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Abstract 
Maurice – Van Eijndhoven, M.H.T. (2014). Genetic variation of milk fatty acid 
composition between and within dairy cattle breeds. PhD thesis, Wageningen 
University, the Netherlands 
 
Fat is one of the main components in bovine milk and comprises a large number of 
individual fatty acids (FA). The composition of FA in milk varies considerably due to 
differences in the genetics and nutrition of cows and an increasing interest in the 
possibilities for modifying FA composition can be noticed nowadays. In this thesis 
two fields of interest were combined, namely: production of milk with specific milk 
fat composition and conservation of native cattle breeds. Therewith, the overall 
objective of this thesis was to investigate the variability of detailed milk FA 
composition between and within different dairy cattle breeds, including the 
mainstream Holstein Friesian (HF) and Jersey, and the native dual purpose breeds 
Meuse-Rhine-Yssel (MRY), Groningen White Headed (GWH) and Dutch Friesian (DF) 
in the Netherlands. For this study the accuracy of mid-infrared (MIR) spectrometry 
was evaluated for predicting FA composition in different breeds. Differences of milk 
FA composition within and between breeds were investigated using MIR and Gas 
Chromatography (GC) information. Finally, similarities in genomic variation 
associated with detailed milk fat composition between the mainstream HF breed 
and native dual purpose breeds were studied. Results show that MIR is an accurate 
method for predicting FA composition among different breeds and countries. 
Evaluating the FA composition in different breeds, differences were found in milk 
FA composition among herds using different cattle breeds in the Netherlands, 
based on detailed milk FA measurements using GC. Evaluating the FA composition 
in milk between and within breeds using a large dataset that included MIR spectra 
of milk from cows from a range of farms using one or more breeds, in general, only 
minor breed differences in FA composition were found and HF showed more 
genetic variation in FA composition compared to MRY. Furthermore, differences 
were detected between the native breeds MRY, DF and GWH in genomic variations 
of regions that are associated with FA composition in HF, while most variation in 
these main regions was clearly observed in HF. Overall, it was concluded that no 
large differences existed in milk FA composition among the native Dutch dual 
purpose breeds and the mainstream HF breed. It is suggested, however, that 
selecting specific FA composition differences in farms using different breeds in the 
Netherlands can attribute to modifying the FA composition in bovine milk 
production. 
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1 General introduction 

 
 

1.1 Bovine milk 
Bovine milk and other dairy products like cheese and yoghurt have been 

common elements in the diet of humans in many countries for centuries. Bovine 
milk is a major source of fat, protein, amino acids, minerals and vitamins (Haug et 
al., 2007). In a number of Western countries, however, the consumption of dairy 
products has decreased in recent years, partly due to the debate concerning the 
effect of the consumption of dairy products on human health. This debate is a 
consequence of a number of studies reporting that the consumption of saturated 
fat, one of the main components in milk, is negatively related to human health, 
manifesting through increased blood cholesterol levels and cardiovascular disease 
in humans (e.g., German and Dillard, 2004, Mensink et al., 2003). Regardless of the 
suggested negative effects on human health, however, milk also contains 
components that are suggested to have positive effects on human health, such as 
its relatively high oleic acid content (C18:1cis9), which is important for protection 
against atheromatosis (e.g., Astrup et al., 2011, Haug et al., 2007). In addition to 
associations with human health, the composition of milk and especially milk fat is 
also related to milk processability (e.g., Smet et al., 2009). Therefore, the ability to 
modify the composition of milk fat is of major interest for the dairy industry (Lock 
and Bauman, 2004, Palmquist et al., 2006). 
 
1.2 Variation in milk fat composition 

‘Bovine milk fat' is a generic term that comprises a large number of individual 
fatty acids (FA). These FAs can be distinguished by their chemical structure and 
primarily arise in milk through three different pathways: from de novo synthesis 
within the mammary epithelial cells, by direct uptake from blood circulation, or 
both of these methods (e.g., Bauman and Griinari, 2003, Palmquist et al., 2006). 
Dairy cows generally produce between 3% and 6% fat in their milk: around 70% of 
the total milk FA has no double bounds, i.e., saturated FA (SFA); around 25% of FA 
has one double bound, i.e., mono unsaturated FA (MUFA) and around 5% of FA 
have multiple double bounds, i.e., poly unsaturated FA (PUFA). The detailed FA 
composition in milk can differ between cows, herds and breeds (e.g., Beaulieu and 
Palmquist, 1995, Soyeurt et al., 2011, Stoop et al., 2008). In several studies, it has 
been found that detailed milk fat composition is influenced by cows' diet (e.g., 
Bauman and Griinari, 2003, Grummer, 1991, Walker et al., 2004), as well as by 
genetic factors (e.g., Mele et al., 2009, Palmquist et al., 1993, Stoop et al., 2008). 
The genetic variability is a parameter that determines the ability for modifying, for 
example, milk's FA composition in a defined population through breeding. An 
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important measure for indicating the extent of a specific trait's genetic variability 
(one that has been used for several decades), for example, the amount of an 
individual FA in milk within a defined population, is heritability. Heritabilities for 
individual FAs have been reported as ranging from low to moderate (up to 0.50), 
where low heritabilities are mostly found for long-chain UFA, while moderate 
heritabilities are mainly found for short- and medium-chain FAs (e.g., Soyeurt et al., 
2007, Stoop et al., 2008). Genetic differences are also reflected by the results of 
different studies through different breeds; however, the majority of studies 
reporting these variabilities within and/or between breeds only include the globally 
mainstream cow breeds HF and JER (e.g., Palladino et al., 2010, White et al., 2001).  
To better understand the effect of genetics on milk FA composition, several studies 
have been carried out to find locations or regions on the genome that are related 
to variations in FA composition in milk, i.e., quantitative trait loci (QTL). 
Furthermore, underlying genes in the identified QTL regions have been reported in 
a number of studies. Currently, two genes have been identified in multiple studies 
to have a major effect on FA composition, namely diacylglycerol acyltransferase 1 
(DGAT1) and stearoyl-CoA desaturase 1 (SCD1) (e.g., Moioli et al., 2007, Schennink 
et al., 2008). The allele frequencies of the causal mutations in the genes DGAT1 and 
SCD1 have been studied for several cow populations, the majority of which belong 
to mainstream dairy breeds (e.g., Kgwatalala et al., 2007, Spelman et al., 2002). In 
general, milk FA composition can be modified by breeding; however, knowledge 
concerning the opportunities for using different and numerically small cattle breeds 
is scarce. 
  
1.3 Cattle breeds in the Dutch dairy industry 

Significant changes have occurred during the past number of decades within 
global dairy cattle breeding. In the Netherlands, these changes have become clearly 
visible, for example, when examining the type of cows used for milk production. To 
obtain better insight into the type of cows used for milk production in the 
Netherlands, this section presents a short overview of the history and the current 
status of the country's cattle population. The current Dutch dairy cattle population 
is clearly dominated by the high-yielding Holstein Friesian (HF) breed. In the past, 
up to the beginning of the 1980s, the native dual purpose breeds dominated Dutch 
milk production (Figure 1.1). Circa 1980, the Netherlands counted approximately       
3000 purebred Groningen White Headed (GWH) cows born per year, 100 000 
purebred Meuse-Rhine-Yssel (MRY) cows born per year and 185 000 purebred 
Dutch Friesian (DF) cows born per year which were registered by the Dutch Cattle 
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Syndicate (nowadays CRV BV, Arnhem, The Netherlands). Within the Netherlands, 
developments in animal husbandry (e.g., more intensive feed production and the 
introduction of milking machines) and developments within the milk processing 
industry (e.g., the overall ability of higher throughput) has led to the use and 
further development of specialized breeding for high milk production (Groen et al., 
1993). The change in use from mainly native dual purpose breeds to mainly 
specialized dairy breeds for high input/high output production systems during the 
past few decades has been observed in many highly industrialized countries like the 
Netherlands (Hiemstra et al., 2010, Oldenbroek, 2007). The HF breed has become 
 

 
       

Figure 1.1 The number of purebred animals born per cattle breed per year in the 
Netherlands1,2 
 

1 Cattle breeds with breeding goal ‘dairy’ and with at least 10 000 animals born and 

registered from 1970-2013 by CRV BV (Arnhem, The Netherlands); 
2 GWH = Groningen White Headed; MRY = Meuse-Rhine-Yssel; DF = Dutch Friesian; HF = 

Holstein Friesian. 
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the dominating breed today, counting around 400 000 purebred animals born per 
year (Figure 1.1). Although some farmers have also begun using some other dairy 
breeds like Jersey (JER), Montbéliarde (MON) and Fleckvieh (FLV), the number of 
purebred animals born per year among these breeds are low, altogether only 
around 2000 (registered yearly from 2008 to 2013 by CRV BV, Arnhem, the 
Netherlands). It is not surprising that the dairy breeding industry in a highly 
industrialized and small country like the Netherlands is dominated by a single 
breed. There are several reasons for this: 1) it is easier to focus on a single breeding 
programme that has been particularly compiled for a specific breed; 2) breeding 
programmes that focus on a single breed are more likely to yield better genetic 
progress within that breed, compared to breeding programmes that focus on 
multiple breeds; 3) when the same mainstream breed is used in different countries, 
the exchange of, for instance, genetic material, estimated breeding values and 
genotypes can take place under specific conditions; 4) highly developed farming 
systems in countries like the Netherlands can easily be adjusted to the need of the 
cows of the specific breed. In summary, the ability for high production according to 
the Dutch selection index – in which higher fat and protein yield lead to higher 
economic value – the highly adjusted and professionalized worldwide HF breeding 
programme and advanced Dutch farming systems has made the HF breed very 
suitable for intensive milk production in the Netherlands. The interest in breeds 
other than HF for dairy production nonetheless remains substantial, as more than 
13 per cent of all artificial inseminations in the year 2013 facilitated by CRV BV can 
be attributed to non-HF breeds. For dairy purposes, in total, 2 160 187 HF 
inseminations (both, black-and-white and red-and-white) and in total 323 225 
inseminations of non-HF bulls (of which 52 875 were of MRY, FH or GWH origin) 
were facilitated by CRV BV in the year 2013 (CRV, 2014).  
 
1.4 Aim and outline of this thesis 

To modify the detailed FA composition in bovine milk, it is important to 
provide insight into the existing variances and factors influencing FA composition in 
milk. In general, different cattle breeds have different genetic make-up. Thus, 
different breeds might also differ in genetic variation related to the production of 
detailed FA composition. The overall objective in this thesis was therefore to 
investigate whether native dual purpose breeds comprise different genetic 
variations for milk fat composition among each other and compared to mainstream 
dairy breeds. In this thesis, three native Dutch dual purpose cattle breeds (MRY, DF 
and GWH) and two mainstream dairy breeds (HF and JER) in the Netherlands were 
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studied. MRY, DF and GWH were chosen because these were the main breeds 
found in Dutch dairy production in the past; HF had been chosen because it is the 
major breed in the Netherlands today, while JER was chosen due to the typically 
high fat percentage and FA composition produced by this breed.  

The first aim of this thesis was to explore whether systematic differences in FA 
composition in milk exist among farms using different breeds in the Netherlands 
(Chapter 2). Therefore, milk samples of the MRY, DF, GWH and JER breeds were 
collected at 12 farms (three farms per breed) and analysed by gas chromatography 
(GC). GC is the most implemented and accurate method for measuring the detailed 
FA composition in milk. However, the method is expensive and time consuming, 
and therefore less suitable for regular milk-recording and application to non-
mainstream breeds that are of less economic importance. A possible alternative 
method for analysing milk samples is mid-infrared spectrometry (MIR), which has a 
high-throughput and is much cheaper when used extensively. Therefore, 
predictions of FA composition in milk using MIR based on HF were validated across 
cattle breeds (Chapter 3). Building on the validations in Chapter 3, possible breed 
differences were investigated for the breeds MRY, DF, GWH, HF and JER using a 
large dataset containing MIR profiles, which were collected during regular milk 
recording from a range of farms with different (combinations of) breeds (Chapter 
4).  

To be able to modify FA composition in bovine milk by breeding, both the 
extent of between-breed and within-breed variation is important. The genetic 
variances and heritabilities of a number of individual FA and groups of FA were 
therefore estimated for the breeds MRY and HF (Chapter 5). To better understand 
the between- and within-breed variations, the relation of phenotypic variation and 
differences at the genomic level can be studied. Similarities in genomic variation 
associated with detailed milk-fat composition between the Holstein Friesian (HF) 
breed and native dual purpose breeds MRY, DF and GWH are identified in Chapter 
6. Finally, in Chapter 7, the genetic variability among cattle associated with milk-fat 
composition, including genomic differences between breeds related to the well-
known gene DGAT1 and the perspectives for native and numerically small cattle 
breeds in the dairy sector is discussed. 
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Abstract 
Milk fatty acid (FA) composition was compared among 4 cattle breeds in the 
Netherlands: Dutch Friesian (DF; 47 animals/3 farms), Meuse-Rhine-Yssel (MRY; 
52/3), Groningen White Headed (GWH; 45/3), and Jersey (JER; 46/3). Each cow was 
sampled once between December 2008 and March 2009 during the indoor housing 
season, and samples were analyzed using gas chromatography. Significant breed 
differences were found for all traits including fat and protein contents, 13 major 
individual FA, 9 groups of FA, and 5 indices. The saturated fatty acid proportion, 
which is supposed to be unfavorable for human health, was smaller for GWH 
(68.9%) compared with DF (74.1%), MRY (72.3%), and JER (74.3%) breeds. The 
proportion of conjugated linoleic acid and the unsaturation index, which are 
associated positively with human health, were both highest for GWH. Differences 
in milk fat composition can be used in strategies to breed for milk with a FA profile 
more favorable for human health. Our results support the relevance of 
safeguarding the local Dutch breeds. 
 
Key words: milk , fatty acid , cattle breed   

 
 



2 Milk fat composition from farms using Dutch cattle breeds 

 
 

Within the Netherlands different dairy cattle breeds are used for milk 
production. High emphasis in selection for milk yield, however, has led to an 
enormous reduction in breed variability. Today, more than 97% of the milk-
recorded population belongs to Holstein-Friesian (HF; CRV, 2009). In general, 
individual cattle breeds comprise unique genetic variation (European Cattle Genetic 
Diversity Consortium, 2006); thus, it can be hypothesized that local Dutch breeds 
comprise some genetic variation that is not present in the HF breed. An important 
question is to understand if these genetic resources are related to any unique and 
valuable characteristics that could be important now or in the future. Unique 
characteristics can influence directions in selection or allow the assignment of a 
breed to a special brand product, which is an important tool to maintain native 
genetic resources characterized by low production levels (Dalvit et al., 2007; Pretto 
et al., 2009). 

Recently, milk quality traits have become increasingly relevant as consumer 
awareness of healthy diets is growing. In this context, bovine milk is being 
increasingly recognized as an important source of energy, high quality protein, and 
essential minerals and vitamins (Heaney, 2000; Neumann et al., 2003; German and 
Dillard, 2006). However, several studies report negative effects on human health 
from the consumption of bovine milk (Lock and Bauman, 2004; German and Dillard, 
2006; Uauy, 2009). Results from those studies have led to an ongoing debate on 
the role of milk and dairy products in human health (Palmquist et al., 2006). The 
diet used in the herd plays a central role in determining the variation of milk fat 
composition (Palmquist, 2006). Also, a significant part of the variability in fatty acid 
(FA) composition is genetically determined (e.g., Beaulieu and Palmquist, 1995; 
Stoop et al., 2008).  

The aim of this study was to investigate the differences in individual FA 
composition in milk of the local cattle breeds Dutch Friesian (DF), Meuse-Rhine-
Yssel (MRY), and Groningen White Headed (GWH), and imported Jersey (JER) 
within the Netherlands.  

A total of 190 cows was sampled once during morning milking between 
December 2008 and March 2009. Samples were treated immediately with 0.03% 
(wt/wt) sodium azide to prevent microbiological growth. Cows belonged to 4 
breeds: DF (47 samples from 3 farms), MRY (52 samples from 3 farms), GWH (45 
samples from 3 farms), and JER (46 samples from 3 farms). The selected farms were 
of general size ranging from 35 to 120 cows, and the number of sampled animals 
per herd ranged from 6 to 24. For each breed farmers were asked to select cows 
that varied in terms of age at calving, parity, stage of lactation, and ancestors. On 
all farms cows were kept indoors during the studied period and milked twice a day 
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with conventional milking systems. From the 3 farms for each breed, 1 or 2 were 
organic and the other 1 or 2 were conventional (DF, MRY, and GWH 1 organic and 2 
conventional, and JER 2 organic and 1 conventional). 

Fatty acid composition of milk samples was obtained using GC at the 
laboratory of Qlip N.V. (Leusden, the Netherlands). The GC outputs were generated 
by analyzing methyl esters. Fatty acid methyl esters were prepared using fat 
fractions extracted from the milk, as described in ISO Standard 15884 (ISO-IDF, 
2002b). Methyl esters were analyzed, as described in ISO Standard 15885 (ISO-IDF, 
2002a), according to the 100% FA methyl ester method with a 100-m polar column 
(Varian Fame Select CP 7420, Varian Inc., Palo Alto, CA). The percentages of total 
fat and total protein were obtained from standard mid-infrared spectrometry using 
a Fourier-transformed interferogram (MilkoScan FT 6000, Foss Electric, Hillerød, 
Denmark) at the laboratory of Qlip N.V. (Zutphen, the Netherlands).  

In the current study, only the major FA were considered. In total 29 traits 
were studied: 13 individual major FA, 9 groups of FA, 5 indices, and 2 milk 
production traits. The 13 individual FA were C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, 
C16:0, C18:0, C18:1 trans-6, C18:1 trans-9, C18:1 trans-10, C18:1 trans-11, and 
C18:2 cis-9,trans-11 (conjugated linoleic acid; CLA). The 9 groups and 5 indices of 
FA are reported in Table 2.1. The 2 milk production traits were fat and protein 
contents. 

 
Breed differences were estimated using the GLM procedure (SAS Institute 

Inc., Cary, NC) with the Bonferroni adjustment for multiple comparisons of means. 
The model, for all traits, was as follows:  

 
yijklmno = μ + dimi + parityj + agek(parityj) + breedl + systemm + farmn(breedl × 
systemm) + eijklmno,  
 
where yijklmno is observation ijklmno for the studied variable; μ is the overall 
intercept of the model; dimi is the fixed effect of the ith class of stage of lactation (6 
classes of 60 d each, except for the last, which was an open class of >300 d); parityj 
is the fixed effect of the jth lactation (4 classes: first, second, third, and fourth and 
later parities); agek(parityj) is the fixed effect of the kth class of age at calving 
within the jth parity (within each parity, 3 classes were defined containing an equal 
number of cows); breedl is the fixed effect of the lth breed (DF, MRY, GWH, and 
JER); systemm is the fixed effect of the mth farming system (conventional and 
organic); farmn(breedl × systemm) is the fixed effect of the nth farm nested within 
the lth breed and the mth system; and eijklmno is the random  
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Table 2.1 Groups of fatty acids and indices. 
 
 

Group Fatty acids 

 

Saturated fatty acids C4:0; C5:0; C6:0; C7:0; C8:0; C9:0; C10:0; C11:0; 

C12:0; C14:0 iso; C14:0; C15:0 iso; C15:0 ante iso; 

C15:0; C16:0 iso; C16:0; C17:0 iso; C17:0 ante iso; 

C17:0; C18:0; C19:0; C20:0 

Unsaturated fatty acids C10:1; C12:1; C14:1; C16:1; C17:1; C20:3 cis-8-11-14; 

C18unsat  

C6-12 C6:0; C8:0; C10:0; C12:0 

C14-16 C14:0; C16:0 

C18 unsaturated (unsat) C18:1 trans-6; C18:1 trans-9; C18:1 trans-10; C18:1 

trans-11; C18:1 trans-12; C18:1 cis-9; C18:1 cis-11; 

C18:1 cis-12; C18:2 cis-9-12; C18:3 cis-9-12-15; C18:2 

cis-9; trans-11 (CLA) 

C18 trans C18:1 trans-6; C18:1 trans-9; C18:1 trans-10; C18:1 

trans-11; C18:1 trans-12 

n-3 All omega 3 fatty acids 

n-6 All omega 6 fatty acids 

Branched C14:0 iso; C15:0 iso; C15:0 ante iso; C16:0 iso; C17:0 

iso; C17:0 ante iso 

Unsaturation index (C10:1 + C12:1 + C14:1 + C16:1 + C17:1 + C18:1 cis-9 

+ C18:2 cis-9, trans-11)  /  (C10:0 + C10:1 + C12:0 + 

C12:1 + C14:0 + C14:1 + C16:0 + C16:1 + C17:0 + 

C17:1 + C18:0 + C18:1 cis-9 + C18:2 cis-9, trans-11) 

Unsaturation index C12 C12:1 /  (C12:0 + C12:1) 

Unsaturation index C14 C14:1  /  (C14:0 + C14:1) 

Unsaturation index C16 C16:1 /  (C16:0 + C16:1) 

Unsaturation index C18 C18unsat /  (C18:0 + C18unsat) 
 
residual for observation ijklnmo. The nested effect was introduced because only 
one breed was present on each farm and each farm was either conventional or 
organic. Breed and system were tested on the error term of farm(breed × system) 
to verify whether the variation attributed to these effects was significant. Although 
the distributions of the data of several traits showed a certain level of skewness 
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(range: −1.32 to 1.19) and kurtosis (range: −0.51 to −3.04), log-transforming the y 
variable, which reduced the level of skewness, had no or only a minor effect on the 
significance of breed differences. To be consistent for all traits, only results of the 
untransformed data are shown. Furthermore, checking the residuals of the model 
for the untransformed traits revealed that they were normally distributed, 
independent, and had equal variances across the range of predicted values (results 
not shown).  
 
Table 2.2 Means and standard deviations (SD) of calving age, parity, and days in milk (DIM) 
for each breed1. 
 

                DF (n = 47)  MRY (n = 52)  GWH (n = 45)  JER (n = 46) 
Item Mean SD  Mean SD  Mean SD  Mean SD 
Calving 
age (d) 

1,566 919  1,497 731  1,717 958  1,805 927 

Parity (n) 2.9 2.5  2.8 1.9  3.2 2.5  3.6 2.4 

DIM (d) 144 112  174 130  160 93  211 132 
 
1 DF = Dutch Friesian; MRY = Meuse-Rhine-Yssel; GWH = Groningen White Headed; JER = 
Jersey. 
 

Means and standard deviations of the factors included in the model are 
reported in Table 2.2. On average, the MRY animals were somewhat younger 
(calving age 1,497 d) and in an earlier parity (2.8) compared with the other breeds, 
and the JER animals were oldest (1,805 d). Dutch Friesian cows were, on average, 
shortest in milk (144 d) and JER longest (211 d). The variability of DIM was smallest 
for the GWH breed (SD: 93 d) compared with MRY (SD: 130 d) and JER (SD: 132 d). 

The variation attributed to breed was significant for 15 traits (P < 0.05; Table 
2.3), and the variation due to system was significant for 5 traits (P < 0.05; data not 
shown). The effects of DIM, parity, age at calving, and farm nested within breed 
and system were not significant for some traits, but they were always included to 
keep the model consistent. Coefficients of determination ranged from 0.45 
(unsaturation index C18; data not shown) to 0.94 (n-3; data not shown). 
Surprisingly, the coefficient of determination for n-3 was much higher than that for 
other traits, but no clear explanation could be identified. 

Least squares means of individual FA, groups of FA, indices, and production 
traits for the different breeds are shown in Table 2.3. An important question is 
whether these are purely breed effects or are breed-herd effects, because only one 
breed was sampled per farm. This design of the data may be problematic if (1) the 
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management (e.g., level of feeding) on farms within one or more breeds deviates 
systematically from that in the average herd (e.g., all herds with breed A feed 
concentrates, whereas herds with breed B do not feed any concentrates); or (2) 
within a particular breed, the selected farms are not representative for the breed. 
Checking the data revealed that the differences in raw averages of milk production 
traits among breeds within the data set used were comparable to the differences 
among breeds shown in national milk production statistics, in which JER produces 
roughly 1.5% more fat and around 0.5% more protein than the other breeds. This 
supports the premise that the selected farms are representative for the different 
breeds. Because, within breed, at least one conventional and one organic farm 
were included, which implies a large difference in management and feeding level, a 
systematic deviation in management among breeds was partly avoided. Although it 
was not possible to correct completely for rearing conditions, analyzing the 
variances revealed that the model was at least able to differentiate to a certain 
level between herd and breed effects for most traits.  

 
 

Table 2.3 Least squares means of individual fatty acids, groups of fatty acids, indices, and 
milk production traits for each breed. 
 

 Breed1   
Trait  DF MRY GWH JER SE P-value2 

       
Individual FA 
(g/100g fat)      

 

C4:0  3.82 a  3.65 a, b 3.63 a, b 3.59 b 0.051-0.058  
C6:0  2.64 a 2.56 a 2.33 b 2.44b 0.030-0.035 * 
C8:0   1.59 a  1.52 a 1.32 b 1.39 b 0.024-0.027 ** 
C10:0  3.87 a  3.66 a, b 2.98 c  3.36 b 0.078-0.090 * 
C12:0  4.74 a 4.75 a 3.69 b  4.05 b 0.107-0.124 * 
C14:0 12.73 a 12.79 a  11.61 b  11.65 b 0.169-0.194 * 
C16:0  30.90 b 29.54 b, c  28.98 c  33.64 a 0.386-0.446  
C18:0  10.43 a 10.32 a  10.82 a 10.93 a 0.216-0.250  
C18:1 trans 6  0.212 a 0.213 a 0.190 b 0.173 b 0.005-0.006  
C18:1 trans 9 0.148 a 0.148 a 0.146 a 0.118 b 0.003-0.004 † 
C18:1 trans 10 0.234 a 0.218 a 0.172 b 0.153 b 0.007-0.008 * 
C18:1 trans 11 0.704 c 0.975 b 1.25 a 0.898 b 0.028-0.032 ** 
C18:2 cis9 
trans11 (CLA) 

 0.297 c 0.413 b 0.570 a 0.313 c 0.011-0.013 *** 
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 Breed1   
Trait  DF MRY GWH JER SE P-value2 

Groups of FA 
(g/100g fat) 

      

SFA 74.06 a 72.32 a 68.86 b 74.27 a 0.498-0.574 * 
UFA 23.18 b 24.26 b 26.73 a 22.68 b 0.467-0.540 † 
C6-12 12.83 a 12.50 a 10.33 b 11.24 b 0.217-0.251 ** 
C14-16 43.63 a, b 42.33 b, c 40.58 c 45.29 a 0.478-0.553  
Omega 3  0.580 d 0.965 b 1.38 a 0.873 c 0.020-0.023  
Omega 6 1.62 a 1.41 b 1.16 c 1.08 c 0.037-0.043 * 
C18unsat 20.31 b 21.29 b 23.71 a 19.64 b 0.450-0.520  
C18trans 1.61c 1.86 b 2.06 a 1.59c 0.036-0.042 † 
Branched 1.78a, b 1.87 a 1.74 b 1.56 c 0.024-0.028 † 
       
Indices       
Unsaturation 
index 

0.228 b 0.239 b 0.268 a 0.224 b 0.005-0.006 † 

Unsat index C12 0.021 a 0.022 a 0.020 a, b 0.018 b 0.001  
Unsat index C14 0.069 b 0.078 a 0.078 a 0.069 b 0.002 † 
Unsat index C16 0.039 b 0.038 b 0.045 a 0.044 a, b 0.001-0.002 * 
Unsat index C18 0.658 b, c 0.674 a, b 0.690 a 0.640 c 0.005-0.006 ** 
       
Production traits       
Fat (%)  4.73 b 4.63 b 4.53 b 6.16 a 0.111-0.124 * 
Protein (%)  3.59 c 3.82 b 3.70 b, c 4.23 a 0.048-0.053 *** 

 
a, b, c, d different superscripts within a row indicate significance differences of LSM values at P 
< 0.05. 
1 DF = Dutch Friesian; MRY = Meuse-Rhine-Yssel; GWH = Groningen White Headed; JER = 
Jersey. 
2  † P < 0.10, * P < 0.05, ** P < 0.01, *** P < 0.001.  
 

 
The proportion of most FA and groups of FA was significantly different (P < 

0.05) among breeds (Table 2.3). Jersey cows produced a significantly higher 
proportion of saturated FA (SFA; 74.3%) compared with GWH (68.9%). The latter 
breed produced the highest proportion of C18:1 trans-11 (1.25%) and CLA 
(0.570%), and had the highest C18 unsaturation index (0.690). Dutch Friesian cows 
produced the highest proportion of C6–12 (12.8%) and JER the highest proportion 
of C14–16 (45.3%).  
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Grazing- or nongrazing-based feeding largely influence milk FA composition 
(Palmquist et al., 1993; Beaulieu and Palmquist, 1995; Heck et al., 2009). In 
particular, grazing-based feeding has a negative effect on the proportion of SFA and 
a positive effect on the proportion of unsaturated FA (Heck et al., 2009). The diet of 
the sampled cows contained no grazed grass because all cows were kept indoors. 
This was also the case in the studies of Stoop et al. (2008), Bobe et al. (2007), and 
Beaulieu and Palmquist (1995).  

The average production of C14–16 of JER cows was 45.3% (Table 2.3), which is 
higher than results from other researches on the same breed: 41.8% (White et al., 
2001), 43.3% (Stull and Brown, 1964), and 42.8% (Beaulieu and Palmquist, 1995). In 
those studies, JER produced a higher proportion of C14–16 than HF cows, except in 
the study of Beaulieu and Palmquist (1995), which reported higher proportions of 
C14–16 in HF milk. The average production of C14–16 in JER was in the range of 
37.45 to 49.47% that was reported by Carroll et al. (2006). No detailed information 
on milk fat composition in DF and GWH breeds could be found in other studies. 
Soyeurt et al. (2006) studied milk fat composition of MRY and JER in Belgium, 
mainly using data of crossbred animals. In that study, FA profile was based on mid-
infrared analysis and the authors reported a lower proportion of total SFA for JER 
compared with MRY cows, whereas in the current study JER showed the highest 
proportion of SFA in milk. However, in the same study, the difference in 
unsaturation index for C16:0 was in agreement with that in the current study. 
Although the total amount of CLA, which is associated with positive health effects, 
was generally low, the breed effect was found significant (P < 0.001). Significant 
breed differences for CLA were also reported in Lawless et al. (1999), where the 
Montbéliarde cows produced higher proportions of CLA (1.99%) compared with the 
Dutch HF cows (1.76%). In another study including 1,918 Dutch HF cows (Stoop et 
al., 2008), the proportion of CLA was reported to be, on average, 0.39%. The 
samples of this large study were taken during the indoor season between February 
and March, which is comparable with the current study, but the cows were all 
within first lactation. For C14–16, Stoop et al. (2008) reported an average 
proportion of 44.2%, which is almost as high as the JER in current study. Other 
studies including the HF breed reported C14–16 proportions of 32.4% (Mele et al., 
2009), 39.1 to 39.5% (Bobe et al., 2007), 44.0% (Beaulieu and Palmquist, 1995), and 
36.5% (Lawless et al., 1999).  

In conclusion, our results suggest that the Dutch cattle breeds have some 
favorable milk composition characteristics. First, the local MRY and GWH breeds 
produced smaller proportions of C14–16 than the mainstream JER. Second, the 
proportion of n-3 was higher in MRY and GWH. Third, the GWH cows produced 
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higher  proportions of CLA and unsaturated FA. Therefore, the study seems to 
reveal characteristics of the local Dutch breeds that support the need to conserve 
them. These results can be used to promote the use of particular breeds and 
suggests that the genetic features of a population in favor of human health can be 
modified permanently by making use of the different breeds in the dairy cattle 
population. However, the results should be confirmed in a larger study in which the 
breeds compared are held on the same farms and thus exposed to the same 
production environment.  
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Abstract 
The aim of this study was to investigate the accuracy to predict detailed fatty acid 
(FA) composition of bovine milk by mid-infrared spectrometry, for a cattle 
population that partly differed in terms of country, breed and methodology used to 
measure actual FA composition compared with the calibration data set. Calibration 
equations for predicting FA composition using mid-infrared spectrometry were 
developed in the European project RobustMilk and based on 1236 milk samples 
from multiple cattle breeds from Ireland, Scotland and the Walloon Region of 
Belgium. The validation data set contained 190 milk samples from cows in the 
Netherlands across four breeds: Dutch Friesian, Meuse-Rhine-Yssel, Groningen 
White Headed (GWH) and Jersey (JER). The FA measurements were performed 
using gas–liquid partition chromatography (GC) as the gold standard. Some FAs and 
groups of FAs were not considered because of differences in definition, as the 
capillary column of the GC was not the same as used to develop the calibration 
equations. Differences in performance of the  calibration equations between 
breeds were mainly found by evaluating the standard error of validation and the 
average prediction error. In general, for the GWH breed the smallest differences 
were found between predicted and reference GC values and least variation in 
prediction errors, whereas for JER the largest differences were found between 
predicted and reference GC values and most variation in prediction errors. For the 
individual FAs 4:0, 6:0, 8:0, 10:0, 12:0, 14:0 and 16:0 and the groups’ saturated FAs, 
short-chain FAs and medium-chain FAs, predictions assessed for all breeds together 
were highly accurate (validation R2 > 0.80) with limited bias. For the individual FAs 
cis-14:1, cis-16:1 and 18:0, the calibration equations were moderately accurate (R2 
in the range of 0.60 to 0.80) and for the individual FA 17:0 predictions were less 
accurate (R2 < 0.60) with considerable bias. FA concentrations in the validation data 
set of our study were generally higher than those in the calibration data. This 
difference in the range of FA concentrations, mainly due to breed differences in our 
study, can cause lower accuracy. In conclusion, the RobustMilk calibration 
equations can be used to predict most FAs in milk from the four breeds in the 
Netherlands with only a minor loss of accuracy. 
 
Key words: milk, fatty acid, mid-infrared spectrometry, cattle breeds  
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3.1 Implications 
Measurement of detailed milk fat composition at individual cow level is of 

major interest for the dairy industry because of the expected relation with human 
health. Therefore, the method of analyzing milk fat composition needs to be rapid 
and suitable for extensive recording. Our study shows that mid-infrared 
spectrometry (MIR) can be used to accurately predict detailed milk fat composition 
from different cattle breeds in the Netherlands. 
 
3.2 Introduction 

Bovine milk fat consists of a range of different fatty acids (FAs), both 
unsaturated fatty acids (UFAs) and saturated fatty acids (SFAs), and its relatively 
large amount of SFA causes some debate about the role of bovine milk in a healthy 
diet (Palmquist et al., 2006). Clear variation in fat content and milk fat composition 
can be found among cows (Soyeurt and Gengler, 2008). Milk fat composition varies 
with both environmental factors (e.g. feed regime; Palmquist, 2006) and genetics 
(Soyeurt and Gengler, 2008; Stoop et al., 2008). Changing FA composition through 
the feed regime or genetic selection requires a precise and regular measurement. 

To measure the FA composition in milk, several methods can be used, which 
differ in throughput level, accuracy, workload and costs. The most accurate method 
is gas–liquid partition chromatography (GC). This largely implemented and regularly 
used approach quantifies the concentration of individual FAs in fat (Gander et al., 
1962; Christie, 1998). The major advantage of GC is the possibility of measuring the 
individual FA proportions with high accuracy (Smith, 1961; Christie, 1998) even if 
the content of this FA is low. This method, however, is expensive and time 
consuming and therefore less suitable for extensive and regular recording. Another 
method of analyzing milk fat composition, MIR, is rapid and less expensive in case 
of extensive use (Wilson and Tapp, 1999; Soyeurt et al., 2006). MIR is routinely 
used in milk recording schemes to measure lactose, urea, total fat and protein 
percentages in bovine milk (Etzion et al., 2004; Bobe et al., 2007). MIR was used by 
Soyeurt et al. (2006 and 2011) and Rutten et al. (2009) to estimate calibration 
equations predicting the FA concentrations in milk (g/dl of milk) and milk fat (g/100 
g of fat), and these equations were subsequently validated. In these studies, the 
predictions have low accuracy for FAs that are present in low concentrations, such 
as the trans and unsaturated 14, 16 and 18 FAs. 

Accuracy and bias in calibration equations may also be affected when there 
are differences between the samples used to estimate the calibration equations 
and the samples for which FA composition is predicted using the prediction 
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equations. In Rutten et al. (2009), calibration equations were based on milk 
samples only from Holstein–Friesian (HF) cows. In this latter study, analysis of milk 
samples collected in both winter and summer indicated that season has a limited 
effect on prediction accuracy but generally a large effect on prediction bias. This 
indicates that factors causing structural differences between FA composition of 
groups of animals such as season and breed can affect predictability of calibration 
equations. 
 The aim of this study was to investigate the accuracy and bias in predicting 
detailed FA composition from MIR spectra of milk from four cattle breeds in the 
Netherlands, using calibration equations based on milk samples collected from 
Belgian, Irish and Scottish cattle of partly different breeds. 
 
3.3 Materials and Methods 
Calibration equations 

In this study, prediction of the composition of 11 individual FAs and 3 groups 
of FAs using MIR spectrometry using calibration equations was validated. These 
calibration equations were developed in the EU FP 7 project RobustMilk, using a 
data set with MIR spectra and GC results of 1236 milk samples. The methodology 
used to develop the calibration equations is explained by Soyeurt et al. (2011) for 
the calibration equations, but it should be noted that in our study updated versions 
of the calibrations were used, which are based on 1236 instead of 517 milk 
samples.  

For all 1236 milk samples, the MIR analysis was performed using a Fourier-
transformed interferogram with a region of 1000 to 5000/cm (MilkoScan FT 6000, 
Foss Electric, Hillerod, Denmark). The detailed FA composition of these 1236 milk 
samples was obtained using GC realized at the milk laboratory of the Walloon 
Agricultural Research Centre (Gembloux, Belgium). The GC outputs were generated 
by analyzing methyl esters prepared from milk fat as described in ISO Standard 15 
884 (ISO–IDF (International Organization for Standardization–International Dairy 
Federation), 2002) and the GC was equipped with a CPSil-88 column (Varian Inc., 
Palo Alto, CA, USA) with a length of 100m and an internal diameter of 0.25 mm.  

The 1236 milk samples were collected from herds in Ireland, Scotland and the 
Walloon Region of Belgium with purebred and crossbred cows from different 
breeds, that is, HF, Jersey (JER), Red and White, Normande, Montbeliarde and dual-
purpose Belgian Blue. This multiple breed and multiple country composition of the 
data set was chosen to cover a wide range of the variability of FA in bovine milk in 
order to improve the robustness of the developed calibration equations. The 
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calibration equations were developed from three MIR regions located between 926 
and 1600/cm, 1712 and 1809/cm and 2561 and 2989/cm. The method used to 
relate MIR spectra to FA data was partial least square regression after a first 
derivative pre-treatment on spectral data to correct the baseline drift. A T-outlier 
test was also used during the calibration process to delete potential GC outliers. 
Therefore, the final number of samples included in each calibration equation varied 
following the considered FA. Descriptive statistics of the RobustMilk calibration 
equations are given in Table 3.1. Note that this is an updated version of the 
prediction equations described by Soyeurt et al. (2011), in the sense that the 
current prediction equations are based on ~ 4.5 times more samples. In addition to 
the number of samples included in the calibration data set, the mean and the 
standard deviation (s.d.) of the FA content measured by GC, the standard error of 
calibration (SEC), the calibration coefficient of determination (R2c), standard error 
of cross-validation (SECV), cross-validation coefficient of determination (R2cv) and 
the ratio of s.d. to SECV (RPD) are shown. The R2c is the square of the correlation 
coefficient between the predicted and the reference GC values.  

During the development of the updated calibration equations, a first 
assessment of the robustness of the predictions was done by a cross-validation 
approach to calculate the R2cv and SECV using the same approach as described by 
Soyeurt et al. (2011). 
 
Validation data set 

Between December 2008 and March 2009 in the Netherlands, that is, in the 
winter season, a total of 190 cows were sampled once during morning milking. 
Samples were treated immediately with 0.03% (w/w) sodium azide to avoid 
microbiological growth. Cows belonged to four breeds: Dutch Friesian (DF; 47 
samples from 3 farms), Meuse-Rhine- Yssel (MRY; 52 samples from 3 farms), 
Groningen White Headed (GWH; 45 samples from 3 farms) and JER (46 samples 
from 3 farms). The cows were selected by farmers to reflect variations in age, 
parity, stage of lactation and ancestry. On all farms, cows were kept indoors in the 
studied period and milked twice a day with conventional milking systems. 

The number of sampled cows per herd ranged from 6 to 24, and the selected 
farms each had between 35 and 120 cows. The cows were either located at organic 
or conventional farms. For each breed samples were collected at one or two 
organic farms and the remainder farms were conventional. Differences in FA 
composition in milk between the four breeds in this data set are presented by 
Maurice-Van Eijndhoven et al. (2011). Briefly, ranges of individual FA content 
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generally overlapped between breeds, apart from several FAs and groups of FAs of 
JER and GWH.  

Each milk sample was analyzed using both GC and MIR. The mean and 
standard deviation of the FA content of each of the 11 individual FAs and the 3 
groups of FAs obtained using the GC are given in Table 3.2. The relative variability, 
which was examined by calculating the coefficient of variation (results not shown), 
between the different FAs was highest for the cis-14:1 (range 31.1 to 35.8) and cis-
16:1 (range 26.2 to 39.1) and lowest for the 4:0, 6:0, 8:0 and total group of short-
chain FA (SCFA; range 14.6 to 25.0). GC analysis was performed at the laboratory of 
Qlip N.V. (Leusden, The Netherlands). The GC outputs were generated by analyzing 
methyl esters prepared from milk fat as described in ISO Standard 15 884 (ISO–IDF, 
2002) and the GC was equipped with a Varian Fame Select CP 7420 column (Varian 
Inc., Palo Alto, CA, USA) with a length of 100m and an internal diameter of 0.25 
mm. The MIR analysis was performed using a Fourier-transformed interferogram 
with a region of 1000 to 5000/cm (MilkoScan FT 6000, Foss Electric, Denmark) at 
the laboratory of Qlip N.V. (Zutphen, The Netherlands). The validation data set was 
independent of the calibration set developed in the RobustMilk project (i.e. 
different labs for GC and MIR analysis). 
 
Validation 

RobustMilk calibration equations (Table 3.1) were used to predict detailed 
milk composition of the samples recorded in the validation data set for 11 
individual FAs 4:0, 6:0, 8:0, 10:0, 12:0, 14:0, cis-14:1, 16:0, cis-16:1, 17:0, 18:0 and 
the 3 groups of FAs, that is, total SFA (SFA 4:0 to 22:0 including iso- and ante-iso 
FAs), short-chain FA (SCFA; 4:0 to 10:0) and medium-chain FA (MCFA; 12:0 to 16:0). 
SFA=the saturated fatty acids 4:0 to 22:0 including iso- and ante-iso FAs; SCFA=4:0 
to 10:0; MCFA=12:0 to 16:0. Owing to the lack of agreement between the GC 
analyses of the calibration and validation data set methods for the long-chain 
unsaturated FAs and their related FA groups (i.e. total unsaturated, 
monounsaturated, polyunsaturated and long-chain FAs), these FAs and groups of 
FAs were considered in this study. This lack of agreement was due to differences in 
separation of the long-chain unsaturated FAs during the GC analyses of the 
calibration and validation data sets because the capillary columns used were 
different. For the other FAs, of which the calibration equations are validated in this 
study, the separation during the GC analysis was similar. The FA traits were 
predicted on the basis of milk (g/dl) because these predictions are more accurate 
than on the basis of fat (g/100 g; Soyeurt et al., 2006; Rutten et al., 2009; Soyeurt 
et al., 2011).  
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The accuracy of the RobustMilk predictions was evaluated using the root 
mean squared error of prediction (SEV), the coefficient of determination (validation 
R2) and the ratio of the s.d. of the validation data set to the SEV (RPDv). Calibration 
equations with RPDv above 3.0 can be considered as good predictors (Williams and 
Sobering, 1993). 
 
 The SEV was calculated as 
 

𝑆𝑆𝑆𝑆𝑆𝑆 =  �
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑛𝑛
, 

 
where 𝑦𝑦 � i is the predicted value obtained for the sample i; 𝑦𝑦i is the reference GC 
value of sample i; n is the number of samples in the validation set. The approach to 
calculate SEV is in line with the approach to calculate SEC and SECV, which are 
described by Soyeurt et al. (2011).  
 The prediction bias was assessed using the average prediction error (𝑦𝑦 � i - 𝑦𝑦i) 
and slope (β1) of the linear regression, with the GC values as dependent and the 
predicted values as independent variable. To be able to compare the average 
prediction error of the calibration equations across traits and breeds, this measure 
is expressed as a percentage of the mean of the gas chromatography values. 

 
 
3.4 Results 
 For most traits, the SEV was lowest for the predicted FA contents in GWH 
milk, except for the individual FA cis-14:0 and the group of FA SCFA (Table 3.3). The 
SEV for the predicted FA contents in JER milk was highest for all groups of FAs and 
the individual FAs 6:0, 14:0, cis-14:0 and 16:0, except for the individual FAs 4:0, 
12:0, cis-16:1, 17:0 and 18:0, of which the SEV was highest for MRY. The validation 
R2 of the predictions of the individual FAs 4:0, 6:0, 8:0, 10:0, 12:0, 14:0, 16:0 and for 
the groups of FAs SFA, SCFA and MCFA for all breeds were above 0.80 (Table 3.4). 
The validation R2 for the individual FA 17:0 was lowest over all breeds (0.43). The 
FA composition of milk from DF cows was based on the calculated validation R2 
predicted most accurately with an average R2 of 0.84. The average validation R2 of 
the predicted FA composition of milk from GWH was generally lowest (0.81). The 
long-chain FAs 17:0 and 18:0 and medium-chain FAs cis-14:1 and cis-16:1 showed 
the largest variation in validation R2 between the breeds. The RPDv was in general 
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lower than the RPD of the cross-validation; however, a similar trend was observed 
(Table 3.5). The RPDv is above 3.0 across all breeds (breeds total) for 6:0; 8:0; 14:0 
and all groups of FAs.  
 
 
 
Table 3.3 The SEV of 11 FAs and 3 groups of FAs for different dairy breeds. 
 

 
Breed 

Trait (g/dl milk) GWH MRY DF JER 
All 

breeds1 

4:0 0.009 0.017 0.011 0.011 0.012 

6:0 0.005 0.006 0.006 0.007 0.006 

8:0 0.004 0.005 0.006 0.006 0.005 

10:0 0.012 0.016 0.025 0.022 0.019 

12:0 0.027 0.048 0.036 0.028 0.036 

14:0 0.033 0.042 0.037 0.045 0.039 

cis-14:1 0.011 0.010 0.014 0.022 0.015 

16:0 0.122 0.201 0.215 0.219 0.192 

cis-16:1 0.023 0.040 0.033 0.028 0.032 

17:0 0.010 0.013 0.012 0.010 0.012 

18:0 0.106 0.145 0.139 0.137 0.132 

SFA 0.061 0.047 0.050 0.130 0.078 

SCFA 0.022 0.028 0.028 0.033 0.028 

MCFA 0.105 0.171 0.207 0.253 0.190 

 
 
SEV = standard error of validation; FA = fatty acid; GWH = Groningen White Headed; MRY = 
Meuse-Rhine-Yssel; DF = Dutch Friesian; JER = Jersey; SFA = the saturated FAs 4:0 to 22:0 
including iso- and ante-iso FAs; SCFA = short-chain FAs 4:0 to 10:0; MCFA = medium-chain 
FAs 12:0 to 16:0. 
1 Breeds total is the SEV of the predictions across the breeds GWH, DF, MRY and JER. 
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Table 3.4 The validation R2 of prediction of 11 FAs and 3 groups of FAs for different dairy 
breeds. 
 
 

 
Breed 

Trait (g/dl milk) GWH MRY DF JER 
All 

breeds1 

4:0 0.92 0.92 0.89 0.88 0.92 

6:0 0.90 0.92 0.88 0.91 0.93 

8:0 0.88 0.90 0.88 0.91 0.92 

10:0 0.85 0.94 0.89 0.93 0.93 

12:0 0.85 0.86 0.80 0.90 0.85 

14:0 0.93 0.97 0.93 0.92 0.95 

cis-14:1 0.70 0.76 0.79 0.80 0.64 

16:0 0.89 0.90 0.93 0.86 0.93 

cis-16:1 0.56 0.67 0.48 0.59 0.65 

17:0 0.15 0.17 0.73 0.24 0.43 

18:0 0.80 0.64 0.65 0.58 0.72 

SFA 0.99 1.00 1.00 0.98 0.99 

SCFA 0.91 0.93 0.93 0.93 0.95 

MCFA 0.95 0.97 0.97 0.92 0.96 

 
 

FA = fatty acid; GWH = Groningen White Headed; MRY = Meuse-Rhine-Yssel; DF = Dutch 
Friesian; JER = Jersey; SFA = the saturated FAs 4:0 to 22:0 including iso- and ante-iso FAs; 
SCFA = short-chain FAs 4:0 to 10:0; MCFA = medium-chain FAs 12:0 to 16:0. 
1Breeds total is the R2 of the predictions across the breeds GWH, DF, MRY and JER. 
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Table 3.5 The RPDv

1 of 11 FAs and 3 groups of FAs for different dairy breeds. 
 

 
Breed 

Trait (g/dl milk) GWH MRY DF JER 
All 

breeds2 

4:0 2.29 1.44 2.01 2.46 2.41 

6:0 3.06 2.94 2.71 3.24 3.86 

8:0 2.96 3.14 1.77 3.23 3.53 

10:0 2.53 2.89 1.32 2.62 2.76 

12:0 1.90 1.36 1.30 2.69 1.91 

14:0 2.84 3.30 3.09 3.33 3.80 

cis-14:1 1.74 1.84 1.01 0.85 1.28 

16:0 2.25 1.52 2.06 1.61 2.50 

cis-16:1 0.74 0.47 0.55 1.00 0.85 

17:0 0.79 0.44 0.40 0.67 0.68 

18:0 1.42 0.75 0.72 0.86 1.09 

SFA 8.18 14.20 12.72 6.30 11.55 

SCFA 3.14 3.66 2.64 3.59 4.29 

MCFA 4.16 3.19 2.59 2.80 3.87 

 
 

RPDv = ratio of the standard deviation of the validation samples to the standard error of 
prediction of the validation; FA = fatty acid; GWH = Groningen White Headed; MRY = Meuse-
Rhine-Yssel; DF = Dutch Friesian; JER = Jersey; SFA = the saturated FAs 4:0 to 22:0 including 
iso- and ante-iso FAs; SCFA = short-chain FAs 4:0 to 10:0; MCFA = medium-chain FAs 12:0 to 
16:0. 
1Calibration equations with RPDv above 3.0 can be considered as good predictors (Williams 
and Sobering, 1993. Journal of Near Infrared Spectroscopy 1, 25–32).  
2Breeds total is the RPDv across the breeds GWH, DF, MRY and JER. 

 
 
 Bias was examined by calculating the average prediction error and the slope 
of the linear regression with the GC values as dependent and the predicted values 
as independent variable (Tables 3.6 and 3.7). To be able to compare the average 
prediction error of the calibration equations between traits and breeds, the values 
were expressed as a percentage of the mean of the gas chromatography absolute 
value (Table 3.6).  
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Table 3.6 The average prediction error1 of the predictions of 11 FAs and 3 groups of FAs for 
different dairy breeds. 
 

 
Breed 

Trait (g/dl milk) GWH MRY DF JER 
All 

breeds2 

4:0 -4.60 -10.70 26.10 -3.30 -6.40 

6:0 -0.40 -2.90 2.60 0.50 -0.10 

8:0 -0.80 -0.40 6.70 -0.40 1.50 

10:0 0.70 4.90 12.10 7.50 6.30 

12:0 6.60 16.80 12.40 4.30 10.30 

14:0 3.30 5.10 3.20 -1.40 2.60 

cis-14:1 -5.50 -8.30 -23.00 -35.90 -17.90 

16:0 -4.50 -10.40 -11.30 -8.50 -8.80 

cis-16:1 -28.30 -54.40 -42.50 -30.40 -39.50 

17:0 -24.60 -42.50 -43.50 -28.60 -35.10 

18:0 12.10 22.90 22.10 19.90 19.40 

SFA 1.20 0.80 0.90 0.60 0.90 

SCFA -0.90 -1.80 3.70 0.60 0.40 

MCFA -1.10 -5.00 -6.40 -5.40 -4.50 

Mean3 -3.40 -6.10 -4.90 -5.70 -5.10 

s.d.3 10.40 19.70 18.80 15.00 15.60 

 
 

FA = fatty acid; GWH = Groningen White Headed; DF = Dutch Friesian; MRY = Meuse-Rhine-
Yssel; JER = Jersey; SFA = the saturated FAs 4:0 to 22:0 including iso- and ante-iso FAs; SCF = 
short-chain FAs 4:0 to 10:0; MCFA = medium-chain FAs 12:0 to 16:0.  
1The average prediction error calculated as the predicted value minus the reference gas 
chromatography values and expressed as percentage of the mean of the gas 
chromatography values: (average prediction error/mean) x 100. 
2All breeds means the average prediction errors across all predictions for GWH, DF, MRY and 
JER. 
3The mean and s.d. of all average prediction errors for each breed and all breeds together. 

 
 The bias in terms of average prediction error for individual breeds is largest 
for MRY with on average - 6.1% followed by JER (- 5.7%) and smallest for GWH with 
on average 2.4%. For all breeds together, the average prediction error is - 5.1% 
with an s.d. of 15.6, which means that the average difference between the 

43 
 



3 Validation of milk fatty acid prediction using MIR 

 
 
predicted content using MIR and the reference GC values was - 5.1% (normalized to 
the mean). The average prediction error were highest for the predicted contents of 
the individual FAs cis-16:1 and 17:0. The β1, which is clearly related to the R2, does 
not show unexpected results as β1 is generally closer to 1 when the R2 is also closer 
to 1. With a β1 value of 1.55, the variance of the predicted content of 18:0 for GWH 
milk showed the largest underestimation (Table 3.7). With a β1 value of 0.37, the 
variance of the predicted content of 17:0 for MRY showed the largest 
overestimation, which indicated a lack of relation between the true and predicted 
values also shown by the R2 calculated to be 0.17.  
 
Table 3.7 The slope (β1) of the linear regression with the gas chromatography values as 
dependent and the predicted values as independent variable of 11 FAs and 3 groups of FAs 
for different dairy breeds. 
 

 
Breed 

Trait (g/dl milk) GWH MRY DF JER 
All 

breeds1 

4:0 0.95 0.95 0.99 1.16 1.06 

6:0 0.90 0.92 0.95 1.07 0.99 

8:0 0.97 0.96 1.00 1.06 0.99 

10:0 1.04 1.16 1.12 1.14 1.13 

12:0 1.27 1.26 1.10 1.14 1.09 

14:0 0.93 1.04 1.01 0.91 0.93 

cis-14:1 1.22 1.10 0.91 1.11 0.85 

16:0 0.92 0.95 1.03 1.00 0.99 

cis-16:1 0.77 0.71 0.71 0.89 0.88 

17:0 0.76 0.37 0.83 0.63 0.80 

18:0 1.55 0.90 0.84 0.82 0.98 

SFA 0.99 1.00 1.00 1.01 1.00 

SCFA 0.93 1.00 0.97 1.08 1.02 

MCFA 0.96 0.97 1.01 0.99 0.97 

 
 

FA = fatty acid; GWH = Groningen White Headed; DF = Dutch Friesian; MRY = Meuse-Rhine-
Yssel; JER = Jersey; SFA = the saturated FAs 4:0 to 22:0 including iso- and ante-iso FAs; SCFA = 
short-chain FAs 4:0 to 10:0; MCFA = medium-chain FAs 12:0 to 16:0. 
1All breeds means the average prediction errors across all predictions for GWH, DF, MRY and 
JER. 
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 Comparing the descriptive statistics of the GC data, the FA content in the milk 
of the validation data set is generally higher than in the milk of the calibration data 
set. Especially JER milk in the validation data set showed higher FA contents, as the 
mean contents of 6:0, 8:0, 10:0, 12:0, 14:0, SFA, SCFA and MCFA were outside the 
95% confidence interval of the mean of the calibration data of the calibration data 
set (i.e. larger than 2.5 times the standard deviation above the mean contents).  
 The performance of the calibration equations to predict the content of the 
FAs 16:0 and cis-16:1 is also visualized in Figures 3.1 and 3.2. For 16:0, a clear linear 
pattern is shown in Figure 3.1, which result in the high validation R2 ranging from 
0.86 to 0.93. For 16:1, Figure 3.2 clearly shows relatively more deviation of the 
predicted values. In both figures, especially predictions for JER are located in a 
different direction. 
 
 

 
 

Figure 3.1 The predicted content of the individual fatty acid 16:0 based on mid-infrared 
spectometry plotted against the reference gas chromatography values. 
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Figure 3.2 The predicted content of the individual fatty acid cis-16:1 based on mid-infrared 
spectometry plotted against the reference gas chromatography values. 
 
 

3.5 Discussion 
The aim of this study was to investigate the accuracy of calibration equations 

based on milk samples collected from a population with different origin in terms of 
country, breed and methodology used to measure actual FA composition. In 
general, FAs with higher content in milk can be predicted more accurately than milk 
with a lower FA content (Soyeurt et al., 2006 and 2011; Rutten et al., 2009). In this 
study, predictions of FA with high content in milk (> 1 g/dl milk) were also highly 
accurate (validation R2 > 0.80); however, 7 of the total 11 FAs with lower content in 
milk (< 1 g/dl milk) were predicted to be highly accurate by means of validation R2. 
Differences in performance of the calibration equations between breeds were 
mainly found by evaluating the SEV and the average prediction error. Results 
showed on average for GWH the smallest difference between predicted and 
reference values and least variation in prediction errors, whereas for JER on 
average the largest differences were found between predicted and reference 
values and most variation in prediction errors.  
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The RobustMilk calibration equations validated in our study were updated 
versions of the calibration equations reported in Soyeurt et al. (2011), in that the 
calibration data set was enlarged. Despite this increase in size of the calibration 
data set, the predictions in our study were in general less accurate than those of 
Soyeurt et al. (2011). Comparing both studies, the FA composition in the validation 
data set of Soyeurt et al. (2011) was generally closer to the FA composition of the 
calibration data, whereas FA concentrations in the validation data set of our study 
were generally higher than those in the calibration data. This difference in range of 
FA concentrations, mainly due to differences in breed, is the most likely reason for 
this lower accuracy. A comparable difference in accuracy was found by Rutten et al. 
(2009) when predicting FA composition in winter or summer, using a calibration 
equation that was based on winter samples only. This indicates that differences in 
FA composition due to differences in season (in which the feeding regime differs) 
are as important as differences due to breed (Rutten et al., 2009). When winter 
milk samples were used in the calibration data set to predict FA composition of 
summer samples, differences in concentration ranges between the calibration data 
set and the validation data set especially affected the bias (i.e. relative difference in 
means; Rutten et al., 2009). 
 In our study, the FAs that showed the largest difference in mean between our 
validation and the calibration data were not necessarily the same FAs as those that 
showed the largest bias. For instance, despite a relatively small difference in 
concentration of 14:1, cis-16:1, 17:0 and 18:0 between validation and calibration 
data, those FAs showed the largest bias (i.e. average prediction error and β1). As 
cis-14:1, 16:1 and 17:0 are present in very low concentrations (< 0.01 g/dl milk), 
this is the most likely cause of their high bias. Differences between means of 
validation and calibration data were largest for the concentrations of short and 
medium FAs in JER milk, which generally had a higher concentration in JER milk 
compared with the other breeds. Remarkably, despite the large difference in 
concentration, these FAs generally had accurate predictions. Therefore, it seems 
that differences in accuracy and bias are not only caused by differences in 
concentration of the individual FAs, but perhaps also by spectral variability of the 
milk samples. As indicated by Soyeurt et al. (2011), adding milk samples to the 
calibration data to maximize the spectral variability of the samples in the 
calibration data set is an effective method to optimize calibration equations. 
 The suitability of calibration equations depends on the application of the 
predictions. If the primary interest is in predicting individual FA composition, then 
highly accurate and unbiased predictions are important. When the interest is in 
predicting differences between individuals or populations (e.g. for breeding 

47 
 



3 Validation of milk fatty acid prediction using MIR 

 
 
purposes), accurate and unbiased predictions are important; however, less 
accurate or biased predictions can still be suitable, especially when multiple 
measurements are available per individual. Suitability of calibration equations, 
which are to some extent derived under different conditions, can be evaluated by 
means of an external validation as presented in this study. 
 As the dairy breeding industry is interested in selecting cows producing milk 
with a specific FA composition, the suitability of the calibration equations depends 
on the reduction in genetic gain when using MIR information instead of GC 
information. As Rutten et al. (2010) found, the possible genetic gain estimated 
using FA composition determined by predictions based on MIR was almost equal to 
the possible genetic gain estimated using FA composition determined by GC, in 
dairy breeding schemes with progeny testing. The latter result was reached with 
even moderate and quite low validation R2’s ranging from 0.53 to 0.77. The genetic 
gain estimated by Rutten et al. (2010) assumed the availability of information on 
large groups of daughters per sire. Reaching similar gain could be difficult for the 
Dutch breeds in our study, as bulls in these breeds have generally smaller daughter 
groups. For these Dutch breeds, therefore, calibration equations that give highly 
accurate predictions are necessary to obtain genetic gains similar to the 
mainstream cattle breeds. 
 
3.6 Conclusion 

In conclusion, the RobustMilk calibration equations can be used to predict the 
content of most saturated FA in milk using MIR spectrometry for the breeds GWH, 
MRY, DF and JER in the Netherlands with only a minor loss of accuracy compared 
with predictions for Holstein cows. 
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Abstract 
The aim of this study was to estimate breed differences in milk fatty acid (FA) 

profile among 5 dairy cattle breeds present in the Netherlands: Holstein-Friesian 
(HF), Meuse-Rhine-Yssel (MRY), Dutch Friesian (DF), Groningen White Headed 
(GWH), and Jersey (JER). For this purpose, total fat percentage and detailed FA 
contents in milk (14 individual FA and 14 groups of FA) predicted from mid-infrared 
spectra were used. Mid-infrared spectrometry profiles were collected during 
regular milk recording from a range of herds with different combinations of breeds, 
including both purebred and crossbred cows. The data set used for the analyses 
contained 41,404 records from a total of 24,445 cows. In total 7,626 cows were 
crossbreds belonging to the breeds HF, MRY, DF, GWH, and JER; 1,769 purebreds 
(≥87.5%) belonging to the breeds MRY, DF, GWH, and JER; and the other 15,050 
cows were HF. Breed effects were estimated using a single-trait animal model. The 
content in milk of short-chain FA C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, and C16:0 
was higher for JER and the content in milk of C16:0 was lower for GWH compared 
with the other breeds; when adjusting for breed differences in fat percentage, 
however, not all breed differences were significant. Breed differences were also 
found for cis-9 C14:1, cis-9 C16:1, C18:0, and a number of C18 unsaturated FA. In 
general, differences in fat composition in milk between HF, MRY, and DF were not 
significant. Jerseys tended to produce more saturated FA, whereas GWH tended to 
produce relatively less saturated FA. After adjusting for differences in fat 
percentage, breed differences in detailed fat composition disappeared or became 
smaller for several short- and medium-chain FA, whereas for several long-chain 
unsaturated FA, more significant breed differences were found. This indicates that 
short- and medium-chain FA are for all breeds more related to total fat percentage 
than long-chain FA. In conclusion, between breed differences were found in 
detailed FA composition and content of individual FA. Especially, for FA produced 
through de novo synthesis (short-chain FA, C12:0, C14:0, and partly C16:0) 
differences were found for JER and GWH, compared with the breeds HF, MRY, and 
DF. 
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4.1 Introduction 
Bovine milk fat is composed of a wide range of FA, which can be distinguished 

based on their number of carbons, the saturation of their carbon chain, and the 
conformation of double bonds. These different FA can roughly be divided into SFA 
with no double bounds, which make up around 70% of the total milk fat, and 
unsaturated FA (UFA) with 1 (25% MUFA) or multiple double bounds (5% PUFA). 
The detailed FA composition in milk is variable and can differ between cows and 
herds (e.g., Stoop et al., 2008). Extending the knowledge on variation in detailed FA 
composition is of major interest for the dairy industry because of the expected 
effects of dairy fat intake on human health (Mensink et al., 2003; Palmquist et al., 
2006) and associations between FA composition with milk processability (e.g., Smet 
et al., 2009) and individual methane emission (Dijkstra et al., 2011). The variation in 
FA composition in milk can be partly explained by differences in the diet of the 
cows (e.g., Baumgard et al., 2001; Sterk et al., 2011). Besides diet, a considerable 
part of the variation also has a genetic origin. For instance, Mele et al. (2009) 
reported heritabilities for individual FA in milk of Italian Holstein-Friesians (HF) 
ranging from 0.03 to 0.17 and Stoop et al. (2008) reported heritabilities for 
individual FA in milk of Dutch HF ranging from 0.22 to 0.71. This indicates that a 
considerable part of the variation in FA composition is due to genetics. Breeding, 
therefore, can be a tool to change the FA composition in bovine milk. In addition to 
genetic variation within breeds, difference between dairy breeds in FA composition 
might be relevant. Furthermore, identification of specific breed characteristics 
could provide arguments for breed conservation. Differences in FA composition 
between herds with different dairy breeds in the Netherlands were reported by 
Maurice-Van Eijndhoven et al. (2011). Breed differences in FA composition were 
also found by DePeters et al. (1995) in which differences were reported between 
HF, Jersey (JER), and Brown Swiss Beaulieu and Palmquist (1995), in which 
differences were reported between HF and JER, and Lawless et al. (1999) found 
differences for several individual FA between Irish HF, Dutch HF, Montbeliardes, 
and Normandes in Ireland. In the first study (Maurice-Van Eijndhoven et al., 2011), 
however, the structure of the data did not allow separation of breed and herd 
effects. 

To accurately disentangle breed and herd effects, data across a range of herds 
with multiple combinations of breeds are needed. The latter is a major challenge if 
the majority of herds only have purebred cows from 1 breed. To be able to identify 
breed differences, a large number of records including detailed milk FA profiles are 
needed. Unfortunately, the most commonly used method to determine FA 
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composition in milk is gas chromatography (GC). Gas chromatography is relatively 
expensive and time consuming and, therefore, less suitable to assess the detailed 
milk fat composition for large numbers of milk samples. An alternative method to 
predict FA composition is mid-infrared spectrometry (MIRS) as described by 
Soyeurt et al. (2007b), Rutten et al. (2009), and De Marchi et al. (2011). Mid-
infrared spectrometry is less expensive and time consuming and commonly used by 
milk laboratories to analyze the major milk components such as fat and protein 
content, which makes MIRS attractive for routine prediction of FA and for large-
scale experiments. For example, Soyeurt et al. (2007a) reported heritabilities 
calculated using individual FA predicted using MIRS profiles in milk of dairy cattle in 
the Walloon region of Belgium, ranging from 0.05 to 0.38. In another study of 
Soyeurt et al. (2006b), using predicted FA databased on MIRS, some breed 
differences in FA composition were reported among the dairy breeds dual-purpose 
Belgian Blue, HF, JER, Montbeliarde, and Meuse-Rhine-Yssel (MRY) participating in 
the Walloon milk recording in Belgium. 

The aim of this paper is to identify breed differences in FA composition among 
the dairy cattle breeds HF, MRY, Dutch Friesian (DF), Groningen White Headed 
(GWH), and JER. This was achieved by comparing the predicted FA composition for 
those different cattle breeds in the Netherlands using a data set with MIRS profiles 
from regular milk recording, including a range of herds with different combinations 
of breeds, considering both purebred and crossbred animals. 

 
4.2 Materials and Methods 
Collection and Data Editing  

Mid-infrared spectrometry profiles of milk samples were collected via the 
Dutch milk recording system of CRV BV (Arnhem, the Netherlands) between 
October and December 2006. Samples were treated immediately with 0.03% 
(wt/wt) sodium azide to avoid microbiological growth. The MIRS profiles were 
obtained using 3 Fourier-transformed interferogram machines (MilkoScan FT 6000; 
Foss Electric A/S, Hillerod, Denmark) at the laboratory of Qlip N.V. (Leusden, the 
Netherlands). The sampled herds were a random 
representation of all herds participating in the milk recording system of CRV BV. 

The initial data set contained 372,429 test-day records of 230,995 cows. Data-
editing steps included the deletion of records and cows for the following reasons: 
less than 75% of the breed composition known, unknown sire, incomplete milk 
recording data (e.g., unknown birthdate or DIM), 2 records from the same cow on 
the same sample date, cows with records in more than 1 herd, cows reported sick 
at sampling date, cows in parity 11 or higher, cows before 5 or after 365 d in 
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lactation, and cows in herds with less than 5 purebred cows of the same breed (HF, 
MRY, DF, or GWH) per herd. To detect records with possible errors, due to, for 
example, swapped samples, fat content recorded via the regular milk control 
(predicted by QLIP N.V.) was compared with the values obtained using the 
RobustMilk prediction equations (Soyeurt et al., 2011). The correlation coefficient 
between fat content predicted by QLIP N.V. and fat content predicted using the 
RobustMilk prediction equations was 0.996. When the absolute difference in both 
predictions for fat percentage was more than 0.35 the record was removed. Finally, 
complete records with extreme outliers in at least 1 of all predicted traits (�± 5 SD 
of the mean) were deleted. After these editing steps, the data set contained 
307,656 records. 

A large number of these records were from HF animals from herds without 
crossbreds or animals from breeds other than HF. Because these records do not 
contribute to the breed estimates and makes the data set heavily unbalanced, only 
animals from herds with at least 3 animals with >25% genes from MRY, DF, GWH, 
or JER were kept in the data set. The final data set used for the analyses contained 
41,404 records of 24,445 cows from 445 farms. A total of 7,626 cows were 
crossbreds belonging to the breeds HF, MRY, DF, GWH, and JER; 1,769 purebreds 
(≥87.5%) belonging to the breeds MRY, DF, GWH, and JER; and the other 15,050 
cows were HF. 

 
Predicting FA Composition 

The MIRS profiles were used to predict the total fat percentage and detailed 
milk fat composition of 14 individual FA (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, cis-9 
C14:1, C16:0, cis-9 C16:1, C18:0, cis-9 C18:1, cis-9,12 C18:2, cis-9,12,15 C18:3, and 
cis-9,trans-11 C18:2) and the 14 groups of FA [total trans C18:1, total cis C18:1, 
total C18:2, total trans C18, total SFA, total MUFA, total PUFA, total UFA, short-
chain FA (SCFA), medium-chain FA (MCFA), long-chain FA (LCFA), total n-3 FA, total 
n-6 FA, and total branched-chain FA (BCFA)]. The calibration equations used to 
predict these FA were updated versions of the calibration equations of Soyeurt et 
al. (2011) based on 1,236 milk samples. The method used to relate MIRS spectra to 
FA data was partial least square regression after a first-derivative pretreatment on 
spectral data to correct the baseline drift. An external validation of the calibration 
equations used to predict FA in this study was published previously (Maurice-Van 
Eijndhoven et al., 2013). Results from that validation study indicate that the FA 
C4:0 to C16:0 and the groups SFA, SCFA, and MCFA can be predicted with high 
accuracy (R2 >0.80); cis-9 C14:1, cis-9 C16:1, and C18:0 can be predicted with 
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Table 4.1 Definition of the groups of FA and the validation coefficient of determination of 
the prediction.  

 
Group1 FA2 n and R2 

calibration 
equations3 

SFA C4:0; C6:0; C8:0; C10:0; C12:0; iso C13:0; ante-iso 
C13:0; C14:0; iso C14:0; C15:0; iso C15:0; ante-
iso C15:0; C16:0; iso C16:0; C17:0; iso C17:0; 
ante-iso C17:0; C18:0; iso C18:0; C19:0; C20:0; 
C22:0 

n: 1176 
R2: 0.98-1.04 

UFA  with 1 double 
bound (MUFA) 

C10:1; cis C12:1; cis C14:1; cis C16:1; trans C16:1;  
C17:1; cis-9 C18:1; cis-11 C18:1; cis-12 C18:1; 
trans-6-11 C18:1; trans-12-14 C18:1; cis-13 
C18:1; cis-14 C18:1; trans-16 C18:1; cis-9 C20:1; 
cis-11 C20:1  

n: 1180 
R2: 0.985 

UFA  with 2 or more 
double bounds (PUFA) 

C18:2 ∑ ttNMID; cis-9,trans-13 C18:2; trans-8,cis-
12 C18:2; cis-9,trans-12 C18:2; trans-8,cis-13 
C18:2; trans-11,cis-15 C18:2; trans-9,cis-12 
C18:2; cis-9,cis-12 C18:2; cis-9,cis-12,cis-15 
C18:3; cis-9,trans-11 C18:2 (CLA); C20:3n-6; 
C20:4n-6; C20:5n-3 EPA; C22:5 DPA 

n: 1180 
R2: 0.855 

UFA MUFA; PUFA n: 1179 
R2: 0.985 

SCFA C4-C10 n: 1185 
R2: 0.91-0.954 

MCFA C12-C16 n: 1187 
R2: 0.92-0.974 

LCFA C17-C22 n: 1188 
R2: 0.975 

n-3 cis-9,cis-12,cis-15 C18:3; C20:5 (EPA); C22:5 
(DPA) 

n: 1172 
R2: 0.775 

n-6 C18:2 ∑ ttNMID; cis-9,trans-13 C18:2; trans-8,cis-
12 C18:2; cis-9,trans-12 C18:2; trans-8,cis-13 
C18:2; trans-11,cis-15 C18:2; trans-9,cis-12 
C18:2; cis-9, cis-12 C18:2;  C20:3n-6; C20:4n-6 

n: 1167 
R2: 0.765 

BCFA iso C13:0; ante-iso C13:0; iso C14:0; iso C15:0; 
ante-iso C15:0; iso C16:0; iso C17:0; ante-iso 
C17:0; iso C18:0  

n: 1166 
R2: 0.855 

Total trans C18:1 
trans-6-11 C18:1; trans-12-14 C18:1  n: 1176 

R2: 0.925 
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Total cis C18:1  cis-9 C18:1; cis-11 C18:1; cis-12 C18:1; cis-13 
C18:1; cis-14 C18:1; 1 trans-16 C18: 

n: 1189 
R2: 0.975 

Total C18:2 

C18:2 ∑ ttNMID ; cis-9,trans-13 C18:2; trans-
8,cis-12 C18:2; cis-9,trans-12 C18:2; trans-8,cis-
13 C18:2; trans-11,cis-15 C18:2; trans-9,cis-12 
C18:2; cis-9,cis-12 C18:2  

n: 1166 
R2: 0.755 

Total trans C18  

trans6-11 C18:1; trans12-14 C18:1; C18:2 ∑ 
ttNMID; cis-9,trans-13 C18:2; trans-8,cis-12 
C18:2; cis-9,trans-12 C18:2; trans-8,cis-13 C18:2; 
trans-11,cis-15 C18:2; trans-9,cis-12 C18:2  

n: 1181 
R2: 0.925 

 

1UFA = unsaturated FA; SCFA = short-chain FA; MCFA = medium-chain FA; LCFA = long-chain 
FA; BCFA = branched-chain FA. 
2CLA = conjugated linoleic acid; EPA = eicosapentaenoic acid; DPA = docosapentaenoic acid; 
ttNMID = trans,trans non-methylene-interrupted diene. 
3n = the number of samples included in the calibration equation; R2 = the cross validation 
coefficient of determination of the calibration equation. 
4Range of validation R2 of the calibration equations for the group of FA based on separate 
validation data sets of the different breeds Groningen White Headed, Dutch Friesian, Meuse-
Rhine-Yssel, and Jersey (Maurice-Van Eijndhoven et al., 2013). 
5The cross-validation R2 of the calibration equations. The cross-validation approach to 
calculate the R2 is described by Soyeurt et al. (2011). 

 
 
moderate accuracy (R2 = 0.48–0.80); and C17:0 can be predicted with lower 
accuracy (R2 = 0.15–0.73). Only FA were evaluated when the coefficient of 
determination was at least 0.60 over all breeds in this external validation, and for 
those not validated in that study, the cross-validation coefficient of determination 
of the calibration equations used was required to be at least 0.70 [the approach to 
calculate the cross-validation coefficient of determination was described by 
Soyeurt et al. (2011)]. The definition of the groups of FA and the predictability of 
the calibration equations by means of the (cross-validation) coefficient of 
determination are given in Table 4.1. 
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Statistical Analysis 
 Breed effects were estimated in ASReml 3.0 (Gilmour et al., 2009) using the 
following animal models: 
 
yijklmnopqrstu = μ  + b1 × DIMi + b2 × exp-0.05×DIM

i + parityj + b3 × agek(parityj) + htdl + b4 × 
HFm + b5 × MRYn + b6 × DFo + b7 × GWHp + b8 × JERq + b9 × HETr + b10 × RECs + cowt + 
eijklmnopqrst , 
 
in this study referred to as the FAT− model, and 
 
yijklmnopqrstuv = μ  + b1 × DIMi + b2 × exp-0.05×DIM

i + parityj + b3 × agek(parityj) + htdl + b4 × 
HFm + b5 × MRYn + b6 × DFo + b7 × GWHp + b8 × JERq +  b9 × HETr + b10 × RECs + b11 × 
fatperct(HFm) + b12 × fatperct(MRYn) + b13 × fatperct(DFo) + b14 × fatperct(GWHp) + b15 

 

× fatperct(JERq) + cowu + eijklmnopqrstu , 
 

in this study referred to as the FAT+ model, where yijklmnopqrstu(v) was the 
dependent variable for cow t(u) in DIM i, with parity j, calving age k, producing at 
herd test date l, and having a breed composition mnopq; μ was the overall mean of 
the model; b1 was the fixed regression coefficient on DIMi and b2 was the fixed 
regression coefficient on DIMi modeled with a Wilmink curve (Wilmink, 1987); 
parityj was a fixed effect with 4 classes for corresponding lactation numbers of 
parity 1, 2, and 3 and the fourth class including parities 4 to 10; b3 was the fixed 
regression coefficient on agek, which was calving age in days, within the jth parity; 
htdl was a fixed effect defining 841 groups of cows sampled in the same herd on 
the same sample date; b4, b5, b6, b7, and b8 were the fixed regression coefficients 
on, respectively, HFm, MRYn, DFo, GWHp, and JERq, which were the estimated 
percentages of genes belonging to each of those breeds; b9 was the fixed 
regression on HETr, which was the estimated percentage of heterosis; b10 was the 
fixed regression on RECs, which was the estimated percentage of recombination 
loss effect; b11 to b15 were the fixed regression coefficients of fatperct, which was 
the total fat percentage in milk, within the breeds HF, MRY, DF, GWH, and JER; 
cowt(u) was a random permanent environmental effect (no genetic relationships 
included) of cow t(u); and eijklmnopqrst(u) was the random residual effect. 
Heterosis was calculated as function of the degree of heterozygosity of animals and 
REC was derived from the heterozygosity of parental gametes, whose calculations 
are both described by Van Der Werf and De Boer (1989). 
 For each trait model, assumptions were checked for equal variances, 
independency of the phenotypic values, and normality of the residuals. Only for the 
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trait cis-9 C18:1 did the residuals substantially deviate from normality. To avoid 
problems in the comparison of results due to differences in scales resulting from, 
for example, log transforming the values, and transforming results back to the 
original scale, this trait was simply analyzed on the original scale. Reporting cis-9 
C18:1 on the original scale is in line with others who analyzed the same trait (e.g., 
Stoop et al., 2008; Rutten et al., 2009). 
 Breed effects were estimated by calculating the predicted means of all traits 
for each breed in the third parity and 156 d in lactation. For the FAT+ model, means 
were predicted at the average fat percentage of 4.70. To test if the observed 
differences in FA content between breeds were significant a Student’s t-test was 
performed. For the calculation of the t-test statistic, the standard error of 
difference was obtained from ASReml 3.0 software (Gilmour et al., 2009). The P-
values were obtained using a 2-tailed Student’s t-distribution with n degrees of 
freedom, where n was conservatively chosen to be the number of sires of the 
smallest breed of the 2 breeds that were compared (n = 596 MRY; 156 FH; 66 G; 
and 80 JER sires). 

The data included crossbred animals; therefore, heterosis and recombination 
effects were included in the model. To test whether these effects were significantly 
different from zero, a Student’s t-test was performed using the same method as 
described above to test the breed differences and with 24,445 (total number of 
cows) degrees of freedom. 

 
4.3 Results 
Production Traits 
The unadjusted production data shows that HF produced the highest daily milk 
yield, followed by JER, DF, MRY, and GWH (Table 4.2). When assessing the results 
based on the FAT−, model only the milk yield of HF differed significantly (P < 0.05) 
from milk yields of MRY, GWH, and JER (Table 4.3). The results of the FAT− model 
show that the total fat percentage in milk for JER was significantly higher and for 
GWH significantly lower compared with the other breeds, which was in line with 
differences observed in the unadjusted data. Jerseys also produced a significant 
higher protein percentage. 
 
Individual FA C4:0 to C18:0 
The predicted means for C4:0 to C18:0 are shown in Table 4.3. When assessing the 
results based on the FAT− model, JER produced significantly higher contents for all 
of these individual FA than the other breeds. Using the FAT+ model, thus adjusting 
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for differences in fat content, the predicted means of cis-9 C16:1 for JER were 
significantly lower compared with those for HF, MRY, and DF and tended to be 
lower compared with GWH (P = 0.08), and the predicted means of C18:0 for JER 
tended to be lower compared with those for HF, MRY, and GWH. The predicted 
means of GWH for C4:0 to C16:0 and cis-9 C16:1 were significantly lower (P < 0.05) 
when assessing the results of the FAT− model compared with all other breeds. 
When assessing the results of the FAT+ model, GWH also showed the lowest 
predicted means for C4:0 to C16:0, although not all comparisons with the other 
breeds were significant. The GWH breed produced the highest content of C18:0 
when adjusting for differences in fat content. 

 
C18 UFA 
The predicted means of the individual C18 UFA and groups of these FA are in Table 
4.4. Assessing the predicted means, whether adjusting for differences in fat 
percentage (FAT+) or not (FAT−), JER showed a significantly higher predicted mean 
for cis-9,12,15 C18:3. Jerseys produced a higher content of trans C18 FA compared 
with HF and MRY; however, this effect disappeared when adjusting for fat 
percentage in the model. Evaluating the results of the FAT+ model, GWH generally 
showed the highest predicted means for the C18 UFA; however, these predicted 
means were only in several comparisons significantly different from those of the 
other breeds. 
 
Groups of FA 
The predicted means of the groups of FA are shown in Table 4.5. Assessing the 
results of the FAT− model, JER showed significantly higher predicted means for all 
traits except for the group of MUFA and n-6 FA. When adjusting for differences in 
fat percentage (the FAT+ model), predicted means of SFA, SCFA, and MCFA for JER 
were significantly higher compared with all other breeds and predicted means of 
PUFA (for JER) were significantly higher compared with HF and MRY. For the FAT+ 
model, predicted means of UFA, MUFA, LCFA, and n-6 for JER were significantly 
lower than those for the other breeds. The predicted means of all groups of FA for 
GWH, except for n-3 and LCFA, were significantly lower compared with the other 
breeds using the FAT− model, whereas for the FAT+ model, this was only still the 
case for SCFA compared with MRY, DF, and JER and for MCFA compared with HF, 
DF, and JER. 
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Heterosis and Recombination 
The estimates of the heterosis and recombination effects are shown in Table 4.6. 
Heterosis was shown to be significant (P < 0.05) in both FAT− and FAT+ models for 
the individual FA C4:0 to C10:0 and cis-9,trans-11 C18:2, and the group of FA SCFA. 
The recombination effect within the FAT− model was highly significant for most FA 
and groups of FA, except for the conjugated linoleic acid cis-9,trans-11 C18:2, total 
trans C18:1, and total trans C18. Within the model, adjusting for the differences in 
fat content (FAT+), the recombination effect was significant for 15 of the traits 
including C4:0 to C14:0. For almost all traits, both heterosis and recombination had 
positive effects when estimated with the FAT− model. When using the FAT+ model, 
heterosis showed slightly more positive than negative effects, and recombination 
had negative effects in most cases, and was in fact negative in all situations where 
it had a significant effect. 

 
4.4 Discussion 

In this discussion section, first the use of MIRS profiles and the data structure 
is discussed. Thereafter, our results for different groups of FA are discussed and 
compared with published results. In published studies, either FA were evaluated as 
proportion of the total fat (g/100 g of total fat), or as milk content (g/dL of milk). In 
our study, results are published as content in milk. Although predicted means of 
studies in which FA are evaluated as proportion of the total fat cannot directly be 
compared with our results, the direction of breed differences in other studies 
evaluating proportions in fat can be compared with the direction of the breed 
differences of the FAT+ model in our study. Comparisons to published results are 
performed for 3 groups of FA. The first group comprises FA that are formed 
through de novo synthesis (all SCFA and from all MCFA only C12:0 and C14:0), the 
second comprises the C16:0 FA that arises in milk through de novo synthesis and 
uptake from blood circulation, and the third group comprises FA that arise in milk 
by uptake from blood circulation (FA longer than 16 carbons in length). 
 
MIRS Profiles 
The detailed milk fat composition was predicted based on MIRS profiles. The MIRS 
profiles were directly obtained from milk. In our study, results are, therefore, given 
on milk basis (g of fat/dL of milk). Recalculation to fat basis leads to a considerable 
decrease in the accuracy, presumably due to an accumulation of bias. The decrease 
in accuracy when predicting results on fat basis from MIRS profiles was shown by 
Soyeurt et al. (2006a) and Rutten et al. (2009). The predictive ability of the 
calibration equations in milk of MRY, DF, GWH, and JER in the Netherlands has 
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been investigated previously using an independent data set (Maurice- Van 
Eijndhoven et al., 2013). In that study, the majority of FA and groups of FA were 
predicted with moderate to high accuracy (based on the coefficient of 
determination > 0.60) for all breeds. In the study of Soyeurt et al. (2011), the 
predictability of calibration equations was also evaluated using, for example, the 
coefficients of determination, which ranged from 0.68 up to 1 for the FA evaluated 
in our study. Other studies that evaluated the use of calibration equations to 
predict FA composition from MIRS profiles, which are not directly linked to the 
equations used in our study, also showed that MIRS can be a useful method for 
predicting FA composition for breeding purposes (Rutten et al., 2009; De Marchi et 
al., 2011). To obtain accurate estimates of differences between groups, predicted 
individual FA composition does not have to be 100% accurate. Because the 
objective of our study was to compare FA composition of different breeds, which 
involves estimation of average effects for large groups of animals, the results of the 
validation studies mentioned above suggest that using predicted FA composition is 
appropriate for the range of FA presented here. For instance, the content of the FA 
group total C18:2 is predicted to be smaller than the content of the 2 individual 
C18:2 FA together, which is most likely due to the low accuracy of the predictions 
for the FA group total C18:2. 
 
Estimates of Breed Effects, Heterosis, and Recombination 
Breed effects were estimated using a data set from commercial herds including 
purebred and crossbred cows. Because only a very limited number of herds 
included purebred cows of multiple breeds, data of crossbreds was needed to 
disentangle breed and herd effects. Table 4.2 shows the number of cows and 
herds. All herds apart from 2 (1 MRY and 1 DF herd) had crossbred cows. Thus far, a 
comparison between breeds based on data across a range of commercial herds 
with different combinations of breeds was only published by Soyeurt et al. (2006b), 
which included 7 herds with a total of 275 purebred and crossbred cows belonging 
to 6 different breeds in the Walloon region of Belgium. Between breed differences 
were estimated on milk basis, giving results expressed as content in milk (g of 
fat/dL of milk). Using the FAT− model, the average individual FA contents for each 
breed were estimated. As individual FA contents are correlated with fat 
percentage, individual FA contents were also estimated for each breed, accounting 
for differences in fat percentage using the FAT+ model (i.e., in Tables 4.3–4.5, for 
the FAT+ model, predicted means at an average fat percentage of 4.7 are shown). 
As all predictions were performed for FA contents, it may have been expected that 
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individual milk production affected the predictions, due to diluting the FA content. 
A well-known measure of cow milk production is fat- and protein-corrected milk 
(FPCM), which is calculated using fat percentage, protein percentage, and milk 
yield. Breed-specific correlations between FPCM and UFA and SFA based on the 
unadjusted animal FA profiles ranged from −0.13 to −0.40, however, whereas 
correlations between fat percentage and UFA and SFA ranged from 0.54 to 0.96. 
When analyzing FA expressed as content in milk, fat percentage generally had a 
significant effect on FA content of individual FA and groups of FA. Given the 
difference in correlation with FA content, FPCM is expected to have a much smaller 
effect on FA content than fat percentage. 
 In our study, highly significant effects of heterosis were found for several 
SCFA. These effects were estimated to be highest for the model without adjusting 
for differences in fat content. Positive effects of heterosis for fat percentage and fat 
yield in our study were in line with results found by Ahlborn-Breier and 
Hohenboken (1991). Recombination is generally expected to have a negative 
effect, but positive estimates have been reported for fat percentage (Van Der Werf 
and De Boer, 1989). We found the same result for fat percentage and all FA in the 
FAT− model, which was expected because FA content is generally positively related 
with fat percentage. Our results of the FAT+ model seem to indicate that when 
correcting for fat percentage, recombination effects are negative, following the 
general expectation. 
 
FA Generated Through De Novo Synthesis (SCFA, C12:0, and 
C14:0) 
 The SCFA, C12:0, and C14:0 arise in milk mainly from de novo synthesis within 
the mammary epithelial cells (Bauman and Griinari, 2003). A considerable part of 
the variation in production of these FA is, therefore, expected to have a genetic 
origin. Among the breeds HF, MRY, and DF, no significant differences in the 
detailed FA composition were found in our study using the FAT+ model. These 
results are in agreement with Maurice-Van Eijndhoven et al. (2011), who reported 
no significant differences for SCFA, C12:0, and C14:0 between MRY and DF in the 
Netherlands and Soyeurt et al. (2006b), who reported no significant differences for 
C12:0 and C14:0 between HF and MRY participating in the Walloon milk recording 
in Belgium. In our study, JER produced higher contents of SCFA and C14:0 than the 
other breeds. This was also found by Beaulieu and Palmquist (1995) for C4:0 to 
C14:0, by White et al. (2001) for C6:0 to C14:0, and by Palladino et al. (2010) for 
C4:0 to C12:0, although the differences found in the latter study were not 
significant. Soyeurt et al. (2006b) reported significantly higher contents (g/dL of 
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milk) of C12:0 and C14:0 for JER compared with HF, but differences were not 
significant when expressed as proportion of total fat. Our results for SCFA and 
C14:0 for JER were not in line with results reported by Maurice-Van Eijndhoven et 
al. (2011), who found lower proportions for JER compared with DF and MRY. This 
might be due to confounding of herd and breed effects in the study by Maurice-
Van Eijndhoven et al. (2011). Higher contents of SCFA and C14:0 in JER suggest that 
this breed has a relatively higher production of FA through de novo synthesis. 
 
C16:0 

The FA C16:0 is one of the major SFA in bovine milk. The FA C16:0 arises in 
milk through either de novo synthesis or uptake from blood circulation (Bauman 
and Griinari, 2003). As SFA such as C16:0 are associated with a higher risk of 
coronary artery disease (e.g., Mensink et al., 2003), possibilities to alter the content 
of C16:0 in milk is of interest to the dairy industry. In general, our results showed 
higher contents of C16:0 for JER and lower contents for GWH. The results for C16:0 
in our study are in line with results found by Maurice- Van Eijndhoven et al. (2011). 
Similar results for C16:0 in JER compared with HF were reported by Soyeurt et al. 
(2006b) and Palladino et al. (2010). Contrasting results were only reported by 
Beaulieu and Palmquist (1995) who reported a higher proportion C16:0 for HF and 
no difference was found by White et al. (2001). 
 
LCFA 

FAs with more than 16 carbons are obtained by uptake from circulation, 
which implies that the cow diet has a large influence on the secretion of these FA in 
milk. Within the cow, however, 2 important systems affect the final milk fat 
composition: rumen biohydrogenation and Δ9-desaturase activity (Neville and 
Picciano, 1997). Two essential FA in the human diet that arise in bovine milk 
directly from the cow diet are cis-9,12,15 C18:3 and cis-9,12 C18:2, together 
comprising the main fraction of the groups n-3 and n-6, respectively. Although 
these essential FA are present in milk in very low amounts (<2% of total fat), some 
significant differences were found between breeds. Jerseys produced a higher 
content of the C18:3 compared with HF, MRY, and DF and a lower content of cis-
9,12 C18:2 compared with all other breeds when adjusting for differences in fat 
content. The lower production of cis-9,12 C18:2 for JER compared with HF, when 
analyzed as grams per 100 g of fat, was also reported by Palladino et al. (2010). For 
the FA cis-9,12,15 C18:3, contrasting results were found in several other studies 
(Drackley et al., 2001; Palladino et al. 2010). No differences for these FA were 
found by Beaulieu and Palmquist (1995) and White et al. (2001). 

75 
 



4 Milk fat composition of Dutch cattle breeds predicted using MIR 

 
 

The FA C18:0 is produced mainly by biohydrogenation in the rumen of PUFA 
from dietary fat. The trans C18 FA are intermediate products in the 
biohydrogenation process of C18 PUFA in the rumen and, thus, a result of 
incomplete biohydrogenation (Bauman and Griinari, 2003). When accounting for 
differences in fat content, the content of C18:0 was significantly higher for GWH 
compared with JER; however, contrasting results were found without accounting 
for differences in fat content, showing higher contents for JER and lower for GWH. 
Soyeurt et al. (2006b) also found a higher C18:0 content for JER compared with HF. 
Other studies that evaluated proportions of the total fat, however, reported no 
significant differences between JER and other breeds such as HF and GWH 
(Beaulieu and Palmquist, 1995; White et al., 2001; Palladino et al., 2010; Maurice-
Van Eijndhoven et al., 2011). Evaluating the total trans C18 FA in our study, only 
using the model without regression on fat percentage, a significantly higher 
content was found for JER compared with HR and MRY. Thus, the higher content of 
most LCFA produced by JER is directly related to its higher fat percentage in milk. 

The conversion of trans-11 C18:1 into cis-9,trans-11 C18:2 via Δ9-desaturase 
in the udder is the major source of cis-9,trans-11 C18:2 in milk. Although GWH 
seems to produce a higher content of cis-9,trans-11 C18:2, based on the 
unadjusted data in the current study, no significant difference among breeds was 
found following the FAT+ model and even a significant lower mean was predicted 
for the FAT− model compared with HF and DF. Maurice-Van Eijndhoven et al. 
(2011) reported a higher proportion of cis-9,trans-11 C18:2 for GWH and a lower 
proportion for JER. The predicted means of cis-9,trans-11 C18:2 for JER in current 
study were significantly higher compared with HF and MRY when evaluating the 
results of the FAT+ model. Contrasting results were found by White et al. (2001) 
who reported a lower proportion of cis-9,trans-11 C18:2 for JER compared with HF. 
Δ9-Desaturase plays an important role in determining the total proportion of UFA 
in milk by desaturation of FA, resulting in, for example, cis-9,trans-11 C18:2, C14:1, 
C16:1, and C18:1 with a double bond at cis-9. Especially these UFA with a cis double 
bound are reported as having an altering effect on the risk of development of 
coronary artery disease (Mensink et al., 2003). In our study, the results of the FAT+ 
model for JER showed significantly higher content of cis-9 C14:1 and lower content 
of cis-9 C16:1 and cis-9 C18:1. In agreement, White et al. (2001) reported lower 
proportions cis-9 C16:1 and cis-9 C18:1 for JER compared with HF. For cis-9 C18:1, 
both, Beaulieu and Palmquist (1995) and Palladino et al. (2010) also found lower 
proportions for JER compared with HF. The differences between the models reveal 
that the higher content of cis-9 16:1 and cis-9 C18:1 produced by JER is also directly 
related to the higher fat percentage in milk of JER. 
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Major Genes Affecting FA Composition 
Despite potential differences between cow diets in our and other studies, our 
results were generally in agreement with breed differences reported in other 
studies. This confirms that differences in FA are partly determined by genetics. 
Several studies reported that polymorphisms in the genes encoding the acyl 
CoA:diacylglycerol acyltransferase 1 (DGAT1) and stearoyl-CoA desaturase 1 (SCD1) 
enzymes explain an important part of the variation in milk fat composition (e.g., 
Grisart et al., 2002; Schennink et al., 2007; Schennink et al., 2008). Potential 
differences in allele frequencies between breeds for these genes might explain part 
of the observed breed differences. For some Jersey and several Holstein 
populations, the frequencies of the DGAT1 232K and SCD1 293A alleles have been 
reported in the literature. The frequency of the DGAT1 232K allele in Holsteins was 
reported as ranging from 0.27 to 0.60 (Spelman et al., 2002; Thaller et al., 2003; 
Kaupe et al., 2004; Lacorte et al., 2006; Schennink et al., 2007) and somewhat 
higher in JER, ranging from 0.69 to 0.88 (Spelman et al., 2002; Kaupe et al., 2004). 
For example, Grisart et al. (2002) and Winter et al. (2002) reported an association 
of the DGAT1 232K allele with a higher fat percentage in milk and Schennink et al. 
(2007) reported an association with a higher proportion C16:0. Thus, these 
reported differences infrequencies for the DGAT1 232K allele in HF and JER, and  
the reported effects of this allele, are in line with the results of our study. 

The frequency of the SCD1 293A allele in Holsteins was reported as ranging 
from 0.56 to 0.73 (Kgwatalala et al., 2007; Mele et al., 2007; Macciotta et al., 2008; 
Milanesi et al., 2008; Schennink et al., 2008), whereas it was reported to be higher 
in JER, ranging from 0.94 to 0.95 (Kgwatalala et al., 2007; Moioli et al., 2007). The 
SCD1 293A allele was reported to be associated with a higher proportion of C14:0, 
cis-9 C14:1, and C18:0 and a lower proportion of cis-9 C16:1 (Schennink et al., 
2008), which is in line with the differences found between JER and HF in our study, 
except for C18:0. 

The above-described differences in allele frequencies and the associations of 
the alleles with the FA composition indicate that the differences between HF and 
JER, to a large extent, may be the result of differences in allele frequencies at the 
DGAT1 and SCD1 genes. Whether or not, for instance, differences between JER and 
GWH in our study can also be attributed to differences in allele frequencies at 
those genes is currently unknown, as the allele frequencies for GWH, as well as for 
DF and MRY, are currently not known. 
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4.5 Conclusion 

Breed differences were found in the detailed FA composition and content of 
individual FA. Especially for FA content in milk produced through de novo synthesis 
(SCFA, C12:0, C14:0, and partly C16:0), differences were found for JER and GWH 
compared with the breeds HF, MRY, and DF. For FA having more than 16 carbons, 
breed differences in content in milk were found for FA that arise in milk directly 
from the cow diet (cis-9,12 C18:2 and cis-9,12,15 C18:3) of which the total amount 
is influenced by biohydrogenation in the rumen. Breed differences were also found 
for FA content in milk in which Δ9-desaturase plays a role (cis- 9 C14:1, cis-9 C16:1, 
and cis-9 C18:1). No significant differences were found between the predicted 
means of any individual FA or group of FA among the breeds HF, MRY, and DF. 
Comparing predicted means from both models, including and excluding a 
regression on fat percentage, clearly indicated that the detailed FA composition in 
content in milk, especially SCFA and MCFA, is related to the total fat percentage in 
all studied breeds. 
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Abstract 
The aim of this paper is to identify differences in genetic variation of fatty acid 

(FA) composition in milk in different breeds. Data used included Meuse-Rhine-Yssel 
(MRY) and Holstein Friesian (HF) cattle breeds. Both populations were kept in the 
Netherlands and participated in the same milk recording system. The populations 
did differ, however, in selection history, where in the MRY there has been relatively 
very little emphasis on selection for high-input high-output production systems 
compared to HF. Differences in genetic variation were investigated by estimating 
breed specific additive genetic variances and heritabilities for FA contents in milk of 
MRY and HF. Mid Infrared Spectrometry spectra were used to predict total fat 
percentage and detailed FA contents in milk (14 individual FA and 14 groups of FA 
in g of fat/dL of milk). The dataset for MRY contained 2 916 records from 2 049 
registered cows having at least 50% genes of MRY origin and the dataset used for 
HF contained 155 319 records from 96 315 registered cows having at least 50% 
genes of HF origin. Variance components of individual FA content in milk for the 
different breeds were estimated using a single trait animal model. Additive genetic 
variances for FA produced through de novo synthesis (short chain FA, C12:0, C14:0, 
and partly C16:0), C14:1 c-9 and C16:1 c-9 were significantly higher (P<0.001) for HF 
compared to MRY. Heritabilities of the individual FA C4:0 to C18:0 for HF ranged 
from 0.28 to 0.52 and for MRY from 0.17 to 0.34. Heritabilities of the individual C18 
unsaturated FA for HF ranged from 0.11 to 0.34 and for MRY from 0.10 to 0.26. 
Although the mean content in milk for the FA C18:2 c-9, t-11 was low in both 
breeds, the additive genetic variance in our dataset was significantly higher for 
MRY (P<0.05) compared to HF. Heritabilities of the groups of FA for HF ranged from 
0.19 to 0.53 and for MRY from 0.11 to 0.28. For the majority of the FA, the additive 
genetic variances for HF were significantly higher compared to MRY, except for 
most of the poly unsaturated FA. The results for the poly unsaturated FA, however, 
may be affected by the lower accuracy of the predictions for these FA. In 
conclusion, our results show that the HF breed has substantially larger genetic 
variance for most FA compared to MRY. 

 
Key words: milk, fatty acids, infrared spectrometry, genetic variability, cattle 

breeds   
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5.1 Introduction 
Fat is one of the major components in bovine milk. Bovine milk fat is 

composed of a wide range of fatty acids (FA) which content and composition in the 
milk vary between cows. Extending the knowledge on variation in detailed milk fat 
composition among cows is of interest for the dairy industry because fat 
composition is associated with processability (e.g. Smet et al., 2009), human health 
(e.g. Mensink et al., 2003, Palmquist et al., 2006) and also methane emission 
(Dijkstra et al., 2011). The variation in FA composition in milk between cows is 
partly due to environmental effects, mainly differences in cows diet (e.g. Baumgard 
et al., 2001, Sterk et al., 2011), lactation stage (e.g. Stull et al., 1966), and also a 
considerable part of the variation has a genetic origin within and across lactation 
(e.g. Stoop et al., 2008, Bastin et al. 2011). For example, Soyeurt et al. (2007) 
reported heritabilities for individual FA in milk of dairy cattle in the Walloon region 
of Belgium ranging from 0.05 to 0.38 and Stoop et al. (2008) reported heritabilities 
for individual FA in milk of the intensively selected dairy breed Holstein Friesian 
(HF) in the Netherlands ranging from 0.22 to 0.71. Considering the heritabilities 
reported by Stoop et al. (2008), there are possibilities for the dairy industry to 
modify FA composition in milk of Dutch HF cows using breeding strategies. An 
important unanswered question is whether the same applies for other Dutch local 
breeds like the Meuse-Rhine-Yssel (MRY), in which there has been relatively very 
little emphasis on selection for high-input high output production systems used in 
the dairy sector. Differences for the FA profile of milk fat between breeds have 
been described by e.g. Maurice – Van Eijndhoven et al. (2013) reporting higher 
content of saturated FA (SAT) produced by Jersey cows compared to a number of 
local Dutch breeds. Although Maurice-Van Eijndhoven et al. (2013) reported no 
differences in the level of FA composition between the Dutch MRY and HF, 
differences in within breed variability for both breeds need to be known to assess 
whether alternative breeds like MRY can contribute to breeding strategies to 
change FA composition.  

The aim of this paper is to identify differences in genetic variation within the 
MRY and HF cattle breeds in the Netherlands. This was achieved by estimating 
breed specific additive genetic variances and heritabilities for FA composition of 
MRY and HF. Analyses were based on predicted FA composition in milk using Mid 
Infrared Spectrometry (MIRS) spectra on a large data set. 
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5.2 Materials and Methods 
Data collection and data editing 
 MIRS spectra of milk samples were collected via the Dutch milk recording 
system of CRV BV (Arnhem, The Netherlands) between October and December 
2006. Samples were treated immediately with 0.03% (wt/wt) sodium azide to avoid 
microbiological growth. The MIRS spectra were obtained using 3 Fourier-
transformed interferogram machines (MilkoScan FT 6000, Foss Electric, Denmark) 
at the laboratory of Qlip N.V. (Leusden, The Netherlands). The 1 886 sampled herds 
were a random representation of all herds participating in the milk recording 
system of CRV BV. 
 The initial dataset contained 372 429 test-day records of 230 995 cows. Data-
editing steps included the deletion of records and cows for the following reasons: 
less than 75% of the breed composition known, unknown sire, incomplete milk 
recording data (e.g. unknown birthdate or DIM), multiple records from the same 
cow on the same sample date, cows with records in multiple herds, cows reported 
sick at sampling date, cows in parity 11 or higher, cows before 5 or after 365 days 
in lactation, and records from herds with less than 5 purebred cows of the same 
breed (HF, MRY, Dutch Friesian (DF), or Groningen White Headed (GWH) ) per herd. 
To detect records with possible errors, due to, for example, swapped samples, fat 
content recorded via the regular milk control (predicted by QLIP N.V.) was 
compared to fat content obtained using the RobustMilk prediction equations that 
were developed by Soyeurt et al. (2011). The correlation coefficient between fat 
content predicted by QLIP N.V. and fat content predicted using the RobustMilk 
prediction equations was 0.996. When the absolute difference in both predictions 
for fat percentage was more than 0.35 the record was removed. Finally, complete 
records with extreme outliers in at least 1 of all predicted traits (+/- 5 SD of the 
mean) were deleted. After these editing steps the dataset contained 307 656 
records. Because of computational limitations this dataset was reduced by 
randomly eliminating ~50% of the herds with only HF cows (at least 75% HF, i.e. 
herds without any pure- or crossbred MRY, DF, or GWH cows). The dataset used for 
MRY contained 2 916 records of in total 2 049 cows registered having at least 50% 
genes of MRY origin with a pedigree of 13 506 animals and the dataset used to 
estimate heritabilities for HF contained 155 319 records of in total 96 315 cows 
registered having at least 50% genes of HF origin with a pedigree of 405 968 
animals. Pedigree files for both data sets included all known ancestors as far back 
as possible. Ancestors with unknown parents and only 1 offspring in the pedigree 
were removed. 
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Measuring fatty acid composition 
 Detailed milk composition on milk basis (g of FA/dL milk) of the 14 individual 
FA (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C14:1 c-9, C16:0, C16:1 c-9, C18:0, C18:1 
c-9, C18:2 c-9, 12, C18:3 c-9, 12, 15, and C18:2 c-9, t-11) and the 14 groups of FA 
[total trans C18:1, total cis C18:1, total C18:2, total trans C18, total SFA, total 
mono-unsaturated FA (MUFA), total poly-unsaturated FA (PUFA), total UFA, short-
chain FA (SCFA), medium-chain FA (MCFA), long-chain FA (LCFA), total n-3 FA, total 
n-6 FA, and total branched-chain FA (BCFA); group definitions are given in Table 
5.1] were predicted from the MIRS spectra. For those predictions, updated versions 
of the RobustMilk calibration equations published by Soyeurt et al. (2011) were 
used, that were based on 1 236 milk samples from multiple breeds and countries 
(calibration equations were updated by expanding the number of samples used in 
the calibration data set from 570 to 1 236). The method used to relate MIRS 
spectra to FA data was partial least square regression after a first derivative pre-
treatment on spectral data to correct the baseline drift. A T-outlier test was also 
used during the calibration process to delete potential outliers based on the gas 
chromatographic measurements. Therefore the final number of samples included 
in each calibration equation varied following the considered FA. More detailed 
information about the methodology used to develop the calibration equations is 
given by Soyeurt et al. (2011). Some descriptive statistics of the calibration 
equations, which are described by Soyeurt et al. (2011), are given in Table 5.2. 
More detailed descriptive statistics of the calibration equations are published by 
Maurice – Van Eijndhoven et al. (2012) including an external validation for the MRY 
breed. 
 Next to the detailed FA composition, 5 production traits were analysed (milk 
yield, fat%, protein%, fat yield and protein yield). Fat content was predicted using 
the RobustMilk calibration equations published by Soyeurt et al. (2011) and protein 
content was predicted by QLIP N.V. 
 
 
Table 5.1 Definition of the groups of fatty acids. 
 

Group Fatty acids 
Total t C18:1 C18:1 t-6-11; C18:1 t-12-14 
Total c C18:1 C18:1 c-9; C18:1 c-11; C18:1 c-12; C18:1 c-13; C18:1 c-14; 

C18:1 t-16 
Total C18:2 C18:2 ∑ ttNMID; C18:2 c-9, t-13; C18:2 t-8, c-12; C18:2 c-9, 

t-12; C18:2 t-8, c-13; C18:2 t-11, c-15; C18:2 t-9, c-12; 
C18:2 c-9, c-12 
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Group Fatty acids 
Total t C18 C18:1 t6-11; C18:1 t12-14; C18:2 ∑ ttNMID; C18:2 c-9, t-13; 

C18:2 t-8, c-12; C18:2 c-9, t-12; C18:2 t-8, c-13; C18:2 t-11, 
c-15; C18:2 t-9, c-12 

Saturated fatty acids 
(SFA) 

C4:0; C6:0; C8:0; C10:0; C12:0; C13:0 iso; C13:0 ante-iso; 
C14:0; C14:0 iso; C15:0; C15:0 iso; C15:0 ante-iso; C16:0; 
C16:0 iso; C17:0; C17:0 iso; C17:0 ante-iso; C18:0; C18:0 
iso; C19:0; C20:0; C22:0 

Unsaturated fatty 
acids (UFA) 

MUFA; PUFA 

Unsaturated fatty 
acids  with 1 double 
bound (MUFA) 

C10:1; C12:1 cis; C14:1 cis; C16:1 cis; C16:1 trans;  C17:1; 
C18:1 c-9; C18:1 c-11; C18:1 c-12; C18:1 t-6-11; C18:1 t-12-
14; C18:1 c-13; C18:1 c-14;C18:1 t-16; C20:1 c-9; C20:1 c-
11 

Unsaturated fatty 
acids with 2 or more 
double bounds (PUFA) 

C18:2 ∑ ttNMID; C18:2 c-9, t-13; C18:2 t-8, c-12; C18:2 c-9, 
t-12; C18:2 t-8, c-13; C18:2 t-11, c-15; C18:2 t-9, c-12; 
C18:2 c-9,c-12; C18:3 c-9, c-12, c-15; C18:2 c-9, t-11 (CLA); 
C20:3 (n-6); C20:4 (n-6); C20:5 EPA (n-3); C22:5 DPA 

Short chain fatty acids 
(SCFA) 

C4-C10 

Medium chain fatty 
acids (MCFA) 

C12-C16 

Long chain fatty acids 
(LCFA) 

C17-C22 

n-3 C18:3 c-9 ,c-12, c-15; C20:5 (EPA); C22:5 (DPA) 
n-6 C18:2 ∑ ttNMID; C18:2 c-9, t-13; C18:2 t-8, c-12; C18:2 c-9, 

t-12; C18:2 t-8, c-13; C18:2 t-11, c-15; C18:2 t-9, c-12; 
C18:2 c-9, c-12;  C20:3 (n-6); C20:4 (n-6) 

BCFA C13:0 iso; C13:0 ante-iso; C14:0 iso; C15:0 iso; C15:0 ante-
iso; C16:0 iso; C17:0 iso; C17:0 ante-iso; C18:0 iso 

 
 
 
 
 
Table 5.2 Descriptive statistics of the fatty acid calibration equations and data used to derive 
the equations. 
 

Traits Na R²cvb RPDc 

Production traits 
   

Fat percentage 1166 1.00 33.53 
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Traits Na R²cvb RPDc 

    

Traits g/dL milk 
   

C4:0 1186 0.93 3.68 

C6:0 1189 0.96 4.81 

C8:0 1180 0.96 5.00 

C10:0 1183 0.96 4.72 

C12:0 1180 0.95 4.61 

C14:0 1184 0.95 4.70 

C14:1 c-9 1180 0.78 2.13 

C16:0 1179 0.97 6.20 

C16:1 c-9 1179 0.78 2.14 

C18:0 1173 0.90 3.24 

C18:1 c-9 1194 0.96 5.06 

Total cis C18:1 1189 0.97 5.55 

Total trans C18:1 1176 0.92 3.57 

C18:2 c-9, 12 1172 0.81 2.30 

C18:2 c-9, t-11 1154 0.85 2.59 

Total C18:2 1166 0.75 2.00 

C18:3 c-9,12,15 1169 0.77 2.11 

Total trans C18 1181 0.92 3.59 

SFA 1176 1.00 15.34 

UFA 1179 0.98 7.62 

MUFA 1180 0.98 7.18 

PUFA 1180 0.85 2.56 

SCFA 1185 0.96 5.10 

MCFA 1187 0.98 7.53 

LCFA 1188 0.97 5.96 

n-3 1172 0.77 2.11 

n-6 1167 0.76 2.03 

BCFA 1166 0.85 2.61 

 
 
a The number of samples included in the calibration equation . 
b Cross validation coefficient of determination. 
c The ratio of SD to SECV. 
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Statistical analysis 
 Genetic variances were estimated in separate analyses for HF and MRY in 
ASReml 3.0 (Gilmour et al., 2009) using the following animal model: 
 
yijklmnopqrstuv = μ + b1 × DIMi + b2 × exp-0.05×dim

i + parityj + b3 × agek (parityj) + htdl + b4 × 
HFm + b5 × MRYn + b6 × DFo + b7 × GWHp + b8 × JERq + b9 × HETr + b10 × RECs + at + pet 
+ eijklmnopqrstu , 

 
where yijklmnopqrstuv was the dependent variable for cow t in days in milk (DIM) i, with 
parity j, calving age k, producing at herd test date (htd) l, and having a breed 
composition mnopq for HF (m), MRY (n), DF (o), GWH (p), and JER (q). The μ was 
the overall mean of the model; b1 was the fixed regression coefficient on DIMi and 
b2  was the fixed regression coefficient on DIMi modeled with a Wilmink curve 
(Wilmink, 1987); parityj was a fixed effect with 4 classes for corresponding lactation 
numbers of parity 1, 2, and 3 and the 4th class included parity 4 - 10; b3 was the 
fixed regression coefficient on agek, which was calving age in days, within the jth 
parity; htdl was a fixed effect defining groups of cows sampled in the same herd on 
the same sample date; b4, b5, b6, b7, and b8 were the fixed regression coefficients 
on, respectively, HFm, MRYn, DFo, Gp, JERq, which were the expected percentages of 
genes belonging to each of those breeds; b9 was the fixed regression on HETr, 
which was the estimated percentage of heterosis; b10 was the fixed regression on 
RECs, which was the estimated percentage of recombination loss effect; at was the 
random additive genetic effect of cow t; pet was the random permanent 
environmental effect of cow t, and eijklmnopqrstu is the random residual effect. HET 
was calculated as function of the degree of heterozygosity of animals and REC was 
derived from the heterozygosity of parental gametes which calculations are both 
described by Van der Werf and de Boer (1989). 

 
 Heritabilities for all traits were calculated separately for MRY and HF using the 
obtained estimated variance components. The heritability was calculated as: 

222

2
2

epea

ah
σσσ

σ
++

= . 

 
 To evaluate the difference between the additive genetic variance components 
of HF and MRY a log likelihood ratio test was performed using following formula: 

( )12ln2 RRD −= , 
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where ℓR1 is the likelihood for the model to estimate the genetic variance for MRY 
and ℓR2 is the likelihood for the same model for MRY, except in this case the 
additive genetic variance was fixed at the value of the additive genetic variance of 
HF. The additive genetic variance for MRY was considered to be significantly 
different from the value for HF when the test statistic was above the 5% critical 
value of 2.71 from a mixture of the χ2 distribution with 0 and 1 degrees of freedom 
(Self and Liang, 1987). Significance was assessed from the χ2 distribution with 1 
degrees of freedom, which was used for convenience, instead of P-values from the 
required mixture of χ2 distribution with 0 and 1 degrees of freedom. The results, 
however, gives a correct representation of the additive genetic variances which are 
significantly different from each other (P≤0.5) and which are not (P>0.5).   
 
5.3 Results 
Production traits 
  Additive genetic variances and heritabilities of 5 production traits were 
estimated for a Dutch MRY population and a Dutch HF population (Table 5.3). The 
estimated additive genetic variances of the milk fat percentage and the milk 
protein percentage were significantly higher (both P<0.001) for the Dutch HF 
population compared to the Dutch MRY population. In addition, the heritabilities of 
the milk fat percentage and the milk protein percentage were highest too for the 
Dutch HF population. The relative differences of the additive genetic variances of 
the milk fat percentage between both populations was highest, of which the 
additive genetic variance of HF was with an estimated value of 0.210 66% higher 
than those of MRY with 0.072. 
 
Individual FA C4:0 to C18:0 
 For all individual FA C4:0 to C18:0 including the unsaturated FA C14:1 c-9 and 
C16:1 c-9 the additive genetic variances and heritabilities were estimated for MRY 
and HF (Table 5.3). For both, the additive genetic variances as well as the 
heritabilities, the estimates were lower for MRY compared to HF. Except for the FA 
18:0 (P=0.1681), the differences of the estimated additive genetic variances 
between MRY and HF were significant (C4:0 P<0.01; C6:0-C16:0 P<0.001), where 
the differences ranged from 42% to 65% relative to the additive genetic variances 
estimated for HF. 
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Table 5.3 The heritability and additive genetic variance of 5 production traits, 14 individual 
fatty acids and 14 groups of fatty acids for the breeds MRY and HF and the t-values of the 
differences between the MRY and HF additive genetic variances. 
 

 
MRYa HFa 

 
Traits h2,b Var A h2,c Var A % of diffd,e 

Production traits       

Milk yield (kg) 0.22 4.2284 0.21 6.4129 34 
Fat% 0.22 0.0719 0.49 0.2104 66 *** 
Protein% 0.27 0.0208 0.48 0.0429 52 *** 
Fat yield (kg) 0.17 0.0078 0.16 0.0106 27 
Protein yield (kg) 0.16 0.0038 0.17 0.0054 30 

Traits g/dL milk     
 C4:0 0.28 7.4E-05 0.39 0.000126 42 ** 

C6:0 0.27 4.4E-05 0.50 0.000100 56 *** 
C8:0 0.28 2.3E-05 0.49 0.000051 54 *** 
C10:0 0.29 0.00018 0.48 0.000352 50 *** 
C12:0 0.28 0.00027 0.47 0.000571 52 *** 
C14:0 0.27 0.00162 0.52 0.003813 58 *** 
C14:1 c-9 0.27 1.9E-05 0.48 0.000045 59 *** 
C16:0 0.34 0.01842 0.51 0.038513 52 *** 
C16:1 c-9 0.17 3.6E-05 0.41 0.000104 65 *** 
C18:0 0.23 4E-06 0.28 0.000010 29 *** 
C18:1 c-9 0.1 0.00167 0.17 0.002339 42 
Total cis C18:1 0.1 0.00246 0.17 0.004235 40 
Total trans C18:1 0.2 0.0028 0.16 0.004646 -18 
C18:2 c-9, 12 0.26 0.00019 0.26 0.000159 18 
C18:2 c-9, t-11 0.21 0.00346 0.11 0.005174 -78 * 
Total C18:2 0.22 0.00003 0.34 0.000037 39 * 
C18:3 c-9,12,15 0.17 0.00002 0.31 0.000011 47 * 
Total trans C18 0.21 4.1E-05 0.16 0.000067 -27 
SFA 0.28 2E-06 0.53 0.000004 61 *** 
UFA 0.11 0.00029 0.22 0.000229 51 * 
MUFA 0.11 0.05544 0.22 0.141201 51 * 
PUFA 0.21 0.00496 0.19 0.010186 1 
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SCFA 0.27 0.00407 0.50 0.008307 57 *** 
MCFA 0.28 0.00017 0.53 0.000172 62 *** 
LCFA 0.14 0.00099 0.21 0.002300 37 
n-3 0.21 0.0363 0.33 0.094703 44 * 
n-6 0.22 0.011 0.35 0.017551 34 * 
BCFA 0.25 5E-06 0.36 0.000009 36 * 

 
a MRY = Meuse-Rhine-Yssel and HF = Holstein Friesian.  
b With a SE of on average 0.5 (which was between 0.03 and 0.06) for all estimated 
heritabilities. 
c With a SE of 0.01 for all estimated heritabilities. 
d The difference of the additive genetic variance of MRY compared to the additive genetic 
variance of HF as percentage of the additive variance of HF. 
e The P-values obtained from the χ2 distribution with 1 degrees of freedom: *P<0.05; 
**P<0.01; ***P<0.001. 
 
C18 UFA   
 The estimated additive genetic variances and heritabilities of the individual 
C18 unsaturated FA and groups of these FA are also shown in Table 5.3. The 
additive genetic variances and heritabilities of the traits C18:1 c-9, Total cis C18:1, 
Total C18:2, and C18:3 c-9, 12, 15 were estimated to be lower for MRY compared 
to HF. For Total C18:2 and C18:3 c-9, 12, 15 the differences of the additive genetic 
variances between MRY and HF were significant (both P<0.05) with a difference of 
respectively 39% and 47% relative to the additive genetic variance of HF. The 
additive genetic variances and heritabilities of the traits Total trans C18:1, C18:2 c-
9, t-11, and Total trans C18 were, however, estimated to be higher for MRY 
compared to HF. For C18:2 c-9, t-11 the differences of the additive genetic 
variances between MRY and HF were significant (P<0.05) with a difference of -78%  
relative to the additive genetic variance of HF. 
 
Groups of FA 
 The estimated additive genetic variances and heritabilities of 10 groups of FA 
are shown in the bottom part of Table 5.3 (group definitions are given in Table 5.1). 
For both, the additive genetic variances as well as the heritabilities, the estimates 
were lower for MRY compared to HF, except for the group of FA PUFA. For PUFA, 
the heritability of MRY was estimated to be 0.21 and for HF 0.19, however, the 
additive genetic variance was almost similar. For all other groups of FA, except 
LCFA, the additive genetic variances were significant higher for HF (P<0.05) with a 
difference ranging from 34% to 62% relative to the additive genetic variance of HF. 
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5.4 Discussion 
 This paper reports estimates of the additive genetic variances and the 
heritabilities of the detailed FA composition in milk for the Dutch MRY in 
comparison with the estimates for the HF breed. Analyses were based on predicted 
FA composition, using MIRS spectra collected from a large number of milk samples. 
The FA predictions used to predict the additive genetic variances and heritabilities 
were expressed on milk basis (g of FA/dL of milk) thus the estimated variance 
components indicate to what extent selection is possible on FA composition as 
contents of individual FA in milk. We used prediction on milk basis, because the 
accuracy of prediction is considerably higher compared to fat basis (g/100g fat), as 
shown by De Marchi et al. (2011), Soyeurt et al. (2011), and Rutten et al. (2009). 
For our study we used the RobustMilk calibration equations because these 
equations were developed using data of different breeds including MRY and HF in 
the Walloon region of Belgium and including multiple countries (Soyeurt et al., 
2011) to enlarge the data variability which is essential for the application of MIRS 
(De Marchi et al. 2014). The predictive ability of these calibration equations in milk 
of different cattle breeds in the Netherlands, including MRY, has been investigated 
previously using an independent dataset with both MIRS spectra and gas 
chromatography measurements (Maurice-Van Eijndhoven et al., 2012). In that 
study, the predictive ability was evaluated for 10 individual FA and 3 groups of FA 
which are also included in the current study, and the coefficient of determination 
of the predictions ranged from 0.64 to 1.00. Some desciptive statistics of the 
calibration equations used in current study are also given in Table 5.2. Highest 
predictability, e.g. coefficient of determination close to one and highest RPDs, is 
especially shown for the predictions of the saturated short and medium FA. To use 
variability of FA composition within breeds for breeding purposes at the population 
level, predicted individual FA composition does not necessarily have to be 100% 
accurate. Indeed, Rutten et al. (2010) showed that the MIRS calibration equations 
have to be based on a large number of calibration samples, roughly 1 000 samples 
or more, to optimize the variability of calibration data in order to minimize the loss 
in potential genetic gain when using predicted FA from MIRS. The calibration 
equations used in our study were based on 1 236 samples from multiple breeds 
and countries to cover a wide range of FA variation. Lowest accuracies for the 
calibration equations were found for the poly unsaturated FA (ranging from 0.75 to 
0.97) which can lead to bias of the prediction, therefore, results of these FA have to 
be interpreted carefully. For most of the FA considered in our study, however, it is 
expected that our results are hardly affected due to the use of MIRS FA predictions, 
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which is confirmed by the fact that the obtained results for HF are generally in line 
with results published in the literature.    
 
 The additive genetic variances and heritabilities were estimated using a 
dataset from commercial herds including purebred and crossbred cows. The 
crossbred cows included animals that are registered having at least 50% genes of 
MRY or of HF origin. Crossbred animals were included to have as many farms using 
the MRY breed in the analyses as possible. The HF breed is dominating in the Dutch 
dairy industry which is the main reason explaining the difference in number of 
records used in this study between MRY and HF. An important question is whether 
the difference in numbers of records for the MRY versus HF breeds could have 
contributed to the observed differences in estimated variance components. To 
examine this, the data of the HF herds were randomly divided in 75 subsets each 
having approximately the same size as the MRY dataset used in our study. Of these 
75 subsets, 6 randomly chosen subsets were used to estimate the heritabilities and 
additive genetic variances for fat percentage, 4 individual FA, and 1 group of FA 
(SFA) (Table 5.4). Estimates for those individual subsets were on average clearly 
different from the estimates obtained using the MRY dataset, while they were 
close to the estimates obtained using the large HF dataset. Based on these results 
of the HF subsets, it is concluded that the differences in results observed between 
MRY and HF were not due to the differences in the size of the datasets. 
  
 It is well known that the FA composition in milk is affected by both genetics as 
well as the cows diet. Lowest additive genetic variances are found for FA with lower 
average contents in milk, which are mainly the unsaturated FA. The FA C4:0-C14:0 
arise in milk mainly from de novo synthesis (Bauman and Griinari, 2003). This 
means that a considerable part of the variation in production of these FA is 
expected to have a genetic origin. In this study the heritabilities for HF range from 
0.39 to 0.52 for the traits C4:0-C14:0 while the heritabilities for MRY range from 
0.27 to 0.29. The relative differences between the estimated additive genetic 
variances of HF and the additive genetic variances of MRY were even larger, and 
those differences were also highly significant. Soyeurt et al. (2007) reported similar 
heritabilities for C12:0 and C14:0 compared to the estimates for MRY in our study. 
In their study, the dataset contained 7 breeds, including animals of the HF (45.39% 
of the studied population) and MRY (4.31% of the studied population) breeds in 
Belgium, and also MIRS spectra were used to predict FA composition although they 
were expressed on fat basis (g/100g fat). Heritabilities for the Dutch HF population 
were also estimated by Stoop et al. (2008), they reported heritabilities of HF
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ranging from 0.42 to 0.71, which is somewhat higher than in our study (range from 
0.39 to 0.52). Compared to C4:0-C14:0, C16:0 is different in the sense that it arises 
in milk both through de novo synthesis and by uptake of blood circulation (Bauman 
and Griinari, 2003). The heritabilities for C16:0 were estimated to be (almost) 
highest compared to the other heritabilities of the same breed in our study, which 
was in line with Soyeurt et al. (2007). For the individual FA C4:0 –C16:1 our results 
were not in agreement with those of Bobe et al. (2008), however, for these FA their 
results were generally in disagreement with other results in the literature. The long 
chain (more than 16 carbons) unsaturated FA in milk are mainly obtained by uptake 
from blood circulation, however, also the rumen biohydrogenation and the Δ9-
desaturase activity contribute to the milk content of these FA (Neville and Picciano, 
1997). Estimated heritabilities for these FA were lower for both the HF as well the 
MRY breed (heritabilities ranging respectively from 0.11 to 0.34 for HF and 0.10 to 
0.26 for MRY) than previously discussed FA. The heritabilities and additive genetic 
variances were higher for HF compared to MRY except for Total trans C18:1, C18:2 
c-9, t-11, and Total trans C18. However, only the differences in additive genetic 
variances for C18:2 c-9, t-11 was significant. Karijord et al. (1982) and Stoop et al. 
(2008) also reported somewhat lower heritabilities for the long chain and 
unsaturated FA, which implies a relatively larger influence of environmental 
aspects compared to genetics on the differences between individuals. In 
conclusion, although in the other studies FA composition was analysed on fat basis, 
the relative differences in heritability across FA within other studies tended to be 
the same as those found in our study.  

 
 A possible explanation of (a part of) the differences in additive genetic 
variances and heritabilities between the MRY and HF breed suggests that the 
genetic architecture differs between those breeds. The lower genetic variance for 
MRY was nevertheless unexpected, as there has been relatively very little emphasis 
on selection for high-input high-output production systems in MRY compared to HF 
over the last decades. The FA composition of bovine milk is known to be effected 
by several genes with a moderate to large effect. Two genes, having 
polymorphisms with reported effects on FA composition, are DGAT1 and SCD1 (e.g. 
Thaller et al., 2003; Mele et al., 2007; Schennink et al., 2008). Polymorphisms in 
those genes affect the production of FA and, thus, also the genetic variances within 
breeds as there are different genotypes. Especially the DGAT1 K232A 
polymorphism is reported having significant effects on the milk production traits 
and some medium chain SFA and long chain UFA (Schennink et al., 2007). 
Percentages of the genetic variances of FA composition in milk explained by the 
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DGAT1 K232A polymorphism were reported ranging from 1% up to 53% (Schennink 
et al., 2007; Schennink et al., 2008). Those high percentages of explained genetic 
variance, are due to the high minor allele frequency of DGAT1, i.e. Schennink et al. 
(2007) reported a frequency of 0.40 for the 232K allele in the Dutch HF population. 
Considering what’s known about the DGAT1 K232A polymorphism, the lower 
genetic variances in MRY for a number of FA may be because one of the alleles at 
the DGAT1 locus has an extreme frequency such that the contribution of DGAT1 to 
the genetic variance in MRY is limited. Because the allele frequency of the DGAT1 
K232A polymorphism is currently not known for the MRY breed, this hypothesis will 
be tested in future research. 
 
5.5 Conclusion 
 For both, MRY and HF, additive genetic variances and heritabilities were 
estimated for detailed FA composition in milk. The additive genetic variances as 
well as the heritabilities for the SCFA and MCFA, which mainly arise in milk by de 
novo synthesis, were generally lower for MRY than for HF. Lower heritabilities and 
less significant differences in heritability between the breeds were estimated for 
the long chain C18 FA that are mainly obtained by uptake from blood circulation. 
Lower variances in MRY may be because of a difference of their genetic 
architecture compared to HF. In conclusion, our results show that the HF breed has 
substantially larger genetic variance for most FA compared to MRY, despite its 
stronger selection for milk yield traits in the past. As the estimated genetic 
variances for MRY were clearly lower, and because it is know that the DGAT1 locus 
has an intermediate allele frequency in HF, it is hypothesized that the DGAT1 locus 
has a more extreme minor allele frequency in the Dutch MRY population, which will 
be tested in future research.  
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Abstract 
 The aim of this study was to identify if the genomic variation associated with 
detailed milk fat composition is similar between the Holstein Friesian (HF) and 
native dual purpose breeds in the Dutch dairy industry. Phenotypic and genotypic 
information was available for  the breeds HF, Meuse-Rhine-Yssel (MRY), Groningen 
White Headed (GWH), and Dutch Friesian (DF). First the reliability of genomic 
breeding values of the native Dutch dual purpose cattle breeds MRY, DF, and GWH 
was evaluated using SNP effects estimated in HF. Secondly, similarities between the 
breeds across the whole genome were investigated by calculating the correlations 
between allele frequencies in the breeds MRY, GWH, DF, and HF. Finally, the 
genomic differences of the regions associated with milk fat composition (regions on 
BTA 5, 14, and 26), were studied in the different breeds. Comparing the reliability 
of genomic prediction for the native Dutch dual purpose breeds, the GEBV for the 
MRY breed were clearly least reliable (reliabilities were on average 0.022 when 
only including the 8-22 SNPs with the strongest association in HF). For both DF and 
GWH, the estimated SNP effects based on HF data did have substantial predictive 
ability for several traits, being highest in GWH with reliabilities for the different FA 
of on average 0.158 when including only the 8-22 SNPs with the strongest 
association in HF. These correlations between allele frequencies clearly showed 
differences between the breeds, albeit that there was no consistent relationship 
between both statistics. The comparison of different regions associated with milk 
fat composition (regions on BTA 5, 14, and 26) showed that breeds also clearly 
differ in genomic variation within these regions. It can be concluded that the minor 
allele frequencies of genes having an effect on milk FA composition in HF are much 
smaller in the breeds MRY, GWH and DF. This is especially the case for the MRY 
breed. 

 
Key words: milk, fatty acid, genomic variation, single nucleotide 

polymorphism, cattle breed  
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6.1 Introduction 
Over the last decades a clear change in the dairy industry has taken place, 

towards high production, especially in industrialized countries. High emphasis on 
selection for milk yield and the consolidation and globalization of breeding 
companies has led to professional breeding programs for specialized dairy cattle 
breeds (Brotherstone and Goddard, 2005, Shook, 2006). This development has led 
directly to a decline in use of native dual purpose breeds which are used for milk 
and beef production. For example in The Netherlands the percentage dairy cows in 
the dairy industry belonging to Dutch native dual purpose breeds declined from 
91.3 to 1.4 percent in the last 30 years (CRV, 2013). This reduction in breed 
variability is associated with a decrease of genetic variability in the total cattle 
population as individual cattle breeds comprise unique genetic variation (European 
Cattle Genetic Diversity Consortium, 2006). In this perspective, safeguarding 
existing genetic variation is important to be able to anticipate on unexpected 
calamities and to exploit currently unknown genetic variation in the future 
(Oldenbroek, 2007). Therefore and for selection purpose , for the dairy cattle 
industry it is of interest to know whether the genetic variation in native dual 
purpose breeds differs from the Holstein Friesian (HF) breed. One trait, which is 
extensively studied in the HF breed and increasingly more important for the dairy 
industry, is the detailed fatty acid (FA) composition in milk (e.g. Soyeurt et al., 2006, 
Stoop et al., 2008). The interest in the possibilities to modify detailed FA 
composition in milk by the dairy industry arises from supposed associations of milk 
FA composition with human health (e.g. Astrup et al., 2011, Palmquist et al., 2006) 
and milk processability (e.g. Smet et al., 2009). In addition to genetic variance for 
milk FA composition observed within breeds, differences in milk FA composition 
among dairy cattle breeds are described in several studies (e.g. Maurice-Van 
Eijndhoven et al., 2013, Soyeurt et al., 2011).  

Studying the relation between the bovine genome and the FA composition in 
bovine milk is an important step towards understanding the genetic variability of 
milk FA composition. For example on the bovine genome in 2 genes, namely 
diacylglycerol acyltransferase 1 (DGAT1) and stearoyl-CoA desaturase 1 (SCD1), 
polymorphisms are reported to have large associations with milk FA composition of 
HF cattle (e.g. Bernard et al., 2013, Bouwman et al., 2011). To investigate the 
genetic variability in native dual purpose breeds, one possible approach is to 
compare whether different genomic regions have a similar contribution to genetic 
variation in different cattle breeds. Differences in allele frequencies of mutations in 
the well-recognized DGAT1 and SCD1 polymorphisms have been reported also in 
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several studies between dairy cattle breeds. For example, different allele 
frequencies of the DGAT1 232K allele in New Zealand HF (0.6), Ayrshire (0.22) and 
Jersey (0.88) are reported by Spelman et al. (2002) and of the SCD1 293A allele in 
Canadian HF (0.83) and Jersey (0.95) are reported by Kgwatalala et al. (2007). 
Therefore an appropriate and unanswered question is whether effects of different 
regions in the genome on the milk fat composition in milk of HF cows are similar for 
the native dual purpose breeds.  

The aim of this study is to identify if there are similarities in genomic variation 
associated with detailed milk fat composition between the HF breed and native 
dual purpose breeds in the Dutch dairy industry. This will be achieved by evaluating 
the reliability of predicted genomic breeding values for fat composition in milk of 
the native Dutch dual purpose cattle breeds Meuse-Rhine-Yssel (MRY), Groningen 
White Headed (GWH), and Dutch Friesian (DF) using SNP effects estimated in HF 
and by comparing the genomic variability in regions on the genome showing large 
effects. 

 
6.2 Materials and Methods 
Data collection 
 In current study phenotypic data of in total 2500 cows from 4 different breeds 
was used and genotypes of 1,867 cows. In Table 6.1 an overview is given of the 
data for each of the 3 sampling periods including: the number of cows sampled per 
breed and the average and standard deviation of the days in milk (DIM), parity, and 
age at calving (age) of the cows at time of sampling, which are used as fixed effect 
in the model which is explained below. Milk samples of the first sample period 
were collected within the project of the Dutch Milk Genomics Initiative between 
May and June 2005. Gas Chromatography (GC) profiles were obtained from 
morning milk samples from 1811 cows. From these cows also blood samples were 
collected for genotyping. All cows belong to the HF breed and were sampled during 
the 1st parity between 97 and 355 DIM. The data collected in 2005 was used and 
described in earlier studies where this data is referred to as summer milk 
(Bouwman et al., 2012, Duchemin et al., 2013, Rutten et al., 2009). Data of the 
second sample period was collected during December 2008 and March 2009. GC 
profiles of morning milk samples were collected from 137 cows and 79 of these 
cows were also genotyped. Cows belonged to 3 breeds: DF (44 samples from 3 
herds), MRY (50 samples from 3 herds), and GWH (43 samples from 3 herds). Parity 
of the cows varied between 1 and 9 and DIM varied between 5 and 535. The GC 
data collected during winter time in 2008-2009, was earlier used and described by 
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Table 6.1 Overview of the number of animals per breed and fixed effects per sample period. 
 

 Data 
 Data 20051 Data 2008-

20091 
Data 20111 Data 20112 

N 1811 137 319 233 
  Breed     
MRY 0 50 144 98 
GWH 0 43 105 31 
DF 0 44 70 24 
HF 1811 0 0 80 
Total with 
genotypes 

1,544 79 280 0 

     
  Fixed effects average (std) average (std) average (std) average (std) 
DIM3 274 (42) 144 (88) 158 (94) 162 (98) 
parity4 1.0 (0) 2.8 (2.0) 2.7 (1.8) 3.2 (1.9) 
age5 779 (57) 1575 (841) 1508 (704) 1696 (758) 
 
 
1 FA composition based on GC. 
2 FA composition based on MIR. 
3 DIM means days in milk.  
4 parity was divided in 4 classes for corresponding lactation numbers of parity 1, 2, and 3 and 
the 4th class included parity 4 – 10. 
5 age at calving in days. 
 
 
Maurice-Van Eijndhoven et al. (2011). Data of the third sample period was 
collected during the end of August 2011 and the beginning of November 2011. GC 
profiles or Mid Infrared Spectrometry (MIR; this data is not used for the genomic 
analyses, but only in the step to correct phenotypes, see the paragraph ‘Statistical 
analysis: correcting phenotypes for fixed effects’ below) profiles of morning milk 
samples were collected from 552 cows and 280 of these cows were also genotyped 
(including only purebred MRY, GWH, and DF). Cows were sampled once, had access 
to pasture during day time, and belonged to 4 breeds: MRY (242 cows from 3 
herds), GWH (136 cows from 3 herds), DF (94 cows from 2 herds), and HF (80 cows 
from 3 herds). Parity of the cows varied from 1 to 10 and DIM varied from 5 to 365. 
All cows were purebreds belonging to the breeds HF, MRY, GWH or DF (i.e. they 
were registered with at least 87.5% of the genes of any of the breeds mentioned). 
The data collected in 2011 contains three herds with milk samples of multiple 
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breeds: one herd with 28 MRY and 15 HF cows; one herd with 6 GWH and 36 HF 
cows; and one herd with 5 MRY, 4 GWH, and 33 DF cows. Overall, the complete 
dataset used contains 1 milk sample of each of the 2500 cows which was analysed 
using GC or MIR and each herd test day (htd) comprises a minimum of 3 records, 
and of these cows 1,876 were also genotyped. 
 
Measuring fatty acid composition 
 Collected milk samples during all sample periods were treated immediately 
with 0.03% (wt/wt) sodium azide to avoid microbiological growth. To obtain 
detailed FA compositions, all milk samples obtained in the different sample periods 
were analysed at the laboratory of Qlip N.V. (Zutphen, The Netherlands) by GC  or 
by Fourier-transformed interferogram machines (MilkoScan FT 6000, Foss Electric, 
Hillerød, Denmark) to obtain MIR profiles. The GC outputs were generated by 
analyzing methyl esters. Fatty acid methyl esters were prepared using fat fractions 
extracted from the milk, as described in ISO Standard 15884 (ISO-IDF, 2002b). 
Methyl esters were analyzed, as described in ISO Standard 15885 (ISO-IDF, 2002a), 
according to the 100% FA methyl ester method with a 100-m x 0.25-mm polar 
column (Select Fame Varian CP 7420, Varian Inc., Palo Alto, CA) for samples 
collected within the 2005 and 2008-2009 and for samples collected in 2011 a new 
100-m x 0.25-mm polar column was used. 
 For the final analyses fat percentage, protein percentage, 1 group of FA, and 9 
individual FA were chosen: Group of short chain FA (SCFA) (C4:0-C10:0); C12:1cis9; 
C14:0; C14:1cis9; C16:0; C18:0; C18:1trans6,9,11; C18:1cis9; C18:2cis9,12; 
C18:2cis9,trans11). The group of FA and individual FA were analyzed in g/dL milk. 
The FA were chosen to have reasonably high correlations between summer and 
winter milk (Duchemin et al., 2012) which allowed us to combine data sampled in 
different seasons. Other selection criteria were biological background (because of 
the clear genetic architecture of the FA: generated through de novo synthesis or by 
delta9-desaturases) (Schennink et al., 2008, Soyeurt et al., 2008)  and (lack of) 
relation with DGAT1 or SCD1 (Schennink et al., 2008). The last two criteria were 
chosen to investigate whether similarity of genomic variance of FA composition 
between different breeds depends on biological background and genetic 
architecture of the FA. 
 
Genotype data 
 In total, 359 animals were genotyped for the breeds DF, GWH and MRY, using 
the Illumina HD SNP chip (Ilumina Inc., San Diego, CA). Genotypes with a GC score < 
0.2 were set to missing. After this initial editing step SNPs were removed with: a 
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call rate < 85%, a minor allele frequency < 0.02, unknown map position, or known 
position on the sex chromosomes. Further edits included removing animals with a 
call rate < 85% (n=8), parent-offspring inconsistencies (n=2) and because based on 
principal component analysis of the genotype data animals clustered with a 
different breed than registered by the herd book registration (n=1). Finally, missing 
genotypes were imputed using Beagle (Browning and Browning, 2007). After these 
edits, 619,056 segregating SNPs were available on 79 DF, 120 GWH, and 149 MRY 
cows. Of those genotyped animals, 327 animals also had data on FA composition; 
70 DF, 113 GWH and 144 MRY. 
 The HF data contained 1,684 animals with imputed HD genotypes for 734,393 
SNPs. Those animals were initially genotyped with a custom 50k SNP chip. The HD 
genotypes were imputed using HD genotypes of all 55 sires of the HF cows, 
combined with HD genotypes of another 1,278 HF bulls available at CRV. More 
details on these (imputed) genotypes are provided by Bouwman et al. (2014). 
Before combining them with the other dataset, SNP were removed with a minor 
allele frequency < 0.02 or when not all three genotypes were observed, leaving 
602,445 SNP. Of the genotyped HF animals, 1,544 also had data on FA composition. 

The imputed HD SNP data for the HF animals was combined with the HD SNP 
data of the other breeds, yielding a combined dataset consisting of 571,275 SNPs 
which met the editing criteria in both datasets. In the combined dataset, from each 
pair of neighbouring SNP with an r2 (LD) value of 1.0, one of the SNPs was removed. 
After this final step, 350,207 SNP were left in the dataset used for analysis. 
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Statistical analysis: correcting phenotypes for fixed effects 
 Before estimating SNP effects the record of each cow was corrected for DIM, 
parity, age at calving, herd test date (htd), breed, and method of measuring the FA 
using the following animal model (using ASReml 3.0, Gilmour et al., 2009): 

 
yijklmno = μ + b1 × DIMi + b2 × exp-0.05×DIM

i + parityj + b3 × agek (parityj)+ htdl + 
breedm + methodn + eijklmno ,  
 

where yijklmno was the dependent variable for cow o in days in milk (DIM) i, with 
parity j, age at calving k, producing at herd test date (htd) l, belonging to breed m, 
and with FA composition obtained using method n. The μ was the overall mean of 
the model; b1 was the fixed regression coefficient on DIMi and b2 was the fixed 
regression coefficient on DIMi modeled with a Wilmink curve (Wilmink, 1987); 
parityj was the fixed effect with 4 classes for corresponding lactation numbers of 
parity 1, 2, and 3 and the 4th class included parity 4 - 10; b3 was the fixed regression 
coefficient on agek, which was age at calving in days, within the jth parity; htdl was 
the fixed effect defining groups of cows sampled in the same herd on the same 
sample date; breedm was the fixed effect defining groups of cows belonging to the 
same breed (HF, MRY, GWH, or DF); methodn was the fixed effect with 2 classes 
corresponding for the method used to obtain the FA composition (GC or MIR); and 
eijklmno is the random residual effect. Predicted FA composition based on MIR 
profiles was included for 272 animals without genotypes as y variate in the analysis 
to obtain more precise correction of the phenotypes for fixed effects. The residuals 
of this model for the GC was taken as trait for the subsequent genomic analyses. 
Table 6.2 shows an overview of the corrected phenotypes per sample period. 
 
Statistical analysis: estimation of SNP effects 

To identify if there are similarities in genomic variation associated with 
milk FA composition the fat composition in milk of Dutch cattle breeds MRY, GWH, 
and DF was predicted using SNP effects estimated based on the 1,544 HF cows. For 
this part of the analysis genotype data and the residuals obtained from the model 
to pre-correct the phenotypes were used. The model used is commonly known as 
BayesC (Habier et al., 2011), and is described by: 

y = 1𝜇𝜇 + Zu + Xα + e 
where y contains pre-corrected phenotypes, 1 is a vector of ones, µ is the overall 
mean, Z is an incidence matrix that links records to individuals, u contains random 
polygenic effects of all individuals, X is a matrix that contains the scaled and 
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Table 6.2 Overview of the corrected phenotypes per sample period. 
 

 Data 
 Data 20051 Data 2008-

20091 
Data 20111 Data 20112 

N 1811 137 319 233 
     
  Production traits3 average (std) average (std) average (std) average (std) 
Fat% 4.26 (1.25) 4.56 (1.29) 4.55 (1.39) 4.36 (1.54) 
Protein% 3.53 (0.48) 3.60 (0.59) 3.68 (0.70) 3.61 (0.65) 
     
  Traits in g/dL 
milk4 

average (std) average (std) average (std) average (std) 

C4:0-C10:0 
0.4219 

(0.1498) 
0.5085 

(0.1698) 
0.4667 

(0.1470) 
0.4349 

(0.1556) 

C12:1 
0.0046 

(0.0024) 
0.0043 

(0.0029) 
0.0047 

(0.0031) 
0.0056 

(0.0024) 

C14:0 0.4738 
(0.1447) 

0.5651 
(0.1895) 

0.5292 
(0.1926) 

0.4419 
(0.1542) 

C14:1 cis9 0.0491 
(0.0233) 

0.0464 
(0.0245) 

0.0489 
(0.0253) 

0.0601 
(0.0273) 

C16:0 1.2494 
(0.4813) 

1.3812 
(0.4852) 

1.3336 
(0.4852) 

0.9825 
(0.6584) 

C18:0 
0.4234 

(0.1903) 
0.4782 

(0.1877) 
0.4406 

(0.2314) 
0.3446 

(0.1891) 

C18:1 cis9 0.0680 
(0.1333) 

0.0589 
(0.1399) 

0.0755 
(0.1889) 

0.0873 
(0.1807) 

C18:1 trans6-9-11 
0.8596 

(0.1783) 
0.7596 

(0.1739) 
0.8732 

(0.2328) 
0.9456 

(0.2413) 

C18:2 cis9-12 
0.0472 

(0.0170) 
0.0593 

(0.0264) 
0.0538 

(0.0259) 
0.0591 

(0.0206) 

C18:2 cis9-trans11 
0.0232 

(0.0142) 
0.0182 

(0.0086) 
0.0273 

(0.0228) 
0.0350 

(0.0161) 
 
 
1 Milk samples analysed using GC. 
2 Milk samples analysed using MIR. 
3 Corrected phenotypes are showed and both production traits are analyzed using MIR for all 
data. 
4 Corrected phenotypes are showed. 
  

111 
 



6 Genomic variation associated with milk fatty acids in Dutch breeds 

 
 
centered genotypes of all individuals, α contains the (random) allele substitution 
effects for all loci, and e contains the random residuals. Polygenic effects were 
included in the model because the HF data contained only a limited number of sires 
with relative large groups of daughters. Omitting a polygenic effect with such a 
data structure, is expected to lead to spurious associations (e.g. Balding, 2006), that 
will not have any predictive value for the other breeds. 
The posterior value of 𝛼𝛼𝑗𝑗, the allele substitution effect of locus j, is sampled from: 

𝑁𝑁 �𝛼𝛼𝚥𝚥� ;  σ�𝑒𝑒2

x𝑗𝑗
′x𝑗𝑗+𝜆𝜆

�  if 𝐼𝐼𝑗𝑗 = 1 

0   if 𝐼𝐼𝑗𝑗 = 0 

where 𝜆𝜆 = 𝜎𝜎�𝑒𝑒2

𝜎𝜎�𝛼𝛼2
 . 

𝜎𝜎𝛼𝛼2 has a prior distribution of: 
𝑝𝑝(𝜎𝜎𝛼𝛼2) = 𝜒𝜒−2(𝜈𝜈, 𝑆𝑆𝛼𝛼2)  
where 𝜈𝜈 is the degrees of freedom, set to 4.2 following (de los Campos et al., 2013) 

and the scale parameter 𝑆𝑆𝛼𝛼2 is calculated as 𝑆𝑆𝛼𝛼2 = 𝜎𝜎�𝛼𝛼2(𝜈𝜈−2)
𝜈𝜈

 where 𝜎𝜎�𝛼𝛼2 is the prior value 

of 𝜎𝜎𝛼𝛼2, that is computed as σ�𝛼𝛼2 = � 1
1−𝜋𝜋

� 𝜎𝜎𝑎𝑎
2

𝑛𝑛
 (de los Campos et al., 2013) where 𝜋𝜋 is 

the prior probability that a SNP has zero effect (given a value resembling 50 loci 
with non-zero effects) and n is the total number of SNP loci. Genetic variances for 
HF (𝜎𝜎𝑎𝑎2), used to compute prior SNP variances, were obtained from Maurice-Van 
Eijndhoven et al. (submitted) except for C12:1 and C18:1trans6_9_11 for which 
values of respectively 0.000045 and 0.0046 were used. The posterior value of 𝜎𝜎𝛼𝛼2 is 
drawn from the following inverse-χ2 distribution with 𝜈𝜈 + 𝑛𝑛 degrees of freedom: 
𝜎𝜎𝛼𝛼2|𝛼𝛼 ~ 𝜒𝜒−2(𝜈𝜈 + 𝑛𝑛, 𝑆𝑆𝛼𝛼2 + α�2)  
where α�2 is a vector with squares of the current estimates of the allele substitution 
effects of all loci. 
The posterior distribution of the quantitative trait loci (QTL)-indicator Ij was: 

Pr�𝐼𝐼𝑗𝑗 = 1� =
𝑓𝑓(𝑟𝑟𝑗𝑗|𝐼𝐼𝑗𝑗 = 1)(1 − 𝜋𝜋)

𝑓𝑓�𝑟𝑟𝑗𝑗�𝐼𝐼𝑗𝑗 = 0�𝜋𝜋 + 𝑓𝑓(𝑟𝑟𝑗𝑗|𝐼𝐼𝑗𝑗 = 1)(1 − 𝜋𝜋)
 

where 𝑟𝑟𝑗𝑗 = x𝑗𝑗′y∗ + x𝑗𝑗′x𝑗𝑗α�𝑗𝑗  where y∗ contains the conditional phenotypes (i.e. the y-
values minus the current estimates for the mean, the polygenic effects and the SNP 
effects at all other loci), and 𝑓𝑓(𝑟𝑟𝑗𝑗|𝐼𝐼𝑗𝑗 = δ) where δ is either 0 or 1, is proportional to 

1

�𝑣𝑣δ
e
−
𝑟𝑟𝑗𝑗
2

2𝑣𝑣δ,  

where 𝑣𝑣0 = x𝑗𝑗′x𝑗𝑗σ𝑒𝑒2 and 𝑣𝑣1 = �x𝑗𝑗′x𝑗𝑗�
2σ𝛼𝛼𝑗𝑗

2 + x𝑗𝑗′x𝑗𝑗σ𝑒𝑒2.  
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For the polygenic effect, the conditional posterior density of σ𝑢𝑢2  is an inverse-χ2 
distribution: 
σ𝑢𝑢2 |𝑢𝑢 ~ χ−2(𝑞𝑞 − 2, u′A−1u)  
where 𝑞𝑞 is the number of animals in the pedigree (26300), and u is a vector with 
the current polygenic effects, and A−1 is the inverse of the numerator relationship 
matrix derived from the pedigree. 
Finally, the conditional posterior density of σ𝑒𝑒2 is an inverse-χ2 distribution: 
σ𝑒𝑒2|𝑒𝑒 ~ χ−2(𝑚𝑚 − 2, e′e)  
where 𝑚𝑚 is the number of animals with records, and e is a vector with the current 
residuals. 
More details on the implementation of the model can be found in Calus (2014). 

For each SNP, a Bayes Factor (BF) was calculated as:  

𝐵𝐵𝐵𝐵 =  
𝑃𝑃𝑃𝑃(𝐻𝐻1|𝑦𝑦)

1 − 𝑃𝑃𝑃𝑃(𝐻𝐻1|𝑦𝑦) ÷
𝑃𝑃𝑃𝑃(𝐻𝐻1)

1 − 𝑃𝑃𝑃𝑃(𝐻𝐻1) 

where H1 is the hypothesis that the marker has a non-zero effect, Pr(H1|y) is 
the posterior probability of the hypothesis and Pr(H1) is the prior probability of the 
hypothesis. (1 - Pr(H1|y)) and (1 - Pr(H1)) represent, the posterior and prior 
probability for the alternative hypothesis, respectively. The Bayes Factors are an 
indication of the effects that SNPs have on the trait analyzed. Higher Bayes Factors 
indicate that it is more likely that a SNP is indeed associated with a QTL affecting 
the trait. To give an overview of SNPs having an effect on the different milk traits in 
HF a Manhattan plot for the Bayes Factors for each SNP was produced. Plotted 
Bayes Factors were “smoothed”, by calculating for each SNP the average of its own 
Bayes Factor, and those of the four SNPs located on either side.  

The SNP effects estimated using the dataset of the HF population sampled in 
2005 were used to calculate genomic estimated breeding values (GEBV) of the 
analyzed traits for the genotyped cows of the breeds MRY, GWH, and DF sampled 
in 2008-2009 and 2011. To check how valid the GEBV’s are using SNP effects 
estimated in HF, reliabilities (i.e. accuracies squared) of the predicted breeding 
values were calculated. The reliability can be expressed as: 

𝑟𝑟𝑔𝑔𝑔𝑔�2 =  𝑟𝑟𝑦𝑦𝑔𝑔�2  / ℎ2, following e.g. Verbyla et al. (2010).  
where 𝑟𝑟𝑦𝑦𝑔𝑔�2  is the squared correlation between the observed phenotype in MRY, 
GWH, or DF and their GEBV, and ℎ2 is the heritability of the trait. The ℎ2 used were 
estimated for a Dutch MRY population (Maurice-Van Eijndhoven et al., submitted), 
and used for all three breeds (MRY, GWH, and DF) because no ℎ2  estimates were 
available for GWH and DF. For C12:1 and C18:1trans6_9_11 no estimates were 
available for ℎ2, and therefore values of respectively 0.3 and 0.16 were used, 
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resembling ℎ2 estimates obtained in MRY for other FA that were shown to have 
similar variance as for C12:1 and C18:1trans6_9_11  in HF. GEBV were calculated 
either using all SNPs, the SNPs having an estimated effect in HF with Bayes Factor > 
10, the SNPs having a Bayes Factor > 100, and the SNPs having a Bayes Factor > 
1000. Using increasingly higher thresholds for the Bayes Factor of the included 
SNPs, allowed to investigate the impact of regions with more pronounced effects 
on FA composition in HF on the accuracy of prediction in the other breeds. Thus, 
this allowed us to evaluate whether or not the genomic regions affecting FA 
composition in HF have a similar effect on FA composition in the other breeds. To 
further evaluate similarities between breeds in those genomic regions, allele 
frequencies for the different scenarios were compared, as well as variance 
explained per SNP. The extent to which the SNPs explained the genetic variation of 
the traits per breed was evaluated. This was achieved by calculating the percentage 
of the genetic variation explained by the SNP for each breed as 2𝑝𝑝𝑝𝑝𝛼𝛼�2/𝑣𝑣𝑣𝑣𝑣𝑣(𝑎𝑎) 
where 𝑣𝑣𝑣𝑣𝑣𝑣(𝑎𝑎) was the genetic variance for HF calculated by 𝑣𝑣𝑣𝑣𝑣𝑣(𝑎𝑎) = ℎ2 ∗ 𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦) 
where 𝑦𝑦 were pre-corrected phenotypes and the ℎ2 for HF were obtained from 
Maurice-Van Eijndhoven et al. (submitted). For trait C18:2cis9-trans11 no SNPs 
were found with a Bayes Factor >1000 and therefore this trait was not included in 
this last evaluation. 
 
6.3 Results 
Corrected data 
 Cows sampled in 2005 were on average 779 days old at calving, 274 DIM, and 
were all in their first parity (Table 6.1). Cows sampled in 2008-2009 and 2011 were 
somewhat older, being on average 1508-1696 days old at calving, at 144-162 DIM, 
and in their third parity. An overview of the data, after correction for fixed effects, 
is given in Table 6.2. Fat percentage was on average highest for data collected in 
2008-2009 (4.56%) and lowest for data collected in 2005 (4.26%) and most variable 
for data collected in 2011 (SD 1.39-1.54). The average contents in milk of all 
saturated FA (C4:0-C10:0; C14:0; C16:0; and C18:0) of the samples collected in 
2008-2009 were higher and all unsaturated FA contents, except C18:2cis9-12, were 
lower compared to the samples collected in 2005 and 2011. The average contents 
of unsaturated FA, except C18:2cis9-12, were generally lowest in the data collected 
in 2011 which was analyzed using MIR. 

SNP effects: reliability of GEBV  
Figure 6.1 gives an overview of the Bayes Factors of all SNPs across the 

genome for each of the considered traits. The Bayes Factors indicate whether or 
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not SNPs have a strong association with the traits investigated. Several peaks are 
  
observed across multiple traits, indicating that there are several QTL that are 
 associated with the FA traits included in our study. In Table 6.3 the number of SNPs 
are presented that showed an effect above the thresholds of a Bayes Factor of 10 
(fifth column), 100 (ninth column), and 1000 (thirteenth column). Of the 350,207 
examined SNPs for the individual traits between 2405 and 4734 SNPs showed a 
Bayes Factor above the threshold of 10, between 46 and 311 showed a Bayes 
Factor above the threshold of 100, and between 0 and 22 showed a Bayes Factor 
above the threshold of 1000. 
 Table 6.3 shows the reliabilities of the GEBV estimated for the three breeds 
MRY, GWH, and DF calculated either using all (350,207) examined SNPs, or using 
only SNPs with a Bayes Factor above thresholds of 10, 100, or 1000 in the HF 
population. The GEBV of fat percentage showed a reliability ranging between 0.158 
and 0.193 for GWH and between 0.237 and 0.256 for DF when SNP effects were 
used with a Bayes Factor > 10. For MRY the reliabilities for fat percentage were 
clearly lower (between 0.034 and 0.046). For protein percentage the reliabilities 
were for all breeds below 0.1 when including SNPs with a Bayes Factor > 10. The 
GEBV of the FA C12:1 showed relatively high reliabilities for GWH (0.397 - 0.492) 
and for DF around 0.150 when SNP effects were used with a Bayes Factor > 10. For 
the FA C14:0 and C16:0 the reliabilities of the GEBV for GWH were all above 0.2 
when including SNPs with a Bayes Factor > 10. For the FA C14:1cis9 the reliability to 
calculate the GEBV for GWH using all 350,207 SNPs was highest (0.758), however, 
the reliability dropped almost to zero when SNPs were included with a Bayes Factor 
> 10, and the correlation (𝑟𝑟𝑦𝑦𝑔𝑔�) in fact became negative. For the FA C18:1cis9 the 
reliability of the GEBV for DF were relatively high (0.182 – 0.185), regardless the 
possible threshold based on Bayes Factors for the SNPs included, whereas for MRY 
and GWH the reliabilities were almost zero. The reliabilities of the GEBV for MRY 
were below 0.1 for all traits, except for C14:1cis9 using all 305,207 SNP effects to 
calculate the GEBV (0.178), however, when including SNPs with a Bayes Factor >10 
this reliability dropped towards zero. Overall, the reliabilities of GEBV clearly 
differed between using all 350,207 SNPs and when including SNPs with a Bayes 
Factor > 10, > 100, or > 1000, whereas between subsets of SNPs with the different 
Bayes Factor thresholds the reliabilities of the GEBV were very similar.  
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Correlations of allele frequencies  
 To assess similarities between the breeds across the whole genome, versus in 
regions associated with FA composition, the correlations of allele frequencies 
between the breeds MRY, GWH, DF, and HF were calculated (Table 6.4). Across all 
350,207 SNPs, this correlation was between 0.64 (GWH&DF) and 0.71 (DF&HF and 
MRY&HF) (Table 6.4). When including per trait only SNPs with a Bayes Factor above 
 one of the thresholds, across all traits the correlations ranged from 0.63 (GWH & 
DF) to 0.70 (DF&HF and MRY&HF) for Bayes Factors > 10; from 0.68 (GWH&DF) to 
0.72 (DF&HF; MRY&HF; and MRY&DF) for Bayes Factors > 100; and from 0.50 
(MRY&HF) to 0.83 (MRY&DF) for Bayes Factors > 1000. For the FA C18:1trans6,9,11 
the correlations of the allele frequencies between the breeds were relatively high 
(on average 0.80) when including SNPs with a Bayes Factor > 100, however, the 
reliabilities of the GEBV for this trait were low. A similar trend was found for the FA 
C14:1cis9 showing allele frequencies of on average 0.79 when including SNPs with a 
Bayes Factor > 1000. When including SNPs with a threshold based on the Bayes 
Factor > 1000 it was remarkable that the correlations of the allele frequencies 
between HF and the other Dutch breeds were relatively low (on average 0.50-0.53), 
while between the other Dutch breeds MRY, DF, and GWH, the correlation was 
relatively high (on average 0.80-0.83). In summary, both the GEBV reliabilities and 
the correlations between allele frequencies clearly showed differences between 
the breeds, albeit that there was no consistent relationship between both statistics. 

Table 6.4 The correlations of allele frequencies between breeds1 across all SNPs, or based 
only on SNPs with a Bayes Factor > 1000. 
 

 

#SNPs2 
HF 

&MRY 
HF 

&DF 
HF 

&GWH 
MRY 
&DF 

MRY 
&GWH 

DF 
&GWH 

Trait        

All 350,207 0.71 0.71 0.66 0.68 0.65 0.64 

  Production traits3        
Fat% 14 0.67 0.50 0.66 0.88 0.88 0.87 

Protein% 16 0.87 0.88 0.92 0.84 0.84 0.92 

  Traits in g/dL milk3        

C4:0-C10:0 13 -0.21 0.29 0.44 0.79 0.63 0.94 

C12:1 15 0.62 0.22 0.22 0.83 0.86 0.90 

C14:0 22 0.40 0.57 0.41 0.65 0.62 0.76 

C14:1cis9 16 0.63 0.81 0.64 0.91 0.91 0.84 

C16:0 14 0.49 0.36 0.41 0.76 0.88 0.85 
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C18:0 9 0.34 0.61 0.54 0.74 0.83 0.55 

C18:1trans6-9-11 14 0.39 0.42 0.54 0.90 0.94 0.89 

C18:1cis9 13 0.63 0.40 0.54 0.87 0.59 0.54 

C18:2cis9-12 8 0.60 0.71 0.46 0.97 0.82 0.71 

C18:2cis9-trans11 - - - - - - - 

average correlation (BF>1000) 0.50 0.52 0.53 0.83 0.80 0.80 

 
 
1 MRY = Meuse-Rhine-Yssel, GWH = Groningen White Headed, and DF = Dutch Friesian. 
2 Number of SNPs used to estimate the EBVs depends on if the SNPs are segregating in the 
breeds MRY, GWH or DF. 
3 For these traits the correlations between breeds are given of allele frequencies of SNPs 
with an effect above the thresholds of a Bayes Factor of 1000. 
 

SNP variances  
Table 6.5 shows the variances explained per SNP for the SNPs whose variance 

in at least one of the breeds was ≥ 1% relative to the total genetic variation in the 
HF breed. The region of DGAT1 on Bos Taurus autosome (BTA) 14 was found having 
the largest effect on most of the traits. This region explained large parts of the 
genetic variation in HF for the traits fat%, protein%, C4:0-C10:0, C12:1, C14:0, 
C14:1cis9, C16:0, C18:0, and C18:2cis9_12 ranging from 1.1% (C18:2cis9_12) to 
19.0% (C16:0). For the breeds GWH and DF the region of DGAT1 was also found 
having an effect for a number of traits (ranging from 0.2% for C18:2cis9_12 to 3.3% 
for C16:0 for GWH and from 0.0% for 6 traits to 2.2% for C16:0 for DF), although 
heavily reduced in comparison with HF. Almost no effect of the genomic region on 
BTA14 was found for the traits in MRY. On BTA 26 a genomic region was found 
having an effect on the genetic variation of the traits C12:1 and C14:1cis9 for all 
breeds, which was largest for HF and DF (explaining 2.8% of C12:1 in HF milk; 8.0% 
of C12:1 in DF; 2.6% of C14:1cis9 in HF; 7.4% of C14:1cis9 in DF of the genetic 
variation for the whole region, sum of both SNPs, respectively). For GWH this 
region explained 1.8% of the variation of the trait C12:1 and 5.1% of C14:1cis9 and 
for MRY 1.5% of C12:1 and 4.2% of C14:1cis9. On BTA 5 one SNP was found with an 
effect on the genetic variation of the traits fat%, C4:0-C10:0, C12:1, C14:0, and 
C16:0, this effect was estimated to explain between 1-2 % of the genetic variance 
for HF, between 0.3-0.6% for DF and MRY, and almost negligible for GWH. On BTA 
6 one SNP was found having an effect on the genetic variation of protein% between 
2-3 % for HF, DF, and MRY and 0.7% for GWH. 
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6.4 Discussion 

The aim of this study was to identify similarities in genomic variation 
associated with detailed milk fat composition between the HF breed and native 
dual purpose breeds in the Dutch dairy industry. This was achieved by calculating 
GEBV for fat composition in the native dual purpose breeds using SNP effects 
estimated for HF. The extent to which the genetic variation associated with milk fat 
composition in HF was different from the native dual purpose breeds was 
evaluated by calculating the reliabilities of the predicted GEBV for the native dual 
purpose breeds. Reliabilities of GEBV across breeds in general are reported to be 
low because of lower levels of linkage disequilibrium compared to within breeds 
(LD) (Goddard and Hayes, 2009, Hayes et al., 2009, Hozé et al., 2014). The high-
density SNP-chip (HD chip; Illumina Inc., San Diego, CA), also used in this study, is 
characterized by short-distance LD that is expected to be maintained across breeds 
(de Roos et al., 2008). The reliability of the GEBV of an animal in general is expected 
to be higher when this animal is more related to the reference population used to 
estimate SNP effects (Habier et al., 2010, Pszczola et al., 2012). Nevertheless, the 
GEBV reliabilities based on across-breed genomic prediction are expected to be 
higher for traits with few QTL with large effects, such as FA composition. Thus 
when the genomic variation associated with detailed milk fat composition in HF 
was very similar to the genomic variation of the native dual purpose breeds, then 
their GEBV reliabilities were expected to be high, whereas for traits where the 
genomic variation in HF was very different compared to the other breeds their 
GEBV reliabilities were expected to be low. To get a better indication of the impact 
of individual SNPs that have an increasingly larger effect on the traits in HF, GEBV 
were calculated using different subsets of SNPs based on their Bayes Factors. The 
highest Bayes Factors used in this study were >1000 which resulted in a subset of 
SNPs which are very likely to have a strong association with the milk fat 
composition in HF. The reliabilities of GEBV for the milk production and milk fat 
composition traits in this study were ranging from 0.000 to 0.758, however, 
reliabilities for the majority of traits were just above zero indicating large 
differences in genomic variation associated with detailed milk fat composition 
between HF and native Dutch dual purpose breeds. Comparing the native Dutch 
dual purpose breeds, the GEBV calculated for the MRY breed were clearly least 
reliable while for GWH it was on average most reliable, indicating that the genetic 
variation associated with milk fat composition of MRY differed most from HF and 
differed least of GWH compared to HF.  
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SNP effects 
The SNP effects used for calculating the GEBV in Dutch native dual purpose 

breeds in this study were estimated using genotype and phenotype data of a Dutch 
HF population. A number of SNPs and genomic regions were identified to have an 
effect on the milk FA composition in HF. Using increasingly higher thresholds for 
the Bayes Factors of the included SNPs, regions or SNPs were selected which are 
more likely to be associated with a QTL affecting the trait.  

In this study, 4 regions were identified having most pronounced effect on the 
FA composition and showing variances explained per SNP, in at least one of the 
breeds, which are ≥ 1% relative to the total genetic variation in the HF breed per 
trait. Largest effect was found for a region on BTA 14, which includes also a SNP in 
the DGAT1 gene, for fat%, a number of individual FA and the group of FA C4:0-
C10:0.  Several genome-wide association studies (GWAS) and QTL mapping studies 
based on the HF breed report clear associations of the region of DGAT1 on BTA 14 
with fat% and FA composition in the milk of HF cows (e.g. Bouwman et al., 2011, 
Grisart et al., 2002). BTA 26 harbors the SCD1 gene, which is also reported having 
an effect on the milk FA composition (e.g. Bouwman et al., 2011, Mele et al., 2007, 
Schennink et al., 2008), this region is also identified having an effect on the 
variability of the content of the FA C12:1 and C14:1cis9 in current study. A third 
region with clear effect on fat%, the group of FA C4:0-C10:0 and some individual FA 
was found on BTA 5, where a peak on the Manhattan plot was shown at a SNP at 
base pair position 93951064. This position on BTA 5 is close to the Microsomal 
glatathione S-transferase 1 (MGST1) gene which was found by Wang et al. (2012) to 
be associated with milk fat content. The fourth region  with an effect explaining ≥ 
1% relative to the total genetic variation in the HF breed was found for the trait 
protein% in milk on BTA 6. This position on BTA 5 is close to the k-casein (CSN3) 
gene which is described in several studies to be associated with protein content in 
milk  (Bonfatti et al., 2010, Hallén et al., 2008). 
 
GEBV, allele frequencies and haplotypes 

Obtaining the results in our study, it is hypothesized that the allele 
substitution effects estimated in HF can also be used for the other breeds. As for a 
number of traits in the other breeds the reliability is clearly above ‘0’, while only a 
small number of SNPs are used with high Bayes Factors, this hypothesis is likely to 
be valid at least in those cases. Between the allele frequencies of HF and the other 
breeds and the reliabilities of the estimated GEBV no relation was observed, except 
for the SNPs in the DGAT1 region where for several traits both, the reliabilities of 
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Table 6.6a Observed haplotypes in all different breeds for three different SNPs. 
 

  
BTA number3 and SNP name 

  

BTA 5, BovineHD 
0500026666 

BTA 6, BovineHD 
0600023925 

BTA 26, BovineHD 
2600005462 

Breed1 Genotype2 n n n 

  DF 0 63 31 38 

  DF 1 7 32 26 

  DF 2 0 7 6 

  GWH 0 108 94 79 

  GWH 1 5 17 29 

  GWH 2 0 2 5 

  HF 0 188 720 856 

  HF 1 768 705 590 

  HF 2 588 119 98 

  MRY 0 123 14 119 

  MRY 1 20 58 25 

  MRY 2 1 72 0 
 
1 DF = Dutch Friesian, GWH = Groningen White Headed, HF = Holstein Friesian and MRY = 
Meuse-Rhine-Yssel.  
2 For each SNP two polymorphisms could be observed. Genotype ‘0’ is homozygote for the 
minor allele; genotype ‘1’ is heterozygote; genotype ‘2’ is homozygote for the major allele.   
3 Bos taurus autosome (BTA) number where SNP is located. 
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GEBV were clearly above ‘0’ and the SNP was estimated to explain ≥ 1 percent of 
the genetic variation. One explanation for the reliabilities near ‘0’, especially for the 
MRY breed, could be low allele frequencies of the causal mutations as suggested by 
Kemper and Goddard (2012). When investigating the region on BTA 26, however, 
complete LD was identified between a number of markers over all breeds. When 
counting the genotypes of the SNPs on BTA 5, 6, and 26 discussed before (Table 
6.6a) and the haplotypes on the region of DGAT1 on BTA 14 (Table 6.6b) the 
variation in genotypes and haplotypes is clearly smaller in MRY, GWH, and DF 
compared to HF. Moreover, the variances explained by the haplotypes are 
estimated and it is notable that the total variance explained by the haplotypes 
present in MRY is smallest (Table 6.6c). It could be reasonable that because the 
regions, which have a relative large influence on the fat %, FA composition, and 
protein %, in the Dutch HF breed show less genomic variation in the other breeds, 
reliabilities for a number of traits become near to ‘0’. It was earlier found by 
Maurice-Van Eijndhoven et al. (submitted) that the heritabilities for milk FA 
composition of the MRY breed were clearly smaller than those estimated for HF. A 
reasonable explanation for these results could be the small variation in genotypes 
and haplotypes as shown in Table 6.6a and 6.6b.  
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Table 6.6b Observed haplotypes in all different breeds for SNP’s in the area of the DGAT1 
gene on Bos Taurus autosome 14. 
 

  Haplotype2 
 Haplotype 

number1 
Breed1 SNP 1 SNP 2 SNP 3 SNP 4 n 

1 DF 0 0 2 0 66 

2 DF 1 0 2 1 4 

3 GWH 0 0 2 0 58 

4 GWH 1 0 2 0 39 

5 GWH 2 0 2 0 2 

6 GWH 1 1 1 0 2 

7 GWH 2 1 1 0 2 

8 GWH 1 1 1 1 9 

9 GWH 2 1 1 1 1 

10 HF 0 0 2 0 552 

11 HF 1 0 2 0 2 

12 HF 1 1 1 0 6 

13 HF 0 0 2 1 3 

14 HF 0 1 1 1 1 

15 HF 1 1 1 1 719 

16 HF 2 1 1 1 3 

17 HF 2 2 0 1 3 

18 HF 1 1 1 2 2 

19 HF 2 2 0 2 253 

20 MRY 0 0 2 0 135 

21 MRY 1 1 1 0 7 

22 MRY 1 0 2 1 1 

23 MRY 1 1 1 1 1 

 
 
1 DF = Dutch Friesian, GWH = Groningen White Headed, HF = Holstein Friesian and MRY = 
Meuse-Rhine-Yssel.  
2 Official SNP names: SNP 1 = BovineHD1400000199; SNP 2 = BovineHD1400000204; SNP 3 = 
BovineHD1400000206; SNP 4 =  ARS-BFGL-NGS-4939 and for each SNP two polymorphisms 
could be observed: ‘0’ is homozygote for the minor allele; ‘1’ is heterozygote; ‘2’ is 
homozygote for the major allele. 
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6.5 Conclusion 

Estimated SNP effects for FA composition based on HF data had low to no 
predictive ability in MRY, while they did have substantial predictive ability for 
several traits for DF and GWH. This indicates that SNP effects estimated in HF does 
explain less of the genetic variation of the FA composition in milk of MRY compared 
to the genetic variation of the milk fat composition in GWH and DF. The 
frequencies of the alleles having an effect on milk FA composition in HF are more 
extreme (close to 0 and 1) in the breeds MRY, GWH and DF. The latter is most 
extreme for the MRY breed. In summary, the similarities in genomic variation 
associated with detailed milk fat composition between the HF breed and the native 
Dutch dual purpose breeds are greatest in GWH and substantially lowest for MRY.  
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The aim of this thesis was to investigate the variability of detailed milk fatty 
acid (FA) composition between and within different dairy cattle breeds, including 
the mainstream Holstein Friesian (HF) and Jersey (JER), and the native dual purpose 
breeds Meuse-Rhine-Yssel (MRY), Groningen White Headed (GWH) and Dutch 
Friesian (DF) in the Netherlands. In Chapter 2, differences in FA composition were 
found among herds using different cattle breeds in the Netherlands, based on 
detailed milk FA composition measurements using gas chromatography (GC). In 
Chapter 3, mid-infrared (MIR) spectrometry was evaluated to be an accurate 
method for predicting FA composition in different breeds. In a large dataset that 
included MIR spectra of milk from cows from a range of farms using one or more 
breeds, in general, only minor breed differences in FA composition were found 
(Chapter 4) and HF showed more genetic variation in FA composition compared to 
MRY (Chapter 5). In Chapter 6, some similarities in genomic variation associated 
with detailed milk FA composition were found between the mainstream HF and the 
native dual purpose breeds MRY, GWH and DF. Furthermore, it was found that the 
frequencies of the alleles having an effect on milk FA composition in HF were more 
extreme (close to 0 or 1) in the breeds MRY, GWH and DF than in HF (Chapter 6).  
 

In this final chapter, first, the genetic variability in cattle associated with milk 
fat composition is discussed. A short overview of what is currently known will be 
given, which is mostly based on cattle belonging to one of the globally mainstream 
breeds HF and JER. Following on, the milk fat composition investigated in this thesis 
for different cattle breeds in the Netherlands is put into perspective. As DGAT1 is a 
gene known for having a significant effect on milk fat composition, the region on 
the genome and FA composition in relation with this gene are evaluated. This 
thesis combines two fields of interest: i) modification of milk fat composition by 
breeding; ii) conservation of native cattle breeds. As such, in the second part of the 
discussion, the future perspectives of numerically small cattle breeds in the Dutch 
dairy sector are discussed. In this final section, attention is paid to the 
diversification within the use of numerically small cattle breeds in the Netherlands, 
as well as the diversity among farmers using these different cattle breeds. 
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7.1 Genetic variability in cattle associated with milk fat 
composition 

In this section, a short overview will first be given of the current status of the 
existing knowledge on the variation of detailed FA composition among dairy cows. 
Phenotypic differences of fat percentage and detailed FA composition in bovine 
milk have been described in numerous studies (e.g., Grummer, 1991, Palmquist et 
al., 1993). Detailed milk fat composition is influenced by environmental factors 
such as cows' diet (e.g., Bauman and Griinari, 2003, Palmquist et al., 1993) and by 
genetic factors (e.g., Mele et al., 2009, Stoop et al., 2008). For breeding purposes 
and also for safeguarding existing variations in milk fat composition, it is important 
to know whether phenotypic differences between cows are based on underlying 
genetic differences. Heritabilities for individual FA are reported to range from low 
to moderate (up to 0.50), where low heritabilities are mostly found for long-chain 
unsaturated FA (UFA), with moderate heritabilities mainly found for short- and 
medium-chain saturated FA (SFA) (e.g., Chapter 5, Soyeurt et al., 2007, Stoop et al., 
2008).  

In research, increasing attention is being paid to unravelling the underlying 
genetic background of detailed FA composition. Associations between trait 
variations and variations among genes provides information on the genetic 
background of the trait, which can be used for genomic selection in the desirable 
direction. Selection based on genomic information can be more efficient, as it 
reduces generational intervals. In several mapping studies and genome wide 
association studies (GWAS), quantitative trait loci (QTL) have been found for 
different milk FAs on specific locations or regions on the bovine genome. On the 
Bos Taurus autosome (BTA) 5, BTA 14, BTA 19 and BTA 26 regions are present and 
have a major effect on milk FA composition (e.g., Chapter 6, Bouwman et al., 2014, 
Morris et al., 2007, Stoop et al., 2009). Based on the estimated heritabilities and 
the evidence that individual QTL are found, it can be concluded that differences in 
FA composition between cows are at least partly genetically determined; as such, it 
is therefore possible to modify milk FA composition by selection and breeding. 
 
7.1.1 Differences between breeds 

The majority of studies investigating genetic variation in the production of 
different individual FAs in milk between cows have focussed on mainstream breeds 
like HF and JER. As more cattle breeds continue to be used for milk production, it is 
of interest to investigate whether these other breeds, with relatively small 
population sizes, comprise unique characteristics in terms of FA composition in 

138 
 



7 General discussion 

 
 

milk. In this thesis, three Dutch native dual purpose breeds were studied: MRY, DF 
and GWH. In Chapters 2 and 4, the breed averages for a number of individual FAs in 
milk produced by these breeds were studied. Chapter 2 analysed FA composition 
according to fat source (g/100g fat), while Chapter 4 analysed FA composition 
according to milk source (g/dL milk). Although JER is neither a mainstream nor a 
native breed in the Netherlands, this breed was included in the research in 
Chapters 2, 3 and 4, as it is known from previous research conducted in other 
countries that the JER produces in general a higher fat percentage and FA 
composition, which clearly differs from HF (e.g., Beaulieu and Palmquist, 1995, 
Palladino et al., 2010, White et al., 2001). Both HF and JER are especially bred for 
milk production, though they clearly differ in terms of their production of FAs in 
milk. Considering that differences exist between specialized dairy breeds, it might 
be expected that milk produced by dual purpose breeds, i.e., breeds that are kept 
to produce both milk and meat, might differ in terms of detailed FA composition 
among one another and compared to the specialized dairy breeds HF and JER. 
Therefore, in Chapter 2, cows were sampled on 12 farms using a single breed only 
(MRY, FH, GWH or JER), while Chapter 4 employed data from multiple farms using 
one or more breeds. Considering the results of Chapters 2 and 4 together, 
however, no significant differences among levels of FA composition were found 
between DF and MRY or between DF and MRY on one side and HF on the other 
(Chapter 4). Figure 7.1 shows the produced levels of SFA and UFA of the breeds DF, 
MRY, GWH, HF and JER, studied in Chapters 2 and 4 of this thesis. A similar trend in 
production among the groups of SFA and UFA can be observed when comparing 
the produced levels of SFA and UFA to the different breeds MRY, DF, GWH and JER 
(i.e., GWH produced the least SFA and most UFA, followed by MRY and DF and JER 
producing the most SFA and least UFA). Only a few of the observed differences 
were significant; these are mainly discussed in Chapter 2 and reports the results of 
the analyses of farms using a single breed. For GWH, some significant differences in 
levels of FA composition were found compared to MRY, DF and JER (Chapter 2). On 
farms using GWH, relatively higher proportions of UFA and lower SFA were 
reported; in particular, the proportion of the individual FA C16:0 was found to be 
lower. When evaluating differences between breeds and correcting for herd effects 
rather than differences between herds with different breeds, it can be concluded 
that there are no or only minor differences between the mainstream HF and some 
native dual purpose breeds where FA composition in milk is concerned. 
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a     b 

  

  

  c     d 

  

Figure 7.1 For each breed the predicted LS-means in g/100g fat for the groups (a) saturated 
fatty acids and (b) unsaturated fatty acids (both described in Chapter 2), as well as the 
predictions in g/dL milk for the groups (c) saturated fatty acids and (d) unsaturated fatty 
acids from a model with adjustment for fat percentage (described in Chapter 4); bars 
indicate the standard error. 
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7.1.2 Genetic and genomic differences between and within 
breeds 

To examine the possibilities for modifying detailed FA composition by 
selection and breeding, the genetic variability of milk FA composition in different 
native dual purpose breeds was studied. In Chapter 5, the within-breed variance for 
detailed FA composition (using milk FA composition data in g/dL milk) was 
investigated for HF and MRY using phenotypic and pedigree data, which gave the 
remarkable result that the genetic variation and heritability in MRY was 
considerably lower than in HF. In terms of animal breeding, this means that within 
the MRY breed, the expected selection response will be lower, even when the 
same selection intensity would be possible. Therefore, there is less potential for 
selection concerning detailed FA content in the MRY breed compared to HF.  
The relation between the bovine genome and variations in FA composition may 
provide insight as to why MRY has lower genetic variation for FA composition 
compared to HF. Therefore, in Chapter 6, phenotypic and genotypic information 
was used to identify similarities in genomic variation associated with detailed milk 
FA composition for cows using the three Dutch native dual purpose breeds MRY, DF 
and GWH, as well as a relatively large number (1544) of HF cows. The high-density 
SNP-chip (HD chip; Illumina Inc., San Diego, CA) containing almost 800k SNPs was 
used, as it is expected to capture short-distance LD, which is expected to be 
maintained across breeds (de Roos et al., 2008). This increased the probably for 
finding a SNP in linking disequilibrium (LD) with a causal mutation across breeds, 
compared to using the commonly employed 50k SNP chip. 
 The gene diacylglycerol acyltransferase 1 (DGAT1) on BTA 14 is known to have 
a large effect on milk fat composition. When zooming in on this gene's region on 
BTA 14, four SNPs within a 163071 bp region (base pair 1 638 045 up to 1 801 116, 
which is a region prior to and up to the start of the DGAT1 gene) were identified in 
this thesis as having an effect on detailed milk FA composition in HF. Different 
combinations of genotypes were identified for these SNPs across the different 
breeds. Table 7.1 shows the different observed combinations of genotypes per 
breed, including the counts of number of cows observed for each combination of 
genotypes per breed. When taking into account the history of selection of the 
different breeds, it can be hypothesized that HF comprised less genetic variation 
related to milk traits compared to other breeds. This hypothesis is based on the 
fact that the HF breed has undergone more intensive selection for milk production 
traits related to milk FA composition. The within-breed variances of HF and MRY, 
however, show the opposite estimated genetic variances, as the individual milk FA 
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composition for MRY was clearly lower than for HF. On the other hand, as the 
native Dutch dual purpose breeds account for relatively small numbers (maximum 
1% per breed of all cows in the national milk recording), it can also be hypothesized 
that inbreeding or drift has reduced the genetic variation in these breeds. The 
latter proposition can explain the lower genetic variation in MRY compared to HF, 
as described above. However, this hypothesis also seems unlikely, because the 
same genotype based on 4 SNPs (number 3 in Table 7.1) is the major genotype in 
all three breeds (MRY, DF and GWH). Studying the genotypes in the region of 
DGAT1 in more detail provided an alternative explanation for the lower variability 
in MRY compared to HF: most different genotypes were identified for HF (10), 
followed by GWH (7) and MRY (4), while for DF, only two different genotypes were 
identified (Table 7.1). Taking into account the number of occurrences, the HF breed 
counted three main genotypes, GWH contained two and MRY and DF both 
contained only one. In total, three genotypes were found in the native Dutch dual 
purpose breeds that were not found in HF; of these genotypes, two (genotype 
number 2 and 5; see Table 7.1) were present in GWH, while one was found in DF 
and MRY (genotype number 11; see Table 7.1). However, these genotypes were 
also in those breeds present in low frequencies (maximum 6%). Thus, when 
comparing the native Dutch dual purpose breeds, GWH showed the most genomic 
variation in the investigated region of DGAT1, but overall, variability was highest in 
HF; for HF and MRY, this finding was in agreement with the estimates for the 
within-breed genetic variations found in Chapter 5. The fact that the largest 
variation in genotypes in the DGAT1 region was found for GWH could be the reason 
for the genomic estimated breeding values (GEBV) for GWH (using SNP effects) 
estimated from HF data were comparatively most accurate (Chapter 6). 
Nevertheless, this does not mean that GWH is most similar to HF, as the 
frequencies of the genotypes were very different, as can be seen in Table 7.1. 
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Table 7.1 Observed genotypes in all different breeds for SNPs in a region on the Bos Taurus 
autosome 14, with counts per breed and the DGAT1 genotype in Holstein Friesian. 
 
 

Genotype2 Counts per breed1 DGAT1 genotype 
in HF 

Genotype 
number SNP1 SNP2 SNP3 SNP4 HF MRY DF GWH AA AK KK 

1 1 1 1 0 6 7 0 2 6   

2 2 1 1 0 0 0 0 2    

3 0 0 2 0 552 135 66 58 549 3  

4 1 0 2 0 2 0 0 39 2   

5 2 0 2 0 0 0 0 2    

6 2 2 0 1 3 0 0 0  3  

7 0 1 1 1 1 0 0 0  1  

8 1 1 1 1 719 1 0 9 7 709 3 

9 2 1 1 1 3 0 0 1  3  

10 0 0 2 1 3 0 0 0 1 2  

11 1 0 2 1 0 1 4 0    

12 2 2 0 2 253 0 0 0 3  250 

13 1 1 1 2 2 0 0 0  2  

 
   

total 1544 144 70 113    

 
 
1 DF = Dutch Friesian; GWH = Groningen White Headed; HF = Holstein Friesian; MRY = 
Meuse-Rhine-Yssel.  
2 Official SNP names: SNP 1 = BovineHD1400000199; SNP 2 = BovineHD1400000204; SNP 3 = 
BovineHD1400000206; SNP 4 = ARS-BFGL-NGS-4939. For each SNP, ‘0’ is homozygote for the 
minor allele; ‘1’ is heterozygote; ‘2’ is homozygote for the major allele. 
3 The genotype of the DGAT1 K232A polymorphism for all HF cows in combination with the 
genotypes of the 4 SNPs.  
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An interesting question for further exploring knowledge regarding the genetic 
differences between breeds in FA composition is whether the frequencies of the 
causal mutation in the DGAT1 gene itself, i.e., the A232K allele, differ between 
breeds. For all HF cows, in addition to the genotypes in the area of DGAT1, the 
DGAT1 A232K genotypes were also known (DGAT1 A232K genotypes were 
obtained from the Dutch Milk Genomic Initiative; the genotypes are shown in Table 
7.1). For native breeds, the DGAT1 A232K genotypes were not known; however, 
the four SNPs in the region at the start of the DGAT1 gene were available. These 
four SNPs were used to infer the DGAT1 A232K genotypes in the other breeds. 
Based on the data on HF (Table 7.1), it can be concluded that the region from the 
start of the DGAT1 gene (SNP called ARS-BFGL-NGS-4939) up to the A232K 
polymorphism is almost in complete LD within HF, which can also be assumed for 
the breeds MRY, DF and GWH. Based on this assumption, it can be concluded that 
in these breeds, the DGAT1 K-allele has a very low allele frequency. In particular, 
cows from the breeds MRY and DF included mainly (94% in both breeds) the DGAT1 
genotype AA. Additionally, for the GWH cows, this was the major genotype (51%) 
(Table 7.2). Thus, lower variability within the native dual purpose breeds is likely 
and at least partly the result of lower allelic variance at the DGAT1 A232K locus.  

A logical next question is whether the genetic composition of the different 
breeds not only causes lower variability within the MRY breed, but can also explain 
the between-breed differences. According to the DGAT1 A232K effects in HF 
reported by Schennink et al. (2007), it might be expected that on average, the fat 
percentage in the native dual purpose breeds is lower compared to HF, as the 
DGAT1 KK genotype in HF is associated with a higher fat percentage. This 
expectation is based on estimations of the different DGAT1 genotypes in HF where 
the AA genotype in HF cows yields a 0.68% (Table 7.2, this thesis) to 0.98% 
(Schennink et al. 2007) lower milk fat percentage, compared to the KK genotype. 
Between breeds, including HF and the native dual purpose breeds, hardly any 
difference for fat percentage was found, despite the differences in frequencies of 
the DGAT1 A232K genotypes. Thus, it can be concluded that the DGAT1 A232K 
allele does not determine the level of fat percentage or FA composition in milk 
among different breeds. The DGAT1 AA genotype is, according to Schennink et al. 
(2007), also associated with a higher milk yield in HF (increasing effect of 1.46 kg 
milk). Comparing HF with the breeds DF, MRY and GWH, no increasing effect of the 
DGAT1 genotype AA was observed (see also the results for the average milk yield 
according to breed in Chapter 4); in fact, the opposite was observed, as HF 
produced a clearly higher milk yield than other native Dutch dual purpose breeds.  
 

144 
 



7 General discussion 

 
 

 
Table 7.2 The effect the DGAT1 K232A polymorphisms on fat percentage estimations, 
suggested genotypes and frequencies among different breeds. 
 
 

  

DGAT1 genotypes 

  

 

AA KA KK Total7 

Estimated 
effects 

Schennink et al. 20071 -0.53 0 0.45  
This thesis2 -0.34 0 0.34  

(Suggested) 
genotypes3,4 

SNP1 0 1 2  
SNP2 0 1 2  
SNP3 2 1 0  
SNP4 0 1 2  

(Suggested) 
frequencies5,6 

HF 0.36 0.47 0.16 0.99 

DF 0.94 0 0 0.94 

GWH 0.51 0.08 0 0.59 

MRY 0.94 <0.01 0 0.94 
 
 

1 The effects of the DGAT1 genotypes reported by Schennink et al. (2007), which were in 
the analysis treated as fixed (class) effects. 
2 The genotype effects were estimated using the allele substitution effects estimated for 
the HF population and were estimated using a regression analyses. 
3 The genotypes that were assumed to be in linkage disequilibrium with the DGAT1 
polymorphism, based on the frequencies in HF and in combination with the estimated 
effects on fat percentage. 
4 Official SNP names: SNP 1 = BovineHD1400000199; SNP 2 = BovineHD1400000204; SNP 
3 = BovineHD1400000206; SNP 4 = ARS-BFGL-NGS-4939. For each SNP ‘0’ is homozygote 
for the minor allele; ‘1’ is heterozygote; ‘2’ is homozygote for the major allele. 
5 Counts of the specific genotype divided by all genotyped animals of the breed of 
interest. 
6 HF = Holstein Friesian; DF = Dutch Friesian; GWH = Groningen White Headed; MRY = 
Meuse-Rhine-Yssel.  
7 Indicates the sum of the allele frequencies across the three main haplotypes. 

Deviations from 1.0 indicate the summed frequency of “minor” haplotypes. 
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Schennink et al. (2007) and De Roos et al. (2007) showed that DGAT1 A232K  
polymorphism has a major effect on the variability in many milk- production and 
milk fat-related traits in HF. Although the DGAT1 A232K polymorphism does affect 
the variability of milk fat composition (at least in HF), it does not explain the 
differences in the observed level of production among different breeds. 

Selection for traits was expected to influence the allele frequencies of the 
underlying causal mutations. From this perspective, the overall economic effect of 
the DGAT1 A232K genotypes on the traits underlying the Dutch selection index 
INET (http://www.gesfokwaarden.eu/nl/fokwaarden/pdf/E_9.pdf, 2012) was 
evaluated. The INET formula (as derived in 2012) is as follows: INET = -0.03 * milk 
yield + 2.2 * fat yield + 5.0 * protein yield. Using estimates provided by Schennink 
et al. (2007), the DGAT1 genotype AA had an effect on milk yield of 1.46, on fat 
yield of -0.07 and on protein yield of 0.02 when setting the effect of the genotype 
KK to zero. The estimated effects using the HF data in Chapter 6 were about 2/3 in 
size compared to the estimates of Schennink et al. (2007) and similar to the 
estimates of De Roos et al. (2007), where a similar model was used for the 
estimation of effects. Following the INET formula and the estimated effects 
provided by Schennink et al. (2007), the economic effect of the different DGAT1 
genotypes was calculated per lactation, assuming population genotype frequencies 
of 25% for AA, 50% for KA and 25% for KK. In this case, the use of a bull with the 
genotype AA had an average economic effect for milk production per produced 
cow of ~-15 Euro and the use of a bull with the genotype KK had an average 
economic effect for milk production of ~40 Euro. Since the data presented in Table 
7.2 suggest that the native Dutch dual purpose breeds had a high frequency for the 
DGAT1 A-allele, it can be hypothesized that the common ancestors of these breeds 
(as well as HF) had a high frequency for the A-allele. The positive economic impact 
of the KK-genotype, considering its association with the INET index, may have 
caused an increase in the frequency of the K-allele in HF in recent history, due to 
selection towards the currently observed allele frequencies. In other countries, 
intermediate allele frequencies for the DGAT1 A232K allele have also been 
reported (Schennink et al. 2009) and although INET is the Dutch selection index, in 
other countries, breeding goals have been fairly comparable.  
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7.2 Perspectives for native and numerically small cattle 
breeds in the dairy sector 

From the results in this thesis it can be concluded that FA composition is not 
significantly different between native Dutch dual purpose cattle breeds and 
mainstream dairy breeds. Based on these results, the genetic variation in the native 
and numerically small breeds is not essential for modifying milk FA production by 
selection and breeding. This does not mean, however, that these breeds comprise 
no unique genetic variability in general or present no added value to (dairy) cattle 
husbandry.  
 
7.2.1 The diversity among farmers using different cattle 
breeds 

Although the HF breed is generally well-suited to the Dutch dairy industry, it is 
not necessarily always a first choice among farmers. This is substantiated by the 
observation that although the majority of farms and farmers are adapted to and 
prefer the HF breed, there are still farmers that traditionally or recently have 
chosen to use another breed or a combination of breeds (e.g., Hiemstra et al., 
2010). During data collection on farms applied in this thesis, a remarkably large 
variety of farming systems and farmers keeping the native dual purpose breeds was 
observed. Dairy farms differed, for example, in production intensity, degree of 
automation, degree of entrepreneurship of the farmer and education level of the 
farmer. This large variety in farming systems associated with the use of different 
native dual purpose breeds was also described in a report of the European project 
EURECA (Hiemstra et al., 2010), which was based on a farmer survey concerning 
different breeds. The results of this report showed, for example, that native dual 
purpose breeds were especially used on more extensive farms such as organic 
farms and/or farms with secondary activities, like social- care farming, on-farm 
selling, tourism or nature management. The variety of farmers and farming 
systems, combined with different breeding goals, were also described by Groen et 
al. (1993). One of the main conclusions was that farmers generally had a clear idea 
of what type of cows (i.e., which breed) best fit their farming system. When 
comparing the results of Chapters 2 and 4 of this thesis, it is worth noting that in 
Chapter 2, larger differences in FA composition between breeds were found, which 
were in general also significant. However, as the farms sampled for Chapter 2 were 
only using one single breed, the observed differences represented the combined 
effect of farm and breed, because farm and breed were confounded within the 
data. The level of the group UFA and the individual FA C16:0 on different farms 
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using MRY, DF, GWH or JER is shown in Figures 7.2a and 7.2b. These figures 
illustrate that the combination of herds and breeds considerably added to the 
observed variations. 

 
a 

 

b 

 

 

Figure 7.2 The LS means for three different native Dutch dual purpose breeds and the 
Jersey breed in the Netherlands, and the uncorrected means of the individual farms 
using different breeds for the (a) percentage of C16:0 and (b) unsaturated fatty acids in 
milk.  
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The latter suggests that for the selection of specific FA composition, differences in 
herd environment had to be taken into account. Finally, the continued use of a 
variety of cattle breeds on dairy farms might contribute to the diversity in farming 
systems and enable farmers to continue or to develop their desired or “ideal” way 
of farming and products, which stresses the relevance of strategies and policies for 
supporting the conservation of native dual purpose cattle breeds in future. 
 
7.2.2 Using numerically small cattle breeds in the Dutch 
dairy sector 

It is not surprising that the dairy breeding industry - in a country that plays a 
major role in food production, but where land availability is a major limiting factor 
like the Netherlands - is dominated by a single breed, for a number of reasons, for 
example, 1) it is easier and/or more efficient to focus on a single breeding 
programme specifically compiled for a specific breed; 2) breeding programmes 
focusing on a single breed are more likely to result in more genetic progress within 
that breed, compared to breeding programmes that focus on multiple breeds; 3) a 
mainstream breed can benefit from the exchange of genetic material and 
estimated breeding values between countries; 4) specialized farming systems in 
countries like the Netherlands can easily be adjusted for the needs of cows within a 
specific breed. A combination of the factors described above, along with strong 
selection for high production using the Dutch INET index rendered the HF breed 
extremely suitable for intensive milk production in the Netherlands. Within the 
commercial milk production industry, it is difficult for dairy cattle breeds with a 
relatively small number of animals, e.g., MRY, DF and GWH to compete with 
mainstream breeds like HF. However, these numerically small native dual purpose 
breeds are nonetheless perceived to be particular suitable for extensive farming 
systems like organic farming (Hiemstra et al., 2010, Nauta et al., 2003, Nauta et al., 
2009). Nevertheless, it remains challenging for these native, numerically small 
breeds to find (other) ways for becoming self-sustainable. Unique genetic 
variations of specific traits of interest can potentially support conservation 
strategies for native Dutch dual purpose cattle breeds. Investigating the FA 
composition in milk produced by native Dutch dual purpose cattle breeds MRY, DF 
and GWH appears to indicate that these breeds do not add to the genetic 
variability of the major fatty acids in milk observed in the mainstream HF breed 
(this thesis). These results therefore do not urge expansion of the use of native 
Dutch dual cattle breeds for the purpose of changing the FA composition in milk 
within current regular dairy cattle milk production breeding programmes. As these 
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native breeds clearly differ in breeding background and appearance it is, however, 
likely that they do comprise unique genetic variations (Medugorac et al., 2009, 
Oldenbroek, 2007), although this was not directly detected for FA composition in 
milk in this thesis. However, relative large variances in milk FA composition were 
observed among farms using different cattle breeds (MRY, DF, GWH or JER).  

To investigate the genetic variation of specific traits such as milk fat 
composition, this required large datasets and sometimes expensive research 
methods. These requirements were generally difficult to achieve for native breeds, 
because of the small number of animals and lack of direct economic prospects. The 
difficulty of restrictions due to expensive research methods can in some cases be 
addressed by the introduction of new research methods, for example, the use of 
relatively cheap and quick mid-infrared spectrometry (MIR) for analysing the 
detailed FA composition in milk, instead of the expensive and time-consuming gas 
chromatography (this thesis). It is expected that these new, relatively cheap and 
high throughput analysis methods for the collection of phenotypes like MIR 
(Chapter 2) – and which can already be used to measure FA composition in the milk 
of different cattle breeds – will also become available for measuring other traits. 
For example, the possibility of using MIR for analysing the methane emissions of 
individual cows is currently under investigation (Dehareng et al., 2012). To 
investigate whether numerically small native breeds can contribute to reaching 
new breeding goals, the phenotypic and genotypic information of a minimum of 
~100 cows (as was used in Chapter 6) provided an impression of the potential 
opportunities that may arise from using these breeds in breeding in instances 
where information was also available for a reference population, as was the case 
for the mainstream HF in Chapter 6. 

As described in section 7.2.1, the match between farmer and the type of cow 
or breed can also play an important role in the choice of breed on a farm. For some 
farmers, using a specific breed can mean more pleasure in working with the cows, 
because of the animals' specific personalities and/or appearance (Hiemstra et al., 
2010), which can, for example, result in extreme early recognition of sickness 
among cows or the optimization of their circumstances, which can in turn save or 
even generate money. The special appearance of native breeds – in the case of this 
thesis, particularly the GWH (a black or red cow, typically with a white head and 
coloured blisters around the eyes, white socks, belly and udder) – is important for a 
number of secondary breed functions and has added value, e.g., social-care 
farming, on-farm selling, tourism or nature management (e.g., Gandini and Villa, 
2003, Hiemstra et al., 2010, Oldenbroek, 2007). The development of special 
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products linked to these native breeds can also help to realize the self-sustainability 
of these breeds (e.g., Hiemstra et al., 2010, Oldenbroek, 2007). 

Finally, in case consequences of possible climate change become visible in 
future, for example more extreme temperatures or lower quality diets, breeding 
goals may have to be adjusted and native breeds might comprise the genetic 
variability required to meet these new breeding goals (Hoffmann, 2010). In animal 
husbandry, for example, concerns regarding the impact of livestock emissions on 
climate change has already led to several studies such those investigating the 
emission of methane by dairy cows, the likes of which differs among cows and is 
affected by genetics (e.g., de Haas et al., 2011, Johnson and Johnson, 1995).  
 In summary, to keep numerically small dairy cattle breeds self-sustainable, it 
is important to understand, measure and use their unique characteristics for the 
optimization of specific farming systems (e.g., in organic farming) and to add value 
to the native breed by developing special and recognizable products or other 
specific functions (e.g., in social-care farming). Furthermore, conservation of 
genetic variations in cattle through the preservation of different breeds could be 
important for adaptation to new production environments or currently unknown 
product or market requirements needed in future. 
 
References 
Bauman, D. E. and J. M. Griinari. 2003. Nutritional regulation of milk fat synthesis. 

Annual review of nutrition 23, 203-227. 
Beaulieu, A. D. and D. L. Palmquist. 1995. Differential effects of high fat diets on 

fatty acid composition in milk of Jersey and Holstein cows. Journal of Dairy 
Science 78, 1336-1344. 

Bouwman, A. C., M. H. P. W. Visker, J. M. van Arendonk, and H. Bovenhuis. 2014. 
Fine mapping of a quantitative trait locus for bovine milk fat composition on 
Bos taurus autosome 19. Journal of Dairy Science 97, 1139-1149. 

de Haas, Y., J. J. Windig, M. P. L. Calus, J. Dijkstra, M. de Haan, A. Bannink, and R. F. 
Veerkamp. 2011. Genetic parameters for predicted methane production and 
potential for reducing enteric emissions through genomic selection. Journal of 
Dairy Science 94, 6122-6134. 

de Roos, A. P. W., B. J. Hayes, R. J. Spelman, and M. E. Goddard. 2008. Linkage 
disequilibrium and persistence of phase in Holstein–Friesian, Jersey and Angus 
cattle. Genetics 179, 1503-1512. 

151 
 



7 General discussion 

 
 
de Roos, A. P. W., C. Schrooten, E. Mullaart, M. P. L. Calus, and R. F. Veerkamp. 

2007. Breeding value estimation for fat percentage using dense markers on Bos 
taurus autosome 14. Journal of Dairy Science 90, 4821-4829. 

Dehareng, F., C. Delfosse, E. Froidmont, H. Soyeurt, C. Martin, N. Gengler, A. 
Vanlierde, and P. Dardenne. 2012. Potential use of milk mid-infrared spectra to 
predict individual methane emission of dairy cows. Animal 6, 1694-1701. 

Gandini, G. C. and E. Villa. 2003. Analysis of the cultural value of local livestock 
breeds: a methodology. Journal of Animal Breeding and Genetics 120, 1-11. 

Groen, A. F., K. de Groot, J. D. van der Ploeg, and R. D. 1993. Stijlvol fokken, een 
oriënterende studie naar de relatie tussen sociaal-economische 
verscheidenheid en bedrijfsspecifieke fokdoeldefinitie. in Bedrijfsstijlenstudie. 
Vol. 9. Vakgroep Veefokkerij en Vakgroep Rurale Sociologie 
Landbouwuniversiteit, Wageningen, Wageningen. 

Grummer, R. R. 1991. Effect of feed on the composition of milk fat. Journal of Dairy 
Science 74, 3244-3257. 

Hiemstra, S. J., Y. de Haas, A. Mäki-Tanila, and G. Gandini. 2010. Local cattle breeds 
in Europe - Development of policies and strategies for self-sustaining breeds. 
first ed. Wageningen Acedemic Publishers. 

Hoffmann, I. 2010. Climate change and the characterization, breeding and 
conservation of animal genetic resources. Animal Genetics 41, 32-46. 

http://www.gesfokwaarden.eu/nl/fokwaarden/pdf/E_9.pdf. 2012. Kengetallen - E-
9 Index netto melkgeld. in Handboek Kwaliteit. 

Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. Journal of 
Animal Science 73, 2483-2492. 

Medugorac, I., A. N. A. Medugorac, I. Russ, C. E. Veit-Kensch, P. Taberlet, B. Luntz, 
H. M. Mix, and M. FÖRster. 2009. Genetic diversity of European cattle breeds 
highlights the conservation value of traditional unselected breeds with high 
effective population size. Molecular Ecology 18, 3394-3410. 

Mele, M., R. Dal Zotto, M. Cassandro, G. Conte, A. Serra, A. Bittante, and P. 
Secchiari. 2009. Genetic parameters for conjugated linoleic acid, selected milk 
fatty acids, and milk fatty acid unsaturation of Italian Holstein-Friesian cows. 
Journal of Dairy Science 92, 392 - 400. 

Morris, C., N. Cullen, B. Glass, D. Hyndman, T. Manley, S. Hickey, J. McEwan, W. 
Pitchford, C. Bottema, and M. Lee. 2007. Fatty acid synthase effects on bovine 
adipose fat and milk fat. Mammalian Genome 18, 64 - 74. 

Nauta, W., A. F. Groen, D. Roep, R. F. Veerkamp, and T. Baars. 2003. Visie op 
fokkerij voor de biologische landbouw. Louis Bolk Instituut, Driebergen. 

152 
 

http://www.gesfokwaarden.eu/nl/fokwaarden/pdf/E_9.pdf


7 General discussion 

 
 

Nauta, W. J., T. Baars, H. Saatkamp, D. Weenink, and D. Roep. 2009. Farming 
strategies in organic dairy farming: Effects on breeding goal and choice of 
breed. An explorative study. Livestock Science 121, 187-199. 

Oldenbroek, K. 2007. (Editor) Utilisation and conservation of farm animal genetic 
resources. Wageningen Acedemic Publishers, ISBN 978-90-8686-032-6, 
Wageningen, The Netherlands. 

Palladino, R. A., F. Buckley, R. Prendiville, J. J. Murphy, J. Callan, and D. A. Kenny. 
2010. A comparison between Holstein-Friesian and Jersey dairy cows and their 
F1 hybrid on milk fatty acid composition under grazing conditions. Journal of 
Dairy Science 93, 2176-2184. 

Palmquist, D. L., A. Denise Beaulieu, and D. M. Barbano. 1993. Feed and animal 
factors influencing milk fat composition. Journal of Dairy Science 76, 1753-1771. 

Schennink, A., W. Stoop, M. Visker, J. Heck, H. Bovenhuis, J. van der Poel, H. van 
Valenberg, and J. van Arendonk. 2007. DGAT1 underlies large genetic variation 
in milk-fat composition of dairy cows. Animal Genetics 38, 467 - 473. 

Soyeurt, H., A. Gillon, S. Vanderick, P. Mayeres, C. Bertozzi, and N. Gengler. 2007. 
Estimation of heritability and genetic correlations for the major fatty acids in 
bovine milk. Journal of Dairy Science 90, 4435 - 4442. 

Stoop, W., A. Schennink, M. Visker, E. Mullaart, J. van Arendonk, and H. Bovenhuis. 
2009. Genome-wide scan for bovine milk-fat composition. I. Quantitative trait 
loci for short- and medium-chain fatty acids. Journal of Dairy Science 92, 4664 - 
4675. 

Stoop, W., J. van Arendonk, J. Heck, H. van Valenberg, and H. Bovenhuis. 2008. 
Genetic parameters for major milk fatty acids and milk production traits of 
Dutch Holstein-Friesians. Journal of Dairy Science 91, 385 - 394. 

White, S. L., J. A. Bertrand, M. R. Wade, S. P. Washburn, J. T. Green Jr, and T. C. 
Jenkins. 2001. Comparison of fatty acid content of milk from Jersey and Holstein 
cows consuming pasture or a total mixed ration. Journal of Dairy Science 84, 
2295-2301. 

 

153 
 





 
 
 
 
 
 
 

 
 

Summary 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  

 
 



  

 
 



Summary 

 
 

Summary 
Bovine milk is a major source of nutrients in the human diet and contains 

between 3% and 6% fat. 'Milk fat' is the collective term used for a large number of 
individual fatty acids (FA), which can roughly be divided into saturated FA (SFA) and 
unsaturated FA (UFA). The composition of FA in milk varies considerably between 
cows and herds, mainly due to differences in the genetics and nutrition of cows. 
Since FA composition in milk is related to the processability of milk and also 
estimated to be related to human health, there is an increasing interest in the 
possibilities for modifying FA composition. As FA composition in milk is influenced 
by genetic factors, possible breed differences might be employed for modifying FA 
composition in the desired direction. In worldwide dairy cattle breeding, since the 
1980s, a change has been observed from the use of native breeds toward the use 
of large and internationally-used mainstream breeds. In the Netherlands, this 
change has become clearly visible as native dual purpose breeds like Meuse-Rhine-
Yssel (MRY), Dutch Friesian (DF) and Groningen White Headed (GWH) are to a large 
extent being replaced by the globally mainstream breed Holstein Friesian (HF). As a 
result, these native breeds are now numerically small. Therefore, in this thesis, two 
fields of interest were combined: the production of milk with a specific milk fat 
composition and the conservation of native cattle breeds. The overall objective of 
the thesis was to investigate whether native dual purpose breeds comprise 
different genetic variations for milk fat composition among one another and 
compared to the mainstream HF breed.  

Chapter 2 describes the detailed FA composition in milk produced on farms 
using the native dual purpose breeds MRY, DF, GWH and the globally mainstream 
Jersey (JER) breed. In total, milk samples were collected on 12 farms and for each 
breed, around 50 cows were sampled on three farms. All milk samples were 
analysed by gas chromatography (GC). For all studied individual FA (13), groups of 
FA (9) and unsaturation indices (5), differences in FA composition were found 
among the groups of farms using different cattle breeds. The proportion of the UFA 
group relative to the total FA was largest for GWH (26.7%) compared with MRY 
(24.3%) and DF (23.2%), and smallest for JER (22.7%). This suggests that selecting 
specific FA composition differences in farms using different breeds in the 
Netherlands can attribute to modifying the FA composition in bovine milk 
production.  

Because GC is an expensive and time-consuming method for analysing FA 
composition in milk, the use of mid-infrared spectrometry (MIR) for analysing FA 
composition in milk of different breeds was validated (Chapter 3). Calibration 
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equations used to predict FA composition using MIR were based on a dataset 
containing 1236 milk samples from multiple cattle breeds from Ireland, Scotland 
and the Walloon region of Belgium. These calibration equations were used to 
predict 11 individual (mainly short- and medium-chain) FA and three groups of FA 
of milk from 190 cows in the Netherlands across the breeds MRY, DF, GWH and 
JER. The FA composition of these 190 milk samples from Dutch cows were also 
analysed by GC and used as the gold standard. For the majority of FA composition, 
the predictions were highly accurate (validation R2 > 0.80). This implies that MIR 
can be a suitable method for predicting FA composition among different breeds 
and countries. 

In Chapter 4, FA composition in milk was predicted using MIR for a large 
number of cows, including different breeds in the Netherlands. The data contained 
MIR spectra of in total 1769 purebred cows belonging to the breeds MRY, DF, GWH 
and JER, 15 050 purebred HF cows and 7626 crossbred cows belonging to the 
breeds HF, MRY, DF, GWH and JER. Using MIR, FA content in milk was predicted. 
Analyses were conducted either by adjusting or not adjusting for fat percentage in 
order to be able to compare different breeds, independent of the level of fat 
percentage in milk. After adjusting for differences in fat percentage, differences 
among breeds in detailed fat composition disappeared or became smaller for 
several short- and medium-chain FAs, whereas for several long-chain unsaturated 
FAs, more significant breed differences were found. This indicated that short- and 
medium-chain FA content were for all breeds stronger related to total fat 
percentage than it was for long-chain FA content. In conclusion, the observed 
differences in fat composition in milk between HF, MRY and DF were insignificant. 
JER cows tended to produce a relatively higher SFA content, whereas GWH tended 
to produce a relatively higher UFA content and especially less short-chain SFA and 
more long-chain FA when adjusting for differences in fat percentage per breed. 

Besides the variation in FA composition between breeds, the within-breed 
variation for 14 individual FAs and 14 groups of FAs in milk of the breeds HF and 
MRY was also investigated (Chapter 5). Additive genetic variances and heritabilities 
were estimated using records of 96 315 HF cows, as well as a MRY population 
containing 2049 cows. Heritabilities of the groups of FAs for HF ranged from 0.19 to 
0.53 and for MRY from 0.11 to 0.28. For the majority of the individual FAs, the 
additive genetic variances for HF were on average 1.9 times higher compared to 
the MRY population, except for most of the polyunsaturated FAs. This implied that 
there was less potential for selection according to detailed FA content in the MRY 
breed compared to HF cows. 
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To gain a better insight into the background of genetic variations in FA 
composition between and within breeds, in Chapter 6, similarities in genomic 
variation associated with detailed milk fat composition between the Holstein 
Friesian (HF) breed and native dual purpose breeds MRY, DF and GWH were 
investigated. The genotypic and phenotypic information of 1867 cows were used in 
this investigation. Genomic breeding values (GEBV) were estimated for the milk 
composition of MRY, DF and GWH breeds, using single nucleotide polymorphism 
(SNP) effects estimated in HF. Comparing the native Dutch dual purpose breeds, 
the GEBV calculated for the MRY breed were clearly least reliable, indicating that 
the genetic variation associated with milk fat composition of MRY differed most 
from HF. For both DF and GWH, the estimated SNP effects for FA composition 
based on HF data showed a substantial predictive ability for several traits and were 
highest in GWH. In addition, correlations between the allele frequencies of the 
breeds MRY, GWH, DF and HF were calculated. These correlations proved similar 
between any pair of the native Dutch dual purpose breeds and HF when 
considering all SNPs (on average 0.68). Focussing on SNPs that had a large effect on 
milk FA composition in HF (at regions on BTA 5, 14 and 26), however, showed 
strong differences in allele frequencies when comparing the native Dutch dual 
purpose breeds with HF (average correlation 0.50-0.53). Nevertheless, there was 
no consistent relationship between differences in GEBV reliability and allele 
frequencies when using target subsets of SNPs with increasingly larger effects in 
HF. In conclusion, differences were detected between the native breeds MRY, DF 
and GWH in genomic variations of regions that are associated with FA composition 
in HF, while most variation in these main regions was clearly observed in HF. The 
similarity between the native dual purpose breeds and HF in variances in FA 
associated with genomic variation was visibly lowest for the native MRY breed. 

In the general discussion (Chapter 7), the genetic variability in cattle 
associated with milk FA composition was first discussed. Overall, it was concluded 
that no large differences existed in milk FA composition among the native Dutch 
dual purpose breeds and the mainstream HF breed. The main observed difference 
was that the GWH breed seemed to produce relatively less SFA and more UFA, 
especially long-chain UFA. Concerning the DGAT1 gene, which is highly related to 
FA composition in HF, the native Dutch dual purpose breeds had less genetic 
variation compared to HF and appeared to mainly carry the genotype AA. However, 
limited differences in levels of FA composition in milk were found among breeds 
when comparing different breeds on different farms; however, this did not indicate 
any obvious variations. It is suggested that this was partly the result of the 
substantial diversity of farmers using different native dual purpose cattle breeds.  
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In the second part of the discussion, attention was paid to the diversity of farmers 
using different cattle breeds and the use of numerically small cattle breeds in the 
Dutch dairy sector. Opportunities for native dual purpose breeds lie in the use of 
these breeds in specific farming systems (e.g., organic and social-care farming) and 
at a cultural level (e.g., the cultural heritage of local use and craft animal products), 
rather than in competing with the HF breed. Finally, in the long-term, it is 
important to conserve breeds, as they may possibly be needed for adaptation to 
unknown future production environments. 
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Samenvatting 
Melk van koeien is een belangrijke bron van voedingstoffen. Melk bevat normaliter 
tussen de 3 en 6% vet wat bestaat uit een groot aantal verschillende vetzuren (FA) 
welke grofweg onder te verdelen zijn in verzadigde (SFA) en onverzadigde vetzuren 
(UFA). De exacte samenstelling van melkvet varieert niet alleen tussen 
melkveebedrijven, maar ook tussen individuele koeien. Deze variatie is met name 
het gevolg van verschillen in het rantsoen en genetische verschillen tussen de 
koeien. Omdat de vetzuursamenstelling in melk van invloed is op de verwerking 
van melk en tevens geassocieerd wordt met humane gezondheid, is er een 
groeiende vraag naar mogelijkheden om de vetzuursamenstelling in melk aan te 
passen. Het is bekend dat de vetzuursamenstelling in de melk wordt beïnvloed 
door een (onbekend) aantal genen, oftewel door veel verschillende specifieke 
stukken op het DNA van de koe. Het zou dan ook mogelijk kunnen zijn dat er 
duidelijke verschillen zijn in de vetzuursamenstelling van verschillende 
rundveerassen. 
 Wereldwijd, vanaf ongeveer de jaren ’80, is er een duidelijke verschuiving 
geweest van het gebruik van inheemse en lokale rundveerassen naar het gebruik 
van rassen welke internationaal worden ingezet. In Nederland is deze verschuiving 
duidelijk te herkennen aan het feit dat de inheemse dubbeldoelrassen zoals de 
Maas-Rijn-IJssel koe (MRY), de Fries Hollandse koe (DF) en de Groninger Blaarkop 
koe (GWH) op groot deel van de melkveebedrijven is vervangen door de 
internationaal veel ingezette Holstein Friesian koe (HF). Door deze verschuiving zijn 
de inheemse dubbeldoelrassen in aantal sterk teruggelopen tot relatief kleine 
populaties op dit moment.  
 De interesse in de achtergrond van de vetzuursamenstelling in melk en het 
feit dat inheemse rassen steeds minder worden gebruikt in de melkveehouderij zijn 
de reden dat in dit proefschrift de vetzuursamenstelling in de melk van 
verschillende Nederlandse rundveerassen is onderzocht en vergeleken met het 
internationale HF ras. 
 In hoofdstuk 2 wordt de gedetailleerde vetzuursamenstelling van melk 
beschreven welke is geproduceerd op bedrijven waar gewerkt wordt met de rassen 
MRY, DF, GWH en de internationaal veel gebruikte Jersey koe (JER). In totaal zijn 
melkmonsters genomen op een 12-tal melkveebedrijven, waarbij voor ieder ras 
melkmonsters zijn genomen van ongeveer 50 koeien op 3 verschillende bedrijven. 
Deze melkmonsters zijn geanalyseerd met behulp van gas chromatografie (GC). In 
totaal zijn 13 individuele vetzuren, 9 vetzuurgroepen en 5 indexen 
(onverzadigd/totaal) gemeten en bestudeerd waarbij verschillen zijn gevonden 
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tussen bedrijven die verschillende rundveerassen melken. Het aandeel onverzadigd 
vet in de melk ten opzichte van het totaal aan vet was het grootst voor het GWH 
ras (26,7%) in vergelijking met MRY (24,3%) en DF (23,2%), en was het kleinst voor 
JER (22,7%). Deze bevindingen suggereren dat de combinatie van ras en bedrijf van 
belang kan zijn voor een specifieke/aangepaste productie van de 
vetzuursamenstelling in melk.  
 Omdat GC-analyse relatief kostbaar is en veel tijd kost is in hoofdstuk 3 een 
validatiestudie beschreven waarvoor is onderzocht of de analysemethode mid-
infraroodspectroscopie (MIR) ook gebruikt kan worden voor het bepalen van de 
vetzuursamenstelling in de melk van verschillende rundveerassen. Voor het 
bepalen van de vetzuursamenstelling middels MIR zijn kalibratie vergelijkingen 
gebruikt die ontwikkeld waren met behulp van een dataset van een 1236-tal 
melkmonsters die waren  verzameld van verschillende rundveerassen in Ierland, 
Schotland en België (Wallonië). De vergelijkingen werden gebruikt voor het 
schatten van de hoeveelheid in de melk van 11 individuele vetzuren (voornamelijk 
vetzuren met korte en middellange ketenlengtes) en 3 vetzuurgroepen van een 
190-tal Nederlandse koeien behorende tot de rassen MRY, DF, GWH en JER. De 
melkmonsters van deze koeien waren tevens geanalyseerd met behulp van GC 
waarvan bekend is dat hiermee de vetzuursamenstelling nauwkeurig kan worden 
gemeten. Met behulp van MIR konden de meeste onderzochte vetzuren zeer 
nauwkeurig worden voorspeld (validatie R2 > 0,80). Dit wijst erop dat MIR een 
geschikte methode is voor het bepalen van de vetzuursamenstelling in de melk van 
verschillende rundveerassen over verschillende landen. 
 In hoofdstuk 4 is de vetzuursamenstelling in de melk van een zeer grote groep 
koeien, van verschillende rassen en bedrijven, geanalyseerd met behulp van MIR. 
De data bevatte MIR gegevens (spectra) van in totaal 1769 zuivere MRY, DF, GWH 
en JER koeien, 15 050 zuivere HF koeien en 7626 kruislingen van de rassen HF, 
MRY, DF, GWH en JER. De vetzuursamenstelling van de verschillende 
rundveerassen is met elkaar vergeleken. Die vergelijking is twee keer gedaan 
waarbij de ene keer wel en de andere keer geen rekening is gehouden met het 
totale vetpercentage in de melk. Uit de resultaten bleek dat de vetzuren met korte 
en middellange ketenlengtes een sterke relatie hebben met het totale 
vetzuurpercentage in de melk. Geconcludeerd kan worden dat de waargenomen 
verschillen in vetzuursamenstelling tussen de rundveerassen niet of nauwelijks 
significant zijn. Wel lijkt JER iets meer verzadigde vetzuren te produceren en GWH 
iets meer onverzadigde vetzuren wanneer werd gecorrigeerd voor vetpercentage 
in de melk. 
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 Naast de verschillen tussen de rundveerassen is de variatie in 
vetzuursamenstelling in de melk van koeien van hetzelfde ras (binnen ras variatie) 
voor HF en MRY onderzocht en beschreven in hoofdstuk 5. Hiervoor zijn van een 
14-tal individuele vetzuren en een 14-tal vetzuurgroepen de hoeveelheden in de 
melk bepaald met behulp van MIR. De additief genetische varianties en de 
erfelijkheidsgraden van deze vetzuren en vetzuurgroepen zijn afzonderlijk geschat 
voor HF en MRY. Hiervoor is MIR data gebruikt van 96 315 HF en 2049 MRY koeien. 
De erfelijkheidsgraden voor de vetzuurgroepen varieerden van 0,19 tot 0,53 voor 
het HF ras en varieerden van 0,11 tot 0,28 voor het MRY ras. Voor de meeste 
individuele vetzuren waren de geschatte genetische varianties gemiddeld 1,9 keer 
hoger voor het HF ras in vergelijking met het MRY ras, uitgezonderd de meeste 
meervoudig onverzadigde vetzuren. Dit impliceert dat er minder ruimte is voor 
selectie op vetzuursamenstelling binnen het MRY ras in vergelijking met het HF ras.  
 In hoofdstuk 6 is getracht om meer inzicht te verkrijgen in de genetische 
achtergrond van variatie in vetzuursamenstelling binnen en tussen verschillende 
rundveerassen. Hiervoor zijn mogelijke overeenkomsten onderzocht in genomische 
variatie geassocieerd met vetzuursamenstelling in melk tussen het internationale 
HF ras en de inheemse dubbeldoelrassen MRY, DF en GWH. Fenotypische 
(geanalyseerde vetzuursamenstelling) en genotypische (DNA-profielen) gegevens 
van in totaal 1867 koeien zijn gebruikt voor dit onderzoek. Genomische fokwaarden 
(GEBV) waren geschat voor de vet- en eiwitpercentage en de gedetailleerde 
vetzuursamenstelling in de melk van MRY, DF en GWH waarbij gebruik was 
gemaakt van geschatte genetische effecten in HF. De GEBV schattingen voor het 
MRY ras waren duidelijk het minst betrouwbaar wat een indicatie is dat de 
genetische variantie geassocieerd met vetzuursamenstelling in melk in MRY het 
meest verschilt van die van HF. Voor de beide rassen DF en GWH waren de 
schattingen beter, met name voor een aantal vetzuren van het GWH ras. Hiernaast 
is ook naar de gemiddelde overeenkomsten en verschillen (correlaties) op het DNA 
(op basis van SNP’s) gekeken tussen de rassen MRY, DF, GWH en HF. Deze 
correlaties waren gemiddeld 0.68 tussen alle rassen. Wanneer op de SNP’s werd 
gefocust waarvan bekend is dat ze een effect hebben op de vetzuursamenstelling 
in de melk van HF was de correlatie tussen de rassen aanmerkelijk lager (0,50-
0,53). Hieruit kan worden geconcludeerd dat er duidelijke genomische verschillen 
zijn tussen de inheemse rassen MRY, DF en GWH als wordt gekeken naar de 
variatie die is geassocieerd met vetzuursamenstelling in de melk, de meeste 
variatie echter is gevonden in het HF ras. 
 In de algemene discussie (hoofdstuk 7) is als eerste de genetische variatie die 
is geassocieerd met vetzuursamenstelling in melk in rundvee en rundveerassen 
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uiteengezet. Globaal kan worden geconcludeerd dat er geen grote verschillen in 
vetzuursamenstelling in de melk van de verschillende inheemse dubbeldoelrassen 
en HF zijn. De belangrijkste waargenomen verschillen zijn gevonden voor de koeien 
van het GWH ras die grofweg minder verzadigde vetzuren en meer onverzadigde 
vetzuren lijken te produceren. Wanneer expliciet het voorkomen van het DGAT1 
gen (van dit gen is het bekend dat het een aanzienlijk effect heeft op 
vetzuursamenstelling in melk van HF koeien) werd onderzocht is het duidelijk dat 
de inheemse dubbeldoelrassen voor dit gen minder genetische variatie vertonen.  
 De verschillen in vetzuursamenstelling die zijn gevonden tussen de 
rundveerassen kunnen op basis van dit onderzoek niet los worden gezien van de 
verschillen tussen de bedrijven waar deze rassen worden gemolken. Op veel van de 
bedrijven waar de inheemse dubbeldoelrassen worden gemolken valt de “eigen 
manier” van bedrijfsvoering op en daardoor is de melk verzameld op een grote 
variëteit aan bedrijven. De direct in de melk gemeten verschillen in 
vetzuursamenstelling zijn waarschijnlijk deels een gevolg van de combinatie van 
rundveeras en bedrijf. 
 In het tweede deel van de algemene discussie is aandacht besteed aan de 
diversiteit tussen veehouders die de verschillende rundveerassen gebruiken en aan 
het gebruik van (in aantallen kleine) inheemse dubbeldoelrassen in het algemeen. 
Kansen voor de inheemse dubbeldoelrassen liggen waarschijnlijk vooral op het 
gebied van alternatieve veehouderijsystemen (zoals biologische veehouderij en 
zorgfuncties op het bedrijf), meer dan in het concurreren tegen HF op het gebied 
van melkproductie. Ten slotte, voor de langere termijn is het van belang om 
verschillende rundveerassen te behouden, omdat deze mogelijk van belang zullen 
zijn in de nog onbekende toekomst als er aanpassingen nodig zijn door 
veranderende productieomstandigheden. 
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