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Abstract

Floquet theory is an appropriate tool for studying ordinary linear recur-
rence and differential equations with periodic coefficients, and is a general-
ization of the theory for constant coefficients. Floquet theory has still not
found its way into economics, although it seems to be relevant for economic
dynamics. As well as a discussion of this relevance and an illustration of it in
the context of the Samuelson-Hicks multiplier-accelerator model, this article
contains an appendix that provides a quite complete exposition of Floquet
theory for recurrence equations.
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1 Introduction

Many models on economic dynamics are stated in terms of recurrence ot differential
equations. In such a model, it is usual to be interested in qualitative properties
of solutions such as asymptotic, oscillatory and steady state behaviour, in their
quantitative properties such as explicit expressions for solutions and in which way
solutions can be controlled. Various qualitative and quantitative properties can
especially be mastered in case of ordinary linear equations with constant coefficients.
One knows (see, for example, [2, 12, 16]) that in this context characteristic roots play
a major role. But, much less known is the facl that, in case of pertodic coefficients,
quite analogous results hold for such equations and that this much more general
case i1s only slightly more difficult to handle if one uses an appropriate setting.
The essential idea for such a generalization was given by Floquet [5] more than
hundred years ago, and this has grown into what today is called ‘Flogquet theory’
(see, for example, [2,6,11,12,17-19,21]). The resemblance between constant and
periodic coeflicients theory is because, locsely speaking, an equation with periodic
coefficients can be transformed by a substitution of variables into an equation with
constant coefficients.

Floquet theary has found several applications in physics (see, for instance, [18]).
However, as far as we know this theory has still not found its way into economics
(nor, far example, into biology), although we can imagine it may be of interest to
it, particulary for trade cycle and growth theory.! Indeed, as far as we know, the
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standard growth and trade cycle models have not been analysed in the context of
periodic coefficients.

Periodic coefficients form for (trade cycle and growth models) an interesting gen-
eralization of constant ones because they allow the inclusion of explicitly periodicity
aspects. The possible consideration of periodic coefficients can already be found in
the article [20} of Samuelson, in the sense of periodic government expenditures in
the context of his multiplier-accelerator model.? Once there is a model with con-
stant coefficients, it may be desirable to investigate whether a model with periodic
coefficients is preferable. In this context we speak of ‘Floquetization of a model’.
Floquet theory provides some analytical tools for the analysis of such models. In
this article we floquetize the Samuelson-Hicks model. In fact, the Floquet theory
is appropriate to dealing with equations where all coefficients are Floguetian of the
same type: we call ¢, ‘Floquetian of type (g,2)’ if

Cipqg = ZCt

for ali t. So, Floquetian of type (g, 1) is nothing other than g—penodicity. Floque-
tian coefficients are thus a generalization of periodic ones. Floquetian coefficients
also allow the inclusion of ‘trend’ aspects.

The organisation of this article is as follows. Section 2 contains a discussion of
the value of Floquet theory for economic dynamics and section 3 contains an illus-
tration of it in the context of the Samuelson-Hicks multiplier-accelerator model
After the formulation of this model we consider it for, among other things, asymp-
totic behaviour of motions, periodic motions and shock-independency. Because
{the scarce) references for Floquet theory found in the mathematical and physi-
cal literatute are not so appropriate for economics, we have added an appendix
that provides a self-contained modern and almost complete exposition of Floquet
theory for vector and scalar linear recurrence equations in a setiing that may be
appropriate for economics.® We hope that this appendix also may of interest for
itself.6

We hope that this article may serve as a starting point for further research.

2 Floquet theory and economic dynamics

We now give some fundamental reasons why periodic coefficients may be useful.
[1. Status of constant coefficients.] In economic dyramic models, coefficients are
often taken to be time-independent (i.e. constant). This may be more unrealistic
the longer the time horizon (i.e. duration}. Observations such as preferences may
be time dependent are an argument for allowing non-constant coefficients.” After
constant coefficients, periodic coefficients may be considered as the simplest ones.
It is not for nothing that econometric articles, like [7] on periodic autoregressive
time series models, allow for periodic coefficients. However, there seems to be a gap
between econometric and non-econometric studies dealing with periodic coeflicients
equations.® One question to be asked is why constant coefficients (even in linear

2But this only leads to periodicity of the coefficients in the right-hand side of the equation,

2The results in subsection 3.3 are mathematically rigourous.

1The work we present here is a new version of [21]. As well as an amelioration of the overall
presentation, it also contains new results.

5In fact the appendix covers more material than is necessary for sections 2 and 3. In [21] only
the second order scalay case was considered.

8We fully realize that the appendix is straightforward from a mathematical point of view.
However, we do not know a modern coherent presentation of Floquet theory like ours.

7" Think for example on influences due to winter and summer. However, dealing with aggregate
quantities, as in macro-economics, may weaken such influences.

1n the rest of this article we will not deal with econometric aspects.



models) remain nevertheless so popular. We collected three types of answers: ‘It
is tradition’; ‘I don’t know how to handle non-constant coefficients’; ‘The real-
world data are so bad such that such a refinement is not appropriate’. However,
only the last answer makes sense but does not eliminate the necessity for a theory
that can handle more general coefficients. In case of an infinite time horizon, a
constant coeflicients economic model has a good chance of having even an ‘absurd’
real-world interpretation. Indeed, in this case, such coefficients have in some way
the appearance of constants of nature, as they appear in physics, which is very
unrealistic for (contemporary) economics.? But even in physics there are only a
few such constants. One of the reasons for dealing with infinite time horizons is
the destre to discuss stability questions, notions that are primarily developed in the
context of such time horizons. So, we think that it is especially for (mathematical)
convenience that infinite time horizons are often dealt with.1?

[2. Problem of too regular motions.] In reality, a wide variety of fluctuating mo-
tions'! can be found that cannot be explained by economic growth and trade cycle
models, without policy instruments or stochastic exogenous influences!® described
by low order linear equations with constant coeflicients. The problem of too regular
motions may not only be ‘solved’ by introducing stochastic exogenous influences,
but also by using non-linearities in the model. In the latter case, even chaotic dy-
nammical behaviour may occur (see [4] for a recent overview). If linear equations are
allowed to be of arbitrary order {with constant coefficients) or to have non-constant
like periodic coefficients, then quite ‘irregular’ motions can occur even with such
cquations.!® In (the appendix) of this article we even combine the arbitrary order
feature with the periodic feature.!

{3. Shortcoming of shock-dependent trade cycle models.] In (8, page 41] a trade
cycle model is called ‘shock-dependent’ if (for reasonable values of the parameters)
the generation of cycles relies on an impetus which is not explained in itself by the
model. We have eliminated some vagueness in this definition of shock-dependency
by restating it as follows. We call a trade cycle model!® (with infinite time-horizon)
‘shock-dependent’ if a necessary condition for the existence of a cycle {for the main
endogenous variable} is that policy instruments'® that the model allows for are
applied, or that stochastic exogenous influences are present. In this article we call
a motion a ‘cycle’ if it is bounded and does not tend to a constant.!” Moreover we

9Even, we consider, contrary to the usual opinion, an infinite time horizon in an economic
model as very unrealistic, independent of the fact whether the model deals with constant or with
non-constant coefficients, and independent of what type of real-world issue it discusses: usual
ecenomic agents still have finite lives, society changes, and recent evidence on the decay of protons
suggests that the universe itself may be of finite duration ... .

1% Also notice that {(asymptotic) stability in an infinite horizon context can never be verified in
practice. We are not charmed by the (vague) reinterpretation of undetermined duration of an
infinite time horizon. What is needed in fact is some kind of shori-time stability theory that
takes into account the order of magnitude of the appearing coefficients as they may be realistic
for economics. Such (mathematical) theories exist (see, for instance, [10]). However, we were not
mativated enough to spend time at this stage in finding out in what sense they are appropriate
for economics. Therefore we are here pragmatic and only deal with an infinite time horizon case
setting.

Y1 Or ‘time-paths’ if you prefer this terminology.

120f course, the precise meaning of ‘stochastic exogenous influences’ has to be specified in a
given concrete model.

13But, of course, much less irregular than can be obtained with non-linear models.

1% And even with the vector-valued feature.

1501 course, a notion of shock-dependency also makes sense in other type of models, like in
growth models.

1May be government expenditures.

171t may sound strange, but we could not find a (mathematically) precise definition for the
econamic meaning of ‘cycle’, neither in the literature or in discussions. The same holds for ‘oscil-
latory’, ‘eyclical growth' and ‘trend”. Because for the purposes of this article it is not by all means
necessary to have such definitions, we do not propose to give one by adapting the mathematical



call a trade cycle model ‘shock-independent’ if it is not shock-dependent. Thus, a
trade cycle model is shock-independent, if and only if, a cycle exists in the absence
of policy instruments and stochastic exogenous influences. Traditional trade cycle
models are especially shock-dependent, often because the tack of policy instruments
and stochastic exogenous influences canses each motion to damp out or to explode.
Shock-dependency, like instability, is sometimes considered a shortcoming of the
model. Shock-dependency in linear models can generally be repaired by intreducing
non-linearities into the model equations.!’® We show that shock-dependency may
also generally be repaired by replacing the constant coeflicients by periodic ones.
This is illustrated in the context of the Samuelson-Hicks model.

3 Periodic Samuelson-Hicks model

3.1 Constant coefficients

First, we consider the version of the Samuelson-Hicks model (see, for instance,
[1,8,13]) that deals with the following system of equations:

(1 City=Y(t-1)+¢;
2 I=aYt-1)-Yt-2))+ 1
(3) Y{t)=C(t) + It) + G,

More or less realistic assumptions seem to be 0 < 4 < 1, > 1 and non-negativeness
of the C, [, Gy. Y (%) (national income (in period t}) is the main endogenous variable,
the others being C(t) {consumption) and {(t} (investment). G, (government expen-
diture) is a policy instrument. v (marginal propensity to consume), a (accelerator),
C (autonomous'® consumption) and f (autonomous investment) are parameters.?’
As usual we allow that the C(t), /() and Y {t) may be negative.

The system of equations (1) - {3) is equivalent (after a right specification of the
values of ¢ in the equations (1) - {3)) to the first order vector equation

(B) =01 ) ()

a Gl+l
(o "1 o) € Juzn wn

and also to the second order scalar equation
Y{t+2) —{y+a)Y{t+ D+a¥Y®)=C+I+Ga (t > 0) (SH)H

The original formulation of this model was by Samuelson [20]. A difference was
that (following Hanssen) he took I{t) = a{C{t}—C(t~1)) instead of (2). The other

notion of oscillatory as found in, for instance, [18], to economic purposes. {The reader may verify
for himself by drawing some figures that a cycle automatically shows some ‘oscillatory’ behaviour.)

V2Such non-finearities may not only be caused, for example, by quadratic expressions of the
endogenous variables but also by imposing restrictions on the range of these variables.

19 Autonomous’ here should not be confused with the mathematical one of, for instance, ‘au-
LGN OMOUS Fecurrence equation’,

20We use here the following economic {(system theoretical) terminology. Endogenous variables
{state variables) are determined by the model, policy instruments {control variables) have to be
chosen by man and parameters {parameters) are determined by the nature of the model. In some
models some other types of objects also occur.

2L A single scalar equation obtained from a system of scalar equations, like (SH), is sometimes
called ‘reduced form equation’. In economics one in general prefers to work with reduced form
equations.



difference was taking C = (f =)0. This model is called the ‘Samuelson model’ 22
The importance of Samuelson was that he used hiz multiplier-accelerator model
to show how cycles can occur in economics. In his fine bock [13] Hicks developed
the Samuelson model further.?? Like various other macro-economic models, both
models contain, the so-called multiplier-accelerator mechanism (see, for example,
[1]). Such models are not only based on implicit unrealistic assumptions (like the
one that there is no influence of other countries} and obscure the accumulation of
information and physical flows of the underlying processes, but also allow {in prin-
ciple) the endogenous variables to take unrealistic values such as negatives values
for the national income.?* This means that such models mainly have pedagogical,
illustrative and historical value.

3.2 Periodic coefficients

We now introduce the periodic Samuelson-Hicks model by allowing periodic param-
eters in equations {1) and (2). We replace in {1}, ¥ by 7—1 and C by C, and in
(2), @ by a;_; and I by I, and assume the parameters v, a,C; and [, to be
g—periodic. The systemn of equations such obtained is equivalent to the first order
vector equation

() =0 75 ) () + (o) o

a1 C,

(““0" 1 0) Cip | (£21) [PSH]
i
L

and also to the second order scalar equation

Y{E+2) =~ (yerr toes) )Y+ D +aen Y(2) = Coya +Lipp + Gy (t > 0} (PSH).

3.3 Results

Now, we present some results that can be obtained with Floquet theory for the
periodic Samuelson-Hicks mode]. These results are presented for the reduced form
equation (PSH),*®  where, v, o, C,, I, are g—periodic, 7, € (0,1), @ > 0, and
C,, I, G(t) arbitrary.?® They are discussed also in relation to well-known ones for
(SH) 27
221n this case, instead of (SH) we have
and Y(1 +2) — v(1 + )Y (L +1) +1aY () = Geyalt 2 0)  (5).

Notice that one obtains () from (SH) by replacing o by yo, I by 0 and ¢ by 0, which may be
useful for translating results among both models. {The same halds for the vector case.)

¥ Hicks' original non-linear trade-cycle model allowed growing avtonomous investments, which
makes it, in fact, a growth model. The model also dealt with an income ceiling and an investment
floor, which introduce non-linearities into the modet. (1) - (3) deal with a detrended version of this
model it the sense that the growing autonomous investments have been removed. Furthermore,
these equations deal with the so-called 'elementary case’ that refers to the specific number of lags
used. For recent mathematically rigourous results on the Hicks’ non-linear trade-cycle model see
[14]).

245ee [1] for more on the real-world interpretation of such models. (3) for example means that
product market equilibrium holds in each period (national product equals national income}.

25The reader may wish to try to imitate the coming results of the scalar recurrence equation
(PSH) for the vector recurrence equation [PSH). Notice that [PSH] is not the with PSIHf
associated vector recurrence equation {in the sense of proposition 29).

280{ course the ranges of a, C,, I, and, G{t} are unrealistic,

?7Proofs are given in lootnotes. These proofls may refer to results in the appendix where the
vector recurrence equations O, @, D, B, P and scalar recurrence equations 4, 4,4 are analysed.
[P5H] is a special case of B, (PSH) is a special case of J, [SH] is a special case of B and (5H)
is a special case of J.




A prominent role in the analysis of {PSH) is played by the so-called ‘Floquet
multipliers’ of the homogenous equation

Y42 = (nn + eVt + D)+ oY) =0(t>0) (PSH)®.

Such a Floquet multiplier is®8

L0 1
4 2
( ) H ( _aq—m Tq—m + aq—m )

m=0

nothing other than an eigenvalue of the matrix

This matrix is referred to as ‘monodromy matrix of (PSH)(O)’. Being a 2x 2—matrix
with determinant a - - - a4, the Floquet multipliers are the two roots of the quadratic
equation

g-1
2 _— 0 1 e -
(5) : (Tr "];—:IO ( —Og—m  Yg-m + Qgra )) T Y= .

For the constant coefficients equation (SH)(O) this equation becomes
2 —(y+a)z+a=0.

So, we see that the Floquet multipliers come down to the (well-known) characteristic
roots of (SH}(® 30

As is also well-known the position of the two Floquet multipliers of {SH)
with respect to the complex unit circle

31 (0)

T={zeC|lz=1)

is completely determined by the value of the accelerator:

(6} a <1 ¢ both characteristic roots are inside T,
(7N a=1 ¢ both characteristic roots are on T;
(8) o >1 ¢«  both characteristic roots are outside T.

It is thus impossible for one characteristic root to be outside T, while the other is
inside it.3* Moreover for (SH)(O) one easily sees that:

(9) No characteristic root equals 1 or — 1,
(10) A characteristic root is simple if and only if v # 2v/& - a;
(11) for a = 1 the characteristic rools are conjugate complex.

From (6) - (8) and (10} it follows that

(12) for (SH)(O), each characteristic root on T is simple.
28 s usti 5 i (2) _ (v _ 0y _
See, for the justification, praposition 77 where ;"' =1, v}’ = =41 — Q41,0 = Ceq1-

2980, we can speak, for example, about a ‘semi-simple Floquet multiplier’. Remember: an
eigenvalue is called 'simple’ if its algebraic multiplicity equals 1, and it is called ‘semi-simple’ if
its algebraic multiplicity equals its geometric multiplicity. Fach simple eigenvalue is of course also
semi-simple.

30 1n first instance one may think that there is an obvious relation between the Floquet-multipliers
and the coefficients. This is thus not true: the relation is through the complicated monodromy
matrix.

21 This result again follows from proposition 92.

32To avoid any confusion, by ‘inside (outside, on) T' we mean |z]| < I {]z| > 1, |2 = 1).



{5) - {11} are quite specific results for (SH)(O)A The following fundamental resuit is
specific for scalar equations with constant coefficients.®?

(13) A characteristic root of [.S'H)mJ is serni-simple if and only if it is simple.

New features arise for {P.S'H)(m. For example, there may be one Floquet multiplier
inside and one outside T.3*  And as a straightforward calculation (for g = 2) shows,
a non-simple and even a non-semi-simple Floquet-multiplier or: T is possible.®®
Also, in principle, because (PS'H)(U), 1s not (in general) an equation with constant
coefficients, it may very well have a semi-sitnple Floguet multiplier that is not
simple.?®  (We did not try to find out whether this indeed may happen for our
particular equation (PSH)®.3 )  Floquet multipliers for (PSH)® are more
difficult to determine and to locate than those for (SH)(B). With

it 0 1
D =ajay oy, Aq:=TrH( ).

meg N T¥g-m Ta-m + dXg-m

(6)-(8) now become the less transparent:3
1+ D < |Agl ¢ one Floquet multiplier is inside and the other is outside T;

(14) |Ag] —1 < D <1 ¢ both Floquet multipliers are inside T;
max (JAg| — 1, 1) < D < both Floguet multipliers are outside T.
And for property (6), one has:*

For small enough accelerators both Floquet multipliers of (PSH)(O) are

inside T,

Now, let us consider the asymptotic behaviour of motions*® for national income
of (PSH). Concerning this we consider their boundedness and their vanishing®!
for ¢ -3 0o. (These types of behaviour are directly related to stability notions.?? )
Two fundamental results are:43
I The dimension of the linear space of bounded motions of (PSH){O}

equals the sum of the algebraic multiplicities of the Floguet multipli-
ers inside T plus the sum of the geometric multiplicities of the Floquet
multipliers on T;

II The dimension of the linear space of motions of (PSH)(U) that tend
to zero equals the sum of the algebraic multiplicities of the Floquet
multipliers inside T.

33 Praof.- By proposition 80.

24Proof.— In case ¢ = 2 with oy = 1/20, a3 = 40,4 = 1/4,v2 = 4/5, (5) becomes 22 + 27.81z +
2 = 0 which, by proposition 92, has one root inside and one root outside T.

5 For example: In case ¢ = 2 with oy = § + JVT7, oz = 2217 2. =% = 1/2, there is
a non-semi-simple root on T.

36G5ee subsubsection B.4.6.

3 For g = 7 it does not happen. Indeed: A 2 x 2—matrix has a semi-simple root that is not
8 2 ) For g = 2 the menodromy matrix of (PSH)(D)
has the non-zero number v 4 a2 on the 12-place.

3% Praof.— By proposition 92.

32Proof.~ From Tr Hf;ol g _:
(

simple if and only if it has the form

) =¥ *+-¥q: {14} and continuity.
401 e. solutions.

411 e. tending to 0.

42 Also see footnote 79,

43Proof.— By theorem 2, proposition 14 and (18).



Easy implications of 1 and Il are:

i1l Each motion of (PSH)'? is bounded if and only if all Floquet multipliers
of (PSH)(D) lie on or inside T and each Floquet multiplier on T is semi-
simple;

IV Each non-zerc motion of (PSH)(U) 1s unbounded if and only if all Fle-
quet multipliers of (PSH)(D} lie outside T;

V Each motion of (PSH)' vanishes if and only if all Floquet multipliers
of (PSH)'™ lie inside T.

For { PSH) one has the following easy ** results (H is an arbitrary given function,
for example H = 0):

VI Each motion of (PSH) is bounded (tends to H) if and only if (PSH)
has a bounded motion (motion that tends to H) and each motion of

(PSH)'™ is bounded (vanishes);

VII Suppose (PSH} has a bounded motion B. Then: B is the unique
bounded motion of (PSH) if and only if 0 is the unique bounded motion

of (PSH)®.
From III - VII, (6)-(8) and {12) one obtains:

Each motion of (SH)(O) is bounded & a < 1;

Each non-zero motion of (SH](O) is unbounded & a > I;

Each motion of (SH) is bounded & (§H) has a bounded motion and
a<l;

VIl Suppose (SH) has a bounded motion B. Then: each motion of (SH)
not equal to B is unbounded < a > 1;

IX Each motion of (SH)® vanishes if and only if a < I;

X Each motion of (SH) tends to H < (SH) has a motion that tends to
H and all Floquet multipliers of (SH)KO) he inside T.

Whether (PSH) has a bounded or motion that tends to H depends on the au-
tonomous consumption, autonomous investment and government expenditures. It
is easy to see that a necessary condition for the existence of a bounded motion
is bounded government expenditures. Not so clear is the following result in this
context.®

Consider {PSH) with ¢--periodic government expenditures. (PSH) has
a bounded motion if and only if it has ¢—periodic one.

Now, let us consider the existence and unicity of constant and periodic motions
of (PSH) more closely. Constant motions are easy:

XI Consider {PSH). B, = (Q‘+2+L+2+G,+2]/(1-7¢+1) {t > 0). (P5SH)
has a constant motion if and only if B, is constant. In this case B, s the
unique constant motion and government expenditures are g—periodic.

440r see proposition 10 if wished.
45Proof.— By (a real solution version of) theorem 6.



So, by choosing appropriate g—periodic government expenditures, each constant

motion can be obtained. For pericdic motions, unicity is easy:*®

K11 A sufficient and necessary condition for a given r—periodic motion of
(PSH) to be unique is that {PSH) has 0 as unique r—periodic mo-
tion.

The first (easy) result we notice for existence is:%”

XIII Necessary for the existence of a r—periodic motion of (PSH) is that
government expenditures are lem(r, ¢)—periodic.

In particular, a necessary condition for the existence of a g—periodic motion is that
government expenditures are g—periodic. A more complete result, which is evident
for (SH), is:8

XIV (PSH) has a unique g—periodic motion ¢ government expenditures are
g—periodic and (PSH)(O) has 0 as unique g—periodic motion.

QOne can prove that:°

XV If, for (PSH)(O), 0 is not the unique g—periodic motion for national
income, then there exists g—periodic government expenditures so that
{PSH) does not have a g—periodic motion.

In order to find out what now actually happens, we notice the following fundamental
result:50

XVI (PSH)(OJ has a non-zero Floquetian complex®' motion of type (g, z)
if and only if z is a Floquet multiplier of [PSH)(O).

So, in particular: (PS'H)(O) has 0 as unique g—periodic motion <> 1 is not & Floquet
multiplier (PSH)®). We conjecture the follawing.5?

Conjecture 1 [f ¢ is the minimal period of (PSH)(O),” then 1 1s not a Floquet
multiplier of (PSH)".

Now, we can deduce the following

*6Proof.- By (a real solution version of ) proposition 10{2) with W the linear space of r—periodic
functions and B the given r —periodic motion.

4"Here ‘lcm’' denotes the least common multiple. If all autonomous consumption and investment
is zera, it is easy to see that even: a necessary condition for the existence of a motion that is Flo-

quetian of type (g, z} is that government expenditures are Floquetian of type {lem{r,q},z~ 7 ).

“Bpraof.~ XII and XII imply '=". '«: by (a real solution version of) proposition 60.

“IProof.~ By (a real solution version of ) coroltary 14.

50Ppoof.~ By proposition 54.

51'We add here the word ‘complex’ because one may allow a motion to assume complex values.
Of course, in the reai world, motions are real(-valued). However, by taking real or imaginary
parts of a complex metion a real one is obtained. Theoretical considerations often are simplified
by allowing complex motions. The theory in the appendix is especially developed for complex
solutions. This explains the above words ‘a real solution version’.

“2For g = 1 and ¢ = 2 the conjecture is true. For ¢ = 1 this follows from (8) and for ¢ = 2,
(5) becomes 22 — ({11 + o1 }va + az) — a) — a2)z + @03 = 0, which has not 1 as root, because
otherwise then one would have 1 4+ a1 + 03 = v1¥2 + a172 + v g, which is impossible because
w € (0,1) and a; > 0.

53This means that there is no positive integer r with r < g so that o, and -y, are r—periodic.

1 Proof.— Because of {14), both Flogquet multipliers are ingside T. Propaosition 62 implies that both
Floquet multipliers with respect to the period nq are also inside T. XVI implies that (PSH](D)
has 0 as unique ng—periodic motion. Because of XIV , (PSH) has a unique ng—periodic motion.
V and VI imply that each mation of {?SH) tends to this periodic motion.
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Consider (P5H) where |A;|—1 < D < | and government expenditures
that are periodic with a period that is a multiple of ¢, say ng. Then,
there exists a unique ng—periodic motion of (P SH) so that each motion
of (PSH) tends towards it.%8

For {5H) this becomes:

Consider (SH) with o < 1 and n—periodic government expenditures.
Then, there exists a unique n—periodic motion of {PSH) so that each
motion of (SH) tends towards it.5®

Now let us consider shock-dependency. Remember (see section 2) that (PSH)
is ‘shock-independent’ if and only if in case of zero government expenditures (and
no stochastic exogenous influences), there exists a cyclical®” motion for national
income. One has:58

XVII (SH) is shock-independent ¢» o = 1;

XVIIL If conjecture 1 holds and %i_’{ai'jﬂ (t > 0) is not constant,*® {PSH)
is shock-independent.

Finally let us look to explicit expressions for mations. First we consider the
homogenous case. Consider {SH )m). Suppose that there are k (different) charac-
teristic roots. Let A; (L < i < k) be these characteristic roots. As is well-known ®?
in case there are two characteristic roots, the general complex motion of (SH)(O) is
(with | and Cs complex constants) given by

C1/\:1 + sz\;

and in case there is only one characteristic root the general complex motion of
(SH)(O) is given by
Ci )\:1 + Czi/\tl.

11 is possible to adapt these results to (PSH)(O). However this is complicated and
will therefore not be done here.®!

55L.e. the difference of the motions tends to 0.

3¢ Samuelson mentioned such a result in [20, page 77] for the equation (5): ‘In case the product of
the marginal propensity to cansume and the accelerator is less than 1, perfect periodic government
expenditure will result eventually in petfect periodic fluctuations in national income.’

571.e. a bounded and not towards a constant tending.

“BProof of XVII .~ Consider (SH) with zero government expendituces. By XI, (5H) has
a unique constant real motion B. B is bounded. If o > 1, then by VIII , each non-constant
motion of (SH) is unbounded and if & < 1, then, by IX and X, cach motion of {SH) tends to
a constant. So, in both cases, (SH) does not have a cyclical motion. If o = 1, then by {7} and
(12) both characteristic roots lie on T and are simple. Let Ay, Ay be these roots. By (11), A = M,
(where the overline denotes complex conjugation). A} and ¢ are non-zero Floguetian motions
of (SH)Y of type {1, 71). They are baunded. g := AL+ X is a real bounded motion of (SH).
Because of (9), Ay # 1. This implies that ¢ does not tend to a constant. Thus g is a cyclical

Proof of XVIII .~ Censider (PSH) with zero government expenditures. If conjecture 1 holds,
then by XIV , (PSH) has a unique g—periodic motion. Because of X1 , this motion is not
constant and thus is a cycle.

39 Natice that this condition on g—'{"_’%i—'{ﬂ is a very weak one.

#0 This result again can be found in theorem 7.

S1If wished, see subsubsection B.4.6 in the appendix for the case where each Floquet multiplier
is semi-simple.
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A Linear recurrence equations

A.1 Settings

We present Floquet theory for recurrence equations. Here is an informal discus-
sion of the possible settings for this case.%? We always assume we are dealing
with a single recurrence equation, i.e. not with a systems of equations,®® and
with ordinary equations, i.e. not with partial equations ®1 The most important
choices to be made then are between: scalar/vector variable, linear/non-linear equa-
tion, semi-infinite/infinite/finite domain, first /second/arbitrary order equation and
elliptic/non-elliptic equations. Here are some comments on these choices. In the
scalar vartable case, the dependent variable takes values in C and in the vector vari-
able case it takes values in C™ (or even in a module). By ‘semi-infinite’ we mean
that the domain of the dependent variable is of the form {z|z > a} or {z|z < a} 55
For the notion of ellipticity see subsection A.2.1. Especially the treatment of non-
elliptic equations may give some technical difficulties. Our proper references for
recurrence equations are [6, 16, 22

The theory of atbitrary order (linear) vector recurrence equations is contained in
the theory of first order {linear) vector recurrence equations. No wonder that various
results for first order linear vector recurrence equations and arbitrary order linear
scalar equations are similar; Having once the results for the vector case, those for
the scalar case may be obtained with less effort. %8 First order linear equations have
the advantage that they are more easy to handle and that they provide a theoretical
more transparent setting for a dynamical system approach and as a consequence
also for stability notions.®” However, sometimes the equation is a scalar one, like
(%), and it may be desirable to have direct results in terms of (S} rather than the
with (5) associated vector equation.

It is peossible to present both linear scalar as the linear vector case m what we
call ‘operator language’ and ‘equation language’. In operator language the main
object is an operator and in equation language it is an equation; An operator can
be associated with an equation and vice versa. In operator language, it is usually
not only the main operators that are introduced, but also others. Operator language
has the advantage that the linear algebraic structure®® becomes more transparent.5?
Translations between these languages is straightforward.

Finally, we want to look at other issues which may play a role in fixing the
setting. 1. Instead of using complex-valued coefficients, it is possible to use real-
valued coefficients in which special attention can be given to real-valued solutions.”™

*2Instead of ‘recurrence equation’ one also uses the (less correct) term ‘difference equation’ which
is in fact an equation like g(= + 2) + cos{%w]g[r) + g{r — 1) = 0 (z € R). Recurrence equations
are simpler mathematical objects than differential equations, in the sense that in dealing with
recurrence equations, same technical details that have to be handled for differential equations do
not appear. Various of our considerations hold also (in some way} for differential equations.

53To avoid any confusion: we refer to, for example, (1)-(3) as a system of (scalar) equations and
to [SH] as a single {vector) equation. Written out in coordinates, an equationin an N ~dimensional
vector-variable corresponds to a system of N equations in V scalar variables and a system of scalar
equations may, by intreduction of vectors, written as a single vector equation.

84 Partial equations are equations like g(m, n + 1} —4cos (m)g{m,n) +g(m,n—1) = 0 (m,n € Z).

85 OF course, to study this case it is possible to use only the form {x|z > 0}.

€8 Praposition 29 plays an important role here.

57 For our purposes a dynamical system approach is too abstract.

58 For abstract (linear) algebra we recommend [9].

59 Operator language hecomes almost obligatory if interest lies with functional analytic questions
where eigenvalues of {certain restrictions of} the operator are dealt with, (We do not have such an
interest in this article.) This can also be done in equation language by introducing an eigenvalue
parameter. This means that on the right-hand side of the equation a term eg{t) explicitly appears.
(¢ ts the eigenvalue parameter.) This term can also be taken into account on the left-hand side by
including it in a coefficient.

T For complex coefficients, real-valued solutions have lesa chance to exist.
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For real ccefficients, the presentation of the theory can benefit from also allowing
complex-valued solutions. II. Certain types of second order scalar equations can be
rewritten to a so-called ‘seif-adjoint form’ (see [16, page 251}). IIL It is possible to
consider equations with stochastic coefficients (see for example [18]).

It is clear that a (possible) combination of all the above mentioned choices leads
to many different settings. In general, a presentation for a specific setting needs at
some points some minor and at at other points some major modifications for it to
become a presentation for another setting. As far as we know, the whole picture of
settings has not ever been discussed systematically in the literature. It would be
interesting to have a (clear but not forced) presentation that enables all of these
choices to be take into account {almost).

We now look at what choices may be especially appropriate for economic (trade
cycle and growth) theory. In this context, it may be interesting to compare these
with similar settings for (solid-state) physics. In physics, because of the Newton
and Schrodinger equations, it is especially second order equations that are used. In
economics, the domain is normally semi-infinite (to the right) which is related to the
economists interests in the future and to infinite horizons. In physics, the infinity
of the domain also occurs, because many models deal with position and self-adjoint
equations are important because of quantum mechanics. In economics, only real
coefficients are important. In contrast to physics, there are several applications in
economics where, in first instance only real-valued solutions are dealt with. The
non-elliptic case does not seem to play an important role in economics.

We present Floguet theory for settings that deal at least with the appropriate
cases for economics. The formulation of results is in equation or operator language,
while proofs usually use operator Janguage.”! The organization of the rest of this
appendix is as follows. After a presentation for our purposes of useful resuits for
linear recurrence equations with arbitrary coefficients (see [16] for additional re-
sults and for examples), we consider Floguet theory for linear recurrence equations
with periodic coefficients. In each of these two settings, the first order vector and
arbitrary order scalar case are dealt with.

A.2 Arbitrary order vector case
A.2.1 The object

A (N —dimensional elliptic M-th order linear) vector recurrence equation is an equa-
tion of the form

M
D.BG(t+s) = Ui(teN)  ©,

s=0

where M > 1, each B*) € End(CV), even B!” BM' € GL(CY),” each U, € T
and G : N — C¥. In case N = 1, one speaks of a ‘scalar recurrence equation’.
‘Elliptic’ refers to the invertibility of 8" and B™’. The B{*) and U, are called
‘coefficients’. In case no coefficient depends on ! one speaks of an ‘autonomous
equation’. A mapping G : N — CV that satisfies @ is called a ‘solution of ®’. In case
we want to make explicit the dependence on U of @ we also use the notation @)
In particular, @), is obtained by taking I/ = 0. ©49  is called the ‘(associated)
homogeneous equation’. It is possible and often even usual to take for Bf‘) an
element of My (C), i.e. a N x N matrix with complex coeflicients and to interpret
it in a natural way as a transformation of CV; In such a context C" will refer to

"l We hope that our modern presentation of periodic coefficients theory may for various readers
give a new view on and better understanding of constant coefficients theory.

72N denotes the set of non-negative integers, End(C?) denotes the collection of all linear trans-
formations of CV and GL(CN) denotes the group of bijective linear transformations of CV.
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column vectors. However, in the following we prefer a coordinate free presentation

{i.e. we try to avoid matrices).

. . . . N
Given @ (or @ if you want), one defines the linear transformation % of (C7)

by
M
(HG)(t) = D" B(GIt + 5)).

=0
We call H “the (with ©@®)) associated (vector) recurrence operator’.”™

Given m € N, we define for r € N the linear transformation 7, of [(C'"}N

by
(7:0)() =h{t+r).

One has for all » £ > 0
T:Te = Tese.
And we define for a given sequence B := (8;),,, of End(C™) the linear transfor-

mation Mp of (C™)N by™
(MpG)(t) = B (G(2))-
Given @(°), one has with these notations™
M
H = Z MB(')T-I"
3=0
We denote the set of solutions of @ (©®} ) by
SOL (SOL®).
It is clear that
N
Yo

SOL'” = ker (¥) and SOL = {G e (CY) | HG =V}

N
So, SOL® forms™ a linear subspace of (C¥)  and SOL is affine. Thus for each
(G € 50L one has
(15) SOL = G+ S0L@.

In this context one calls G a ‘particular solution of ®’. Here is the so-called ‘super-
position principle’.

Proposition 1 If ¢y is a solution of @) and G, is a solution of ®Y), then for
alle,d € C, ¢Gy + dG3 15 a solution of EU+dv)

Proof, — HGl - U,HG? = V, 30 7{(661 + dGz) = C’HG] + d?'tGg =cl/ + dV. O

7 Also forms for @ like EiL BES)(G(t + s}) = Uy, where L < M would be possible. However,
our form has the advantage that H is a linear transformation of (CN)N.

™ One may call Mp a 'multiplication operator’.

EAnd m = N.

76 Under the usual addition and scalar multiplication.
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A.2.2 Initial value problems and dimension of SOL'®

Proposition 2 is quite fundamental. It guarantees the existence and uniqueness of
several (what 1s called) ‘initial value problems for @’ and in particular proves that
SOL # ¢. The ellipticity of © is responsible for this result.

Proposition 2 Consider @. Givenity > O and Vo,. .., Viy—, € GV, © has a unique
solution G with G(te) = Vo,.. . ,Gllo+ M —1) = V. ¢

Proof.— Define Gty + 5) .=V, (0 < s < M —1). Now successively for s =
M, M +1,..., uniquely define G(lp + 5) from G(tg +5— M),... ,G{lg+5s—1) so
that © is satisfied for t = £y + s — M. And successively for s = 1,2, ..., tp, uniquely
define G{tg — 8) from G(tg — s+ 1),...,G(to — s + M) so that @ is satisfied for

t =ty — 5. So, G is as desired. O

Proposition 3 Consider @), Given 1, >0 and My,.. ., My_1 € End(iCN).
There erists o unique F : N = End{CV) with F(tg) = My,.. ., Flta+ M - 1) =
My and DX BPF(t+5)=0(t>0). o

Proof.— In the same way as proposition 2. 0O

An F : N — End(C") with T™ B F(t +s) = 0 (1 > 0) is called ‘operator
solution’ of @®). If F is such, then for each ¥ € CV, G(t) := F(1)Y is a solution
of @),

Corollary 1 Two solutions {or operator solutions) of @) that are equal in M
consecutive poinds, are equal. In particular: Any solutton (or operator solution) of
©®) that equals 0 in M consecutive points, 15 equal 1o 0. <

A.2.3 Various fundamental mappings

Because of proposition 2 there exisls for each tg > 0 and V .= (Vp,..., Vu-1) €

(CN)M a unique solution G of @ with G(lp+s) =V, (0 < 5 < M — 1}, We denote
this solution by
Gtu;V-

For the homoagenous equation ©”) we denote Gi,.v also by gffi)v. One thus has
(Giov (o). Gy ta+ M 1)) =V.

Proposition 4 If (7 is a solution of ©, then G = Gi,i60,),...,Gltet M ~1)) (to > 0).
o

Proof.— G and G ;(Giea),....Gitat M—1)) 3re solutions of @ that equal G(to + 5) in
t =15+ s{0< s<M-—1). Because of proposition 2 they are equal. O

Proposition 5 Forall VW ¢ (RCN)M, to > 0 and ¢ € C one has

1 Gv — Giow = gt(g;)v-w- so the difference of any two solutions of @ is a
solution of @01,
) _ ol 0 0 _ a
2. gt(u;v+w = YoV +gfg;)w' gz(n;)cv = Cg:(u;)v' @

Proof.-— 1. The superposition principle (with Ul = U2 = U, ¢ = 1 and ¢z = —1)
gives Giov — Gegw € SOLI . Because at t = fp + s {0 < s < M — 1} this solution
equals V, — W,, proposition 2 implies Gry.v — Grgw = g:(f;)v-w- 2.As1. 0



Consider @. Define for an integer 15 > 0,
., - (c"™ 5 soL

by
U (V) = Geyv

Iy will also be denoted by i and for @9 also the notations U!(E) and ¢ will be
used. So, 2 4@ . (€M™ 5 SOLO For ¢, > 0, define the mapping
Qt,t' M CN) CN)

by
(16) (V)= (G (B),... Guw (E+ M - 1)),

For @{®) also the notation ‘I’z(,:)' will be used. One thus has
Ge (V) = (@ VL), V)t + M — 1)),
We call each of the mappings ®; ++ a ‘semi-flow’.

Proposition 6 For each solution G of ©, one has &, . (G{'), ..., GI'+M-1)) =
(G{t),...,G{t+ M — 1)) (1,1' >0). o

Proof.— By proposition 4. O
Proposition 7 Consider ©. One has:
L &, =id(t>0);
2@y Py = By (8T >0}
3. B¢ is mvertible and one has (<I>¢’¢r)_] =&y, (£, 2>0). 0

Proof — 1. Because (Gyv(t),... . Gv(t+ M —1))=V.
2. One has
(V) = Geny (1), Gony (t + M 1))

and one easily calculates that
tI)t.‘,(I),:.tuV =
(GeritGrn () Gor (et eM =1 s (Gri(0,00 (40, Gy pitam—1 L+ M — 1)),

To see that these two expressions are equal we notice that
Gy = g,,;{gl,,iv(,.)r”]g',,;v(t.i,M_1)) {(indeed, at t'+s both solutions equal G,y (' +

s)).
3. Because of 1 and 2 one has ®, ;+®;; = id and &y P,y =id. O

Proposition 8 LUy — U (0) = ut(f}'n

2 B — Bee(0) = B o

Proof.— 1. If one applies the left-hand side toV € (CN)M one obtains G, v —

Gto00,...,0)- By proposition 5 this equals g‘ ‘v, L.e. Lo the right-hand side applied to
V.2.As 1.0

™ To avoid any confusion: {Hey — Uy (ONV = Uy, (V) - Uy,
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Proposition 9 [ {a) Each U,(:) : ((CN)M — SOL) is a linear isomorphism,
-1
its thverse being (Ut(f)) (G) = (G(ta),... CGlto + M —1)).
{6} Each Uy, 15 a bijective affine mapping.

2. {a) Each <l>( ¢ 15 a linear automorpfizsm.
(&} Fach ¢'¢_¢n is a byjective affine mapping.
{¢) Each ®,, is a homeomorphism. ¢

Proof. — la. u,‘ ) is linear: by propos:tmn 5(2), H,u (tVi+ealy) = gh:),)c;V1+C2V2 =

aglth, + e g(o = alliPVi 4 clli V.
Hzo) is 1n_]ect1ve 1”1(0)‘[/ =0, then Qt 4 =0, in particular ¥ = (g(“) {to},. ..,
,(f)v o+ M-1)=0. U( ) is surjective: If G € SOL!™, then, by proposition 4,
a)
G =6,k .Gt ba-1y = oy (Glto); -, Glla + M = 1)),
Furthertnore, for G € SOLI? by proposition 4, ((Ht(o) (ZI(U) ) HOES
0 0
(ul[o)(G(to)v‘ ‘ .,G(t(] + M - 1)))“) = gi(o)(G(to) G(tD+M—1))( ) = G(t) And for
-1
veeh (@ uly =) 6l =
1b. Because of la and proposition 8.
Za. Linearity follows from proposition 5(2). Bijectivity holds because of propo-
sition 7(3).
2h. Because of 2a and proposition 8.
2c. By 2b and the fact that ((CN)M has finite dimensicn. O

So, SOL!® is isomorphic to ((CN)M. Now from (15):
Corollary 2 SOL and SOL? have (affine) dimension MN.™8 o

Denote by
€1,.. €N

the canonical base of CV, i.e. all N coefficients of €; are zero with the exception of
the j—th one that equals 1. And, for 0 <: < M -1, t € j < N, denoting by

e
the element of (CN)M that has e; at place { and 0 at the other places. One easily
verifies that e} (0 <i < M —1, 1 <j < N)is a base of (CV)" . The distinguished
solutions .

G OLi<M -1, 1<j<N)

of ®®) are defined by
(') . (03

G_(;) = H(D)(eg‘)), so by proposition 9(1a) one has that Gfii) <i<M-11¢<
Jj < N) is a base of SOLO,

78 The determination of these dimensions in case of ® where one does not suppose ellipticily is
not so easy. Hlowever, one can show that corcllary 2 remains valid in case all EEM) € GL.(CN].
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A.2.4 First order versus arbitrary order vector recurrence equations

Here we shall see that first order vector recurrence equations are in fact quite general
by showing that given @, one can obtain a with @ equivalent first order vector
recurrence equation. Indeed, if G : N —s C¥ is a solution of ®, define

Gt} =Gt+i—-1) (1 <i< M)

Then
G,‘(t+l):G{+1 i]{lSiSM—l),
M-
BMeout+1) ==Y B¢, +u”.
3=0
With
Gi{t)
Gi=| ¢ |e@m =o',
Gul(t)

this can be written as

diag(id, id, . . ., id, BMG(1 + 1) =

0 id 0 cen 0
0 0 id 0 0
: : : G+
0 ] (1 - id U
rBfO] _Bil) 4352) _Bt(M—l) t
With the aid of (block) companion matrices (see subsection C.1) and
¢
U! = 1
0
U

this becomes
Gt + 1) = diag(id, id, .., id, (B*") ") (Comp(8™ ™V, B”)(G(1)) + U.).

This is a (¥ M -dimensional first order linear) vector recurrence equation. The great
advantage of first order vector recurrence equations is that they are more easily to
solve. Indeed, for example in case I/ = 0 one has, if we abbreviate the above equation
as G(I + 1) = MG(t), G(t) = (N1 ---M)G(0). However, notice that the B}’)
are elements of End(C"), which complicates things. One has to do with numbers
in case N = 1, a case that will be made more aperational in subsubsection A.4.2in
case ¥ = 1.

A.2.5 Typical solutions

Proposition 10 Consider ©. Let W = J + Wy be o non-emply affine subset of
N N

€y
1. The following statements are equivalent.

{a) Each solution of ® belongs to W.
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(b) Each solution of @) belongs to Wy and @ has a solution that belongs
to W.

2. Suppose © has a solution B that belongs to W. The following statements are
equivalent.

{a) B is the unique solution of ® that belongs to W.

(b) 0 is the unique solution of @°) that belongs to Wy. o
Proof — 1. ‘a = b SOL #£ @. Take G € SOL. Then G € SOL N W. If
H € SOL®™  then by proposition 5(1), G — H € S0L. Therefore G- H € W. Thus
H=G-(G-H)e W-W=W,.

‘b <= a" Take G € SOLN W. Let H & SOL. Then G — H € SOL, so
G-—HeW, Thus H=G—- (G- Hle W.

2. ‘a = b’ Take G € SOL® with G # 0. Then B+ G € SOL and B+ G # B,
s0 B4 G ¢ W. If one would have G € Wy, then B+ G € W, a contradiction. Thus
G & We.

‘b <= a’ Let G € SOL with G # B. One has G — B € SOL(® and G~ B # 0.
Therefore G — B ¢ Wy. If one would have G € W, then on would have G — B € W,
a contradiction. Thus G & W. O
Proposition 11 Consider @. Let W be an H—invariant finite dimensional linear

subspace of (CV )N. Then, the following statements are equivalent.
1. For each J € W, @Y has precisely one solution that belongs to W.
2. For each J € W, @) has a solution that belongs to W.
3. © has precisely one solution that belongs to W.
{. 0 is the unique solution of ©) that belongs to W. o

Proof.— All four statements are equivalent with bijectivity of H [ W : W o W,
&)

Important examples of W’s are (taking m = N):
{*:= {G : ¥ > C™|C is bounded};
= {G N> lec_Li+mmG(t) =0},
FLOQ,, :={G: N3 C™ [G(t+q) =2G{t) (t 2 0)} (¢ 2 1,z € C*);
PER, == FLOQ, ;.

In particular FLOQ, , is the linear space of the constant functions N —+ C™. Later,
in case of equations with periodic coefficients we will see how Floquet multipliers
give information on the belonging to I and ¢j of solutions. Natice that for FLOQ, ;
one has

N
FLOQ,, = {Ge(CY) | T,G =2G).
With || Y )] we denote the Euclidean norm of Y € CV.

Proposition 12 In case there exists C > 0 so that || B,(’}Y l<CIY |y ec™)
for all s and t, one has;

1 U gl® =SOLN ™ =B
2. U€Cu=>SOLr] Cu:ﬂ.o
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Proof.— 1. Suppose G € SOL N [ Then also t — (HG)(t) = 31 B (Gt +
s)} €1, Because U/ = HG, U € 1%, a contradiction. 2. In the same way. O

The question about the {algebraic) dimension of SOL® 0 (> and of SOL™ N ¢q
may be in general a difficult one, but in case of % has a simple answer as we
show in theorem 2. Indeed, for linear equations with periodic coefficients a lot can
be said about the asymptotic behaviour of solutions.”™

@) has 0 as constant solution. There is another constant sclution if and only f
}:fiﬂ BE") 1s singular. In general, @ does not have a constant solution. A necessary

and sufficient condition for this is that there exists ¥ € Im Zf—.o Bﬁs) so that Uy =
(Zio BE’))Y; ¥ 1s then is a constant solution. In particular, in case Ziu Bﬁ’) =

0 (t > 0), each constant ¥ ¢ €V is a solution of ©(9).

A.2.6 Real solutions

I this subsubsection we always consider ® for real coefficients; i.e. one even has
that each B,{” € End(R") for each ¥ € R" and each U; € BR™. In this case the
interest may be in real(-valued) solutions of @, i.e. in solutions G : N —+ R™ . The
coming definitions and results may be useful for this.5°

If B is an affine subset of (CN )N, define B’ as the set of real-valued elements of
B. B'is a k—linear subspace of B (in particular SOL’ and SOL are defined).5!
Notice that in proposition 2, G € SOL' if V,,...,Vy_; € RY. Again for each
G € SOL":

0L’ = G + SOL®".
Fix a positive integer mm > 1. One defines for each function G : N — €™ the

functions
RG,3G N+ R™

by L L

{(RG)(t) := gﬁ;_qﬁ(ﬁ_ (Q9)(t) := G(t) 2—2.(1‘(1).

(Here, for (z1,...,2m) €C™, {£1,...,&m) = (F1,.. ., Fm).) Then
G =RG+1:19GC.

What is useful for opetator !angu;ﬁe presentations, if one wants to deal with real
solutions, is the mapping € : {C™) " — ((C'“)N defined by

(CG)(t) = a(t—)

Notice that ¢? = id and that C is semi-linear, i.e. that C(G + H) = C(G) +
C(H), C(eG) = tC{G}. In terms of € one has:

B' = {Ge B|CG =G},

G+CG . _ G-CC
2 2i

7 This behaviour is (because we are dealing with linear equations) directly related to stability
notions (in the sense of Lyapunov). Thizs will nat be discussed further in this article. The interested
reader may find this a shortcoming of this article. In fact, the concept of stability is quite subtle
and there are many different refinements of this notion. In case of differential equations there are
a lot of {good) textbooks on stability, but, as far as we know, this is not the case for recurrence
equations. (The stability theory for recurrence equations is not completely similar to that for
differential equations.}

80 As mentioned in subsection A.1 one can develop the theory more generally for example for
KN (where K is a commutative field). Subsubsection A.2.6 repairs in some sense this omission.

81 For example, denoting by 'Vect' the linear span, if B = Vect(e't} in CN. then B' = {0}.

(17} RG =
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Proposition 13 Fiz G : N — C™. One has: For noc € T one has (G £ G &
Rg and ¢ are linearly independent <+ G and CG are linear independent. ¢

Proof.-- MG, FG are linearly independent if and only if G and CG are linearly
independent. This implies ‘¢=’. ‘=’ Then G # 0. Suppose G,CG would be
linearly dependent. Then there is ¢ € C so that CG = ¢, and we find G =
C(CG) = e{€G) = |e|>G. Thus, |¢| = 1, a contradiction. O

Proposition 14 dim{B} = dim(B') for each C—invariant linear subspace B of
. o

Proof.— Let (h:);c; be a base of B'. We shall prove that it is also a base of 5.
Completeness: Take H ¢ B. Now notice that one has H = RH +:3H, RH €
B', $H € B’. Linear independence: Suppose EgeK Ajhi = 0 with the 4; € C and
K a finite subset of [. ThenO_C(EJEx ZJE,{A iClhs) = X iex X

h =
ek (MA; = Qx)h; = 3. (RA )G — ’E;ex(g’\ Yhy. So jex (RA; )h =
2 iex (SAj)h; = 0. This implies BA; = Q‘A =0(j € K), thus »; = 0 (j eK). O

Now, consider the with @®) associated linear recurrence operator #. C and H
commute, that is one has:

Proposition 15 For ®® with real coefficients one kas [C,H] = 0. ¢

Proof.— (CHG)(t) = THO)(t) = LM, BY(G(t+5) = M, B (Gt +5) =
oL, B (G + ) = (HCG)(0). O

Proposition 15 implies:

(18) G e SOLYW = ¢G e SOLY, G e SOL = CG € SOL.
Also it implies C(ker(H — ¢ id)) C ker {H# — € id} and because C? = id even
Clker(H —€id)) = ker(H —¢ zd)

Proposition 16 For ® with real coefficients one has:

1. For cach solution G of @), RG and SG are real solutions of @Y.

2. For each solution G of ®, MG is a real solution of @ and 3G is a real solution
of o)

Proof.— 1. this holds because SOL!® is a linear space, (17) and (18). 2. Let
G € SOL. Then CG € SOL and because SOL is affine one has G = 1G + $CG €

,’SOL+ (1- —)SOL SOL. Moreover, QG € SoL® because H{IG) = 'H.'G CG =
5:(HG — (m:)c) U - (CH)G) = LU -CU)= (U -U)=08C

A.2.7 Adjoint equation

Put on C™ the inner-product < | > given by

{19) <Y|W>» = ZYJWJ

82Qy taking real and imaginary parts of @/® one obtains an eguation language proof of this
proposition.
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‘The adjoint equation ©(U) of @ is by definition the equation

M

(20) S BE Y Gty =020 e

=0

where G : N = C" and A* is the (Hilbert-)adjoint of A € End{C") with respect
to < | > (with m := N). We denocte the set of solutions of @f\g) by

SOLLY.

The adjoint equation again is a vector equation of the form ©. @gg) is equivalent®?
with the equation

M
(21) S B (Gl -s) =0 (> M),

where & : N — CV¥_ Notice that this equation is not (completely) of the form @),

A.2.8 Substitution of variables

Proposition 17 Fiz L, € GL(CY) (t > 0). Then for each G : N =+ CV one has:
G is a solution of @) if and only of J . R o CV defined by J(t) := L (G(1) is
a solution of the veclor recurrence equation J(t + 1) = Zyzo(BE” H_J)J(t +s) =
0@>0). o

Proof — Evident. O

One refers to J{t) = L;(G(t)) as a ‘linear substitution of variables’. Notice that the
vector recurrence equation J(& + 1) = Zf__o(ﬂ(”[;;’_,).}(t +5) =0 (f > 9) is again
of type GION

A.3 First order vector case

A.3.1 The object

We are going to study vector recurrence equations of the form
Git+1) = AGU))+ U (t>0) A

where each A, € GL(CY), each U, € C¥ and G : N C¥. D is a special case of
®.% For the associated recurrence operator of D® one has

{(HG)(t) = G{t + 1) = AJG(2)).

Proposition 2 reduces to: Given 2, > 0 and V¥ € C¥, b has a unique solution
G with G{tg) = Vp. And corollary 2 reduces to: SOL{” and SOL have {affine)
dimension N.

83In the sense that if G is a solution of the one if it is a solution of the other.

31, casethe B (4 are given by matrices, B:“) * equals the transposed of the imaginary conjugated
matrix of B:S’ and the adjoint equation is even equivalent with Zﬁu Kt - s)B!i =0(t > M),
where K : N = CV (with row vectors as elements of CV).

351n terms of ©, B!n id and B'(cJ — A
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A.3.2 Semi-flows
Consider D. For each t,¢' > 0 the mapping
(Dgigl : CN — CN

is defined by (18), i.e. by
Be0(Y) = Gury (1),

Now one has that the mapping ¢ — ¥, .:(Y) equals Gy, i.e. 15 a solution of ©.
Notice that if G is a solution of D, then by proposition §

&, (G =G (1,1 > 0).

In particular

DGy () = Griy (8) (1,2 2 0),
Given D, it us useful to define the affine mappings #; : c¥ 5 TV vy
Fi(Y) = AlY) 4+ U,
One has F7'{Y) = A7HY) — A7 (D).
Proposition 18 Consider . One has:
L@ =F (0 < <t

9 @, = | T Fe0< <)
R B S N o N (RS Y

Proof.— 1. @41 (Y} = Gop(t + 1) = F{Gry(t)) = Fu(Y). 2. Because of 1 and
proposition 7(2,3). O

Corollary 3 1. For each solution G of D one has G(t) = Fpoy - Fo G} (0 €
< i)

2. For each solufion G of D! one has G(t) = A, - Ap G (0 </ < H). 0
Proposition 19 If G, H arc different solutions of D, then G(t) # H{1) (t > 0). ¢

Proof.— By corollary 1. O

Finally, consider the adjoint equation of p{%):
Q
G(t) -~ AL (Gl +1) = 0 >0).  0f]
Proposition 20 If G ts a solution of DS‘?, then G(t) = (‘?DE?_}_UH)*[GH')) (¢t >
a). o

Proof — It ¢ < ¢ G{t) = AF (Gt + 1)) = A} (A5 (G +2))) = -+ =
(Al - AENGE)) = (Av - A (GE) = (05 1)) (GD).
And if ¢ > ¢’ then ' < ¢ and by the above G(t'}) = (®{3) (41) (G(t)). So

Gi) = (@, 1) (G = @) (GEN) = (@), ) (GUY). T
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A.3.3 Operator solutions and semi-flows

‘onsider a homogenous vector recurrence equation . We called a mapping
F:N-o End((CN) so that

F(t+1) = AF() (¢ > 0),

an ‘operator sclution of p{%°.88  Proposition 3 becomes: For each f; > 0 and
Mp € End{T") there exists a unique operator solution # of p{® with F(ty) = My.

Proposition 21 Let F be an operator sclution of D\®). Then F(£) is for all t or
for no t invertible. O.

Proof.— Suppose F(fo) is not invertible. Then there exists Yp € CV with Yy # 0
and F{te)¥g = 0. G(t) := (F{1))Ys is a solution of D™ that equals 0 at ¢ = ty. Also
0 is such. Unicity implies G = 0, i.e. F(1)Yy =0 ({ > 0), so F(¢) is not invertible.
[}

An operator solution F of D(®) is called ‘fundamental’ if each F(t) is invertible.
Often considered is the fundamental operator solution F:

Definition 1 The unique operator solution F of D{®) with F(0) = id is called ‘the
principal operator solution (of (). o

It is clear that F : N — End(CV) is an operator solution of % if and only if
F(t) = Ae_y - A, F(8) (0 < s <1), ie. if and only if Fit) = @} F(s) (0 <5 <1).
From this:

Proposition 22 /7 : N - End(C¥) is a fundamental operaior solution of 1\® if
and only if ®\°) = F(t)(F(s))™" (t,s>0). o
Corollary 4 1. QE?J = A1 - -Ay is the principal operator solution of pfe),
2. F(t):= <[>§'_“,)0M0 (t > 0) is the unique operator solution of D) with F(ty) =
Mg. (=4

Proposition 23 If F and G are fundemental operator solutions of p(%), then there
exists a unique C € GL(CY) so that G(t) = F(1)C (1 > 0). o

Proof — Unicity: If such a C exists, then G(0) = F(0)C, so C = F{0)™'G(0).
Existence: Now, with C := F(0)"'G(0), J(£) := F(t)C is an operator solution and
is fundamental. Because J{0) = G(0), it follows that G(t) = J(t) = F(t)C (¢t > 0).
[m]

Of course, if G, ..., G'™) are solutions of p(®, so that, for some g > 0,
G (tg), ..., GU™ (1} are linearly independent, then G}, GI™) are linearly in-
dependent. A reverse result is also true:

Proposition 24 If G, ., G!™) are linearly independent solutions of D9, then
for each t > 0 the vectors GU(#), ..., GU™){t) are linearly independent in CV. o

Proof. — Suppose there would exist ¢p > 0 and M € C so that S MG ) = 0.
Define J = Z’:‘:l MG T is a solution of D{Y that equals 0 at £ = {g. Also 0 is
such. Because of unicity, J = 0, a contradiction. 0O

Proposition 25 Consider D(°). Let G} . G be solutions of D). Then

85 When working with matrices (A, F(t) € My{C)) the term '‘matrix solution’ can be used.
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1. F:N— End(C") defined by

N
Yy = Z YJ..-G‘“(!)

is an operator solution of p(®)

In case the A, are matrices F(¢) := (GO(),...,G™(1)) € MN(T) (1.e. the
columns of F{1) are the vectors G¥)(t)), ts a matriz solution of (0.

2. F as defined in | @5 fundamental if and only if GV, ... G are linearly
independent. ©

Proof — 1. F i 1s an operator solution because forall ¥ ¢ CV and t > ( one has
Fit+ )Y = 5V, v60( 4 1) = T, AGDW) = AT, %69(0) =
A (F(t ) ). The second statement is proven in the same way.

2. I GO, ..., G} are linearly independent, then for each ¢, by proposition 24,
GO, ..., G(N}{t) are linearly independent, so each F(t) is injective and thus also
bijective. If F is fundamental, then F(0} is invertible, so G(1){0), ..., GIN)(0) are
linearly independent, thus G{1, ..., G} are so too. O

Proposition 26 # is ¢ fundamental operator solution of D" = ((F{t + 1))“)ﬁ1

15 a fundamentaol operator solution of Dgc(?. °

Proof — One has F(t + 1) = A, F(t) (t > 0). By taking % and then ~! one obtains
P+ 15 = (A HFE®Y ™ (€ > 0). With J(8) = (F(t+ 1)) ! e GLTY),
this becomes J(t) = (A} ' J{t — 1) (t > 1), ie J@t = 1) = ALJ({) {t > 1), i.e
Jt) = Ar Je+1)(t>0). 0

A.3.4 Particular solution of D

Here is an explicil relation between the ®;; and the @5?.:

T 3 0<tp <t
Proposition 27 @, = { (0 + Z:g:fo (féj,-;-l( i) 0 <), .
q’“u_z q’z s+1(U )( <t0—l)
Proof.— By induction. For ¢t = tg, ®;;, = id = t tn Suppose it is true for some
1 2>tg. Then &1 6y = Foly s = Ae®e,+U = A:(<I>5°¢).,+Zi_3., (IJED:)+1 U))+U: =

0
£+)1 D :[. @[0)1 a+1(U Y+ @y (Uh) = ‘1’:+1 o+ Doosts ‘1’£+1 ++1(Us). The
proof fort <tgis similar.

Because of proposition 7(2,3}, one also has

(22) ®;p, = &) (id + Z o) (U) (t>1t0>0).
s=ty

This formula is one of the forms of the ‘variation of constants formula for . The
term is derived from the fact that ®,,, has the form QE?DC(!). Another form is:

Proposition 28 Let G ., G'™) be linear mdependent solutions of D9, Then
there exist functions C; : N — C (1 €1 < N) so that Z =1 C:G® is a solution of
D. o
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Proof— Define F : N — End(CY) by F(1)Y = Zf:l}{,G(f){t). Because of
proposition 25, F is a fundamental operator solution of D{®), By proposition 22,
8" = F()(F(s))™". By proposition 27,

@5 =00+ T4 @1, (U,) = F{)P(0) "+Z,_0 ®(F{s+ 1)) )U,). A
solution of D is ®5(0), i Y TLF (O F(s+ 1)) "W). 1t equals

Yoo FO(F(s+1))7'0,) = z“l Sim (F(s+ 1)) '0,),60() =

Yo (T ((F (s + 1)) 710, )G (0). So, take C5(1) = T2 ((F(s + 1)Uy,
]

A.4 Scalar case
A.4.1 The object

We are going to study equations of the form

M

Yot 4s) = wt>0) 4

a=0
where wy, v ( ), . ,vt(M) eC(t>0),no UEM) and no vtm) iszeroand g : N C. Jis
a special case of a (M —th order elliptic linear) scalar recurrence equation. Notice
that an equation of the form J is nothing other than an equation of the form @
where N = 1.

For the with % associated linear (scalar) recurrence operator # one has

M

(He)t) =Y v*lg(t + ).

s=0

Corollary 2 becomes: For J, SOL and SOL!® have dimension M.
The distinguished sclutions G(D), .. .,G(IM—I) of % are denoted by

g, g0 iM=1)

respectively. So, ¢ is the unique solution of £ that satisfies
gty =46, (0<t<M-1).

We already know that ¢(®, ... ¢™-1) js a base of SOL!®

A.4.2 TFrom arbitrary order scalar to first order vector equations

. . . . N
Given an integer M > 1, define the linear mappings P : N (CMY" and @ -
N
€My 5 N by
g(t)

(P)(t) = : (t>0),
gt + M -1)

(QG)t) = (G(),

Lemmal [ ForGe (fCM)N one has: G € Im{P) & (G{t + 5)), = (G(1)), 1,
(>0, 0<s< M- 1)

87Le. the first of the M coefficients coefficient of G(1).
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2. P is injective. One has QP = id and PQ = id on Im({P). ¢

Proof — 1. If G € Im(P), say G = Ph, thenforallf > 0and 0 < s < M — 1
one has (G(t + 5)}, = ((PA)(t + 8)), = h{t + 8} = ({(Ph)(1)),;, = (G(1)),4,- And,
i (G +5); = (G(t)),4y (¢ >0, 0 <5 < M—1), then define ¢ € C™ by
g(t) .= (G(1)},. Now, one has
gtt) (G(1), (G{#),
(Pg)(t) = ; = : = : =
git+M-1) (Gt +M —1}), (G{t)ps
G(t). Thus G = Pyg.
2. P is injective because ker(P) = {0}. QP = id: Take g € C¥, then
UQPYNR) = (QP(t) = (1). PQ = id on Im(P): Take G € Im{P), then
Q&) (G{t)
(PRIG)() = (P(QRG(1) = : = : =
(QO)t+ M- 1) (Gt + M — 1)),
G(t). o
Proposition 29 shows that the study of the vector recurrence equation D contains
the study of the scalar recurrence equation J. Given a scalar recurrence equation J,
we define®®
0
M- {03 :

(23) M, := Comp (% S ) € Mu© and Wi |
W
w:/u(M)

Proposition 29 (iven a scalar recurrence equation J, we associate to it the vector
recurrence equation {of type [)

Glt+1) = MG +W. (t>0) < 4>
One has:
1. If G 15 a solution of < 4>, then G € Im(P).
2. For each g : N = C one has: ¢ is a solution of | & Pg is a solution of < J>.
3. For each G € Im{P) one has: G s a solution of < I > & QG is a solution

of . o

Proof.— 1. One has G{t + 1) = M., (G(1)) + W, (t > 0). So, (G(t+s)), =
(MAGL)), + W), (£ 20, 1 < s < M—1), ie (G (+1)) = (G(t)),41 (8 2
0,1 < s < M ~—1). This implies (G{t)),,, = (G (t+s)) (t>00<s< M-1)
By lemma 1, G € Im(P).

2. Let g: N -» C. Then: Pgisasolutionof < J> & (Py)(t+1) = M (Pg)(t)+
(02 0) s (POt Wi = MO + (Wi () y(t ¥ M) =
it 1CompM3+1g(t+j)+ 4= (120) Sg(t+M)=Y] —(‘—)-gt+1)+

—(m (t>0) & gis asolutlon ofJ
3. G = P{QG) by lemma 1(2) and QG : N —» C. Because of 2 one therefore
has: @€ is a solution of J & G s asolutionof < J>. O

Notice that < § >% and < % > are the same objects. We shall denote SOL® for
< > by
< SOLI? >

28 Gee subsection C.1 for definition and properties of Comp .
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Corollary 5 P : SOL® 5 < SOL > &5 a linear isomorphism. o

We call the M, ‘the transfer matrices associated with J®'. The reasen for that is
that for each solution g of J% one has (Pg}(t + 1) = M((Pg)(t)) (¢ > 0). Notice
that each transfer matrix is (indeed) invertible, because of (40} one has for the
determinant of M,

(24) M| = (- ";M, # 0.

Yy

Proposition 30 1. dim (< SOL!” > N FLOQ,,) = dim (SOL{” n FLOQ,, ).

2. dim{< SOL® > ni®) = dim (SOL™ n 1=},

3. dim{< SOL®™ > N ¢) = dim (SOL® N ¢). o
Proof.— First notice that, because P : SOL® 5 « SOL!Y > is a linear isomor-
phism, for each linear subspace W of SOL{” one has P[SOL(D) nwj)=
< SOL™ > n P(W). For W = FLOQ,,, W = I*® and W = ¢; one even has
< SOLY > nP(W) = < SOLY > N W. Indeed: C is evident (and relies on the

nature of I, cq and FLOQ, .} and if G € < SOL® > N W, then let & € SOL® so
that Ph =G, Then QPh = @G, ie. h=QG e W. Thus G P(W). O

Proposition 31 For each non-zero solution G of < {% > and j € {1,..., M)
there exists t > 0 with (G(1)}; # 0. o

Proof.— Suppose one would have (G7(t}); = 0 (¢t > 0). Then by lemma 1,
(GE+7-1);, =0( >0),ie (QGHt+7j—-1) =0t >0). Now QF is a
solution of 4% that equals 0 in M consecutive points. Therefore QG = 0. But then
G=PRG=P0=0.0

A.4.3 Matrix of Casorati

Given a positive integer L, we define for each t > 0

N ox N (L times) — M (T}

by
hy (¢} hy(t)
hit+1) he(t+1)
(25) Case(hy,. ... hg) = . y :
R4+ L—1) - hy{t+L—1)
Casi(hy, ..., hy) is called ‘the matrix of Casorati {(of As,..., Ay at t)’. Notice that®®

Cas(hr, .. he) = (Ph(L), -, (PhL)()

(i.e. the i—th column of Cas;(hy, ..., hy) equals (Ph;){t)). Fix a function ¢ : N —
C* % Denoting determinants by | |, the mapping, for fixed ky,... kg,

w(t): N— C,

defined by
w(t) = d, |Case(hy, ... Rl

89With M = L.
W = {z£C|z+# 0}
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is called ‘Casoratian’. From the other side, for fixed t > 0, the mapping 4, |Cas,(-}|:

L
(CN) — Cis L-linear. Using a well-known property of determinants one obtains:
(26} hi,... k€ N are linearly dependent = w(t) =0 (¢ > 0).

[fw(t)=0foralit >0, then hy,... Ay are nat necessarily lincar dependent.®
Now, consider (. One has (with L := M)

(27) Caso(9®, ..., g™ 1) = id.

Proposition 32 Fiz t > 0. For all solutions b1 .. M) of %) one has:
R, M) are linearly dependent & w(t) = 0. o

Proof.— =: Because of (26). <=: Suppose that w(t) = 0. So, there exist ¢1,...,car €
C, not all 0, so that ¢, A + 1) +- -+ e h™M(t 4+ =0, (0< 1 < M —1). Thus
hi=e U 3 . cprhiM) s a solution of &%) that equals zero in M consecutive
points. Proposition 2 now implies & = 0. Thus A1) ..., (M) are linearly dependent.
[

Proposition 33 /" Aas a solution which for no value of t vanishes. o

Proof.— Let A1), h¥) be a base of SOL®), Take ¢ € C with ¢s ¢

{=2M /AN |t > 0, R2(t) £ 0). Then y(*) = A1) & ¢,4(? vanishes at ¢t
if and enly if ANt} = A (2) = 0. Next take c3 € C with c3 ¢ {—(A{){1) -
ez (N /ABHE) | £ > 0, A)(E) £ 0). Then v := A 4 e3h(® 4 3k vanishes
at t if and anly if RO () = h(Z)(1) = K3)(t) = 0. Continuing this construction one
arrives at ytM) .= KD 4 0,8 4 4 20 AM) which vanishes at ¢ if and only if
AV() = A1) = ... = RM){t) = 0. But there is by proposition 32 no value of ¢
for which this happens. Thus y'™’ is as desired. 0

Proposition 34 If A1), . AM) are solutions of &, then Cas (K1), ..., R s
a matriz solution of < & >. It is fundamental if and only if RV WM} are
lmmearly independent. o

Proof. — By proposition 29(2), PAEY L PhIM) are solutions of < J >(. One has
Cas, = ((PAUN(), ..., (PAM))(t)). By proposition 25, Cas, is a matrix solution
and it is fundamental if and only if P2 ... PAM) are linearly independent. O

Together with (24), proposition 34 implies:
Corollary 6 Consider 8%, Forhy,... hy € SOL™ one has:
I Casg = My My - M,Cas, (0< s < t);
M(t—s) t—1 ‘U(a)
2 w(l) = (-1) L% g e by Jwls) (0 < s < t). In particular
. y{
ar v digr .
wit + 1) = (1) jm Hwt) (t > 0). And ,if dy = 1, then w{t) =
0,

(-1 e kw(s) (0<s<). o
Uy "V Yy

9 For example: L = 2, di = 1, hy = bg4, ha = s . But, this statement is true for L = 2 in
case where Ry, ha are nowhere zero. Indeed, in this case w(t) = 0 implies that hy{t)/ha{t) does
not depend on {.
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A.4.4 Explicit expressions for semi-flows

Propasition 35 The semi-flow ®, v for J equals the semi-flow P 4 for < 1> o

Proof.— We may suppose that 1 > . For J one has &, (V) = (PG,r.v )(1). Because
of proposition 29(2), PG..v is a solution of < J>. Defining Z,(V) := M (Y) + W,
one has by coroilary 3(1) that (PG )(t) = Loy - - - 2o (PG )t')) = Loy TV
which, by proposition 18(2), equals ®; ;+ applied to V for < J>. 00

der 4O @) = [ Mt Me (0t <)

Corollary 7 1. Consider I'/. ¢':,u = { M[l ML (0 <Lt
(0) /

2. Consiuder J. @4 = { (5 :f Et_—]tl (I(,D) +1(W ) (0 <t ‘S t),

Qt.!’ - Za:t (pt,s+1(wﬂ](0 S t S t'— ])

Proof.— By propositions 18(2) and 27. O

A.4.5 Particular solution of J

The variation of constants formula is used in the proof of the following result.??

Proposition 36 Let A1) A pe linearly independent solutions of JO . Then
there exist functions B; - N> C{1<i < M) so that ):,  Bih®) s a so!ution of 4.

Even, with Y (£} = (Cas.1y (R, ., A™))) "' W, (t > 0) and B(t) .= T2 Y(s) €
CM  one has that Z"‘i] B:h() ds a solution of I. ¢

FProof.— By proposition 34, Cas; 1s a fundamental matrix solution of < OIS
Proposition 22 gives l‘D 0 = Cas,Cas] . By proposition 27, &, g — Cas:CasO“l +
EJ_D(CaS;Cas,H]W, = Ca.s,(Casg1 + E:_‘IJY {8)) = Casy(Cas;' + B(¢)). A so-
lution of < J > is @, (0), t.e. Cas,{B(t)). By proposition 28(3), Q(Cas,(B(t)) =
{Q(Cas:{B(1))), 15 a solution of J. This solution equals Zf__l B;h0)

B Linear recurrence equations with periodic coef-
ficients

B.1 Settings

In dealing with recurrence or differential equations, interest is usually in the gualita-
tive and quantitative properties of their solutions. As we have already shown, such
problems can be mastered particulary in the case of linear autonomous equations.
However, the same is also true for linear equations with periodic, or even with Flo-
quetian coefficients. The fundamental reason for this is that such an equation can
be transformed by a linear substitution of variables into an equation with constant
coefficients. To go beyond Floquetian coefficients requires quite different and much
more difficult methods.®® Some attempts have been made to develop a Floguet
theory for the (larger) class of almost periodic coefficients (see, for example, [18]),
but with less satisfying results as far as we know.

Also a presentation of Floquet theory needs a fixed setting. Floquet theory seems
to be only appropriate for ordinary linear differential and recurrence equations with

92'This result also may be proven through proposition 28.

99 However, also linear recurrence equations with coefficients that have a limit for ¢ - oo
admit relatively easy methods of analysis. And in this context also linear recurrence equations
with polynomial coefficients should be mentioned (see, for example, [16, 22] ).
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Floquetizn coefficients.® As usual a lot of interest is in the analysis of homogeneous
equations. Although it would be possible to deal with (homogeneous) equations
where all coefficients are Floquetian of some same type, the investigation of this
case is closely related to the periodic case. To see this, first notice the simple fact®®
that if f(t + ) = zf(t) (i.e. f is Floquetian of type (g,2)},%® then there exists a
unique g~ periodic function & such that f{t) = 2*/9h(1).°7 Therefore, from now on
we only consider equations with periodic coefficients in the associated homogeneous
equation,

Again, we restrict curselves from now on to the recurrence equation case. As
already mentioned in subsection A.1, a choice has to be made from semi-infinite/in-
finite/finite domain and from first/second/arbitrary order. Our article will deal
with semi-infinite domain and with arbitrary order vector equations.

It can be said that there are two approaches to periodic coefficients: Floguet
theory and {in physics very popular) Bloch theory. The most fundamental object in
Floquet theory is the Floquet (and monodromy) operator while in Bloch theory it is
the Blach operators. We deal mainly with Floquet theory as the Bloch theory seems
less useful in economics. Qur proper references for Floquet theory for recurrence
equations are [6,11,17].%8

Three types of recurrence equations with periodic coefficients are considered:
®, » and /. @ is nothing other than the vector recurrence equation @ in case the
Bt’) are g—periodic, D is nothing other than the vector recurrence equation D in
case A, is g—periodic and J is nothing otker than the scalar recurrence equation in
case the v(*) are g—periodic.

B.2 Arbitrary order vector case
B.2.1 The object

We are going to study the (N -dimensional elliptic M-th order linear) vectar recur-
rence equation (with periodic coeflicients)

M
S BI(G(t+s) = Ui (t>0) @,

s=0
where M > 1, each B! € End(C"), even B, B* € GL(CY), each U, € CV,
each B is g—periodic (i.e. Bgl)q =B" (t>0) and G: N— CV.

Before continuing with @ we consider in the next subsubsection Floquetian
mappings.

B.2.2 Floquetian mappings

Given g, we shall denote for an integer n by 7 the unique number in {1,...,¢} so
that n — 7 is divisible by ¢.

Proposition 37 Fix integers tp > 0, ¢,m > 1, z € T and Cp, ..., Cq1 € €.
There erists @ unigue G € FLOQ, , so that Glto+s)=C, (0<s< g -1} ¢

2?4 However, some applications to nonlinear recurrence equations (as a perturbation of linear
ones) can also be found, as in for example, [11].

93 Also see proposition 41(2).

96214 = eélox (8), where log denotes the principal value of the logarithm,

By writing all coefficients in this form, the /2 can be divided out, leaving an equation with
g—periodic coefficients.

98 References [2,5, 12, 18, 19, 21] for Floquet theary only deal with differential equations.
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Proof — Define G € (€™ by G(t) = ™5 Cymy_y (t 2 0). Then
tg~tpti-tdg-ing 1 t—ipt-T=ipFT

(TaGY () = G(t+g) = 2 v eoToET-1 = £2 e i
zG(t). Thus T,G = 2G. Moreover for s=10,...,¢g—1, Gty +35) =C,. O

Corollary 8 The set of ergenvalues of Ty : (Cm]N ~+ (Cm)N equals the whole C.%°

L]

Proof.— That z € C* is an eigenvalue follows from proposition 37. Also 0 is an
eigenvalue: G0) = --- = G{g — 1) = (), G(t} = 0 (¢ > q) is an eigenvector
belonging to this eigenvalue. O

Denote, for z € C, by FLOQ({I’;) {(n > 1) the generalized eigenspaces of 7
corresponding to the eigenvalue z of 75, ie.

FLOQé’:‘, = ker (T, — 2 id)" 1°®

Definition 2 We call any FLOQ, ,, where g > | and z € C, a ‘Floquetian space’
and any of its elements a ‘Floquetian mapping of type (g, z)’. We call any element of
U, cFLOQ, ; a ‘g—Floquetian mapping’. We call any FLOQE{'}, whereg > 1,z€C
and n > | a ‘generalized Floguetian space’ and any of its elements a ‘generalized
Floquetian mapping’. ¢

Proposition 38 1. If g : N — C s Floguetian of type (¢, z), then there exists
a unigue g—periodic function h so that g = z/9h, i.e. is a product of an
erponential and a pertodic function.

2. If h is @ g—periodic function and z € C*, then 2%k is a Floquetian solution
of type (g, 2). <
Proof.— This is evident (and also follows from propesition 41{2) with n = 1}. O

Proposition 39 gives a generalization of proposition 38(1).

Proposition 39 Consider ¢ mapping F: N — End(lCN) for which there exists a
C € GL(CY) with F(t+ q) = F(t)C (t > 0). Then there ezists B € GL(C") and a
mapping P : N = End{C¥) with P{t+q¢) = P(t) {1 > 0) s0 that F(1) = P(1)B* (t >
0). o

Proof.— Because C is invertible, one knows that there exists a B € GL{C") with
C = B?. Define P(t) = F(t)B~". Then F(i) = P{t)B* and P(i+q) = F(i +
g)B~0t+el = FQ)CB~(+d) = F(1)BeB~(49) = F(#)B~* = P(t). O

Dencte FLOQ,S:‘Z) in the case m =1, by }'EUQS;:‘J, ie

FLOQ) = {g: N C|(T, - zid)"g = 0}.
One has o
(28) FLOQIM = Y FLoQly) .

j=1,....m

% The given definition for FLOQQ.Z also makes sense for z = 0. Il we do this, then for each
zeC, FLOQq!z is the eigenspace associated with the eigenvalue z of 7;,. However, we do not do
this in this article: we only need z # 0 because no Floquet multiplier is zero and because some of
the following results have to be adapted for z = 0.

1000ne thus has FLOQU = FLOGQ, ..
L'l q.3
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. . . N
Given q, define for 21, 2; € C*, the linear transformation X, ,, of (CM} by

(K:?-],Ez )(t) 7( ) G“)

Of course, K, ., is a linear automorphism and 7', = K.,.,. And cne has

22

(29) 7;}‘(:21,22 = zl( z1 227;)

Proposition 40 K., ., : FLOQ) - FLOQq ., is a linear isomorphism. o

Ny

Proof.— Denote the mapping in question by K. First of all, if G € FLOQS"',_)“ then
KG € FLOQ),: By (29), for each integer k > 0, T*K = (#2)*(KTF). Therefore

q.2a
(T~ 22 id)" (KG) = (0o ( ) n*(mzz id)" (K G) =
25Tl (1) 0RO = @R (§ ) GO TG
= (H)H’C('E, -z id)" G = {—3) K{p)=o.

Of course, X is m}ectlve Surjectivity: Take Ge FLOQq s then by the above
K:z:u ZlG S FLOQq zy° SO! Lh,zz(xtz‘hG) -

Proposition 41 L Ifzy,...,z1 €C are dtﬁfr‘f’nf numbers and ny, ..., ny posi-
tive integers, then Zj,l«(_-,(l FLOQ("’) =37 ](_’(‘ FLOQ‘;‘ZJ .

2. FLOQYY), = (22/21)'/*FLOQYY),, in particular FLOQYY = z4/9FLOQY,

3. FLOQSY) € FLOQY! ,m (m > 1).

4. FLOQg’I‘z) has dimenston niNg.

5. For each positif integer I, one has: F‘LOQqu = sECwL—z FLOQQM,
ie. FLOQE;)Z = Z?o<j<L*1FLOQ("} , in particular FLOQ‘E’? =
v A< q'.z‘»”‘ea“f v
& (»)
J08j<q-1 FLOQI RYSELT S

Proof.— 1. This is a general result for generalized eigenspaces.

2. Because of proposition 40.

3. Suppose (7, — zid)"G = 0. Because Tpng — 2™ id = T™ — (z-id)" =
Ty — z id) Z;n:_ol (7;/2}’-, one obtains (T, — 2™ id)"G =

(! (BY) (7 -2 )G = 0.
4 (Tp—zid)" = 320 ( : ) Te(-zid)" ™" = T0 ( ‘ ) )

This implies J € FLOQS,':? S Yoeoo ( ) {(—2}"" (f + k¢ =0 ({t > 0). For
z = 0 this becomes the equation J(i{} = 0 {t > ng). And for z # 0, one has to do
with a linear veclor recurrence equation of order ng. In both cases the set of its
solutions form, because of corollary 2, a nq/N dimensional linear space.

5. Because of 1, the sum is a direct sum. Because of 2, ‘D’ holds. Because of
4, FLOQ(") T has dimension nN¢. Because the sum is direct, the right-hand

side has dunensmn L -nNg, i.e. has the dimension of FLOQE;‘). This even proves
that ‘=" holds. O
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Define A : CN 5 N y
(AG)(t) == G{t+ 1) - G(t).
One has
AX = (A= 1A (z € T9),
a result that also follows from:

Proposition 42 Suppose m = 1. For each polynomial p with compler coefficients
one has p(T)(AF) = p(A)A. o

Proof— Write p = ap + a1z + -+ 4 arzl. Then p(T])(z\') = (auTl{o) + -+
arTF)(A) = agAt + o A 4o aL/\‘+L (ag +arh+ -+ ap A)AE = p(A)NF
0

At* = (t+1)" - 1", so A of a power is complicated. In this context the next
definition is useful. Define for each integer r > 0, ¢{") as the {polynomial) funciion

Y= - -2) - {t—r+1).
It can be easily verified that
(30} AL = w0 (r > 1), A1) = 0.

From deg 1) = r, it follows that ¢(©) ¢(1) . 1{") are linearly independent and that
Vect (1), #4107y = Vect (29,21, ..., t").

Proposition 43 A base of
1. FLOQYY is e (0 <i<n—1, 1< j< N);
2. FLOQY™ istizte (0<i<n—1, 1< j<N),
3. FLOQYY istizie el (0<i<n~1,0<1<q—1,1<j<N). o

Proof. — 1. First we consider the case where m = 1. We shall prove that ¢ (0 <
i < n—1)is a base of FLOQ{"]. One has FLOQ{") = ker (A"). To sce that
tHe FLOQ(") (0 <i<n—1), we wrile {* = Zk:ﬂ axit™*) and notice that, by (30),
AM{tW) = T, @i AR = 578 _ gy -0 = 0. Because A" is a 1—dimensional
vector recurrence operator of order ker(A") has, because of corollary 2, dimension
n. Because t() (B < i < n — 1) are n linearly independent vectors, they are a base.

Now consider the case of general m. As above one proves that the given vectors
belong to FLOQ(l':'l) and that they are linearly independent. Because we therefore
we have N7 linearly independent vectors, the proof is complete by noticing that
dim (FLOQ™) = Nn.

2. Because of 1 and proposition 41(2). 3. Because of proposition 41{5) and 2.
=]

Here is another lype of base of FLOQ, ,

Proposition 44 A base of FLOQ, , is 6¢7) (1 <1< g, 1 < j < N), where §02)
ts the unigue element of FLOQ, , so that S = el (1< E< q). o

Proof.— First of all notice that the %7} are well defined because of proposition 37.
It is easy to verify that they are linearly independent. Because we have Ng =
dim (FLOQ, ,) of them, they form a base. D
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Lemma 2 7,009 = = =% =g I (1<l<q 1<j<N,s>0). 0

l—l—l—r

Proof.— T, 614 2~ =ed) € FLOQ, . And they are equal at t = [ -5+

r(0<r<q-1) T4 '3)(l—s+r):J(”)(I—s+r+s) =8N —s4r+s+
qmirﬂ;miris] TG r) =y AT el =

droel) = z §0=23)T =5 + r). Thus, by proposition 37, they are equal for

allf. O

Generalized Floquetian mappings have a clear asymptotic behaviour:
Proposition 45 1. FLOQLY € 1% (]2} < 1),

2. FLOQM C o (2] < 1).

3. FLOQU n 1= = FLOQY (|2 = 1).

4. FLOQL) n 122 = {0} (2] > 1).

5. FLOQUY N co = {0} (2] 2 1). ©
Proof.— | and 2 are evident from the explicit expressions in proposition 43.

3. ¢ D' Evident. ‘ C": First consider the case with m = 1. Take g € FLOQI(]?Z) N

1. We may assume that g # 0. With z := z1/9¢%"'5 (0 <! < g—1), there exist
because of proposition 43(3), C e C{0 < i< n—1,0<! < g—1) so that
g = 3, Cit'zf. Let (0 <)p(< n — 1) be the maximum value of ¢ for which there
exists a non-zero G}, Let J be the set of I's for which CT # 0. Take j € J. Now

9= ey CHP 2l + 202 Y021 Cit'zf. Thus

p—1g-1
(31) g =2t (C;’+ S = )+EZC‘£"P(Z' )
1=0

teT I#5 i=1

The three terms in parentheses are bounded. Because g € *°, g # 0 and the term
z;-tp is bounded if and only if p =0, one has p=0, i.e. g € FLOQS}.

Now, consider the case of general . By (28), FLOQg’_')ﬁ ® = (E? .'F,COQ(;_? .
ehyn 1= = TE(FLoQR) iy nixy = ):e(.’FL:OQ(“) N 1) - &), By the
result for m = 1 this equals 3% TCC)Q“) eli) = FLOQ(

4. As in 3. (Again we oi)tam 31) and the three terms in parentheses are
bounded. The term z}tP is unbounded.)

5. Because of 4, we may suppose that |z| = 1. The rest of the proof is as in 3.
0

B.2.3 Semi-flows
Proposition 46 For @ with g—periodic U one has Gy yqv (£ + ¢) = Gegv (t). ©

Proof.— One easily verifies that t «3 Gy 40 (t + ¢) is a solution of @. Also G, v
is a such a solution. At ¢ =1g,...,Lg+ M — 1 they are equal. Therefore they are
equal everywhere. O

Proposition 47 For @ with g—periodic I/ one has
1. ¢g+q’gf+q = Qg‘gf (i,i’ 2 D),

2 ®jg0=9), (> 0);
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3. ityq0= B0y, (t>0);

b

-1

b Bo= o8y (t20). 0
Proof— 1. @ popryo(V) = (Grgevit +9), ... Guyqv(t+ ¢+ M - 1)). By propo-
sition 46 this equals (Gyv (1),.. ., Guv(t+ M = 1)) = &, (V).

2. By proposition 7(2), @40 = Piq,(7-1)¢®(i-11q,0- This equals &4 0®;-1)4,0
by 1. Centinuing in this way gives the desired result.

3. @eijg0 = PryjgiaPien = QI.U‘DJ"I'.U =®: 0800

4. By 2, &g = @, p

- —_ — 9
+&1q0 (Dt.ﬂ(bq,o - a

If X is a set, then a family of mappings (3.}, y of X into itself is called a “one-
parameter semi-group of mappings of X% if
9095 = Gya (1,5 2 0),
ga = id.
Corollary 9 Consider @ with g—periodic U. (®jq);.N is a one-parameter sem:-

. M
group of mappings of (CN} .0

B.2.4 Floquet, Bloch and monodromy operators

Consider %, For the with @) associated vector recurrence operator 4 one has:
Proposition 48 [H,T)] = 0. o
Proof.— ((KT)G)(1) = (H(TGN() = 1L, B (1,G) e +3) = DL, BV (Gle+
s+4)) = T)Le By (Gl 4 +5) = (HG){t+q) = (THGN () = (TH)G) () O
Because of proposition 48, 7 lets the generalized eigenspaces of #H invariant, in
particular 7 lets SOL®) invariant. So,
T, 1 SOL® : SOL® 5 soL®
is well defined and if I is ¢—periodic even
T, [ SOL : SOL — SOL
is well defined. Because of the same reason
H [ FLOQ,, : FLOQ,, - FLOQ,,

is well defined. We call 73 | SOL® ‘Floquet operator’ and each # | FLOQ, .
‘Bloch operator’. Four our purposes the Floquet operator is the most important.
However, the presentation will benefit by not forgetting the Bloch-operators.!®? By
‘Floguet theory’ we mean the analysis of the Floquet operator and by ‘Bloch theory’
we mean the analysis of the Bloch operators. There are interesting connections
between objects associated with Floquet and Bloch theories. In this context we
here only mention the following evident but useful result.

Proposition 49 For each integer n > 1:
SOLO N FLOQLY = ker (T, — z id)" [ SOL®) = ker (¥ | FLOQIY). o

190 This is indeed a semi-group.
102 However, the mentioned ‘cigenvalue parameter’ in footnole 69 is necessary to really deal with
Bloch theory.
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Corollary 10 The dimension of each of the linear subspaces SOL® v FLOQY)

g,2°

ker ((Tg — z id)" 1 SOL® and ker (H | FLOQE;‘)) is at most min(M N, nNg). o

It
T (€Y o (CN]N is not injective, but one has:
Proposition 50 The Floquet operator T, | SOL'® is a linear automorphism. o

Proof.— It is sufficient to prove that ker (7, | SOL{") = {0}. Take G € SOL(®
with T,& = 0. Then (T,G)(1) = 0 (¢ > 0), i.e. G{t +¢) = 0. In particular,
G(q) = - -=Glg+ M —1) = 0, which, with corollary 1, implies that G =0. O
Consider @™, By proposition 40, generalized Floquetian spaces FLOQg’")I and
FLOQ are isomorphic. This of course does not imply that the restrictions of

%z

H | FLOQ,S,"',)l and H | FLOQg:'z, are similar.!® If one prefers to work with

generalized Flaquetian spaces for z = 1, then this is possible by defining for z € C*,
H, : CN N by
M, = K:z,lHK:;.%.
One has
M-
(H:G)1) = Y (2 BIG (L + 5).

=0
(Notice that for z = 1, #, equals the with ®(*) associated linear recurrence operator

H.} Forall Ge (CN)N one then has
Ho (2700 = HUHEG),
which implies in turn:
Proposition 51 ker (¥ [ FLOQYY)) = 2/ ker (H, [ FLOQYY) (z € T*). o

Definition 3 Consider ®“). By a ‘monodromy operator {of ®("))’ one understands
-1 -

any (Ht(l?)) T L{,(GO). And (#4®) I'Tq 14" is called ‘the monodromy operator (of

®"); We denote it by N, o

Corollary 11 Any two monodromy operators of ®°) are similar (with the Floguet
operator) . o

B.2.5 Relation between monodromy operators and semi-flows

Dencte by E, the n x n—identity matrix.

Proposition 52 The matriz of the monodromy operator of ®%) with respect to

the base egﬂ), . .,ef,g), ...... ,egM_l), . .,eg,u‘l) of(CN]M, equals the matriz of the
Floquet operator with respect to the base Ggo), ety GE.?), ...... ,GEM—I), i G&.M_l)

of SOLY. &

Proof.— Denoting a matrix of a linear transformation B with respect to the base £
and y by [B]}, the first matrix equals [(H(DJ)_l’]}L{(”)]i = [(u("))"]g"m]g[u(“)]g =
Eun{TEEpmn = [T418, 1.e. equals the second one. O

Theorem 1 N = <I>((;B. 0

193 To avoid any confusion: two H, € End(V)) and H: € End(V;) are similar if there exists a
linear isomorphism U : V| = V; such that UH, = H;U.
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Proof.— We have to prove that (U(”))-IFI;U[") = QQ?A, ie. that 7, | SOL® =
UL U@) 7. So, take G € SOLO. Then U0l 2®) ™G =
UMBNC0), ..., Gla+ M = 1) =UOGlyg),....Clg+ M~ 1)) =
g[(‘?{)GCQ)]——A-G(q+M—1))- From the ather hand Go.(c(q),....g{q+M—1)) 18 the unique solu-
tion of D™ that equals G(t) at t = ¢+ 5 (0 < s < M —1). Also TG is such. Thus
TG = ueQu©) 6. o

B.2.6 Floquet multipliers and existence of Floquetian solutions of @

Consider @}, An etgenvalue of the Floquet operator T | SOL{® (or of a mon-
odromy operator) will also be called ‘Floguet multiplier (of ®(%)’. Its characteristic
equation (characteristic polynomial) is called ‘characteristic equation {characteristic
polynomial} of @) We shall denote the (different) Floquet multipliers by

Ary o Ak,
their respective (algebraic) multiplicities by

y, ..., &,
and their respective geometric multiplicities by

B, Bk
Because the Floquet operator is a linear automorphism, one has:
Proposition 53 No Flogquel multiplier is zero. o
Because SOL™ has dimension M N, one has
ap+ -+ o = MN.
Concerning the existence of Floguetian solutions of %!, proposition 49 implies:
Praposition 54 [Floguet. (1883)] ®'9 has a non-zero Floquetian solution of type

{¢.2) & z is a Floquet multiplier of @ . o

r

Notice that if "+ with £ € @ is a Floquet multiplier of ©% then @) has a
2sq—periodic non-zero solution. And notice that dim {SOL©® n FLOQ,,,) = &
and dim (SOL'”) n FLOQ,,) = 0 if z is not a Floquet multiplier of @(®,

Proposition 55 For each V € (C¥)" one has: (N ~zid)"V =0 & 6% €

FLOQYY. o

Proof.— (Ty — 2 id | SOLO)" = 4O (N - z id)" @)™ and G = UV
=% (Ty— 2 id) "G = UO W -z id)"V = U0 =0.
e (N2 id)"V = (O (T, — 2 id) 6y = @™y o =0. 0
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B.2.7 Asymptotic behaviour of solutions of %)
Consider @%). Denote the generalized eigenspaces of the Floquet operator belong-
ing to the Floquet multiplier A; by 'D}"], lLe.

DI = ker (T, — A; id 1 SOLO)" (n > 1),
(We also write D; instead of D;l).) For each Floquet multiplier A; let

Ti

be its index ' It is well known that
(32) soL” =p{™ e ..o D™

Proposition 56 For @ one has

SOL® =57 | ker(7; - Ay id [ SOL)” =379

cker (H [ FLOQUL). o

Proof.— By (32) and proposition 49. O

We now want to study the dimension of of SOL™ i W for various linear

subspaces W of (CN. Things become easier if W is H- and T -invariant. So, suppose
this. Now,
T, 1S0L® N w

is defined. Because SOL'” N W is a linear subspace of SOL(O), each eigenvalue of
Tel SOL®™ n W is also an eigenvalue of Ta 0 SOL!™  ie.is a Floquet multiplier of
@9 Therefore, we can number the Floguet multipliers in such a way that

All"'sf\l'v

are the (different) eigenvalues of 7 | SOL!™ N W. (Of course, [ < k.) Denote their
respective (algebraic) multiplicities by

and their respective geometric multiplicities by

Brv.ibr

Furthermore, denote the generalized eigenspaces of 7, | SOL® n W belonging to

)

the eigenvalue A; by ﬁ;" L le,

DY = ker (T, - X id [ SOLOn W) (n > 1).

And for each eigenvalue A; let

7
be its index. Again
(33) SOLO nw = B g o H).

With these notations one has:

104] ¢ the least integer n > 1 so that Dg'ﬂ' v D;"J. Moreover, there are the general valid

properties: 1 < dim(D,} = 0, < a,, dim (D)) = oy, dim(D{") 2 ;40 -1 (1 < < 7).
This impliesr; < o, and a; =8, & r; = 1.
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Lemma 3 [ In cose W=1[":
(a) |2;] <1 (1 <j <) and each Floguet multiplier not outside T 15 an
eigenvalue of Ty | SOL®™ ny fo=;
(b) 7 =75 af |l <L =10 h) = 1
fc) a5 =a; if Al <L, & =8; f A= 1.
2. In case W = ¢p:

{a) |Aj] < 1 (1 < j <) and each Floguet multiplier inside T is an eigenvalue
of Tq 1 SOL®Y 1 e,

(b) FJ = 'n"‘j,’

{e) aj=aj. o

Proof.— la. {0} # ker{T, — A;id [ SOL® n W) = FLOQ,. N [® n SOL®.
Because of proposition 45{4), |A;| < 1. And, if A is a Floquet multiplier not outside
T, then ker (7, — Aid | SOL” 0 1) = FLOQ,, N N SOLY = FLOQ,, N
SOL® = ker (T, — Aid [ SOL{®'} # {0} and thus X is an eigenvalue of 7, [ SOL!” 1y
!00

tb. One has for each n > 1: SOL® n FLOQUSH! = sOL® n FLOQY,
SOLE n 1= N FLOQIYY = SOL® n 1 FLOQ(") . This implies 7; < ;.
If |). ! < 1, then because of proposition 45(2), ‘<’ a.lso holds and it follows that
75 11 A; = 1, then SOL® 11 11 FLOQY). = SOL® n 1= n FLOQY!) s
1.

P

._,Il II

c. &; = dim(SOL® n tmnFLOQ"’J '). I A} < 1, this becomes by 1b,

dim (SOLW n 1 nFLOQ(Y)) = d:m(SOL(” N FLOQYS) = aj. Andif [\f =1,

it becomes dim (SOL®) 1 = N FLOQL) ) = dum(SOL(" N FLOQYY Y = 4;.
2.As1. 0O

Theorem 2 Consider 8% . One has:

1. dim (SOL!Y 1 i) equals the sum of the algebraic multiplicities of the Floguet
multipliers instde T plus the sum of the geometric multiplicities of the Floguet
mudtipliers on T;

2. dim {SOL'Y " ¢p) equals the sum of the algebraic multiplicities of the Floguet
multipliers inside T. <

Proof.— Using (33) and lemma 3, dim (SOL® 0 1) = T4 dim (D!™))

! ! Ly
= (Z; 1,15 <1+E, 1|A| =18 = Zj=1,|xji<:°’j + Zj=1,|)«j:=1ﬁi= which is the
desired result. 2. As 1

Corollary 12 Consider . One has:

1. dim(SOL® N i®) =0 < cach Floguet multiplier lies outside T;

2 dim{SOLY N 1) > | <> at lcast one Floguet multiplier lies inside or on
T;

2 dim{SOL™ N I*) = MN ¢  all Floquet multipliers lic on or inside T

and each Floguet multiplier on T 15 semi-simple;

4. dim{SOL™ N ) =0 &  each Floquet multiplier lies on or outside T;
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3. dim (SOL(D) N co) > [ & at least one Floguet multiplier lies inside T,
6. dim(S()L(o) N ¢o) = MN &  each Floquet multiplier lzes inside T. o

Notice that we have obtained corollary 12 without using an explicit expression for
the general solution of (%),

B.2.8 Adjoint on PER,
On PER, an inner-product < | >, is defined by

g1
<Gl >,:= Y < GOJ() >,

t=0

where < | > is given by (19).

Consider for an integer s > 0 the [inear transformation 7, [ PER,. Define the
linear transformation 7, of PER, by: given G € PERy, 7, is the unique element,
of PER, for which i

FGYO) =Gt - 5) (1 > 5.
Consider for a g—periodic sequence B = (B;),5, of End{C™) (the multiplication
operator} Mp [ PER,. Define the linear transformation M of PER, by

Mpg = Mpg. [ PER,
where B* := (BY),,. With these notations one has:

Proposition 57 1. The adjoint (7, [ PER,)" is /nothing else than) T,
2. The adjoint (Mg | PER,)" is (nothing else than) Mg. o

Proof — 1. Take G,L € PER,. Then < T,G|L >,= Y120 < G(t + s)|L(t) >

LWLt - 5) > = T < GIONTL)(t) > Because of periodicity of
G and T, L this equals 3272 < G(O)|(TiL)(t) > = < GIT,L >,
2. Take G,L € PERg. Then < MyG|L >o= T000 < B(G()L(t) > =

1a < GWIBHLE) > = T8 < G Ma+ (L) > = < GIMpeL >;. O

Now, consider ®(0),

Corollary 13 One has (H | PER,)" = H, where the linear transformation H of
PER, is defined by: For G € PER,, MG is the unique element of PER, with

(A = e (B2) (Gt - 9) (t 2 M). o

Proof.— (H [ PER,)" = (ZfLUM‘B(-)Ta [ PERq)* = EstﬂfMB(')‘ 0
(21) implies

(34) SOLY) 1 PER, = ker(7).

Proposition 58 The dimension of the linear space of g—periodic solutions of 6
s the same as that of its adyoint equation OS:,). o

Proof.— By (34) and corollary 13, one obtains SOLE‘? N PERy = ker (H) =
ker ((H | PER,)™). The dimension of this last space equals dim (ker (% | PER,)),
which in turn, by proposition 49, equals dim (SOL® n PER,). O
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B.2.9 Floquetian solutions of @

One may look for Floquetian solutions of ®. We consider this question for ¢—Flo-
quetian solutions in case I/ is g—periodic.

Notice that the set of Floquetian solutions of type (r, z) of @ equals SOL
FLOQ, , which is a linear space and that the set of Floquetian solutions of type
(r,z) of @ equals SOL N FLOQ, , which, like SOL, is affine.

Proposition 59 Consider @ with non-zero g-periodic I7. Then each ¢— Floquetian
solution of ® 15 g—pertodic. <

Proof.— Suppose G € FLOQ, , N SOL. One has U € FLOQ, ;, HG € FLOQ,,
and #G = U. Thus FLOQ,; N FLOQ,, # {0} Proposition 41(1) implies z = 1,
i.e. G is ¢—periodic. O

Proposition 60 Consider ® with g—periodic /. Then: 1 is not a Floguet multi-
plier of ®% & 0 is the unique g—periodic solution of @0 & @ has a unique
q—pertodic solution. o

Proof.— This is a direct consequence of proposition 54 and proposition 11 with
W =PER,. O

Corollary 14 shows that in case 0 is not the unique g—periodic solution of o) @
(with g—pertiodic [7) does not have necessarily a g—periodic solution.

Proposition 61 Consider @ with g—periodic U. One has: @ has a ¢—periodic
solution & < G|U >, =0 for each g—periodic solution G of SOLS;). o

Proof.— @ has a g—periodic solution & U € Im{(# | PER,) & U €

(ker (H | PER)")" & U € (ker())* & U € (SOLY N PER,)” o
<V > =0(1<j<m). 0

Corollary 14 /f dim (SOL® " PER,) # 0, there ezists U € PER, so that "
does not have a q—periodic solution. ¢

Proof.— Let V1) V™) he a base of SOLQ’} N PERy. Take for U/ one of the
v} g

Much more can be said on typical solutions of @,'%% bui this will not be done here.

B.2.10 Periods

Given @), the set consisting of 0 and the positive values of r such that each
B,(’), . .,BﬁM) is r—periodic forms (under the addition} a semi-group A. Denote
AN {0} by A*. An element of A* is called ‘a period of 0©Y  Let gmin be the
minimal period of »™. Then

A= Gmin * N.

In the above we have always automatically worked with the period ¢ of §(®). How-

ever, g 1s not necessarily the minimal period. Sotnetimes it might be desirable to

work with grin.1%

195 Far example, one may constder the foliowing guestions. If all Floquet multipliers of @ are
inside T and U € I*® (cg), does then each solution of @ belong to 1% (cp)? If each solution of
@ is bounded, is then also each solution of ®'") bounded? (See for for example [12, chapter
1V.1) in & differential equation context.}

Y08 For instance as in conjecture 1,
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Cansider 89!, Suppose r € A* and ! is a positive integer. Then the Floquet
operators Tg | SOL® and Tig | SOL® are well defined and one has:

Tig 1 SOL®) = 74 1 SOLY.
This implies:

Proposition 62 If Ay, ..., Ay are the eigenvalues of Tg | SOL®) | then M, .. LAk
are those for Tig | SOL®. o

B.2.11 Real solutions
In addition to the results in subsubsection A.2.6, we want to make some further
remarks on real solutions for ® We suppose in this subsubsection real coefficients.
One has
(35) €, 7] = 0.
This implies
Clker (T, — z id)") = ker (T, — % id)",
i.e. CFLOQ{™) = FLOQYY. In particular G € FLOQ,, = (G € FLOQ, 7.
Proposition 63 For @) with real coefficients one has: A is o Floguet multiplier

= A is a Floquet multiplier. And if G is a non-zero Floguetian solution of @0 of
type (g, N), then CG is o non-zero Floquetian solution of ) of type (q,A). o

Proof— Let G € SOL' with G # 0 such that 7,G = AG. Then (€7;)G = C{AG).
Because of (35), and the semi-linearity of C this becomes T,(CG) = XCG). So, (G
is Floquetian of type (g, X). Because of (18) one has that CG € SOL(”. Because
CG # 0, X is a Floquet multiplier. O

Because of proposition 63 the Floquet multipliers occur in complex conjugate pairs.

Proposition 64 For each real Floquet-multiplier ) of @) wath real coefficients,
there exists a real-valued non-zero Floguetian solution of type (¢,A). ¢

Proof.— Let G be a non-zero Floquetian solution of type @9 of type {¢,A). By
proposition 16, RG and G are solutions of @), Using proposition 63 one finds
that they are also Floguetian of type (g, A). The proof is complete by noting that
one has RG # 0 or G #£ 0.

B.3 First order vector case
B.3.1 The object
Denote @ for M =1 by »

Glt+1) = A(G() +Us (£20) .

So, each A; € GL(CY), Aiyq = A (1 > 0), each U, € C¥ and G:N » CV.
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B.3.2 Monodromy operators and semi-flows

Consider p. Because of propositions 18{2), 27 and theorem 1 one has the following
explicit expressions for the monodromy operator A and the semi-flow @, o

Proposition 65 1. NV = A, A Ay

2 Bpo=Foor o FiFo= N+ 300) @fI”H_](U ). o
Proposition 66 If F is a fundemental operator solution of ¥, then there exists
a unague C € GL(CY) so that F{t+q) = F({)C (¢ > 0). In fact C = F(0)"'NF(0).

[+

Proof.— F(t + q) is also a fundamental operator solution of M) because F(t +
14+ 4q) = Aig144F(t +q) = Acp 1 F{t + q) (¢ > 0). By proposition 22 there exists a
unique €' € GL(CV) so that F(t +¢) = F(t)C In particular F(g} = F(0}C. So,
by proposition 22, F(0)CF(0)™" = F(g)F(0) ' =@{a=N. O

Theorem 3 Every fundamental operator solution F of »% has the form
F(t)y = PI)B  (t > 0)
where B € GL(CY), P(t) € End(C") (t > 0) and P(t+¢) = P(t) (£t > 0).

Proof — By proposition 66, there exists a unique C € GL(C") with F(t + ¢) =
F(£)C {t > 0). Now apply proposition 3%. O

Denote the generalized eigenspaces of the monodromy operator A belonging to
the Floguet multiplier A; by 5}"), ie.

EM = ker (W =, id)" (n > 1)

(we also write £; instead of £§"). For each Floquet multiplier A; let
i

be the index of A/.'®7 One has

(36) V=Moo g™

Because OfN = (u(D])_lr’; u(ﬂ) one has D}n) - u(O)(g;"))

B.3.3 Explicit expression for the general solution of p{°)

Proposition 67 Let Vo € £. Then: G50, (t) = A'F (A;_, ---Ao)Vo- ©

Proof— By proposition 47(4), gé"‘),o( )= QS?D)VD = (nggﬁ%?)‘/o = A QS‘,OC?VD =
/\-“ (Aim; - Ap)Ve. O

In case each Floguet muitiplier is semi-simple,'”® proposition 67 leads to an explicit
expression for the general solution of 8% (i.e. to a base of SOL("):

197 OF course, because of coroltary 11, this ry is the same as the index of the Floquet operator,
for which we also use the symbol r;.
108} ¢, its algebraic equals its geometric multiplicity.
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Proposition 88 Suppose each Floguet multiplier X; of MO s semi-simple. For
each j € {[ ook}, let FY {0 <1< a;—1) be a base of £;. Then, a base for SOL®

equals A (A, AN (1 <i<k D<i<a;—1). o

Proof — Hf(t} = MDA . 4g)FE. By proposition 67, each H] € SOL'®.
HeF:ause Z;zl ay =N = dim {SOL®), the proof is complete if we show that the
H] are linear independent. For this it is sufficient to show the linear independency

of their values (vectors from CV) at ¢ = 0. These values equal F} (1 < j < k,1<
1 < a;), which are linearly independent. O

Things are more complicated when not every Floquet multiplier 1s semi-simple.
To handle this general case, the appropriate gencralization of propaosition 67 is:

Lemma 4 Let V € Sgn). Then
t=i

=iy f t=i
G (1) = (e, - A0) Timg T3 ( ] )W Ay id)' Vo1 o

Proof— G{% (¢) = ®o = (A7_, - AN T Vo =

(A AV = A id+ A, id)%'v —
[ (=
(Ar_y - Aod 2215 ( } )('v—/\ :d)).'

t—1

(A, - Aolzmm(—n l)AGI(T)(N_Ajid)IVO-D

t=i_
Vo =

i
Because of proposition 5 one obtains:

Corollary 15 Let Vy € CV. Decompose Vo = Zk Vo, according to (36). Then
1=t

G, () = 205y (g - A E:ml; 4_1))‘ ( T ) (N =X id)' Vo o

Proposition 69 For each j € {1,...,k}, let F‘? (I < i< ;) be a base ofEJ(r’}.
Then, a base for SOL'Y equals
1=k gy =iy [ t=f A
(Aioy o) Timg * TN ( i ) (W =2 id)F] (1<j<k 1<

iSQj). L]

Proof.— By lemma 4, all the given objects belong to SOL{”). Because ZLI o

N =dim (SOLKO)}, the proofis complete if we show that they are linear independent,.
For this it is sufficient to show the linear independency of their values (vectors from
CNY at ¢ = 0. These values equal F/ (1 < j < k,1 < i < a;), which are linearly
independent. O

Notice that for ¢ large enough the general solution of SOL{® equals

=t 1
k o ] r ‘—1 =1 s 4
e i CH A - Ao) 202 AT (M =2y id) FY.
The above explicit expressions are, in fact, not very explicit. They simplify in
the autonomous case. However, the best results for explicit expressions are obtained
in subsubsection B.4.7 for the arbitrary order autonomous scalar case.

192 The Jordan canonical form of A may be useful to calculate further (A7 — ), id)’.
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B.3.4 Asymptotic behaviour of solutions of p

Theorem 4 Consider » with q—periodic /. One has: b has a bounded solution
< » has a g—pertodic solulion. ¢

Proof.— ¢ «'. Evident. ° =': It is equivalent to prove: P has no ¢g—periodic
solution = » has no bounded solution. So, suppose p has no g—periodic solution.
Because of proposition 60, 0 is not the unigque g-—periodic solution of »0 . S,
SOL® n PER, has positive dimension, say m. By proposition 58, also SOL{} N
PER, has dimension m. Let V(1) V(™) be a base of SOLE:;) N PER,. Because
of proposition 61 one does not have < VU7 >, =0 (1 <j < k) Letjso

that < VUi >, #0,ie with V= o), E:wo V(OIU(t) »# 0. Because of
proposition 20 one has

V() = (@) (Vie-1) (0<t<q—1).

So, this inequality becomes
Fo= Z <Vig- I)F‘I’f}“(U’) >#£ 0

and by taking t = 2¢ — 1 one obtains
7 (Vig—-1) =V{g -1}

Because of proposition 27 one has @, o = Qsoo) + 30 Lo D,)H(U,) {(t > 0). Because

of proposition 47(1) this becomes ®¢y ;g0 = ¢(0) +3, ‘P‘ .;+1(U Y(t,7 > 0). For
t = ¢ this becomes

Dy 41y qu“N+E¢q.+1 (Us) (4 = 0}
=0

Now fix a solution G of p. From the above Q(J.,,l}q_,q(G(jq)) = N(G(jq)) +

P l¢£0,+l s}, that is G{{j + 1)g) = N (G (i) + T02q lIJq a+l(U’) hence
< Vig = IG((F + 1)q) > = < V(g - )IN(G(jg)) > +=. From this

< Vig - NG+ Lg) > = < Vig - DIG(ig) > +2 (j 2 0).

Write this as y;41 = y; + 2. One finds y; = yo + jz (7 > 0). So, we have proven
that
<Vig-DIGi+1)g) >= w+3z {7 20),

which shows that GG is not bounded. O

B.3.5 Reducibility
If in " one makes the Linear substitution of variables J{t) = L,{G({t)), then, as
we have seen in proposition 17, one obtains the vector recurrence equation

JE+1) = (Lesr AL DI()) (> 0).

Proposition 70 If in K% one makes the linear substitution of variables J{t) =
Le(G(t)) where Leyg = L (1 > 0}, then the vector recurrence equation obtained is
again of type %) and its monodromy eperator is similar to that of FYL IS
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Proof — Because of the invertibility and g—periodicity of the L, the equation
obtained is of type B®. By proposition 65 the monodromy operator of p{%
equals A,_y - Ap and that of the obtained vector recurrence equation equals
(LgAg1 L2 ) (Lgm1Aq-3 L) -+ (1 Ao Lg ") = Lg(Ag-1 - Ad)Ig =

Lo(Ag-r - Ad)lg'. O

Proposition 70 makes clear that given two vector recurrence equations of type »(%)
{with the same ¢), it will not always be possible to transform the one into the other
by a g—periodic linear substitution of variables. However, one has:

Theorem 5 % can be transformed by a g—periodic linear substitution of variables
into an aulonomous egtiation of type #(%). o

Proof. — Applying proposition 39 to QE?& with ¢ = ‘P[(;?c)p (see proposition 47(3})

gives @'y = P(1)B with P(t + ) = P(t) and B invertible, Take L = P(t)"".
-1

Then Loy ALy ' = B (@7, ) @Y, @08~ =80

Theorem 5 is at the heart of the reason why the theory for periodic coefficient
equations is so similar to constant coefficient ones. However, to determine the
Floquet nultipliers one needs to know the Floquet or a monodromy operator. In
the first order constant coeflicient case the monodromy operator is A and in the
case of periodic coefficients it equals A,_; - - - Ap, a much more complicated object.
This is one of the differences between constant and pericdic coefficient equations.

B.3.6 Autonomous (first order) case

We always shall denote the autonomous linear vector recurrence equation D by &
Git+ D)=AGEN+U (>0 »,

where A4 € GL[CN) and U € CY. By proposition 65(1), the monodromy operator
of »® equals A. Thus the Floquet multipliers of p{®) are nothing else than the
eigenvalues of .. Instead of ‘Floquet muitiplier of M®’ one usually speaks of
‘characteristic root of B9, 8o, a ‘characteristic root of $°" is nothing other than

an eigenvalue of 77 | SOL!™,
Here are additional (typical) properties for the semi-flows for autonomeous equa-
tions.

Proposition 71 Consider p. One has:
L @ =F8 (8t > 0);
2 By =Gp_erg (>8> 0) and Beq@po = Beprrp (1,2 > 0);
3. (Diy)ely 15 6 one-parameter semi-group of mappings of cV;

4. For the principal operator solution Fp of 3% one has F(t+t) = F(t)F, (')
{t,t' >M. ¢

Proof.— 1. This follows from proposition 18(2).

2. Because of 1.

3. ®go=id and Pyppr0 = Pip 1 Pro = Por0Peo

4. Fix t'. Both F{t 4 1') as F(t)F(t') are operator solutions. Because they are
equal for ¢t = 0, they are equal. 0

Notice that, if G is a solution of §(™, then G(2) == A'~'(G(ty)) {to,t > Q).
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For the generalized eigenspaces belonging to the characteristic root A; of »(®
one now has

EF) = ker(A - id)® (n > 1),

Propositions 67 - 69 and corollary 15 can be simplified in an obvious way. For
example proposition 68 can be restated as follows.

Proposition 72 Suppose each eigenvalue of A is semi-simple. For j € {1,...,k},
let B} (0 < i < aj— 1) be a base of the eigenspace of X;. Then a base for SOL®
equals MiF) (1 <7<k 0<i<a;—1). o

Here is a new result.

Proposition 73 For Vg € E}”) one has gg?,’,u (t) e E}") (t>0). o

Proof— (A= A; id)" Gowa(t)) = (A= Xy id)" (AVe)) = A((A - Ay id)" (Vo)) =
A(M =00

Also a new result is the following ‘stable subspace theorem’.

Proposition 74 Consider »(®). Let E := Z?lf\jlﬂ SJ("'). If G is a solution of
D with G(0) € E, then G) € E {t > 0) and limg00 G(t) = 0. ©

Proof.— Waite G(0) = X, H; with H; € £ Then G = {0 = 6% 4, =

¥ géf'},). By proposition 73, 3 Gé?},j ey Ej(r‘) = E. Moreaver, lim;.00 G(t)
=0 by lemmad. O

Finally, let us determine a particular solution of p. Well, from the variation of
constants formula (22) we may take for this

t—1
Gt) =AY AT

j=0
Moreover, in case id — A is invertible, (id — A)_IU is a particular solution of ».

This solution even is constant.

B.4 Arbitrary order scalar case
B.4.1 The object

We are going to study an equations of the form

M
Soulgt s =w @20 4
=0

where we,v{”, ..., 5{* € € (¢ > 0), no o™ and no v{” is zero, each v s

g--periodic and g : N = C. Notice that J is nothing other than ® for ¥ = 1. So, all
results for @ also apply to J. From the other hand ! is a scalar recurrence equation,
so we can also consider the with J associated vector recurrence equation < J > and
all specific results for # also apply (in some sense) to J.
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B.4.2 Monodromy matrix

Proposition 75 1. The Floquet operator of 1% and of < J© > are similar by
(the linear isomorphism) P : SOL(®} & < SOL® ».

2. The monodromy operator of 19 and of < A9 > gre equal. o

Proof.— 1. For g € SOLI, both ({PT,)g){t) and ((T;P)g)(t) equal (Pg)(t + ¢).
2. By theorem 1 the monodromy operator equals @f,f’g. Now apply proposi-
tion 35. O
By ‘the monodromy matrix of J% we understand the matrix of the monodromy
operator of J with respect to the canonical base of C. Denocte by
(M1} (0}
M, = Comp (U’ bt

—)"'l_)
U£M) 'Ut(M)

the transfer matrices associated with J(®).
Corollary 16 The monodromy matriz of ¥ equals Moo Mg, e

Proof.— By proposition 63(1), A;_; - - Ao, where A, = M, € End(CM}), is the
monodromy operator of < JO - This implies the desired result. O

B.4.3 Determination of Floquet multipliers

Because of corollary 16, one has that the characteristic equation of J% equals
[Mg_y - MMy — z id| = 0. For the Floquet multipliers Ay, ..., Ax of S one
has:

() (0
Proposition 76 Lo MAs A = {Al}Mq Yy Uy

LU, |

2 M4+ 4+ =T (-Mq—qu—Q o MO)

Proof.— 2 is evident and 1 holds because of A; -- - Ax = |N| and (24}. O

Tt is possible to generalize the above results for @. However, this is not done in
this article.

B.4.4 Explicit expression for the general solution of ! in case of semi-
simple Floquet-multipliers

In trying to obtain explicit expressions for the general solution of J® one can take
the route via < J% > and the (not so explicit) results in subsubsection B.3.3. Here
we use another route.

Consider {%. By proposition 56, SOL®) = ?:1,....): ker (H | fﬁ(’)Qg"\{). Be-
cause of proposition 51 this becomes
2 tf {ri)
SOLY = 3™ A/Tker (Ma, [ FLOQYY).
t=1,..., k

Now further suppose that all Floquet-multipliers are semi-simple. Then one has

]
SOL® = 3~ A/Tker (Ha, [ FLOQ, )

i=1,. .k
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and ker (H,, | FLOQ, 1) has dimension ;. Fix a base y[l),‘ YO of FLOGq

and consider [Hy, | FLOQ 1} € M (C), ie the matrix of ¥, [ FLOQ,,
Jis(1)

with respect to this base. Let fj; = e C9 (1 <7< a) bea
fij(n)

base of ker {[Hx, [ FLOQqg]¥). Then 7, fi ;{03! (1 < j < w,) is a base of

ker (Hx, | FLOQ, ) and thus AV fi:(y® (1< i<k, 1< <o) is abase

of SOL? . The rest of this subsubsection is devoted to determine [#x, | FLOQ, )Y

in case y*) = §("); Here

ML B <i<h1<i<ai)
is a base of SOL{®), In the following we only consider the case ¢ > M.
Lemma 5 Suppose ¢ > M.
LoHeW = T W0 4 L T80 (1<t < M),

2 HEW =0 T (1<) o

Proof.— With lemma 2. 1. H8' = (T4 + 3702, )v{ 7)) _Z’;:}]vf:’.s.(’-’u
S, gl = S b0se e zvﬁ"“'”am = T vy a0+

Zg=q+i—M ZU(Q+f—i)5(j)

2. Hé = z”_ﬂ WOITE = M e = T el =
! (i-
EJ—f M J 1)51
Corollary 17 For the matriz [H | }'E(’)Qq,],, = (PI_,;)|<J<q 1<teq PN has in case
g M
L afl<t<M:
Hi=ol"D(1<j<i-1),
Hi =2 4+ éprg2o™ G = 1),
Hu=0(+1<j<qg+l-M-1);
Hig=20{™" D (g+1-M<j<q).

i

2 fMFi<i<y:
Hyu=0{l<j<l-M-1);
H;'—v}“_j) ({— M(j(l),‘

Hu=0{+1<j<qg) 0

B.4.5 Asymptotic behaviour of solutions of !

The result of theorem 4 also applies to J:

Theorem 6 Consider | with g—pertodic w. One has: | has a bounded solution <
J has a g—periodic solution. o

Proof — ' «': Evidenl. ‘ =': Suppose g is a bounded solution of J. Because of
proposition 29{2), Pg is a solution of < | >. Py is bounded. Because of theorem 4,
< | > has a g—periodic solution, say 7. Because of propaesition 29(3), QG is a
solution of J. QG is g—periodic. O



B.4.6 Second order scalar case

In this subsubsection we always consider J with M = 2:

vt +2) + vt + 1) + 0 g(t) = w, (2 0). o

Proposition 77

Y

1. The transfer matrices associated with +(% gre given by

L)
H-=0. 0
q-1

30

M, = (_;g;_ _;(%;)y) (tZO)-
Uy I
2. The monodromy matriz of o'% equals Mgy_( - My.
3. The characteristic equation for «(°) equals
2o e ( u(g u(‘I’ i ol
Proof.— 1. M, = Comp %i))-,—g- ( i}g;_ _;}2‘; )
by Yy

2. By corollary 16. 3. If A is a linear transformation of a 2—dimensional linear
space, then its characteristic polynomial equals |A — z id] = 22 — Tr (A)z + |4].
Because of 1 and 2 the desired equation now follows. O

In case (%) has real coefficients, its characteristic equation also has real coefficients.
This implies in this case for the Floquet multipliers A, Az of #("} that A;, Az € Ror
A1 = Az. (Also see proposition 90.)

Proposition 78 Consider the Floguet multipliers of (%) with real coefficients. De-

] 1 MO
fine Ay :="Tr —c vl vl and D) .= _(j_?_)_l Then
m _"q-l—m _“37-1-m ' -1

1. One Floguet multiplier is inside and one is outside T < |1+ D| < [Agl;

2. Both Floquet multipliers are inside T < 14+ D > |Ag], D< 1;

3. Both Floquet multipliers are outside T & 1+ 4 > I%‘I. F<lo
Proof.— Because of propositions 77(3) and 92. O

Proposition 79 For q > 3, the matric of H [ FLOQ, . with respect to the base

S . 89 equols

( uﬁ“’ Y G 0 0 0 \
Y O S % 0 0 0
0 o Wi® “’ 0o 0 0
0 0 0 uff" o 0 0

. + - . o

0 0 0 0 v, %‘_’2 v%{)z
zv(zl 0 0 0 0 vqo_ vql_)1

\ z (1) zvtz) 0 0 0 0 nf,"’
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Proof — Because of corollary 1Twith M =2. 0O

Finally, here is an example of a semi-simple Floquet-multiplier that is not simple:
Take ¢ = 2, y§") = (2) = | and v( } = 0. Then the monodromy matrix equals

( _01 [1) )( fl [1) ) = ( _OI _01 ), so —1 is a semni-simple eigenvalue that is

not simple.
B.4.7 Autonomous case
We shall denote the autonomous linear scalar recurrence equation J by J. Thus:

M
Zv(’)g(t+s] =w (>0

=0

] .

where vl*) w € C, v{% # 0 and +M) £ 0. We shall see that the characteristic
polynomla] of {9 takes a very simple form and shall give a very explicit expression
for the general solution of J.

A Floquet multiplier of /% usually is called ‘characteristic root of J(?". A
‘characteristic root of J(%" is thus nothing other than an eigenvalue of the Floquet
opetator 77 | SOL( or, by corollary 16, an eigenvalue of the monodromy matrix

(M -1) ]
(37) M= Comp(--(—)-, ’v(_MT)

Again, we shall denote the (different) characteristic reots of 409 by
D YT ¥

and their respective (algebraic) multiplicities by
oy, O

Concerning the geometric multiplicities one has:

Proposition 80 Fach characteristic rool ofg(ﬁ) has geometric multiplicity 1, so a
characteristic root of J is semi-simple if and only if it is simple. o
Proof.— See proposition 88(1). 0O

Proposition 80 does not hold any more for /%), For instance, for ¢ = 2 it is possible
to have a Floquet multiplier with geometric (and algebraic) multiplicity 2 as we
have seen in subsubsection B.4.6.110

Proposition 81 The characteristic polynomial of {9 equals
(M-1) (1]
_lMM v M-1 v oy
( )(2’ +v(M§Z + +-[-*—)'sz)0
Proof.— This polynomial equals |M — zEpy| = (—1]M|zE‘M — M| which by propo-
sition 89 takes the desired form. O

Thus the characteristic equation is equivalent with o(M) M 4 (M -3, M-1 4
v{92z% = 0. 1t is this equation that one normally uses in practice. And one thus
has:

(38) oMM g (0050 = (M) (2 = X)L (2 — M)

Y10This is (for g = 2) connected with the so called ‘coexistence problem’. See, for instance, [19].
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Proposition 82 Let A be a characteristic root of ¥, Then
plM=1) (1) (™

|Al < max (1 + iw|»11+|v_(ﬁ)‘t’|;(ﬁ)') ¢

M-1
Proof.— The characteristic equation is equivalent to (—1)™ (2™ + l(-m—ﬂ—)z”_l +
v

0
e ﬁ%zu) = 0. Proposition 91(1) implies the desired result. I

It is possible to provide a very explicit expression for the general solution of J©
as we shall see in theorem 7. The with g((” associated recurrence operator equals

M
H=3 o7y,
=0

Lemma 6 1. ker(7; — X id)" CSOL® (1 <i<k, 1<n<a).
2. FLOQY"), = ker (Ti — X id [ SOL®)" ¢ SOL® (1<i<k, 1<n<a). o
Proof.— 1. Suppose (T; — X; id)™'g = 0. By (38), # = .M, o7y =

dMUT — Ay id)™ (T} — Ay id)™*. So, Hg = U(M)(I—.[le,l#i (T1 = A id)™)
(71 = X id)™ ™" (T1 — A id)"g = 0. 2. Because of 1. O

Consider the generalized eigenspaces
D) = ker (Ti — Ay id [ SOLY (1< i<k, n> 1
of 71 | SOL(Y.

Proposition 83 The index of a characteristic root of % equals its algebraic mui-
tiplicity. o

Proof — Because of lemma 6(2) and proposition 41{4) one has for 1 < n < a; that
dim (D) = dimker {(7; — Aid)") = dim (FLOQ{™) ) = n. Because r; < a; =
dim (D}r‘)} one finds a; = r;. O

Proposition 84 Consider ', One has:
1. SoL® =D g ...0D™ = FLoo(W e -0 FLoQly);
2. A base of SOL) is given by ti)\; (1<i<k0<i<a; 1) ¢

Proof.— 1. Because of (32), proposition 83 and lemma 6. 2. Because of 1 and
proposition 43{2).
Proposition 84 implies:

a,—1

Theorem T The general solution of ® s T Ym0 CliA I
Theorem 2(1) and corollary 12(3) become, because of proposition 80:

Proposition 85 [ dim(SOL™ 1 %) equals the sum of the algebraic multi-
plicities of the characteristic roots inside T plus the number of characteristic
roots on T,

1 f one calls an expression of the form Ap{t), where p is a polynomial, a ‘quasi-polynomial’,

then this theorem can be restated as follows: Any solution of J(U] is a sum of quasi-polynomials
of the form Ek Api(t), where g, is a polynomial of degree less than o,.

=1
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2 dim(SOL™ N 1*y=M & all characteristic roots lie outside T and each
characteristic root on T is simple. ©

Proposition 36 may be used to find a particular solution of J. Howevet, the
following considerations are more appropriate for it. Let us look for a polynomial
solution of J of the form

g(t) = ct™.
Inserting this into J gives Zi":() vie(t 4 5)" = w. That is

M

(39) cgot* (1) Cuers=u

=0
This leads to:

Proposition B6 Consider | R:= inf{reN| Zf—.o vi)s" £ 0} Then D < R <

M and E_f“;:ujm;tﬂ is a solution of J. ©

Proof— With V := (1) o), M)y ¢ CM+! and W, = (0",1",...,M") €

CM+! one has TM v = 0 & < VIW, > =0 & W, € (Vect(V)*.
W, ..., Wy are linear independent: Indeed, the matrix A € Mar1{C) with W;
as i-th row equals Vand(0,1,..., M) and has non-zero determinant, So cM+ =

Vect(Wo, . .., Wu). Because (Vect(V))™ has dimension M, one now has 0 < R <

M. With (39), it follows that E}w—’;’){;}—ﬁtﬂ is a selution of J. O

C Miscellanea

C.1 Companion matrices

A Vandermonde matrix is a matrix of the form

0 o] 0 0
I B iy
Zq 23 %3 Zn
. ]
n-1 n—1 n-1 n-1
Za 22 22 e Zn

where zy, ..., 2z, € C. We denote this matrix by Vand(zy,. .., zn).
Proposition 87 |Vand(z1,..., 2a}] = [[ic;cicalzi — 7). ©

Proof— For = 1,2 the formula is correct. Now take n > 3. By reducing the last
column in the expression of |Vand(zy,...,2.)| to 1,0,...,0 and then develeping
to this column, one obtains |Vand(z1,...,2a)| = (2n — zn—1)(2n — 2n-2) - - (2n —
1 1 1
z1)|Vand(zy,...,2n_1)}|. (For example, |Vand(z:,22,23)|=| 21 22 23 |=
22 22 2%
1 2 i
1 1 1
Z] — 23 -1 2z — 23 10 =(22—23)(Zl—23){—1)
212 — Z3Z zf — ZaZy 0
z))|Vand({z1, 22)|.) This leads in an obvious way to the desired result. 0

1

z Iz

3-1 = (z;g—Zz](Za—
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A companion matrix is a matrix of the form!!?

0 1 0 0

0 0 1 0

¢ 0 0 1
—ay cap-1 —dpme2 o Qg

We denote this matrix by
Comp (a1,...,apm).

Proposition 88 Each eigenvalue of a companion matriz has geometric multiplicity
1, thus is semi-simple if and only if it is simple. ©

Proof.— Looking to a companion matrix A, we see that Im{A — z id) has dimension
at least M — | for each z. So, ker{A — 2z i{d} has dimension 0 or 1. Therefore the
geometric multiplicity of an eigenvalue equals 1. 0O

ifp=2™4pz2™- 4. .4 py_12' + pmz® is a (monic) polynomial (in z), one calls
the matrix Cotnp (p1, ..., pa) the ‘companion matrix of p’. One has the following
result:

Proposition 89 For each monte polynomial p = 2M + p1z2M-V 4+ - 4 ppye® in 2
one has p = |zFp — Comp (p1,....oM)|. ©

Proof.— By induction. The result is evident for M = 1 and M = 2. One has
|zEp 41— Comp (p1, ..., parqr)| = (=1)Y ' |Comp (py, ..., Para1) — 2B 41)]. Ex-
panding the determinant By the first column this becomes

()M (—prrgr (=1)M*? - IM — 2|Comp (pi,....pm) = zEm)| = paras +
z(—l)M[Comp P, ., oM) — 2Ewm)| = prrya + Z(Z‘M +pzM -l py 2t 4+

parzl) =Mt e p M 4 pyt 4 py2® O
The explicit form of Comp (a1, ..., aar) easily leads to
{40) [Comp (ay,...,ap)| = (—I)MaM,

a result that also follows from proposition 89.

C.2 Location of zeros of polynomials
Here, we collect for our purposes some useful results for the zeros of a polynomial

Mty parorz! 4+ pura®

p(z) = p°2M + p12
{where M > 1) with real or complex coefficients and pg # 0.

QOne type of result concerns the location of the zeros in relation to the real axis
{on the axis or off the axis}. They are useful in the context of real-valued solutions
{and of oscillatory behaviour) and are especially interesting for M = 2. Such an
important (easy) result is in case p has real coefficients: If z is a zero of p, then
7 is also one. Another type of result concerns the location of the zeros in relation
to the complex unit circle T = {z € C | |2| = 1} (inside, on or outside the circle).
As we have already seen, they are useful in the context of qualitative properties of
solutions; There are many such resuits. ''® We present a selection of them, useful
for our purpose.

12For M = 1 one has to interpret thia as Comp (¢;) = a;.
113 For application to the differential equations case there are related results for zeros with nega-
tive, zero or positive real part.
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Propasition 90 Consider the two zeros z),z2 of 2° + bz + ¢ € Rlz). Let 21, 27 be
the two zeros of p. Then

1. 21,22 ER or z; = 773;
2.¢£0 22 #£0,2; #0,
Ifc < 0, then z;, 23 € RY;

o

7,2 €T = |l =1;

e

J Ife> "7?, then z) = 77 and |z1| = [22] = /. ©

Proof.— This is easy. For example, 4. 2123 = ¢, 80 |¢| = |z1]jzg] = 1-1 = 1. 5.
if ¢ > §%/4, then by the square root formula z; = 72, so |e| = Jz1l|zz] = 211, thus

jzrt = |22] = Ve O

Proposition 91 Consider p with compler coefficients, py = 1 and py # 0.114
Then for each zere z of p.

£ el < max(1+ [pal - oo+ Ipsr—l, Iowrl) < 14max (Ipil, . lpael) [Cauchy’s
bound];

2. |zl <max{l,|py|+-- +pml) <31+ 0p1| + -+ |pm) [Montel’s bound);

3. )<\ 1+ pi2 + -+ [ps P [Carmichael and Mason’s bound]. o
Proof— See, for instance, [15, pages 316, 317]. O
Proposition 92 Consider the tuwo zeros of 22 + bz 4 ¢ € R[z].

1. One zero is inside and one is outside T <3 |1 +¢| < |b]. (If‘;_h}[fﬁ-ﬁ—} >8>0,
then (0 < 8 <1 and) j2;] < 1~ % and [22| > (1 — g)"l.)

2. Both zeros are inside T <3 1 +c > jb), e < 1.

8. Ife#0, then: oll zeros are outside T & 1+ L > 8, 1<) o

Proof.— Let 21,23 be these two zeros, Define f: R = R by f(z) = 27 + bz +c.
Then f(1}f{=1) = ([1 + c| — [B)){]1 + | + [b])-

1. 4= Then f(1)f(~1) < 0 which implies (because f is a parabola) that f has
exactly one zero in {—1,1}. The other zero has thus absolute value > 1.

=:Then 21,23 € R. If {1+ ¢| = [#] would hold, then f(1}f{—1) = 0 and f would
have a zero with absolute value 1, which is a contradiction. If |14-¢| > |b], then (1)
and f{1} would have the same sign and there would not be a zero of f on (-1, 1)
or both zeros would tie there, which is again a contradiction. Thus |1 + ¢ < |b].
(Mareover, because & # 0, one has [b]—{1+c| > 8(14[b|+[c]) > (14 [b]) > 8+ 4]6] >
81— %)+ 21b]. Thus |Bl{1-5) > N+el-+0(1~ 2} > |e+1-8(1-§) = le+(1 - %)ﬁ.
Thus f(1- $)f(-1+§) = (c+ (1§ + b1~ P+ (1-§)° = b1 - §) <0.
Thus f has exactly one zero in {~1+ &,1 — &). Thus |n|< 1~ §.

We now prove that |zp} > (1~ %)—l. If ¢ = 0, then z; = 0,22 = —b and
bt — 1 > 6(1 + |b]). Thus in this case |z2] = {8{ > F} > (because 0 < ¢ < 1)

{1 - %)kl, Now suppose ¢ = 0. Then 2} := /22, 2, 1= 1/z; are the two roots of the

114 Any polynomial f{z) of degree at least 1 can be written in the focm f(2) = C2*g{z) where C
is a non-zero constant, g{z} = z™ + p1z" "' + -+ + pn—17 + pn {where n > 0) and pn # 0. The
zeros of g are the non-zero zeros of f.



56

i i 238,41 ] ' 18]-1+df M_}Hﬁf
quadratic equation z°+2z++ = 0 and |71 < |23]. Because THENTI] = CHETHG >0,

it follows from the above that Jz}| <1~ §. Thus |2z} > (1 - %)_1.)

2. =: Then ¢ < |c) = J2122] < 1. Because of 2 and || < 1 it follows that
l+e=114+e>b. Thusl+ec>b1+e>-b Even 14c> b1+ ¢> —bsince
otherwise f(1)f{—1) = 0.

<=: In this case [¢| < 1 because —1 < |Bj~1 <c< 1, thus |l 4cf=14¢> ib).
Because of 2 one has therefore {2} < |za] < 1 or |22} > |2;] > 1. Because |z|jzs] =
fel < 1, one has |2;} < |z2! € 1. Because |1+ ¢| > |b], one has f(1)f(-1) > 0. Thus
f has on (—1, 1) no or two zeros. In the second case {z2{ < 1. In the first case, the
roots are not real and thus, because of 1, z; = 77 and thus |z3] = \/|?| < 1.

— L)z - L)y = 22 ata L — 2 =b L
3. Because (z — ;-)(z — 5z} =2 L+ =2 2z + 2, we see that

L L are the two roats of z% 4+ gz 4+ 1 =0. Thus because of 3, !-;—2{ < {:—1| <l&

21! 23
t+istigpls b oy g
A result in the spirit of proposition 92 for the arbitrary order case has been given
by Jury and Marden. This can, for instance, be found in [3, page 165).

Floquet muitipliers are the zeros of characteristic polynomials. So, one may wish
to have resulls on the location of eigenvalues of matrices in terms of the matrix

coefficients. For such results we refer to {15, chapter 6].
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