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Abs t r a c t 

Floquet theory is an appropriate tool for studying ordinary linear recur­
rence and differential equations with periodic coefficients, and is a general­
ization of the theory for constant coefficients. Floquet theory has still not 
found its way into economics, although it seems to be relevant for economic 
dynamics. As well as a discussion of this relevance and an illustration of it in 
the context of the Samuelson-Hicks multiplier-accelerator model, this article 
contains an appendix that provides a quite complete exposition of Floquet 
theory for recurrence equations. 
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1 Introduction 

Many models on economic dynamics are s tated in terms of recurrence or differential 
equations. In such a model, it is usual to be interested in quali tat ive properties 
of solutions such as asymptotic , oscillatory and steady s ta te behaviour, in their 
quant i ta t ive properties such as explicit expressions for solutions and in which way 
solutions can be controlled. Various qualitative and quant i ta t ive properties can 
especially be mastered in case of ordinary linear equations with constant coefficients. 
One knows (see, for example, [2, 12, 16]) t ha t in this context characteristic roots play 
a major role. But, much less known is the fact t ha t , in case of periodic coefficients, 
quite analogous results hold for such equations and t ha t this much more general 
case is only slightly more difficult to handle if one uses an appropriate setting. 
The essential idea for such a generalization was given by Floquet [5] more than 
hundred years ago, and this has grown into what today is called 'Floquet theory ' 
(see, for example, [2 ,6 ,11 ,12,17-19,21]) . The resemblance between constant and 
periodic coefficients theory is because, loosely speaking, an equation with periodic 
coefficients can be transformed by a substi tution of variables into an equation with 
constant coefficients. 

Floquet theory has found several applications in physics (see, for instance, [18]). 
However, as far as we know this theory has still not found its way into economics 
(nor, for example, into biology), a l though we can imagine it may be of interest to 
it, part iculary for t rade cycle and growth theory.1 Indeed, as far as we know, the 
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Standard growth and trade cycle models have not been analysed in the context of 
periodic coefficients. 

Periodic coefficients form for (trade cycle and growth models) an interesting gen­
eralization of constant ones because they allow the inclusion of explicitly periodicity 
aspects. The possible consideration of periodic coefficients can already be found in 
the article [20] of Samuelson, in the sense of periodic government expenditures in 
the context of his multiplier-accelerator model.2 Once there is a model with con­
stant coefficients, it may be desirable to investigate whether a model with periodic 
coefficients is preferable. In this context we speak of 'Floquetization of a model'. 
Floquet theory provides some analytical tools for the analysis of such models. In 
this article we floquetize the Samuelson-Hicks model. In fact, the Floquet theory 
is appropriate to dealing with equations where all coefficients are Floquetian of the 
same type: we call ct 'Floquetian of type (q, z)' if 

ct+q = zct 

for all t. So, Floquetian of type (q, 1) is nothing other than q—periodicity. Floque­
tian coefficients are thus a generalization of periodic ones. Floquetian coefficients 
also allow the inclusion of 'trend' aspects. 

The organisation of this article is as follows. Section 2 contains a discussion of 
the value of Floquet theory for economic dynamics and section 3 contains an illus­
tration of it in the context of the Samuelson-Hicks multiplier-accelerator model.3 

After the formulation of this model we consider it for, among other things, asymp­
totic behaviour of motions, periodic motions and shock-independency.4 Because 
(the scarce) references for Floquet theory found in the mathematical and physi­
cal literature are not so appropriate for economics, we have added an appendix 
that provides a self-contained modern and almost complete exposition of Floquet 
theory for vector and scalar linear recurrence equations in a setting that may be 
appropriate for economics.5 We hope that this appendix also may of interest for 
itself.6 

We hope that this article may serve as a starting point for further research. 

2 Floquet theory and economic dynamics 

We now give some fundamental reasons why periodic coefficients may be useful. 
[1. Status of constant coefficients.] In economic dynamic models, coefficients are 

often taken to be time-independent (i.e. constant). This may be more unrealistic 
the longer the time horizon (i.e. duration). Observations such as preferences may 
be time dependent are an argument for allowing non-constant coefficients.7 After 
constant coefficients, periodic coefficients may be considered as the simplest ones. 
It is not for nothing that econometric articles, like [7] on periodic autoregressive 
time series models, allow for periodic coefficients. However, there seems to be a gap 
between econometric and non-econometric studies dealing with periodic coefficients 
equations.8 One question to be asked is why constant coefficients (even in linear 

2 Bu t this only leads to periodicity of the coefficients in the right-hand side of the equation. 
3 T h e results in subsection 3.3 are mathematically rigourous. 
4 T h e work we present here is a new version of [21]. As well as an amelioration of the overall 

presentation, it also contains new results. 
5 In fact the appendix covers more material than is necessary for sections 2 and 3. In [21] only 

the second order scalar case was considered. 
6 We fully realize tha t the appendix is straightforward from a mathematical point of view. 

However, we do not know a modern coherent presentation of Floquet theory like ours. 
7 Think for example on influences due to winter and summer. However, dealing with aggregate 

quanti t ies, as in macro-economics, may weaken such influences. 
8 In the rest of this article we will not deal with econometric aspects. 



models) remain nevertheless so popular. We collected three types of answers: 'It 
is tradition'; 'I don't know how to handle non-constant coefficients'; 'The real-
world data are so bad such that such a refinement is not appropriate'. However, 
only the last answer makes sense but does not eliminate the necessity for a theory 
that can handle more general coefficients. In case of an infinite time horizon, a 
constant coefficients economic model has a good chance of having even an 'absurd' 
real-world interpretation. Indeed, in this case, such coefficients have in some way 
the appearance of constants of nature, as they appear in physics, which is very 
unrealistic for (contemporary) economics.9 But even in physics there are only a 
few such constants. One of the reasons for dealing with infinite time horizons is 
the desire to discuss stability questions, notions that are primarily developed in the 
context of such time horizons. So, we think that it is especially for (mathematical) 
convenience that infinite time horizons are often dealt with.10 

[2. Problem of too regular motions.] In reality, a wide variety of fluctuating mo­
tions11 can be found that cannot be explained by economic growth and trade cycle 
models, without policy instruments or stochastic exogenous influences12 described 
by low order linear equations with constant coefficients. The problem of too regular 
motions may not only be 'solved' by introducing stochastic exogenous influences, 
but also by using non-linearities in the model. In the latter case, even chaotic dy­
namical behaviour may occur (see [4] for a recent overview). If linear equations are 
allowed to be of arbitrary order (with constant coefficients) or to have non-constant 
like periodic coefficients, then quite 'irregular' motions can occur even with such 
equations.13 In (the appendix) of this article we even combine the arbitrary order 
feature with the periodic feature.14 

[3. Shortcoming of shock-dependent trade cycle models.] In [8, page 41] a trade 
cycle model is called 'shock-dependent' if (for reasonable values of the parameters) 
the generation of cycles relies on an impetus which is not explained in itself by the 
model. We have eliminated some vagueness in this definition of shock-dependency 
by restating it as follows. We call a trade cycle model15 (with infinite time-horizon) 
'shock-dependent' if a necessary condition for the existence of a cycle (for the main 
endogenous variable) is that policy instruments16 that the model allows for are 
applied, or that stochastic exogenous influences are present. In this article we call 
a motion a 'cycle' if it is bounded and does not tend to a constant.17 Moreover we 

9Even, we consider, contrary to the usual opinion, an infinite t ime horizon in an economic 
model as very unrealistic, independent of the fact whether the model deals with constant or with 
non-constant coefficients, and independent of what type of real-world issue it discusses: usual 
economic agents still have finite lives, society changes, and recent evidence on the decay of protons 
suggests t ha t the universe itself may be of finite duration ... . 

l 0Also notice t ha t (asymptotic) stability in an infinite horizon context can never be verified in 
practice. We are not charmed by the (vague) reinterpretation of undetermined duration of an 
infinite t ime horizon. What is needed in fact is some kind of short-time stability theory t ha t 
takes into account the order of magnitude of the appearing coefficients as they may be realistic 
for economics. Such (mathematical) theories exist (see, for instance, [10]). However, we were not 
motivated enough to spend time at this stage in finding out in what sense they are appropriate 
for economics. Therefore we are here pragmatic and only deal with an infinite t ime horizon case 
setting. 

11 Or ' t ime-paths ' if you prefer this terminology. 
1 2 0 f course, the precise meaning of 'stochastic exogenous influences' has to be specified in a 

given concrete model. 
K But, of course, much less irregular than can be obtained with non-linear models. 
14 And even with the vector-valued feature. 

Of course, a notion of shock-dependency also makes sense in other type of models, like in 
growth models. 

16 May be government expenditures. 
It may sound s trange, but we could not find a (mathematically) precise definition for the 

economic meaning of 'cycle', neither in the l i terature or in discussions. The same holds for 'oscil­
latory' , 'cyclical growth' and ' t rend' . Because for the purposes of this article it is not by all means 
necessary to have such definitions, we do not propose to give one by adapt ing the mathematical 



call a trade cycle model 'shock-independent' if it is not shock-dependent. Thus, a 
trade cycle model is shock-independent, if and only if, a cycle exists in the absence 
of policy instruments and stochastic exogenous influences. Traditional trade cycle 
models are especially shock-dependent, often because the lack of policy instruments 
and stochastic exogenous influences causes each motion to damp out or to explode. 
Shock-dependency, like instability, is sometimes considered a shortcoming of the 
model. Shock-dependency in linear models can generally be repaired by introducing 
non-linearities into the model equations.18 We show that shock-dependency may 
also generally be repaired by replacing the constant coefficients by periodic ones. 
This is illustrated in the context of the Samuelson-Hicks model. 

3 Periodic Samuelson-Hicks model 

3.1 Constant coefficients 

First, we consider the version of the Samuelson-Hicks model (see, for instance, 
[1,8, 13]) that deals with the following system of equations: 

(1) C(t) = fY(t-l) + C; 

(2) I(t) = a(Y(t-l)-Y(t-2)) + L 

(3) Y(t)=C(t) + I(t) + Gt. 

More or less realistic assumptions seem t o b e 0 < 7 < 1, a > 1 and non-negativeness 
of the C_, ƒ, Gt Y(t) (national income (in period <)) is the main endogenous variable, 
the others being C(i) (consumption) and I{t) (investment). Gt (government expen­
diture) is a policy instrument. 7 (marginal propensity to consume), a (accelerator), 
C_ (autonomous19 consumption) and I_ (autonomous investment) are parameters.20 

As usual we allow that the C(t), I(t) and Y(t) may be negative. 
The system of equations (1) - (3) is equivalent (after a right specification of the 

values of J in the equations (1) - (3)) to the first order vector equation 

Y(t + \) \ _( 1 + a - a \ (Y(t) \ 

(t > 1) [SH] (J 
and also to the second order scalar equation 

Y {t + 2) - (7 + a)Y(t + 1) + aY(t) = C + l+ G1+2 (t > 0) (SH)21 

The original formulation of this model was by Samuelson [20]. A difference was 
that (following Hanssen) he took ƒ(<) = a(C(t)-C(t~ 1)) instead of (2). The other 

notion of oscillatory as found in, for instance, [16], to economic purposes. (The reader may verify 
for himself by drawing some figures that a cycle automatically shows some 'oscillatory' behaviour.) 

1 8Such non-linearities may not only be caused, for example, by quadratic expressions of the 
endogenous variables but also by imposing restrictions on the range of these variables. 

1 9 'Autonomous ' here should not be confused with the mathematical one of, for instance, 'au­
tonomous recurrence equation' . 

2 0 We use here the following economic (system theoretical) terminology. Endogenous variables 
( s ta te variables) are determined by the model, policy instruments (control variables) have to be 
chosen by man and parameters (parameters) are determined by the na ture of the model. In some 
models some other types of objects also occur. 

2 1 A single scalar equation obtained from a system of scalar equations, like {SH), is sometimes 
called 'reduced form equation' . In economics one in general prefers to work with reduced form 
equations. 



difference was taking C = (I_ =)0. This model is called the 'Samuelson model'.22 

The importance of Samuelson was that he used his multiplier-accelerator model 
to show how cycles can occur in economics. In his fine book [13] Hicks developed 
the Samuelson model further.23 Like various other macro-economic models, both 
models contain, the so-called multiplier-accelerator mechanism (see, for example, 
[1]). Such models are not only based on implicit unrealistic assumptions (like the 
one that there is no influence of other countries) and obscure the accumulation of 
information and physical flows of the underlying processes, but also allow (in prin­
ciple) the endogenous variables to take unrealistic values such as negatives values 
for the national income.24 This means that such models mainly have pedagogical, 
illustrative and historical value. 

3.2 Periodic coefficients 

We now introduce the periodic Samuelson-Hicks model by allowing periodic param­
eters in equations (1) and (2). We replace in (1), 7 by 7J_I and C by Ç, and in 
(2), a by a t_i and ƒ by [^ and assume the parameters 7 (, at,Cf and I^ to be 
q—periodic. The system of equations such obtained is equivalent to the first order 
vector equation 

Y[t + l) \ _( yt+ct - ^ \ ( Y(t) 
C(t+l) J - { 7( 0 A C(t) ( ! ) 

Gt 

Ct \ 
Gt+i (< > 1) [PSH] 
i + i / 

and also to the second order scalar equation 

y(< + 2)-(7«+i+a«+1)y(t + i)+a,+,y(t) = et+a+Zt+2 + G,+2(<>0) (PSH). 

3.3 Results 

Now, we present some results that can be obtained with Floquet theory for the 
periodic Samuelson-Hicks model. These results are presented for the reduced form 
equation (PSH),25 where, -yt, O-t^ÇLt, Li a r e 9"~periodic, -yt € (0, 1), at > 0, and 
C_t, ƒ(, G(t) arbitrary.26 They are discussed also in relation to well-known ones for 
(SH)27 

22 In this case, instead of (SH) we have 

and Y(t + 2) - 7 ( 1 + a)Y(t + 1) + -yaY(t) = G ( + 2 ( * > 0) (5 ) . 

Notice tha t one obtains (S) from (SH) by replacing a by 7 a , / by 0 and C_ by 0, which may be 
useful for t ranslating results among both models. (The same holds for the vector case.) 

2 3Hicks ' original non-linear trade-cycle model allowed growing autonomous investments, which 
makes it, in fact, a growth model. The model also dealt with an income ceiling and an investment 
floor, which introduce non-linearities into the model. (1) - (3) deal with a detrended version of this 
model in the sense tha t the growing autonomous investments have been removed. Furthermore, 
these equations deal with the so-called 'elementary case' that refers to the specific number of lags 
used. For recent mathematically rigourous results on the Hicks' non-linear trade-cycle model see 
[14]. 

2 4See [l] for more on the real-world interpretation of such models. (3) for example means tha t 
product market equilibrium holds in each period (national product equals national income). 

2 5 The reader may wish to try to imitate the coming results of the scalar recurrence equation 
(PSH) for the vector recurrence equation [PSH]. Notice that [PSH] is not the with PSH 
associated vector recurrence equation (in the sense of proposition 29). 

2 6Of course the ranges of at, C_t, I_t and, G(t) are unrealistic. 
27 Proofs are given in footnotes. These proofs may refer to results in the appendix where the 

vector recurrence equations © , © , \), ) , _ • and scalar recurrence equations J, J, J are analysed. 
[PSH] is a special case of ) , (PSH) is a special case of J, [SH] is a special case of _> and (SH) 
is a special case of J. 



A prominent role in the analysis of (PSH) is played by the so-called 'Floquet 
multipliers' of the homogenous equation 

Y(t + 2) - (7 ( + 1 + at+1)Y(t + 1) + at+lY(t) = 0 (t > 0) (PSH)m. 

Such a Floquet multiplier is28 nothing other than an eigenvalue of the matrix 

(4) n ( ° l ) -29 

This matrix is referred to as 'monodromy matrix of (PSHy ''. Being a 2x2—matrix 
with determinant a i • • • a , , the Floquet multipliers are the two roots of the quadratic 
equation 

(«> z 2 - ( T r l ( _ a ° _ m 7 , _ m i a , _ m ) ) * + ̂ -°-°-
For the constant coefficients equation (SHy ' this equation becomes 

22 - (7 + a)z + a - 0. 

So, we see that the Floquet multipliers come down to the (well-known) characteristic 
roots of (SH)i0)30 

As is also well-known31 the position of the two Floquet multipliers of (SH) 
with respect to the complex unit circle 

T = { z 6 C | | z | = 1} 

is completely determined by the value of the accelerator: 

(6) a < 1 <=> both characteristic roots are inside T; 

(7) a ~ 1 <=> both characteristic roots are on T; 

(8) a > 1 <=> both characteristic roots are outside T. 

It is thus impossible for one characteristic root to be outside T, while the other is 
inside it.32 Moreover for (SH) one easily sees that: 

(9) No characteristic root equals 1 or — 1; 

(10) A characteristic root is simple if and only if 7 ^ 1\fa — a; 

(11) for a = 1 the characteristic roots are conjugate complex. 

From (6) - (8) and (10) it follows that 

(12) for (SH) , each characteristic root on T is simple. 

28 See, for the justification, proposition 77 where v | — 1, vt = —7t+l "~ ût + i ' ^ t = o , t + i-
2 9 So , we can speak, for example, about a 'semi-simple Floquet multiplier'. Remember: an 

eigenvalue is called 'simple' if its algebraic multiplicity equals 1, and it is called 'semi-simple' if 
its algebraic multiplicity equals its geometric multiplicity. Each simple eigenvalue is of course also 
semi-simple. 

3 0 In first instance one may think tha t there is an obvious relation between the Floquet-multipliers 
and the coefficients. This is thus not t rue: the relation is through the complicated monodromy 
matr ix. 

3 1 This result again follows from proposition 92. 
3 2 To avoid any confusion, by 'inside (outside, on) T ' we mean \z\ < 1 (\z\ > 1, |z | = 1). 



(5) - (11) are quite specific results for (SHy '. The following fundamental result is 
specific for scalar equations with constant coefficients.33 

(13) A characteristic root of (5//) is semi-simple if and only if it is simple. 

New features arise for (PSHy '. For example, there may be one Floquet multiplier 
inside and one outside T.34 And as a straightforward calculation (for q = 2) shows, 
a non-simple and even a non-semi-simple Floquet-multiplier on T is possible.35 

Also, in principle, because (PSHy , is not (in general) an equation with constant 
coefficients, it may very well have a semi-simple Floquet multiplier that is not 
simple.36 (We did not try to find out whether this indeed may happen for our 
particular equation (PSHy ' 37 ) Floquet multipliers for (PSHy ' are more 
difficult to determine and to locate than those for (SHy . With 

9-1 

D:-a1a2 a , , A , := Tr J J 
m=0 

0 1 

(6)-(8) now become the less transparent:38 

I -f D < |A, | <=> one Floquet multiplier is inside and the other is outside T; 

(14) |A ? | - 1 < D < 1 <$ both Floquet multipliers are inside T; 

max( |A9 | — 1, 1) < D <=> both Floquet multipliers are outside T. 

And for property (6), one has:39 

For small enough accelerators both Floquet multipliers of (PSHy are 
inside T. 

Now, let us consider the asymptotic behaviour of motions40 for national income 
of (PSH). Concerning this we consider their boundedness and their vanishing41 

for t —• oo. (These types of behaviour are directly related to stability notions.42 ) 
Two fundamental results are:43 

I The dimension of the linear space of bounded motions of (PSHy 
equals the sum of the algebraic multiplicities of the Floquet multipli­
ers inside T plus the sum of the geometric multiplicities of the Floquet 
multipliers on T; 

II The dimension of the linear space of motions of (PSHy ' that tend 
to zero equals the sum of the algebraic multiplicities of the Floquet 
multipliers inside T. 

3 3 Proof.- By proposition 80. 
3 4 P roo f - In case q = 2 with en = 1/20, a2 = 40, -yi = 1/4,72 = 4 / 5 , (5) becomes z2 + 27.81z + 

2 = 0 which, by proposition 92, has one root inside and one root outside T. 
3 5For example: In case q = 2 with a i = | + \s/vf, a2 = | f VT7 - ^,11 = 72 = 1/2, there is 

a non-semi-simple root on T. 
3 6See subsubsection B.4.6. 

For q = 2 it does not happen. Indeed: A 2 X 2 —matrix has a semi-simple root tha t is not 

simple if and only if it has the form I 1. For q — 2 the monodromy matrix of (PSHy ' 

has the non-zero number 72 + 02 on the 12-place. 
3 8Proof.- By proposition 92. 

3 9Proof.- From TrFJ(~ 0 I J = Ti • • lq, (14) and continuity. 
4 0 I .e . solutions. 
41 I.e. tending to 0. 
4 2 Also see footnote 79. 
4 3Proof.- By theorem 2, proposition 14 and (18). 



Easy implications of I and II are: 

III Each motion of (PSHy ' is bounded if and only if all Floquet multipliers 
of (PSHy ' lie on or inside T and each Floquet multiplier on T is semi-
simple; 

IV Each non-zero motion of (PSHy ' is unbounded if and only if all Flo­
quet multipliers of (PSHy ' lie outside T; 

V Each motion of (PSHy ' vanishes if and only if all Floquet multipliers 
of (PSH){0) lie inside T. 

For (PSH) one has the following easy 44 results (H is an arbitrary given function, 
for example H — 0): 

VI Each motion of (PSH) is bounded (tends to H) if and only if (PSH) 
has a bounded motion (motion that tends to H) and each motion of 
(PSHy ' is bounded (vanishes); 

VII Suppose (PSH) has a bounded motion B. Then: B is the unique 
bounded motion of (PSH) if and only if 0 is the unique bounded motion 
of (PSH)(0). 

From III - VII , (6)-(8) and (12) one obtains: 

Each motion of (SHy ' is bounded <=> a < 1; 

Each non-zero motion of (SH) is unbounded <=> a > 1; 

Each motion of (SH) is bounded o (SH) has a bounded motion and 
a < 1; 

VIII Suppose (SH) has a bounded motion B. Then: each motion of (SH) 
not equal to B is unbounded <=> a > 1; 

IX Each motion of (SHy vanishes if and only if a < 1; 

X Each motion of (SH) tends to H <=> (5/ /) has a motion that tends to 
H and all Floquet multipliers of (SH) ' lie inside T. 

Whether (PSH) has a bounded or motion that tends to H depends on the au­
tonomous consumption, autonomous investment and government expenditures. It 
is easy to see that a necessary condition for the existence of a bounded motion 
is bounded government expenditures. Not so clear is the following result in this 
context.45 

Consider (PSH) with q—periodic government expenditures. (PSH) has 
a bounded motion if and only if it has q —periodic one. 

Now, let us consider the existence and unicity of constant and periodic motions 
of (PSH) more closely. Constant motions are easy: 

XI Consider (PSH). Bt := (Ct+2+lt+2 + Gt+2)/(l-yt+i) (t > 0). (PSH) 
has a constant motion if and only if Bt is constant. In this case Bt is the 
unique constant motion and government expenditures are q—periodic. 

4 Or see proposition 10 if wished. 
5Proof.- By (a real solution version of) theorem 6. 



So, by choosing appropriate q —periodic government expenditures, each constant 
motion can be obtained. For periodic motions, unicity is easy:46 

XII A sufficient and necessary condition for a given r—periodic motion of 
(PSH) to be unique is that (PSHy ' has 0 as unique r—periodic mo­
tion. 

The first (easy) result we notice for existence is:47 

XIII Necessary for the existence of a r—periodic motion of (PSH) is that 
government expenditures are \cm(r,q) —periodic. 

In particular, a necessary condition for the existence of a q—periodic motion is that 
government expenditures are q—periodic. A more complete result, which is evident 
for (SH), is:48 

XIV (PSH) has a unique q—periodic motion <=> government expenditures are 
q — periodic anc 

One can prove that:' 

q — periodic and (PSHy ' has 0 as unique q—periodic motion. 

XV If, for (PSHy , 0 is not the unique q—periodic motion for national 
income, then there exists q—periodic government expenditures so that 
(PSH) does not have a q—periodic motion. 

In order to find out what now actually happens, we notice the following fundamental 
result:50 

XVI (PSHy ' has a non-zero Floquetian complex51 motion of type (q,z) 

if and only if 2 is a Floquet multiplier of (PSHy '. 

So, in particular: (PSHy ' has 0 as unique q—periodic motion ö 1 is not a Floquet 
multiplier (PSHy '. We conjecture the following.52 

Conjecture 1 If q is the minimal period of (PSHy , 3 then 1 is not a Floquet 
multiplier of (PSH) . 

Now, we can deduce the following.54 

46 Proof.- By (a real solution version of) proposition 10(2) with W the linear space of r — periodic 
functions and B the given r —periodic motion. 

Here '1cm' denotes the least common multiple. If all autonomous consumption and investment 
is zero, it is easy to see tha t even: a necessary condition for the existence of a motion tha t is Flo-

Ic-lr , . ;) 
quetian of type (q, z) is t ha t government expenditures are Floquetian of type (lcm(r, q), z * ) . 

4f iProof.- XIII and XII imply '=^ ' . '<=': by (a real solution version of) proposition 60. 
4 9Proof.- By (a real solution version of) corollary 14. 
5 0Proof.- By proposition 54. 
5 1 We add here the word 'complex' because one may allow a motion to assume complex values. 

Of course, in the real world, motions are real(-valued). However, by taking real or imaginary 
parts of a complex motion a real one is obtained. Theoretical considerations often are simplified 
by allowing complex motions. The theory in the appendix is especially developed for complex 
solutions. This explains the above words 'a real solution version'. 

5 For q — 1 and q = 2 the conjecture is t rue. For 7 = 1 this follows from (9) and for q = 2, 
(5) becomes z2 — ((71 + c<i)(72 + 02) — O) — »2)2 + «102 = 0, which has not 1 as root, because 
otherwise then one would have 1 + a i + 0/2 = 7172 + »172 + 71 »2i which is impossible because 
7, 6 (0,1) and a, > 0. 

5 3 This means tha t there is no positive integer r with r < q so tha t a i and 7t are r—periodic. 
Proof.- Because of (14), both Floquet multipliers are inside T. Proposition 62 implies that both 

Floquet multipliers with respect to the period nq are also inside T. XVI implies tha t {PSHy ' 
has 0 as unique nq —periodic motion. Because of XIV , (PSH) has a unique nq — periodic motion. 
V and VI imply that each motion of (PSH) tends to this periodic motion. 
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Consider (PSH) where |AÇ| — 1 < D < 1 and government expenditures 
that are periodic with a period that is a multiple of q, say nq. Then, 
there exists a unique nq—periodic motion of (PSH) so that each motion 
of (PSH) tends towards it.55 

For (SH) this becomes: 

Consider (SH) with a < 1 and n—periodic government expenditures. 
Then, there exists a unique n—periodic motion of (PSH) so that each 
motion of (SH) tends towards it.56 

Now let us consider shock-dependency. Remember (see section 2) that (PSH) 
is 'shock-independent' if and only if in case of zero government expenditures (and 
no stochastic exogenous influences), there exists a cyclical57 motion for national 
income. One has:58 

XVII (SH) is shock-independent <* a = 1; 

XVIII If conjecture 1 holds and -'?2*^ (< > 0) is not constant,59 (PSH) 
is shock-independent. 

Finally let us look to explicit expressions for motions. First we consider the 
homogenous case. Consider (SHy '. Suppose that there are k (different) charac­
teristic roots. Let A; (1 < i < k) be these characteristic roots. As is well-known,60 

in case there are two characteristic roots, the general complex motion of (SH) is 
(with Ci and C% complex constants) given by 

C\X1 + C2A2 

and in case there is only one characteristic root the general complex motion of 
(SH){0) is given by 

CiAj + C2<Aj. 

It is possible to adapt these results to (PSHy0'. However this is complicated and 
will therefore not be done here.61 

5 5 I . e . the difference of the motions tends to 0. 
5 6Samuelson mentioned such a result in [20, page 77] for the equation (S): 'In case the product of 

the marginal propensity to consume and the accelerator is less than 1, perfect periodic government 
expenditure will result eventually in perfect periodic fluctuations in national income.' 

5 7 I . e . a bounded and not towards a constant tending. 
5 8Proof of XVII . - Consider (SH) with zero government expenditures. By XI , (SH) has 

a unique constant real motion B. B is bounded. If a > 1, then by VIII , each non-constant 
motion of (SH) is unbounded and if a < 1, then, by IX and X , each motion of (SH) t ends to 
a constant . So, in both cases, (SH) does not have a cyclical motion. If a = 1, then by (7) and 
(12) both characteristic roots lie on T and are simple. Let Aj, A2 be these roots. By (11), A2 = Ai 
(where the overline denotes complex conjugation). X\ and Ai are non-zero Floquetian motions 
of (SHy ' of type ( l ,A i ) . They are bounded, g := Aj + Ai is a real bounded motion of (SH). 
Because of (9), Ai ^ 1. This implies t ha t g does not tend to a constant. Thus g is a cyclical 

Proof of XVIII . - Consider (PSH) with zero government expenditures. If conjecture 1 holds, 
then by XIV , (PSH) has a unique q — periodic motion. Because of XI , this motion is not 
constant and thus is a cycle. 

5 9Notice tha t this condition on ~',~t"2—x-^- is a very weak one. 
1—ri + i ' 

6 0 This result again can be found in theorem 7. 
6 1 If wished, see subsubsection B.4.6 in the appendix for the case where each Floquet multiplier 

is semi-simple. 
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A Linear recurrence equations 

A.l Settings 

We present Floquet theory for recurrence equations. Here is an informal discus­
sion of the possible settings for this case.62 We always assume we are dealing 
with a single recurrence equation, i.e. not with a systems of equations,63 and 
with ordinary equations, i.e. not with partial equations.64 The most important 
choices to be made then are between: scalar/vector variable, linear/non-linear equa­
tion, semi-infinite/infinite/finite domain, first/second/arbitrary order equation and 
elliptic/non-elliptic equations. Here are some comments on these choices. In the 
scalar variable case, the dependent variable takes values in C and in the vector vari­
able case it takes values in C (or even in a module). By 'semi-infinite' we mean 
that the domain of the dependent variable is of the form { I | I > a] or {x\x < a } . 6 5 

For the notion of ellipticity see subsection A.2.1. Especially the treatment of non-
elliptic equations may give some technical difficulties. Our proper references for 
recurrence equations are [6, 16, 22] 

The theory of arbitrary order (linear) vector recurrence equations is contained in 
the theory of first order (linear) vector recurrence equations. No wonder that various 
results for first order linear vector recurrence equations and arbitrary order linear 
scalar equations are similar; Having once the results for the vector case, those for 
the scalar case may be obtained with less effort.66 First order linear equations have 
the advantage that they are more easy to handle and that they provide a theoretical 
more transparent setting for a dynamical system approach and as a consequence 
also for stability notions.67 However, sometimes the equation is a scalar one, like 
(S), and it may be desirable to have direct results in terms of (S) rather than the 
with (S) associated vector equation. 

It is possible to present both linear scalar as the linear vector case in what we 
call 'operator language' and 'equation language'. In operator language the main 
object is an operator and in equation language it is an equation; An operator can 
be associated with an equation and vice versa. In operator language, it is usually 
not only the main operators that are introduced, but also others. Operator language 
has the advantage that the linear algebraic structure68 becomes more transparent.69 

Translations between these languages is straightforward. 
Finally, we want to look at other issues which may play a role in fixing the 

setting. I. Instead of using complex-valued coefficients, it is possible to use real-
valued coefficients in which special attention can be given to real-valued solutions.70 

6 2 Ins tead of 'recurrence equation' one also uses the (less correct) term 'difference equation' which 
is in fact an equation like g(x + 2) + cos( — 7r)g(x) + g{x — 1) = 0 ( r € K). Recurrence equations 
are simpler mathematical objects than differential equations, in the sense tha t in dealing with 
recurrence equations, some technical details tha t have to be handled for differential equations do 
not appear. Various of our considerations hold also (in some way) for differential equations. 

To avoid any confusion: we refer to, for example, ( l )-(3) as a system of (scalar) equations and 
to [SH] as a single (vector) equation. Written out in coordinates, an equation in an TV — dimensional 
vector-variable corresponds to a system of N equations in N scalar variables and a system of scalar 
equations may, by introduction of vectors, written as a single vector equation. 

6 4Par t ia l equations are equations I ikep(m,n4-1) —4 cos (m)g{m, n) + g(m, n — 1) = 0 (m, n € Z). 
6 5Of course, to study this case it is possible to use only the form {x|x > 0} . 
6 6 Proposition 29 plays an important role here. 

For our purposes a dynamical system approach is too abstract . 
For abstract (linear) algebra we recommend [9]. 

6 9 Operator language becomes almost obligatory if interest lies with functional analytic questions 
where eigenvalues of (certain restrictions of) the operator are dealt with. (We do not have such an 
interest in this article.) This can also be done in equation language by introducing an eigenvalue 
parameter. This means tha t on the right-hand side of the equation a term cg{t) explicitly appears. 
(t is the eigenvalue parameter.) This term can also be taken into account on the left-hand side by 
including it in a coefficient. 

For complex coefficients, real-valued solutions have less chance to exist. 
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For real coefficients, the presentation of the theory can benefit from also allowing 
complex-valued solutions. II. Certain types of second order scalar equations can be 
rewrit ten to a so-called 'self-adjoint form' (see [16, page 251]). III. It is possible to 
consider equations with stochastic coefficients (see for example [18]). 

It is clear t ha t a (possible) combination of all the above mentioned choices leads 
to many different settings. In general, a presentation for a specific set t ing needs at 
some points some minor and at a t other points some major modifications for it to 
become a presentation for another setting. As far as we know, the whole picture of 
set t ings has not ever been discussed systematically in the l i terature. It would be 
interesting to have a (clear but not forced) presentation tha t enables all of these 
choices to be take into account (almost) . 

We now look at what choices may be especially appropriate for economic ( trade 
cycle and growth) theory. In this context, it may be interesting to compare these 
with similar sett ings for (solid-state) physics. In physics, because of the Newton 
and Schródinger equations, it is especially second order equations t ha t are used. In 
economics, the domain is normally semi-infinite (to the right) which is related to the 
economists interests in the future and to infinite horizons. In physics, the infinity 
of the domain also occurs, because many models deal with position and self-adjoint 
equations are impor tan t because of quan tum mechanics. In economics, only real 
coefficients are impor tan t . In contrast to physics, there are several applications in 
economics where, in first instance only real-valued solutions are dealt wi th. The 
non-elliptic case does not seem to play an impor tan t role in economics. 

We present Floquet theory for settings t ha t deal at least with the appropria te 
cases for economics. The formulation of results is in equation or operator language, 
while proofs usually use operator language.7 1 T he organization of the rest of this 
appendix is as follows. After a presentation for our purposes of useful results for 
linear recurrence equations with arbitrary coefficients (see [16] for addit ional re­
sults and for examples), we consider Floquet theory for linear recurrence equations 
with periodic coefficients. In each of these two settings, the first order vector and 
a rbi t rary order scalar case are dealt with. 

A.2 Arbitrary order vector case 

A . 2 . 1 T h e o b j e c t 

A (TV — dimensional elliptic M- th order linear) vector recurrence equation is an equa­
tion of the form 

M 

£ B\'](G(t + s)) = Ut (ten) ©, 
=o 

where M > 1, each B(
t'

] 6 E n d ( C N ) , even ß t
( 0 ) , ß (

( M ) 6 G L ( C * ) , 7 2 each Ut € C N 

and G : N —> C . In case N — 1, one speaks of a 'scalar recurrence equat ion ' . 
'El l ipt ic ' refers to the invertibility of B\ ' and B] '. The Bf' and Ut are called 
'coefficients'. In case no coefficient depends on t one speaks of an ' au tonomous 
equat ion ' . A mapping G : N —• CN t ha t satisfies © is called a 'solution of © ' . In case 
we want to make explicit the dependence on U of © we also use the nota t ion ©">. 

In part icular, © ' ° ' , is obtained by taking U = 0. ©(° ' , is called the ' (associated) 
homogeneous equat ion ' . It is possible and often even usual to take for Bt an 
element of Af/v(C), i e. a. N x N ma t r ix with complex coefficients and to interpret 
it in a na tura l way as a t ransformation of C ; In such a context C will refer to 

We hope tha t our modern presentation of periodic coefficients theory may for various readers 
give a new view on and bet ter understanding of constant coefficients theory. 

N denotes the set of non-negative integers, End(C JV) denotes the collection of all linear t rans­
formations of C and GL(C ) denotes the group of bijective linear transformations of C . 
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column vectors. However, in the following we prefer a coordinate free presentation 
(i.e. we try to avoid matrices). 

Given ©'°' (or © if you want), one defines the linear transformation H of (C") 
by 

M 

(nG)(t):=^2B(
t
!\G(t + s)). 

j = 0 

We call % 'the (with ©'°') associated (vector) recurrence operator'.73 

r 6 N the linear tr. 

(Trh){t):=h(t + r 

Given m g N, we define for r 6 N the linear transformation Tr of (Cm) by 

One has for all r, t > 0 
TrTt = Tr+t-

And we define for a given sequence B := (Bt)t>0 of End(Cm) the linear transfor­

mation MB of (C m ) N by74 

(MBG){t):=Bt(G{t)). 

Given ©'°', one has with these notations75 

M 

We denote the set of solutions of © (©(c) ) by 

SOL (SOL(0)). 

It is clear that 

SOL(0) = ker (H) and SOL = {G € (CN) \nG = U}. 

N 
So, SOL^ ' forms76 a linear subspace of (C ) and SOL is affine. Thus for each 
G 6 SOL one has 
(15) SOL = G + SOL(0). 

In this context one calls G a 'particular solution of©'. Here is the so-called 'super­
position principle'. 

Proposition 1 If G\ is a solution of©(u> and G-i is a solution of ©(v\ then for 
all c,d£C, cGi + dG2 is a solution o/©(cC/+'(v'>. o 

Proof— -HGi = U,nG2 = V, so H{cGi + dG2) = CHGi + d%G2 = cU + dV. D 

7 3Also forms for © like £ ^ i L B\'](G(t + s)) = Ut, where L < M would be possible. However, 

our form has the advantage tha t %i is a linear transformation of (C ) 
One may call MB a 'multiplication operator ' . 

7 5 And m := N. 
7 6 Under the usual addition and scalar multiplication. 
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A.2.2 Initial value problems and dimension of SOL'0 ' 

Proposition 2 is quite fundamental. It guarantees the existence and uniqueness of 
several (what is called) 'initial value problems for ©' and in particular proves that 
SOL ^ 0. The ellipticity of © is responsible for this result. 

Proposition 2 Consider©. Given t0 > 0 and Vb, . . ., VM-\ 6 C^ , © has a unique 
solution G with G(ta) - V0,..., G(t0 + M - 1) = VM-\- <> 

Proof.— Define G(t0 + s) := V, (0 < s < M — 1). Now successively for s = 
M,M + 1 , . . . , uniquely define G{t0 + s) from G{t0 + s - M),..., G(t0 + s - 1) so 
that © is satisfied for t — to + s — M. And successively for s = 1,2, . . ., t0, uniquely 
define G(t0 — s) from G(tQ — s + 1 ) , . . . , G(t0 — s + M) so that © is satisfied for 
t =to — s. So, G is as desired. D 

Propos i t ions Consider © (0 ) . Given t0 > 0 and M 0 , . . . , M M - i € End(CN) . 
T/iere exzsfs a unique F : H -4 End(CW) witfi F(<o) = M0 , . . ., F(t0 + M - 1) = 
A / M - I anrfX]^ :Oß (

( ' )F(i + S) = 0 ( < > 0 ) . o 

Proof.— In the same way as proposition 2. D 

An F : N ->• End(CN) with E ^ o ^ ' ^ C ' + «) = 0 (< > 0) is called 'operator 
solution' of ©<°>. If F is such, then for each Y G CN, G{t) := F(t)Y is a solution 
of©<°>. 

Corollary 1 Two solutions (or operator solutions) of ©( ' that are equal in M 
consecutive points, are equal. In particular: Any solution (or operator solution) of 
©(°> that equals 0 in M consecutive points, is equal to 0. o 

A.2.3 Various fundamental mappings 

Because of proposition 2 there exists for each to > 0 and V := (Vo, . . ., V\i-i) £ 
(CN)M a unique solution G of © with G{t0 + s) = V, (0 < s < M - 1). We denote 
this solution by 

Gt0y • 

For the homogenous equation ©' ' we denote Gt0,v also by Gt y- One thus has 
{Gt0,v{to),--,Gt0,v(to + M-l)) = V. 

Proposition 4 If G is a solution of©, then G = Gt0;(G(t0),...,G(t„+M-i)) (*o > 0). 

Proof.— G and ÇtD\(G(t0),...,G(I0+M-I)) a r e solutions of © that equal G(t0 + s) in 
t = t0 + s (0 < s < M — 1). Because of proposition 2 they are equal. D 

Proposition 5 For all V, W G (C N ) M , t0 > 0 and c G C one has 

1- Gto,v — Gto.W = ^t V-W' s o the difference of any two solutions of© is a 
solution of ©' ' . 

2 C(0) -G(0) +G{0) G{0) -cG ( 0 ) O 

Proof.— 1. The superposition principle (with Ul = U2 — U, c\ — 1 and C2 = —1) 
gives Gt„,v - Gto.w G SOL(0). Because at / = t0 + s (0 < s < M - 1) this solution 
equals V, - W3, proposition 2 implies Gt0y - Gt0,w = GtJv_w- 2. As 1. a 



15 

Consider ©. Define for an integer t0 > 0, 

Uto : {C
N)M ->SOL 

by 
Uta(V):=gtaiv. 

Uo will also be denoted by U and for ©*°' also the notations U\ and U^ will be 

used. So, U^\U{0) : (CN)M -> SOL(0>. For t,i' > 0, define the mapping 

* M . : (CN)M -+ (CN)M 

by 
(16) *t,f{V) •= (ft';v(0. • • ;6f;v(t +M- 1)). 

For ©'°' also the notation <&\ t, will be used. One thus has 

*t,t'(V) = ((UfV)(t),..., {UfV)(i + M- 1)). 

We call each of the mappings $ t t< a 'semi-flow'. 

Proposition 6 For each solution G of©, one has $tt,(G(t'),.. .,G(t' + M-l)) = 
(G(t),...,G(t + M - 1)) (/,<' > 0 ) . o 

Proof.— By proposition 4. Q 

Proposition 7 Consider ©. One /ias: 

/. $ t | t = »'d(< > 0); 

2. * M , $ , . | ( „ = * M » (<,«'> 0); 

5. <!>(,(' !s invertible and one has ($t,t')~
l — ®t',t (M ' > 0). o 

Proof— 1. Because (0 ( ;v(O, • • • >&;r(< + Af - 1)) = K. 
2. One has 

*t,t»(V) = (ft» ;v(0. • • • - ft«;V (* + M - 1)) 

and one easily calculates that 

{Gf;(gi„.v(f),...,Ç,ll.v(t'+M-l))(t), (Gf;(Ç,,l.v(f),...,ç,„.v(t'+M-l))(t -T M - 1)). 

To see that these two expressions are equal we notice that 
Gt",v =Gf(g,„ v(t') o,nv{t'+M-\)) (indeed, at t'+s both solutions equal Gt",v{t' + 

' ) ) • 

3. Because of 1 and 2 one has $t,t'$t',t = id and <Pt',t$t,t' = id. D 

Proposition 8 1. Uto - W,„(0) = U^] ,77 

2. * , . ( - - * M . ( o ) = $!°,),. o. 

Proof.— 1. If one applies the left-hand side to V G (C ) one obtains Gt0,v — 
Gto;{Q,...,o)- By proposition 5 this equals Q\ v, i.e. to the right-hand side applied to 
V.Y'Xs 1. D 

7To avoid any confusion: (Wt0 — Wto(0))V = Wt0(V) — £/t0. 
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,M Proposition 9 I. (a) Each ll\ : (CN) —> SOL*0' is a linear isomorphism, 

its inverse being (tft
(
0
0)f ' (G) = (G(t0), • ••, G(t0 + M - 1)). 

(b) Each Ut0 is a bijective affine mapping. 

2. (a) Each 4>J ,, is a linear automorphism, 

(bj Each $t,t' is a bijective affine mapping. 

(c) Each $t,t' is a homeomorphism. o 

Proof.-— la. W(o
0) is linear: by proposition 5(2), Ut°\civi +c2V2) = £t°Clv1+c..,v2 = 

U\°] is injective: if U^V = 0, then Ç(°a]v - 0, in particular V = (Gl°Jv(to), • • •, 

£t!;V('o + M - 1)) = 0. W(
(
o
0) is surjective: If G e SOL(0), then, by proposition 4, 

G = C U o ) GC+M-i)) = <0)(G(<o), • • • ,G(<o + M - 1)). 

Furthermore, for G 6 SOL(0), by proposition 4, ((W(
(
o
0)(i/(

(
o
0)) 1)G)(0 = 

(Wt
(
0
0)(G(<o),...,G(<o + M - 1)))(0 = ^ . ^ G ^ + M . ! ) ) ^ ) = G(t). And for 

lb. Because of la and proposition 8. 
2a. Linearity follows from proposition 5(2). Bijectivity holds because of propo­

sition 7(3). 
2b. Because of 2a and proposition 8. 

2c. By 2b and the fact that (CN) has finite dimension. D 

So, SOL(0) is isomorphic to {CN)M. Now from (15): 

Corollary 2 SOL and SOL(0) have (affine) dimension M N 7S o 

Denote by 
ei, • • -,eN 

the canonical base of C , i.e. all N coefficients of Cj are zero with the exception of 
the j —th one that equals 1. And, for 0 < i < M — 1, 1 < j < N, denoting by 

the element of (C ) that has ej at place i and 0 at the other places. One easily 
verifies that e<.'> (0 < i < M - 1, 1 < j < N) is a base of {CN)M. The distinguished 
solutions 

o f© ' 0 ' are defined by 

G{P (0< i< M - 1, 1 < j < N) 

r ( 0 . _ c (0 ) 

of = U^HeV), so by proposition 9(la) one has that of (0 < i < M - 1, 1 < 

j<N) is a base of SOL'0 ' . 

The determination of these dimensions in case of © where one does not suppose ellipticity is 
not so easy. However, one can show that corollary 2 remains valid in case all Bt É GL(C ). 
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A.2.4 First order versus arbitrary order vector recurrence equations 

Here we shall see that first order vector recurrence equations are in fact quite general 
by showing that given ©, one can obtain a with © equivalent first order vector 
recurrence equation. Indeed, if G : N —»• C is a solution of©, define 

Then 

Gi[t) :=G(t + i - 1) (1 <i < M) 

Gi(t + l) = Gi+i(t){l<i<M-l), 

B(
t
M)GM{t + !) = - £ ß (

( s )G,+iW +W(
( (0) 

With 

G(t) : = = C 

this can be written as 

d\a.g{id,id,. . . ,id,Blm>)G(t + 1) = (AfK 

id 
0 

0 

\-B\ 
(0) 

0 

-B\ (i) 

0 
id 

0 

\ 

-B\ (M-l) 

G(t) + 

( ° \ 
0 

\Vt ) 

With the aid of (block) companion matrices (see subsection C.l) and 

( ° X 

Vt •= 
0 

\UtJ 

this becomes 

G(t + 1) = diag(i<i, id,..., id, ( ß t
( M ) )" 1 ) (Comp(ß t

( M" 1 ) , . . . , ß(
(0))(G(<)) + U t ) . 

This is a (NM-dimensional first order linear) vector recurrence equation. The great 
advantage of first order vector recurrence equations is that they are more easily to 
solve. Indeed, for example in case U — 0 one has, if we abbreviate the above equation 
as G(t+ 1) = MG(I) , G(t) = {Mt-i •••JVo)G(O). However, notice that the ß (

( , ) 

are elements of End(C ), which complicates things. One has to do with numbers 
in case N = 1, a case that will be made more operational in subsubsection A.4.2 in 
case N = 1. 

A.2.5 Typical solutions 

Proposition 10 Consider ©. Let W = J + Wo be a non-empty affine subset of 

(c")N 

/. The following statements are equivalent, 

(a) Each solution of© belongs to W. 



(b) Each solution of ©'°' belongs to Wo and © has a solution that belongs 
to W. 

2. Suppose © has a solution B that belongs to W. The following statements are 
equivalent. 

(a) B is the unique solution of© that belongs to W. 

(b) 0 is the unique solution of ©'°' that belongs to Wo- o 

Proof— 1. 'a => b': SOL ^ 0. Take G G SOL. Then G G SOL n W. If 
H e SOL'0 ' , then by proposition 5(1), G- H € SOL. Therefore G - H G W. Thus 
H = G - (G - H) G W - W = Wo-

'b <= a': Take G G SOL n W. Let H G SOL. Then G - H G SOL(0), so 
G-H e Wo. Thus i / = G - (G - H) G W. 

2. 'a => b': Take G G SOL<0) with G ^ 0. Then 5 + G G SOL and B + G ^ B, 
so B + G # W. If one would have G G Wo, then ß + G G W, a contradiction. Thus 
G g Wo. 

'b <= a': Let G G SOL with G±B. One has G - fl G SOL(0) and G - B ^ 0. 
Therefore G — B £ Wo- If one would have G G W, then on would have G — B G Wo, 
a contradiction. Thus G ^ W. O 

Proposition 11 Consider ©. Let W fee an H — invariant finite dimensional linear 
N 

subspace of (C ) . Then, the following statements are equivalent. 

1. For each J G W, ©' ' has precisely one solution that belongs to W. 

2. For each J G W, © ' J ' has a solution that belongs to W. 

5. © nas precisely one solution that belongs to W. 

4- 0 is the unique solution of ©^ that belongs to W. o 

Proof.— All four statements are equivalent with bijectivity of H \ W : W —> W. 

a 
Important examples of W's are (taking m = N): 

l°° := {G : N -4 Cm\G is bounded}; 

c0 := {G : N - > C m | lim G(t) = 0}; 
t-++oo 

FLOQ, z := {G : N -+ Cm | G(t + q) = zG(t) (t > 0)} (q > 1, z G C*); 

PER, : = F L O Q g l . 

In particular FLOQ t j is the linear space of the constant functions N —> Cm . Later, 
in case of equations with periodic coefficients we will see how Floquet multipliers 
give information on the belonging to l°° and c0 of solutions. Notice that for FLOQ, z 

one has 

FLOQ,iZ = {GG(C N ) |T9G = ;G} . 

With || Y || we denote the Euclidean norm of V G CN. 

Proposition 12 In case there exists C > 0 so that \\ B(
t'

]Y \\ < C\\ Y || (Y G CN) 
for all s and t, one has: 

1. U £ /°° =>SOLO /°° = 0; 

2. U £c0 => SOLO c0 = 0 . o 
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Proof.— 1. Suppose G € SOL n /°°. Then also / - • (HG)[t) = £ ? t a #,(0(G(< + 
s)) G /°°. Because U — UG, U € '°°, a contradiction. 2. In the same way. G 

The question about the (algebraic) dimension of SOL' ' n /°° and of SOL' ' n Co 
may be in general a difficult one, but in case of • ' " ' has a simple answer as we 
show in theorem 2. Indeed, for linear equations with periodic coefficients a lot can 
be said about the asymptotic behaviour of solutions.79 

©'°' has 0 as constant solution. There is another constant solution if and only if 
5ZJ=O "t ' s singular. In general, © does not have a constant solution. A necessary 
and sufficient condition for this is that there exists Y G I m £ J = 0 B\' so that Ut = 
( E J = O ^ I r i ^ ' s 'hen is a constant solution. In particular, in case Yl>=o®i' = 

0 (t > 0), each constant Y G CN is a solution of © (0). 

A.2.6 Real solutions 

In this subsubsection we always consider © for real coefficients; i.e. one even has 
that each Bl,s) G End(MN) for each Y € RN and each Ut G MN. In this case the 
interest may be in real(-valued) solutions of ©, i.e. in solutions G : N —» R . The 
coming definitions and results may be useful for this.' 

N 
If B is an affine subset of (C ) , define B' as the set of real-valued elements of 

B. B' is a M—linear subspace of B (in particular SOL' and SOL' ' are defined).81 

Notice that in proposition 2, G S SOL' if Vo, • • •, Vjif-i 6 R • Again for each 
G G SOL(0>': 

SOL' = G + SOL(0) '. 

Fix a positive integer m > 1. One defines for each function G : N —• Cm the 
functions 

»G, QG : N -> Km 

/ li 

(Here, for (x,, . . .,xm) G Cm , (xu. . .,xm) := (îT, • • -,x^)-) Then 

G = 1tG + JQG. 

What is useful for operator language presentations, if one wants to deal with real 

solutions, is the mapping C : ( C m ) N -» (C m ) N defined by 

(CG)(t):=G(i). 

Notice that C2 = id and that C is semi-linear, i.e. that C(G + H) = C(G) + 
C(//), C(cG) = cC(G). In terms of C one has: 

B' = {GeB |CG = G}; 

or) m = 2^£, w = £i^. 
This behaviour is (because we are dealing with linear equations) directly related to stability 

notions (in the sense of Lyapunov). This will not be discussed further in this article. The interested 
reader may find this a shortcoming of this article. In fact, the concept of stability is quite subtle 
and there are many different refinements of this notion. In case of differential equations there are 
a lot of (good) textbooks on stability, but, as far as we know, this is not the case for recurrence 
equations. (The stability theory for recurrence equations is not completely similar to tha t for 
differential equations.) 

8 0As mentioned in subsection A.l one can develop the theory more generally for example for 
K (where K is a commutative field). Subsubsection A.2.6 repairs in some sense this omission. 

81 For example, denoting by 'Vect' the linear span, if B = Vect{elt) in C ^ , then B' = {0}. 
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Proposition 13 Fix G : N -» C m . One has: For n o c g T one has CG / cG <=> 
3Î<7 and Qg are linearly independent O G and CG are linear independent, o 

Proof.-- KG, $>G are linearly independent if and only if G and CG are linearly 
independent. This implies '<t='. '=>': Then G ^ 0. Suppose G,CG would be 
linearly dependent. Then there is c G C so that CG = cG, and we find G — 
C(CG) = c(CG) = \c\2G. Thus, \c\ = 1, a contradiction, o 

Proposition 14 dim(5) = dim(5') for each C—invariant linear subspace B of 

(c")N • 

Proof.— Let (hi)ieI be a base of B'. We shall prove that it is also a base of B. 
Completeness: Take H G B. Now notice that one has H = 9tH + &H, %tH G 
B', £>/ƒ G B'. Linear independence: Suppose E J E K 'VÏA; = 0 with the A; £ C and 
A' a finite subset of I. Then 0 = C (E ,^K \jhj) = E ie /f ^jC(hj) — YljçK ^jnj — 
E > e* (SA; - tfA,-)^ = Ej6*(*A,)/y - «Ei6*(9A>)V So

 E ; 6 K(^ )^ = 
EjeA-lS-V,)^ = 0. This implies SRAj = 3Aj = 0 (j G A'), thus Xj = 0 (j € A'). D 

Now, consider the with ©'°' associated linear recurrence operator "H. C and % 
commute, that is one has: 

Proposition 15 For ©'°' with real coefficients one has [C,7i] = 0. o 

Proof- (C-HG)(t) = (7fG)(*) = Ef=0ß<(s)(G(< + 5)) = Z^B^m + s)) = 

Proposition 15 implies: 

(18) G G S O L ( 0 ) = > C G G S O L ( 0 ) , G e SOL => CG 6 SOL. 

Also it implies C(ker(7{ — e id)) C ker ("H — 7 id) and because C2 = id even 
C(ker(n - e id)) = ker (ft - ? id). 

Proposition 16 For ©'°' with real coefficients one has: 

1. For each solution G of © (0 ), 3RG and ÙG are real solutions of © ( 0 ) . 

,2. For eac/i solution G of©, 3ÎG is a real solution of© and OG is a real solution 

0/©<°>. o 

Proof.— 1. this holds because SOL*0' is a linear space, (17) and (18). 2. Let 
G G SOL. Then CG £ SOL and because SOL is affine one has 9?G = \G + \CG G 
| S O L + (1 - | )SOL = SOL. Moreover, 3G G SOL(0) because 7{(3G) = ft2^ = 
i("HG - 0HC)G) = £ ( ( / - (CW)G) = £(£/ - O/) = £(£/ - U) = O82 D 

A.2.7 Adjoint equation 

Put on Cm the inner-product < | > given by 

m 

(19) <Y\W> := YsYiW~i-
j = i 

8 2 By taking real and imaginary parts of © ' ' one obtains an equation language proof of this 
proposition. 
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The adjoint, equation ©^d of ©'°' is by definition the equation ' ad 

M 

(20) £ (C~ 5 ) )V (< + s)) = o(«>o) ©id 

to < I > (with m := TV). We denote the set of solutions of ©^d by 

.1=0 

where G : N -> C^ and A* is the (Hilbert-)adjoint of A G End(CN) with respect 
Jad 

SOLad 
(o) 

The adjoint equation again is a vector equation of the form ©. ©^d is equivalent83 

with the equation 

M 

(21) £ ( * « - . ) (G(t-s))=0 (t>M), 
j = 0 

where G : N - > C . Notice that this equation is not (completely) of the form ©'°'. 

A.2.8 Substitution of variables 

Proposition 17 Fix Lt G GL(CN) (t > 0). Then for each G : N -f CN one /ias; 
G «5 a solution of ©^ if and only if J : N -+ CN de/ined 6y .ƒ(<) := Lt(G{t)) is 
a solution of the vector recurrence equation J(t + 1) = £),_0(JB|i ^t~+j)^(' + s) — 
0 (< > 0 ) . o 

Proof.— Evident. D 

One refers to J(t) = Lt(G(t)) as a 'linear substitution of variables'. Notice that the 
vector recurrence equation J(t + 1) = Yls=o(&l: ^t+a)^(' + s) = 0 (< > 0) is again 
of type © (0 ) . 

A.3 First order vector case 

A.3.1 The object 

We are going to study vector recurrence equations of the form 

G(t + l) = At(G(t)) + U,(t>0) 0, 

where each At G GL(CJV), each Ut G CN and G : N ->• CN . D is a special case of 
©.S5 For the associated recurrence operator of D'° ' one has 

(WG)(0 = G(< + 1 ) - A ( G ( 0 ) . 

Proposition 2 reduces to: Given to > 0 and Vo G C , D has a unique solution 
G with G(t0) = Vo- And corollary 2 reduces to: SOL*0' and SOL have (affine) 
dimension N. 

In the sense tha t if G is a solution of the one if it is a solution of the other. 

In case the Bos> are given by matrices, Bt' ' equals the transposedof the imaginary conjugated 

o ' matrix of t}\'' and the adjoint equation is even equivalent with X ] . _ 0 ^ ' ( ' — *)"!-5
 = ° ( ' > M) 

where /\' : N —f C (with row vectors as elements of C )• 
8 5 In terms of © , ß j 1 ' = id and B{0) = -A,. 
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A.3.2 Semi-flows 

Consider D- For each t,t' > 0 the mapping 

*,,,. : CN - • CN 

is defined by (16), i.e. by 

*.,e'(l'):=e.'ir(()-
Now one has that the mapping t >-> $, [<(Y) equals Gt'.Y: i.e. is a solution of ©. 
Notice that if G is a solution of D, then by proposition 6 

*M.(G(O) = G(0(<,*'>0). 

In particular 

*,1H^ ;y(O)=^W(M'>0). 

Given D, it us useful to define the affine mappings Tt : C —• C by 

Tt(Y):=At(Y) + Ut. 

One has ^ ( y ) = ATl(Y) - A;l(U,). 

Proposition 18 Consider D- One has: 

i. «,+1,1 = ^ , ( 0 < * ' < * ) ; 

Tt-x-Tv ( 0 < t ' < t ) 
2- *'•«'- | ^ • • • ^ 1 ( 0 < / < n ° 

Proof.— 1. * t + i , t ( y ) = G,;y{t + 1) = ^ ( e ( ; y ( 0 ) = ^ t (y ) - 2. Because of 1 and 
proposition 7(2,3). D 

Corollary 3 1. For each solution G of D one has G(t) = Tt-i • • J-tiG(t') (0 < 
t' <t). 

2. For each solution G of D(0) one has G(i) = At-i • • At'G(t') (0 < t' < t). o 

Proposition 19 IfG,H are different solutions of D, then G(t) ^ H{t) (t > 0). o 

Proof.— By corollary 1. G 

Finally, consider the adjoint equation of D^0': 

G(t)-At+l(G(t + l)) = 0 ( t > 0 ) . D ^ 

P ropos i t ion 20 / /G « a soiution of D^\ then G(<) = ( f c ^ ( + 1)*(G(t')) (M ' > 
0). o 

Proof . - If t < t>: G(t) = Af+l(G(t + 1)) = -4?+1M?+2(G(t + 2))) = ••• = 

M*+1 • • A*t,){G(t')) = (A- • • • At+l)*(G(t')) = (* l
(?i l i ( +1)*(G(0)-

And if t > «' then t' < t and by the above G(t') = (*1
(+ii,, + i)*(G(t)). So 

G(t) = (*i°+
),,«'+i*)",(G(«')) = ( «Cr+r 'n^' ) ) = (^|M+i)*(G(t')). G 
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A.3.3 Operator solutions and semi-flows 

Consider a homogenous vector recurrence equation D'°'. We called a mapping 
F : N -> End(Cw) so that 

F(t + l)=AtF(t)(t>0), 

an 'operator solution of [)(0)'.86 Proposition 3 becomes: For each t0 > 0 and 
M0 € End(C ) there exists a unique operator solution F of D °̂' with F(t0) = M0. 

Proposition 21 Let F be an operator solution of D*°'. Then F(t) is for all t or 
for no t invertible. O. 

Proof.— Suppose F(tg) is not invertible. Then there exists YQ E CN with YQ / 0 
and F(t0)Y0 - 0. G(t) := {F(t))Y0 is a solution of 0(0) that equals 0 at t = t0. Also 
0 is such. Unicity implies G = 0, i.e. F(t)Yo — 0 (t > 0), so F(t) is not invertible. 
D 

An operator solution F of D'° ' is called 'fundamental' if each F(t) is invertible. 
Often considered is the fundamental operator solution F: 

Definition 1 The unique operator solution F of D ^ with F(0) = id is called 'the 
principal operator solution (of D^0')'- o 

It is clear that F : N —• End(C ) is an operator solution of o'°' if and only if 
F(t) =At-i---A,F(s) ( 0 < s <<), i.e. if and only if F{t) = $(

t
0)

s F(s) (0<s<t). 
From this: 

Proposition 22 F : N —» End(C ) is a fundamental operator solution of o'°' if 
and only if v[°} = F(t){F(s))~l (t,s> 0). o 

Corollary 4 1. $\ g = At-i • • Ao is the principal operator solution of W°'• 

2. F(t) := ^[°t0M0 (t > 0) is the unique operator solution of D(0) with F{t0) = 
MQ. O 

Proposition 23 If F and G are fundamental operator solutions of D^°', then there 
exists a unique C S GL(<CN) so that G(t) = F{t)C (t > 0). o 

Proof— Unicity: If such a C exists, then G(0) = F{0)C, so C = F (0) - 1G(0). 
Existence: Now, with C := F(0)~ G(0), J(t) :— F(t)C is an operator solution and 
is fundamental. Because J(0) = G(0), it follows that G(t) = J(t) = F(t)C (t > 0). 
D 

Of course, if G(1), . . ., G (m) are solutions of D(0\ so that, for some t0 > 0, 
G(1)(<o), • • •, G(m'(<o) are linearly independent, then G^,..., G(N) are linearly in­
dependent. A reverse result is also true: 

Proposition 24 If G^l\ .. ., G^m' are linearly independent solutions of O^, then 
for each t > 0 the vectors G'''(<), . . ., G'm ' ( t) are linearly independent in CN. o 

Proof— Suppose there would exist t0 > 0 and A; 6 C so that YlT=i ̂ i 'C'''('o) = 0. 
Define J := Y1T=\ ^ i C 1 ' . J is a solution of D*°' that equals 0 at t = to- Also 0 is 
such. Because of unicity, J = 0, a contradiction. • 

Proposition 25 Consider D(0). Let G<' ' , . . . , G ^ be solutions of D(0). Then 
8 6 When working with matrices (At,F[t) € A/jv(C)) the term 'matrix solution' can be used. 
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1. F : m ->• End(CV) defined by 

F(t)Y := 'EYjGMit) 
j = i 

is an operator solution of D ' . 

/n case t/ie At are matrices F(t) := {G^(t),..., G(N)(t)) e MN{C) (i.e. the 
columns of F(t) are the vectors G^[t)), is a matrix solution of D^0'-

S. F as defined in 1 is fundamental if and only if G '1 ' , . . . , G ' w ' are linearly 
independent, o 

Proof.— 1. F is an operator solution because for all Y S C and t > 0 one has 
F(t + 1)Y = Ef= 1 YjG<»(t + 1) = Ef=i YiAiG^it)) = A ( E f = , ^Gü) ( t ) ) = 
At(F(t)Y). The second statement is proven in the same way. 

2. If G'1 ' , . . . , G ^ ' are linearly independent, then for each t, by proposition 24, 
G ' l ' ( ( ) , . . ., G^N^(t) are linearly independent, so each F(t) is injective and thus also 
bijective. If F is fundamental, then F(0) is invertible, so G^^O),. . ., G (N)(0) are 
linearly independent, thus G ' 1 ' , . . . , G^w^ are so too. Q 

Proposition 26 F is a fundamental operator solution of D*°' => ((F(< + 1))*) 

is a fundamental operator solution of 0ad • o 

Proof.— One has F(t + 1) = -4(F(/) (t > 0). By taking * and then - 1 one obtains 

(F(« + l ) * r ' = ( ^ ) _ 1 ( f ( < r ) _ 1 (< > 0). With J(t) : = ( F ( < + 1 ) T ' eGL(CA ' ) , 
this becomes J(t) = (A*ylJ(t - 1) (t > 1), i.e. J[t - 1) = .4*J(<) (< > 1), i.e. 
J(t) = Aï+lJ(t + \) ( <>0) . D 

A.3.4 Particular solution of D 

Here is an explicit relation between the $t,t' and the $J (,: 

Proposition 27 • „ . = { $ ' + ? 4 $ + ^ > <° ^ '>• o 

Proof.— By induction. For t — to, $t,t0 = id — ̂ >\ t . Suppose it is true for some 

t > t0. Then * , + l i t 0 = Tt<btM = A * M o + I/t = ̂ . ( « i ^ + E ^ Î . * M + I ( ^ ) ) + ^ = 

<>,,<„ + El;i„ < ! i , J + 1 (^ ) + *,+i,,+i(l/,) = <>Mo + EU„ *i°+
)i,. + i(^)- The 

proof for t < to is similar. G 

Because of proposition 7(2,3), one also has 

(22) *M. = < l ( « + ] £ * i ° ! . + i ( t f . ) ) C > ' o > 0 ) . 
s=to 

This formula is one of the forms of the 'variation of constants formula for D'. The 
term is derived from the fact that 4>(|(o has the form $; loC(t). Another form is: 

Proposition 28 Let G'1 ' , . . ., G^N"> be linear independent solutions of D ^ . Then 
there exist functions C,: : N —> C (1 < i < N) so that E i= i CiG^ is a solution of 
D. o 
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Proof.— Define F : N -> End(CN) by F(<)>/ := E J l i * jG u ) (0 - Because of 

proposition 25, F is a fundamental operator solution of D'°'. By proposition 22, 

*M = F(t)(Fis)r1- By proposition 27, 

'*«,o = <o)+E:;ô<)
+.(tg = F(t)F(o)-l+zt.~J,(Fmns+w'w.). A 

solution of D is $,iO(0), i.e. ^ ' J ; J ) (^ (0 ( - F ( S +J) )" 1 )^ 7 ») - It equals 

D 

A . 4 S ca l ar c a s e 

A.4.1 The object 

We are going to study equations of the form 

M 

J2v{
t'

]g(t + s) = wt(t>0) J, 
J=0 

where wt, v\ ',. . ., v\ S C (t > 0), no v\ ' and no v\ ' is zero and g : N —> C. J is 
a special case of a (M — th order elliptic linear) scalar recurrence equation. Notice 
that an equation of the form J is nothing other than an equation of the form © 
where N = I. 

For the with / ° ' associated linear (scalar) recurrence operator H one has 

M 

Corollary 2 becomes: For J, SOL and SOL*0' have dimension M. 
The distinguished solutions G\ , . . . ,G\ of J'°' are denoted by 

respectively. So, gV> is the unique solution of j ' ° ' that satisfies 

g(i)(t) = 6lil (0<t<M-l). 

We already know that g<-°),... . p ^ " 1 ) is abase of SOL(0). 

A.4.2 From arbitrary order scalar to first order vector equations 

Given an integer 

( C " ) N ^ C N b y 

Given an integer M > 1, define the linear mappings V : C —> (C ) and Q 

9(t) 
{Vg)(l):= | | (<>0) , 

g{t + M-l) 

(QC)(0:=(G(/)),.87 

Lemma 1 1. For G G (CM ) one has: G G Im(7>) « (G(t + s))1 = (G{t))! + l 

{t > 0, 0 < s < M - 1). 

I.e. the first of the M coefficients coefficient of G(t). 
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2. V is injective. One has QV = id and VQ = id on Im('P). o 

Proof.-- 1. If G 6 Im(7>), say G = Vh, then for all / > 0 and 0 < s < M - 1 
one has (G(t + *)), = ((Vh)(t + s))t = h(t + s) = ((Vh){t))1+l = (G(0) .+r And, 

if {G(t +«)) j = (G(0) J + i (< > 0, 0 < s < M - 1), then define g 6 C N by 
^(0 := (G(<))i- Now, one has 

/ g(t) 

(Vg)(t) = 

\g(t + M-l) 
G(t). ThusG = Vg. 

2. V is injective because ker (V) - {0}. QV - id: Take g e C M , then 
((QP)g)(t) = (Q{Vg))(t) = (t). VQ = id on lm(V): Take G e Im(7>), then 

/ (QG)(t) \ I (Git)), 

((VQ)G)(t) = (V(QG))(t) = = 

\ (QG)(t + M - 1) J \(G(t + M-l))1 
G(t). a 

Proposition 29 shows that the study of the vector recurrence equation D contains 
the study of the scalar recurrence equation J. Given a scalar recurrence equation J, 
we define88 

( 0 \ 
(23) Mt:=Comp(?i-mr,...,-ym)eMu(C)*adWt~ • 

/ (M) I 

( M - l ) (0) 

( M ) ' • ' • ' (M)< 

Proposition 29 Given a scalar recurrence equation J, we associate to it the vector 
recurrence equation (of type 0) 

G{t + 1) = MtG(t) + Wt (t > 0) < J > . 

One has: 

1. If G is a solution of < J >, then G € Im(P). 

2. For each j : N - > C one has: g is a solution of J O Vg is a solution of < J >. 

3. For eac/i G 6 Im('P) one /ias: G is a solution of < J > O ß G is a solution 
of l o 

Proof.— 1. One has G(i + 1) = Mt(G(t)) + W, (t > 0). So, (G(t + s)), = 
(Mt(G(t)))s + (Wt), (t > 0, 1 < a < M - 1), i.e. (G(< + 1)), = (G(t)).+i (* > 
0,1 < s < M - 1). This implies (G(/)) J+1 = (C^ + s ) ^ (< > 0, 0 < s < M - 1). 
By lemma 1, G € Im(T'). 

2. Let 5 : N - » C . Then: ^ g is a solution of < J > O (7>^)(t + l) =-MtCPg)(<) + 
W« (( > 0) « ((P5)(t + 1))M = Mt((Vg)(t)) + (Wi)jif (' > 0) « ?(t + M) = 

E^ö 1 compM,J+iff(< + j) + -ffa (t > o) *> <,(< + M) = E^ô 1 --T^rffC + i) + 

-r/fax (t > 0) O- g is a solution of J. 

n 
3. G = P(QG) by lemma 1(2) and QG : N -> C. Because of 2 one therefore 

has: QG is a solution of J <=> G is a solution of < J >. • 
Notice that < J > ( 0 ) and < J(0) > are the same objects. We shall denote SOL(0) for 
< J*0' > by 

< SOL(0) > . 
8 8See subsection C.l for definition and properties of Comp . 
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Corollary 5 V : SOL'0 ' —» < SOI/ 0 ' > is a linear isomorphism, o 

We call the Mt 'the transfer matrices associated with J'0''. The reason for that is 
that for each solution g of J(0) one has (Vg)(t + 1) = Mt{(Vg){t)) (t > 0). Notice 
that each transfer matrix is (indeed) invertible, because of (40) one has for the 
determinant of Mi 

(0) 

(24) \Mt\ = (-\f^mÏO. 
vi 

Proposition 30 /. d im(< SOL(0) > n FLOQ,,J = dim(SOL(0) D FLOQ, J . 

2. d im(< SOL(0) > n / ° ° ) = d im(SOL ( 0 )n l°°). 

3. d im(<SOL ( 0 ) > n c 0 ) = dim (SOL(0) n c0). o 

Proof.— First notice that, because V : SOL'0 ' —> < SOL' ' > is a linear isomor­
phism, for each linear subspace W of SOL(0) one has 7>(SOL(0) O W) = 
< SOL(0) > n V{W). For W = FL0Q , 2 , W = f°° and W = c0 one even has 

< SOL(0) > n V(W) - < SOL(0) > n W. Indeed: C is evident (and relies on the 
nature of /°°, c0 and FLOQ, z ) and if G G < SOL(0) > 0 W, then let h G SOL(0) so 
that Vh = G. Then QVh = QG, i.e. /i = QG G W. Thus G G 7>(W). D 

Proposition 31 For each non-zero solution G of < j ' ' > and j G { 1 , . . . ,M} 
rTiere ex!s<« < > 0 with (G{t))j / 0. o 

Proof.— Suppose one would have (G(t)) • = 0 (/ > 0). Then by lemma 1, 
(G{t + j - 1))! = 0 (t > 0), i.e. (QG)(t + j - 1) = 0 {t > 0). Now QG is a 
solution of j ' ' that equals 0 in M consecutive points. Therefore QG = 0. But then 
G = PQG = V0 = 0. a 

A.4.3 Matrix of Casorati 

Given a positive integer L, we define for each t > 0 

Cas, : C N x • • • x <CN (L times) -> ML{C) 

by 

(25) Cas , (A 1 , . . . ,Ai ) : = 

/ hi{t) ••• MO \ 
hi{t + l) ••• hL(t + l) 

\ h^t + L-1) ••• hL(t + L-l) ) 

Cas t(/îi, . . ., hi) is called 'the matrix of Casorati (of h\,.. ., hi at <)'. Notice that89 

Ca8 f(Ai,. . .1Ä t) = ( (7 'h , ) (0 , . . . , ( ^ '» t ) (0 

(i.e. the i—th column of Cas((Ai, . . ., A/,) equals (7> / J , ) ( / ) ) . Fix a function d : N —> 
C*.90 Denoting determinants by | |, the mapping, for fixed h\,. . . ,hi, 

w(0 : N -KC, 

defined by 
ui(t) := d( |CaS((/(i, . . . ,hL)\ 

8 9 With M = L. 
90c* = {* e c | z Ï o}. 
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is called 'Casorat ian ' . From the other side, for fixed t > 0, the mapping d, |Cas t (•)| : 

(C ) —> C is L — l inear. Using a well-known property of de terminants one obtains: 

(26) hu. . .,hL £ C N are linearly dependent => w(t) = 0 (t > 0) . 

If u>(t) — 0 for all t > 0, then h\,. . . , hi are not necessarily linear dependent . 9 1 

Now, consider j ' ° ' . One has (with L := M) 

(27) Cas0(g(°\...,g(M-l)) = id. 

P r o p o s i t i o n 32 Fix t > 0. For all solutions h * 1 ' , . . . , h<M> o / J ( 0 ) one has: 
/ i ' 1 ' , . . ., hSM> are linearly dependent & ui(t) = 0. o 

Proof.— =>: Because of (26). <=: Suppose tha t ui(t) — 0. So, there exist c\, . . ., CM £ 
C, not all 0, so t ha t C I / J ' 1 ' ^ + /) + ••• + cM/i<M ' (< + /) = 0, (0 < / < M - 1). Thus 
h :— c i / i ' 1 ' + • • • + CM^M^ is a solution of / ° ' t ha t equals zero in M consecutive 
points . Proposition 2 now implies h = 0. Thus M 1 ) , . . ., / j ( M ' are linearly dependent . 

D 

P r o p o s i t i o n 33 / ° ' has a solution which for no value oft vanishes, o 

Proof .—Let / i t 1 ' , . . . , / i W be a b a s e of SOL ( 0 ) . Take c2 G C with c2 £ 
{-hW(t)/hW(t) | * > 0, h 2 ( i ) ^ 0} . Then j / 1 ) :=/»(>> + c2/i<

2> vanishes a t < 
if and only if h^(t) = h^{t) = 0. Next take c3 6 C with c3 g { - ( / ^ ' ( i ) -
c2 / i(2)(i))/M3)(<) | t > 0, /i<3)(<) ^ 0} . Then y<2) := h«1 ' + c2/i<

2) + c3h(3> vanishes 
at t if and only if h^(t) = h ' 2 ) ( t ) = h( 3 ' ( r ) — 0. Continuing this construction one 
arrives at i / M ' := h^ + c2 / i '2 ' + • • • + cjv//i(M) which vanishes at / if and only if 
h^(t) = h<2)(i) = . • • = / j(M)(i) = 0. But there is by proposition 32 no value of t 
for which this happens. Thus i / M ) is as desired. G 

P r o p o s i t i o n 34 If ftt1), . . ., /j(M) are solutions of J (0 ), Men Cas^/ i* 1 ' , . . ., h<M>) ÏS 

a matrix solution of < / ° ' > . It is fundamental if and only if h^\ . . ., h^M^ are 

linearly independent, o 

Proof— By proposition 29(2), Vh^\ . .. ,Vh(Mî are solutions of < J > ( 0 ) . One has 
Cas, = ( ( •p / i ( 1 ) ) (0 , . - - , ( 'P / i<M ) ) (<)) - By proposition 25, Cas, is a mat r ix solution 
and it is fundamental if and only iïVh^l\ . .. , 'P/i(Af) are linearly independent. D 

Together with (24), proposition 34 implies: 

Coro l l ary 6 Consider J<0). For hi,..., hM € SOL ( 0 ) one has: 

1. Cas , = Mt-iMt-2-M,Cass (0 < s<t); 

( ( 0 ) \ 
2. u(t) = ( _ 1 ) M C —>A. ƒ nJ-M i i j ^ j w ( s ) (o < s < t). In particular 

(°) 
w(< + 1) = (-l)MS^^-ujit) (t > 0) . And ,if dt = 1, Men w(i) = 

(0) (0) (0) 

(-1) (M) (V)—pvry4s) ( 0<*<0 -o 
v' vs + l vt-l 

9 1 For example: L — 2, dt — 1, h\ = 5o,i, /i2 = <5git. But, this s ta tement is t rue for L = 2 in 
case where /ii,/i2 are nowhere zero. Indeed, in this case uj(t) = 0 implies that h\ (t)/fi2(t) does 
not depend on /. 
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A.4.4 Explicit expressions for semi-flows 

P ropos i t ion 35 The semi-flow <&t,t' for J equals the semi-flow <I>t t' for < J >. o 

Proof.— We may suppose that t > t'. For Jone has $t,t'(V) — {VQv y){t). Because 
of proposition 29(2), VQvy is a solution of < J >. Defining 2,(K) := M,{Y) + Wt 

one has by corollary 3(1) that (VÇt<y)(t) = lt-i • • lt'{{VQv,v){t')) = I ( - i • • -It<V 
which, by proposition 18(2), equals $ ( | t ' applied to V for < J >. D 

coroiwr , M e r J c °><u{ $v::£x^ivi) • 

2. Consider, *tt,= { f ^ ' ^ ^ ( ° ^ <}' o 

Proof.— By propositions 18(2) and 27. D 

A.4.5 Par t icu la r solution of J 

The variation of constants formula is used in the proof of the following result 92 

Propos i t ion 36 Let / i '1 ' , . . . ,/i<M ' be linearly independent solutions of j ' ° ' . Then 

there exist functions # , : N —• C (1 < i < M) so that E t = i B,h^ is a solution of'J. 
£uen, with Y (t) := (Cast+^/iO, . . ., MM)))~ V « (< > 0) and B(<) := E U O y ( s ) 6 
C , one nas that E i= i B{h^ is a solution of J. o 

Proof.— By proposition 34, Cas( is a fundamental matrix solution of < j ' ' >. 
Proposition 22 gives $[ , = CastCas"1. By proposition 27, <J>(]o = CastCasJj"1 + 

E U Ô ( C a s t C a s 7 ^ ) ^ = C a s t a s " 1 + J2l~Jo Y(s)) = Cas^Cas^1 + B(t)). A so­
lution of < J > is $t,o(0), i.e. Cas,(fl(<)). By proposition 29(3), Q(Cast(B(t)) = 
(Ö(Cas t(ß(i)))i is a solution of J. This solution equals Y^L% ß .n ( , ) P 

B Linear recurrence equations with periodic coef­
ficients 

B.l Settings 
In dealing with recurrence or differential equations, interest is usually in the qualita­
tive and quantitative properties of their solutions. As we have already shown, such 
problems can be mastered particulary in the case of linear autonomous equations. 
However, the same is also true for linear equations with periodic, or even with Flo-
quetian coefficients. The fundamental reason for this is that such an equation can 
be transformed by a linear substitution of variables into an equation with constant 
coefficients. To go beyond Floquetian coefficients requires quite different and much 
more difficult methods.93 Some attempts have been made to develop a Floquet 
theory for the (larger) class of almost periodic coefficients (see, for example, [18]), 
but with less satisfying results as far as we know. 

Also a presentation of Floquet theory needs a fixed setting. Floquet theory seems 
to be only appropriate for ordinary linear differential and recurrence equations with 

9 2 This result also may be proven through proposition 28. 
However, also linear recurrence equations with coefficients tha t have a limit for t —• ±00 

admit relatively easy methods of analysis. And in this context also linear recurrence equations 
with polynomial coefficients should be mentioned (see, for example, [16,22] ). 
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Floquetian coefficients.94 As usual a lot of interest is in the analysis of homogeneous 
equations. Although it would be possible to deal with (homogeneous) equations 
where all coefficients are Floquetian of some same type, the investigation of this 
case is closely related to the periodic case. To see this, first notice the simple fact95 

that if f(t + q) = zf(t) (i.e. ƒ is Floquetian of type (q,z)),96 then there exists a 
unique q—periodic function h such that f(t) — zt^qh(t).97 Therefore, from now on 
we only consider equations with periodic coefficients in the associated homogeneous 
equation. 

Again, we restrict ourselves from now on to the recurrence equation case. As 
already mentioned in subsection A l , a choice has to be made from semi-infinite/in­
finite/finite domain and from first/second/arbitrary order. Our article will deal 
with semi-infinite domain and with arbitrary order vector equations. 

It can be said that there are two approaches to periodic coefficients: Floquet 
theory and (in physics very popular) Bloch theory. The most fundamental object in 
Floquet theory is the Floquet (and monodromy) operator while in Bloch theory it is 
the Bloch operators. We deal mainly with Floquet theory as the Bloch theory seems 
less useful in economics. Our proper references for Floquet theory for recurrence 
equations are [6, 11,17].98 

Three types of recurrence equations with periodic coefficients are considered: 
• , I and J. 9 is nothing other than the vector recurrence equation © in case the 
B\' are q — periodic, I is nothing other than the vector recurrence equation D in 
case At is q—periodic and J is nothing other than the scalar recurrence equation in 
case the tA') are q—periodic. 

B.2 Arbi t rary order vector case 

B.2.1 The object 

We are going to study the (N—dimensional elliptic M-th order linear) vector recur­
rence equation (with periodic coefficients) 

Af 

£ß,(,)(G(< + s)) = Ut(t>0) 

where M > 1, each B{
t
s) G End(CN), even ß (

( 0 ) ,ß t
(M) G GL(CN), each Ut 6 C N , 

each B['] is ^-periodic (i.e. B$q = B(
t'

] {t > 0)) and G : N -» CN. 
Before continuing with • we consider in the next subsubsection Floquetian 

mappings. 

B.2.2 Floquetian mappings 

Given q, we shall denote for an integer n by n the unique number in {1 , . . . ,q] so 
that n — n is divisible by q. 

Proposition 37 Fix integers to > 0, q, m > 1, z G C* and Co,. . •, C,_i G C m . 
There exists a unique G G FLOQ. z so that G{to + s) — C, (0 < s < q — 1). o 

94 However, some applications to nonlinear recurrence equations (as a perturbation of linear 
ones) can also be found, as in for example, [11]. 

9 5Also see proposition 41(2). 
9 6 2 t / 9 — e g °&\z>t w n e r e | 0 g denotes the principal value of the logarithm. 
9 7 By writing all coefficients in this form, the x*'"1 can be divided out, leaving an equation with 

q — periodic coefficients. 
98References [2,5, 12, 18, 19,21] for Floquet theory only deal with differential equations. 
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Proof.— Define G E (C m ) N by G(t) = z~*— CfZü+ï-i (t > 0). Then 

(TqG)(t) = G(t+q) = z " - î ^CTTq^TT_1 = « ^Frê^r-! = 
zG(<). Thus TqG-zG. Moreover for s = 0, . . . , ç - 1, G(<0 + s) = C„. D 

Corollary 8 77ie se« of eigenvalues ofTq : (C m ) N -+ (C m ) N e9ua/5 the whole C . " 

Proof.— That z 6 C* is an eigenvalue follows from proposition 37. Also 0 is an 
eigenvalue: G(0) = ••• — G(q - 1) = e*1), G(t) = 0 (< > q) is an eigenvector 
belonging to this eigenvalue. D 

Denote, for z 6 C, by FLOQ,'"' (n > 1) the generalized eigenspaces of Tq 

corresponding to the eigenvalue z of Tq, i.e. 

FLOQ<ni := ker(T,-«ùO"- 1 0 0 

Definition 2 We call any FLOQg 2, where q > 1 and z 6 C, a 'Floquetian space' 
and any of its elements a 'Floquetian mapping of type (q, z)'. We call any element of 
Uj£(rjFLOQg 2 a 'ç-Floquetian mapping'. We call any FLOQ^V, where q > 1, z 6 C 
and n > 1 a 'generalized Floquetian space' and any of its elements a 'generalized 
Floquetian mapping', o 

Proposition 38 1. If g : N —> C is Floquetian of type (q,z), then there exists 
a unique q—periodic function h so that g — z''qh, i.e. is a product of an 
exponential and a periodic function. 

2. If h is a q—periodic function and z £ C*, then ztlqh is a Floquetian solution 
of type (q,z). o 

Proof.— This is evident (and also follows from proposition 41(2) with n = 1). D 

Proposition 39 gives a generalization of proposition 38(1). 

Proposition 39 Consider a mapping F : N —>• End(C ) for which there exists a 
C e GL(CN) with F(t + q) = F{t)C (t > 0). Then there exists B e GL(CN) and a 
mapping P : N -» End(CJV) with P{t + q) = P(t) (t > 0) so that F(t) = P{t)B' (t > 
0). o 

Proof.— Because C is invertible, one knows that there exists a B £ GL(C ) with 
C = B". Define P(t) = F{t)B~l. Then F(t) = P{t)Bl and P(t + q) = F(t + 
g)B-(t+g) - F{t)CB-(-t^i) - F{t)BiB-(t+iî = F{t)B-1 = P(t). a 

Denote F L O Q ^ in the case m = 1, by TCOQq
n)

z, i.e. 

TCOQft = {g:N^C\(Tq-z id)ng = 0}. 

One has 
e 

(28) FLOQ("j= Y, -^jCOQ^'-eO). 
j — \ ,...,m 

The given definition for FLOQ~ z also makes sense for z = 0. If we do this, then for each 
z € C, FLOQ z is the eigenspace associated with the eigenvalue z of Tq. However, we do not do 
this in this article: we only need z ^ 0 because no Floquet multiplier is zero and because some of 
the following results have to be adapted for z — 0. 

1 0 0 One thus has F L O Q $ = FLOQ 0 , . 
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M N Given q, define for z\, z2 € C*", the linear transformation K.ZuZ2 of (C ) by 

VC*t,»G)(t) := (-)'qG(t). 
z\ 

Of course, ACZl]22 is a linear automorphism and KZ~
1
Z = AC22]2l. And one has 

(29) T,/C,IlJa = ^ „ „ T , ) . 

P ropos i t ion 40 AC2l|22 : FLOQ^1/, —> F L 0 Q ' " / 3 IS a linear isomorphism, o 

Proof.— Denote the mapping in question by /C. First of all, if G € F L O Q ^ , then 

K,G € F L O Q ^ : By (29), for each integer Jfe > 0, Tg
kK, = (^)k(KTq

h). Therefore 

(T, - z2 taT(ICG) = (ZU ( J ) 7?(-Z2 id)n-")(ICG) = 

^icTTk=0( ( J ) (-i)
n-**r*7?G) = (ff)"Ac(E;=o ( ; ) (-ir**r*7?G) 

= (ft)nAC(T, - z, id)nG = (ft)"AC(0) = 0. 

Of course, AC is injective. Surjectivity: Take G G FLOQij , then by the above 

« „ . „ G e F L O Q ^ . So, « „ . „ ( « „ . „ 0 = 0 . D 

Propos i t ion 41 /. /ƒ z\,. . ., zi Ç C* are different numbers and n\,.. ., n; post-
toe integer*, tAen £,-,,<,•<, FLOQ^» = £ * < ; < ! FLOQ&f 

2. FLOQ# a = ( ^ / ^ " « F L O Q W , in porticti/ar FLOQ&> = z ' ^ F L O Q ^ . 

5. F L 0 Q # Ç F L O Q J ^ ( "»>! ) • 

^. FLOQ'"z' Aas dimension nNq. 

5. For each positif integer L one has: F L O Q ^ = £ ® 6 C Ü ^ = Z F L 0 C4?"> 

i.e. F L O Q ^ , = E f o o x L - i F L O Q ' " ' , , , , n particiliar F L O Q # = 

Proof.— 1. This is a general result for generalized eigenspaces. 
2. Because of proposition 40. 
3. Suppose (T, - z id)nG = 0. Because Tmq - zm id = Tq

m - {z • id)m = 

zm~l{Tq - z id) EJLV (Tq/zY, one obtains (Tm, - zm id)"G = 

i (m-i )n(Em-i ( i / ) n
( T q _ z id)»G = o. 

4. (7-,-*.-d)n = E:=O ( ; ) w-zier" = ELo ( ; ) (-*r%. 

This implies J € FLOQ^j <=> E L o ( * ) ( -*)""* J(< + *?) = 0 (t > 0). For 

z = 0 this becomes the equation J(t) = 0 (t > nq). And for z ^ 0, one has to do 
with a linear vector recurrence equation of order nq. In both cases the set of its 
solutions form, because of corollary 2, a nqN dimensional linear space. 

5. Because of 1, the sum is a direct sum. Because of 2, 'D ' holds. Because of 
4, FLOQ , has dimension nNq. Because the sum is direct, the right-hand 

q,zULe?"<t 

side has dimension L nNq, i.e. has the dimension of FLOQ^y. This even proves 
that ' = ' holds. D 
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Define A : C N -+ C N by 

(AG)(0 :=G{t + \)-G(t). 

One has 
AA' = ( A - 1)A' ( * eC*) , 

a result that also follows from: 

Proposition 42 Suppose m = 1. For each polynomial p with complex coefficients 
one hasp(Ti)(\l) = p(A)A'. o 

Proof— Write p = a0 + axz + h aLz
L. Then p(Ti)(A') = (aoT/0) 4- h 

CHJ^X) = aoX' + a ,A'+1 + • • • + aL\
l+L = (a0 + <uA + •• • + aLX

L)X' = p(A)A'. 
D 

A<" = (t + 1 ) " - ( " , so A of a power is complicated. In this context the next 
definition is useful. Define for each integer r > 0, <'r' as the (polynomial) function 

*(r> := t(t - l)(t - 2) • • -{t - r + I). 

It can be easily verified that 

(30) At<r> = r<<r-1> ( r > 1), At<°> = 0. 

From degtf(r' = r, it follows that t '0 ' ,* '1 ' , . . . , <<r' are linearly independent and that 
Vec t^W,^ 1 ) , . . .,&)) = Vect^0,*1 tr). 

Proposition 43 A base of 

1. F L O Q ^ is (V(J') (0 < i < n - 1, l<j<N); 

2. FLOQ^j is t'VeO') (0 < i < n - 1, 1 < j < W); 

3. FLOQ<"j w i ^ i e ^ ' ï ' e ü ) (0 < i < n - 1, 0 < / < q - 1, l<j<N). o 

Proof.— 1. First we consider the case where m = 1. We shall prove that t' (0 < 
i < n - 1) is a base of F L O Q ^ . One has FLOQ^ ' = ker(A"). To see that 

t' e F L O Q ^ (0 < i < n - 1), we write t' = Y?k=0 akit<-k) a n d n o t i c e t h a t ' by (30)> 
A"(<('') = EUo a*iA (" ) (* ( ' c ) ) = Hi=oaki 0 = 0. Because An is a 1-dimensional 
vector recurrence operator of order n, ker(A") has, because of corollary 2, dimension 
n. Because <'"' (0 < i < n — 1) are n linearly independent vectors, they are a base. 

Now consider the case of general m. As above one proves that the given vectors 
belong to FLOQj , and that they are linearly independent. Because we therefore 
we have Nn linearly independent vectors, the proof is complete by noticing that 
dim(FLOQ(

1"1
)) = Nn. 

2. Because of 1 and proposition 41(2). 3. Because of proposition 41(5) and 2. 
D 

Here is another type of base of FLOQgy. 

Propos i t ion 44 A base of FLOQ, z is <5('-'> (1 < / < q, 1 < j < N), where (ft'-») 
is the unique element of FLOQ, z so that ($('••>')(<) = <5/(e(

J> (1 < t < q). o 

Proof.— First of all notice that the <S'',J' are well defined because of proposition 37. 
It is easy to verify that they are linearly independent. Because we have Nq = 
dim (FLOQ 2) of them, they form a base. • 
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Lemma 2 T,&{i'3) - z~ '-'" óC"^ (1 < / < q, 1 < ; < N, s > 0). o 

Proof.— TSÓ('J), z~ '"'*'" S([-'^ e FL0Q , 2 . And they are equal at / = T^l + 

r (0 < r < q- 1): TJ{'^}(1 - s_ + r) = S^'^(T^1_ + r + s)_= S^^{T^l+ r + s + 

Jroe*-'' = 2 5 (j( i_J 'J '(/ — s + r). Thus, by proposition 37, they are equal for 
all t. • 

Generalized Floquetian mappings have a clear asymptotic behaviour: 

Proposition 45 I. F L O Q ^ Ç /°° (\z\ < 1). 

2. FLOQ<"z> Ç CO (|*| < 1). 

3. FLOQ^i n /°° = F L O Q ^ (|z| = 1). 

-f. F L O Q ^ ' n /~ = {0} ( | * |>1 ) . 

5. F L O Q # n co = {0} (|*| > 1). o 

Proof.— 1 and 2 are evident from the explicit expressions in proposition 43. 

3. ' D ' : Evident. ' Ç': First consider the case with m=l. Take g € FLOQ<"i f~l 
l°°. We may assume that g £ 0. With z, := z^ 'e 2* '* (0 < / < q - 1), there exist 
because of proposition 43(3), C\€ C (0 < i < n - 1, 0 < / < g - 1) so that 
3 = £V( C\Vz\. Let (0 <)p(< n — 1) be the maximum value of i for which there 
exists a non-zero C\. Let J be the set of l's for which Cf ^ 0. Take j € 3• Now 
3 = Hie J < W + £ £ / EL"o' £ƒ*'*ƒ. Thus 

(3i) <, = # ' c? + £ cf(^) +EEc' ('"P(7 i 

The three terms in parentheses are bounded. Because g E l°°, «7^0 and the term 
zj<p is bounded if and only if p = 0, one has p = 0, i.e. g £ FLOQ' J . 

Now, consider the case of general m. By (28), FLOQ^f l l°° = ( £® TCOQ^} 

eO>) n /°° = ^({TCOQ^ • e&) n ;°°) = £ f (.F£0<4nj n /°°) • ew. By the 
result for m = 1 this equals £ ® TCOQ{

q]l • eW = FLOQ$ . 
4. As in 3. (Again we obtain (31) and the three terms in parentheses are 

bounded. The term ztJp is unbounded.) 
5. Because of 4, we may suppose that \z\ = 1. The rest of the proof is as in 3. 

a 

B.2.3 Semi-flows 

Proposition 46 For • with q—periodic U one has Gt0+qy(t + l) = GtB-,v(t)- * 

Proof.— One easily verifies that t t-> Ç/to+9;v-(< + g) is a solution of • . Also Gt0,v 
is a such a solution. At < = to,. . ., to + M — 1 they are equal. Therefore they are 
equal everywhere. D 

Proposition 47 For 9 with q—periodic U one has 

1. <Sft+q,f+q = $M< ( U ' > 0 ) ; 

2- *«,o = *j,o(i>0),-
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3. * 1 + J , , o = * t ,0<I» J
g ,o(<>0); 

4- *«,o = * ï , o * ? ï (<>° ) - ° 

Proof.—1. $ ( + , ; £ ,+ , (V) = (öt'+,;v(<+9),..-,ee'+«;v(< + ? + A ^ - 1))- By propo­
sition 46 this equals (et ';v(0.---.ö(';^(< + M - 1)) = ^tt,(V). 

2. By proposition 7(2), $ j , i 0 = *j,,(j-i)<j*(j-i)<j,o- This equals *,,o*(j-i),,o 
by 1. Continuing in this way gives the desired result. 

3. *t+>,,0 = *e+ j 9 Jg* j , ,0 = $t,0$jq,0 = *«,0*^,0-

4. By 2, 4 t i 0 = * î+•=!,,„ = * « l 0 * , V <=> 

If X is a set, then a family of mappings (<7t)jeN °f -^ m ' ° itself is called a "one-
parameter semi-group of mappings of X"101 if 

9t° 9s =9t+s (t,s > 0), 

go = id. 

Corollary 9 Consider • with q—periodic U. (<bjq)jçf$ 's a one-parameter semi­

group of mappings of (C ) . o 

B.2.4 Floquet, Bloch and monodromy operators 

Consider ®(0 '. For the with • ' " ' associated vector recurrence operator "H one has: 

Proposition 48 [H,Tq] = 0. o 

Proof.- (Wq)G)(t) = CH(T,G))(t) = E"0ß«(')((T,G)(« + «)) = T,tA'\G{t + 
* + l)) = Y:to^q(G(t + q + s)) = (UG)(t + q) = (T,(*G))(0 = {(T„n)G)(t). a 
Because of proposition 48, Tq lets the generalized eigenspaces of % invariant, in 

particular Tq lets SOL*0' invariant. So, 

Tq f SOL<°> : SOL«0' -> SOL(,)) 

is well defined and if U is q—periodic even 

T, f SOL : SOL -> SOL 

is well defined. Because of the same reason 

% \ FLOQ,,, : FLOQ,,, -> FLOQ,,, 

is well defined. We call Tq \ SOL(0) 'Floquet operator' and each U \ FLOQ, , 
'Bloch operator'. Four our purposes the Floquet operator is the most important. 
However, the presentation will benefit by not forgetting the Bloch-operators.102 By 
'Floquet theory' we mean the analysis of the Floquet operator and by 'Bloch theory' 
we mean the analysis of the Bloch operators. There are interesting connections 
between objects associated with Floquet and Bloch theories. In this context we 
here only mention the following evident but useful result. 

Proposition 49 For each integer n > 1; 
SOL ( 0 )n F L O Q $ = ker((T, - z id)n f SOL(0)) = ker (H f F L O Q $ ) . o 

101 This is indeed a semi-group. 
102 However, the mentioned 'eigenvalue parameter1 in footnote 69 is necessary to really deal with 

Bloch theory. 
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Corollary 10 The dimension of each of the linear subspaces SOL' ' fl FLOQ'™/, 

ker ((Tq - z id)n \ SOL(0)) and ker (U \ F LOQ^ ) is at most min (MN,nNq). o 

7^ : (C ) —• (C ) is not injective, but one has: 

Proposition 50 The Floquet operator Tq \ SOL'0 ' is a linear automorphism, o 

Proof.— It is sufficient to prove that ker (7, \ SOL(0)) = {0}. Take G G SOL(0) 

with TqG = 0. Then [TqG)(t) = 0 (« > 0), i.e. G(t + 9) = 0. In particular, 
G(g) = • • • = G(q + M - 1) = 0, which, with corollary 1, implies that G = 0. a 

Consider A'0 ' . By proposition 40, generalized Floquetian spaces F L O Q ^ and 
FLOQ^V2 are isomorphic. This of course does not imply that the restrictions of 
H \ FLOQ^i, and U \ FLOQ^j, are similar.103 If one prefers to work with 
generalized Floquetian spaces for z = 1, then this is possible by denning for z G C*, 
Hz : C

m -> C N by 
riz : — K-Z)iHKz j . 

One has 

CH,G)(t)- ^(2'/'ß (
(s ))G(< + s). 

j = 0 

(Notice that for z = 1,%Z equals the with • ' ° ' associated linear recurrence operator 

H.) For all G G (CN) one then has 

« ! ( r ' / « G ) = z-'^CHG), 

which implies in turn: 

Proposition 51 ker {% \ FLOQ^') = *'/»ker(7*z f FLOQ^"') {z G e ) , o 

Definition 3 Consider©'0'. By a'monodromy operator (of Ä '0 ' ) 'one understands 

any {U^fWq U^. And (U^)~XTq W'°> is called 'the monodromy operator (of 

• ( 0 ) ) ' ; Wedenote it by N. o 

Corollary 11 Any two monodromy operators of • ' ° ' are similar (with the Floquet 
operator) . o 

B.2.5 Relation between monodromy operators and semi-flows 

Denote by En the n x n—identity matrix. 

Proposition 52 The matrix of the monodromy operator of • ' ° ' with respect to 

the base e[ , . . . , e^', ,e\ , . . . , e ^ ~~ ' of(CN) , equals the matrix of the 

Floquet operator with respect to the base G\ , . . ., GN , , G\ , . . ., GN 

o/SOL(0». o 

Proof.— Denoting a matrix of a linear transformation B with respect to the base i 
and y by [£]*, the first matrix equals {{U^'W^W = [ (^ ( 0 )) _ 1]f [T,]g[W'0)]G = 
#A/jv['7 ]̂G

:.E'AfA' = [T^IGI >e- equals the second one. D 

Theorem 1 M = ^ 0 . o 

1 0 3To avoid any confusion: two H\ £ End(Vi) and H2 € End(V2) are similar if there exists a 
linear isomorphism U : V\ —• V2 such tha t UH\ — H2U. 
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Proof.— We have to prove that (£/(0>) TqU
m = * $ , i.e. that Tq \ SOL(0) = 

W( 0 )^ (W(° ) ) _ 1 . So, take G 6 SOL™ Then (U^^U^f^G = 

«(°>*$(G(0) , . . . ,G(g + M - 1)) = W<°>(Gfo),... ,G(g + M - 1)) = 

^o°(G(g),...,G(9+M-i))- F r o m t h e o t n e r h a n d ^0;(G(9),-..G(9+M-i)) i s the unique solu­

tion of >(°> that equals G{t) at t = q + s (0 < s < M - 1). Also T,G is such. Thus 

r , G = W<°)*^(WW)"1G. D 

B.2.6 Floquet multipliers and existence of Floquetian solutions o f© ' ' 

Consider • ' ° ' . An eigenvalue of the Floquet operator Tq f SOL*0' (or of a mon-
odromy operator) will also be called 'Floquet multiplier (of ©'°') ' . Its characteristic 
equation (characteristic polynomial) is called 'characteristic equation (characteristic 
polynomial) of*'0 ' ' . We shall denote the (different) Floquet multipliers by 

A i , . . . , Afc, 

their respective (algebraic) multiplicities by 

« l , • • • ,atk, 

and their respective geometric multiplicities by 

ßu • • • ,& . 

Because the Floquet operator is a linear automorphism, one has: 

Proposition 53 No Floquet multiplier is zero, o 

Because SOL' ' has dimension M N. one has 

»i + • • • + (>fc = M A'. 

Concerning the existence of Floquetian solutions of©'0 ' , proposition 49 implies: 

Proposition 54 [Floquet. (1883)] 9^ has a non-zero Floquetian solution of type 
(q,z) <=> z is a Floquet multiplier of Q*-0'. o 

Notice that if e " ^ with r- £ Q is a Floquet multiplier of « ( 0 ) , then • ( Q ) has a 

2sq—periodic non-zero solution. And notice that dim (SOL.'0 'n F L O Q Q ^ ) = ßi 

and dim (SOL(0) n FLOQ, J = 0 if z is not a Floquet multiplier of « ( 0 ) . 

Proposition 55 For each V € (C N ) M one has: (M - z id)nV = 0 <=> Ç$ 6 

F L O Q $ . o 

P roof . - (T, - zid \ SOL'0))" = UW(M - z id)"(W<0>f ' and 0 $ , = W'°»V. 

'=>': (T, - z id)ng{
0°l = U^{N - z id)nV = tf(°>0 = 0. 

•<=•: [AT - z id)nv = (w'0))"'((r, - z id)ngi%) = (w<°>f !o = o. a 



38 

B.2.7 Asympto t i c behaviour of solutions of • '"' 

Consider 9'-°'. Denote the generalized eigenspaces of the Floquet operator belong­
ing to the Floquet multiplier A; by 2?j- , i.e. 

V\n) = ker (7, - A,- id f SOL(0>)" (n > 1). 

(We also write Vj instead of V- .) For each Floquet multiplier A; let 

be its index.104 It is well known that 

(32) SOLm=v[ri)®--®V^k). 

Proposition 56 For • '"' one has 
( r yh SOL'0 ' = E®= 1 * ker(T, - A,- id \ SOL«0') ' = £® = 1 k kerftt \ FLOQ<™ 

Proof.— By (32) and proposition 49. D 

We now want to study the dimension of of SOL'0 ' D W for various linear 
subspaces W of C . Things become easier if W is %- and 7^-invariant. So, suppose 
this. Now, 

Tq f SOL(0) n w 

is defined. Because SOL' ' n W is a linear subspace of SOL' ' , each eigenvalue of 
Tq r SOL(0) n W is also an eigenvalue of Tq \ SOL(0), i.e. is a Floquet multiplier of 
• ' ° ' . Therefore, we can number the Floquet multipliers in such a way that 

A i , . . ,A , , 

are the (different) eigenvalues of Tq \ SOL'0 'fl W. (Of course, / < k.) Denote their 
respective (algebraic) multiplicities by 

Q l , . . .,&l 

and their respective geometric multiplicities by 

Ä.. . . .Ä. 

Furthermore, denote the generalized eigenspaces of Tq f SOL' ' n W belonging to 

the eigenvalue \j by Vj , i.e. 

£<"' = ker(T, - Xj id \ SOL'0 ' n W)" (n > 1). 

And for each eigenvalue Xj let 

be its index. Again 

(33) SOL'° 'n W = f>[fl) ®-®V{
l
f,). 

With these notations one has: 

' I . e . the least integer n > 1 so tha t Dj ' = Z>'n ' . Moreover, there are the general valid 

perties: 1 < dim(£>j) = (33 < aJt dim(XI 

This implies r3 < a3 and ot3 = ßj # r ; = 1. 
properties: 1 < d i m t P j ) = 0, < a,, d i m ( p ' r , ) ) = a,, d i m ^ " ' ) > / ? , + n - l ( l < n < r , ) . 
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Lemma 3 /. In case W = l°° : 

(a) \\j\ < 1 (1 < j < I) and each Floquet multiplier not outside T is an 

eigenvalue o/Tq \ SOL(0) D l°° ; 

(b) f^vj i / |Aj| < I, rj- = 1 i/|A>| = l ; 

(c) à, = aj if \\j\ < 1, à, = ßj if \\j\ = 1. 

2. In case W = c0: 

(a) \\j\ < 1 (1 < j < /) and each Floquet multiplier inside T is an eigenvalue 

o/Tq f SOL ( 0 )n c0; 

(b) fj = rj; 

(c) âj =atj. o 

Proof.— la. {0} ± kei (Tg-Xjid \ SOL'0 ' n W) = FL0Q,,]2 n /°° n SOL(0). 
Because of proposition 45(4), \Xj\ < 1. And, if A is a Floquet multiplier not outside 
T, then ker(T, - \id \ SOL(0) n /°°) = FLOQ, A n T f l SOL(0» = FLOQ, A n 
SOL(0) = ker (T, - Xid \ SOL(0)) ^ {0} and thus A is an eigenvalue of Tq \ SOL ( 0 )n 

lb. One has for each n > 1: SOL<0> n F L O Q ^ 1 ' = SOL(0) D F L O Q ^ => 

SOL(0) n l ° °n F L O Q ^ 1 ' = SOL(0) n / ° °n F L O Q ^ . . This implies fj < rj. 

If |Aj| < 1, then because of proposition 45(2), '<=' also holds and it follows that 

rj = fj. If Aj; = 1, then SOL(0) n /°° n FLOQ<2j[ = SOL(0) n /°° D FLOQ^l , so 

fj = 1. 

le. àj = d im(SOL ( 0 )n / ° ° n F L O Q ^ ) . If |Aj| < 1, this becomes by lb, 

d im(SOL ( 0 )n /°° n FLOOi^ ) =d im(SOL ( 0 ) n FLOQ^ ) ) = aJ-. And if |Aj| = 1, 

^ ) = d i m ( S O L < ° > n ^ ^ , , A j it becomes d im(SOL ( 0 )n /°° n F L O Q ^ ) = dim(SOL(0) n FLOO^1}.) =/*,-. 
2. As 1. D 

Theorem 2 Consider 9^. One has: 

1. dim (SOL.'0' n /°°) equals the sum of the algebraic multiplicities of the Floquet 
multipliers inside T plus the sum of the geometric multiplicities of the Floquet 
multipliers on T; 

2. dim (SOL* ' CI Co) equals the sum of the algebraic multiplicities of the Floquet 
multipliers inside T. o 

Proof— Using (33) and lemma 3, dim(SOL(0) n /°°) = £ , - = 1 à\m{vfi]) 

= ( £ j = l , | A | < l + £ ' = 1,^1 = 1)«., = E ^ l . l A i K l ^ + EUl . lAiNl^ ' 1 W h 'C h 'S t h e 

desired result. 2. As 1. D 

Corollary 12 Consider 9^°'. One has: 

1. dim(SOL (0) n lx) = 0 O each Floquet multiplier lies outside T; 

2. dim (SOL'0 ' n /°°) > 1 <=> at least one Floquet multiplier lies inside or on 
T; 

3. dim(SOL (0 ' n /°°) = MN O all Floquet multipliers lie on or inside T 
and each Floquet multiplier on T is semi-simple; 

J,. dim(SOL'°' D co) = 0 O each Floquet multiplier lies on or outside T; 
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5. dim (SOL' ' n co) > 1 O at least one Floquet multiplier lies inside T; 

6. dim (SOL' ' PI Co) = MN <=> each Floquet multiplier lies inside T. o 

Notice that we have obtained corollary 12 without using an explicit expression for 
the general solution of ©'°'. 

B.2.8 Adjoint on PER, 

On PER, an inner-product < | > is denned by 

<G\J>q:=Y,<G{t)\J(t)>, 
t=o 

where < | > is given by (19). 
Consider for an integer s > 0 the linear transformation T, \ PER,. Define the 

linear transformation Ts of PER,, by: given G S PER,, T,G is the unique element 
of PER, for which _ 

{T,G){t)=G{t-s)[t>8). 

Consider for a q — periodic sequence B :— (ßt),>0 °f End(Cm) (the multiplication 

operator) MB \ PER,. Define the linear transformation MB of PER, by 

MB" -Mn- f PER, 

where B* := (#*) ( > 0 . With these notations one has: 

Proposition 57 1. The adjoint (T, \ PER,) is (nothing else than) T,-

2. The adjoint [MB \ PER,)* is (nothing else than) MB- O 

Proof.— 1. Take G,L £ PER,. Then < T,G\L > , = YltZo < G{1 + S ) IL (0 > 
E ' = J _ 1 < G{t)\L(t - s) > = Yi'ir1 < G{t)\{T,L){t) > Because of periodicity of 

1-G and T,L this equals £*: o ' < G(t)\{T,L)(t) > = < G\T,L > 

2. Take G,L € PER,. Then < MBG\L > , = YUll < Bt(G(t))\L(t) > = 
ZIZo < G(t)\BÏ(L(t)) > = £ £ „ ' < G(t)\MB-(L(t)) > = < G\MB*L > , . G 

Now, consider • ' " ' . 

Corollary 13 One has (ft \ PER,) = ft, where the linear transformation ft of 
PER, is defined by: For G 6 PER,, ftG is the unique element of PER, with 

CHG)(t) := Eflo tâ'ifm - s)) (t > M), o 

Proof- (ft f PER,)* = (ZÏ=0MB{.>T. r PERq) = £:=0T, MBM. a 

(21) implies 

(34) S O L ^ D P E R , = ker(ft). 

Proposition 58 The dimension of the linear space of q—periodic solutions of* 
is the same as that of its adjoint equation 9&J. o 

Proof— By (34) and corollary 13, one obtains SOL^ fl PER, = ker (ft) = 
ker((ft \ PER,)*). The dimension of this last space equals dim (ker (ft \ PER,)), 
which in turn, by proposition 49, equals dim (SOL*0' n PER,). D 

»(0) 
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B.2 . 9 F l o q u e t i a n s o lu t i ons o f • 

One may look for Floquetian solutions of • . We consider this question for q-Flo­
quetian solutions in case U is q —periodic. 

Notice tha t the set of Floquetian solutions of type (r, z) of © ' ° ' equals SOL ' 0 ' D 
F L O Q r z which is a linear space and that the set of Floquetian solutions of type 
(r,z) of' O equals SOL n FLOQ r , which, like SOL, is affine. 

P r o p o s i t i o n 5 9 Consider 9 with non-zero q-perwdic U. Then each q —Floquetian 

solution of 9 is q—periodic, o 

Proof.— Suppose G £ F L O Q , z n SOL. One has U € F L O Q , j , %G G F L O Q , | 2 

and UG = U. Thus F L O Q , ^ n F L 0 Q , 2 ^ {0}. Proposition 41(1) implies 2 = 1 , 
i.e. G is q—periodic. D 

P r o p o s i t i o n 60 Consider 9 with q—periodic U. Then: 1 is not a Floquet multi­

plier of 9 ^ O 0 is the unique q—periodic solution of • ' ° ' O • has a unique 

q—periodic solution, o 

Proof.— This is a direct consequence of proposition 54 and proposition 11 with 
VV = P E R , . D 

Corollary 14 shows tha t in case 0 is not the unique q—periodic solution of © ' ° ' , 9 

(with q—periodic U) does not have necessarily a q—periodic solution. 

P r o p o s i t i o n 61 Consider 9 with q—periodic U. One has: 9 has a q—periodic 

solution <=> < G\U > = 0 for each q—periodic solution G of SOL^d . o 

Proof— 9 has a g -per iod ic solution -t> U e \m{H f P E R , ) <=> U € 

(ker(W [PER,)*)1 O [/e (ker(?Ô)X « U € (SOL^ n PER,)1 <=> 
< VW\U >a = 0 (1 <j< m). D 

Coro l l ary 14 If d im (SOL ( 0 ) n P E R , ) / 0, there easts U € P E R , so that « < ( / ) 

does not have a q—periodic solution, o 

Proof— Let V^\ ..., V^ be a base of S O L ^ D P E R , . Take for U one of the 

l/(J>. a 

Much more can be said on typical solutions o f © , 1 0 5 but this will not be done here. 

B . 2 . 1 0 P e r i o d s 

Given • ' ° ' , the set consisting of 0 and the positive values of r such tha t each 
B\' ,. . .,B\ is r—periodic forms (under the addition) a semi-group A. Denote 
A \ {0} by A*. An element of A* is called 'a period of 9 ^ ' . Let qmm be the 
minimal period of V°>. Then 

A = Cmin • N . 

In the above we have always automatically worked with the period q of >' ' . How­
ever, q is not necessarily the minimal period. Sometimes it might be desirable to 
work with gm in-1 0 6 

1 0 5For example, one may consider the following questions. If all Floquet multipliers of 9y are 
inside T and U <E l°° (co), does then each solution of • belong to f°° (co)? If each solution of 
9^ ' is bounded, is then also each solution of • ' ' bounded? (See for for example [12, chapter 
IV.l] in a differential equation context.) 

1 0 6 For instance as in conjecture 1. 
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Consider • ' " ' . Suppose r S A* and / is a positive integer. Then the Floquet 
operators Tq [ SOL' ' and TIQ f SOL' ' are well defined and one has: 

Tiq [SOL (0 ) = TQ f SOL(0). 

This implies: 

Proposition 62 If X\,. . ., \k are the eigenvalues of TQ [ SOI / ', then X\,...,Xl
k 

are those for TIQ [ SOL(0). o 

B.2.11 Real solutions 

In addition to the results in subsubsection A.2.6, we want to make some further 
remarks on real solutions for • . We suppose in this subsubsection real coefficients. 

One has 

(35) [C,T,] = 0. 

This implies 
C(ker (Tq - z id)n) = ker (Tq — z id)n, 

i.e. C (FLOQ^) = FLOQ^i. In particular G € FLOQ,,, => CG 6 F L 0 Q , 7 . 

Proposition 63 For • ' " ' with real coefficients one has: X is a Floquet multiplier 
=> X is a Floquet multiplier. And if G is a non-zero Floquetian solution of • ' ' of 
type (q, A), then CG is a non-zero Floquetian solution of • ' ' of type [q,X). o 

Proof.— Let G 6 SOL(0) with G # 0 such that TqG = AG. Then (CTq)G = C{\G). 
Because of (35), and the semi-linearity of C this becomes Tq(CG) = X(CG). So, CG 
is Floquetian of type (q, A). Because of (18) one has that CG € SO l / ° \ Because 
CG ^ 0, A is a Floquet multiplier. D 

Because of proposition 63 the Floquet multipliers occur in complex conjugate pairs. 

Proposition 64 For each real Floquet-multiplier X of 9^ ' wtth real coefficients, 
there exists a real-valued non-zero Floquetian solution of type (q,X). o 

Proof.— Let G be a non-zero Floquetian solution of type • ' ° ' of type (q, A). By 
proposition 16, 5?G and 3G are solutions of • ' ° ' . Using proposition 63 one finds 
that they are also Floquetian of type (q, A). The proof is complete by noting that 
one has 3?G ^ 0 or 3G ^ 0. 

B.3 First order vector case 

B.3.1 The object 

Denote • for M = 1 by ): 

G{t + l) = At[G{t)) + Ut{t>0) ». 

So, each At e G L ( C N ) , ^ ( + , = At (< > 0), each Ut € CN and G : N -> CN. 
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B.3.2 Monodromy o pe ra to rs and semi-flows 

Consider | . Because of propositions 18(2), 27 and theorem 1 one has the following 
explicit expressions for the monodromy operator M and the semi-flow $,,0' 

Proposition 65 1. M = Aq-i • • AiAo-

2. *,,o = ^ - i - - -^ i^o = ^ + E ; : i * ^ + i ( ^ ) - o 

Proposition 66 If F is a fundamental operator solution of >'°', then there exists 
a unique C € GL(CiV) so that F{t + q) = F{t)C (t > 0). In fact C = F(0ylAfF{0). 
o 

Proof.— F(t + q) is also a fundamental operator solution of &'°' because F(t + 
1 + q) = At+i+qF(t + q) = At+iF(t + q) (t > 0). By proposition 22 there exists a 
unique C € GL(CA') so that F(t + q) = F(t)C. In particular F{q) = F{0)C. So, 
by proposition 22, F^CF^)'1 = F{q)F{0)~1 = $ $ = tf. a 

Theorem 3 Every fundamental operator solution F of >'°) has the form 

F{t) = P(t)Bl (t > 0) 

where B € GLfC"), P(t) € End(CJV) (t > 0) and P(t + q) = P(t) (t > 0). o 

Proof.— By proposition 66, there exists a unique C 6 GL(C ) with F(t + q) = 
F(t)C (t > 0). Now apply proposition 39. D 

Denote the generalized eigenspaces of the monodromy operator M belonging to 
, b y £ < " 

£Jn) = ker(Af-Aj id)n (n > 1) 

the Floquet multiplier A, by £• , i.e 

(we also write Sj instead of £• ). For each Floquet multiplier \j let 

be the index of A/".107 One has 

(36) C " = S\ri) © • • • © S^k)• 

Because of M = (W(°')~V, W<°> one has V<jn) = UW(£Jn)). 

B.3.3 Explicit expression for the general solution of | ( ° ' 

Proposition 67 Let V0 e Sj. Then: Su°v0(<) = X^{A-t_t • • A0)V0. o 

Proof- By proposition 47(4), £ $ o ( l ) = *<°0V0 = ( < j £ > ^ ) K 0 = A / ^ f J v b = 

In case each Floquet multiplier is semi-simple,108 proposition 67 leads to an explicit 
expression for the general solution of >'°) (i.e. to a base of SOL' ' ) : 

107 Of course, because of corollary 11, this r} is the same as the index of the Floquet operator, 
for which we also use the symbol r3. 

1 0 8 I . e . its algebraic equals its geometric multiplicity. 
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Proposition 68 Suppose each Floquet multiplier Xj of >'°' is semi-simple. For 

eachj G { l , . . . , fc} , let Fl (0 < i < atj-1) be a base ofSj. Then, a base for SOL(0) 

i-T 

equals Xj' (Aï_1 • ••A0)F
3
i (1 <j <k, 0 < î < a , - 1). o 

Proof- HJ{t) := A C - 7 ) / ^ ^ ! • • • A>)F/. By proposition 67, each H\ € SOL(0). 
Because E j= i ctj = N = dim (SOL'0 '), the proof is complete if we show that the 
Hj are linear independent. For this it is sufficient to show the linear independency 
of their values (vectors from C ) at t = 0. These values equal Ff (1 < j ' < k, 1 < 
i < a,), which are linearly independent. D 

Things are more complicated when not every Floquet multiplier is semi-simple. 
To handle this general case, the appropriate generalization of proposition 67 is: 

Lemma 4 Let Vb G S.; • Then 
t - t 

eaW = (^-1--4o)E™on(^""1)A7-' { J J (tf-A,«l)V» o 

Proof.- g$t(t) = *(
(0

0Vo = (AUi • • -Ao^^Vo = 

{A?-1 • • -AoW - Xj id + Xj id) *T l'0 = 

M l - i - - - ^ o ) E / S ( 'f ) (A ' -A > W) 'A / X -Vo = 

M ï - i " - > M E , = o ( H 1 , n ~ , , V 1 ~ ' ( '~f ) (AT-A.-.-djVo. D 

Because of proposition 5 one obtains: 

Corollary 15 Let V0 £ C . Decompose VQ — E j = i ^0;j according to (36). Then 

^ ( ' ) = E ^ ( ^ r ' •>*o)Er=
ion(^,ri',,V -' ( f ) (tf-A,W)V<*. • 

Proposition 69 For each j G {1, . . ., k], let Fl (1 < i < ctj) be a base of £j . 

Then, a base for SOL' ' equals 

(A-, •••>io)E,=o(¥,r'"l,>/1"' ( f ) (^-^ id)'^ (i < J < *. i < 
i < ctj). o 

Proof.— By lemma 4, all the given objects belong to SOL'0 ' . Because E j = i Qj 
N — dim (SOL' ' ) , the proof is complete if we show that they are linear independent. 
For this it is sufficient to show the linear independency of their values (vectors from 
C ) at / = 0. These values equal F / (1 < j < k, 1 < i < <n), which are linearly 
independent, n 

Notice that for t large enough the general solution of SOL'0 ' equals 

EU E£i ci(A-t_, -MEliö1 V - ' ( f ) {M- x, id)1 Ff. 
The above explicit expressions are, in fact, not very explicit. They simplify in 

the autonomous case. However, the best results for explicit expressions are obtained 
in subsubsection B.4.7 for the arbitrary order autonomous scalar case. 

9 The Jordan canonical form of N may be useful to calculate further [M — Aj id) 
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B.3.4 Asymptotic behaviour of solutions of ) 

Theorem 4 Consider I with q—periodic U. One has: I has a bounded solution 
<=> I has a q—periodic solution, o 

Proof.— ' <=': Evident. ' =>': It is equivalent to prove: I has no q—periodic 
solution => I has no bounded solution. So, suppose I has no q—periodic solution. 
Because of proposition 60, 0 is not the unique q—periodic solution of >' K So, 
SOL'0 ' n PERg has positive dimension, say m. By proposition 58, also SOL^d n 
PER, has dimension m. Let V^\ ..., V<m' be a base of S O L ^ n PER,. Because 
of proposition 61 one does not have < V^^\U > = 0 (1 < j < k). Let jo so 

that < y(>°)|£/ >q £ 0, i.e. with V := V^"\ YllZo < V(t)\U(t) > / °- Because of 
proposition 20 one has 

V(t) = ( * $ + 1 ) V ( 9 - l ) ) ( 0 < < < « - ! ) • 

So, this inequality becomes 

« - 1 

x:=^<V(q-l)\*)°l+l(U.)>t 0 
3 = 0 

and by taking t = 1q — 1 one obtains 

Because of proposition 27 one has <&(]0 = $(
(°0' + 5Zj=o *t°+i(^») (' ^ 0)- Because 

of proposition 47(1) this becomes <&,+,,,,, = *t
(°o + E l=o * l ° + i ( ^ ) C i > °)- F o r 

i = q this becomes 

*ü+i),,» = ^ + X>£+ i ( t f . ) ( j>o) . 
j = 0 

Now fix a solution G of | . From the above $(j+i)q,jq(G(jq)) = Af{G(jq)) + 

T.1ZI < . + i ( ^ ) , that ,s G((j + 1),) = JV(G(j,)) + £ ^ < i + i ( ^ ) , hence 
< V(g - l) |G((j + l)q) > = < V(9 - l)|jV(G(j9)) > +x. From this 

< V(q - 1)|G((J + 1)9) > = <V(q- l)\G(jq) > + X (j > 0). 

Write this as J/J + I = yj + x. One finds yj = yo 4- j r (j > 0). So, we have proven 
that 

< V{q - l ) |G((j + 1),) > = y0 + j * (j > 0), 

which shows that G is not bounded. • 

B.3.5 Reducibility 

If in >'°' one makes the linear substitution of variables J(t) = Lt(G(t)), then, as 
we have seen in proposition 17, one obtains the vector recurrence equation 

J(t + l) = (Lt+1A,L:1)(J(t))(t>0). 

Proposition 70 If in >'°) one makes the linear substitution of variables J(t) = 
Lt{G(t)) where Lt+q = Lt (t > 0), then the vector recurrence equation obtained is 
again of type >'°', and its monodromy operator is similar to that of >' ' . o 
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Proof- Because of the invertibility and q—periodicity of the Lt, the equation 
obtained is of type >'°'. By proposition 65 the monodromy operator of | ' ° ' 
equals Aq-i• • Ao and that of the obtained vector recurrence equation equals 
{LqAg-iL-\)(Lq-iAq-2L-l2) • • • (LiAoLö1) = Lq(Aq-i • • A0)Lôl = 
LQ(Aq-i --Ao)^1. a 

Proposition 70 makes clear that given two vector recurrence equations of type >'°' 
(with the same q), it will not always be possible to transform the one into the other 
by a q—periodic linear substitution of variables. However, one has: 

Theorem 5 >'°' can be transformed by a q—periodic linear substitution of variables 
into an autonomous equation of type >'°'. o 

Proof.— Applying proposition 39 to $J 0' with C — <9qji (see proposition 47(3)) 

gives ^ = P(t)Bf with P(t + q) = P(t) and B invertible. Take Lt = P(t)~l• 

Then Lt+lAtL;1 = B ' ^ i ^ y ^ ^ B ^ = B. G 

Theorem 5 is at the heart of the reason why the theory for periodic coefficient 
equations is so similar to constant coefficient ones. However, to determine the 
Floquet multipliers one needs to know the Floquet or a monodromy operator. In 
the first order constant coefficient case the monodromy operator is A and in the 
case of periodic coefficients it equals Aq~\ • • Ao, a much more complicated object. 
This is one of the differences between constant and periodic coefficient equations. 

B.3.6 Autonomous (first order) case 

We always shall denote the autonomous linear vector recurrence equation D by Jr. 

G{t + i)=A{G(t)) + U (<>0) _|, 

where A 6 GL(C/V) and U € CN. By proposition 65(1), the monodromy operator 
of _>(°) equals A. Thus the Floquet multipliers of _|(°' are nothing else than the 
eigenvalues of A. Instead of 'Floquet multiplier of _|<0)' one usually speaks of 
'characteristic root of _ | '0 ' ' . So, a 'characteristic root of _>(0'' is nothing other than 
an eigenvalue of T\ f SOL' '. 

Here are additional (typical) properties for the semi-flows for autonomous equa­
tions. 

Proposition 71 Consider _>. One has: 

1. * , _ , ,=ƒ«-« ' ( M ' > 0 ) ; 

2. *,,,- = *e-t',o ( < > < ' > 0) and * t ,0*t',o = *«+t',o (M ' > 0); 

3. (<I>t,(o)teN ls a one-parameter semi-group of mappings of C ; 

4- For the principal operator solution Fp of _|'°) one has Fp(t +t') = Fp(t)Fp(t') 
(t,t' > 0 ) . o 

Proof— 1. This follows from proposition 18(2). 
2. Because of 1. 
3. *o,o = id and * t+t',o = *(+(',(*(,0 = *e',o*«,o-
4. Fix t'. Both F(t + t') as F(t)F(t') are operator solutions. Because they are 

equal for t = 0, they are equal. • 

Notice that, if G is a solution of J><°>, then G(t) = -4'"to(G(<0)) (<o,< > 0 ) . 
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For the generalized eigenspaces belonging to the characteristic root \j of _f}°' 
one now has 

£Jn) = kev(A-\j id)n (n> 1). 

Propositions 67 - 69 and corollary 15 can be simplified in an obvious way. For 
example proposition 68 can be restated as follows. 

Proposition 72 Suppose each eigenvalue of A is semi-simple. For j G {1, . . . , k], 
let F- (0 < i < a , — 1) be a base of the eigenspace of \j. Then a base for SOLA ' 
equals Aj-F/ (1 < j < k, 0 < i < a3•. - 1). o 

Here is a new result. 

Proposition 73 For V0 g £Jn) one has £$,„(*) € £Jn> (t > 0). o 

Proof.- (A - \j id)n{Ç0y0(t)) = (A- \j id)n(A*(V0)) = A* ({A - A, id)n(V0)) = 
-4<(0) = 0. a 

Also a new result is the following 'stable subspace theorem'. 

Proposition 74 Consider _»(°). Let E := YLj,\\ | < I £jn)• !f G ls a solution of 

_|(°) u)it/i G(0) £ E, then G(t) G E (t > 0) and lim«-»«, G(i) = 0. o 

Proof.— Write G(0) = £ j . #,- w i t h # j € £ J o ) . Then G = 0<^ ( o ) = £o°E • Wj = 

ZjG{o%,- By Proposition 73, E j ^ C ) 6 £,• f j r i ) = #• Moreover, lim,-»» G(l) 
= 0 by lemma 4. D 

Finally, let us determine a particular solution of _>. Well, from the variation of 
constants formula (22) we may take for this 

( - 1 

G{t) :=AtJ2A~'~lU-

Moreover, in case id — A is invertible, (id — A)~ U is a particular solution of _|. 
This solution even is constant. 

B.4 Arbitrary order scalar case 

B.4.1 The object 

We are going to study an equations of the form 

M 

J24,]9(t + s)=wt (t>0) J, 
J=0 

where wt,v\ ',...,v\ ' € C (t > 0), no v\ ' and no v[ ' is zero, each v\s' is 
q — periodic and g : N —> C. Notice that J is nothing other than • for N — 1. So, all 
results for • also apply to J. From the other hand J is a scalar recurrence equation, 
so we can also consider the with J associated vector recurrence equation < J > and 
all specific results for ) also apply (in some sense) to J. 
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B.4.2 Monodromy matrix 

Proposition 75 1. The Floquet operator of j ' ° ' and of < j(°' > are similar by 
(the linear isomorphism) V : SOL(0) -> < SOL(0) > . 

2. The monodromy operator of j ' ' and of < / 0 ' > are equal, o 

Proof.— 1. For g e SOL^ , both {(VTq)g){t) and {{TqV)g){t) equal (7^)(t + </). 

2. By theorem 1 the monodromy operator equals $ql- Now apply proposi­
tion 35. D 

By 'the monodromy matrix of j ' ' we understand the matrix of the monodromy 
operator of J with respect to the canonical base of C . Denote by 

„<"-») v(0) 
Mt = Comp{-!im-,...,-{m) 

Vt vi 

the transfer matrices associated with j ' ° ' . 

Corollary 16 The monodromy matrix of j ' ' equals Mq-\ • • Mo- o 

Proof.— By proposition 65(1), Aq-\ • -Ao, where At = Mt S End(CM), is the 
monodromy operator of < j ' ' >. This implies the desired result. G 

B.4.3 Determination of Floquet multipliers 

Because of corollary 16, one has that the characteristic equation of / c ' equals 
| X , _ i • • MiMo — z id\ = 0. For the Floquet multipliers Ai , . . . , \k of J*0' one 
has: 

(o) (o) 
Proposition 76 1. X, A2 • • • A. = (-\)Mq v

(°u) ^M) • 
vo 'Vq-l 

2. Ai + . - . + A* = r r r ( . M , _ 1 X , _ 2 •••Mo). 

Proof.— 2 is evident and 1 holds because of Ai • • • A* = \M\ and (24). D 

It is possible to generalize the above results for • . However, this is not done in 

this article. 

B.4.4 Explicit expression for the general solution of j'°' in case of semi-
simple Floquet-multipliers 

In trying to obtain explicit expressions for the general solution of j ' ' one can take 
the route via < j ' ' > and the (not so explicit) results in subsubsection B.3.3. Here 
we use another route. 

cause of proposition 51 this becomes 
Consider J(0). By proposition 56, SOL*0' = £f=i,...,* ker {U \ T£OQq

r'x\). Be-

SOL<n)= Y, K/q^CH*, \TCOQ(^). 

Now further suppose that all Floquet-multipliers are semi-simple. Then one has 

SOI,(0)= Y, K/qk"W^ \TCOQqA) 
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and ker(?{A, \TCOQqA) has dimension a,-. F i xa base y^\ .. ., j/«> of TCOQqil 

and consider [Hx, \ TCOQqi]
y
y € Mq[C), i.e. the matrix of Ux, f TCOQqA 

with respect to this base. Let fij = I E P (1 < j < Oj) be a 

V f.Ai) ) 
base of ker([7{A, f TCOQqA}l). Then EL i / . , j ( ' ) y ( " (1 < J < a . ) i s a b a s e o f 

ker(ftA, f TCOQqA) and thus A ^ ' E ^ f,j{l)y^ (1 < » < M < J < a,) is a base 
of SOI/0). The rest of this subsubsection is devoted to determine [Hx, { TCOQq^\yy 

in case ?/' ' = <j(''; Here 

K/9fiAi)(l<i<kA<J<ai) 

is a base of SOL/c '. In the following we only consider the case q > M. 

Lemma 5 Suppose q > M. 

i n#l) = Ei=i *ti)sU) + ZU«-»* ^"+l~j)su) (i < ' < M). 

2. 7tf<0 = Z'j=,-M v ^ S ^ (M + 1 < / < q). o 

Proof.- With lemma 2. 1. Ttf' = ( (E l= 0 + E « , )K ( ' ) T . )M ( ' ) - £ ' .=„ « i *^ ' - * 5 + 

2. ns' = E L »(
(,,r,*' = E " „ ̂ ' - s = EJ=,-M vt'Ui = 

Corollary 17 For t/ie matrix [H f . T ^ ö ß , , ^ = {Hji)l<j<q !<«<? o n e ' , a s ! " c a s e 

ç > M 

1. ifl<l< M: 

H-,-, = t/J0) + W , ( M ) (i = /); 
Hil = Q{l + \<j<q + l-M-\); 

Hji = ZV(^l-3) (q + l-M<j<q). 

2. ifM + l<l<q: 

Hji-0{l<j <l~M - 1); 
Hji = v{j-s) (l-M <j< I); 
Hjt = 0(1 + 1 <j<q). o 

B.4.5 Asympto t i c behaviour of solutions of J 

The result of theorem 4 also applies to J: 

Theorem 6 Consider J with q—periodic w. One has: J has a bounded solution <=> 
J has a q—periodic solution, o 

Proof.— ' <=': Evident. ' =>': Suppose g is a bounded solution of J. Because of 
proposition 29(2), Vg is a solution of < J >. Vg is bounded. Because of theorem 4, 
< J > has a q—periodic solution, say G. Because of proposition 29(3), QG is a 
solution of J. QG is q—periodic. D 
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B.4.6 Second order scalar case 

In this subsubsection we always consider J with M — 2: 

v(2)g(t + 2) + v{
t
l)g(t + 1) + v\0)g(t) = wt (t > 0). . 

Proposition 77 /. The transfer matrices associated with «'°' are given by 
/ 0 1 \ 

M t = ,.(°) „(O 

"TW - ^ 5 1 
(< > o). 

2. The monodromy matrix of • ' ° ' equals Mq-\ • • Mo-

3. The characteristic equation for • (" ' equals 

*a-n*iET=o 
o 

(°) 
q - 1 -

(1) (o) 
V, V, Proof.— 1. Mi = Comp (-757, -757) 

..(°).,(°) ..(°) 
)* + »0 V i • " ; - ! _ n / , \ — U. (2) (2) (2)~ 

«i ^ •••«',-1 

0 1 \ 
(o) (O I 

2. By corollary 16. 3. If A is a linear transformation of a 2—dimensional linear 
space, then its characteristic polynomial equals \A — z id\ = z2 — Tr (A)z + \A\. 
Because of 1 and 2 the desired equation now follows, a 

In case «W has real coefficients, its characteristic equation also has real coefficients. 
This implies in this case for the Floquet multipliers A1( A2 of »'°' that Ai, A2 € M or 
Xl = X2. (Also see proposition 90.) 

Proposition 78 Consider the Floquet multipliers of «'°' with real coefficients. De-

fineAq -T r lTCrJo I » " — " - - - » 1 and D := ' ^ ' f c ' . Then 
1 \ „(o) „(o) 

/. One Floquet multiplier is inside and one is outside T <=> |1 + D\ < |A9 | 

2. Both Floquet multipliers are inside T <=> 1 + D > |A,| , Ö < 1; 

J. flo</i Floquet multipliers are outside T <=> 1 + j j > IT^I , 7=7 < 1- ° 

Proof.— Because of propositions 77(3) and 92. D 

P r o position 79 For q > 3, the 
. . . , <5'9' equals 
/ (0) (1) (2) n 

0 4 0 ) ^ 42> 

0 0 4 0 ) 4 ] ) 

0 0 0 v{0) 

0 0 0 0 

zv{2}x 0 0 0 

i, zvq
X) zv{

q
2) 0 0 

matrix of H f TLÖQql 

• 0 0 0 \ 

• 0 0 0 
• 0 0 0 

• 0 0 0 

• • v{0) v W v{2) 

V
q-2

 V
q-2

 V
q-2 

• 0 0 „<°> j 

with respect to the base 

. 0 
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Proof.— Because of corollary 17 with M = 2. D 

Finally, here is an example of a semi-simple Floquet-multiplier that is not simple: 
Take q = 2, v\ ' = v\ ' = 1 and v\ ' = 0. Then the monodromy matrix equals 

' 0 \ \ ( Q \ \ ( - \ Q \ , . • • . • i t u » • 

so —1 is a semi-simple eigenvalue that is -l o y v -1 ° / V ° -1 

not simple. 

B.4.7 Au tonomous case 

We shall denote the autonomous linear scalar recurrence equation J by J. Thus: 

M 

£V5 )£(t + s) = w (t > 0) J, 
j = 0 

where v^'\w 6 C, t / ° ' / 0 and t / M ' / 0. We shall see that the characteristic 
polynomial of / ° ' takes a very simple form and shall give a very explicit expression 
for the general solution of J. 

A Floquet multiplier of j ' ° ' usually is called 'characteristic root of J' ' ' . A 
'characteristic root of j ' 0 ' 1 is thus nothing other than an eigenvalue of the Floquet 
operator 7ï f SOL'0 ' or, by corollary 16, an eigenvalue of the monodromy matrix 

v(M-l) v(0) 
(37) M = Comp(-

V(M) '•••>VW 

Again, we shall denote the (different) characteristic roots of j ' ° ' by 

A i , . . . , \k 

and their respective (algebraic) multiplicities by 

Concerning the geometric multiplicities one has: 

Proposition 80 Each characteristic root of j ' ° ' has geometric multiplicity 1, so a 
characteristic root of J is semi-simple if and only if it is simple, o 

Proof.— See proposition 88(1). D 

Proposition 80 does not hold any more for i^°'. For instance, for q = 2 it is possible 
to have a Floquet multiplier with geometric (and algebraic) multiplicity 2 as we 
have seen in subsubsection B.4.6.110 

Proposition 81 The characteristic polynomial of j ' ° ' equals 

Proof.— This polynomial equals \M — ZEM I = ( — 1) \ZEM — M\ which by propo­
sition 89 takes the desired form. D 

Thus the characteristic equation is equivalent with v^M^zM + u ( M _ I ) z M _ 1 + • • • + 
v(°'z° = 0. It is this equation that one normally uses in practice. And one thus 
has: 
(38) vW)zM + • • • + v(°)z° = t/M>(z - Ai)°" • • • (* - Xk)

ak. 

°This is (for q = 2) connected with the so called 'coexistence problem'. See, for instance, [19]. 
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Proposition 82 Let A be a characteristic root of j ' ° ' . Then 

|A |<max ( l + | ^ | , . . . , 1 + 1 - ^ 1 , 1 ^ , ) . o 

Proof.— The characteristic equation is equivalent to (—1) (zM + v ,M\ zM~l + 

• • • + V/M\ z°) = 0. Proposition 91(1) implies the desired result. D 

It is possible to provide a very explicit expression for the general solution of j ' ° ' 
as we shall see in theorem 7. The with J' ' associated recurrence operator equals 

M 

j = 0 

Lemma 6 /. ker(Ti - A; id)" Ç SOL(0) (1 < i < k, 1 < n < a,-). 

2. F L O Q ^ = ker (7i - A,- id \ SOL (0))" Ç SOL(0) (1 < i < k, 1 < n < a,-), o 

Proof.— 1. Suppose (71 - A, id)a'g = 0. By (38), U = £ ^ 0 i><'>7i' = 

«("»(Ti - A, id)"1 • • • (Ti - A* id)a*. So, Hg = I >W(IL=I ,«»H (71 - A, M)a ') 

(Ti - A, id)a'~n{Ti - A, !rf)a3 = 0. 2. Because of 1. D 

Consider the generalized eigenspaces 

V{"] = ker (7Ï - A, id r SOL (0))" (1 < i < k, n > 1) 

ofTi f SOL(0). 

Proposition 83 The index of a characteristic root of j ' ' equals its algebraic mul­
tiplicity, o 

Proof.— Because of lemma 6(2) and proposition 41(4) one has for 1 < n < a, that 

dim(2)jn)) = dimker((Ti - X id)") = dim ( F L O Q ^ ) = n. Because r; < a, = 

dim(î'1-
r , )) one finds a, = r;. O 

Proposition 84 Consider J '°'. One has: 

1. SOL«0* = P< a , ) © • • • © 7J><ak) = ^£OG(
1"A

,
1
) e • • • © FCOQftl; 

2. A base of SOL(0) is gtuen 6y /"'A} (1 < j < k, 0 < i < a, - 1). o 

Proof.— 1. Because of (32), proposition 83 and lemma 6. 2. Because of 1 and 
proposition 43(2). D 

Proposition 84 implies: 

Theorem 7 The general solution of j'°> is £ jL j ^ l " 1 C/^'AJ.111 o 

Theorem 2(1) and corollary 12(3) become, because of proposition 80: 

Proposition 85 / . dim (SOI/ 'f~l /°°) equals the sum of the algebraic multi­
plicities of the characteristic roots inside T plus the number of characteristic 
roots on T; 

l n I f one calls an expression of the form A'p(i), where p is a polynomial, a 'quasi-polynomial', 
then this theorem can be restated as follows: Any solution of J is a sum of quasi-polynomials 
of the form ]C l = i ^ [Pt (0 i where p, is a polynomial of degree less than a , . 
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2. dim(SOL/°' n /°°) = M <=> all characteristic roots lie outside T and each 
characteristic root on T is simple, o 

Proposition 36 may be used to find a particular solution of J. However, the 
following considerations are more appropriate for it. Let us look for a polynomial 
solution of J of the form 

g{t) = dn. 

Inserting this into J gives £3J=O v^c(t + s)n — w. That is 

(39) 

This leads to: 

fc=0 V ' 5 =0 

M Propos i t ion 86 Consider J. R := inf {r 6 N | £ " o v^>sr ^ 0}. Then 0 < R < 
M and *"/ »—tR is a solution of J. o 

Proof.— With V ^ ( I J W . I ; * 1 ) , . . . , ^ ' ) S C M + 1 and Wr := (0r, V, . . ., M r ) e 
C M + 1 one has £ ? i o u<J>sr = 0 <=> < K|Wr > = 0 <=> Wr € (Vect(K))1. 
Wo,---, WM are linear independent: Indeed, the matrix A € MM+I(C) with W; 
as i—th row equals Vand(0,1 , . . . , M) and has non-zero determinant, So C = 

Vect(iyo> • • •, WM)- Because (Vect(K)) has dimension M, one now has 0 < R < 
M. With (39), it follows that 

C Miscellanea 

E M i ) ( ' ' . « 
tR is a solution of J. G 

C.1 Companion matrices 

A Vandermonde matrix is a matrix of the form 

/ 
*l 

I \ zl *2 *2 

where z\, . . . , z„ £ C. We denote this matrix by Vand(zi,. . . , zn). 

Propos i t ion 87 |Vand(zj , . . . , zn)\ = Ui<j<i<Jzi ~ zi)- ° 

Proof.— For = 1,2 the formula is correct. Now take n > 3. By reducing the last 
column in the expression of |Vand(zi,.. ., zn) | to 1,0,..., 0 and then developing 
to this column, one obtains |Vand(zi,. . ., zn)\ = (zn — zn^i)(zn — zn_2) • • • (zn — 

1 1 1 
zi)|Vand(zi, • • •, zn_1)\. (For example, |Vand(zi, Z2, Z3)| = Z\ Z2 Z3 

1 1 1 
zi - z3 • 1 z2 - z3 • 1 0 

Z321 23*2 0 

= ( Z 2 - 2 3 ) ( * 1 - Z 3 ) ( - 1 ) 

'I 

1 1 
Zl z2 

(Z3-Z2)(Z3-

zi)|Vand(zi, 22) I) This leads in an obvious way to the desired result. D 
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A companion matrix is a matrix of the form1 

/ 

0 

We denote this matrix by 

0 
-a\f-i - "M-2 - a i / 

Comp (a\ ,«MJ-

Proposition 88 Each eigenvalue of a companion matrix has geometric multiplicity 
1, thus is semi-simple if and only if it is simple, o 

Proof.— Looking to a companion matrix A, we see that \m(A — z id) has dimension 
at least M — 1 for each z. So, ker(v4 — z id) has dimension 0 or 1. Therefore the 
geometric multiplicity of an eigenvalue equals 1. D 

If p = zM +p\zM~l + • • - + PA/-1*1 +PA/20 is a (monic) polynomial (in z), one calls 
the matrix Comp ( p i , . . . ,PM) the 'companion matrix of p'. One has the following 
result: 

Proposition 89 For each monte polynomial p = 2 + p\z + • • • + PMz° ' " z 

one has p = \ZEM ~ Comp (p\,. . . , p.wll- ° 

Proof.— By induction. The result is evident for M = 1 and M = 2. One has 
\zEM+i - C o m p (pi, . . .,pM+i)\ = ( -1) + |Comp(pi , . . . ,pM+i) - zEM + i)\- Ex­
panding the determinant by the first column this becomes 

( - l ) M + 1 ( - P M + i ( - l ) + 2 • 1M - *|Comp ( P I , . . . , P M ) - zE„)\ = PM+i + 
Z ( - l ) M | C o m p ( p 1 , . . . , p M ) - 2 Ê A / ) | = PM + i + z ( z M + p i z M - 1 + • +PM-1* 1 + 
p M z ° ) = i : M + 1 + p 1 z M - ( - - - - ( - p M 2 1 - ( - p M + i Z

0 . O 

The explicit form of Comp (a i , . . ., UM) easily leads to 

(40) |Comp(ai , . ..,aM)\ = (-\)MaM, 

a result that also follows from proposition 89. 

C.2 Location of zeros of polynomials 

Here, we collect for our purposes some useful results for the zeros of a polynomial 

p(2) = p °z M +p l 2
M - 1 + • + pM-lZ1 +PMZ0 

(where M > 1) with real or complex coefficients and po ^ 0. 
One type of result concerns the location of the zeros in relation to the real axis 

(on the axis or off the axis). They are useful in the context of real-valued solutions 
(and of oscillatory behaviour) and are especially interesting for M = 2. Such an 
important (easy) result is in case p has real coefficients: If 2 is a zero of p, then 
z is also one. Another type of result concerns the location of the zeros in relation 
to the complex unit circle T = {z € C | \z\ — 1} (inside, on or outside the circle). 
As we have already seen, they are useful in the context of qualitative properties of 
solutions; There are many such results.113 We present a selection of them, useful 
for our purpose. 

1 l 2 For M = 1 one has to interpret this as Comp (aj ) = a i . 
1 1 3For application to the differential equations case there are related results for zeros with nega­

tive, zero or positive real part . 
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Proposition 90 Consider the two zeros z\,Z2 of z2 + bz + c € M[z]. Let zi, z2 be 
the two zeros of p. Then 

1. z i ,z2 6 !R or z\ —li; 

2. e ^ O =>zi ^ 0 , z 2 ^ 0 , -

3. Ifc< 0, t/ien z l l Z 2 £ l * ; 

4. z i , z 2 € T => |c| = 1; 

5. If c > ^-, then zj = Z2 and |zi | = |z2 | = %/c. o 

Proof.— This is easy. For example, 4. Z\z% = c, so |c| = |zi||z2| = 1 1 = 1. 5. 
if c > 62/4, then by the square root formula z\ = z^, so \c\ = |zi | |z2 | = |z i | , thus 
| 2 l | = |22| = v fc Ü 

Proposition 91 Consider p with complex coefficients, po = 1 and PM ^ 0. 
Then for each zero z of p: 

1. \z\ < max(l + | P I | , . . . , 1 + | PA / - I | , \PM\) < l +max ( | p i | , . . . , | p M | ) [Cauchy's 
bound]; 

2. \z\ < max(l , \pi\ + • • • + \pM\) < 1 + |pi| + • • • + \PM\ [Montel's bound]; 

3. \z\ < \J\ + |pi|2 + • • + \PMI2 [Carmichael and Mason's bound], o 

Proof.— See, for instance, [15, pages 316, 317]. D 

Proposition 92 Consider the two zeros of z2 + bz + c € M[z]. 

1. One zero is inside and one is outside T <=> |1 +c\ < |6|. ( If \ jjA _U' > 0 > 0, 

i/ien (0 < 9 < 1 andj |a-x| < 1 - § and |z2 | > (1 - f ) " 1 . ; 

2. Both zeros are inside T <=> 1 + c > |6|, c < 1. 

3. /ƒ c ^ 0, </ien; a// zeros are outside T <=> 1 + \ > |j}|, i < 1. o 

Proof.— Let z\,z-i be these two zeros. Define ƒ : K —> M by f(x) = x2 + bx + c. 
T h e n / ( l ) / ( - l ) = (|l + c | - | i | ) ( | l + c| + |6|). 

1. 4=: Then /(l)ƒ(—1) < 0 which implies (because ƒ is a parabola) that ƒ has 
exactly one zero in ( — 1,1). The other zero has thus absolute value > 1. 

=>:Then zi ,z2 6 » . If |1 + c| = |6| would hold, t h e n / ( l ) / ( - l ) = 0 and ƒ would 
have a zero with absolute value 1, which is a contradiction. If | l + c| > \b\, then / ( l ) 
and f(l) would have the same sign and there would not be a zero of ƒ on ( — 1, 1) 
or both zeros would lie there, which is again a contradiction. Thus |1 + c\ < \b\. 
(Moreover, because 6 ^ 0 , one has | 6 | - | l + c |> ö(l + |fc| + |c|) > 0(1 + |6|) > ö + | | 6 | > 
0 ( l - f ) + § | 6 | . Thus |fc|(l-§) > | l + c | + 0 ( l - f ) > | c + i - f f ( l _ | ) | = | C + ( 1 _ f ) 2 | . 
Thus ƒ ( ! - § ) ƒ ( - ! + | ) = (c + (1 - | ) 2 + 6(1 - | ) ) (c + (1 - f ) 2 - 6(1 - §)) < 0. 
Thus ƒ has exactly one zero in ( —1 + | , 1 — | ) . Thus |zi| < 1 — 5. 

We now prove that |z2 | > (1 - | ) ~ . If c = 0, then zx = 0, z2 = - 6 and 

|l>| - 1 > 0(1 + |6|). Thus in this case |z2| = \b\ > f^± > (because 0 < 0 < 1) 

(1 - | ) ~ . Now suppose c = 0. Then z\ := l /z2 , z2 := 1/zi are the two roots of the 

114 Any polynomial J(z) of degree a t least 1 can be writ ten in the form j (z) = Cz g(z) where C 
is a non-zero constant, g{z) = z n + p i z n ~ l + - • • -+- P n - l z + Pn (where n > 0) and p n ^ 0. The 
zeros of g are the non-zero zeros of ƒ. 
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quadratic equation z2 + | z+A = 0 and \z[ \ < \z'2\. Because j ^ J . ' . t î ! = i+jj|+ic| ^ °' 

it follows from the above that | z | | < 1 - f. Thus \z2\ > (1 - f )"1 . ) 
2. =>: Then c < |c| = \ziz2\ < 1. Because of 2 and |c| < 1 it follows that 

1 -f c = |1 + c| > | i | . Thus 1 + c > b, 1 + c > -b. Even 1 + c > i, 1 + c > - 6 since 
otherwise / ( l ) / ( - l ) = 0 . 

<=: In this case |c| < 1 because - 1 < | i | - 1 < c < 1, thus |1 + c| = 1 + c > |6|. 
Because of 2 one has therefore |z i | < |z2 | < 1 or \z2\ > |zi | > 1. Because |zi||z2| = 
|c| < 1, one has |zi | < \z2\ < 1. Because |1 + c\ > \b\, one has / ( l ) / ( - l ) > 0. Thus 
ƒ has on (—1,1) no or two zeros. In the second case \z2\ < 1. In the first case, the 
roots are not real and thus, because of 1, zi = z j and thus \z2\ — \f\c\ < 1. 

3. Because (z - -M(z - -M = z2 - ^±^-z + -±- = z2 - =±z + i , we see that 

i , -ä- are the two roots of z2 + ^z + i = 0. Thus because of 3, \M < l-M < 1 <=> 

l + i > f , l + i > - | , i < l . G 
A result in the spirit of proposition 92 for the arbitrary order case has been given 
by Jury and Marden. This can, for instance, be found in [3, page 165]. 

Floquet multipliers are the zeros of characteristic polynomials. So, one may wish 
to have results on the location of eigenvalues of matrices in terms of the matrix 
coefficients. For such results we refer to [15, chapter 6]. 
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