

Flanders Environment Outlook 2030:
Climate change and impacts on water systems till 2100

J. Brouwers¹, B. Peeters¹, P. Willems², P. Deckers³, Ph. De Maeyer³, R. De Sutter⁴ and W. Vanneuville⁵

- 1. Climate scenarios developed** (till 2030 and 2100; based on ensemble approach on 31 RCM runs)
- 2. Land use and management scenarios developed** (till 2030; population growth, spatial planning)
- 3. Impacts on inland river systems studied:**
 - water balance and high and low flow extremes** (hydrological modelling: NAM & MIKE-SHE)
 - floods hazard maps** (quasi-2D hydrodynamic modelling: MIKE11)
 - flood risk maps** (economic damage: land use based)
- 4. Impacts on coastal area (sea level rise, storm surges) studied** (e.g. breach formation due to erosion of natural sea defense)
- 5. Policy adaptation strategies proposed**

Environment Outlook 2030

www.milieurapport.be
www.environmentflanders.be

¹ Flanders Environment Report, Flemish Environment Agency
² Hydraulics Division, KU Leuven
³ Department of Geography, Ghent University
⁴ Civil Engineering Research Group, Ghent University
⁵ Flanders Hydraulics Research, Mobility and Public Works Department

Vm
VLAAMSE MILIEUMAATSCHAPPIJ