382CurrentSim[i]) ) 
  wd382CurrentSimY[i] = sin(rad(wd382CurrentSim[i]) )      
  wd382PredSim[i] = checkDegreeInRange(wd382PredSim [i])   
  wd382PredSimX[i] = cos(rad(wd382PredSim[i])) 
  wd382PredSimY[i] = sin(rad(wd382PredSim[i])) 
}    
 
wd382Data = simulateWDData(wd382CurrentSimX, wd382C urrentSimY, wd382PredSimX, 
 wd382PredSimY, wd382CosVgm, wd382SinVgm) 
 
# Wind direction 1387 meter   
wd1387Current = 230; wd1387Pred = 210 
wd1387CosVgm = vgm(0.08, "Gau", 6)      # variogram  model wind direction 
wd1387SinVgm = vgm(0.12, "Gau", 7)      # variogram  model wind direction 
 
wd1387CurrentSim = rnorm(nrSim, wd1387Current, 0)  
wd1387PredSim = rnorm(nrSim, wd1387Pred-0.44, 11)  
 
wd1387CurrentSimX = array(1, dim=nrSim); wd1387Curr entSimY = array(1, dim=nrSim) 
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wd1387PredSimX = array(1, dim=nrSim); wd1387PredSim Y = array(1, dim=nrSim) 
 
for(i in 1:nrSim)    # calculate the sin and cos of the current and pred  wds  
{ 
  wd1387CurrentSimX[i] = cos(rad(wd1387CurrentSim[i ])) 
  wd1387CurrentSimY[i] = sin(rad(wd1387CurrentSim[i ]))      
  wd1387PredSim[i] = checkDegreeInRange(wd1387PredS im[i])   
  wd1387PredSimX[i] = cos(rad(wd1387PredSim[i])) 
  wd1387PredSimY[i] = sin(rad(wd1387PredSim[i])) 
}    
 
wd1387Data = simulateWDData(wd1387CurrentSimX, wd13 87CurrentSimY,  
  wd1387PredSimX, wd1387PredSimY, wd1387CosVgm, wd1 387SinVgm) 
                
                           
#------------------ STABILITY  (Monin Obukhov lengt h) -------------------# 
 
stabCurrent = 4; stabPred = 4;  
sillStab = 0.62; rangeStab = 10      
stabVgm = vgm(sillStab,"Lin", rangeStab)     # variogram model stability  
stabCurrentSim = rnorm(nrSim, stabCurrent, 0)      
stabPredSim = rnorm(nrSim, stabPred, 0.4)          
stabData = simulateData(stabCurrentSim, stabPredSim , stabVgm) 
 
for(i in 1:nrSim) 
{    
  for(k in 1:nrTimeSteps)       
  { 
     stabData[i,k] = as.integer(stabData[i,k]+0.5)   
     
     if(stabData[i,k] > 4) 
      stabData[i,k] = 4 
       
     # convert to Monin-Obukhov length 
     if(stabData[i,k] == 1) 
        stabData[i,k] = -6.7 
         
     if(stabData[i,k] == 2) 
        stabData[i,k] = -25     
         
     if(stabData[i,k] == 3) 
        stabData[i,k] = -100 
         
     if(stabData[i,k] == 4) 
        stabData[i,k] = 1000             
         
     if(stabData[i,k] == 5) 
        stabData[i,k] = 100 
         
     if(stabData[i,k] == 6) 
        stabData[i,k] = 13.3             
 }    
} 
 
#-------- MIXING LAYER HEIGHT --------------------#  
 
mlhCurrent = 300; mlhPred = 1200 
sillMlh = 10000; rangeMlh = 6 
mlhVgm = vgm(sillMlh, "Exp", rangeMlh) 
mlhCurrentSim = rnorm(nrSim, mlhCurrent, 0) 
mlhPredSim = rnorm(nrSim, mlhPred, 50)      
mlhData = interpolateData(mlhCurrentSim, mlhPredSim , mlhVgm)                                  
       
                 
#-------- WRITE OUTPUT/NPK-PUFF INPUT FILES ------- ------------# 
 
yearStr = "";  monthStr = "";  dayStr = "";  hourSt r = "";  endhourStr = ""   
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# make sure the date variables are in the right for mat; always 2 digits 
if(startYear<10) yearStr=sprintf("0%i",startYear) e lse yearStr=toString(startYear) 
if(startMonth<10)monthStr=sprintf("0%i",startMonth) else          
monthStr=toString(startMonth) 
if(startDay<10) dayStr=sprintf("0%i",startDay) else  dayStr=toString(startDay) 
     
for(i in 1:nrSim) 
{  
  # use a base file to copy input information that isn't changed to output file  
  conRead <- file("C:\\Johan\\PuffInputFiles\\puffB ase.txt", "r",  
    blocking = FALSE)                                                                  
             
  # open the output file to write all the data to 
  outputFileName = sprintf("C:\\Johan\\runs\\test4\ \Inputs\\input%i.txt", i) 
  conWrite <- file(outputFileName, "w", blocking = FALSE)           
  
  if(startHour<10) hourStr=sprintf("0%i",startHour)  else 
    hourStr=toString(startHour)     
  startTime = sprintf("%s %s %s %s", yearStr, month Str, dayStr, hourStr) 
  writeLines(startTime, conWrite, sep = "\n") 
      
  endHour = startHour + nrTimeSteps-1        
  if(endHour<10)endhourStr=sprintf("0%i",endHour)el se endhourStr=toString(endHour)    
  endTime = sprintf("%s %s %s %s", yearStr, monthSt r, dayStr, endhourStr) 
  writeLines(endTime, conWrite, sep = "\n")  
           
  # write 6 lines of base file         
  tempData = readLines(conRead, 6)    
  writeLines(tempData, conWrite, sep = "\n")   
   
  # write the source height 
  tempData = sprintf("%.0f          ! SIMULATED: st ack height", emHeightData[i]) 
  writeLines(tempData, conWrite, sep = "\n")    
           
  # write 2 lines of base file         
  tempData = readLines(conRead, 2)    
  writeLines(tempData, conWrite, sep = "\n")    
   
  # write the emission strength 
  tempData = sprintf("%G     ! SIMULATED: emission first hour", emStrength) 
  writeLines(tempData, conWrite, sep = "\n")    
    
  # write 11 lines 
  tempData = readLines(conRead, 11) 
  writeLines(tempData, conWrite, sep = "\n")   
   
  # write number of time steps   
  tempData = sprintf("%i            ! NR. TIME STEP S", nrTimeSteps)   
  writeLines(tempData, conWrite, sep = "\n")     
   
  # write meteo data 
  for(j in 1:nrTimeSteps) 
  {  
    hour = startHour+j-1 
     
    hourStr = ""       
    if(hour < 10) hourStr = sprintf("0%i", hour) el se hourStr = toString(hour)   
      
    tempData=sprintf("%s %s %s %s %.1f %.1f %.1f %. 1f %.1f %.1f %.2f %.0f %.0f",  
    yearStr, monthStr, dayStr, hourStr, wd10Data[i, j], ws10Data[i,j],  
    wd382Data[i,j], ws382Data[i,j], wd1387Data[i,j] , ws1387Data[i,j], rain, 
     mlhData[i,j], stabData[i,j]) 
    writeLines(tempData, conWrite, sep = "\n")    
  }                       
          
  close(conRead)  
  close(conWrite)  
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  # convert to unix format with FROMDOS program    
  shell(paste("C:\\Johan\\PuffInputFiles\\FROMDOS.E XE ", outputFileName)) 
          
} # end for loop  
 
# write IBterm file (necessary for NPK-Puff to run,  has no real information)          
outputFileName = sprintf("C:\\Johan\\PuffInputFiles \\ibterm.txt") 
conWriteIbterm <- file(outputFileName, "w", blockin g = FALSE)  
   
for(j in 1:nrTimeSteps+1) 
{  
  hour = startHour+j-1 
     
  hourStr = ""       
  if(hour < 10) hourStr = sprintf("0%i", hour) else  hourStr = toString(hour)   
      
  tempData = sprintf("%s,%s,%s,%s,3.72088,51.4286,1 0,0.000,0.01, 0,0, 0,0, 0,0,  
  0,0, 0,0, 0,0, 0,0 ", yearStr, monthStr, dayStr, hourStr) 
  writeLines(tempData, conWriteIbterm, sep = "\n")    
}    
 
close(conWriteIbterm)  
 
# convert to unix format with FROMDOS program      
shell(paste("C:\\Johan\\PuffInputFiles\\FROMDOS.EXE  ", outputFileName))     
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Appendix V: Commented R-implementation of SSA-algorithm 
 
Part 1: SSA-algorithm 
 
rm(list=ls()) # remove all 
 
library(gstat) 
library(sp) 
library(lattice) 
 
source("M:\\Thesis\\Algorithm\\optimizationFunction s.r")                           
                                                      
#------------------ CONSTANTS --------------------- ------------------# 
    
criticalDose = 2.5;     # set the critical dose / intervention level   
nrSim = 100;            # number of simulated true dose maps  
nrMobDev = 8;           # number of mobile measuring devices  
useFixedDev = TRUE;     # set use of fixed devices   
 
idpValue = 3;           # Inverse Distance Power used for IDW  
useMaxDist = TRUE;      # use max distance parameter  
maxDist = 20;           # size of max distance parameter  
 
fpWeight = 1;           # weight of false positive pixel  
fnWeight = 5;           # weight of false negative pixel  
   
#  settings for SSA   
maxShift=170;      # maximum nr of gridcells point can be shifted   
k=0;               # number of iteration    
maxIterations=1500; 
oldCosts = 99999999999;  
newCosts = 99999999999;   
                              
trueDoseMap = list();  
predDoseMap = list(); 
 
plumeColors = grey((256:0 / 256)^2);  
greyColors = grey(256:0 / 256);    
costColors = rgb(1,((255:0)/255), ((255:0)/255));  
mapColors = rgb(1,((255:0)/255)^0.7, ((255:0)/255)^ 0.7); 
mapColors[1]="#CCCCFF";   # set no costs to blue (water)  
   
# create path for output info  
outputDate = format(Sys.time(), "%d%H%M"); 
outputPath = sprintf("M:\\Thesis\\Algorithm\\SSA\\O utputRuns\\ 
  It%i_Si%i_Mob%i_Fn%i_IDP%i_%s\\", 
  maxIterations, nrSim, nrMobDev, fnWeight, idpValu e, outputDate); 
dir.create(outputPath);         
 
#--------- LOAD COST MAP, SUITABLE LOCATION MAP AND  FIXED DEVICES --------# 
 
# create a 250 x 250 point-grid (1 gridcell = 400 b y 400 metre) 
mapGridPoints <- expand.grid(1:250, 1:250); 
names(mapGridPoints) <- c("x","y"); 
 
# create a true grid-class from these points 
mapGrid = mapGridPoints; 
coordinates(mapGrid) =  c("x", "y"); 
gridded(mapGrid) = TRUE;   
 
# load cost map 
costMapData = scan("M:\\Thesis\\Algorithm\\SSA\\Inp utData\\costMap.txt"); 
costMapData = invertY(costMapData, 250);   # invert Y    
costMap = SpatialPixelsDataFrame(points=mapGridPoin ts,data 
=data.frame(costMapData)); 
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# load map with suitable locations 
suitLocMapFile = read.csv("M:\\SSA\\InputData\\poss LocTotal400.csv", 
 header=FALSE);  
suitLocMap = SpatialPixelsDataFrame(points = mapGri dPoints, data = suitLocMapFile); 
 
# read locations of the fixed devices and retrieve amount of fixed devices 
if(useFixedDev == TRUE)            
    locFixed = read.csv("M:\\SSA\\InputData\\locFix edGrid250.csv", header=TRUE); 
if(useFixedDev == FALSE)  
    locFixed = read.csv("M:\\SSA\\InputData\\locFix edGridNONE.csv", header=TRUE); 
                         
nrFixed = length(locFixed$ID); 
 
# store the locations of fixed devices in a point s tructure for viewing 
locFixedSpatialPoints = locFixed; 
coordinates(locFixedSpatialPoints) = ~Xgrid+Ygrid;  
ptsFixedDev = list("sp.points", locFixedSpatialPoin ts, pch = 3, col = "black", 
 alpha = 1);    
                  
                  
#------------------ LOAD TRUE DOSE AND REFERENCE MA PS  -------------------------# 
                 
doseMapPath = sprintf("M:\\Thesis\\Algorithm\\SSA\\ DoseMapsSmallME\\"); 
                                  
# read Puff reference output 
fileName = paste(doseMapPath,"referenceDoseMap.txt" ); 
z = scan(fileName); 
referenceDoseMap = SpatialPixelsDataFrame(points 
=mapGridPoints,data=data.frame(z)); 
 
for(i in 1:nrSim) 
{ 
  fileName = paste(doseMapPath,sprintf("trueDoseMap %i.txt", i)); 
  z = scan(fileName); 
  trueDoseMap[[i]] =      
SpatialPixelsDataFrame(points=mapGridPoints,data=da ta.frame(z));    
}                    
                       
#---------- CREATE RANDOM SAMPLING DESIGN --------- ------------# 
 
# set locations mobile devices and retrieve amount of mob. devices     
locMob = matrix(1, nrow=nrMobDev, ncol=2); 
 
for(i in 1:nrMobDev) 
{ 
  goodLoc = FALSE; 
   
  while(goodLoc == FALSE) 
  {  
    locMob[i,1] = as.integer(runif(1,1,251)); # [,1 ] = x-coord 
    locMob[i,2] = as.integer(runif(1,1,251)); # [,2 ] = y-coord  
    goodLoc = checkGoodLoc(locMob[i,1],locMob[i,2],  i-1);  
  }          
}           
                                 
#------------- SSA ALGORITHM ---------------------- ---------------# 
                   
startPAccept=0.2;   # probabilistic acceptance criterion  
pAcceptList = array(0, maxIterations);  # keep track of P     
 
costList = array(0, maxIterations);  # keep track of costs  
shiftListX = array(0, maxIterations); # keep track of shift size in X-dimension  
shiftListY = array(0, maxIterations); # keep track of shift size in Y-dimension  
locList = list(); 
 
 
# show cost map of start sampling design 
startSamplingDesign = locMob;      
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locMobSpatialPoints=data.frame(Xgrid=locMob[1:nrMob Dev,1],Ygrid 
=locMob[1:nrMobDev,2]); 
coordinates(locMobSpatialPoints) = ~Xgrid+Ygrid;      
ptsMobDev = list("sp.points", locMobSpatialPoints, pch = 3, col = "blue",alpha=1); 
 
newSamplingDesign = startSamplingDesign;                   
                             
for(i in 1:nrSim)   
  predDoseMap[[i]] = createPredMapAll(i);   
        
startCosts = calculateCostsOutput(paste(outputPath, sep="","sdStart.bmp"));                  
startDate = date();  # store start date        
 
for(k in 1:maxIterations) 
{          
    #--------- CONSTRUCT NEW SAMPLING DESIGN ------ ------------# 
     
    # random select a mobile device to be moved 
    selectedDev = as.integer(runif(1,0,nrMobDev)+1) ;        
    oldLoc = c(locMob[selectedDev,1], locMob[select edDev,2]);     
       
    goodLocCheck = FALSE; 
    while(goodLocCheck == FALSE) 
    { 
      newLoc = moveDevice(selectedDev); 
      goodLocCheck = checkGoodLoc(newLoc[1],newLoc[ 2],nrMobDev); 
    }        
     
    # one device is moved, store new location in ne w sampling design 
    newSamplingDesign = locMob; 
    newSamplingDesign[selectedDev,]=newLoc;      
     
    #-------- CREATE SPATIAL POINTS OF MOB DEV TO U SE FOR VISUALIZATION -------#   
         
    locMobSpatialPoints = data.frame(Xgrid = newSam plingDesign[1:nrMobDev,1],  
      Ygrid = newSamplingDesign[1:nrMobDev,2]);           
    coordinates(locMobSpatialPoints) = ~Xgrid+Ygrid ;      
    ptsMobDev = list("sp.points", locMobSpatialPoin ts, pch = 3,col="blue",alpha=1); 
     
  
    #--------- CREATE PREDICTED MAPS -------------- ----------# 
                  
    for(i in 1:nrSim) 
    {          
      predDoseMap[[i]] = createPredMapAll(i);   
     } 
       
    #--------- CALCULATE THE COSTS ---------------- ----------# 
  
    newCosts = calculateCostsFast();   
         
    newPAccept=runif(1,0,1);                    # get random number for acceptance  
    pAccept = startPAccept*exp(-10*k/maxIterations) ; # calculate acceptance chance       
                
    # check if this sampling design is better 
    if(newCosts <= oldCosts) 
    { 
      oldCosts = newCosts; 
      locMob = newSamplingDesign;  
    }    
    else  # new  costs higher, chance to still accept with acceptanc e criterion  
    {     
      if(newPAccept < pAccept) 
      { 
        oldCosts = newCosts; 
        locMob = newSamplingDesign;  
        print("HIGHER COSTS!! BUT Sampling design s till accepted!"); 
      }  
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    }    
                 
    costList[k] = oldCosts;     # store the costs  
    pAcceptList[k] = pAccept;   # store chance of acceptance   
    locList[[(k+1)]]= locMob;   # store locations sampling design  
    shiftListX[k] = abs(oldLoc[1] - newLoc[1]); 
    shiftListY[k] = abs(oldLoc[2] - newLoc[2]);     
}   
                          
# save the location list and the cost list                          
save(costList, file = paste(outputPath, sep="","cos tdata.Rdata"))    
save(locList, file = paste(outputPath, sep="","locd ata.Rdata"))  
save(shiftListX, file = paste(outputPath, sep="","s hiftXdata.Rdata"))    
save(shiftListY, file = paste(outputPath, sep="","s hiftYdata.Rdata"))    
 
#---------------------- CREATE BITMAPS OF RESULTS - ---------------------------# 
 
endCosts = calculateCostsOutput(paste(outputPath,se p="","sdFinal.bmp")); 
 
# create the false positive and false negative chan ce maps 
calculateFpFnCosts() 
 
f=bmp(paste(outputPath,sep="","endMap.bmp")); 
print(spplot(costMap, sp.layout = 
list(ptsMobDev,ptsFixedDev),col.regions=mapColors,  
  main = "End result")) 
dev.off()        
 
f=bmp(paste(outputPath,sep="","suitLocMap.bmp")); 
print(spplot(suitLocMap, sp.layout = list(ptsMobDev , ptsFixedDev),  
  main = "Suitable location map")) 
dev.off()           
 
f=bmp(paste(outputPath,sep="","costGraph.bmp")); 
plot(costList, type = "l", main = "Costs", xlab = " Iteration number", ylab = 
"Costs"); 
dev.off();     
 
f=bmp(paste(outputPath,sep="","shiftLocX.bmp")); 
plot(shiftListX, pch=".", main = "Shift X-dimension ", xlab = "Iteration number", 
 ylab = "X-Shift (cells)"); 
dev.off();     
 
f=bmp(paste(outputPath,sep="","shiftLocY.bmp")); 
plot(shiftListY, pch=".", main = "Shift Y-dimension ", xlab = "Iteration number",  
ylab = "Y-Shift (cells)"); 
dev.off();   
  
#------------- WRITE OUTPUT FILE ------------------ --------------# 
 
# open an output file connection  
outputFile = file(paste(outputPath,sep="","output.a sc"), "w");   
cat("start costs: ", startCosts, " ", "End costs: " , endCosts, " ", 
   "Max shift: ", maxShift, " ", "Nr mob dev: ", nr MobDev, " ",  
   "Inverse Distance Power: ", idpValue, " ", "Maxd ist set: ", useMaxDist, " ",  
   "Max IDW distance: ", maxDist, " ", "Start date:  ", startDate, " ", 
   "End date: ", date(), " ", file = outputFile, se p = "\n"); 
  
# calculate locations mobile devices cells 
write("Locations mobile devices (grid cells)", outp utFile); 
 
for(i in 1:nrMobDev) 
{ 
  locMobDev = sprintf("Mobile device %i: (%i, %i)", i,locList[[maxIterations]][i,1],  
     locList[[maxIterations]][i,2]);  
   write(locMobDev, outputFile); 
}                      
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# calculate RD locations mobile devices 
locList[[maxIterations]][,1] = locList[[maxIteratio ns]][,1]*400-200+30000; 
locList[[maxIterations]][,2] = locList[[maxIteratio ns]][,2]*400-200+366000;  
   
write("\nLocations mobile devices (Rijksdriehoekste lsel)", outputFile); 
for(i in 1:nrMobDev) 
{ 
  locMobDev = sprintf("Mobile device %i: (%i, %i)", i,locList[[maxIterations]][i,1],  
     locList[[maxIterations]][i,2]);  
   write(locMobDev, outputFile); 
}                      
  
close(outputFile); 
 
 

 
Part 2: Functions 
 
invertY = function(mapData, n) 
{ 
  # this function mirrors the values of the Y-axis;  thus switching the upper  
  # row with the lower row and moving to the next r ow. This is necessary  
  # because Puff output is read upside down.  
   
  tempData = mapData     
  for(i in 1:n) 
    mapData[((i-1)*n+1):(i*n)] = tempData[((n-i)*n+ 1):(((n+1)-i)*n)]        
         
  return(mapData) 
} 
 
checkGoodLoc = function(possLocX, possLocY, nrPlace dMobDev) 
{    
  goodLoc = TRUE    
                          
  # check if the location is within the boundaries of the study area 
  if(possLocX < 1 || possLocX > 250 || possLocY < 1  || possLocY > 250)    
    goodLoc = FALSE 
           
  # check if placed in same loc as a fixed device 
  for(i in 1:nrFixed) 
  {                 
    if((locFixed$Xgrid[i] == possLocX) && (locFixed $Ygrid[i] == possLocY)) 
      goodLoc = FALSE 
  }   
              
  # check if placed in same loc as an already place d mobile device 
  if(nrPlacedMobDev>0 && goodLoc == TRUE) 
  { 
    for(i in 1:nrPlacedMobDev) 
    { 
      if(locMob[i,1] == possLocX && locMob[i,2] == possLocY) 
        goodLoc = FALSE        
    }  
  }       
 
  # check if the mob device can be placed in realit y with suitable locations  map 
  if(goodLoc == TRUE) 
    if(suitLocMap$V1[(possLocX) + (possLocY-1)*250]  == 0) 
      goodLoc = FALSE   
     
   return(goodLoc)      
   
} # end checkGoodLoc  
 
moveDevice = function(selectedDev) 
{ 
    # calculate the size of the shift; depends on n umber of iteration 
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    # minimum size is 2 ((maxShift - 1 * (maxShift - 2) = 2) 
    shift=as.integer(maxShift-((k/maxIterations) * (maxShift - 2)));          
 
    print("Shift size: ") 
    print(shift) 
     
    shiftScale=seq(shift*(-1),shift,1) 
 
    xShift=sample(shiftScale,1) 
    yShift=sample(shiftScale,1) 
     
    newLoc = c(locMob[selectedDev,1]+xShift,locMob[ selectedDev,2]+yShift) 
    return (newLoc)   
} 
 
createPredMapAll = function(n) 
{ 
    #------------- OBTAIN DOSE AT MEASURING DEVICES  ------------------#    
    
    #read dose at locations fixed devices of refere nce and true dose map    
    fixedDoseSim = array(0, nrFixed) 
    fixedDoseSim[1:nrFixed] = trueDoseMap[[n]]$z[lo cFixed$Xgrid[1:nrFixed]+ 
      (250*locFixed$Ygrid[1:nrFixed]-250)] 
    fixedDoseRef = array(0, nrFixed) 
    fixedDoseRef[1:nrFixed] = referenceDoseMap$z[lo cFixed$Xgrid[1:nrFixed]+ 
      (250*locFixed$Ygrid[1:nrFixed]-250)] 
                      
    # subtract reference plume from true plume                              
    fixedSubtractedDose = array(0, nrFixed) 
    fixedSubtractedDose[1:nrFixed] = fixedDoseSim[1 :nrFixed] -   
fixedDoseRef[1:nrFixed]                    
      
    # read dose at locations mobile devices of refe rence and true dose map    
    mobDoseSim = array(0, nrMobDev) 
    mobDoseSim[1:nrMobDev] = trueDoseMap[[n]]$z[new SamplingDesign[1:nrMobDev,1] 
      +(250*newSamplingDesign[1:nrMobDev,2]-250)] 
    mobDoseRef = array(0, nrMobDev) 
    mobDoseRef[1:nrMobDev] = referenceDoseMap$z[new SamplingDesign[1:nrMobDev,1] 
      +(250*newSamplingDesign[1:nrMobDev,2]-250)]                               
     
    # subtract reference plume from true plume                                                    
    mobSubtractedDose = array(0, nrMobDev) 
    mobSubtractedDose[1:nrMobDev] = mobDoseSim[1:nr MobDev] - mobDoseRef[1:nrMobDev] 
      
    allLocSpatial = data.frame(allSubtractedDose = c(fixedSubtractedDose,  
    mobSubtractedDose), allLocX = c(locFixed$Xgrid,  
newSamplingDesign[1:nrMobDev,1]), 
    allLocY = c(locFixed$Ygrid, newSamplingDesign[1 :nrMobDev,2])) 
                      
    coordinates(allLocSpatial) = ~allLocX+allLocY 
     
    #---------- USE IDW TO INTERPOLATE DOSE VALUES AND CREATE PREDICTED MAP ------# 
   
    if(useMaxDist == TRUE) 
    { 
      subtractedMap = idw(allSubtractedDose ~ 1, al lLocSpatial, mapGrid,  
        maxdist = maxDist, idp = idpValue) 
                                         
      # remove missing values  
      subtractedMap$var1.pred[is.na(subtractedMap$v ar1.pred)] = 0;                        
    }        
    else 
       subtractedMap = idw(allSubtractedDose ~ 1, a llLocSpatial, mapGrid,  
       idp = idpValue)        
                               
    # add IDW with reference plume 
    predMap = referenceDoseMap 
    predMap$z = predMap$z + subtractedMap$var1.pred   
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    return(predMap) 
     
}  # end create Predicted map  
 
calculateCostsFast = function() 
{  
  costs = 0   
 
  for(i in 1:nrSim) 
  { 
    # calculate the difference between the true dos e and the critical dose 
    diffCriticalTrue = trueDoseMap[[i]]$z - critica lDose 
       
    # calculate the difference between the predicte d dose and the critical dose 
    diffCriticalPred = predDoseMap[[i]]$z - critica lDose        
       
    # for every pixel on the map, check if it is fa lse positive or false negative, 
    # and if yes then calculate costs of this pixel  and add it to total costs            
    for(j in 1:62500) 
    {     
        # check for false positive 
        if(diffCriticalPred[j] > 0 && diffCriticalT rue[j] < 0) 
            costs = costs + fpWeight * costMapData[ j]      
           
        # check for false negative 
        if(diffCriticalPred[j] < 0 && diffCriticalT rue[j] > 0) 
           costs = costs + fnWeight * costMapData[j ]          
    } # end for                 
  } # end for 1:nrSim    
   
  return(costs) 
   
} # end calculateCostsFast  
        
calculateCostsOutput = function(fileName) 
{  
  costs = 0   
 
  # store the costs of every pixel in order to visu alize costs 
  testCosts = array(0,62500)          
     
  for(i in 1:nrSim) 
  { 
     diffCriticalTrue = trueDoseMap[[i]]$z - critic alDose 
     diffCriticalPred = predDoseMap[[i]]$z - critic alDose             
           
     for(j in 1:62500) 
     {     
        # check for false positive 
        if(diffCriticalPred[j] > 0 && diffCriticalT rue[j] < 0)  
        { 
            costs = costs + fpWeight * costMapData[ j]    
            testCosts[j] = testCosts[j] + fpWeight * costMapData[j] 
        }  
                     
        # check for false negative 
        if(diffCriticalPred[j] < 0 && diffCriticalT rue[j] > 0) 
        { 
            costs = costs + fnWeight * costMapData[ j]   
            testCosts[j] = testCosts[j] + fnWeight * costMapData[j]  
        } 
    } # end for    
          
  } # end for 1:nrSim   
     
  testCostsMap = SpatialPixelsDataFrame(points = ma pGridPoints,  
    data = data.frame(testCosts)) 
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  print(spplot(testCostsMap, sp.layout = list(ptsMo bDev, ptsFixedDev),  
    col.regions=costColors, main = "Costs total", s cales=list(draw=T)));  
        
  # create output image of costmap 
  f=bmp(fileName) 
  print(spplot(testCostsMap, sp.layout = list(ptsMo bDev, ptsFixedDev),  
    col.regions=costColors, main = "Costs total", s cales=list(draw=T))) 
  dev.off()      
   
  return(costs) 
   
} # end calculateCostsOutput  
                       
             
calculateFpFnCosts = function() 
{   
    # store the number of fn and fp in every pixel  
    fpData = array(0,62500)  
    fnData = array(0,62500)  
     
    for(i in 1:nrSim) 
    {                       
       diffCriticalTrue = trueDoseMap[[i]]$z - crit icalDose 
       diffCriticalPred = predDoseMap[[i]]$z - crit icalDose             
             
       for(j in 1:62500) 
       {     
          # check for false positive 
          if(diffCriticalPred[j] > 0 && diffCritica lTrue[j] < 0)             
              fpData[j] = fpData[j] + 1            
                       
          # check for false negative 
          if(diffCriticalPred[j] < 0 && diffCritica lTrue[j] > 0) 
              fnData[j] = fnData[j] + 1      
        } # end for all pixels of the map    
                               
    } # end for 1:nrSim         
       
    # calculate the percentage 
    fpData = fpData / nrSim 
    fnData = fnData / nrSim  
       
    fpMap = SpatialPixelsDataFrame(points = mapGrid Points, data =  
data.frame(fpData)) 
    fnMap = SpatialPixelsDataFrame(points = mapGrid Points, data = 
data.frame(fnData))  
                                                                                              
    print(spplot(fpMap, sp.layout = list(ptsMobDev,  ptsFixedDev), col.regions= 
     greyColors, Main = "Prob. false positive class ification", 
scales=list(draw=T)));    
         
    print(spplot(fnMap, sp.layout = list(ptsMobDev,  ptsFixedDev), col.regions= 
    greyColors, main = "Prob. false negative classi fication",  
scales=list(draw=T)));  
            
    # create output image of fp and fn map 
    f=bmp(paste(outputPath,sep="","fpMap.bmp")) 
    print(spplot(fpMap, sp.layout = list(ptsMobDev,  ptsFixedDev),  
      col.regions=greyColors, main = "Prob. false p ositive classification",  
      scales=list(draw=T))); 
    dev.off()   
           
    f=bmp(paste(outputPath,sep="","fnMap.bmp")) 
    print(spplot(fnMap, sp.layout = list(ptsMobDev,  ptsFixedDev),  
      col.regions=greyColors, main = "Prob. false n egative classification",  
      scales=list(draw=T))); 
    dev.off()    
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} # end calculateFnFpCosts 
 
           
#-------------- CREATE A THRESHOLD MAP ------------ --------------------------#   
 
calculateThresholdMap = function(values) 
{ 
  # this function determines the pixels which are c lose to the threshold             
#(intervention level) and draws them on the screen  
   
  thresholdRange = 0.05 
                          
  thresholdValues = values      
        
  for(j in 1:length(thresholdValues)) 
  { 
     if(thresholdValues[j] > (criticalDose - thresh oldRange) &&  
      thresholdValues[j] < (criticalDose + threshol dRange)) 
         thresholdValues[j] = 1        
     else if(thresholdValues[j] <= (criticalDose - thresholdRange)) 
           thresholdValues[j] = 0            
     else if(thresholdValues[j] >= (criticalDose + thresholdRange))                         
         thresholdValues[j] = 2           
  }        
     
  thresholdMap = trueDoseMap[[1]] 
  thresholdMap$z = thresholdValues    
  print(spplot(thresholdMap, main = "Thresholdmap",  scales=list(draw=T)))     
   
  return(thresholdMap) 
}      

 
 
 


