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WOORD VOORAT

In de tijd dat ik voor de eerste maal verbonden was aan het
Instituut voor Rassenonderzoek van Landbouwgewassen, heb ik
mij bezig mogen houden met een paar problemen uit het brede
veld van de wiskundige verwerking van waarnemingsuitkomsten,

Het eenvoudigste probleem was dat van de vruchtbaarheids-
correcties. Met name bij de voedergewassen was het vaak nodig
grote proefvelden aan te leggen met over de honderd rassen. Door-
dat zulke proefvelden vaak anderhalf tot twee ha groot werden,
was niet altijd te vermijden, dat er hinderlijke onregelmatigheden
in de grond aanwezig waren, die meestal vooraf op het cog niet
waren te onderkennen. In de proefvelden waren dientengevolge
vruchtbaarheidsverschillen van 309% niet zeldzaam. Aan de eis
tot correctie was dus niet te ontkomen.

Nu wordt in de laatste jaren de proefveldverwerking geheel
gedomineerd door de methoden van de school van R. A. TISHER.
Deze methoden waren voor de bedoelde proefvelden evenwel niet
bruikbaar, omdat bij de aanleg geen rekening gehouden was
met de eisen van de FISHER-schema’s.

Krachtens zijn grondslagen is de Fisugr-methode wvoor het
onderhavige probleem ook niet erg geschikt, omdat FIsuERr zich
baseert op orthogonaliteit, terwijl het probleem van het vrucht-
baarheidsverloop binnen de blokken in wezen inorthogonaal is.

Juist wegens die inorthogonaliteit is meer steun te verwachten
van de grafische methoden, waaraan in Nederland vooral de
naam van W. C, VISSER is verbonden. Van deze methode is dan
ook een ruim gebruik gemaakt. Maar ook hierbij is er cen bezwaar.
Omdat de grafische methode meer afhankelijk is van de persoon-
lijke kijk op de resultaten, is het moeilijk een objectief oordeel
over de fouten te krijgen.

In hoofdstuk 1V is getracht aan dit bezwaar tegemoet te komen.

Fen moeilijker probleem was dat van het samenvatten van de
uitkomsten van rassenproeven, wannecer het aantal rassen wisselt.
Dan kan namelijk nict ,,geFISHERd” worden. In hoofdstuk Il
is gezocht naar een weg door deze mocilijkheid.
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Het bleek inderdaad mogelijk langs een uitvoerbare weg te
komen tot samenvattende rasgemiddelden, die gelijk zyn aan de
gemiddelden, die b.v. worden verkregen volgens de methode van
hidst, XIT van Dr M. J. van Uven; Mathematical treatment of
the results of agricultural and other experiments. Deze laatste
methode is in het onderhavige geval meestal niet te hanteren
wegens het grote aantal onbekenden.

Zonder meer zouden deze gemiddelden dus een zeker vertrouwen
mogen genieten. Maar helaas is er een complicatie, nl. de afhanke-
lijkheid der rassen. De gebieden, waarop de conclusics van het
proefveldonderzoek worden toegepast, zijn niet homogeen; er is
een variatie in de milieufactoren. Als regel heeft ieder ras een eigen
manier om op deze milicufactoren te reageren, maar soms zijn
er twee of meer rassen, die in hun reacties sterk op elkaar gelijken.
Bij deze rassen is er een zekere afhankelijkheid, die aanleiding
geeft tot correlatieverschijnselen en die tevens oorzaak is, dat
de berekende rasgemiddelden misleidend kunnen zijn.

Aan het probleem dat hierdoor ontstaat is een groot deel van
hfdst. IV gewijd, maar dit neemt niet weg dat de formules die in
dit verband gegeven zijn nog maar een eerste stap in de richting
van cen oplossing zijn. Aan de bijbehorende foutenthecrieén is
nog niet begonnen.

Over de cerste twee hoofdstukken kan ik kort zijn. Er worden
allerlei begrippen in uitgewerkt, die in de laatste twee nodig zijn;
er wordt soms ook extra lang stilgestaan bij onderwerpen, waarvan
in de practijk bleek, dat er bij velen onduidelijkheid over heerste.
Met name is in hfdst. I1 stilgestaan bij de vooronderstellingen van
de vaak gebruikte aanname, dat de opbrengst van een bepaald
ras op een bepaald proefveld mag worden gezien als de som van een
bijdrage van een rasinvloed en een bijdrage van een proefveld-
invloed,

Tenslotte zij nog vermeld dat Prof, Dr M. J. van UvEN de tekst
grondig heeft gecontroleerd, waardoor vele verbeteringen zijn aan-
gebracht. Ook aan Prof, Ir W, J. DEwEz en Prof, Dr Ir J. C. Dorst
heb ik enkele belangrijke verbeteringen te danken,



OPMERKING

Bij het schrijven van deze studie is aangenomen, dat de lezer

bekend is met

Dr M. J. vaN UveNn: Mathematical Treatment of the Results of
Agricultural and other Experiments. 2¢ ed. Groningen 1946
309 pp.

(in de tekst vaak genoemd: het leerboek van Van UVEN)

en met de hoofdzaken van differentiaal- en integraalrekeming,

de FisHer-analyse en de correlatierekening.



I - ENKELE ALGEMENE BEGRIPPEN

A - IDEALE FORMULES EN NOODFORMULLES

101 — HET VINDEN VAN EEN FORMULE, DIE DE GEGEVENS VER-
KLAART

ITemand, die aan de landbouwers voorlichting zal geven aan-
gaande de rassenkeuze, dient daarbij een zo nauwkeurig mogelijke
voorspelling te kunnen doen over de resultaten, die de verschillende
rassen het volgend jaar zullen geven.

Hiertoe is in de eerste plaats nodig dat hij zijn ervaring in-
ventariseert, Hij gaat na welke opbrengsten of andere eigenschappen
van de diverse rassen hem bekend zijn, en met welke bizonder-
heden ze eventueel in verband kunnen worden gebracht.

{eder getal dat bekend is aangaande het object van onderzoek
{dus b.v. aangaande een opbrengst} willen wij als gegewen aan-
duiden. De bizonderheden die eventueel kunnen dienen om het
ontstaan van het gegeven te verklaren willen wij omsiandigheden
noemert. ’

Het 1s nu de taak van de voorlichter een algemene wet te vinden,
die het ontstaan van het gegeven verklaart aan de hand van de
omstandigheden en de mogelijkheid biedt, aan de hand van toe-
komstige omstandigheden de toekomstige gegevens zo nanwkeurig
mogelijk te voorspellen. Deze wet willen wij aanduiden als de
corclusie. Vaak zal de conclusie geformuleerd worden in de vorm
van een formule.

Van deze formule zal de voorlichter gebruik maken om een
antwoord te geven op de wvragen van de practijk.

Wij willen aan de hand van een voorbeeld nagaan, waarop gelet
moet worden by het ontwerpen van een formule.

Veronderstel dat er een are tarwe is. verbouwd in de Wageningse
eng in het jaar 1942. Veronderstel verder dat als opbrengst 30 kg
is verkregen. Het getal 30 is dus het gegeven.

I}t gegeven moet dus dienen om antwoord te geven op allerlet
practische wragen, b.v.

a. Hoe wvruchibaar 1s de Wageningse eng?
b. Hoe groeizaam was het weer in 19427
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c. Welk opbrengstvermogen heeft tarwe.
d. Welke befekenis had het speciale ras dat verbouwd werd.
e. enz.

Dit zijn een aantal vragen, waarop men graag antwoord wil
ontvangen. Voor het beantwoorden van al die vragen is men aan-
gewezen op het éne gegeven. Met behulp daarvan zou bijv. ge-
concludeerd moeten kunnen worden:

f. De Wageningse eng kan 30 kgfare opbrengen.

g. Het jaar 1942 gaf oogsten van 30 kg/are.

h. Tarwe brengt 30 kg/are op.

i. Het verbouwde ras kan gemakkelijk een opbrengst van 30

kg/are bereiken.

Of men zou de vragen moeten combineren en b.v. als volgt
redeneren;:
7, De Wageningse eng is niet erg vruchtbaar, de vrucht-

baarheid 1s . . . . .« . . . 27 kgfare
72 Het gewas tarwe is nlet geseh:kt voor de eng, nega-

tieve ophbrengststijging . . . .. . . ~4 kgjare
i3 Het 1aar 1942 heeft nogal meegewerkt de groei-

zaambeid was . . . . . - - . . b kgfare

Het gekozen ras was extra goed productleoverschot 2 kgfare

a
som 30 kgfare

Wanneer zo één of meer vragen in onderlinge samenhang worden
bestudeerd, willen wij spreken van een wvraagstuk. Onder de letters
I, g, &, ten g is dus telkens één vraagstuk opgelost.

Het is niet mogelijk een vraagstuk kwantitatief op te lossen
zonder in de conclusie één of meer getallen te noemen. Fewn getal
dat tn een conclusie woodzakelifk 1s, willen wiy een withomsi
noewmen.

In de conclusies f—i staat dus telkens 1 uitkomst; in conclusie
ir—7, staan er 4. Weliswaar zijn in conclusie j,—4, 5 getallen ge-
noemd, maar er zijn slechts 4 noodzakelijk; de som behoeft niet
vermeld te worden, daar die zonodig uit de andere vier kan worden
afgeleid. De wuitkomsten moeten dus onderling onafhankelijk zign.

Wij willen nu nagaan of al deze conclusies toelaatbaar zijn.

In de conclusies j—% wordt het gegeven telkens als het gevolg
van één omstandigheid beschouwd, terwijl de andere omstandig-
heden worden genegeerd. Dit negeren gebeurt nog op ongelijke
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wijze. Formule f spreekt van , kunner’: De Wag. eng kan 30
kg/are opbrengen. Het verband tussen de Wag. eng en de 30
kg/are is vrij los. Er blijft zo ruimte voor andere invloeden.

De conclusies ¢ en A daarentegen suggereren algemeen geldig-
heid. Tussen het jaar of het gewas enerzijds en de opbrengst ander-
zijds wordt een strak verband gelegd dat andere invlceden uitstuit.
Niettegenstaande dit verschil wordt toch in alle drie conclusies
één omstandigheid als oorzaak van het gegeven aangeduid, Volgens
f is het de grond, die de 30 kg opbrengt (zij het misschien via
een bepaald gewas), volgens % daarentegen is het gewas de gever
van de opbrengst (zij het dan ook met behulp van de grond).

Wiskundig is er tegen geen van de drie conclusies bezwaar in
te brengen. Het is niet een wiskundig prebleem, of de opbrengst
viteindelijk te danken is aan de grond of aan het gewas., Maar
er is wel bezwaar tegen, dat alle drie conclusies tegelijk worden
aanvaard. Als gever van de ene opbrengst van 30 kg/are kunnen
niet drie verschillende ,,omstandigheden’ worden aangewezen, die
ieder voor zich het verschijnsel geheel zullen verklaren. Wil men
de verschillende invloeden erkennen, dan dienen ze gezamelijk
in één conclusie vermeld te worden.

Het zou dan b.v. mogeliik zijn een conclusie in de gedaante
van {;—7, op te stellen. In deze conclusie worden 4 invloeden er-
kend, en aan ieder wordt een bepaalde werking toegeschreven.
Bij nadere beschouwing blijkt echter dat de uitkomsten 7,—ij,
niet uit het gegeven geconcludeerd zijn. Er is reeds eerder waar-
genomen dat de Wageningse eng niet vruchtbaar is, dat tarwe
daar niet het aangewezen gewas is enz. Zou de opbrengst van
30 kg/are zonder nadere kennis over de vier invloeden zijn ver-
deeld, dan had dit slechts als willekeur kunnen worden bestem-
peld.

Om te weten wat men met zijn gegevens mag doen, zal men
daarom moeten letten op het wiskundig begrip , orijheidsgraad’’.
Hel aantal vrijheidsgraden geeft aan, hoeveel gegevens men onafhan-
Relijh van elkaar heefl verkregen. In het bovengenoemde voorbeeld
is het aantal vrijheidsgraden dus 1, aangezien er slechts 1 gegeven
is, Het is nu een wiskundige wet, dat men niet meer withomsten
mag verkrijgen dan men vrijheidsgraden heeft. In bovengenoemd
voorbeeld was er één vrijheidsgraad, daarom mag er ook slechts
één getal in de conclusie worden genoemd,

Wil men verschillende invloeden erkennen, dan moet men ze
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voorstelien als samenwerkende, om het ene gegeven voort te bren-
gen, by

k, tarwe bracht in 1942 in de Wageningse eng 30 kg-are op;

. de Wageningse eng bracht in 1942 per are 30 kg tarwe op.
In de conclusies k& en I wordt meer rekenschap gegeven van de
begeleidende verschijnselen dan in g—. Toch hebben ze wiskundig
geen enkel voordeel. Conclusie f verklaart het verschijnsel van
30 kg/are evengoed als conclusie /; 2 doet het evengoed als £. Van
nit wiskundig oogpunt bezien mag er over de grond en het weer
evengoed gezwegen worden als over de stand van de sterren en de
schijngestalten der maan, die ook wel met de opbrengst in ver-
band zijn gebracht.

Conclusie A is wiskundig evengoed als conclusie k. Maar men
moet opletten, er niet meer in te lezen den er gezegd wordt. In
conclusie 4 mag nict gelezen worden, dat ongeveer hetzelfde
resultaat verkregen zou zijn in 1943, of op een andere grond. In
conclusie # mag men niet impliciet als uitkomst lezen, dat de
grond dus geen invloed heeft. |, Geen invlced”” wil wiskundig zeggen
een invloed 0; dit zou ecen tweede getal zijn.

Hier ligt het bezwaar van conclusie ¢. Daar wordt gezegd dat
het verbouwde ras gemakkelijk 30 kg/are op kan brengen. Door
het woord |, gemakkelijk’” worden de niet-ras-omstandigheden als
tamelijk ongunstig gestempeld. Deze ongunstigheid kan niet uit
de 30 kg ‘are zijn gebleken, tenzij er meerdere gegevens beschikbaar
waren, waarmee het getal 30 kon worden vergeleken. Dit is echter
niet in overeenstemming ruet onze veronderstelling.

Deze discussie kan als volgt worden samengevat.

Biy het jormuleren van een conclusie zal men scherp moeten ondey-
scheiden, wat wit de gegevens ts afgeleid, en wal op andere gronden
wordl beweerd.

De aard van de conclusie is vanuil wishundig vogpunt onbelangrijk;
slechts wordt wvereist, dat ze zodawige wuithomsten aangeeft, dat die
gezamelijk kwantiialief rekenschap geven van alle gegevens.

De conclusie mag niet meer withomslen bevatien, dan er vrijheids-
graden beschiRbaar zifn.

Bij deze laatste regel kan nog worden opgemerkt dat in de
practitk meestal getracht wordt nitkomsten te vergelijhen. In dat
geval 1s er een vergelijkingspunt nodig, dat ook een uitkomst is
en dus 1 vrijheidsgraad verbruikt. Op grond hiervan kan men
vaak lezen dat het aantal beschikbare vrijheidsgraden | lager is
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dan het aantal gegevens. De vrijheidsgraad voor het vergelijkings-
punt is er dan alvast afgetrokken,

102 — HET VINDEN VAN EEN FORMULE, DIE EEN BETROUWBBARE
VOORSPELLING TOELAAT

De eisen die aan het eind van 101 verzameld zijn, mogen vrij
streng lijken, toch valt er gemakkelijk aan te voldoen. Immers,
de aard van de conclusie wordt vanuit wiskundig cogpunt onbe-
langrijk genoemd. Wanneer men de vragen als volgt zou formu-
leren: ,,Wat heeflt de cerste waarneming opgeleverd, wat de tweede,
enz.” dan kon men al deze vragen,beantwoorden, door de gegevens
rechistreeks als uitkomst in te vullen.

Door zo te handelen zou scherp naar voren worden gebracht,
wat de gegevens waren; plaats voor vooroordeel zou er niet zijn.
Verder zou van alle gegevens kwantitatief rekenschap zijn ge-
geven, en het aantal nitkomsten zou niet boven het aantal vrij-
heidsgraden uitkomen.

Toch zou een conclusie van deze structuur niet bevredigen. Er
moeten ook eisen aan gesteld worden, die rekenschap geven van
het deel, waartoe de conclusie wordt opgesteld. In 101 is reeds
uiteengezet dat het doel 15, een formule te vinden, die voorspellingen
toelaat. Dit voegt aan de eisenn van 101 cen aantal nieuwe toe.

In de eerste plaats erst dil, dat de vvagen van het vraagstuk
opnieww gesteld moeten kunnen worden.

In de tweede plaats moet aan de hand van de witkomsten voorspeld
kunnen worden, welk gegeven zal wovden verkregen door een niewwe
waarneming binnen het kader van het vraagstulk.

Tenslotle moet hel gegeven dal verkregen wordl, wanneer de waar-
neming werkelijk wovdf verrichi, gelifk zijn aaw hef voorspelde ge-
geven.

Aan de hand van deze drie cisen willen wi de conclusie j—#%
opnieuw beoordelen. De conclusie ¢ en § waren reeds verworpen.

Conclusie f luidde: De Wageningse eng kan 30 kg/are opbrengen.
Dit is een antwoord op de vraag: Hoe vruchtbaar is de Wage-
ningse eng? Deze wraag voldoet inderdaad aan de gestelde eis.
Niet alleen in 1942 kon die vraag gesteld worden, maar hij kan
steeds worden herhaald. Aan de eerste voorwaarde is dus voldaan,

De tweede voorwaarde eist, dat nu ook het resultaat van een
nienwe waarneming moet kunnen worden voorspeld. Veronderstel
dat in 1950 de waarneming zal worden herhaald. Welk gegeven
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zal worden verkregen? Dat is niet bekend. Het kan 30 kg/are zijn.
Maar met dat woord , kunnen” wordt tevens uitgedrukt dat het
ook anders kan. Er is geen zekerheid. Om deze reden moet con-
clusie f worden verworpen.

Conclusie g luidt: Het jaar 1942 gaf oogsten van 30 kg/are.
Dit beantwoordt de vraag, hoe groeizaam het weer in 1942 was.
Tegen deze vraag moet men reeds bezwaren hebben. Deze vraag
kan niet opnieuw gesteld worden. Het jaar 1942 is voorbij. Wan-
neer het jaar in rekening moet worden gebracht, kan er b.v. gezegd
worden: cen nat jaar brengt zoveel op, of een droge zomer zoveel,
Natte jaren en droge zomers kunnen zich herhalen, maar 1942
niet. Ook conclusie g zal dus moeten worden verworpen,

In conclusie % staat tenslotte: Tarwe brengt 30 kg/are op. Deze
conclusie beantwoordt de vraag, welk opbrengstvermogen tarwe
heeft. Ook deze wvraag i1s aanvaardbaar. Dit opbrengstvermogen
kan opnieuw worden onderzocht.

Wanneer wij nagaan of aan de hand van de uitkomst het resul-
taat van een nieuwe waarneming kan worden voorspeld, dan is
het succes bevredigend. ,, Tarwe brengt 30 kg/are op. Het gegeven
dat verkregen zal worden zal dus luiden: 30 kg/are.

Maar nu wordt in de derde plaats nog gedist, dat deze voor-
spelling juist zal blijken, wanneer die waarneming inderdaad
wordt gedaan. Het is algemeen bekend, dat er meer kans is dat
de nienwe waarneming een afwikend gegeven verschaft. Daar-
cm lijkt ock de laatste conclusie verwerpelijk.

Doch nu dient men te bedenken, wat reeds in 101 is gegist, Er
moet duideljk onderscheiden worden, wat uit de gegevens wordt
geconcludeerd, en wat ,,vooroordeel”’ is. De zekerheid dat een
nieuw gegeven wellicht niet met de conclusie zal overeenstemnmen
is niet uit dit ene gegeven verkregen maar uit andere, die formeel
niet meegeteld hebben bij het verwerken van de gegevens.

Die oudere gegevens, die bij de onderzoeker tot ,,vooroordeel”
geworden zijn, worden licht meegeteld, omdat men graag wil
controleren of aan de laatste eis werd voldaan. Voor een bevre-
digende conclusie is het dus nodig, dat er gecontroleerd wordt,
of een nieuw gegeven zich inderdaad verdraagt met de uitkomsten,
die met behulp van de oude gegevens zijn berekend.

¥t maakt dat er uiteindelijk meer gegevens nodig zijn, dan
aan het einde van 101 werd verondersteld. Hierdeor wordt de
laatste eis van 101 verzwaard. Die moet luiden: De conclusie moet
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minder uithomslen bevatiem, dan er vrijheidsgraden beschikbaar
ziyn; of omgekeerd: Er moeten meer vrijheidsgraden zijn, dan er
auttkomsien in de conclusie vermeld worden.

103 — WISKUNDIGE FORMULERING VAN DE VEREISTE METHODE

Door de eisen die in 102 zijn geformuleerd is de oplossing, die
aan het begin van die paragraaf gegeven werd, wel helemaal on-
houdbaar geworden. Alleen al de vragen: ,,wat heeft de eerste
waarneming opgeleverd?”’, ,wat de tweede?” enz. zijn verwer-
peljk, omdat ze niet opnieuw gesteld kunnen worden. Een nieuwe
waarneming zal nooit weer de eerste kunnen zijn.

Maar ook wordt aan de eis, dat het aantal uitkomsten kleiner
moet zijn dan het aantal vrijheidsgraden, niet voldaan, daar een
conclusie als bovengencemd die aantallen automatisch gelijk
maakt.

Wanneer die Jaatste eis maar niet geformuleerd was, zou het
probleem nog tamelijk eenvoudig zijn. Er zijn talloze manieren
om van n gegevens n uitkomsten af {e leiden. Men kan b.v. #
eerste graadsvergelijkingen opstellen, waarbi) telkens ecen ander
gegeven in het rechterlid wordt geplaatst en een andere com-
binatie van de onbekenden met telkens wisselende coéfficienten
in het linkerlid, Er is niet veel geluk voor nodig om zo # onaf-
hankelijke niet-strijdige vergelijkingen te krijgen. Met behulp
van een dergelijk willekeurig stel vergelijkingen kan men steeds
een aantal uitkomsten verkrijgen, die aan de voorwaarden van
101 voldoen.

Nu komt 102 met de eis dat de vragen van het vraagstuk op-
nieuw gesteld moeten kunnen worden. Dit hoeft niet zo streng
te worden opgevat, dat ieder van de # vergelijkingen weer toe-
passelijk moet kunnen zijn op een toekomstige situatie; maar
het houdt wel in, dat met behulp van de # onbekenden een nieuwe
vergelijking moet kunnen worden opgebouwd, die op een toe-
komstige sitnatie kan slaan.

De eis dat met behulp van deze vergelijking het resultaat van
een nieuwe waarneming moet kunnen worden voorspeld is nogal
eenvoudig. Substitutie van de berekende uitkomsten in de nieuwe
vergelijking geeft vanzelf zen waarde in het rechterlid. Deze
waarde moet als gegeven door de nieuwe waarneming worden
geleverd, Uit de wijze van ontstaan van deze nieuwe vergelijking
volgt dat ziy athankelijk zal zijn van de » andere.
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Tenslotte 15 geéist dat deze waarneming ock inderdaad ver-
richt wordt en met de voorspelling klopt. De eis is dus dal over een
aantal ondeviing afhankelitke vergelijkingen wordl beschiki, voor men
over de formule (conclusie) tevreden mag ziyn. Door deze eis moet de
willekeur by het opstellen van vergelijkingen worden bestreden.

Feitelijk staat men bij het trekken van een conclusie voor
tweeérlei taak. In de eerste plaats moet men zorgen voor de juiste
bouw van de formule en daarmee voor de juiste formulering van
het vraagstuk. In de tweede plaats moet men zorgen voor een
juiste beantwoording van de gestelde vragen.

Door de juiste bouw van de formule wordt de conclusie kwali-
tatief goed, door de juiste beantwoording van de gestelde vragen
kwantitatief.

Voor het kwantitatief beantwoorden van een vraagstuk met »
vragen zijn slechts » gegevens nodig, doch voor het aanvaarden
van de formule in kwalifatief opzicht is het nodig de afhankelijk-
heid van een overtollig aantal vergelijkingen te hewijzen.

Strict genomen zou bewezen mocten worden, dat alle mogelijke
overtollige vergelijkingen wvan de eerste # afhankelijk waren.
Immers, zo lang het denkbaar is een vergelijjking vast te stellen
die strijdig 1s met de voorgaanden is de juistheid van de conclusie
onzeker. Absolute zekerheid is natuurlijk nooit bereikbaar.

104 — HET BEGRIP ,,INVLOED"

Alvorens dieper in te gaan op de mogelijkheid een aantal af-
hankelijke vergelijkingen te verkrijgen, zullen hun bestanddelen
nader moeten worden bestudeerd.

Het rechterlid is erg eenvoudig: het vermeldt de waarde van een
bepaald gegeven.

Met het linkerlid is het ingewikkelder. In 103 is de mogelijkheid
genoemd hiervoor een eerste-graadsvorm te nemen, waarin telkens
een aantal van de onbekenden voorkomen. Maar het bestaan van
deze mogelijkheid is alleen zeker, wanneer er geen overtollige
gegevens zijn die strijdigheid kunnen veroorzaken. De gedachte
een eerste-graadsvorm te nemen is willekeurig. Door deze willekeur
kan de conclusie fout zijn in kwalitatiel opzicht. Aan het eind
van 103 is besproken dat deze willekeur juist moet worden ver-
hinderd door de boventallige gegevens. Over de bouw van het
linkerlid is dus niets bekend.
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Om de gedachten te bepalen volgt hier zo maar een willekeurige
vergelgking die voor een bepaald vraagstuk zou kunnen gelden

(1041 a—prtlglp g - T =y,

In deze formule kan voor v telkens een waargenomen gegeven
gesubstitueerd worden. In het linkerlid moet drieerlei worden
onderscheiden:
le de onbekenden a, b, ¢, d en ¢, waarvan de waarden moeten

worden berekend. Het zijn deze waarden die in 101 als ,,uit-

komsten'’ zijn gedefinicerd. Deze uitkomsten zijn voor alle
vergelijkingen gelijk;

Je de constanten §, ¢, 3, &, £, n en ¢, die voor een bepaalde ver-
gelijking a-priori vast staan, en voor een andere a-priori weer
anders zijn. Twee vergelijkingen met precies dezelide waarden
voor de constanten zouden strijdig zijn by ongelijke ¥ en
identiek by geljke y. Strijdigheid is ongeocorloofd, en identiteit
van twee vergelyjkingen brengt de oplossing van het probleem
niet dichterbij. Vandaar de bewering, dat de waarden van de
constanten voor de ene vergeliiking a-priori anders moeten
zijn dan voor de andere. Deze constanten zijn in 101 als ,,om-
standigheden” aangeduid;

3de de bouw, die de samenwerking van al deze grootheden regelt,
en de formule kwalitatief goed maakt.

Tot dusver hebben wij al onze aandacht gericht op de uit-
komsten, die wij met behulp van de gegevens willen verkrijgen.
Hierdoor hebben wij neiging de uitkomsten te zien als functie
van de gegevens, en de gegevens als functie van de uitkomsten.

Rekentechnisch is dit juist. Maar wanneer even nuchter boven-
staande formule (104.1) wordt bezien, blijkt het overigens hele-
maal niet redelijk. De eenmaal verkregen uitkomsten zijn de
parameters, de constanten, die voor alle vergelijkingen gelden.
Dat de gegevens telkens anders mogen zijn, wordt gemotiveerd
door het wisselvallig karakter van de ,,constanten™ #, v, §, &, {,
y en &, Feitelijk ligt de verhouding zo: Voordat het vraagstuk
is opgelost, zijn g, b, ¢, d en ¢ onbekende constanten en «, 3, ¥, &,
g, {, n en & bekende variabelen.

Het is wenselijk hier even nadrukkeliik bij stil te staan. Doordat
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de min of meer toevallig opgetreden waarden van de verander-
lijken bekend zijr, nemen die gedurende de berekening de plaats
van constanten in; doordat de constanten onbekend zijn moet
hun waarde gezocht worden, hierdoor krijgen zii als enbekende
de plaats van veranderlilken. Dit mag ons niet verhinderen in te
zien, dat formule {104.1) y geeft als een functie van de verander-
lijken 8, v, 8, &, &, 5 en ¥.

Deze vevanderlijhen willen wif als invloeden aanduiden. De
bepaalde getalwaarden, die voor één vergelijking (dienende ter ver-
klaring van één gegeven) aam de werschiliende invioeden worden toe-
gekend, hebben wij reeds aangedusd wmet de naam omsiandig-
heden van hei gegeven. Een verandering van een invloed {m.a.w.
het optreden van een andere omstandigheid) veroorzaakt dus een
verandering van het gegeven. '

Dit geldt niét veor de constanten. Immers een constante kan
niet veranderen. Wanneer dit ogenschijnlijk toch gebeurde, zou
dit betekenen, dat er tot dusver een invleed in verborgen was
gebleven, doordat die invleed (toevallig) constant was. Het zou
betekenen dat het probleem niet juist was opgelost. De bouw
van de formule zou verkeerd gekozen zijn, en de oplossing kwali-
tatief onjuist.

105 — HET VEREISTE AANTAL VRIJHEIDSGRADEN

Aan het eind van 102 is het vereiste aantal vrijheidsgraden in
verband gebracht met het benodigd aantal uitkomsten. Er moesten
meer vrijheidsgraden dan uitkomsten zijn. Nu moet er op gelet
worden of er ook verband bestaat tussen het vereiste aantal vrij-
heidsgraden en het aantal invloeden. Daartoe volgen hieronder
twee formules.

De formule

1

yo=ax% +bx*+cx® - dx® +ex + f
geeft v als functie van één 1nvloed x; doch er zijn zes nitkomsten:
a, b, c, d, ¢en j. Er zijn zes gegevens nodig om de nitkomsten
te bepalen, en verder nog een aantal om de formule te controleren
op haar juistheid. Toch is hier maar één invioed.
Daarentegen geeft de formule
Y = uyxz

v weer als functie van vier inviceden. Er zijn evenwel geen gegevens
nodig om uitkemsten te bepalen daar er geen onbekende para-
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meters zijn. Het eerste gegeven kan reeds dienen om de bouw van
de formule te controleren.

We zien dat het aantal unitkomsten en het aantal invloeden
onafhankelijk van elkaar zijn. Het minimum aantal benodigde
gegevens wordt wuitsluitend bepaald door de uwitkomsten.

In de practijk hoeft een formule gewoonlijk niet alieen gecon-
troleerd te worden, doch hiy moet eerst nog worden ontworpen.
Voor dat doel zal het aantal gegevens wel een veelvoud moeten
zijn van het aantal invleeden. Dit zal niet nader worden nagegaan.

Er"is namelijk een belangrijker complicatie aan het probleem.
Om afhankelijkheid van de formules te verkrijgen moeten de
getalwaarden van alle omstandigheden nauwkeurig bekend zijn,
evenals de getalwaarde van het gegeven. Dit is in de landbouw-
wetenschap nooit het geval.

Iedere waarneming voegt daardoor een reeks speciale vragen
toe aan de algemene vragen van het probleem: In welke mate
is de ene omstandigheid verkeerd becijferd, en in welke mate de
andere?, tenslotte in welke mate het gegevenr De beantwoording
van deze vragen brengt een aantal correctieconstanten in de formules,
die telkens maar eenmaal voovkomzn. De waarden ervan moeten als
uitkomst uit de berekening worden gevonden. Deze correctie-
constanten moeten niet alleen rekenschap geven van vergissingen
en onnauwkeurigheden, maar ook van de toevalsonbepaaldheid
die in sommige opzichten een fundamentele eigenschap van de
natuur is.

Omdat ieder gegeven minstens één correctieconstante eist, zal
het beschikbare aantal vrijheidsgraden steeds beneden het ver-
eiste aantal uitkomsten blijven. Door deze omstandigheid is het
ideaal van cen aantal afhankelijke vergelijkingen onbereikbaar.
Integendeel, de vergelijkingen zullen onbepaald blijven; daar er
meer onbekenden dan gegevens zijn,

106 — HET UITSCHAKELEN VAN ONBEKENDEN

Waar het niet mogelijk is, het aantal gegevens zo hoog op te
voeren, dat het aantal onbekenden overtroffen wordt, zal het
aantal onbekenden moeten worden verlaagd. Nagegaan moet dus
worden welke onbekenden moeten vervallen,

Reeds in 102 is geéist van de vragen van het probleem, dat
ze opnieuw gesteld moeten kunnen worden. De berekende con-
stanten moeten in meer dan een vergelijking voorkomen en zo
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bijdragen tot het verklaren van meer dan een gegeven. Aan deze
voorwaarde wordt niet voldaan door de correctieconstanten,

e correctieconstanten komen daarom wel in de eerste plaats
in aanmerking om weggelaten te worden. De formule die ontstaat
door uit de ,,juiste’’ formule, die tot afhankelijkheid van de verge-
lijkingen zou moeten leiden, de correctieconstanten weg te laten
willen wij als ddeale formule aanduiden, Wanneer in de ideale for-
mule aan de constanten de ,,ware’” waarden zijn toegekend zouden
wij van ware jormule willen spreken,

Het is duidelijk dat de bouw van de ideale formule niet” ver-
andert door het toenemen van het aantal gegevens. Daarom moet
het mogelijk geacht worden, voldoende gegevens te verzamelen
om de ideale formule te berekenen.

Toch wordt 1in de landbouwwetenschap vaak niet met de ideale
formule gewerkt. En wel omdat die formule niet bekend is. Het
landbouwkundig onderzoek is nog in volle gang. De invloeden
die de plantengroei bepalen zijn nog niet alle bekend; van de
wisselwerking tussen die invloeden is nog een groot deel duister.
In die situatic 1s het niet mogelijk de ideale formule op te bouwen.

Toch moet de een of andere formule gebruikt worden. Zo een
formule, die in bouw van de ideale afwijkt, willen wij aanduiden
als noodformule. ‘

Een noodformule kan tweeérlei doel hebben. In de cerste plaats
stelt men zulke noodformules op om al tastende tot de ideale te
komen. it 15 het doel van het wetenschappelijjk onderzoek.

Voor de landbouwvoorlichter is een ander doel belangrijker.
Het is de taak van het rassenonderzoek: te voorspellen welke
gegevens het volgend jaar verzameld zullen kunnen worden. De
practijk moet vooraf weten welke ervaringen ze met een bepaald
ras zal hebben. Deze ervaringen moet de voorlichter voorspellen,
zonder dat hij de ideale formule weet.

Hij heeft dus een noodformule nodig, die de vereiste voorspel-
lingen zo nauwkeurig mogelijk toelaat. Hoewel deze formule
onjuist 1s, zal ze moefen worden gebruikt in de practijk; immers
de landbouw gaat door.

Wi komen dus tot het volgend owverzicht van de besproken
formules:
(106.1y De juiste formmle geeft steeds athankelijkheid maar be-
staat niet.
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De ware formaule 1s kwalitatief en kwantitatief goed.
De ideale jormule is kwalitatiel goed.
De noodformule is kwalitatiel onjuist.
In wiskundige symbolen kunnen deze formules als volgt worden
omschreven:

juiste formule: ax = F {(xk —tx), (2r —— bay) - .+ - o, Bo, Co .. )by,
ware formule: v =f{x,2,....4a0, b5, ¢o,....)
ideale formule: v =7 {(x,2,....a,8,¢,....)
noodformule: vy =g x, ... )

In deze formules worden door fy,, #,, £z, .... aangeduid de
correctieconstanten die volgens het cind van 105 bij het omstandig-
hedencomplex % nodig zijn. Door a,, bs, ¢o . . . . worden ware waarden

van de parameters aangeduid door a, b, ¢ parameters met onbe-
kende waarden. Verder wordt door f aangedwid de formule met de
juiste bouw, door ¢ de formule met de onjuwiste bouw.

Het blijkt dat bij de juiste formule een identiteit ontstaat wan-
neer biy het emstandighedencomplex £ het verkregen gegeven
vergeleken wordt met de getalswaarde van het rechterlid, indien
daarin naast de omstandigheden xz, z& . . . . en de ware parameter-
waarden o, bs, ¢s, ... cok de ware correctie constant en iy, fyy, Iz, - . ..
zijn opgenomen.

De ware formule geeft nooit identiteit, maar is voor alle om-
standigheden de beste benadering van de juiste.

De ideale formule is gelijk aan de ware, behalve dat de waarden
van de parameters niet bekend zijn, deze formule is ideaal als
middel om de ware te vinden.

De neoodformule is verkeerd gebouwd. By gevolg komen de
parameters 4, b, ¢ er misschien niet eens 1n voor, terwijl ook cen
deel van de omstandigheden, b.v. z, onvermeld kunnen zijn.

Dit laatste type formule komt in de practijk zeer veel voor
en zal dus nog onze speciale aandacht moeten vragen.

B - FOUTEN EX GEWICHTEXN BI] NOODFORMULES

11l — HET METEN VAN DE STRIJDIGHEID

Wanneer er niet met de juiste formule gewerkt wordt, doch
met de ideale formule of een ncodformule, zal er strijdigheid op-
treden zodra er meer gegevens zijn dan er uitkomsten gevraagd
worden.

Het berekenen van uitkomsten uit strijdige vergelijkingen wordt
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vereffening genoemd. Met behulp van de uitkomsten kan nu it
de vergelijkingen worden berekend welke gegevens bij een bepaald
omstandighedencomplex verwacht mogen worden. Deze | bere-
kende gegevens” willen we als ,wverwachtingen’’ of | verwachte
gegevens”’ aanduiden,

Deze verwachtingen zullen niet geljk zijn aan de bijbehorende
waargenomen gegevens. Er zal een afwiking overblijven tussen
beide. Deze afwijkingen stellen ons in staat de sivijdigheid in een
getal vast te leggen. Een veel gebruikte maat voor de strijdigheid
is de varians.

Wanneer b.v. vier rassen in drie blokken met elkaar worden
vergeleken is het met de FispEr-methode mogelijk de volgende
variansen te berekenen.

le Ide varians van het gehele proefveld

2e . ,, de rasverschillen

Je ,, " ,, de blokverschillen

de vy ,, de interactie tussen rassen en
blokken,

De eerste varians meet de strijdigheid, die ontstaat wanneer
men alle opbrengsten identiek stelt. De tweede meet de strijdig-
heid die ontstaat wanneer men de rassen identiek verklaart. De
derde doet hetzelfde wanneer men de blokken voor identiek
verklaart, De vierde fenslotte meet de stnjdigheid die ontstaat
wanneer men verklaart dat alle rassen gefijk op de eventuele blok-
verschillen reageren.

Wanneer de mening dat de rassen of de blokken identiek zijn
juist is, werkt men dus met een ideale formule, In dat geval 1s de
varians een maat voor de foevallige fouten. De varians gedraagt
zich dan vaak in overeensternming met bekende foutenwetten.

Wanneer de aanname evenwel onjuist is werkt men met een
noodformule. In dat geval meet de varians naast de foevallige
ook de systematische fouten. Zonder meer mag dan niet aange-
nomen worden dat de varians de foevalsweiten volgt.

In verband hiermee willen wij alleen die varians, die foevalizge
fouten meet, aanduiden door ¢2. De varians die is opgebouwd
uit foevallige en systematische fouten duiden wij aan als y2

Aan de hand van een voorbeeld willen wij nu nagaan welke
moeilijkheden zich bi} een warians van een nosdformule kunnen
voordoen,
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112 - VOORBEELD VAN HET GEBRUIKEN VAN EEX NOODFORMULE,

Veronderstel dat onder de volgende omstandigheden x de bij-
behorende gegevens y zijn waargenomen. Zowel de gegevens als
de omstandigheden zijn foutloos in cijfers uitgedrukt.

1764 1936

1156 1296 13(59‘ 1521 1681
181.44 | 190.08

146.88 | 155.52 | 159.84 [ 16848 | 177.12
: P i i i

x=! 1089
y = ’ 142,56

Deze cijfers worden vereffend op de lijn v = mx + ¢ (met de
formules voor x zeker, y onzeker) onder aanname dat dat de ideale
formule is. De varians duiden we dus aan door % Hieronder
volgt de berekening

J X ¥ u 1 ¥ F i [ uy 2u

1089 | 142.56 | -387.5 J -22.68 | 150 156.25] § 788.50 | 514.3824
1156 146.88 | -320.5 | -18.36 ‘ 102 720.25; 5884.38 | 337.0896
1296 ‘ 155.562 ) -180.5 1 -9.72| 32 580.25) 1 754.46 94,4784

e

| 1369 | 150.84 | -107.5 | ~5.40 1 1155625/ 58050 [ 29.1600
| 1521] 16848 443 324 1980.25 14418 [ 104976
| B68I| 17712 2045 | 11.88 4182025 2 429.46 | 1411344

T

16.20 t 82 656.25! 4 637.50 | 262.4400

1764 | 181441 2875
24.84 1 211 140.25’ 11 413,98 . 617.0256

1936 | 190.08 | 459.5

i
f
i
|
\
1
|
\
1

i ———— | -
som | 11812 1821.92] ! 634 610.00) 35 652.96 | 2006.2080
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We vinden dus als resultaat dat

o = 0.5321
# == 0.03618 £ 0.0009
§—=82.36 = 1.38

Zowel de m als de ¢ zijn dus ,,zeer betrouwbaar” afwijkend
van (.

Omdat de lin iets krom is willen wij voor nadere informatie
ook eens proberen de lijn te vereffenen op ¥y =algx — b De
berekening blijft dezelfde als de voorgaande, slechts wordt de x
door lg x vervangen.

De berekening geeft het volgend resultaat:

o2 == 0.4804
0% = 8.63
g% = 86.4720
@ =190 + 3
b — -435.35 + 9.30

0ok de uitkomsten voor a en b maken in het licht van hun
middelbare fout ,,zeer betrouwbaar” de indruk niet gelijk aan
0 te zijn.

Niet alleen zyn de uvitkomsten van beide formules alle |, ,zeer
betrouwbaar’” ongelijk 0, maar ze zijn ook lijnrecht met elkaar
in tegenspraak. Wanneer door de ¢ met practische zekerheid
wordt uitgedrukt dat de lijn de positieve Y-as snijdt, terwijl de
andere formule beweert dat de lijn de negatieve Y-as asymptotisch
nadert en reeds voor de waarde x = | (lgx = () zeer zeker een
sterk negatieve waarde heeft (5 = -435.35), klopt er iets niet.

Eerst wordt bewezen dat de constante term positief is (¢ = 82.26),
dan wordt bewezen dat hij negatiefis (b = — 435.35). Tweemaal
is bijgevolg ,,zeer betrouwbaar'’ aangetoond dat er een constante
term is. In werkelijkheid liggen alle punten foutloos op de lijn
v = 4.324/x. Deze lijn gaat door de oorsprong en heeft geen
constante term!
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113 — DE ASYMPTOTISCHE WAARDE

Het is duidelijk dat de berekende middelbare fout van de uit-
komsten hier niet inlicht over de afwijking tussen de berekende
enn de ware waarde van de constanten. De constanten van een
noodformule hebben geen ware waarde, want de noodformule
is onjuist.

Wel kan er gesproken worden van hun asymptotische waarde.
Wanneer er een oneindig aantal waarnemingen verwerkt werden,
die toevallig gekozen waren, zouden zeer bepaalde nitkomsten
berekend worden. Deze waarden worden asymptotische waarden
genoemd. Wij willen die waarden nu berekenen voor bovenstaand
voorbeeld, waarbij wij als noodformule y = mx |- ¢ kiczen. Het
resultaat van de berekening willen wij als asymploteische ver-
wackting aanduiden,

Bij de waarneming w, verricht onder de omstandigheid xw hoort
als ware waarde [y,) van het gegeven

ynw _ 432\/%:@

De waarde volgens de noodformule is

Vi = Wkw ¢
De afwijking is dus
(13.1) 4.324/%w — mMxw — 4.

Volgens de methode der kleinste kwadraten moeten wij de
m en de g nu zodanig kiezen, dat de som van de kwadraten van
deze afwijkingen zo klein mogelijk wordt. In het onderhavige
geval is het aantal afwijkingen oneindig en de kwadraatsom dus
ook. Daarom moeten wij werken met het gemiddelde.

Wanneer wij voor de overzichtelijkheid 4.32 vervangen door ¢,
is het kwadraat van (1i3.1):

m2xa® — 2cm xuf} + (¢® + 2mq) 2w — Zeq xﬁ' -+ g2

Met deze formule kunnen wij niet verder werken, wanneer
we niet eerst ons wuniversum nader begrenzen, Wij stellen
daartoe dat de x steeds tussen 1000 en 2000 ligt (wat in ons

voorbeeld ook het geval was) en dat alle waarden van x in

dat gebied evenveel kans hebben voor te komen. Nu kunnen
wij de relatieve frequentie van de waarde xw gelijk stellen aan

20430
T"ﬁlﬁﬁ dxie, mmers -l_ﬁlﬁfl- Axe = 1.
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Het gemiddelde van de kwadraten zal nu gelijk zijn aan

2000 5 :
: / (m2x® — 2emx® + (¢t = Zmq) x — 2cq %7 L ¢ dx
x=1000

5 2000
Y57 | 3w —dom P gus (3c? = mg) x® — feqg x¥ - g%%| .
1060

Wanneer wij stellen
X = 2000
Xp = 1000
wordt deze vorm
(113.2} 139w 3%’”2 (d — 2% — gom (et — %) -
— (3¢ + myg) (xa® — xp?) — dog (x — x¥) + q® (%a — %s).
Om na te gaan voor welke waarde van s en g deze vorm zo
klein mogelijk wordt, moeten wij hem partieel naar s en g differen-
tiéren. Door die differentiaalquotienten gelijk aan 0 te stellen

zullen wij in dit geval het minimum vinden.
Wij vinden zo de vergelijkingen

rduo g b — 1) — e (b — 28) = g (ar— %) = 0

1y §m (et — 0%) — o (rad —08) 4+ 2 (0 —m) = 0
Door xa = 2000 en x = 1000 te substitueren wordt dit {wan-
neer wij tevens de eerste vergelijking door 1000 delen)
12200 gy - 4 (44/2-— 1) £4/1000 4 33 = 0
3000 m — § (242 — 1) c4/1000 - 2¢ = 0.
Wij lossen hieruit op
_3e(12—84/2)
54/1000
_ ¢ (1284/2 —172) 4/1000
15 '

Substitutie van ¢ = 4.32 geeft
(113.3) m = 0.05625273179
7 = 82.14233671
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Dt zijn dus de asymptotische verwachtingen van de constanten
van de onjuiste noodformule. Wanneer wij deze asymptotische
verwachtingen in de nogdfermule invellen willen wij spreken van
de asymptotisch verwachte noodiormule.

114 — DE FOUTEN BI] HET GEBRUIKEN VAN EEN NOODFORMULE

Nu verschillende begrippen zijn besproken is het mogelijk na
te gaan welke soorten fout er gemaakt kunnen worden, wanneer
de juiste formule wordt vervangen door een noodformule. Dit
vervangen willen wij in gedeelten doen (Zie voor de nmamen der
formules 106.1).

a. In de eerste plaats vervangen wij de juiste formule door de
ware formule, Hierbi} worden dus de correctieconstanten wegge-
laten.

Doordat deze correctieconstanter: by iedere waarneming weer
andere waarden hebben kan hun grootte niet stuk wvoor stuk
worden vastgesteld. Daarom tracht men bij het nemen van proeven
zoveel voorzorgen te nemen, dat de gegevens en de omstandig-
heden zo nauwkeurig mogelijk bekend zijn. Soms kan de orde
van grootte van deze correctieconstanten vooraf geschat worden;
dit kan aanleiding geven tot het toekennen wvan ,,gewichten”
(Zie voor de theorie hierover het leerboek van Vax UvEeN, hfdst,
III). Verder is er niets aan te doen,

Daarom hoopt men deze onbekende correctieconstanten als
,,toevallige” fouten op te mogen vatten, die gezamelijk aanleiding
geven tot een foevallige afwifking by de waarneming. In formule
uitgedrukt is deze afwijking f{; bij ecn waarneming w

tow = Yw — Yo,

waarbij y» weergeeft de waarde van het gegeven, zoals het is
waargenomen en v, de ,,ware waarde’’ er van.

Wanneer er geen andere fouten gemaakt zijn, dus wanneer
met de ideale formule gewerkt 1s, 1s deze 4 de enige oorzaak van
de varians., In 111 hebben wij reeds gezegd dat wij in dit geval
de varians door ¢* zullen aanduiden.

Deze varians wordt gewoonlijk gencemd de ioevalsvarians. De
wortel hiervan (¢) 1s volgens de bekende foutentheorieén de
beste schatting van de asymptotische middelbare waarde van de
ware toevalhige fouten van de gegevens.
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5. In de tweede plaats vervangen wi) de ware formule door de
asvmptotisch verwachte noodformule. Dit komt er op neer dat
het verband tussen omstandigheden en gegevens cnjuist geinter-
preteerd wordt. Wij zouden hier dan ook van inierpretaliefout
willen spreken. e afwijking ¢ tengevolge van de interpretatie-
fout kan als volgt in formule worden weergegeven.

~
ti’m‘ = Yo — Vg

waarbi] y« de waarde voorstelt, die het gegeven v zou moeten
hebben bij de waarneming w volgens de asymptotisch verwachte
noodformule, terwyl de v, op dezelfde manier als boven kan
worden omschreven.

Van deze afwijkingen #; mag niet worden aangenomen dat ze
toevallig verdeeld zijn. Bij bepaalde omstandigheden behoort een
bepaalde interpretatieafwijking. Dit is b.v. te zien wanneer men
voor het voorbeeld uit 112 de afwijkingen berekent en die tegen
de omstandigheden x afzet. Bij gebruikmaking van de nood-
formule v = mx + ¢ vindt men dat de afwijking positief is bij
lage x, daarna negatief wordt om tenslotte weer positief te
Zn.

Wanneer de gevonden afwijkingen een systematisch verband
vertonen met een of meer invlceden spreekt men van systema-
tische fout. Dergelijke afwikingen zijn dus het gevolg van een
interpretatiefout. De invloeden, die by de systematische fout
een rol spelen zin in de noodformule op een onjuiste wijze opge-
nomen, of geheel weggelaten.

Een verwachting van het gemiddeld kwadraat van de inter-
pretatieafwijkingen ¢; laat zich voor ons voorbeeld met behulp
van formule (113.2) berekenen. Wanneer daarin de asymptotische
verwachtingen voor m en ¢ (zie 113.3) worden gesubstitueerd,
wordt de waarde 0.5144 gevonden.

Naast de symbolen ¢? en o2, die we in 11§ bespraken, willen wij
voor de varians tengevolge van de interpretatiefout nog het sym-
bool ¢? invoeren. De wortel ¢ kan dan worden aangeduid als
middelbare interpretatiefout.

¢. In de derde plaats moet de asymptotisch verwachte nood-
formule worden vervangen door de berehende. Ook in ons voor-
beeld was er verschil tussen beide, zoals de volgende vergelijking
leert
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(114.1) Berekende waarde Asymptotische waarde volgens
volgens 112 113 en 114
wo 0.05618 i 0.05625
q 82.36 g 82.14
w*  0.5321 <pi= (= ¢?) 0.5144

De varians werd in 112 nog als ¢® aangeduid. Daar wij aan de
vereffeningsformules het karakter van noodformules herkenden
hebben wij nu de notatie w? genomen.

In {114.1) blijkt dat er onderscheid is tussen de berekende
varians y? en de asymptotisch verwachte interpretatievarians 2
Hierbij speelt de toevalsvarians geen rol, want er is uitgegaan
van foutloze waarden, en er is bovendien voor gezorgd dat ook de
afrondingsfouten niet te groot werden.

De oorzaak van het verschil ligt hier, dat volgens onze aanname
alle omstandigheden tussen x = 1000 en x = 2000 evenveel kans
hebben op te treden, terwijl van al die mogelijke waarden slechts
8 verwerkeljjkt zijn in de cijfers van 112, Deze 8 waarden hebben
nu de taak het gehele gebied tussen x = 1000 en x = 2000 te ver-
tegenwoordigen. Ze zyn er als het ware een monster uit, Maar het
monster is niet zo 1deaal mogeljk getrokken, Dit blijkt als wij het
gebled van x in 8 gelijke delen verdelen en daar naast vermelden
welke x als vertegenwoordiger moet worden beschouwd {zie onder-
staande tabel).

1000 1500

) 1089 ) 1521
1125 1625

) 1156 | } 1681
1250 1750

) 1296 ) 1764
1375 1875

) 1369 ) 1936
1500 2000

Het blijkt dat de omstandigheid x = 1369 zelfs buiten zijn
gebied ligt; verder liggen er maar een paar redelijk in het midden.
De fout die hier gemaakt is zouden wij als monsterfout willen aan-
duiden.

Wanneer het monster volgens toeval getrokken wordt doet
deze fout misschien aan de toevallige fout denken. Maar de monster-
fout is opzetteljk te beinvloeden, en daarom veel gevaarlijker.
Wij willen dit aantonen aan de hand van vier voorbeelden (steeds



gebruiken we punten die

duiden wij aan met g2

A
o

voldoen aan v = 4.324/x). De varians

(114.2)
| I
X = ‘ ¥y = l 1% = ! = |
! | | . .
: ; : . i
I 1024 } 13824 | 476 ' 2808 [214] = 820280
| 1080 | 14256 | -411 © 2376 i fuv] = 46647.38
1406 | 162.00 3 -4 432 [v2] = 2631 3084
1483 | 16632 17 P 0
1528 | 168.48 | 21 216 | wm = 005625 & 0.0012
1561 | 17084 | 61 . 432 7 =819 188
1936 | 180.08 | 436 2376
| 1980 | 18224 | 480 2592 L gr=1.2430
] i .
gem. | 1300 | 16632 | i !
; i ! I
{114.3)
¥ = y = w = 1 b= |
i | T ) -
I 11s6 14688 | -338 | 1944 [ae2t] = 539 790
To1295 151.20 | 269 | -15.12 [iv] = 30 270.24
1261 ¢ 153.36 233§ -12.9¢ [ov] = 1 698.2784
1333 ‘ 157.68 | 161 | -8.64 |
1641 174.96 | 147 | . 864 m = 0.05608 L 0.0005
| 1723 17928 | 220 , 12,96 | g — 82.54 L (L74
[ 1764 18144 | 270 ; 1512 |
1849 18576 , 355 . 1944 | gt = 0.1316
| | i
gem. | 1494 166.32 | i
(114.4)
’ x = ‘ Y = U = P =
| ‘ e
;1024 138.24 | —205 Po-18.09 [ttu] = 416 542
;1089 1 142.56 230 | 1377 [#0] = 24358.32
1156 | 14688 | 163 1+ -9.45 [ew] = 1427.0904
1260 | 15336 | - 58 297
1332 157.68 | 13 1.35 | wm — 0.05848 L 0.0010
1408 162,00 + 87 ' 567 ' g =79.19 L 1.40
i 1521 ; 16848 , 202 ' 1215 |
| 1764 | 18144 445 25.11 $% = 0.4463
gem ' 1319 1 156.33
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(114.5)
EEN R s
T e T ; :
1226 1 151.20 , 449 | 2301 | [uw] = 446 954
1483 1 166.32 | 192 -9.99 | [uv] = 2414014
C1861 | 17064 114 . 567 | [vw] = 1 305.7848
1641 1 174.96 { -3¢ 1 135 |
I 1728 ) 17928 ' 48 297 | wm = 0.05401 - 0.00086
1849 | 185.76 174 | 945 | g =858t =145
1936 | 19008 | 261 | 1377 |
1981 | 192.24 L 300 1593 | y* = 0.3276
gem. | 1675 | 17631 | |
|

In deze vier voorbeelden hebben wij met de gebruikelijke for-
mules de middelbare fout van de uitkomsten uit de * berekend,
zonder daarmee te zeggen dat zo iets geoorleofd is. Deze middelbare
fouten zullen wij in het volgende tabelletje {114.6) aanduiden als
wm en ;. In die tabel willen wij onze uitkomsten als volgt samen-

vatten:
(114.6)
. 1 1 |
l ASY”‘P' : i : f “ | Verschil
| totische i : | <r ‘I |
L ver. | Voorb, | Voorb. | Voorb. | Voorb. 1(3¢114.4 tussen
oo, | 142 11143 | 1144 145 || =1145) 144 en
“;ircld' i | ! ‘ll 114.5
—_ - | |
e 0.05625 | i ; : i
m .  0.05625 | 0.05608 | 0.05848 ; 0.03401 {
it ! | — 1000017 | 000223 l\ 0.00224 | [my—wnt,i | 0.00447
b | 0.0012 | 0.0005 ; 0.0010 | 0.00086 || 5 | 0.00i3
i | I
— A i ‘ f= =
sl . — 084 293 26 t Iy 4l 3,39
ba : : . g | s |
i ls21a | ? | I
g | 81.95 | 82.54 ‘ 7919 83584
ig—q| ) P19 040 1 205 370 || lg—q) | 6.65
o | ‘r 188 | 074 | 140 | 145 \! e 2.00
g o 1 | | \ M T "y
g 'qu | Do, 05 21 0 25 I g4l 332
¥ “ L | | g |
4 05144 | F : ! &‘ ‘
g |1.2436 | 0.1316 | 0.4463 | 0.3276 |
! | | 1
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Het blijkt dat de uitkomsten van de eerste twee voorbeelden
bizonder goed zijn; de varians wordt echter totaal verkeerd be-
rekend. Tle varians van het eerste voorbeeld is ongeveer tienmaal
die van het tweede. Wi] willen deze speciale vorm van monsterfout
aanduiden als devialiefout.

In het derde en vierde voorbeeld zijn de afwijkingen veel beter
geschat, doch hier deugen de uitkomsten niet. De verschillen
tussen de uitkomsten van het derde en het vierde voorbeeld zijn
zelfs |,zeer betrouwbaar’, hoewel ze voor hetzelfde gebied gelden
en het uitgangsmateriaal , foutloos™ was, Deze vorm van monster-
fout willen wij aanduiden als paramelerfouf, omdat de uitkomsten,
de berekende waarden van de parameters van de noodformule,
afwijken van de asymptotische verwachting daarvan.

In 116 en 117 zullen deze fouten nader worden bestudeerd.

115 — HET TOEKENNEN VAN GEWICHTEN

Evenals bij de toevallige fouten kan men cok bij de monster-
fouten trachten hun invloed te corrigeren deor het toekennen
van gewichten. Men zou als volgt kunnen redeneren: Het gebied
dat bemonsterd moet worden ligt tussen x = 1000 en x = 2000.
Hieruit zijn 8 waarnemingen getrokken, die ieder een deel van dit
gebied vertegenwoordigen. Wegens de monsterfout vertegen-
woordigt ieder niet een even groot deel, De grootte van het ver-
tegenwoordigd gebled zou men als gewicht van de waarneming
kunnen nemen.

In ons geval is de grootte van het gebied als volgt te schatten:
De omstandigheden x worden gerangschikt volgens opklimmende
grootte, Neem nu aan dat de grenzen van twee delen telkens
midden tussen twee omstandigheden liggen. Ter illustratie zijn
in tabel (115.1) de gewichten van voorbeeld (114.2) berekend.

Om kleine getalwaarden voor het gewicht te krijgen is in dit
geval het vertegenwoordigd deel gedeeld door 20. Op deze manier
zijn voor alle 4 voorbeelden gewichten berekend, deze zijn ver-
meld in tahel (115.2). Het gewicht is voorgesteld door g.

Met deze gewichten zijn de berckeningen overgedaan. In tabel
(113.3} zijn de resultaten vermeld. De voorbeelden waarbij ge-
wichten zijn gebruikt zijn aangedwid als (114.24, 114.32) enz.
Ter vergelijking zijn de uitkomsten zonder gewicht er nog weer



(115.1)
Vertegen-
x Grenzen | woordigd| Gewicht”
| deel

1024 1090 3

1089 1056 lél 10

7 1247 sl g

1406 1444 | E) 7 5

1483 1502 58 3

1521 ¢ s 39 :

1561 § g 207 10

1936 i 1958 21? 12

1980 | 2000 42 2

(115.2)
Voorbeeld Voorbeeld Voorbeeld | Voorbeeld
114.2 114.3 114 .4 ; 114.5

k4 j g 4 F I £ X £ x I3
1024 3 11546 3 1024 1 1226 18
1089 ’ 10 . 1225 ! 1089 ! 1483 8
1406 | 5 i 126] 1 1156 2 1561 | 4
1483 | 8 | 1338 3 12600 ; 2, 1641 | 4
b2l o2 Ledl 3 133z 2 |73 s
1561 10 1723 1 1406 | 2 | 1849 5
1936 | 10 i 1764 11521 0 4 1936 3
1980 | 2 1840 3 i 1764 18 | 1981 2

naast vermeld, De waarden van y? zijn herleid op het gemiddeld
gewicht, dat aan de waarnemingen werd toegekend.

Het valt op dat de schattingen van de g% in de voorbeelder
(114.2 en 114.3) niet veel zijn verbeterd; de uitkomsten {m en ¢}
van de voorbeelden (114.4 en 114.5) daarentegen wel. Het wil
ons veorkomen dat dit zijn oorzaak vindt in de keuze van het
monster. Als algemene conclusie zouden wij willen trekken, dat
het toekennen van gewichien steflig inviced heeft, wmaay niet afdoende
helpt.

Een andere conclusie is misschien nog belangrijker. Wanneer
b1 het gebruik van een noodformule gewichten worden toegekend
op grond van de toevallige fouten, zullen deze gewichten invloed
krijgen op de monsterfouten. Omdat de monsterfouten met de
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systematische interpretatiefouten samenhangen kan dit zeer on-
gewenst zijn,

116 — DE VARIANSANALYSE

Onder leiding van Prof. R. A. Tisger heeft zich een mathe-
matische school ontwikkeld, die zich toelegt op de zgn. varians-
analyse (analysis of variance).

De grondgedachte van bovengenoemde school is de volgende:
Wanneer er verschillende fouten omafhankelisk van elkaar werken,
die allen bijdragen tot de varians, dan kan de totale varians ver-
kregen worden door de som te nemen van de variansen die iedere
fout op zich zell veroorzaakt.

Wanneer er geen monsterfout is mag in ons geval dus gesteld
worden

(116.1) w2 = ot - g2

De toevallige fout is immers naar zijn aard onafhankelijk van
iedere andere foutenbron. (Misschien niet altijd wat de absclute
grootte betreft, maar zeker wat het teken aangaat).

Wanneer er wel een monsterfout is gemaakt zouden wij deze
formule graag uitbreiden met cen paar termen £ en C, die reken-
schap konden geven van de deviatie- en de parametervarians.
Wij zouden dan krijgen

(116.2) W= o2 | gt - B+ C.

Dit mag echter niet zonder meer. De monsterfout is niet onaf-
hankelijk van de interpretatiefout. Wanneer er geen interpretatie-
fout 15, kan er geen monsterfout zijn. ndien onze gegevens inder-
daad werden vereffend op de lijn ¥ = c4/%, zou het onbelangrijk
zijn in welk gebied voor x onze waarnemingen lagen.

Aangenomen moet dus worden dat de B en de € afhankelijk
zijn van de ¢? In verband hiermee willen wij ze voorlopig aan-
duiden als deviatie- en parameterter m,

Naar zijn aard is de ¢* van deze termen evenzeer onafhankelijk
als van g% Voor de eenvoudigheid willen wij daarom tijdeljk
aannemen dat o2 = 0. Wanneer wij ons bovendien het speciale
geval denken dat € = 0, wordt formule (116.2) gereduceerd tot

(116.3) y? = ¢? + B.

Aangezien de minimumwaarde van g* = 0 is, volgt hieruit
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dat de minimumwaarde van B gelijk aan — @2 is. Ook hieruit
blijkt duidelijk dat de B geen ,,varians’ is,
Wanneer wij nu definiéren

(116.4) P A
dan blijkt dat
(116.5) Az —1

Een maximumwaarde van A laat zich niet vaststellen. Die
is afhankelijk van de bouw van de ideale en de noodformule en
van het onderzochte gebied.

In verband met (116.4) kan (116.3) worden geschreven als

(116.6) pr=(1 4+ A)¢?
Wanneer wij weer o2 = 0 stellen krijgt (116.2) nu de gedaante
(116.7) wr={l +A)¢*+C

Ook deze vorm kan niet negatief worden dus
(116.8) Cz-— (14 4)¢?

Van C is niet alleen een minimumwaarde te vinden, maar ook
een maximumwaarde. De C geeft rekenschap van de parameter-
fout, d.w.z. van het feit dat de berekende noodformule afwijkt
van de asymptotisch verwachte, Wanneer de vereffening met de
methode der kleinste kwadraten (kleinste varians) is uitgevoerd,
houdt dit dus in dat de varians ten opzichte van de berekende
noodformule (%) kleiner is dan de varians ten opzichte van ieder
ander, en dus ook ten opzichte van de asymplotisch verwachie
noodformule. Laatstgenoemde varians 1s 1n (116.6) gegeven.

Hieruit volgt dus

Yt < (1 A) g

of
(116.9) C<0

Wanneer wij nu een grootheid Z definiéren als
o C

(1 4)¢
volgt uit (116.8) en {116.9)
(116.11)} 0 <

(116.10) zZ =

N

AL
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In verband met {116.7) en (116.10) kan (i{16.2) nu worden ge-
schreven als

(116.12; p? =g L (1 — Z) {1 4- A) ¢*

17 — HET GEBRUIK VAN DE VARIANS

Het bestuderen van een vraagstuk kan tweeériei doel hebben.
In de eerste plaats is het mogelijk dat men een algemene wet wil
omschrijven. In de tweede plaats kan het doel zijn een toekomstig
gegeven te voorspellen. Naarmate het eerste doel beter bereikt is,
willen wij de conclusie rawwkenriger noemen, naarmate het tweede
doel beter te bereiken valt, noemen wij de formule bruikbaarder.

Wanneer met een ideale formule 1s gewerkt, zijn de nawwhkeurig-
heid en de brutkbaarherd alsvolgt uit de varians (g?) af te leiden.

De nauwkeurigheid wordt gemeten door de middelbare fout
van alle berekende parameters (uitkomsten), Wi veronderstellen
de methoden hiertoe als bekend.

De bruikbaarheid hangt af van de middelbare fout van de enkele
waarneming (o) en van de nawwkeurigheid der formule.

De o geeft nl. slechts aan wat de middelbare afwijking is tussen
het waargenomen, of waar te nemen, en het ware gegeven, d.w.z.
het gegeven dat uit de ware formule voor de gegeven omstandig-
heden kan worden berekend.

Maar men kan de ware formule niet vinden. De berekende formule
wijkt door een te kort aan nauwkeurigheid iets van die ware af.
Met behulp van de middelbare fouten der verkregen uitkomsten
kan nu worden nagegaan, wat de middelbare afwijking is tussen
het verwachte gegeven, dat voor eem bepaald omstandigheden-
complex % uit de berekende formule kan worden afgeleid, en het
ware gegeven dat voor diezelfde omstandigheden uit de ware
formule zou zijn berekend, Deze middelbare afwijking willen wij
aanduiden door Uy Deze Uy heeft natuurlijk ook invleed op het
slagen van een voorspelling. Hoe groter de Ug, des te slechter de
voorspelling.

Nu is de toevallige fout, die bij een volgende waarneming ge-
maakt wordt, onafthankelijk van de middelbare fouten van de
verkregen uitkomsten. De afwijking V, die het middelbaar ver-
schil aangeeft tussen een voorspelling veor bepaalde omstandig-
heden en de eventuele waarneming, die onder deze omstandigheden
zal volgen, kan dus worden berekend uit de formule



(117.1) Vit = o? - Us?

Naarmate de Vi kleiner is, is de brutkbaarheid van de herekende
formule voor de betreffende omstandigheden groter.

Wanneer met een noodformule is gewerkt, heeft het geen zin
over nauwkenrigheid te spreken. Er kan dan slechts sprake zijn
van bruikbaarkeid. Wij willen nu nagaan wat het verband is tussen
de varians van (116.12) en de bruikbaarheid van de noodiormule.

Hierbij moet er aan gedacht worden dat er over afwijkingen
tussen ideale en noodformules geen gedetailleerde wetten zijn
op te stellen. Een noodlijn blijft van de ideale afwijken omdat de
cnderlinge relatie #nief nauwkeurig bekend is. Voor een zeer een-
voudig verband willen wij trachten een paar regels op te stellen
in de verwachting, dat in ingewikkelde gevallen min of meer
analoge regels zullen gelden.

Bij de miteenzetting willen wij gebruik maken van figuer (117.2)

(117.2)

waarin een ideale lijn en een asymptotisch verwachte noodlijn zijn
getekend. De snijpunten van de ideale en de noodlijn hebben als
abscis x = ¢ en x = g. De uiterste grenzen van x zijn a en ¢; het
gemiddelde is ¢. De waarden b, d, f en % liggen ongeveer midden
tussen eerstgenoemde in.

Wij kunnen nu formule (116.12} het best bestuderen door ons
weer voor te stellen dat er geen toevallige fouten zijn. Die ziin
toch onafhankelijk van alle andere.

Eerst willen wij letten: op de invloed van 4. Daartoe nemen wij
aan dat de asymptotisch verwachte noodlijn (toevallig) precies
15 berekend, dus dat £ = 0.

Geval (117.3) Voor het geval 4 = — 1 liggen alle waargenomen
punten op de snijpunten, waarvoor ¥ = ¢ en x = g.

In dit geval is de vorm {l -} A) = 0, zodat * = o2 Wanneer
men hieruit zou concluderen, dat de berekende waarde yp de middel-
bare afwijking tussen een waar fe nemen en een (met de nood-
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formule) wvoorspeld gegeven zou aangeven, zou men verwaarlozen,
dat voor andere waarden van x dan ¢ en g de interpretatiefout
zeker mee moet tellen. Met name in de buurt van x = 2 of e zou
de afwijking veel te laag geschat zijn. In dit geval zou de bruik-
baarheid van de formule dus te hoog worden aangeslagen.

Geval (117.4) Wij willen nu aannemen dat de waarnemings-
punten zich van x = ¢ en x = g naar weerskanten verspreiden.
De helit van ¢ gaat naar b, de andere helit naar 4; die van g ver-
delen zich zo in de richting naar { en naar £. Het is mogelijk dat
dit verschuiven zo plaats vindt, dat de zwaartepunten van beide
groepen zich practisch niet verplaatsen, zodat de berekende lijn
niet verandert. Dan zal de A toch groter worden. De grootie van A
hoeft de bruikbaarheid van de noodformule niel te beinvioeden.

Geval (117.5) Het vergroten van A gaat door tot de punten
zich bevinden in x = a, x = ¢ en in de buurt van x = ¢. Dan
heeft de A zijn maximum bereikt, maar is de asymptotisch ver-
wachte nocdlijn nog behouden gebleven, zodat nog geldt Z = 0.
Tormute {116.12) wordt dan ¢* = ¢® + {I 4 4) ¢*% Zou men nu
de y gelijkstellen aan de boven aangeduide middelbare afwijking
tussen waar te nemen en voorspeld gegeven, dan zou de afwijking
te groot worden geschat. Deze afwijking zou voor de extreme
gevallen x = a, ¢ of ¢ gelden, niet voor de tussenliggende om-
standigheden. In dit geval zou de bruikbaarheid van de formule
dus te laag worden aangeslagen.

Uit het voorgaande is duidelijk dat aan het berekenen van de
brutkbaarheid vooraf moel gaan de (misschien onbetrouwbare) aan-~
name dat A = 0 is.

Geval (117.6) Wi willen nu de Z nader bestuderen. Daartoe
denken wij ons eerst dat de beide groepen punten in x = ¢ en
x = g bl elkaar blijven en gezamelijk verschuiven; b.v. van ¢
naar » en van g naar f. I dit geval blyft de vorm (1 +— A) niet
nul, want de 4 reageert op de afstand tot de asymptotisch ver-
wachte lijn. De vorm ({1 —Z) {1 + A} ¢?* blijft daarentegen wel
nul, want alle punten zullen op de berekende noodlijn liggen.
De £ moet dan dus 1 zijn.

Strikt genomen is de Z dus geen maat voor de afwijking tussen
de berekende en de asymptotisch verwachte noodformule. Hij geeft
aan hoever de waargenomen punten van de berekende lijn ver-
wijderd zijn. Wanneer die punten met de berekende lijn samen-
vallen is de Z = 1. Aangezien in geval (117.3) de punten samen-



32

vallen met de asymptotisch verwachte lijn, die dan tegelijk de
berekende is, zou men kunnen verdedigen, dat de Z dan ook 1
is en niet nul, zoals wij boven aannamen. Geval {117.3) is een
limietgeval, die zich ongelijk laat belichten al naar de manier,
waarop de limiet wordt bereikt. De waarde van Z is in dit speciaal
geval onbepaald.

Greval (117.7) Nu moet gelet worden op de afwijkingen die er
zullen zijn tussen de berekende en de asymptotisch verwachte
noodformule. Laat hun varians zijn E2. Het verband tussen £?
enerzijds en de grootheden A en Z anderzijds moet nu nader
worden bestudeerd. Wij laten daartoe de beide groepen punten
zich zeer geleidelijk uit ¥ = ¢ en x = g verwijderen. De A zal
dus langzaam groter worden, En even langzaam groeit de
kans dat een berckende noodlijn beduidend van de asymptotisch
verwachte afwijkt. Laten wij eens aannemen dat op een gegeven
ogenblik de punten zich willekeurig over de waarden x =5, d, |
en k hebben verdeeld.

Laten de punten b, 4, f en & nauwkeunig zo gedefinieerd zijn,
dat voor deze waarden van x de afstand tussen asymptotisch
verwachte noodlyn en ware lijn ¢ bedraagt. Dan zal de waarde
van A b het bereiken van deze punten tot O zijn gestegen.

In dit geval ERumnmen alle punten zich geconcentreerd hebben
in B en f, of 4 en f. In heide gevallen zal de Z = | zijn, doch de
gemiddelde afwijking tussen de berekende en asymptotisch ver-
wachte noodlij. zal geheel ongelijk zijn. Het verband tussen de
gezochte afwitking en de groctheden A en 7 is tamelyk los.

Toch is er wel enig verband: zolang de punten zich over
x=5b,d, f en h verdelen, kan de berekende noodlijn de ideale
liin niet bij ¥ == 2 en x = ¢ snijden. Wij kunnen dus zeggen dat
de kans op een grote E2 groter wordt naar mate A4 groter wordt.

Geval (117.8) Wanneer de punten zeer evenredig over x = &, d,
{ en & verdeeld zijn zal de asymptotisch verwachte noodlijn wel
behouden zijn gebleven. De Z zal dus nul zijn. We willen nu de
Z laten toenemen terwijl we de A constant houden. Daartoe laten
we telkens 1 punt van % naar { gaan en b.v. van & naar 4. Door
deze verplaatsingen zal de noodlijn draaien en de Z groter worden,
Dit gaat zo door tot alle punten in f en b zijn. Dan is de Z = 1.
Hieruit blijkt dat bi7 constante A de gezochie kwadraten (EZ%) groter
worden naarmale de Z groter wordl. Aangezien de kans op een grote E*
ook groter wordt naarmate de ¢? groter is kunnen we zeggen dat
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E*= P4, Z, ¢

waarbij P een zodanige kansfunctie is dat van E? asymptotisch
verwacht mag worden dat hij groter wordt met 4, Z en ¢2

Wij willen nu nagaan hoe groot het kwadraat (V%) van de af-
wijkingen tussen waay te nemen en voorspeld gegeven wordt. In 116
zijn de volgende bestanddelen gevonden:

Het eerste bestanddeel is de toevallige varians o2

Het tweede bestanddeel, hiervan onathankelijk is de inter-
pretatievarians ¢2

Een derde bestanddeel zou de deviatieterm kunnen zijn.
it is echter niet het geval. Zolang de asymptotisch verwachte
noodfermule goed berekend wordt uit een verkeerd gekozen moen-
ster zal deze verkeerde keuze van het monster geen kwaad doen.
De grootheid A speelt in dit verband dus geen rol.

Als laatste bestanddeel komt de parameterterm naar voren. De
parameterfout heeft de berekende varians y? verlaagd. Maar deze
fout maakt tevens, dat de berekende lijn minder goed voor het
gehele gebied geldt. De V2 zal er dus door worden verhoogd, met
het bedrag P (A, Z, ¢%).

Als totale waarde van V7?2 wordt dus verkregen
(117.9) V2=—g? -9+ P (A, Z, ¢%

Vergelijking van deze formule met {116.12} toont duidelijk aan,
dat een grote Z de V2 verhoogt en dus de gevonden conclusie
slechter maakt, terwijl tegelijkertijd de ¢? wordt verlaagd. Wan-
neer de w als ,,middelbare fout’” wordt opgevat wordt de middel-
bare fout dus kleiner naarmate de conclusie slechter wordt. Wij
kunnen het ook zo zeggen: Wanneer er een parameterfout wordt ge-
maakt is er een sterke lendens dat de gevonden conclusie des te beter
lijkt nacrmate hij slechier is.

Om de formules {116.12) en {117.9) aan elkaar geljk te mogen
stellen is het nodig dat zowel de £ als de A gelijk zijn aan 0. Pas
wanneer dit het geval is kan uit de ? de V? worden voorspeld,
zodat een uitspraak kan worden gedaan over de bruikbaarheid.
Om aan deze voorwaarden te voldoen is het nodig het pehele gebied
zojuist maogelifk te bemonsteren. :

Hoewel dit ideaal gemakkelijk te stellen is, is er toch moeilijk aan
te voldoen. Een noodformule wordt juist gebruikt omdat men de
stof niet voldoende beheerst. Men weet vaak niet welke invloeden

werkzaam zijn, hoe kan men ze dan juist in het monster opnemen?
3
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Er zal altijd een afwijking zijn tussen berekende en asymplotisch
verwachte noodformule, d.w.z. de Z en de A zullen nooit 0 zijn.
Daarom zal men de grootte van 4 en Z moeten schatten. Dit is
echter vaak onmogelijk. De interpretatiefout ¢ is cen systema-
tische fout, die men niet kent en waarvan men gewoonlijk dus ook
geen foutenwetten kent. Pas wanneer men een bewuste reden heeft
om aan te nemen dat de ¢? de wetten van o2 volgt, kan men trachten
te schatten in hoeverre de berekende noodlijn van de asymptotisch
verwachte afwikt. Voor ieder speciaal geval zal daarvoor de
juiste weg moeten worden gevonden.

Dat uit de ¢? geen betrouwbaarheid kan worden berckend is
ook de reden waarom de ,,zeer betrouwbare’’ conclusies van 112
zo zeer onjuist konden zijn. Het behoeft geen nader betoog dat de
conclugies daar alsvolgt hadden moeten luiden::

Wanneer men aanneemt dat vy = mx + g de tdeale formule 1s,
neemé men met zeer grote waarschifnlijkheid impliciet aan dat m en
g positief zijn.

Wanneer men daarentegen aanneemt dat v = alg x + b de ideale
formule is, neemt men daarmee mel zeer grote waarschiynlijhheid
vmpliciel aan, dat a postizef en b negatief is.

Omdat het onmogelifk is beide formules als ideaal aan te nemen spreken
de hoge (schijnbare) betrowwbaarheid van g en b clhaar niet tegen.

118 — HET KIEZEN VAN EEN MONSTER EN EEN FORMULE

Uit het voorgaande laten zich enkele regels afleiden waaraan
men zich in de practijk moet houden.

In de eersie plaats moel men zorgen dat het xwaartepunt van het
monsler sawmenvall met het zwaarlepunl van het onderzochte gebied.

Dht laat zich het gemakkelijkst aantonen door van geval {117.7)
nit te gaan. Daar is verondersteld, dat de waarnemingspunten
zich over x = b, d, f en & hadden verdeeld. Nu liet zich denken
dat in werkelijkheid de punten slechts in twee van die vier plaatsen
waren, bv. x = b en f, of d en f.

Wanneer de punten over 4 en f of b en 2 verdeeld zijn is de
afwijking tussen berekende en asymptotisch verwachte noodlijn
kleiner dan bij verdeling over b en f of d en %. Bij verdeling over
ben d of f en h zou de afwijking nog veel groter zijn. In dezelfde
mate als de afwijkingen groeiden, zou ook de verschuiving van het
zwaartepunt groter worden.

Wanneer evenveel punten in b als in /2 liggen, valt x wel ongeveer
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in ¢, Zijn de punten evenredig over b en f verdeeld, dan ligt het
gemiddelde lager. Door cen onevenredige verdeling kan het ge-
middelde cvenwel nog naar e verschoven worden. Wanneer de
punten in b en 4 liggen kan dit niet meer. Door te zorgen dat het
zwaartepunt van de omstandigheden van het monster goed ligt
vermijdt men dus de zeer extreme fouten.

In de tweede plaais mag men niel extrapoleren. Wanneer wij in
figuur {117.1) de lijnen verlengen tot buiten x — @ en x = ¢, zien
wij dat de afwijking zeer snel toeneemt. De ¢? is buiten het onder-
zochte gebied groter dan hier binner. De %? is daar dus groter dan
werd berekend. Wij kunnen deze eis ook zo formuleren: Zorg dat
het monster uit het gehele onderzochie gebied wordt gemomen en niel
wit een speciaal deel.

In de derde plaats moet men zorgen dat de Z zo klein mogelijk is.
Daarvoor is het nodig dat men meer emstandigheden onderzoekt
dan men witkomsten verwacht, De noodlijn v = mx + ¢ wordt door
twee punten bepaald, en heeft daarom zeker twee snijpunten met
de ideale lijn, Wanneer nu alle waarnemingen op twee willekeurig
gekozen omstandigheden betrekking hebben zullen deze beide
omstandigheden de plaats van de snijpunten bepalen. De Z zal
dan dus ongeveer 1 zijn.

Aan het eind van 102 hebben wij reeds geéist, dat er meer vrij-
heidsgraden, en dus meer waarnemingen moesten zin, dan er
uitkomsten verwacht werden. Nu wordt hier dus de eis aan toe-
gevoegd, dat al deze waarnemingen op verschillende omstandig-
heden betrekking moeten hebben. Hel is nodig dal de onderzochie
omstandigheden zo gevaviéerd wmogelijk zijn.

Door sterk gevarieerde omstandigheden te zoeken heeft men
het gevaar dat de A positief wordt. Wij hebben reeds gezien dat
de A = 0 moet zijn (zie conclusic aan het cind van geval (117.5).
Bij het variéren van de omstandigheden moet men zich dus hoeden
voor overdrijving,

Overigens heeft men de zekerheid dat de y? (116.12) door een
grote A wordt verhoogd, en slechts de kans dat dit met 772 {117.9)
het geval is (zie conclusie na geval (117.4). Een te grote A heeft
dus de tendens te veroorzaken, dat de V? te groot geschat wordt
en de bruikbaarheid te klem, een te kleine A4 vercorzaakt het
omgekeerde, Een te grote A zal daarom wellicht niet zo funest
zijn als een te kleine. Wij zouden daarom willen eisen: Tracki fe
zovgen dat het monster het onderzochte gebied goed weerspiegelt; maar
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bedenk dat het beter is, daf er wal teveel exiveme gevallen worden
opgenomen, dan e weinig, (Extreem wil zeggen: ver van de snij-
punten.

Wanneer dus het monster aan al de bovenstaande eisen voldoet,
moet getracht worden, de bruzkbaarste formule te zoeken. Daartoe
moet men de noodformule als een geheel becordelen door middel
van de varians @2

Wanneer alle veorzorgen zijn genomen, willen wij aannemen
dat de p een redelijke schatting is van de middelbare afwijking
tussen een waar te nemen en een voorspeld gegeven. Meer dan een
redelijke schatting mag men niet verwachten daar men A en de
Z niet in de hand heeft. Wij willen nu als principe voor het kiezen
van een noodformule opstellen: Kies die noodjormule, die de kleinste
varians geejt.

Qok in het licht van formule (116.12) lijkt dit principe redelijk,
daar allerkleinste wvarians betekent dat 3 = ¢% Indien de ideale
formule zich onder de beproefde formules bevindt zou zich op grond
hiervan laten verwachten dat deze automatisch de wvoorkeur
geniet. Toch is dit niet helemaal waar. Formule (116.12) is een
asymptotische formule. Dubbele producten tussen ¢ en ¢ zijn
asymptotisch 0, maar kunnen in een speciaal geval wel negatief
zijn. Wanneer men slechts één geval onderzoekt, zal er allicht
een noodformule te vinden zijn die een negatief dubbel product
geeft. Deze noodformule krijgt met bovenstaand criterium de
voorkeur. Pas wanneer men een voldoend aantal proeven op ge-
lijke wijze bewerkt mag men verwachten dat de ideale formule
door de kleinste varians wordt aangewezen.

Wanneer wij dus nu eindelijk een keuze willen doen tussen de
beide noodformules van 112, geven wij aan de formuley = algx+b
de voorkeur, omdat die een varians laat zien van 0.4804 tegen
0.5321 voor de lijn y = mx + g. Deze voorkeur geldt natuuriyk
uitsluitend het onderzochte gebied 1000 < x <« 2000. Voor & = 0
is het extrapoleren van v =algx + & veel funester dan van
y =mx—q.

C - CORRELATIEREKENING EN LIJNVEREFFENING
121 — INLEIDING

Het komt vaak voor dat twee variabele grootheden x en ¥y
een onderlinge samenhang vertonen. Zo is er b.v, samenhang
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tussen de lengte van een staaf en de temperatuur er van; er is
samenhang tussen de lengte van de pink van een volwassen man
en de lengte van zijn duim.

Het is gebruikelijk de mogelijke gevallen al naar de manier van
samenhang in twee groepen te splitsen: het functioneel verband
en het stochastisch verband. Ingeval van een functioneel "verband
wordt aangenomen dat bij een bepaalde x slechts 1 bepaalde y
behoort; bij een stochastisch verband wordt aangenomen dat bij
een bepaalde x verschillende waarden van v kunnen behoren,
welke waarden ieder een bepaalde kans hebben op te treden.

Ingeval van een fumctioneel verband wordt gebruik gemaakt
van de methode der lijnvereffening, in geval van een stochastisch
verband van de correlatierekening. Dit lijkt een scherp verschil,
doch is het niet, aangezien lijnvereffening en correlatierekening
in hun methoden nauw verwant zijn. Het is dan ook niet mogelijk
inzicht te verkrijgen in de ene methode zonder kennis te nemen
van de andere, )

Er is niet alleen een nauwe samenhang tussen de methoden,
het wverschil tussen een functioneel en een stochastisch verband
is ook maar zeer betrekkelijk. Immers zelfs bij een staal waarvan
lengte en temperatuur onderling vergeleken worden moet men
erkennen dat het niet waar is dat bij een bepaalde temperatuur
een zeer bepaalde lengte behoort. De warmtebeweging van de
ijzeratomen 1is een statistisch verschijnsel, waaraan kansver-
delingen inhaerent zijn, en de variaties in lengte die het gevolg
ziln van de warmtebeweging zijn minstens aan dezelfde kans-
wetten onderworpen. Ook bij deze staaf moet men dus spreken
van een stochastisch verband, aangezien i) een bepaalde tem-
peratuur niet een minitieus bepaalde lengte behoori. Wanneer
men het verband nagaat tussen de waargenomen lengte en de
waargenomen temperatuur komt hierbij nog een ander statistisch
verschijnsel nl. de kansverdeling van de meetfouten. Deze kans-
verdeling kan men desnoods als onbehoorlijk verwerpen. Maar
dit neemt niet weg dat er bij onze staaf naast het functioneel
verband ook een essentieel stochastisch verband is. Zo moet er
omgekeerd bij correlatierekening steeds naast het stochastisch
verband sprake zijn van een functioneel element,

De besproken staaf gaf dus biyyna een functioneel verband te
zien, Een iets , stochastischer” verband zal men wvinden bij het
volgend onderzoek: Men gaat na wat de samenhang is tussen de
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leeftijd van een kind en zijn armlengte. Wanneer men allerlei
kinderen 1n het onderzoek betrekt zal blijken dat niet alle kin-
deren van 3 jaar dezelfde armlengte hebben. Hier is duidelijk een
stochastisch verband. Toch is hier niet steeds plaats voor corre-
latierckening. Wanneer er b.v. kinderen van {—20 jaar in het
onderzoek worden betrokken, moeten de resultaten met de methode
der lijnvereffening verwerkt worden. (De reden staat aan het eind
van 122 aangegeven).

Dit geldt cok wanneer men niet de leeftyjd als één van de varia-
belen neemt, maar voor kinderen van 0—20 jaar b.v. het verband
tussen de lengte van arm en voet nagaat. Nietlegenstaande het
stochastisch verband moet ook hier lijnvereffening worden toegepast.

Wij willen nu trachten in de sfeer van de correlatierekening
te komen door het functioneel clement, nl. het groeien van het
kind met al zijn ledematen uit te schakelen.

Wanneer men kinderen neemt van dezelfde leeftijd, en dan het
verband tussen lengte van arm en voet bestudeert, zal er zeker
van correlatierekening gebruik kunnen worden gemaakt. Maar . . ..
wat is ,,dezelfde leeftijd”'? Moet de leeftijd tot op de dag gelijk zijn,
of is een speling van een maand toegelaten, een paar jaar mis-
schien nog? Het is niet mogelijk te zeggen: hier houdt de lijn-
vereffening op en begint de correlatierekening!

Voor de scheiding is zeker niet beslissend in hoeverre het func-
tioneel element verdwenen 1s. Immers wanneer men kinderen
neemt die op de dag nauwkeurig 3 jaar zijn, dan mag men zeker
gebruik maken van de correlatierekening; maar een functioneel
verband is hier aanwezig. Zou men deze kinderen rangschikken
naar toememende lichaamslengte, dan zullen korte kinderen
meestal korte armen en korte voeten hebben. Door het sorteren
naar leeftijd is de invloed van het groeien niet geheel uitgeschakeld.
Het ene kind groeit sneller dan het ander.

Wi kunnen zelfs zeggen dat zonder functioneel element geen
correlatie mogelijk is. Toevallsge fouten zijn immers niet gecorre-
leerd. In zekere zin is de correlatiecoéfficient een maat voor de
verhouding waarin toevallig en functioneel element dooreen ge-
weven zijI.

Onze conclusie moet dus zijn dai zowel in de correlatievekening
als bij de lLijnvereffening gewevkt wordi wmet een wmiversum waavin
een functioneel element ligh, waaraan de leden van het universum
stochastisch gebonden zijn.
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Blijft de vraag: Wat is het verschil tussen de twee methoden.
Dit zal in de voigende paragrafen nagegaan worden,

122 — DE BETEKENIS VAN DE KANSVERDELING VOOR DE CORRE-
LATIEREKENING

Wanneer telkens aan een Lid van een unsversum lwee grootheden
x en v gemelen kunnen worden, dan noemen wij x en v aan clkaar ge-
correlecrd wanmeer x en v teder aan een kansverdeling zijn onderworpen.

In het vervolg zal slechts rekening worden gehouden met het
geval dat x en y beide normaal verdeeld zijn.

Het is nu mogelijk uit het universum die leden uit te zoeken
die een bepaalde x gemeenschappelijk hebben. Indien men wvoor
zo'n ,,ondergroep’’ de gemiddelde y bepaalt zal deze gemiddelde
v een functie zijn van de gemeenschappelijke x.

Er laten zich nu drie gevallen onderscheiden.
le Wanneer x groter wordt, wordt de gemiddelde v groter. Dit

heet positieve correlatic.

2e Wanneer de x groter wordt, wordt de gemiddelde y kleiner.
Dit heet negatieve corvelatie.

Je Wanneer de x verandert, verandert de gemiddelde y niet.
Dit kan worden aangeduid als geen correlatie, maar moet als
grensgeval in de beschouwingen worden betrokken. Vandaar
dat we deze mogelykheid in de definitie van correlatie niet
hebben uitgesloten.

Wij willen nu een paar eigenschappen beschouwen van de
normale positieve correlatie. Daartoe veronderstellen wij als be-
kend, dat in een comelatiediagram plaatsen van gelijke kans-
dichtheid verbenden kunnen worden door een ellips. In figuur
{122.1) is zulk een ellips in beeld gebracht.

Wanneer wij de waarde van de kansdichtheid van iedere ellips
langs een derde as (Z-as) hadden afgezet, zouden wi een drie-
dimensionale figuur hebben gekregen, die de kansdichtheld (z)
weergaf als functie van x en ». Wij veronderstellen weer als bekend
dat iedere vertikale doorsnede door deze figuur, evenwijdig aan
de Y-as, weer een normale kansverdeling laat zien van de waarden
van v bij de constant gehouden waarde van x. Al deze vertikale
doorsneden hebben dezelfde (partiéle) standaardafwijking.

Zo kunnen wij ook van de vertikale doorsneden evenwiidig
aan de X-as zeggen dat ze allen normale verdelingen te zien geven
met dezelfde (partiéle) standaardafwijkingen.
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Wij kunnen zelfs nog verder gaan en zeggen dat de vorm van de
figuur onafhankelijk is van de ligging van de X en Y cotrdinaten.
Wi mogen het codrdinatenstelsel laten draaien om de Z-as.
Aangezien in iedere positie de doorsneden, evenwijdig aan de
X- of Y-as, een normale kansverdeling laten zien, kunnen wij in
het algemeen zeggen dat een vertikale doorsnede volgens ‘federe
koorde van de kansellips een normale verdeling te zien geeft. Hier
kan weer als bizonderheid aan worden toegevoegd, dat evenwijdige
doorsneden steeds dezelfde standaardafwijking hebben,

Wij willen nu twee toegevoegde richtingen beschouwen van de
kansellips. Uit de analitische meetkunde is bekend dat een mid-
dellijn in de ene richting (A) alle koorden die in de toegevoegde
richting (B) lopen middendoor deelt. IDe normale kansverdelingen
die in de vertikale doorsneden volgens de koorden in de richting
B worden gevonden, hebben dus allen hun top boven de mid-
dellijn in de richting A.

Wij kunnen nu alle doorsneden in de richting B zodanig naar
de middelljn in die richting verschuiven, dat ieder punt even-
wijdig aan de richting 4 wordt verplaatst (zie fig. 122.1). Wij
krijgen dan boven deze middellijn een aantal normale verdelingen

(122.1) (122.2) Ricting 4

¢

Richtmyg 8

gesuperponeerd, die allen hun top boven het middelpunt der ellips
hebben en allen dezelfde standaardafwijking hebben. De kanskrom-
men zijn dus congruent wanneer men het kansoppervlak binnen
iedere doorsnede = 1 stelt en op eenzelfde schaal standaardiseert.

Inplaats van de doorsneden te verschuiven kunnen wij ook het
grondvlak in smalle, onderling even brede, strookjes indelen, zo-
danig dat de overeenkomstige delen der in bovenbedoelde zin con-
gruente kanskrommen in de verschillende doorsneden in dezelfde
strook komer. te liggen (zie fig. 122.2). IJe grenzen der stroken
lopen dan in de richting A.

Uit het voorgaande volgt nu, dat het aantal punten dat in iedere
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strook verwacht mag worden, aan de normale verdeling moet
beantwoordern.

Maar ook binnen iedere strook zijn de puntennormaal verdeeld,om-
dat ook in doorsneden in de richting A normale verdeling optreedt.

Het voorgaande kunnen wij in het kort alsvolgt samenvatten.
(122.3).

a. Het correlatiediagram kan op willekeurige wijze in smalle
maar even brede evenwijdige stroken verdeeld worden. De richting
waarin de stroken lopen zi] A.

(Deze stroken moeten zo smal zijn dat ze als benadering van
een koorde kunnen gelden).

b. De verdeling van de punten die binnen een strook vallen
zal aan de normale verdeling beantwoorden.

¢. De aantallen punten, die binnen de opeenvolgende stroken
vallen zullen ook aan de normale verdeling beantwoorden.

d. De lijn, die de gemiddelden uit iedere strook verbindt zal
lopen in de richting B, die tcegevoegd is aan richting A.

Wij willen de richting 4 aanduiden als ,,richting van middelen”’,
een term die ook door Ir W. C. VisseEr wordt gebruikt. De lijn
die de gemiddelden verbindt, duiden wij aan als de vereffeningshjn.

De vereffeningslijn moet rekenschap geven van het functioneel
element, dat in het materiaal voorhanden is (zie slot van 121);
de kansverdeling die we vinden volgens de , richting van mid-
delen”” moet rekenschap geven wvan het stochastisch verband
dat er nu eenmaal is.

Uit het voorgaande zal duidelijk zijn dat de richting van mid-
delen geheel willekeurig kan zijn, en dat dus ook iedere vereffe-
ningslijn mogelijk is. De vraag is nu: welke vereffeningslijn is de
meest juiste?

Om dit na te gaan kan men als criterium stellen, dat men het
functioneel element zo sterk mogelijk wil schatten, en het
stochastisch verband zo zwak mogelijk. Dit criterium is hierom
redelijk omdat het (asymptotisch) niet mogelijk is een deel van het
stochastisch wverband b1y het functioneel element te trekken.
Daarentegen is het wel mogelijk, door verkeerde interpretatie
een deel van het functioneel element als niet functioneel, en dus
als stochastisch te zien.

Ons criterium komt dus hierop neer, dat men die richting van
middelen zoekt, die de kleinste standaardafwitking binnen de
strook geeft.
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Bij het zoeken van die richting kan men gebruik maken van
de wet dat de standaardafwijking in evenwijdige stroken gelijk is,
zodat het voldoende is die stroken onderling te vergelijker:, waarin
het middelpunt van de ellips is gelegen.

Als maat voor de standaardafwijking van een bepaalde strook
kan genomen worden de afstand van het middelpunt tot de om-
trek van de ellips binnen de strook. (Dit vleeit voort uit het feit
dat de ellips punten van gelijke kansdichtheid verbindt, dus
vergelijkbare punten. De genoemde afstanden zijn dus even-
redig met de standaardafwijkingen).

Het 15 duidelijk dat deze afstand het kortst is wanneer de strook
loopt langs de korte as van de ellips. De toegevoegde richting van
de korte as geeft dus de beste vereffeningslijn. Dit is de lange as.

Wij kunnen dus concluderen dat de lange ‘as het geschiktst
is om het functioneel element van het materiaal weer te geven.

In verband met deze keuze kunnen wij nu zeggen: Het is tvperend
voor een wormale covrelalie dat er niel alleen eem novmale Ransver-
deling is 1w de vichting loodrecht op de vereffeningsliyn, maar ook in
de lenglerichiing van deze ln.

Om de beide normale kansverdelingen gemakkelijk te kunnen
onderscheiden willen wii het voetpunt van de loodlijn, die uit een
waarnemingspunt op de vereffeningslijn wordt neergelaten aan-
duiden als de fofaalindruk van dat waarnemingspunt. Wi hebben
dus een normale verdeling van de totaalindrukken en een normale
verdeling van de waarnemingspunten rond hun totaalindruk.

123 — DE MAATEENHEDEN VAN % EN ¥

In de vorige paragraaf is uiteengezet dat de lange as het ge-
schiktst is om het functioneel element van het materiaal weer te
geven. Deze conclusie wordt enigszins verwonderlijk wanneer men
bedenkt dat de lange as niet tegen projectie bestand is. Hiermee
wordt dit bedoeld: Wanneer men uit de gegeven ellips een nieuwe
figuur afleidt, door de afstand van ieder punt van de ellips tot de
X-as bov. te halveren, dan zal de nieuwe figuur weer een ellips
zijn, maar de middellijn die op deze manier uit de lange as van de
oude ellips wordt verkregen zal niet meer de lange as zin. De
nieuwe lange as ligt in dit voorbeeld horizontaler dan de gevonden
middetlijn.

Wi} komen dus tot de conclusic dat de meest plausibele weer-
gave van het functioneel element afhankelijk is van de maat-
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eenheden, waarin x en v zijn uitgedrukt; een conclusie, die niet
zonder meer plausibel is.

De betekenis van deze conclusie kan aan de hand van een voor-
beeld worden toegelicht. Veronderstel dat de correlatie is onder-
zocht tussen de lengten van vaders en hun volwassen oudste
zonen. Vercnderstel verder dat de lange as aangeeft dat bij ecen
lengtetoename van de vaders van 1 cm ook een lengtetoename
van de zoons van 1 ¢cm behoort.

Wanneer nu de lengte van de vaders in cm wordt uitgedrukt
en de lengte van de zoons in mm dan mag uit bovenstaande aan-
name niet afgeleid worden, dat bij een lengtetoename van de
vaders van 1 c¢m een lengtetoename van de zoons van 10 mm
behoort. De lengtetoename van de zoons, in mm uitgedrukt, zal
groter zijn.

Om deze abnormaliteit te verklaren moeten wij nagaan welke
inviced de x en de y uitoefenen op de tofaalindruk, die aan het
eind van 122 gedefinieerd is.

(123.1) v v

In figuur {123.1) is een waarnemingspunt P getekend en de
vereffeningslijn @1, die een hoek ¢ met de X-as maakt. Het
punt T geeft de totaalindruk van £ weer.

Nagegaan moet dus worden in welke mate de totaalindruk T
verandert, wanneer een der codrdinaten x of vy van P varieert.
Uit de figuur valt gemakkelijk af te leiden dat een verandering
in de x van P tot P’ een verandering in de totaalindruk van T
tot 77 geeft die gelijk is aan

(123.2) T1" = PP cos g,
evenzo laat zich vinden bij een verandering in de v van P tot P’
(123.3) TT" = PP" sin g,

Wanneer de veranderingen PP’ en PP” aan elkaar gelijk zijn
verhouden hun invloeden op de totaalindruk 7 zich dus als
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Cos @ : sin @.

Naarmate de hoek @ kletner wordt heeft dus de x meey invioed op
de totealindruk, en de y munder,

In de correlatierekening hangt de waarde van de hoek ¢ ten-
nauwste samen met de standaardafwijking van x en y. Naarmate
de standaardafwijking van x groter wordt in verhouding tot die
van vy wordt de hoek ¢ kleiner. De bovenstaande regel kan dus ook
alsvolgt worden geformuleerd.

Naarmate de standaardafwijhing van x proter wordt tew opzichie
van die van y wordt de invioed van x op de fotaalindruk groter en
die van v kleiner

of, nog anders gezegd

Die codrdinaal heeft de grootste wnvlved op de lolaalindruk die de
grootste slandaardafwighing heefl.

Wat dit betekent willen wij toelichten aan de hand van de
reeds besproken correlatie tussen de lengte van vaders en hun
volwassen oudste zonen, Verondersteld werd dat de lange as
aangaf dat bij een lengtetoename van de vaders van 1 cm ook
een lengtetoename van de zoons van 1 cm behoorde. In dit geval
15 de hoek ¢ dus 45° en de invloed van vaders en zoons op de totaal-
indruk gelijk.

Wanneer daarentegen als maateenheid voor de lengte der vaders
de cm wordt genomen, en voor die van de zoons de mm, dan wordt
de p veel groter dan 45°, indien de lengten der zoons langs de Y-as
zijn afgezet. In dit geval hebben de zoons dus meer invloed op de
totaalindruk dan de vaders, wat in een verschuiving der lange as
tot uiting komt.

Tot dusver hebben wij een aantal wiskundige wetten beschreven;
nu moet nagegaan worden hoe die wetten in de practijk moeten
worden toegepast. Met name moet de vraag gesteld worden of
het zinvol is dat de ene codrdinaat meer invioed heeft op de totaal-
indruk dan de ander.

Het is zonder meer duidelijk dat de beide codrdinaten dan niet
meer gelgksoortige plaatsen innemen, maar principieel in aard
verschillen. Dit nu is bij correlatierekening bijna {en waarschijnlijk
helemaal) nooit de bedoeling. Men wil de beide codrdinaten in
de regel gelijkwaardig zien.

Laten wij dit nagaan aan de hand van de correlatie tussen
de lengte van een volwassen vrouw en de lengte van haar haar.
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Het is duidelijk dat hier sprake 1s van een stochastisch verband,
van de vrouwen van een bepaalde lengte hebben sommigen kort
haar, anderen hebben het lang of halflang. Er zal echter ook
een functioneel element moeten zijn. Wanneer een korte vrouw
hetzelfde kapsel kiest als cen lange zullen haar haren naar even-
redigheid korter zijn.

Wanneer wij als maateenheid voor beide lengten de cm kiezen
zal de standaardafwijking van de lengte van het haar vermoedelijk
verreweg het grootst z1jn, door het verschil in kapsel dat een vrouw
kan kiezen. In verband met bovenstaande regel is dus duidelijk
dat de lengte van het haar verreweg de grootste invloed heeft op
de totaalindruk. Is er enige grond om de lengte van het haar
meer bepalend te achten voor de totaalindruk dan de lengte van
de vrouw zelf? Zo'n reden Ikt moeilijk te vinden. Veeleer zou
men kunnen overwegen de lengte van de vrouw de grootste invloed
te geven. De lengte van het lichaam lijkt toch wél zo'n karak-
teristieke eigenschap als de lengte van het haar! Maar ook deze
gedachte heeft een twijfelachtige waarde. Het gaat niet om de
totaalindruk van de woww, maar om de totaalindruk van het
waarnemingspaar ,.lengte van het lichaam van een vrouw, lengte
van haar haar”. En dit waarnemingspaar dient niet om de vrouw
te bestuderen, maar om de algemene samenhang tussen lichaams-
lengte en haarlengte na te gaan. In verband met die laatste samen-
hang is het begrip totaalindruk gedefinicerd, en in verband met
deze samenhang zijn beide waarmemingen gelijkwaardig. Ze be-
horen dus ook dezelfde invleed te hebben op de totaalindruk.

Onze conclusie aan het eind van 122 moeten wij dus in zoverre
aanvullen, dat wij zeggen:

De lange as is het geschiktst om het functioneel element van het
materiaal weer te geven, wanneer de maateenheden zodanig gehozen
2 dat deze as een hoek van 45° met de X-as maaki. In dit geval
zijn de standaardafwijkingen van x en v gelijk.

Het probleem is dus nmiet hoe de lange as te vinden, maar hoe de
juiste verhouding tussen de maateenheden te vinden.

124 — DE REGRESSIELIJNEN

Een veel voorkomend probleem bij de correlatierekening is
het volgende, Stel dat van een bepaald lid dat tot het universum
behoort slechts de x of de y is bepaald, wat is dan de waarschijn-
lijkste waarde van de andere codrdinaat? Bij de correlatie van de
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lengten van vaders en zoons is de vraag dus deze: wanneer men de
lengte van een bepaalde zoon weet, hoe lang 1s zijn vader dan
vermoedeljk.

Om dit probleem op te lossen zou men de onbekende codrdinaat
kunnen berekenen door substitutie van de bekende in de formule
van de lange as, waarvan wij vonden dat hij het functioneel verband
het beste weergeeft. Zoals bekend mag worden verondersteld
zou dit onjuist zijn. In dit geval moet gebruik worden gemaakt
van de z.g.n. regressielijnen. Dit is duidelyk, wanneer men let op
de regel van (122.3) sub 4. Wanneer alleen de » bekend is weet
men dat het waarnemingspunt ligt in een strook evenwijdig van
de v as. De vereffeningslijn, die bij deze richting van middelen
behoort loopt in een richting, toegevoegd aan de richting van de
vy as. Zo zal bij een bekende y als vereffeningshin die genomen
moeten worden, die loopt in de richting toegevoegd aan de x as.
Het zijn deze lijnen die als regressielijnen bekend staan.

Hoewel de juistheid van het gebruik van de regressiclijnen
dus gemakkelijk is aan te tonen, lijkt het toch even verwonderiik,
dat de meest geschikte vereffeningslin niet gebruikt mag worden.

Wij willen daarom nagaan waarom de lange as niet bruikbaar
is om de ene codrdinaat van een waarnemingspunt wit de ander
af te leiden.

Wij noemen de codérdinaten van het waarnemingspunt {zie
fig. (124.1) (xp, yp); die van de totaalindruk (x;, v;)

(124.1) v y

7 ,.

7 N

Wanneer de vereffeningslijn Q1 vaststaat is de plaats van punt
T volledig bepaald door de waarde van x,. Het is gemakkelijk in
te zien dat de stelling dat er een normale kansverdeling is in de
lengterichting van de vereffeningslijn (zie eind 122} inhoudt dat
de waarden van x, normaal verdeeld zijn.

Wanneer naast de vereffeningslijn QF ook nog de totaalindruk
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T (%7, v7) bekend is wordt de ligging van het waarnemingspunt
P volkomen bepaald door de waarde van x,. Het is weer gemak-
kelijk in te zien dat de stelling dat er een normale kansverdeling
is in de richting loodrecht op de vereffeningshn (zie eind [22)
inhoudt dat de waarden van xp (bij vaststaande x,) normaal
verdeeld zijn. Het gemiddelde van deze waarden xp is %, zoals
uit de definitie van de vereffeningsijn blijkt.

Het probleem uit de bekende x, de onbekende y, af te leiden
kan nu ook anders worden geformuleerd. Wij kunnen vragen:
Welke totaalindruk hoort waarschijnlijk bi de bekende waarde
van %,? Immers wanneer naast de Hin Q1 de waarde van x, en
de totaalindruk (x,, v,) gegeven zijn is de yp bepaald. Men moet
dus trachten uit de gevonden waarde x, de waarschijnlijkste
waarde van x, af te leiden.

Een eerste benadering van de oplossing vindt men, wanneer
men met elkaar vergelijkt de mogelijkheden (bij vaststaande x,.)
(124.2) alxp =xp—a

bixp’ =xp -t a

Omdat de xp normaal verdeeld is om x, is de kans op een
afwijking — a steeds even groot als de kans op een afwiking
+ a. Het lijkt daarom redelijk de x), als schatting van x.. te nemen,
Dit geeft dus de schatting dat de totaalindruk op de lange as
moet liggen in 77 (zie fig. 124.1).

Een nauwkeuriger resultaat krijgt men wanneer men de vol-
gende mogelijkheden vergelijkt
(124.3) | x, =xp+a

b | xp" =xp—a

Wanneer de x, niet gelijk is aan de abscis van het middelpunt
der kansellipsen x;, zal de kans op x,” en x,” niet gelijk zijn. Die
waarde van x,, die het dichtst bij x,, ligt zal de meeste kans hebben,
aangezien x, normaal om x,, is verdeeld. Wanneer wij veronder-
stellen dat x,, > x,, dan is de kans op 2"} kleiner dan de kans op
x”; dit geldt voor alle mogelijke waarden van «.

In (124.2) hadden wij daarom moeten vergelijken de mogelijk-

heden
(124.4) alx, =% —a
b|x,=x"+ a

Omdat in evenwijdige stroken de standaardafwijkingen gelijk
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zijn (zie pag. 39, laatste alinea) i1s de kans dat er een afwijking
— a optreedt bij gegeven x; even groot als de kans dat er een af-
wijking + « optreedt bij gegeven x;". Maar de kans op het opireden
van x" is groter dan van x;’ (wanneer X, > x,,), en daarom is de
kans op (124.45) groter dan op (124.4a).

Wij vinden dus de volgende stelling:

Van wege de kansverdeling in de richting van de lange as ligt
een gevonden waarde x, (> x,,) gemiddeld boven de bijbehorende
xp; een waarde xp (< %)) ligt gemiddeld beneden de bijbehorende
xy. De bijbehorende vy, ligt dus ook dichter bij de y,, dan door de
lange as wordt aangegeven.

Onze conclusie is dus:

Het gebruik van de regressielijnen in de correlalierekening is nodig,
om de invloed van de Ransverdeling in de vichting van de lange as
tot gelding te brengen. '

Voor de duidelijkheid is de onderlinge positie van de lange as
en de regressielijn nog eens in beeld gebracht in fig. (124.5)

(124.5)

Lange a5

Regressilijn

Verondersteld is dat uit de reeds beschikbare gegevens van een
correlatiegeval berekend konden worden het middelpunt 3/, de
lange as en de regressielijnen, waarvan een in tekening is gebracht,
Nu is van een nieuw waarnemingspunt P de x,, vastgesteld. De
vraag is, wat is de y?

Uit het gegeven x ,is bekend dat P moet liggen op de stippellijn
AB. Indien men de v, uit de lange as zou moeten berekenen zou
men het waarnemingspunt 77 aan moeten nemen, Omdat men
de regressielijn moet gebruiken dient men de P in P* aan te nemen.
Hiermee neemt men dus tegelijk aan dat de totaalindruk van P
in T wvalt. Er kan dus evengoed gezegd worden dat niet de plaats
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van P is gekozen in P*, maar dat de plaats van ziin totaalindruk
is gekozen in T.

Waardoor wordt de keuze van T nu bepaald? Door de kansver-
deling in de richting van de lange as, en de kansverdeling in de
richting 7"P. Hoe korter de afstand M7, des te meer kans is er
dat T als totaalindruk wvoorkomt: hoe korter de afstand 7,
des te groter is de kans dat 7" de totaalindruk van P is. Omdat P
op de lijn AB moet blijven kan TF alleen korter worden wan-
neer T naar 77 nadert. Als T tussen M en 77 ligt wordt M7
daardoor juist langer en onwaarschijnlijker. De plaats van T is
dus een compromis tussen het streven de afstand TM en de
afstand 7°P zo klein mogelijk te houden. Wanneer de hoek tussen
lange as en regressielijn f§ is, is gemakkelijk in te zien dat de waarde
van de breuk % steeds cot § is, dus constant.

Wij vinden dus als vaste regel van de regressielijn: Wanneer
ev een verschil bestaat tussen eem waavgenomen waarde van x (x,)
en de gemiddelde waarde x,,, dan wordt dit verschil bij een bepaald
corvelatiegeval naar een vaste verhouding verdeeld over de invioed
van de kansverdeling in de vichfing van de lange as, en de invloed
van de kansverdelimg loodvechi daarop.

Niellegenstaande n alle stroken loodrecht op de lange as dezelfde
standaardafwitking voorkomt, wordt dus groter afwijhing aangenomen
naarmate de strock verder van het wmiddelpunt verwijderd is.

Tenslotte nog deze opmerking. De regressielijnen zijn ongevoelig
voor de maateenheden van x en ¥, evenals de correlatiecoéfficient.
Omdat dit de grootheden zijn waarmee in de correlatierekening
meestal wordt gewerkt is het in de practijk gewoonlijk niet nodig
op de maateenheden te letten. Wij hebben er in de vorige paragraaf
uitvoerig bij stilgestaan in verband met de problemen van de
lijnvereffening, die wij nu gaan bespreken,

125 — VERGELIJKING VAN DE METHODEN VAN CORRELATIEREKE-
NING EN LIJNVEREFFENING

Aan het eind van 122 werd uiteengezet, dat het typerend is
voor de normale correlatie, dat er niet alleen een kansverdeling
is in de richting loodrecht op de vereffeningslijn, maar ook in de
lengterichting van die lijn.

Wi kunnen hier nu tegencverstellen dat fet tvperend 1s voor de

4
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lignvereffening dat de kawnsverdeling in de lenglevichting van de ver-
effeningslipn onthreekt,

Niettegenstaande dit verschil worden bij de lijnvereffening de-
zelfde formules gebruikt als bij de correlatierekening, zoals uit
het volgende zal blijken:

Vax Uvex bespreekt in hoofdstuk IX van zijn leerboek twee
algemeen bekende mogelijkheden van lijnvereffening
le één coérdinaat (b.v. x) is vrij van fouten;
2e de fouten van x en v zijn even groot,

In het eerste geval wordt bij foutloze x als richting van middelen
genomen de richting evenwijdig aan de Y-as. In het tweede geval
de richting loodrecht op de vereffeningslijn. De formules die in het
eerste geval gevonden worden zijn identiek met die van de regressie-
lijnen uit de correlatierekening; de formules van het tweede geval
geven bij correlatierekening de vergelijking van de lange as.

Wanneer men de toepassing van deze formnules bij correlatie-
rekening en lijnvereffening vergelijkt, vallen een paar trekken op.

Bij het gebruik maken van de lange as is er een verschil in het
begrip standaardafwiiking bi) correlatie en lijnvereffening. Bij
correlatie kan men onderscheiden tussen twee soorten standaard-
afwijking, In de eerste plaats de standaardafwiking van de ene
variabele (b.v. z), die men vindt wanneer men alle gevonden
waarden van x samenvat zonder te letten op de waarde van de
andere variabele, In de tweede plaats de standaardafwijking
van die waarden van x, die behoren bi) waamemingspunten, die de
v gemeenschappelijk hebben. Deze laatste standaardafwijking
wordt partiéle standaardafwijking genoemd, de eerste zouden wij
totale standaardafwijking kunnen noemen.

Bij correlaties geldt nu de wet dat de partiéle standaardafwijking
4/ 1—+2maal de totale standaardafwijking is voor iedere variabele.
(Deoor o duiden wij de correlatiecoéfficient aan). De verhouding
tussen beide standaardafwijkingen is dus voor x en voor y gelijk.

Aangezien de x en ¥ slechts dan gelijke totale standaardafwij-
kingen kunnen hebben wanneer de lange as onder een hoek van
45° met de X-as staat, moet deze voorwaarde dus ook vervuld zijn
om gelijke pariiéle standaardafwijkingen te hebben.

Rekentechnisch komt met het begrip partiéle standaardafwiiking
nit de correlatierekening het begrip middelbare fout van de enkele
waarneming uit de lijnvereffening overeen. Hier is evenwel geen
verband tussen middelbare waarnemingsfout en totale variatie,
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Bi1j gevolg kan by lijnvereffening de vereficningslijn wel een andere
hoek dan 45° met de X-as maken.

Bovenstaand wverschijnsel leidt tot cigenaardige consequenties.
Op grond van het feit dat de fouten van x en y gelijk zijn, raadt
Van Uven als richting van middelen de richting loodrecht op de
vereffeningslijn aan. De invloed die de coérdinaten x en v op de
totaalindruk wvan het punt hebben, zal nu beantwoorden aan
(123.2) en (123.3). Wanneer de daargenoemde hoek ¢ niet 45°
i1s zal de ene codrdinaat meer invloed hebben op de totaalindruk
dan de ander, niettegenstaande beide coérdinaten even goed zijn.

Ook de projectie geeft moeilijkheden. Wanneer de maatecnheid
langs de X-as gehalveerd wordt, worden de waarden van x nu-
meriek tweemaal zo groot, de fout van x dus ock. Omdat de hoek
@ hierdoor kleiner wordt zal de invloed van de » op de totaal-
indruk ook vergroten.

Wij vinden hier dus de regel terug die wij in 123 bij de corre-
latierekening vonden: Wanneer door verandering wan de waal-
eenheden van de variabelen de wuddelbare foul van x groler wordl
len opzichte van die van y, wordl de invived van x op de lotaalindrik
ook groter en die van v kleiner. Het is duidelijk dat dit een onprettige
eigenschap is.

Ook bij de regressielijnen moeter wij nog even stil staan, Bij de
correlatierekening vonden wij dat het gebruik van de regressie-
lijnen gemotiveerd werd door de kansverdeling in de lengterichting
van de lange as. Daar deze kansverdeling bij liinvereffening niet
voorkomt, moet er nu een andere reden zijn voor het gebruik
er van. VAN UVEN motiveert het gebruik van de regressielijnen
door een wvoorkeur voor een zekere richting van middelen. In
hoeverre dit juist is zullen wij in 128 nagaan.

126 - HET PSEUDO-CORRELATIEKARAKTER VAN DE LIJNVEREFFE-
NING
In 125 hebben wiy uiteengezet dat het typerend is voor lijn-
vereffening dat er wel een kansverdeling 1s in de richting van
middelen, maar niet in de lengterichting van de vereffeningslijn.
Wij kunnen dus een kansfiguur ontwerpen zoals in (128.1) is
uitgebeeld.
De ljnen van gelijke kansdichtheid lopen evenwijdig aan de
vereffeningsiin 4 B. Het valt gemakkehjk in te zien dat de richting
van middelen onbelangrijk is. Wanneer in de richting loodrecht
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op de wvereffeningslijn een normale verdeling optreedt, treedt in
iedere andere richting (behalve die van de vereffeningslijn) ook een
normale verdeling op, met de top boven de vereffeningslijn 4 B.

Hier is dus een wezenlijk verschil met de correlatierekening,
waar by iedere richting van middelen een eigen middellijn behoort.
Daar vindt men bij een richting van middelen evenwijdig aan de
assen de regressielijnen; bij een richting van middelen loodrecht
op de vereffeningslijn vindt men de lange as. Bij lijnvereffening
moet men met alle methoden de lijn 4B vinden. Wij kunnen
dus zeggen dat byj de lijnvereffening de formules van de regressie-
lijnen en de formule van de lange as ,,asymptotisch’ steeds de lijn
AB zullen aangeven.

Hier staat tegenover dat bij het uitwerken van een bepaald
geval van lijnvereffening de drie oplossingen steeds ongelijk zijn.
De lijn die berekend wordt met een vertikale richting van mid-
delen zal steeds kleiner hoek maken met de positieve X-as dan de
Jlange as”, de andere regressielijn maakt een nog grotere hoek.

Hoewel de drie oplossingen asympiotisch de lijn AB aanwijzen,
vallen ze asymplotisch noott samen.

De oorzaak van deze absurditeit ligt hierin dat het materiaal
dat bi een hjnvereffening verwerkt wordt noodzakelijk meer op
een geval van correlatie dan op een geval van lijnvereffening
lijkt. Wij hebben gezien dat een lijnvereffening daar wordt toe-
gepast waar in de lengterichting van de vereffeningslijn geen kans-
verdeling optreedi. Op grond hiervan zou men over de gehele
lengte van de lijn dezelfde frequentie van de waarnemingen kunnen
begeren. Om proeftechnische redenen zal men evenwel steeds een
frequentieverdeling van de waarnemingen aantreffen, die met de
normale kansverdeling althans dit gemeen heeft, dat buiten een
bepaalde grens practisch geen waarnemingen meer voorkomen.

Dit alleen maakt reeds dat het waarnemingsmateriaal meer
op cen geval van correlatie dan van lijnvereffening gaat lijken.
Het is dit pseudo-corvelaliekarakler van het empirisch materiaal,
dat een wverschil tussen de werschillende oplossingen doet ont-
staan. Dit verschil is dus steeds het gevolg van een fout; een fout
in de frequentieverdeling van het empirisch materiaal. Een be-
trouwbaar verschil tussen de vereffeningslijnen die uit hetzelfde
materiaal berekend worden, behoort dus onmogeljk te zijn. For-
mules die asymptotisch hetzelfde resultaat behoren te geven
mogen onderling geen betrouwbare verschillen vertonen.
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Bij de foutenberekening van de lijnvereffening wordt evenwel
geen rekening gehouden met de fout in de frequentieverdeling,
slechts op de afstanden tussen waarnemingspunt en vereffenings-
lijn wordt gelet. In de practijk is het dan ook wel mogelijk materiaal
te verzamelen waarin de regressielijnen betrouwbaar ongelijk zijn.
Wanneer bi] een bepaald materiaal de beide regressielijnen be-
rekend zijn en de lange as, dan zullen deze lijnen weinig veranderen,
wanneer (bl gelijkblijvende frequentieverdeling in de richting
van de vereffeningslyn en gelijkblijvende middelbare fout) het
aantal waarnemingspunten sterk wordt opgevoerd. De middelbare
fout van de berekende parameters der lijnen zal daardoor evenwel
naar wens kunnen worden gedrukt, Met voldoende materiaal
moet het dus mogelijk zijn betronwbare verschillen aan te tonen
tussen de verschillende lijnen, niettegenstaande alle lijnen asympto-
tisch de vereffeningslijn 4 B moeten opleveren.

127 — HET VERSCHIL TUSSEN CORRELATIE EN LIJNVEREFFENING

In het voorgaande hebben wiy reeds enige pogingen gedaan
het wverschil tussert correlatie en lijnvereffening te benaderen.
In 121 trachtten wij onderscheid te maken doordat wij het stochas-
Hisch verband wezenlik achtten voor correlatierekening en het func-
tioneel verband voor lijnvereffening. Bij nadere beschouwing bleek
evenwel, dat zowel by lijnvereffening als bij correlatierekening
een stochastisch en een functioneel element voorkwamen.

In 125 dachten wij het verschil zo aan te kunnen geven dat er
bij carrelatierekening sprake zou zijn van een kansverdeling in
de lengterichting van de lange as; deze kansverdeling zou bij lijn-
vereffening uithreken. Maar in 126 vonden wij dat er a priori
enige uitspraken konden worden gedaan over de frequentiever-
deling van de totaalindruk van de waarnemingspunten by lijn-
vereffening. En wat is een aprioristische uitspraak over een ko-
mende frequentieverdeling anders dan een kansverdeling?

Wi zullen nu trachten nog een scherpere omschrijving van het
verschil te geven:

In gevallen waarin lijnvereffening wmoet worden loegepast diewi
men de onbekende codrdinaat van een wasrnemingspunt
it de bekende te bevekener met behulp van de vereffeningsiijn, die het
verband tussen beide codvdinalen het beste weergeeft.

In gevallen waarin corvelatie moet worden loegepast dient men de
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onbekende codrdinaat van een waarnenungspunt wit de bekende fe
berekenen met behuip van een regressiclijn, die van de beste vereffe-
wingslin verschiff.

Deze beide stellingen zijn terstond duidelilk wanneer men
zich 124 te binnen brengt. Om het practisch verschil te door-
voelen willen wij nog een paar voorbeelden bespreken.

Stel dat men uit een bepaald stadje van de velwassen manne-
lijke inwoners tussen 20 en 30 jaar het verband tussen lichaams-
lengte en armlengte heeft bepaald. Dan weet men dat de lange
as van de correlatie-ellips het geschiktst is om de samenhang
tussen beide lengten weer te geven.

Indien men nu een reus uwit dat stadje ontmoet die men niet
gemeten heeft, dan kan men de uitspraak doen dat hij ,,waar-
schijnlijk” naar verhouding korte armen heeft. Nauwkeuriger ge-
zegd: De kans dat zijn armen waar verhouding kort zijn is groter
dan de kans dat ziin armen naar verhouding lang zijn.

Waarom? Niet, omdat reuzen over het algemeen naar ver-
houding korte armen hebben. Het begrip saar wverhouding wordt
juist gebruikt in verband met de algemene indruk over reuzen,
die door de lange as wordt weergegeven. Maar wel omdat er meer
kans is dat men te maken hebben met een persoon, waarvan de
lichaamslengte iets groter is dan met de totaalindruk overeen-
komt, dan met iemand waarvan de lichaamslengte te klein is in
verhouding tot de totaalindruk. De uitspraak berust op de kans-
verdeling van de totaalindruk. Wi kunnen er daarom de uit-
spraak naast zetten: Wanneer men van iemand uit dat stadje
ontdekt dat hij erg lange armen heeft zal hij ,waarschijnlijk”
naar verhouding kort zijn.

Laten wij hier tegenover stellen een voorbeeld uit de lijnver-
effening. Stel dat men de lengte van een staaf en zijn temperatuur
vergelijkt. Hierbij kunnen wij aprioristische nitspraken deen over
de frequentieverdeling. Een lagere temperatuur dan het absolute
nulpunt wordt niet gevonden, een hogere dan het smeitpunt van
de staaf ook niet, Wanneer wij de apparatuur van de onderzoeker
kennen kan de uitspraak nog verder gaan. Wellicht kan niet ge-
koeld worden, zodat de ondergrens bij kamertemperatuur ligt.
Wellicht wordt cen thermotneter gebruikt die niet verder gaat
dan 200° C.

Laten wij aannemen dat op grond van de apparatuur vaststaat
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dat de waarnemingen tussen de 20 en 200°C zullen vallen. Dan
kan op grond van 126 worden vastgesteld dat men materiaal zal
verzamelen met een pseudo-correlatickarakter. Het zal mogelijk
zijn een lange as en regressielijnen te berckenen. Wij willen aan-
nemen dat op bepaalde gronden mag worden aangenomen dat de
lange as de juiste vereffeningslijn is. Dan mag nu niet gebruik
worden gemaakt van de regressieliinen om de ene coérdinaat
van een waarnemingspunt uit de ander te berekenen. Er kan nu
niet gezegd worden: Wanneer er een temperatuur is gemeten van
198° C zal de staaf op dat moment , waarschiynlijk’’ snaar verhouding
kort zijn geweest. Ongetwijfeld zullen bij een bepaalde temperatuur
verschillende lengten gevonden worden, en bij een bepaalde lengte
verschillende temperaturen; maar er is geen kansverdeling van
de totaalindruk. Wij kunnen niet zeggen: De gemeten temperatuur
ligt boven het gemiddelde en dus is de kans dat de ,,ware” tem-
peratuur (0.01° C lager lag groter dan de kans dat die temperatuur
0.01° C hoger lag. Zolang de temperaturen binnen het bereik van
de apparatuur vallen zijn beide kansen gelijk bij normale ver-
deling der afwijkingen. De kans op een bepaalde totaalindruk
neemt niet toe, naarmate die totaalindruk dichter bij het ge-
middelde ligt, want binnen de mogelhjkheden van de apparatuur
zijn alle kansen gelijk.

128 — DE KEUZE VAN DE JUISTE VEREFFENINGSLIJN

In 126 hebben wij gezien dat de formules uit de correlatie-
rekening voor het vinden van de lange as en de regressielijnen
bruikbaar zouden moeten zijn om de juiste vereffeningslijn bij
lijnvereffening te vinden. Door de boven- en benedengrens, die
empirisch niet te vermijden zijn, krygt het materiaal evenwel een
pseude-correlatickarakter waardoor de lijnen, die langs de ver-
schillende wegen berekend zijn, niet samenvallen. Hier dringt
zich de vraag op, welke formule nu in de practijk gebruikt moet
worden.

In 127 zagen wij dat het bij correlaties juist is, de ene codrdinaat
van een punt uit de ander af te leiden met behulp van een andere
Iiin dan de vereffeningslijn. Wi zagen tevens dat dit by ljn-
vereffening niet mag. Daar moet steeds de vereffeningslijn worden
gebruikt. We staan dus witsluifend voor de vraag hoe de vereffe-
ningslijn te kiezen.

Zoals wij reeds zagen vindt dit probleem zijn oorzaak in het
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voorkomen van onvermijdelijke grenzen. Wij zullen daarom
trachten een keuze tussen de mogelijke formules te maken door de
grenzen te bestuderen.

Daartoe hebben wij in fig. (128.1) de kansverdeling weergegeven,
die bij lijnvereffening verwacht mag worden. De figuur is aan de
bovenkant op 4 manieren scherp begrensd. De grenshjn DH
staat loodrecht op de vereffeningslijn; de grenslijn FK loopt even-

(128.1)

wijdig aan de Y-as, de lijnen EI en GL nemen nog andere posities
in. Wij willen aannemen dat aan de onderkant grenslijnen lopen
evenwijdig aan dé genoemde. Hoe moet nu de juiste vereffeningslijn
worden gekozen?

Het is duidelijk dat de richting van middelen evenwijdig aan
de grenslijnen moet lopen. Dat is de enige richting die toelaat
dat overal stroken worden gevormd over de gehele breedte van
het waarnemingsmateriaal. Dit toch is noodzakelijk opdat het
midden van iedere strook op AB valt. Wanneer DH de grenslijn
aangeeft moet er dus gewerkt worden met de formule voor de
lange as, geeft FK de grenslijn aan, dan 1s een van de regressie-
lijnen nodig. Wanneer FK de grenslijn is en er 2ou toch gewerkt
worden met de formule van de lange as, dan zou de lijn aan de
bovenkant te hoog komen te liggen, is DH de grenslijn dan komt
de ene regressielijn aan de bovenkant te laag,

Het blijkt tevens dat er nog meer mogelijkheden ziyn. Loopt
de grenslijn in de richting £ dan is de lange as te hoog en de
regressielijn te laag; bij een grenslijn als GL 1s zelfs de regressielijn
te hoog.

Is het nu mogelijk de vorm van de grenslijn a priori vast te
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stellen? Soms wel. Laten wij weer blijven bij ons voorbeeld van de
staaf. Het is denkbaar dat de gehele apparatuur teelaat te werken
tussen € en 300° C, maar dat de thermometer ons slechts in staat
stelt temperaturen waar te nemen van 20—200° C. Wanneer wij
er naar streven het gehele gebied te onderzoeken zullen wij grenzen
krijgen evenwijdig aan de staaflengte-as. Een temperatuur van
201° C wordt nooit waargenomen, bij de waargenomen temperatunr
200° C heeft de lengte nog geen enkele beperking van mogelijk-
heden.

De gevonden grenslijn is niet strict gebonden aan de toevallige
fout van de waargenomen lengte en temperatuur. Het is zeer
wel denkbaar dat de lengte zeer nauwkeurig wordt waargenomen
en dat de thermometer zeer slecht i1s. Misschien is de temperatuur
soms 198° C maar tracht de thermometer meer dan 200° C aan te
wijzen, zodat de waarneming misiukt; misschien is een andere keer
de temperatuur 201° maar blijft de thermometer bij 199° C staan,
zodat deze temp. wordt genoteerd met een lengte die bij de tem-
peratuur van 201°C hoort. De fout van de temperatuarwaar-
nemingen heeft hier geen invloed op de richting van de grenslijn.
De grenslijn zal evenwijdig aan de as van de staaflengte verlopen,
en de richting van middelen zal dus ock zodanig moeten zijn,
In geval de lengtemetingen practisch foutloos zijn in verhouding
tot de grote fouten van de temperatuur beveelt Van UVEN even-
wel een richting van middelen aan, evenwijdig aan de temperatuur-
as. Wij zien dus dat de richting van middelen niet steeds uit de
grootteverhouding van de fouten volgt.

Meestal is dit echter wel het geval. Wanneer er voldoende waar-
nemingen zijn, zodat het observeren van een bepaald ,,waar” punt
op AE een groep toevallig verdeclde waarnemingen geeft, dan
kunnen deze waarnemingen worden getypeerd door een kansellips
met de middelbare fouten van x en y als lange en korte as. In
de ellips van het meest extreme geobserveerde ware punt op 4B
als grenslijn kan nu worden beschouwd de middellijn, die toe-
gevoegd is aan de richting van de vereffeningslijn. Wanneer x
foutloos is ontaardt de ellips tot een lijn evenwijdig aan de Y-as
en dus de genoemde middellijn ook. Wanneer x en v gelijke fouten
hebben wordt de ellips een cirkel, en de bedoelde middellijn staat
dan loodrecht op de vereffeningslijn.

Men moet evenwel letten op de voorwaarde, dat er voldoende
waarnemingen zijn, zodat om ieder punt van 4B een normale
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kansverdeling van waarnemingen mag worden verwacht. Meestal
is het aantal waarnemingen zo gering dat aan deze voorwaarde
niet wordt voldaan. Dan blijft de berekening asymptotisch na-
tuurlijk wel goed, maar wellicht kan uit de bizonderheden van het
waarmnemingsmateriaal {een monster uit het universum van moge-
Ijkheden) soms een conclusie worden getrokken over de vraag
hoe de berekende ljn van de ware afwikt.

Wij zullen daartoe naar een nileuw criteriumn moeten zoeken.
Als zodanig zouden wij dit kunnen nemen: Wanneer de juiste
vereffeningslijn s berekend zal binnen iedere strook, die in de
richting van middelen uit de puntenbundel wordt genomen, de
middelbare fout, die uit de punten boven de vereffeningslijn
wordt berekend, gelijk moeten zijn aan de middelbare fout, die in
dezelfde strook uit de punten beneden de vereffeningslyn wordt
berekend. Een eventueel verschil tussen deze waarden moet foe-
vallig zijn en dus onafhankelijk van de plaats van de strook.

Wanneer een strook in een willekeurige richting wordt beschouwd
geldt dezelide eis, doch dan moet bedacht worden dat aan de
uiteinden onvolledige stroken kunnen ontstaan, waarvan b.v.
de benedenhelft ontbreekt (b.v. DEF in fig. 128.1, wanneer FK
de grensliyn is en DH de richting van middelen aangeeft). In zulke
gevallen moet geéist worden dat het aanwezig deel harmonisch
aansluit aan de verdere gegevens. Zo zal in fig. (128.2) de lijn

(128.2)

AC als juiste vereffeningslijn kunnen worden genomen, omdat
de complete stroken aan de gestelde voorwaarde voldoen, en de
niet complete stroken tussen B en ( harmonisch bij het overige
deel aansluiten.

Bij het gebruik van dit criterium gaan wij er dus toe over de
juistheid van de lijn achieraf vast te stellen. Wanneer wij door de
puntenbundel van (128.2) een lijn hadden berekend zou hij steiler
gestaan hebben; dit geldt voor de lange as en de beide regressie-
lijnen, Toch zijn we overtuigd dat de aangegeven lijn de beste is,
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op grond van het nieuwe criterium. Dit criterium leidt dus uit de
abnormaliteit van het monster bepaalde conclusies af over het
universuin.

Ons nieuwe criterium laat een volledig mathematische contréle
toe, maar is vooral gemakkelilk bij een grafische verwerking. Bij
een grafische verwerking blijkt het nl. vaak gemakkelijk de niveau-
lijnen van kansdichtheid te bepalen, die op een afstand van 114 a
2x de middelbare fout van de vereffeningslijn zijn verwijderd.
Deze lijnen laten zich meestal veel gemakkelijker vinden dan de
vereffeningshijn zelf. ,

Om dit aan te tonen hebben wij de grafiek van de normale ver-
deling op logarithmisch papier afgezet {zie fig. 128.3). Visueel
ziet men nl. niet in de eerste plaats de frequenties op de verschil-
lende plaatsen, maar de frequentieverhoudingen. Men ziet op de
grafiek dat er visueel binnen de aangegeven grenzen weinig ver-
schil is, en dat de dichtheid van punten buiten de grenzen snel
afneemt. Dit snel afnemen blijkt ook wel hieruit dat buiten de
niveauliinen op een afstand van 1.6 ¢ nog 119, van de punten
valt, buiten de lijnen van 1.8 ¢ nog 7% en buiten de lijnen van
2 ¢ nog slechts 4.59%.

Wanneer men aan weerszijden van de puntenbundel niveau-
lijnen heeft getrokken, moet men als vereffeningsliin nemen de
lijn die er midden tussen doorloopt. Door deze keuze bereikt men
dat in iedere strook, die dwars over de puntenbundel wordt gelegd,
de middelbare fout aan weerszijden van de lijn gelijk geschat
wordt. Daar is immers de afstand tussen niveaulijn en vereffenings-
lijn een maat voor. Tevens bereikt men dat onregelmatigheden
in de verdeling der punten (b.v. einden van de empirische bundel)
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geen invliped op de verkregen uitkomsten behoeven te hebben.

Het belangrijkste veoordeel van een grafische verwerking is
evenwel niet, dat bepaalde toevallige fouten daarmee kunnen
worden uitgeschakeld. Vaak werkt een numerieke bewerking
nauwkeuriger, en is dan kwantitatief beter.

Het nut van een grafische bewerking ligt vooral op kwalitatief
gebied. Reeds bij het eenvoudig probleem van rechtlijnige ver-
effening is het meeilijk de juiste formule te vinden om boven-
vermelde redenen. Wanneer een verkeerde formule wordt ge-
nomen heeft men in wezen te maken met een noodfermule, met
alle nadelen van dien. Bij kromlijnige vereffening is de kans op ecn
juiste keuze nog veel kleiner, tenzij de keuze a priori theoretisch
stevig gefundeerd is. Daar zal men dus nog eerder tot grafische
verwerking moeten overgaan.

Wij willen eindigen met de volgende regel: Fen grafische ver-
werking 1s kwantitatief vaak slechier dan cen numericke, maar kwa-
litatief vaak beter, omdat ev minder hans is dat er met een noodformule
gewerkt wordt. Abnormale vevdeling van het waarnemingsmateriaal
kan soms veden zijn ook By ideale formules eem grafische verwerking
te prefeveren.



11 - ENIGE BIZONDERHEDEN VAN HET
RASSENONDERZOEK

201 — DE ZIN VAN HET PROEFVELD

Een landbouwgewas reageert in zijn opbrengst en andere eigen-
schappen op allerlei invloeden. Vele daarvan zijn met name be-
kend, en misschien zijn er ook nog vele onbekende. In ieder geval
is de reactie van het gewas op al deze gevarieerde invloeden niet
steeds bekend. Zelfs is de reactie van het ene ras in de regel
anders dan die van het andere ras.

In deze situatie stelt het rassenonderzoek zich tot taak aan te
geven welke rassen aan de landbouwpractijk moeten worden aan-
bevolen. Daartoe moet de weg gevonden worden door al deze
onbekende en bekende invloeden met hun al of niet kwalitatief
en kwantitatief bepaalde werkingen.

Een methode van rassenonderzock, waarby al deze moeihjk-
heden ten volle tot gelding komen, is de rassenenquéte. Wanneer
aan allerlei mensen gevraagd wordt naar hun practijkervaring
met een bepaald ras, is aan de hand van de antwoorden een ge-
middelde ervaring voor het onderzochte gebied vast te stellen.
Onderzoekt men zo het gemiddelde van verschillende rassen, dan
kunnen deze rassen worden vergeleken. Bi} deze methode komt
de onzekerheid, die nog bestaat aangaande de invloeden, ten
volle tot gelding in de onzekerheid, waaraan de vergelijking der
rassen onderworpen blijft,

Gelukkig is aan de moeilijkheden, zoals die werden uiteen-
gezet, gedeeltelijk te ontkomen. Het moge waar zijn, dat de rassen
ongelijk op de omstandigheden reageren, het is evenzeer waar,
dat er in de reacties der verschillende rassen toch ook een grote
mate van overeenstemiming is, Wanneer van een perceel wordt
gezegd dat het vruchtbaar is, dan wordt daarmee uitgedrukt,
dat de omstandigheden voor alle rassen gunstig zijn; is een stuk
land te nat of te zuur dan schaadt dit alle rassen in meer of mindere
mate.

Van dit feit kan het rassenonderzock gebruik maken doordat
het niet vraagt naar de opbrengsten der verschillende rassen,
maar naar de onderlinge opbrengstverschillen. Het is zeer wel
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mogelijk dat van twee rassen niet op 10%, nauwkeurig te zeggen
valt, wat ze op cen bepaald perceel zullen opbrengen, maar dat
wel kan worden verzekerd dat het ene ongeveer 5%, meer op zal
brengen dan het andere. De oorzaak hiervan is dus deze, dat de
diverse rassen gewoonlijk globaal op de uitwendige omstandig-
heden gelijk reageren. Een ras dat onder de ene omstandigheid
extra veel opbrengt zal het vaak onder vele andere omstandigheden
ook doen. Dit feit is voldoende bekend, zodat het niet verder
behoeft te worden hesproken. Wi zullen er evenwel van uit moeten
gaan om de zin van het proefveldwezen te begrijpen.

Omdat de rassen globaal op de uitwendige omstandigheden
gelijk reageren, kunnen de uitwendige omstandigheden globaal
worden uitgeschakeld. Dit gebeurt op het rassenproefveld, waar
alle rassen naast elkaar worden gezet onder practisch dezelfde om-
standigheden. Over het gehele land verspreid worden onder allerlei
omstandigheden zulke proefvelden aangelegd. Wanneer een be-
paald rasverschil op al die proefvelden wordt geconstateerd, mag
wel worden geconcludeerd dat het verschil tussen de rassen onder
allerlei omstandigheden blijft bestaan, en dat de rassenkeuze
onder al die omstandigheden cok niet moet veranderen,

In de practijk zal blijjken dat de rasverschillen onder al die
omstandigheden niet helemaal constant zijn, er blyft een zekere
schommeling over, De werking van de omstandigheden is slechts
globaal uitgeschakeld.

De overblijvende schommelingen zullen meestal ook van al de
invloeden afthangen, die op de opbrengsten en andere gegevens
werken. Door de proefvelden wordt het aanial belangrijhe inviveden
niet verminderd; slechts wordt hun werking grotendeels wilgeschakeld,
zodat wmet veel mander kemnis foch een tamelijh goede vassenkeuze
mogeltik is.

202 — HET CONDENSEREN VAN DE INVLOEDEN EN HET NORMA-
LISEREN VAN DE GEGEVENS

In de vorige paragraaf hebben we over talloze invlceden ge-
sproken, waarvan men veel te weinig weet. Het ligt voor de hand
dat in de practijk met al die onbekende en vage invloeden niet te
werken valt. Daarom moeten ze worden samengevat tot een paar
hanteerbare begrippen,

Omdat op de rassenproefvelden, waarvan wij de wiskundige
bewerking nu nader bestuderen, alle rassen geheel onder dezelfde
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omstandigheden worden verbouwd (voor zover men die in de hand
heeft), willen wij alle invloeden, die op het proeiveld werkzaam
zijn, samenvatten als de invloed van het wmilien.

Door een dergelijke schematisering krijgt de te gebruiken for-
mule unitgesproken het karakter van een ncodformule. Er zal
daarem op gelet moeten worden, dat er een inferpretatiefoni wordt
gemaakt. Deze zal met de verborgen invloeden en de variabiliteit
de oorzaak zijn van het optreden van sirijdigheid en dus van een
varians.

Bij het rassenonderzoek willen wij dus in eeysle instanlie de op-
brengst of de andere gegevens zien als fumctie van een ras- en van cen
milteninvloed; terwigl wiy door de varians trachien te meien in hoever
ons pogen geslaagd is.

In formule uitgedrukt is onze wens dus dat wij kunnen stellen:

(202.13 Orp = @ (Ri; My),

waarbij Orp voorstelt het gegeven (b.v. opbrengst) dat met ras 2
in het milieu p is verkregen; R stelt voor de invloed van ras &
en M, de invloed van het milieu 4.

Omdat in deze formule alle invloeden tot twee gecondenseerd
zijn, willen wij deze formule een condensatieformule noemen en
de interpretatiefout, die hierbij gemaakt wordt, een condensatie-
fout.

In formule (202.1) wordt het gegeven O dus beschreven als
een functic @ van twee veranderlijken R en M. Over de bouw
van de functie @ wordt evenwel niets gezegd: Daardoor wordt er
aan de formule een derde element van variatie toegevoegd. Om
algemene beschouwingen over formule (202.1) te kunnen ont-
wikkelen is het nodig, dat de bouw stabiel is, en liefst eenvoudig.

Wi willen aannemen dat deze stabiele en eenvoudige bouw
bereikt kan worden door de gegevens O te transformeren (b.v.
de logarithme er van te nemen). Wij krijgen dan een grootheid
24, die een functie (6) is van Ogp, dus (zie 202.1).

(202.2) Qwp = 0 (0sp) = O { D (Re; Mp)} = A (R ; My).

De gegevens O, zoals ze zijn waargenomen, noemen wij bepaal-
gegevens; de getransformeerde waarden ervan ({2), waarmee de
berekening zal worden volvoerd, de rekengegevens.

Evenals de (0 is de £ een functie van uitsluitend K en M. Omdat
de bouw van & nog onbepaald is kunnen wij aan de functie A
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aprioristische eisen stellen, die hun compensatie in de @ zullen
vinden. e eis die wij willen stellen 1s deze:

Wanneer men in een bepaald muilien b, hel rasverschil bepaalt
van de reRengegevens {2 van de rassen R, ko, Ry, .. .. dan smoet men
dezelfde getallen vinden als wanneer wmen die rasverschillen bepaalt
e het malien by, Py, .. ..

Dus b.v. (wanneer £2,, betekent het rekengegeven van ras &,
in milieu $,)

(202-3) D2y — D4y =80y — Oy

Het verschil £2,, — £,, kunnen wij opvatten als de aangroeiing
van £2r» wanneer men in milieu p, van ras verandert. Deze aan-
groeiing willen wij aanduiden door

{202-4) FAY Q(kg—kl)l = -(221 — -Qn

Dat het gaat over een verschil tussen ras %, en ras k; duiden
wij aan door {&, — &;); dat de p de waarde , houdt duiden wij
aan door de p te vervangen door I,

De aangroeiing A -y mogen wij beschouwen als gevolg
van een aangroeiing A Rk, van de gunstigheid van de ras-
eigenschappen R, wanneer men van ras £, op 1as R, overgaat.
Formule (202.3) is het gemakkelijkst te hanteren, wanneer deze
aangroeiing er ook in vermeld wordt. Wij lezen hem dus als volgt
(zie ook 202.4)

(202.5) A Beckpn A 8Bwrz A ke

A Rpery A Riuywy 77 A Ry

Door A L, 1 willen wij aanduiden dat de % varieert van
k, naar k,, en dat de p wordt vastgehouden op een willekeurige
waarde). Aangezien de overgang van k; op &, slechts een voor-
beeld is van een overgang van het ene ras op een ander, doch onze
formulering voor alle overgangen toepasselijk moet zijn willen wij

de indicatie (k, — k) weglaten, en in 't algemeen zeggen dat %:%

onafhankelijk moet zijn van het milieu, deze waarde moet alge-
meen geldig z1n.

Hoewel de raseigenschappen niet continu verlopen, zullen wij
A

. R mogen ver-

toch aannemen, dat wij het differentiequotient -

vangen door het differentiaalquotient SR
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De waarde van s—ﬁ laat zich het best uit (202.2) afleiden door

de vergelijking 2z, = A (Ry; Mp) partieel naar R te differentiéren,
Dit geeft
22
p= Ag (R; My,

s—g, zou dus een {unctie kunnen zijn van R en M beide. Wij
hebben in (202.3) geéist dat het geen functie van M is, dus
mag het uitsluitend een functie van R zijn. Stellen we deze

functie voor door ¥’, dan geeft dit
22

Integreren van deze functie geeft
Q=¥YR)+T.

Wij zien dus dat onze eis meebrengt dat de £ een zodanige
functie is, dat hij bestaat uit de socm van twee delen ¥ (R} en I
Het eerste deel is een zuivere functie van R; het tweede deel is
onafhankelijk van R (het verdwijnt bij differentiren naar R),
doch kan wel afhankelifk van M zijn, wat volgens (202.2) inder-
daad het geval is. I' bevat dus een functie van M, maar kan ook
nog een onafhankelijk constante bevatten. Wij geven hem weer
als I'(M) + C.

Samenvattend kunnen wij dus zeggen dat onze eis is dat

Oy =¥ (Ry)+ I'(Mp) +C.

Nu moet nog beslist worden over de bouw van ¥ en I

De functie ¥ geeft weer dat de rekengegevens 2 afhangen van
rasinvloeden K. Deze invloeden zijn vaak niet in getallen uit te
drukken, De invloed wordt b.v, uitgecefend door de bouw van een
chromosoom. Het enige wat zich gemakkelijk uit laat drukken
is de werking van die invlceden op het gegeven. Hiervoor is de
¥ (Ry) een geschikte maat. Zo is de I'(M,) een maat voor de
werking van het milieu .

In het vervolg willen wij ¥ (R;} weergeven door Ry en I' (M)
door Mp, Onder Ry moet dan worden verstaan: de bijdrage van
het ras aan het rekengegeven, onder M, de byjdrage van het milieu
aan dat gegeven., We vinden dus als te gebruiken formule

(202.6) Qwp = Ry + Mp + C.

[$3]
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Deze formule is niet nieuw. In de wvariansanalyse wordt er
regelmatig mee gewerkt. Nieuw is slechts dat wij het niet van
de bepaalgegevens willen beweren doch van de rekengegevens. Niet
altijd zal formule (202.6) voor de bepaalgegevens juist zijn. In
vele gevallen kunnen er dan rekengegevens worden gevonden,
die beter aan (202.6) beantwoorden. Dit lukt echter lang niet
altijd! Hoe men kan trachten de rekengegevens uit de bepaal-
gegevens af te leiden zullen wij in 203 bespreken.

-Nu volstaan wij met er op te wijzen, dat door de normalisatie-
functie @ alle cijfers op gelijke wijze verwerkt kunnen worden.
Er blijft geen onderscheid tussen opbrengst-, kwaliteits-, waar-
derings- en andere cijfers. Om niet te abstract te zijn, zullen wij
in het vervolg niet van ,het gegeven” spreken, doch van de op-
brengst. Daarbij wordt onder ,,opbrengst” steeds verstaan het
,rekengegeven”, tenzij uitdrukkelijk anders vermeld wordt.

De waarde Ry willen wij aanduiden als rasvoorireffelijkheid, de
waarde M, als milleugunstigheid.

203 — HET TRANSFORMEREN VAN BEPAALGEGEVENS IN REKEN-
GEGEVENS

In formule (202.2) hebben wij neergeschreven
(202.2) Dy = 0 (Onyp).

d.w.z. de rekenopbrengst £2xis een functie van de bepaalopbrengst
Ozp. Deze functie willen wij aanduiden als fransformatiefunctie.
Het is. nu onze taak de transformatiefunctie te vinden. Hiertoe
moeten wij aansluiting zoeken bij onze eis uit formule (202.6)

(202.6) Ow = Re + Mp + C.
Wij beginnen met formule {202.2) te differentiéren en vinden dan
Aln .
(203.1) dox-rr = @ (Okp)'

Wij hebben de % en de $ in het linkerlid door x en » vervangen
om aan te geven dat & en $ lopende indices zijn geworden. De
letters k& en 4 blijven wij gebruiken wanneer ze worden ,,vastge-
houden”. In het linkerlid van (203.1) is dus uitgedrukt dat de
aangroeiing mag plaats vinden door een verandering van & of
van p of van beide. In het rechterlid hebben wij ken p
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gehandhaafd, omdat de grootteverhouding van de veranderingen
in 2 en O een functie is van de niet tegeljkertijd veranderende
waarde Ogp.

Hoewel dus £ en 4 in het linkerlid tegelijk mogen veranderen,
kan er geen bezwaar tegen zijn een index tijdelijk vast te houden
en te schrijven:

a0

(203.2) @ff = 6" (Oxp)
A
Eﬁ; = (Ok;f))-

In de formules (203.2) wordt slechts uitgedrukt dat een for-
mule (203.1) die geldt bij alle combinaties van rassen en proef-
velden, ook geldt wanneer men zich tot een proefveld $ of een
ras %k beperkt.

Voor de verdere verwerking is het gemakkelijk het differentiaal-
quotient te vervangen door het differentiequotient. Wij gaan dus
niet een aangroeiing van de raseigenschappen of de proefveld-
eigenschappen bestuderen, maar hei verschil tussen twee rassen
(ky — k) of twee proefvelden (p;, —p,). In wverband hiermee
kunnen wij de aanduiding van de opbrengst, waarop de aan-
groeting betrekking heeft, ook niet meer algemeen houden. Wi
meeten aanduiden, dat wij te maken hebben met de rassen £, en k,,
eventueel de proefvelden $, en $,, en schrijven daarom (203.2)
als volgt:

A Q(k kel [
203.3 =T =0 (0
( ) A O(klsz)p' ( L f’)

JAY £ k{p—Dg) ’
SR — @ (0 .
% Ok(?bl—f)g) ( kf’m)

Op dezelide manier kunnen wij op grond van (202.6) neer-
schrijven

AL ryp

203.4 L mWERIP

(203.4) A Rigety
ALupep)

A Mpepy
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In verband met (203.4) lezen wij (203.3) nu alsvolgt
(203.5)

ALty DDty ARty A By g,
A O rp A Rpery - A Opkgp A Ouyogp s

D Suppy _ L Brpery AMipepy  AMppy _ o (Oxp.)
AOuppy  AMupepy = AOupos) L Okpopy) v

Uit (203.5) is gemakkelijk af te leiden

A Oty
203.6 =l —§ (0
(203.6) A Rty (Ok,ep)
A Okipy=p)
PAS i SR 7
VAN 'A{(Prﬁbz) ( -’i?’m)
waarbij
I
(203.7) G (Orup) = m
1
7 (Okpra) = O O

In (203.6) staan nu twee condities waaraan veldaan moet zijn,
wanneer men de juiste transformaticfunctic heeft gekozen. Om
deze condities goed te begrijpen willen wij er een van in woorden
formuleren.

In de eerste vergelijking van (203.6) staat het volgende uit-
gedrukt: Wanneer men van een bepaald proefveld p de opbrengsten
van twee rassen vergelijkt, is er een verschil mogelijk in de bepaal-
opbrengsten; er kan een A Op-t,)p bestaan. Wanneer er met
rekenopbrengsten wordt gewerkt, is het mogelijk tussen die zelfde
rassen een verschil in rasvooriveffelijkheid vast te stellen; men vindt
een A Rpory. De verschillen tussen de bepaalopbrengsten en
die tussen de rasvoortreffelijkheden zullen onderling samenhangen.
Deze samenhang wordt op een zekere manier (#), verband houdende
met de gekozen transformatiefunctie (zie 203.7), bepaald door het
opbrengstniveau Og,,» waarop beide rassen met hun bepaal-
opbrengsten op dit proefveld staan.

Doordat in de besproken vergelijking is uitgedrukt dat men
zich moet beperken tot proefveld ¢, is de mogelijkheid gegeven
dat de manier van samenhang (&) op ieder proefveld anders wordt
gekozen. Indien enigszins mogelijk moet men trachten dit te ver-
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mijden. Wij eisen daarom, dat de gekozen itransformaticfuncite geldi
voor alle proefvelden en alle rassem.

In verband hiermee kunnen wij in (203.6) de # vervangen door
de lopende index = en om gelijksoortige reden de % door .

Wij schrijven dus

A Oteiegr

(203.8) R

= 'ﬁ (Oﬁ"xaz 17)

A Okippy)
=t =3 (Op,,,)-
A Mipypy) Ot

Hiermee hebben wij een paar vergelijkingen verkregen, die als
volgt de geschiktste transformatiefuncties kunnen verschaifen.

Van alle proefvelden die men in de loop der jaren heeft ver-
kregen kan men voor twee rassen &, en 2, berekenen het verschil
tussen de bepaalopbrengsten op ieder proefveld afzonderlijk
(A Oigty p) en de gemiddelde bepaalopbrengst (O ... By
het kiezen van het rassenpaar moet men zorgen dat het verschil
tussen beide rassen niet te groot en niet te klein is. Niet te groot,
want A O, » is een benadering van 40, en zou dus heel klein
moeten zijn; en toch niet te klein, want de toevallige fouten mogen
de systematische verschillen niet overheersen.

Van de bovenste formule is nu nog slechts de A R-»,) on-
bekend. Aangezien deze grootheid onafthankelijk moet zijn van de
proefvelden kunnen wij hem vervangen door het symbool C. In
dit geval is de C dus afhankelijk van het verschil tussen &, en %,.
Straks zullen wij waarden van C aantreffen die van andere ver-
schillen afhankeljjk zijn. Dan zullen we de € van een index moeten
VOOoIZien.

Omdat in de besproken formule slechts x veranderlijk is
kunnen wij A Ogoz)r als zuivere functie van O, zien.
Wanneer er een voldoend aantal punten is, moet aan de hand
van een grafiek een functie gevonden kunnen worden, die het
verband genoegzaam weergeeft. Op deze wijze vindt men de
functie &, die volgens (203.7) in @ en daarna in de transformatie-
functie @ is om te zetten.

Wanneer er niet voldoende punten zijn, zal men verschillende
rassenparen en verschillende proefveldenparen moeten onder-
zoeken, en de gegevens samenvoegen. Dit is om een andere reden
ook reeds wenselijk, aangezien anders misschien voor één rassen-
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paar een transformatiefunctic wordt genomen, die bij de andere
rassen minder goed past.

Wij staan dus voor de vraag, hoe de gegevens moeten worden
samengevat. Aanwezig zijn een aantal lijnen, die aan de volgende
formules beantwoorden.

(203.9) A Opytge =Cy o 9 (Okpom)
A Oyt =Cs . 0 (Ohy i)
A O (p—P2) — Cs . (Okﬁl,z)
A Ogipgps) = Cy . 8 (Onpy,a)
enz.

waarbij €, C,, C; en C, weergeven de waarden van A Rk,
A Ripgery, & Mipepy en A Mipep.

Doordat iedere C weer anders is zullen de lijnen een ongelijke
vorm hebben. Als de lijnen recht zijn zal de één steiler staan dan
de ander, zijn de lijnen krom, dan zal de kromming ongelijk zijn,
Het is duidelijk dat het in deze omstandigheden niet gemakkelijk
is een ,,gemiddelde” lijn te krijgen door de afzonderlijke lijnen
over en aan elkaar te passen. Dit bezwaar is te ondervangen door
de waarden van C te schatten. De waarde van C, is A Rp ),
dus het verschil in rasvoortreffelijkheid tussen ras &, en ras Z,.
Bij benadering zal hier voor kunnen worden genomen het verschil
tussen de gemiddelde bepaalopbrengsten van ras &, en ras &, op
de onderzochte proefvelden. Wanneer achteraf aan de figuren
blijkt dat een betere onderlinge aansluiting wordt verkregen door
enkele waarden van C anders te kiezen, dan kan voor ieder spe-
ciaal geval worden nagegaan, of een dergelijke verandering ook
wenseljk is,

Wij komen dus tot de volgende methode

(203.10)

le Deel de rassen in, in groepen van twee, die niet te veel en niet
te weinig in opbrengst verschillen. Doe hetzelfde met de proef-
velden.

2e Bepaal voor iedere groep de waarde
£ 0(= A Oppy p) = Ok p — Okep
of
Ay 0 {: A Ok (ﬁl—pz)) = Okﬁl - Ok?:'
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3e Bepaal voor iedere groep de waarde

0 0
0 (= Oyup) == 2t Dhet
of

Oup, + Ok,
O (=0, = 5=,

4e Schat voor iedere groep de waarde
C (= A Riry) = Oty — Oy
C (= A Mpp,) = Oxp,— O,

(Door O, wordt aangeduid dat O, over p is gemiddeld).

5e Bepaal voor iedere groep de waarde van &LO
6e Zet &—Ca af als functie van O. Volgens (203.8) en (203.7)
geldt nu
C I ,
5079~

Te Tracht een functie @' te vinden die bij de gevonden lLijn goed
aansluit, en zoek de transformatiefunctie @ door te integreren,

Wanneer men zijn transformatiefunctie voor practische doel-
einden zoekt en niet voor theoretische, is er geen essentiéle eis
over de bouw, doch slechts de practische voorwaarde dat de for-
mule de lijn behoorlijk moet benaderen en aan het integreren niet
teveel moeilijkheden in de weg moet leggen.

204 — CONTRGLE OFP DE JUISTHEID VAN DE TRANSFORMATIE-
FUNCTIE

Bjj het opstellen van de methode voor het vinden van een trans-
formatiefunctie hebben wij als ideaal gesteld, dat alle rassen en
alle proefvelden dezelfde vergelijkingsfunctie zouden krijgen. Met
het stellen van dit ideaal is evenwel helemaal niet gezegd dat het
ook inderdaad mogelijk is. Het is om deze reden wenselijk dat men
achteraf controleert of men misschien ook een bepaald ras of een
bepaald proefveld geweld heeft aangedaan.

Deze contréle is mogelijk wanneer men met de verkregen trans-
formatiefunctie rekenopbrengsten heeft bepaald, en deze cijfers
heeft samengevat volgens de methoden van 304, zodat voor
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ieder ras de voortreffelijkheid Ry bekend is, en voor ieder proef-
veld de gunstigheid MM ,.

Met behulp van (202.6) laat zich nu voor ras £ op veld $ de
waarde p, uitrekenen. (De invleed van C wordt in hfdst. III
ook nader besproken).

Voor ieder ras en ieder proefveld laat zich nu controleren of
het verband tussen O en {2 aan de transformatiefunctie @ voldoet.
Eventueel kan men de algemene functie @ veor ieder ras en ieder
proefveld vervangen door een speciale functic € of ©,.

Met het openen van deze mogelijkheid willen wij niet zeggen
dat het nu ook steeds wenselijk is. Hierover zal de practijk moeten
beslissen. Er zijn evenwel gevallen waarin wij wel zonder meer
kunnen zeggen dat het wenselijk is van deze mogelijkheid gebruik
te maken. Dit is het geval met schattingscijfers.

Allerlei kwalitatieve eigenschappen van het gewas worden vaak
in schattingscijfers vastgelegd, b.v. smaak, strostevigheid, winter-
vastheid enz. Nu is het vaak moeilijk de betekenis van de cijfers
nauwkeurig vast te leggen, de een gebruikt cijfers tussen 7 en 9,
de ander tussen 4 en 10. Wanneer al deze cijfers moeten worden
samengevat is het nodig eerst de schalen bij elkaar aan te passen.

In dit geval zijn de waarden van M onbelangrijk, omdat de
grootte hiervan vaak meer van de waarnemer dan van het proef-
veld afhankelijk is, Men kan dus een willekeurige waarde van M
aannemen. In verband hiermee is het in dit geval niet nodig een
algemene transformatiefunctie op te stellen volgens de methode
van 203. Van de verschillende waarden R, mag men voorlopige
cijfers schatten door de bepaalgegevens eerst samen te vatten,
of door cijfers te nemen uit vroegere proeven. Uit de aangenomen
waarde van M en de voorlopige waarden van Rg laten zich voor-
lopige waarden £, berekenen.

Voor ieder preoefveld kan nu grafisch het verband worden na-
gegaan tussen Ogp en 2. Uit de grafiek wordt voor iedere Oxp de
bijbehorende 2y afgelezen. Deze rekengegevens ondergaan nu
een definitieve bewerking wvolgens hfdst. III.

205 — HET METEN VAN DE MILIEUGUNSTIGHEID

In formule (202.6) hebben wij tot uitdrukking gebracht, dat
wij de opbrengst van een bepaald ras in een bepaald milieu wilden
zien als de som van een bydrage van het ras en een bijdrage van
het milien. Dit ideaal hebben wij ons durven stellen omdat wij
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weten dat de verschillende rassen giobaal gelijk op uitwendige
omstandigheden reageren.

Wanneer die gelijkheid van reactie nu maar volkomen was,
zou ieder ras in staat zijn de gunstigheid van de verschillende
miliew’s te meten door de variaties van zijn rekenopbrengst. Doch
die gelijkheid van reacties gaat in de regel niet tot in details, doch
blijft globaal, ook wanneer rekenopbrengsten worden gebruikt, Dit
stelt ons voor speciale moeilijkheden, die wij nu moeten bestu-
deren,

Wij beginnen met ons een stikstofbemestingsproef te denken,
waarin twee rassen, &, en k,, onderzocht zijn bij verschillende
stikstothoeveelheden. Omdat verandering van stikstofhoeveelheid
een verandering van milien meebrengt, hebben wij als waarde
van de milien-index p de stikstofhoeveelheid genomen. In fig.
(205.1) ziet men de bepaalopbrengsten O, afgezet als functie
van p.

Wij zijn er van uitgegaan dat de stikstof eerst gunstig werkt,
en dat later een overmaat aan stikstof schadelijk is. Om extreme
gevallen te bestuderen hebben wij aangenomen dat de opbrengst
tot 0 kan dalen, hoewel dat in de practijk niet erg waarschijnlijk is.

(205. 1) Opbr.

Ps P2 Ps [ F;5 :"a N-gift

In dit voorbeeld ziet men dat het verschil van de bepaalop-
brengsten van £, en &, bij een bepaalde stikstofgift overal gelijk
is. De bepaalopbrengsten kunnen hier dus tevens als reken-
opbrengsten worden gebruikt (zie 202.3).

Dit voorbeeld is wel uiterst eenvoudig. De gelijkheid van reactie
op uitwendige omstandigheden is voor de rassen %, en &y
volkomen, Hoe zullen wij nu de bijdrage van het ras van die van
het milieu moeten scheiden?

Wij zullen uit moeten gaan van formule (202.6)

(202.6) Okp (= ) = Ry + My + C.
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De constante € kan naar wens over Ki en Mp worden ver-
deeld; ook kan hij geheel of gedeeltelijk onafhankelijk vermeld
blijven, DMt geeft ons de vrijheid de nulpunten van waaruit R
en M becijferd worden, willekeurig te kiezen. Wij willen nu het
nulpunt van R onafhankelijk kiezen, en dan dat van M zo
vaststellen dat C verdwijnt.

Voor wij het nulpunt van R kiezen moeten wij bedenken dat
deze proef in zoverre abmnormaal is, dat wi) het milieu door de
waarde van $ (in dit geval de stikstofhoeveelheid) konden karak-
teriseren. Meestal zal $ een willekeurige index zijn; dan moet
het milieu door de 3, worden getypeerd.

Om ons dit nog weer duidelijk bewust te worden denken wij
ons enige plaatsen in Nederland waar onze proef precies de mee-
gedeelde resultaten zou opleveren. Inplaats van een bemestings-
proel wordt op al deze ,,identieke” gronden een rassenproef aan-
gelegd, dus een proef waarin de verschillende rassen bij één be-
paalde N-bemesting worden vergeleken.

De toegediende N-bemesting hangt op iedere plaats van het
inzicht van de boer af, omdat die in het algemeen de grond het
best kent, Nu rekent de ene boer op een nat jaar en geeft weinig
stikstof, de ander verwacht een droog jaar en geeft veel. Wanneer
de proefveldresultaten moeten worden samengevat hebben wij
dus te maken met verschillende milieu-invloeden. Het ene proef-
veld heeft de bemesting $, ontvangen, een volgende p, enz.

Nu zou men veronderstellen dat ook nu de meststofhoeveel-
heden p dienst zouden kunnen doen om het milieu te typeren,
omdat door het verspreiden van de N-trappen over verschillende
plaatsen met identieke omstandigheden niets veranderd is. Toch
is dat niet het geval. Wanneer men de verschillende stikstofgiften
naast elkaar op een proefveld geeft is men van de identiteit der
gronden tamelijk zeker. Zijn diezelfde giften ruimtelijk verspreid,
dan mag die identiteit in het algemeen niet worden verwacht.
Een practische methode moet haar dus buiten beschouwing laten.

Wij zien immers dat ook reeds op identieke gromden wegens
de invloed van de boer verschillende bemestingen zouden worden
gegeven, Bovendien zijn in de practijk de gronden niet identiek.
Aangezien de N-behoefte van verschillende gronden heel ongelijk
is, zegt de gegeven N-bemesting in de practijk gewoonlijk niets
over de gunstigheid van het milieu. Dit is de reden dat het milieu
in het algemeen door M, moet worden getypeerd.
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Wiy willen nu nagaan wat er gebeurt wanneer wij volgens de
algemene principes proefvelden zouden samenvatten, die wel
identiek waren, behalve dat ze verschillende N-bemestingen ont-
vingen. Dan zou in het geval van (205.1) de opbrengst van ras 4
beter geschikt zijn voor het typeren van het milien dan de op-
brengst van ras %,. Immers tussen p; en p; zijn er nog gunstigheids-
verschillen, die niet door 2, worden aangetoond, maar waar wel
Tas &, op reageert. In dit geval zouden wij daarom kunnen over-
wegen het nulpunt van de R zodanig te kiezen dat

(205.2) R, =0.

Aangezien in ons geval bepaalopbrengst en rekenopbrengst
gelijk zijn volgt hieruit:
(205.3) . O1p =Ly = Mp.

Wanneer wij nu het contante verschil tussen de opbrengsten
van ras % en ras k, = A stellen, kunnen wij van Ozp zeggen
dat

(205.4) Op =Mp— A4
behalve wanneer (M, — 4) < 0; dan is Opp = 0.

Een speciaal ras s dat tot taak heeft de miliengunstigheid M,
door middel van zijn opbrengst £ vast te leggen, wordt een
standaardras genoemd. In gevallen als fig. (205.1) weergeeft, is
het productiefste ras dus vanuit dit oogpunt het geschiktst als
standaardras,

Figuur (205.1) geeft echter een zeer speciaal geval weer, dat
zelden voorkomt. Immers de rassen reageren in werkelijkheid
slechts globaal gelijk op de uitwendige omstandigheden. Een
grafiek als in fig. (205.5) is weergegeven, is in de practijk waar-
schijnlijker; wanneer wij tenminste weer aannemen, dat bij cen
hoge stikstofgift de opbrengst geheel kan uitblijven.

(205.5)  Owr

LY

P ————

A ——

Pf———————

A ds b N -gift
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Beide rassen geven een stijgende bepaalopbrengst bij stijgende
N-hoeveelheid, tot er een maximum bereikt wordt; dan daalt de
opbrengst weer tot (.

We zien dat in dit voorbeeld niet geldt, dat het verschil
(O4p — O3p) constant is. Hier is het nodig de bepaalopbrengsten
O in rekenopbrengsten 2 te transformeren. Omdat dit momenteel
niet ons onderwerp is, willen wij aannemen dat in dit geval door
een zodanige transformatie niets valt te bereiken, zodat ook nu
de bepaalopbrengsten de meest geschikte rekenopbrengsten zijn.

Om het milien te typeren zouden wij ook nu weer het produc-
tiefste ras (k,) als standaardras kunnen nemen en stellen

(203.6) Osp = £5p = M.

Aangezien de rasverschillen niet constant zijn kunnen wij de
raseigenschappen het best onderzoeken door de opbrengsten van
beide rassen tegen de milieugunstigheid M, af te zetten en de
opbrengstlijn van beide rassen te vergelijken (zie fig. 205.7)

(205.7) Oxn 02

. Mp.

De lijn voor ras k; is gemakkelijk te tekenen. Uit formule (205.6)
volgt dat het een lijn is deor de oorsprong onder een hoek van 45°,
die zich uitstrekt van het minimum pg tot het maximum p,. De
lijn voor ras &y is moeilijker te construeren. Van p, tot p, (zie
205.5) Ligt hij op een constante afstand boven die van k&, Bij $,
is het maximum bereikt dan buigt de Z,-lijn naar beneden, terwijl
My nog stijgt. Bij $; snijden de k- en &,-lijn elkaar, dan daalt
de lijn regelmatig door tot bij p, het maximum van Qg4 en dus
van Mp is bereikt. Verder daalt de lijn van %, bij teruglopende M,
Bij p; is de opbrengst van ras £, =0, dan is de M, nog vrij hoog.
Verder volgt de &,-lijn de Mp-as tot de oorsprong.

Wij zien dat ras %; cen zeer regelmatige lijn oplevert, ras %,
daarentegen een zeer onregelmatige. Dit ligt niet aan belangrijke
rasverschillen; uit fig. (205.5) blijkt dat beide rassen ongeveer
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gelijk reageren. De ocorzaak is dat het ene ras tot standaard is
verheven en het andere niet. Wij zouden ook ras k, als standaard-
ras kunnen nemen en dus stellen
(205.8) Oup = My

Dan zou blijken dat ras &; een onregelmatig verloop heeft, terwijl
k, een rechte Ijn geeft (zie fig. 205.9)

(205.9) OPbr. .

P WA% Mp

Het is natuurlijk onjuist dat een bepaald ras een extra prettige
indruk maakt doordat het als standaardras is gekozen. In het
algemeen moet men dus van het gebruik van standaardrassen
afzien, wanneer niet alle onderzochte rassen kwalitatief gelijk
reageren. Veel beter is het alle rassen gelijke kansen te geven en
als ,standaardras’” het gemiddelde van de onderzochte rassen te
nemen. Wij willen dit fictief ras als | fictiefras’” aanduiden. Voor
dit fictiefras &; geldt dus

(205.10) Q. :[}% — M.

Wanneer wij het aantal rassen door m voorstellen.

Hoeveel wij in gevallen als (205.5) vooruitgaan door het ge-
bruik van een fictiefras moge blijken uit fig. (205.11), waar de
opbrengsten van de rassen %; en k, zijn afgezet tegen de My zoals
die bepaald wordt door het fictiefras,

(205.11) OpbnCy




78

We zien dat beide rassen nu gelijkscortige lijnen vertonen. Ook
valt het op dat in fig. {205.7) en (205.9) het niet-standaardras
ongunstig voor de dag komt in vergelijking met {205.11) ten be-
hoeve van het standaardras. Het werken met een fictiefras is dus
veel eerlijker.

Om de eigenschappen van het fictiefras duidelijk in het licht
te laten komen is de opbrengstlijn van het fictiefras (&) in fig.
(205.5) ingetekend (zie fig. 205.12)

(205.12)  ow

i
N A
I \
| s, .
I S
1 S
[ [ ﬁs 'jl a.u Plg Ng'“

Men ziet hier dat het fictiefras in zijn reactie op stikstof het
midden houdi tussen &y en &, dit is cen gunstige eigenschap.
Voorbij p, is de opbrengst van &, =0; dan is My = 1% Osp. Dit
heeft tot gevolg dat het fictiefras evenlang op stikstof blijft rea-
geren als k,. De voordelen van het productieve standaardras (zie
conclusie na (205.4)) worden dus ook bereikt met het fictiefras,
In gevallen als weergegeven in (205.1) kan het fictiefras daarom
evengoed dienst doen als het standaardras.

Wij kunnen daarom de algemene conclusie trekkenm, dat het wen-
seltyk us sleeds met een ficliefras te werken en nooit mel een standaard-
ras. De opbrengsi van het fictiefras wordt daarbij verondersteld gelijk
le zijn aan het gemiddelde van de rehenopbrengsien van alle onder-
zochie rassen.

206 — DE NGODZAAK HET MILIEU TE , WEGEN"’

In 201 hebben wij gezien dat het milieu uitermate gecompliceerd
is. In 202 spraken wij de wens uit, een bepaald milieu toch door
één getal Mp te typeren. In 205 voerden wij het |, fictiefras™ in,
dat als opbrengst M, zou moeten geven. Bij dit alles moeten
wij dus de consequentie aanvaarden dat een bepaalde waarde
van M, verkregen kan worden bij allerlei verschillende omstandig-
heden. Men ziet dit reeds in fig. (205.12) waar $, en p, ongeveer
dezelfde M, (= £) opleveren, zo ook p, en p;. In deze verschillende
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omstandigheden reageert een afzonderlijke ras niet steeds precies
gelijk, zodat er verdubbeling van lijnen optreedt, wanneer de
opbrengst £k van een bepaald ras tegen de miliengunstigheid My
wordt afgezet (fig. 205.11).

Nu is hier nog maar sprake van één invloed (stikstof). Bij talloze
invloeden wordt het aantal milieu’s met gelijke gunstigheid veel
groter. Voor een bepaald ras zal men dan geen verdubbeling van
de lijn vinden maar een gehele lijnenbundel. Wanneer de om-
standigheden continu veranderen zal men zelfs geen aparte lijnen
kunnen onderscheiden. Teder ras geeft een bepaald gebied waar-
binnen waarnemingen mogen worden verwacht. Zolang men wil
volstaan met het berekenen van globale rasverschillen verlangt
men door dit gebied een lijn met de formule

$rp = Mp -+ Ry

Door deze formule wordt weergegeven hoeveel ras 2 meer op-
brengt dan het fictiefras.

Wanneer wij deze lijnen in fig. (205.11} voor beide rassen zouden
intekenen, zou onze conclusie zijn dat de k%, beslist slechter is
dan de k;. Wij zouden immers zowel voor k; als k&, midden
tussen beide takken door willen gaan, Wanneer wij de rassenkeuze
aan de hand van fig. (205.5) moesten bepalen, zouden wij dezelfde
conclusie trekken,

Bij een landbouwkundige beoordeling moet er evenwel rekening
mee worden gehouden, dat de bemesting niet groter mag zijn dan
de optimale, dus $,. Beneden ¢, ligt de opbrengst van &, duidelijk
gemiddeld hoger dan die van %,. Zo zijn wij ook niet billijk: te lage
stikstofgiften moeten ook vermeden worden. De toestand tussen
P, en p, heeft daarom ook maar weinig waarde. Tussen $, en p,
wint ‘p, het weer. Aan de hand van fig. (205.5) is op deze wijze
gemakkelijk de noodzaak en mogelijkheid van het ,,wegen” van
milieu’s te bespreken. Wanneer men moet werken met figuren
als (205.11) is de noodzaak natuurlijk even groot, maar de mogelijk-
heid kleiner.

Men staat hier voor de practische toepassing van de theorieén
die wij in hoofdstuk T ontwikkelden. Formule (202.6) is uitge-
sproken een noodformule. Wanneer men er mee werkt moet men
niet alleen letten op de vrij onschuldige toevallige fouten, maar
juist bizonder bedacht zijn op de systematische fouten, waar-
onder de monsterfouten zo’n grote plaats innemen.
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Daarom moet men bedenken dat men het materiaal niet min of
meer toevallig mag verzamelen, doch dat men zeer zorgvuldig een
typisch monster uit het onderzochte gebied moet trekken naar
tijd, plaats er omstandigheden. Het is onmogelijk aan deze eis te
voldoen! Om een redelijk klimaatmonster te trekken heeft men
teeds vele jaren nodig. Het beoordelen van een nieuw ras mag
niet zoveel jaren duren. Het zal nodig zijn door het toedienen van
gewichten deze monsterfouten te corrigeren. In 114 bleek, dat het
moeilijk zal vallen een goed gewichtenstelsel te verzinnen. Het
zal geen toelichting meer behoeven wanneer wij er nog even op
wijzen dat de ,toevallige fout’” wvan een proefveld vaak geen
maatstaf voor het gewicht zal mogen zijn, en het aantal herhalingen
nog veel minder.

Uit het voorgaande moge duidelijk zijn, dat er vaak met monster-
fouten gewerkt smoet worden. Door het toedienen van gewichten
is hier enig herstel mogelijk. Zodra de gegevens het toelaten zal
evenwel een theoretische verdieping van de kennis moeten worden
nagestreefd. Aan het eind van hidst. III zal hierop iets dieper
worden ingegaan.



IIT - HET SAMENVATTEN VAN RASSENPROEVEN

301 — DE INTERACTIE TUSSEN RAS EN PROEFVELD

Bij het samenvatten van proefvelden komen een aantal pro-
blemen naar voren, die zich het gemakkelijkst laten toelichten,
wanneer wij uitgaan van de schema’s die gebruikt worden in de
varians-analyse volgens de school van R. A. Fisurr, Om deze
reden willen wij beginnen met enige aspecten van een FISHER-
analyse te bestuderen.

Wij gaan weer uit van formule (202.6)

(202.6) Orp = R -+ My + C.

In 205 merkten wi} reeds op, dat de € ons in staat stelt de nul-
punten van R en M naar believen te kiezen. Daar gaven wij er
de voorkeur aan de C met de M, te laten samensmelten, In dit
hoofdstuk kiezen wij liever de nulpunten zodanig dat

(B =0

[M;] =0.
Evenals in (203.1) hebben wij de % door een » vervangen, omdat
hij een lopende index is, zo is de p vervangen door een z. Om aan

te geven dat R en M vanuit hun gemiddelde worden geteld willen
wi) ze vervangen door resp. ¢ en g, zodat wij lezen

(301.1) lo.] =0
[1r] = 0.
Substitutie van p en x in (202.6) geeft
(301.2) vy = pr + pup -+ C.

Wanneer wij het aantal rassen door s aangeven en het aantal
proefvelden door #, geeft sommatie van {301.2) over % en 2

[[Q2r]] =n[ox] + 1 [ptn] + mnC.
of (zie 301.1)

(301.3) c =19l _5 .2

i

Substitutie van € in (301.2) geeft

(301.4) Dip =0 + on + pip.
§
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De waarden van g en y laten zich (in verband met 301.1) nu
berekenen volgens de formules

0wl =
(301.5) . :%@d G
, =Pl

i

In de formules (301.4) en (301.5) zijn onze wensen aangaande
het rekenschema vastgelegd. Via (202.6) hangen ze immers samen
met 202, waar wij onze idealen formuleerden.

Maar misschien wordt aan deze wensen niet geheel voldaan.
Hoewel wij wensen dat een rekenopbrengst alleen afhangt van
totaalgemiddelde, rasvoortreffelijkheid en milieugunstigheid (zie
202), kan het zijn dat in werkelijkheid ook invloeden van het
toeval aanwezig zijn, Het kan zelfs zijn dat ons streven, de juiste
transformaticfunctie (zie 203) te vinden mislukt is, zodat er syste-
matische fouten zijn. Hoe de fouten ook mogen zijn, wij moeten
rekening houden met hun aanwezigheid.

Dit heeft b.v. tot gevolg dat de waarden up en pr die wij volgens
(301.3) berekenen niet gelijk zijn aan de waarden die wij wensen.

Wij zullen ze daarom aanduiden door u,’ en g¢, zodat {301.5)
wordt:

’ _[QKP] i

(301.6) p =19l 5
c_ ] 5

o ="— = 2.

Bovendien zullen wij in formule (301.4) niet alleen de gr en up
door g¢' en wp’ moeten vervangen, maar bovendien nog door een
wrp moeten aanduiden dat ook na die verandering nog fouten
aanwezig kunnen zijn. Formule (301.4) wordt dus
{301.7} Doy — 2 = 3" -+ pp’ -+ uzp.

In formule (301.7) hebben wij nu als belangrijke elementen
overgehouden g1, pp en 2, die allemaal afhankelijk zijn van
toevallige fouten. Dit is ongewenst, vandaar dat wij liever werken
met de asymptotische waarden pg, #p en <0

Deze asymptotische waarden zouden worden verkregen, wanneer
wi] met onze # rassen ouetndig veel proeven zouden kunnen nemen

onder vermijding van monsterfouten (zie voor dit begrip 114).
In dit geval zouden de focvallige fouten hun invleed wverliezen.
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Daarentegen zouden eventuele systematische fouten hlijven be-
staan. Zo b.v. fouten, die ontstaan wanneer er geen goede trans-
formatiefunctie is te vinden; kortom steeds wanneer er met een
noodformule gewerkt wordt. Wanneer wij nu kortheidshalve van
,,asymptotisch’’ spreken, bedoelen wij dus dat begrip dat in 113
,,asymptotisch verwacht” is genoemd.

Wanneer wij deze asymptotische waarden in (301.7) invullen
krijgen wij
(301.8) ) Qkp—<§> :ék—!-ﬁp + lkp.

De grootheden ¢ willen wij aanduiden als ,,asymptotische fout’.
Sommeren van (301.8) over % en p geeft

(301.9)  [[Qu)] — mn <> =n[g] + m[fia] -+ [[terl].

De vorm [g.] moet gelijk aan 0 zijn omdat ,,asymptotisch”
slechts # rassen onderzocht worden. Dit blijkt uit de definitie
van het | fictiefras’” als gemiddelde van alle onderzochte rassen,
De vorm [fi,] zal slechts dan 0 zijn, wanneer er geen ,,parameter-
fout” (zie 114) is gemaakt. Wij zullen dus met een mogelijke pa-
rameterfout rekening moeten houden.

Uit (301.9) laat zich nu gemakkelijk berekenen

D D _ mw} [[en]]
(301.10) 02— <> = o -+ Son

Trekken wij (301.10) van (301.8) af dan vinden wij

A - ~ /\rr by
(BOLI1) 2 — 2 =3 + fp %+t@——[[—m£.

Middelen van deze formule over % geeft (zie ook 301.6)

L] 5 0w [l el [Pl
QOLIZ) = = — @ = == S
Zo is ook
] 5, Uan]  [lfen)]

Substitueren wij uit (301.12) en (301.13) w’ en g’ in (301.7)
dan vinden wij

(301.14) Rp — D — s + ,af,u_[/%*] o o) Tl g [lbenl)

[ m M
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Wanneer wij dit vergelijken met (301.11) vinden wij

Thell _ i), Thxe] o [lhenl]
M T T T e
of
__ [tk‘ﬂ‘] t'(‘:f‘] [[tkw]]

(301.15) Ukp —tkp—'n_——;#“'—“;mn .

Het blijkt dus dat het geen rechtstreekse schadelijke invloed
heeft op de schijnbare fout wanneer [i.] 3= 0 is.

Bij verschillende uiteenzettingen die zullen volgen is het prettig

vermeld te zien over hoeveel getallen gesommeerd wordt. Het

mw
gebruikelijke symbool daarvoor is X tps. Hier is uitgedrukt dat
k=1

over k wordt gesommeerd en dat 2 m waarden aan kan nemen.
Deze schrijfwijze vinden wij evenwel minder gemakkeljk. We
sluiten liever aan bij het sommatieteken []. De vorm [fep] is de
som van m getallen 44, waarbij » loopt van 1 tot m. Dit getal
m willen wij plaatsen voor de vorm [£.], en vooraf laten gaan
door een 4. Door #m [fp] drukken wij dus uit dat [tep] de som is
van # termen. Zo betekent + 4 m#n [[Ler]] dat [[fxa]] de dubbele
som is van mm termen,

Vaak zal » alle waarden van 1 tot s mogen aannemen met
uitzondering van een bepaalde, b.v. l. Onder +{(m — 1) [{;)p] wordt
nu verstaan de som van {(m — 1) termen #.p, waarbij » alle waarden
van 1 tot m mag aannemen behalve [

In deze symbolen uitgedrukt wordt formule (301.15)

tom t e
i = by — WE: 1 megw] 4 Hmzzg 1 _

_ {3 —13
f;kp_ﬂf_[?j[fﬂ@ﬁ%_Lwﬂﬂ_%P+
ttm— D — D [{hrp ] | tm-1) (g

D liep] | e _ 1 1
el e (1 ) e
1 1 1 1
(e Lyt — (), — o)t 1) [res] +
y At lm = Do Dlrgel]
mn ’

of
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(301.16) mp—@"_%%@ﬁ__&p_¢m_1)F”7$3%ﬁy
~rm 1, [W] L opeem N 1) H”M’JH.

Men ziet duidelijk dat de schiynbare fout wzp, afhankelijk is van
alle asymptotische fouten #x,. Wanneer er twee rassen op twee
proefvelden worden onderzocht (m =2, » =2) krijgt formule
(301.16) de vorm

wkp =T thp — fthip) — % hrp + ki)

dan hebben alle asymptotische fouten evenveel invloed op wpgp.
Worden # en n beide groter dan gaat #; snel domineren.

Uit de schijnbare fouten # pleegt de varians van de interactie
tussen rassen en proefvelden berekend te worden. Daartoe worden
eerst alle waarden u gekwadrateerd. Voor wg, geeft dit

P P

+ tm-1) [(i__])fﬁlf] ot — D (e — D) Hhkm “

mZnd

#rpt = (m — 1% (n — 1)® Ip? + t(m-1) [(——ﬁ——mﬁ I)Ztsz] +

2n?

—2 T(% [M ) Lrp tkw{{ + .... enz.

Het is niet nodig alle termen verder op te schrijven. Voor de
overzichtelijkheid willen wij alle coéfficienten buiten de som-
matietekens brengen, zodat we krijgen

(m— 1) (n — 1)?

m2n?

1y
(301.17)  wpp? = tkﬁ%‘%’r(ﬂ—’)ﬁkmﬂ*‘

—1
- (nmznz) Hom=1) Lap’T + 5 1100 — 1 — D {[fenel] —
21— 1)

pom v (m=1) [(frp tuip)] + . . .. enz.

Men ziet dat er eerst enige termen zuivere kwadraten komen;
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dan volgen een groot aantal ‘dubbele producten. De kwadraat-
sommen zijn natuurlijk alle positief. Verder is het een bekende
stelling dat de asymptotische waarde van de som van de dubbele
producten 0 mag worden gesteld, wanneer de beide factoren onaf-
hankelijk van elkaar zijn. Laten wij b.v. de dubbele som[[fz ) {1z 5]
nemen. Deze waarde wordt verkregen door iedere waarde #gp) te
vermenigvuldigen met iedere waarde #r;p. Wij kunnen daarom
Zeggen

[Leio) firipl] = ltrip) [Birip]] = [Eip] rip)].

De som van de producten is gelijk aan het product van de
sommen, Wanneer alle waarden ¢ onafhankelijk van elkaar zijn,
ziln beide sommen asymptotisch gelijk aan 0 en het product
dus ook,

In ons geval mogen wij er echter niet op rekenen dat de asymp-
totische fouten ¢ onderling onafhankelijk zijn. Immers de waarden
¢ zijn opgebouwd uit interpretatiefout en toevallige fout gezamenlijk.
Voor zover de ¢ uit toevallige fouten is voortgekomen is er onaf-
hankelijkheid, maar voorzover er een interpretatiefout is gemaakt
moet dit nog nader worden bewezen.

Wij willen daarom de waarden ¢ splitsen in de bestanddelen
¢ en 7, waarbij ¢ rekenschap geeft van de interpretatiefout en =
van de toevallige fout. Wij stellen dus

(301.18) by =1kp + Thp.

Wanneer wij met behulp van deze formule #; in (301.17)
substitueren krijgen wij naast de vormen met uitsluitend ¢ of =
natuurlijk ook nog mengtermen [¢z]. Van deze sommen kan in
ieder geval worden gezegd dat ze asymptotisch gelijk aan O zijn,
omdat de onafhankelijjke toevallige fouten r er in een oneven
graad in voorkomen. Wij kunnen daarom (301.17) uiteen laten
vallen in twee gelijke delen, waarbij in het ene deel de { vervangen
is door ¢, in het tweede deel door <.

Wi zullen eerst het deel met de foevallige fouten bestuderen.
Hierbij vallen asymptotisch alle dubbele producten weg. Wanneer
alle waarnemingen a-priori even betrouwbaar zijn, kunnen wij
verder alle kwadraten 12 zien als een schatting van de middelbare
loevalsvarians o®. Door de kwadraten 2 in (301.17) te vervangen
door ¢? vinden wij
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(301.19) Toevallig deel van </urp’> =

— D2 — 12 — 12 -
== V= Do o sy 1o +
(n—1)? 1

R tim—1) [0"] -+ e 11— 1) (n - 1) [[6"]] =
w11 - a1 (1) (n- 1 e )+ (1) (1)

2
g% =
m2n2

e,
wmn

Om de invloed van de énferpretaliefout na te gaan, kunnen wij
beter niet uitgaan van (301.17}, maar van (301.15). Wanneer
wij daarin de { door ¢ vervangen krijgen wij voor het systematisch
deel van ugp
(301.20) Systematisch deel van ugp =

ine] ) | llee))

=1 —_—

2 m i

Om de grootheden ¢ beter te leren kennen willen wij een ogen-
blik aannemen dat wij kunnen werken met opbrengsten £gp* die
vrij zijn van foevallige fouten. Formule {301.8) zou dan luiden

(301.21) Dpp* — <0 = fr + fip + ip.

Middelen van deze formule over & geeft
(Lo g e | [l

Nu is het linkerlid de definitie van jip, terwijl [g.] =0 is.
Hieruit wvolgt dat

{301.23) [ep] =0
[[ten]] = 0.
Substitutie van de waarden uit (301.23) in (301.20) geeft
(301.24) Systematisch deel van wupp =

D] _n— 1 2 Dlwp]

= % no %

Voor wij formule (301.24) kwadrateren dienen wij wel na te gaan
of alle vocrkomende waarden i, onderling cnathankelijk zijn.
Dat deze onafhankelijkheid niet vanzelf spreekt volgt duidelijk

uit (301.23) waar aangetoond wordt dat de waarden 4., onderling
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wel afhankelijk zijn. De som van een eindig aantal onafhankelijke
waarden kan immers niet gegarandeerd 0 zijn.

De afhankelijkheid van de waarden 4.y vindt zijn oorzaak in de
definitie van het fictiefras, die een asymptotisch getal i, laat af-
hangen van een eindig aantal rassen (zie 301.22). Het asymptotisch
getal pr hangt in tegenstelling daarmee niet af van een eindig
aantal proefvelden. Het aantal proefvelden kan misschien naar
plaats beperkt zijn, maar niet naar tijd; ieder jaar kan nieuwe
verrassingen geven. Ook wanneer er geen toevailige fouten waren,
zouden er oneindig veel waarnemingen nodig zijn om gz te bere-
kenen. In verband hiermee zijn de waarden ¢z, inderdaad onderling
onafhankelijk.

Bij het kwadrateren zullen de scmmen der dubbele producten
van verschillende waarden i, daarom asymptotisch ¢ worden,
zodat alleen op de zuivere kwadraten behoeft te worden gelet.
Uit (301.24) laat zich nu berekenen voor de asymptotische waarde
van het systematisch deel van w2

(301.25) Systematisch deel van <Cupp?z>=

w—1)% . 2
:( ] ) ’kpz'!"“”_])rk:f; .

De waarden 4, zijn systematische grootheden zonder toevallige
fout, die zelf hun asymptotische waarde zijn. Met een bepaald ras
op een bepaald proefveld in een bepaald jaar hoort een zeer be-
paalde interpretatiefout gevonden te worden. Deze interpretatie-
fout is evenwel ook maar van zeer plaatselijk belang.

Bij globale onderzoekingen interesseert ons vaker de middelbare
waarde der interpretatiefouten. Wanneer wij de asymptotische
waarde daarvan voorstellen door j, kunnen wij iedere concrete
ikp? zien als een schatting van 42 Substitutie van deze 4% in formule
(301.25) geeft
(301.26) Systematisch deel van <Cupp?> =

_(n—1)2 1 n-——1

R 7+ e 7? = n 7%

De bedoeling ixp* te zien als een benadering van een asymp-
totisch gemiddelde waarde zullen wij vaak aanduiden door het
symbool <izp?>.

Uit (301.26) en (301.19) laat zich nu als totale waarde van
<upp?> berekenen
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s m—1., (m—1x—1) ,
(301.27) SUpp?> = ] + P o

Als formule voor de interactievarians is gebruikehjk

t o [[en”]]
) -1y
Wanneer wij deze grootheid weergeven door w,.* kunnen we
schrijven:
t 4o [[14er”]] -
2 _. . 2 2
(301.28) You =m0 1) prst M

Men ziet hier een middel de grootte van de middelbare inter-
pretatiefout § te schatten, wanneer de interactievarians en de
toevalsvarians bekend zijn. De toevalsvarians kan vaak berekend
worden uit het verschil tussen de blokken (herhalingen) binnen
de proefvelden. Hierop zullen wij in hidst. IV dieper ingaan.

302 — DE CORRELATIE VAN DE SCHIJNBARE FOUTEN VAN ONAT-
HANKELIJKE RASSEN
Wanneer men de rassen als volkomen onafhankelijk beschouwt,
zijn de interpretatiefouten onderling afhankelijk. Dit volgt direct
uit formule {301.23} waar staat

(301.23) [ip] =10
Hieruit is af te leiden
Hom — 1) [frgp] = —inp
of
D Eee]
(302.1) M1 = T mT

In deze formule wordt een verband gezien tussen de rassen [£] en
ras k. Om dit verband nader te bestuderen is het gemakkelijk een
typische vertegenwoordiger voor de rassen k] te kiezen. Wi
willen dit ras aanduiden als ras I

‘Wanneer men nu weet, dat de interpretatiefout van ras & op
proefveld $ gelijk aan dxp is, volgt uit (302.1) dat de gemiddelde
waarde van de interpretatiefout van een ras I (s %) op dat proef-

Thp
wm— 1

Thp
m—1

veld $ gelijk is aan — Wij willen de fout 4 ontleden

in zijn gemiddelde —
arp, zodat

en de afwijking van dat gemiddelde
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(302.2) i =— =T ap.

In deze formule wordt dus een verband gelegd tussen de waarden
f,'h; en igp. Het is nu de vraag of wij het verband mogen zien als een
geval van correlatie, of als een ,,geval van lijnvereffening”. Om dit
uit te maken zullen wij het criterium aanleggen van 122,

Volgens dat criterium zou er van correlatie gesproken mogen
worden, wanneer ¢y, en ¢x beide normaal verdeeld waren. Wi
hebben aan het eind van 117 uiteengezet dat het moeilijk kan zijn
hierover een uitspraak te doen, omdat de interpretatiefouten
systematische fouten zijn. Wij hebben daar geéist dat er een bewiusie
reden moet zijn om aan te nemen dat de besproken interpretatie-
fouten de toevalswetten volgen. Welnu, zo'n reden is hier te noe-
men. In hfdst. IT werd besproken dat de milieugunstigheid M,
van talloze invioeden afhangt, die allen door het proefveld globaal
zijn uitgeschakeld (zie 201 slot).

Nu is het een bekende wiskundige wet, dat er een normale ver-
deling optreedt, wanneer er vele onderling onafhankelijke in-
vioeden zijn, waarvan niet één domineert. Doordat door het
proefveld de invloeden globaal zijn uitgeschakeld, zal er van
domineren wvermoedelijk geen sprake meer zijn.

Wij komen dus tot de conclusie dat de interpretatiefouten
115 en ipp waarschijnlijk normaal verdeeld zijn, zodat het juist is
de samenhang tussen #xs en 71 als een geval van correlatie op te
vatten.

Wi willen nu trachten de correlatiecoéfficient te berekenen.
Daartoe gaan wij uit van (302.2)

Substitutie van de ¢ uit {302.2) in {301.18) geeft

bep = trp + Trp

ihp
fp = — —F L g+ T,
1h 1 tp Tip

De asymptotische waarde <fxp#p> zal dus zijn

<tap®

(302.3)  <lp tp> = <trptip>> =— 1 + <tgp dip>.

De producten met r worden immers asymptotisch 0 wegens
onafhankelijkheid van de factoren.

Om de waarde van <z app>> te kunnen berekenen willen wij
eerst formule (302.2} sommeren over [, Dit geeft
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tm — 1) [fiap] =—trp + tim — 1) [ap].
Vergelijking met (302.1) toont dat
tim — 1) [ap] =0.

Wanneer wij <z ap>> over / middelen fungeert ¢y als een
constante. Deze terrn wordt dan dus ook 0.

Waar wij aan het begin van deze paragraaf volkomen onaf-
hankelijkheid der rassen hebben aangenomen, sluit dit uit, dat
een bepaald ras I systematisch in een andere verhouding tot ras &
staat, dan het gemiddelde van alle rassen [. Voor een bepaald
ras I moet <#xp ap>> dus evenzeer O worden, als voor het gemid-
delde van allen. (302.3) wordt dus

- <tppP>
(302.4) Clap tp> = <hrpipp> = — ;z”jf_ -
Op dezelfde manier laat zich bewijzen
_ St
Zdrp tip > = S

Hieruit moet dus volgen dat de asymptotische waarden «zp,?>
en <lipi>> aan elkaar gelijk zijn. Op deze weg voortgaande kun-
nen wij zeggen dat de asymptolische waarde van de inferpretatie-
varians voor alle rassen gelisk 4s, mits er geen athankelijkheid tussen
bepaalde rassen bestaat. Deze asymptotische waarde hebben wi
in formule (301.27) aangeduid door 72, Wanneer wij dit ook doen
in (302.4) vinden wij

_ 7
(302.5) Ctip lip> ==

In de practijk is het niet mogelijk de waarde van de asymp-
totische fout /zp te bepalen. Er moet gewerkt worden met de schijn-
bare fout uzs. Wij zullen daarom na moeten gaan wat de asymp-
totische waarde is van het product uxp .

Uit (301.16} is het toevallig deel van up, te vinden door de ¢
te vervangen door 1; in (301.24) is het systematisch deel van wrp
gegeven, zodat wi) weten

(3026) wrp =" Ligp— t(n— 1){”;“} yo=Dl=0

i
— T(%—l)[(ﬂ_?:i Tk@} — Mm— 1) [(_____n mn}w)arwpl +

v ]

mn
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Vaoor uyp is een soortgelijke formule op te stellen.

Bi} het berekenen van <Cusp #p>> mogen wij bedenken dat
alle producten iz asymptotisch 0 worden; producten van twee
toevallige fouten 7 met ongelijke indices worden eveneens 0.
Evenwel moet bedacht worden dat [2] soms / betekent en dat
ll} de betekenis % kan hebben.

Rekening houdend met het bovenstaande vinden wij als waarde .
VAN <Titkp Mipl>

(302.7)
(n—1)

, . n—1 <'?:k '1:1 =3
Slrp Wip=> === g kp hip — tn-1) {( ) . g Up> |

7

— T(nl)[(”* 1) jlePJ ikﬁ>] +

i . i
+ <¢(n—1)[2?”]m—1)[%} > +

D¢

r=
WM ®

— T(n-1)[< On—1) wilpy T >J —
mun mn

L=

—— +

— <

#n— 1 (m—1Dr—1
#

T
Thp X pony kp > 4

. TED) o
- T(ﬂ 1){‘( mn x mn

TR J>]-
De termen met ¢ laten zich nog aanzienlijk vereenvoudigen.
<iRpP> 7%
T m—1 m—1T
De waarde van <égp) s> en <lip) tep>> is 0, aangezien beide
interpretatiefouten aan een ander proefveld ontleend zijn. Bjj de
bespreking van (301.24) zagen wij dat zelfs de waarden 2zp en 4zp,
onderling onafthankelijk zijn. Deze onafhankelijkheid blijft na-
tuurlijk gehandhaafd wanneer wij ook nog van ras verwisselen.
Om de waarde van

<t{m-—1) {%M}Mn—l)[ﬁ%}>

te berekenen zullen wij de vorm voluit moeten schrijven. Dan
lezen wij

Volgens {302.4) Is <igp ip>> =
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<tl-1)

' ) 1 Co _
T;k%J T(ﬂ—- ])ng}> :Ei<(zk1+£kg+' . ) (1,11+2f2—‘-. . ) > =
:?% 1 (n—1)[<Cirg 124> | +een aantal dubbele producten die O worden,

In verband met (302.4) en (302.5) is de waarde van deze vorm
n—1
—_— ? .
n? (m - 1)
Wanneer wij verder iedere waarde % zien als een schatting
van o? vinden wij als asymptotische waarde van {302.7).

gelijk te stellen aan

(n—1)2 n—1
“n2(mﬁ1)7 hnz(m—1)7 o

(T NE= P D)

mn2 m2n?

(302.8)  <Curp upp> =

. n—1 ., 2m—10H—=1) ,
“gn(m—l)? o mén o

Sommatie van (302.8) over p geeft

oon—1., 2m—1Hm—1) ,
T‘n« [<ukﬂulﬂ>] —'—“;I'"Ai__]? —_— me a’
of
A ( i 2(m—1) 2)
@o29) <Ml (P 200D )

Men ziet hier dat de vorm

A9 [ 1)
n—1

wat zijn systematisch deel betreft de waarde aanneemt die op
grond van (302.5) verwacht kan worden., Verrassend is evenwel
de grote invloed van de toevallige fout. De coéfficient van o?
is bij niet te kleine m ongeveer het dubbele van die van 2.

Om een correlatiecoéfficient te berekenen moeten wij de 3% en o?
uit (302.9) wegdelen. Dit kan gedaan worden met behulp van de
waarde y,,% uit form. (301.28).

De 72 en o% komen in (302.9) evenwel in een andere verhouding
voor dan in (301.28). In verband hiermee kunnen wij de correlatie-
coéfficient wellicht het best berckenen volgens de formule
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—— 19 [y Ui
(302.10) n—1 — g_%
‘sz +

g2

[het ~ teken is nodig omdat van asymptotische naar empirische
waarden is overgegaan].
Mocht de waarde van de breuk uit formule (302.10) inderdaad

1.,
ongeveer —- - zijn, dan wordt daardoor het vermoeden van

onafhankelijkheid van de onderzochte rassen gesteund. Wordt
er een sterk afwijkende waarde gevonden, dan moet er aan af-
hankelijkheid van rassen worden gedacht,

Voor de volledigheid is het misschien wenselijk nog op twee
punten te wijzen.

In de cerste plaats is onze conclusie uit formule (302.4), dat
de asymptotische waarde van alle interpretatievariansen gelijk
is, in werkelijkheid geen conclusie, maar de vooronderstelling,
die de overgang van {(302.1) naar (302.2) redelijk maakt. Wanneer
de interpretatiefouten 7z wezenlijk ongelijk zijn kunnen wij ze
niet laten vertegenwoordigen door een bepaalde zp.

In de tweede plaats zijn de formules voor de regressielijnen nl.
(zie 302.2)

Tp = — m—zk_iT + aip

ip

m— 1

Tip = — + axp

reeds vastgesteld voor over normale correlatie gesproken was.
In dit geval zouden ock van regressielijnen gebruik zijn gemaakt,
wanneer er geen sprake was van correlatie, Dat hier afgeweken
wordt van de voorschriften voor iijavereffening vindt hierin zijn
oorzaak, dat 7, geen zuivere functie van 4z, is. Dat hier regressie-
Lijnen worden genomen hangt samen met hetgeen wij bespraken
in 124, naar aanleiding van figuur (124.5). Wi kwamen daar tot
de conclusie dat de regressielijn de gevonden afwijkingen naar
evenredigheid verdeelt over de verschillende kansverdelingen.
Volgens (302.2) wordt zo een grote 4, niet alleen geweten aan een
grote tzp, maar ook aan een grote waarde van de fouten 4xyp.
Deze verdeling hangt weer samen met de aprioristische gelijk-
waardigheid van alle interpretatiefouten.
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303 - AFHANKELIJKHEID VAN RASSEN

Aardappelrassen worden langs vegetatieve weg vermeerderd
en zijn dus klonen. Alle individuen van een ras zijn erfelijk gelijk.
Nu worden in deze klonen soms mutanten gevonden. Van deze
planten zijn één of enkele eigenschappen toevallig wveranderd.
Worden deze veranderingen op de proefvelden onderzocht, dan
wordt de mutant als een apart ras beschouwd, althans proefveld-
technisch. Het spreekt wvanzelf dat zo'n mutant sterk verwant is
aan de oorspronkelijke kloon. Ook door andere ovorzaken kan
er verwantschap ontstaan. Zweedse graanrassen zullen vaak col-
lectief anders op wintervastheid reageren dan Iranse rassen.
Kortom, het is op allerlei wijze mogelijk dat twee rassen extra
veel op elkaar gelijken.

Wij willen nu voor enkele formules van de vorige paragraaf
nagaan, hoe ze worden, wanneer tegelijk ras & wordt onderzocht
en een knopmutant %', die niet voor de onderzochte eigenschap is
gemuteerd. In dit geval kunnen wij steilen dat de interpretatie-
fouten van % en & gelijk zijn, zodat

{303.1) ikp = ikp
Formule (302.1) wordt nu

tim—2) [rryp] =— (ap -+ dap) = — 2 4kp
of

tHm =2 eryp) :
m— 2 T e

waarbij |£4&'] betekent, dat » alle waarden aanneemt behalve

ken k. Eén ras uit deze groep willen wij als ras / aanduiden. Het

is nu gemakkelijk in te zien dat

(303.2) Chpp hp == hrpt
oo 2 <>
<[thp Upp> —— —m

Vergelijkt men deze formule met (302.4) dan ziet men dat de
correlatie tussen twee verwante rassen algebraisch hoger wordt

dan — terwijl deze hogere correlatie meebrengt, dat de

m—1
correlatic met een willekeurig onafhankelijk ras algebraisch lager
wordt.
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Wanneer wij van ras / uitgaan in onze beschouwingen kunnen
wij (302.1) schrijven

tm — 1) [2up) =—up
of
tom—Dfdue]
m— 1 m— 1

Wanneer wij nu voor ¢z en £z een gemiddelde waarde berekenen
zal het in beide gevallen zijn
Ipp = — ——
K m—1
iip
m—1

ik"{) Ee—p—

Dit is niet in strijd met (303.1). Formule (302.4) gaat dus voor
ons geval in zoverre op dat geldt

. <Tlgpt

(303.3) dpp g = - ﬁ
Vergelijking van (303.2) en (303.3) leert

<t 2 <>
m—1 wm—2

of

<> (m—2) 7

Wij zien zo, dat de middelbare waarde van 4z kleiner is dan
die van i;. In woorden unitgedrukt: Wanmneer twee of meer rassen
afhankelisk van elkaar zign, wordt daavdoor de absolule groofle van
huin inderpretatiefout ten opzichle van die van de onafhankelijke vassen
gedrukt.

Eigenlijk is dit niet verwonderlijk. Wanneer men b.v. 10 ver-
schillende knopmutanten van één kloon onderzoekt, die voor de
onderzochte eigenschap niet zijn veranderd en één heel ander ras,
dan zal het fictiefras, zoals gedefinieerd in (205.10) bijna identiek
zijn met de soms mutanten gevende kloon. De afwijkingen tussen
de mutanten en het fictiefras zullen dan ock wveel kleiner zijn,
dan die tussen het fictiefras en een vreemde kloon. Wij zien dus
dat de formules (301.26), (301.28), {302.8) en (302.9) die alle asymp-
totische waarden <%= gelijkstellen aan 4% niet juist zijn, wan-
neer er afhankelijkheid tussen sommige rassen bestaat.
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Toch behouden ze hun nut. Formule (301.28) is belangrijk om
te controleren of er naast de tcevallige fouten nog-systematische
voorkomen. Wanneer uit formule (301.28) blijkt dat er geen syste-
matische fouten voorkomen, zijn ze ook niet verwant. Wanneer
er wel systematische fouten voorkomen moeten ze toch nader
worden onderzocht. Formule (302.9) vindt zijn bestemming in
(302.10}. Deze formule dient er voor om te controleren of er af-
hankelijkheid tussen de rassen bestaat of niet.

Het lijkt ons onbegonnen werk formule (302.10) zodanig te
wijzigen, dat de weg wordt geopend voor een empirische bepaling
van de mate van correlatie. In 309 wordt een betere mogelijkheid
besproken.

304 - HET SAMENVATTEN VAN PROEVEN MET WISSELEND AANTAL
ONAFHANKELIJKE RASSEN

Veronderstel dat men in het jaar @ van een bepaald gewas
5 rassen had, aan te duiden als %, k,, .... k; In het volgend
jaar (@ + 1) is ras &, van de rassenlijst afgevoerd, dat ras werd
dus niet langer onderzocht. Daarentegen boden de kwekers twee
nicuwe rassen aan (kg en k;). Ook het volgend jaar (@ -+ 2) traden
er mutaties op. Enz. In tabel (304.1) is samengevat welke rassen
in de verschillende jaren onderzocht zijn.

(304.1)

— s | g, ‘ By | oky | R | ke | ke | e | Re | R

Jaar

a
a1
a4 2
a4+ 3

« | x
had

XX XX

XX ®K X X

a - 4 ‘
a5 ‘

O S G G ¢
X X X XX

Moet nu de voortreffelijkheid van al deze rassen worden verge-
leken?; en zo ja, hoe? Zie hier een paar vragen waarvoor het prac-
tische proefveldwerk de onderzoeker steeds stelt.

Om met de eerste vraag te beginnen: Wanneer er cen nieuwe
ziekte optreedt, waarvoor k; ongevoelig is en de andere rassen
meer of minder vatbaar, dan is het zeker nodig voor alle rassen

7
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de onderlinge voortreffelijkheidsverschillen te bepalen. Pas dan
kan becordeeld worden hoeveel oogstderving men moet accepteren
wanneer men ras g, verbouwt om het risico van de ziekte te ver-
mijden,

De onderlinge voortreffelijkheidsverschillen zullen bepaald moe-
ten worden aan de hand van de gegevens van bovenvermelde
proeven. Men kan niet een proef van het volgend jaar afwachten,
omdat de practijk dan reeds over een goede richtlijn voor de rassen-
keuze moet beschikken,

Bij het verwerken van bovenstaande proeven valt geen gebruik
te maken van de FisHEr-methode. Het schema is niet orthogonaal
en kan dat ook niet gemaakt worden. Het is theoretisch mogelijk
afgevoerde rassen steeds te blijven onderzoeken om de orthogo-
naliteit te handhaven, doch nieuw gekweekte rassen laten zich
niet voor hun ontstaan op de velden plaatsen. Orthogonaliteit
1s dus onbereikbaar. Daarom is het nodig een methode te hebben
voor het verwerken van niet-orthogonale schema’s van boven-
staand type. Wanneer die methode eenmaal ontwikkeld is, kunnen
ook binnen het jaar zonder bezwaar een variérend aantal rassen
worden onderzocht op de diverse proefvelden. In Nederland wordt
hiertoe vaak de behoefte gevoeld.

Wij willen nu nagaan hoe deze proeven kunnen worden samen-
gevat. Daartoe moeten wij eerst letten op onze definitie van fictief-
ras, zoals gegeven in (203.10). Daar wordt geéist dat het fictiefras
het gemiddelde is van alle onderzochte rassen. Het begrip ,,alle
onderzochte rassen’ is in schema (304.1) niet duidelijk. In totaal
zijn onderzocht de rassen %, .... &, maar ,,alle onderzochte
rassen’’ voor het jaar a4 zijn &, . ... k. Wanneer wij de opbrengst
van ras &, in 't jaar & (dus £21,) in verband met (205.10) en (301.4)
willen splitsen in

(304.2) Qo =0, + M,

dan is de greotheid M, moeilijk te bepalen, wanneer daaronder
verstaan moet worden de gemiddelde opbrengst van de negen
rassen, die er maar gedeeltelijk gestaan hebben. Omgekeerd is het
onderling verband tussen Ma, Mai1, Mare enz. onduidelijk, wan-
neer het fictiefras, waarvan dit de opbrengsten zijn, niet steeds
hetzelfde is. Wij kunnen zeggen: het is wenselijk alle rassen in het
fictiefras op te nemen, maar misschien kan het niet. Wij ersen
daarom. Neem zoveel mogelik rassen op in het fictiefras.
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Omdat de theoretische problemen het gemakkelijkst te bespreken
zijn wanneer de methode ons duidelijk voor ogen staat, willen
wi] eerst een geschikte methode uitleggen. Wegens het grillig
karakter van de voorkomende schema’s kunnen wij daarbij beter
met voorbeelden werken dan met formules.

Wij veronderstellen dat wij vier proeven ($; .... $,) hebben
genomen met de rassen £, .... & De opbrengsten £2,, waren
als volgt:

(304.3) _Tr'o_ét_ra's_l kl k2 k3 k4 k5 kﬂ
Py 663 | 872 | 819 | 653 | 613
Pa 681 | 663 | 690 | 663 | 643 | 643
Py 556 | 602 | 591 | 301 505
P4 | 623 | 591 | 623 | 613 | 580 | 580

E

Men ziet dat op veld $, ras %; heeft ontbroken, op veld #, ras ;.
Het zijn dus de proefvelden $, en p; die moeilijkheden geven. Voor
de velden 4, en $, is het begrip , fictiefras” ondubbelzinnig bepaald.
Wij beginnen daarom met de velden p, en $, samen te vatten. Met
behulp van (205.10) berekenen wij voor M, en M, als afgeronde
waarderi

M, =664
M, =602,

Men ziet dat het milieu p, 62 eenheden gunstiger was dan het
milien $,. Om p, en p, geheel vergelijkbaar te maken kunnen wif
b.v. de gunstigheid van p, met 62 verhogen door bij alle waarden
{25 het bedrag 62 op te tellen. Wij willen dit aanduiden door te
zeggen dat ¢, op p, wordt gestandaardiseerd. Het op p, gestan-
daardiseerde milieu p, willen wij aanduiden docr $,". Wij vinden dus

(304.4)

ras

== ™ By | ‘ 3 ’ ks ‘ B M
|
by | 681 | 663 | 690 | 663 | 643 | 643 664

P 685 653 685 675 642 642 664

som A 1366 1316 1375
gem. A 633 658 687

669 642 642 664
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Om vorenstaand resultaat in de verdere berekening gemakkelijk
te kunnen aanhalen, hebben wij de aanduidingen som A en
gem(iddelde) A gebruikt. Zo zal straks gesproken worden van
som en gem. B, C, I} enz,

Men ziet in (304.4) dus driemaal meegedeeld wat de verschillende
rassen als opbrengst geven bij de miliengunstigheid A = 664,
Welke van deze mededelingen is nu het betrouwbaarst? Aan-
vankelijk zou men kunnen overwegen aan de cijfers van $, de
voorkeur te geven, omdat deze ciifers inderdaad bij de gunstigheid
664 verkregen zijn. Deze voorkeur zom evenwel in strijd zijn
met 202 waar wij van de rekenopbrengsten 2 eisten, dat ze
in zulke grootheden werden wuitgedrukt, dat de voortreffe-
hjkheidsverschillen van de onderzochte rassen onafhankelijk
werden van de gunstigheid van het milieu, waarin het onderzoek
plaats vond.

De enige reden, verschil in waarde tussen de drie bovenstaande
,mededelingen’” te zien, ligt hierin dat gem. A gebaseerd is op
meer gegevens dan de cijfers van p, of #,. Niet alleen is de invloed
van de toevallige fout hierdoor verkleind, maar ook de monster-
name uit het onderzochte gebied kan hierdoor verbeterd zijn. Wij
willen dus verder werken met gem. 4.

Nu is het dus nodig de gegevens van de velden p; en p, nog in
onze conclusie te betrekken. Wanneer wij met $, beginnen, staan
wij voor de noodzaak als definitie van het fictiefras te gebruiken

, 1582
M* = [5 ]

Wij moeten de gemiddelde opbrengst van de rassen %, .... &
nemen. Dit heeft slechts zin wanneer wij dit gemiddelde verge-
lijken met het gemiddelde van dezelfde rassen uit gem. 4. Wan-
neer wij dit gemiddelde aanduiden door M * vinden wij

M4* = 668

M* =684,
Men ziet dus dat de gunstigheid van $; 16 hoger ligt dan die
van gem. A, Om de getallen vergelijkbaar te maken verlagen wij

alle opbrengsten van veld #;, met 16, Wanneer wij het aldus op
gem. A gestandaardiseerde milieu $; aanduiden door #,” vinden wij
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(304.5)
= A \ ky ’ 2 Bl ke M*
1
|
gem. A | 683 | 658 | 687 | 660 | 642 | €42 668
som A | 1366 | 1316 | 1375 | 1338 | 1285 | 1285

Py 647 656 803 637 | 597 668
som B | 2013(3)| 1972(3)| 2178(3); 1975(3) 1882(3) 1285(2)
gem. B | 671 657 726 658 | 627 642

Gem. 4 en " zijn twee reeksen opbrengsten, zoals die bereikt
kunnen worden bij de milieugunstigheid M* — 668, Van deze
reeksen is gem. A gebaseerd op twee proefvelden, $," op een.
Wanneer wij nu aannemen dat er geen noodzaak is het milieu
te wegen in de zin van 206 kan het gewicht van alle opbrengsten
gelijk worden genomen. Het gewicht van gem. A is dan dus twee-
maal het gewicht van $,". Wij moesten dus som 4 met p," samen-
tellen en daaruit het nieuwe gemiddelde B berekenen. Omdat nu
niet alle uitkomsten op evenveel gegevens berusten is voor ieder
ras het aantal waarnemingen tussen haakjes vermeld.

Aangezien gem. B nu de betrouwbaarste schatting geeft van
de rasverschillen, standaardiseren we p; op gem. B. Wij vinden

(304.6)
ras M**
= h ks By A Fs kg
gem. B 671 657 726 658 627 642 671
som B | 2013(3)| 1972(3)| 2178(3)| 1975(3)| 1882(3)| 1285(2)
o 716 762 751 461 665 671

som € 2720{4)| 2734(4), 2920(4)| 2436(4) 1882(3)| 1950(3)
gem. 682 683 732 609 627 650

Zo zien wij dus dat gem. C een schatting geeft van de onderlinge
rasverschillen, die gebaseerd is op alle gegevens, Toch is het mis-
schien mogelijk een betere schatting te verkrijgen. Bij het stan-
daardiseren van veld $, is geen rekening gehouden met de gegevens
van ;. Deze onvolkomenheid kan hersteld worden door nu alle
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vier proefvelden op gem. C te standaardiseren. Eventuele ver-
gissingen worden langs deze weg tevens automatisch weer hersteld,
Wij vinden

(304.7)
ﬁfﬁ! Ry ke ky ky by kg
gem. C | 682 1 633 J 782 ) 609 | 627 650
P | 646 655 802 636 596
P27 | 681 663 690 663 643 643
Py 716 762 751 461 665
e 685 653 685 675 642 642
som D | 2728(4) | 2733(3) | 2928(4) , 2435(4) | 1881(3) | 1950(3)
gem. D| 682 683 o0 627 650

Men ziet dat gem. C en gem. D geljk zijn. Dit gemiddelde geeft
nu de betrouwbaarste schatting van de rasverschillen.

Het bovenstaande voorbeeld was erg eenvoudig, Wij geven nu
nog een ingewikkelder (304.8). De velden zijn gemakshalve aan-

geduid met de Ietters @ .... &, de rassen met [ .... w.

(304.8)

| b e e s e e |
a 732 | 728 | 668 ‘ i
b 372 | 428 320 108 | 422 { 408 | 310
¢ 525 513 | 539 . 538 | 568 t 507
d 72 733 | 713 662 | 708 | 718
P 662 640 | 609 | 651
f 517 528 | 531 " C 552 | 508
g 656 667 742 | 678 | 693 736 |
k 805 568 702 | 660 | 680 690 | 639
q 618 677 669 ; 632
p 659 655 688 | 649 | 693

| |

Wij zoeken eerst weer die velden bij elkaar die de meeste rassen
gemeenschappelijk hebben, dit zijn 4 en A. Als standaardisatie-
niveau nemen wij My + 300. Dit getal 300 wordt bij 3, opge-
teld, omdat dan ongeveer het niveau van de meeste velden wordt
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bereikt; het heeft geen theoretische betekenis. Slechts wordt de
onbelangrijkheid van de hoogte van het standaardisatieniveau
hierdoor onderstreept.

In (304.9) geven wij de berckening zonder verdere verklaring,
zodat duidelijk naar voren komt, hoe snel het resultaat bereikt is,
Naast de berekening is vermeld uit welke rassen telkens het fictief-
ras is opgebouwd, en wat de som is van de opbrengst van die
rassen ([M]).

In (304.9) is dus ons eerste gemiddelde verkregen. Nu worden
alle proeven ter contréle op dit gemiddelde gestandaardiseerd.
Daarbij moeten wij bedenken dat het gemiddelde van ¢ volledig
athankelijk is van proefveld e, zodat de hoogte van dit cijfer niets
zegt over de juistheid van de standaardisatic van e. Wij moeten
het gemiddelde van ¢ dus neégeren.

Wij geven in (304.10) nu de tweede standaardisatie.

(304.10)
I nt n P q ¥ s ¢ i w
le gem.| 665 f 712 1 651 | 644 ‘ 704 | 661 } 686 ’ | 697 | 652
a” | 696 | 692 632
b 1665 | 7121 613 701 | 715 701 | 603
& | 646 634 | 660 65¢ | 689 718
47 | 665 686 | 666 615 | 659 671
e | 678 656 | 625 667
653 664 | 667 688 | 630
g | 638 ! 649 794 | 660 | 675 718
B | 707 580 714 | 672 | 692 702 | 651
i 637 696 688 651
k| 664 600 693 | 654 | 700
i
gegem.|665 | 706 |653 |64d |705 |66l | 686 |667 | 697 | 652

Bi} vergelijking van het eerste en het tweede gemiddelde valt
het op dat er drie uitkomsten anders zijn geworden. Wij zullen
daarom nog eens op het tweede gemiddelde moeten standaardiseren
om volledige stabiliteit te bereiken (zie 304.11).
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(304.11)
; I w n P q ‘ ¥ ‘ s ; ! 2% w
2egem.1 665 | 706| 653 | 644 705 661‘ 6861 697 | 652
| ] i -
@’ | 694 | 690 630 | i
b | 664 | 720 612 700 | 714 | 700 | 602
& | 846 634 | 660 659 | 689 718
@ | 65 686 | 666 615 | 659 671
e | 679 757 | 626 | 668
#o | 653 664 | 667 688 | 639
g | 638 649 724 | 660 | 675 , 718
wer | 707 580 14 | 672 | 692 | 702 | 651
i | 638 697 689 652
™ 660 693 654 | 700
Segem.| 665 | 705 | 653 | 643 | 705 ‘ 661 ‘ 686 | 668 | 697 | 652

Aangezien de uitkomsten nog niet geheel stabiel zijn standaar-
verdiseren wi] nogmaals (304.12)

(304.12)

I m n P ‘ q ¥ s ¢ I % ‘ w
3egem.{ 865 | 705 653’ 643 705‘ 661’ 686‘ 697 | 652
" | 694 | 690 630 !
B | ges | 720 612 700 | 714 ;700 | 602
o7 | a6 634 | 660 659 | 689 718
v | 665 686 | 666 615 | 659 ! 671
2| a9 657 | 626 663
7v | 653 664 | 667 638 | 639
2% | 638 649 724 | 660 | 675 718
W | 707 580 T4 | 672 | 692 702 | 651
" | 638 697 689 652
w664 660 693 654 | 700
degem.| 665 | 705 | 653 | 643 | 705 | 661 | 686 | 668 | 697 | 652

De cijfers van het 4e gem. zijn gelijk aan die van het 3e gem.
zodat de berekening is afgelopen.

305 - CONTROLE OP DE GEVOLGDE METHODE

De gegevens, zoals die zijn weergegeven in tabel (304.8) laten
zich ook verwerken met de methode van de kleinste kwadr aten
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De techniek hiervan wordt door VAN UVEN besproken in hidst.
XII van zijn leerboek,

Bovenbedoelde methode wordt als volgt toegepast. In formule
(202.6) laat men C samensmelten met M, De 53 gegevens uit
tabel (304.8) kunnen nu als volgt in 53 vergelijkingen worden ge-
schreven
(305.1) Qy =R + M, =732

Oma = Ry + M, =728
2+ =R, + M, =668
2 =K -+ M, =372
-me :Rm + Mb — 428
enz,

Omdat het uitsluitend om rasverschillen begonnen is, kan het
nulpunt van R willekeurig worden gekozen. Wij stellen daarom
(305.2) Ry =0.

Dit geeft dan 10 onbekenden M en 9 onbekenden K. Uit de
53 vergelijkingen van (305.1) moeten deze 19 onbekenden worden
gevonden, Wij hebben al deze waarden berekend, en daarna de
voortreffelijkheidsverschillen tussen ras / en de overige rassen
nitgerekend. Uit tabel {304.12) laten zich dezelfde afwijkingen
berekenen. Beide uitkomsten zijn vermeld in (305.3).

(305.3)

Afwijkingen van ras [ 1 I | m ‘ n | P l q } ¥ N

tu‘w

volgens (304.12) 0 |40 |12 -221 40 | -4 | 2] 3 (32 |-13
volgens methode der

kleinste kwadraten 0 | 40 ]—11 -22( 41 | 4 | 21 3 |32 |-12

Het blijkt dat de verschillen die verkregen worden met onze
standaardisatiemethode gelijk zijn aan die, verkregen volgens de
methode der kleinste kwadraten. De geringe afwijkingen die
{305.3) te zien geeft zijn het gevolg van afrondingsfouten.

306 — HET TOEKENNEN VAN GEWICHTEN

In 304 hebben wij een methode uiteengezet voor het samen-
vatten van de proefvelden. Bij het ontwikkelen van deze methode
zijn wij er van uitgegaan dat alle waarnemingen gelijk gewicht
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hadden., In 206 hebben wij er echter nog eens nadrukkelijk op
gewezen dat het vaak nodig zal zijn aan de cijfers gewichten toe te
kennen op grond van de monsterfout.

Bij het toekennen van gewichten zijn twee gevallen te onder-
scheiden, In de eerste plaats kan het ene proefreld een ander ge-
wicht krijgen dan het andere. In de tweede plaats is het mogeljk
dat men aan de opbrengst van een hepaald 7as op een bepaald
proefveld een eigen gewicht toekent. Immers, wanneer niet op alle
proefvelden dezelfde rassen staan, zullen de monsterfouten voor
ieder ras anders zijn. Iet gewicht dat een bepaald proefveld moet
krijgen om de monsterfouten van dat ras te herstellen zal dan ook
telkens anders zijn, d.w.z. iedere (s zal eventueel zijn eigen
gewicht moeten krijgen.

Wij moeten dus nagaan op welke wijze deze gewichten het best
kunnen worden toegekend. In de practijk is gebleken, dat het
standaardiseren niet prettig verloopt, wanneer iedere waarde een
ander gewicht heeft. Het is beter de waarden met wisselend ge-
wicht te vervangen door andere waarden, waaraan het gewicht
1 kan worden toegekend.

Dit gaat gemakkelijk door eerst de proefvelden ongewogen op
elkaar te standaardiseren, en vervelgens de afwijkingen g te
bepalen volgens de formule
(306.1) trp = P — k.

In deze formule duidt £2*,5 aan de gestandaardiseerde opbrengst
van ras % op veld p, en O de verkregen gemiddelde opbrengst van
ras k.

Aan de opbrengst 2% kan nu het gewicht g worden toegekend
door de waarde

¥y =0 + ey (met gewicht g)
te vervangen door
(306.2) Q% =0y + aup, (met gewicht 1)
en vervolgens weer te standaardiseren.

Voor het berekenen van de juiste waarde van a willen wij een
algemener formulering kiezen. Stel dat er » waarnemingen van
x zijn (leder met gewicht 1). Het gemiddelde der waarnemingen
is Z(m). Hieraan wordt toegevoegd een nieuwe waarneming

X1 = Hm) + Unil
(met gewicht g). Het nieuwe gemiddelde zal zijn
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= O ST e -
(306.3) Zinsny = —"—2—= e —Emt

Wanneer wij
Tnp1l = Ay - #ng1 (et gewicht g)
vervangen door
X1 = Xwy + auxnqy (et gewicht 1),
kunnen wij als nieuw gemiddelde berekenen
_ X + Zin) + @tni1
n+ 1
Uit (306.3) en (306.4) laat zich berekenen
gn+g—an—ag
SCEN IR
Het verschil tussen de juiste waarde Xju11) en de benaderde
waarde x'(pi1) is nul, wanneer

gn+g—an—ag =0

nw+1
Q4 ==—
nig®
Wanneer g klein is ten opzichte van # kunnen we bij bena-
dering stellen

(306.7) a=g
Wij willen nu controleren hoe lang deze benadering geoorloofd
is. Daartoe vervangen wij in {306.5) de a door g zodat wij krijgen

_ _, 1—
Xn+1) — X (n+1) = (%-gi-(gﬁgiwl—) Unt1.

Deze formule geeft dus de fout, die men maakt wanneer men
van (306.7) vitgaat. Haar waarde is nul voor g =1 en voor g = 0.

Voor het gebied 0 << g <1 wordt ongeveer de grootste
waarde bereikt wanneer g =1 en # =1. Men vindt dan
Votnyr. Bij g = 1 # =2 vindt men nog slechts /g 2ny1.
Wanneer men deze fouten accepteert kaumen dus zeggen dat
(306.8) zeker geldt voor 0 << g << 1.

Maar ook wanneer g groter is dan 1, is de fout vaak nog gering.
Om een indruk te krijgen willen wij nu nagaan hoe groot g mag
worden wanneer wij een fout van — 1/, #. 13 toelaten. Wij moeten
de g dan oplossen uit de vergelijking

Yy - a
(306.4) ¥'tniv) = %) T 71 Hnti.

(306.5)  Fni1) — F(wi1 Untt,

of
(306.6)

(306.8)
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CRIICE SV
Hieruit wordt gevonden als positiecve wortel

o " + 21 + A/Bln? + 1220 - (21)2

40
of
_n 21 - 4/ (9n -+ 6.777)2 + 218 —6.777°
£~ 40 '
Wanneer wij voor de eenvoudigheid de eis verzwaren geeft dit
_ 10n 4277
o 40
of
g ="'4n + 0.69,
Een vollediger beeld krijgt men wanneer men stelt

CENGICE A
en voor enkele waarden van § en » de maximumwaarde van g
berekent. Men vindt dan de waarden van onderstaand tabelletje.

e

] 1 5|10 20 | 50 | 100

1.07 | 1.62 | 2.21 | 3.69 | 8.15 | 15.8
118 | 2.04 | 3.24 | 5,72 | 13.2 | 25.7
1.35 | 2.71 | 4.53 82 193 | 378

1.64 | 378 | 6.66 | 122 | 28,9 | 56.8
I

2

Samenvattend kunnen wij dus concluderen:
(306.9Y  Aan een ,.afwijking van een gemiddelde” u kan men bif be-
nadering een bepaald gewicht g tockemmen doov u door git le vervangen
wmel gewicht 1, mits g niet te groot wordl, Anders wmoet u worden
w1 .
s ggu (zie 306.6).
Deze stelling willen wij aanduiden als de ,,gewichienstelling”.

Het is wenselilk even witdrukkelijk bi] de inhoud wvan deze
gewichtenstelling stil te staan, aangezien op het eerste gezicht
de inhoud tegenstrijdig is met de gangbare gewichtentheorieén.
Volgens de gangbare opinie hoort een groot gewicht bij een
kleine fout, volgens onze gewichtenstelling maakt een groot ge-
wicht de fout groot (immers gu wordt groot).

vervangen door
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De tegensteiling is slechts schijn. De gangbare gewichtentheo-
rieén gaan over de vraag, waarom iets gedaan wordt, de gewichten-
stelling over de vraag wat er gedaan wordt. De gewichtentheorieén
zeggen hoe de fout geschat wordt, de gewichtenstelling, hoe hij
als 't ware gemaaki wordt. Wanneer een fout groot geschat wordt,
krijgt hij een klein gewicht en wordt dan als 't ware Alein gemaakt,

Wanneer men de conclusie unit (306.9) wil toepassen op (306.2)
moet men bedenken dat £ berekend moet zijn uit de opbreng-
sten %y p), en dat de waarde van z niet het aantal proefvelden
aanduidt, maar het aantal (n:) waarop ras & gestaan heeft min 1
dus

(306.10) 0, = 1 1) [
. fp — 1

n = — l.

In verband met de bestaande fouten zal het in de practijk
meestal niet belangrijk zijn hierop te letten, behalve dan dat de »
ongeveer de #p aanduidt,

Tot dusver hebben wij gesproken over het toekennen van een
bepaald gewicht aan een bepaalde opbrengst 2%:. Wanneer men
aan een geheel proefveld een gewicht wil toekennen gaat het veel
eenvoudiger. Men kan zich daarbij houden aan de volgende regel:
Wil men aan een proefveld ¢ het gewicht g toekennen (g niet te
groot) dan is dit mogelijk door alle opbrengsten 2, met g te ver-
menigvuldigen en daarma aan de cijfers het gewicht 1 toe te
kennen, Is g te groot dan moet vermenigvuldigd worden met
%+ 1
ntgt

Met deze cijfers laat zich natuurlijk geen M, uitrekenen, Dit
dient te geschieden met behulp van de ongewijzigde cijfers.

Met behulp van deze gewogen cijfers laat zich dus het beste
gemiddelde berekenen voor alle rassen. Om een juist inzicht in de
verhoudingen binnen het preefveld te verkrijgen moeten onge-
wogen cijfers worden vermeld. Deze zijn te verkrijgen door op de
definitieve rasgemiddelden de ongewogen proefveldciffers te
standaardiseren. Dan wordt tevens de best bereikbare waarde
voor M, gevonden.
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307 — HET SCHATTEN VAN DE FOUTEN VAN DE BEREKENDE RAS-
VERSCHILLEN

In 305 hebben wij laten zien dat de standaardisatiemethode
dezelfde resultaten geeit als de methode der kleinste kwadraten,
en als voordeel heeft dat er veel sneller gewerkt kan worden. Als
nadeel staat hiertegenover dat geen exacte foutenberekening
mogelijk is. Van onderstaande methode zal in 308 worden aange-
toond dat de bereikte resnltaten voldoende nauwkeurig zijn. Wij
zullen de methode alleen uitwerken voor het geval alle gewichten
1 zijn.

Wanneer er geen interpretatie- of andere fouten gemaakt werden,
zouden in tabel (304.12) alle gestandaardiseerde opbrengsten ge-
lijk moeten zijn aan de rasgemiddelden. Door de fouten zijn er
afwijkingen wsp (zie 306.1). Het aantal gegevens (Q.,) in deze proef
is 33, het aantal onbekenden is 19, nl. [0 waarden My en 9 waar-
den R (zie ook 305.2).

De formule voor de varians y? is dus

o 103 {wu)
L Ty

Indien uwit de blokken van ieder proefveld o is berekend,
kan nu worden nagegaan of 42 zuiver aan toevallige fouten moet
worden geweten, dan wel of er interpretatiefouten zijn gemaakt.
In deze paragraafl willen wij veronderstellen dat
(307.1) p? =gl

Hoe kan nu de middelbare fout van de verschillen der rasge-
middelden it o? worden afgeleid?

Met de methode der kleinste kwadraten is dit niet moeilijk.
Wij gaan eerst na de verschillen tussen F; en Rj;). Aangezien wij
in (305.2) hebben gesteld R;=0, zijn de berekende waarden
R, tegelijk de waarden van het verschil R — K;. Wanneer
wij als voorbeeld van /) ras s nemen is

Ry = R — E..
De fout van het verschil is de fout van R,. Nu geldt volgens
Van UveN
(307.2) OFm = ¥
Voor de andere rassen i/l gelden scortgelijke formules.

De fout van een verschil P — R, — R, is volgens van Uven
(zie hfdst. XII form, 35 van zijn leerboek)
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(3073) 0'52 = (Tmm — 2¥pn -+ ?’rm) o2

Aan de hand van form. (307.2) en (307.3) zijn de waarden van
de coéfficienten van o wvoor alle verschillen uit te rekenen. De
waarden zijn weergegeven in onderstaande tabel . Daar is in de
eerste kolom vermeld op welke rassen de fout van het verschil be-
trekking heeft. In kolom 2 is de coefficient, als in (307.2) en (307.3)
bedoeld, aangegeven in gewone breuken. De noemer is steeds
6.901.234.530; de teller is voor ieder geval afzonderlijk vermeld.
In kolom 3 is de coéfficient uitgedeeld. '

Ver- -
schil y Coét- svciil . Coet-
tussen Coéfficient x ‘hf:lent tussen Coéfficient x :f1.016nt
o 6.901,234,530 | uitge- e 6.901,234.530 | uitge-
deeld deeld
rassen rassen
Lm | 5029116186 ! 0.1287 | 2, ¢ 3.676.024.800 | 0.5327
I n I 1.608.301.236 0.2330 | p. 7 2.862,171.919 0.4147
L p ' 1.968.410.874 0.2852 Pt 9.967.530.496 1.4443
il q i 2,703.615.834 0.3918 P, u 2.,639.988.856 0.3825
I ¥ | 2.245.044 679 0.3253 P, w 2.663.5688.536 0.3860
it | 0.742 890,976 1.4118
4w | 1.963.276.936 0.2845 q, ¥ 3.524.968.699 0.5108
i, w ! 1.959.668.536 0.2840 g, 11.611.546.576 1.6825
" g, u 3.153.823.936 | 0.4570
", n : 5.701.358.250 0.8261 g, w 3.109.403 416 (3.4506
m, p | 5.274.261.786 0.7642
m, g 6.867.012.666 (.9950 ¥, § 2.760.493.812 0.4
wm, ¥ | 5.902.172.143 0.8683 ¥, & 11,069.237.293 1.6040
m, t | 13.885.565.680 2.0120 ¥, 4 2.672.766.753 0.3873
w, u 5.795.337.400 0.8398 ¥, W 2.789.685.393 .4042
wm, w ! 5.823.506.920 0.8438
} 4 ou 10.800.253.360 | 1.5650
n, P | 2,282.219.796 0.3307 I, w 10.803.066.160 1.6654
n, g | 2.803.038.276 | 0.4062
n, v 2.448.534.463 0.3548 ", W 2.457.677.880 0.3561
n, ¢ i $9.847.493.950 1,4269
w, w | 2145533470 | 0.31089
7, W } 2.133.980,590 0.3092

Aangezien ras 7 en ras s steeds op dezelide velden voorkomen
zijn de fouten van de verschillen met ras s gelijk aan die van de
verschillen met ras ». In bovenstaande tabel is ras s daarom
slechts genoemd wvoor het verschil tussen r en s.
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Het is nu de vraag, hoe de coéfficienten die in deze tabel
zijn vermeld kunnen worden verkregen, wanneer de uitkomsten
volgens de standaardisatiemethode zijn uitgerekend. Empirisch
is een methode bruikbaar gebleken, die wij voor de eenvoudigheid
willen uitleggen aan de hand van een schema als in (304.7). Het
aantal rassen willen wij voor het gemak tot vier terugbrengen.
Wij veronderstellen dus dat er vier preefvelden waren ¢, . ... $,.
Op veld $, ontbrak ras %, op veld p, ontbrak ras &,. Na een paar
keer standaardiseren bleek het laatste gemiddelde (D te noemen)
gelijk te zijn aan het voorlaatste gem. (C), zodat gem. € dus reeds
de juiste uitkomsten aangaf,

Voor onze empirische foutbepaling nemen wij nu aan dat de
cijfers van gem. C geheel foutloos zijin. Deze aanname is nalwurlijk
onjuist, maar voert tot goede resultaten. De gegevens die op dit
gemiddelde C gestandaardiseerd worden, hebben allen een toe-
vallige fout wrp. (Krachtens (307.1) hoeven wij niet te rekenen
met een systematische fout). Wegens deze toevallige fouten zal
ieder proefveld foutief op gem. C worden gestandaardiseerd. Wij
stellen de standaardisatiefout van proefveld $ voor door Tp.

De gestandaardiseerde waarde, die wij hadden moeten krijgen
als alles foutloos was, noemen we 2. Als werkelijke waarde voor de
gestandaardiseerde opbrengsten (£2%:,) vinden we dus

(307.4) 2%y — O + Ty + wrp.

De fouten T en 7 zijn met elkaar gecorreleerd. Empirisch is het
mogelifk gebleken ze als onajhankelijh te beschowwen. Naar analogie
van (304.7) kunnen wij ons schema nu als volgt in formules brengen:
(307.5)

veld,mS E ks J ky ka i ky
; ~ [ - [oa ‘
1 : SEI+T]JI"TII {\92+T1+“'21 &+ T+ 7y |
’rbﬂ !31+T2+"12 ; £2+T2+ Taz | 20 Tytma | {34+ Tyt 7po
Ps ‘?14‘-’[‘3%713 ‘ {\22+Ta+723 l " ; {2\4+T3+T43
2 Qi 4+-Tyt ‘ Qo+ T+ 72 } 23+ T 475 ‘ 24T, + 7y,
~ oA . - ‘ -~
2,4 | 2y ‘ 254 D2t
TyA ot Tok Ty DA Tt Tod Ty Dt Tyt 7y | Tty
gem. D 4 ‘ 4 | 3 ‘ 3 +
TuT Tzt Tt T | Tat Teat Tah Tee | TaaT e T ; Ta2 Tt Tag T 7o
4 : 4 l b : 3
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Het blijkt dat in gem. D allerlei fouten worden genoemd, die
verondersteld worden niet in gem. C aanwezig te zijn, terwijl toch
gem. € =gem. D. Ook in deze tegenstrijdigheid komt het be-
naderingskarakter nogmaals tot uiting.

Het verschil tussen de gemiddelde opbrengst van %, en %, zoals
weergegeven in gem. I (tabel 307.5) is

.(2-1—@2 =(Q1*§2) =+
+(T1+T2+T3+T4ﬁT1+T2~|~T3+T4)
4 4

-+

+ (Tu F Tttt Ty Tat Tet Tl 724)
4 4 )

Van deze vorm is (!31—!52) het gezochte wverschil. De termen
met T vallen tegen elkaar weg. De fout van het verschil wordt
dus uitslnitend veroorzaakt door de toevallige fouten 7. Volgens

2
bekende wetten is de toevalsvarians van het verschil 2 x %.

Wij kunnen dus dit zeggen: Het berckend opbrengstverschil tussen
twee rassen, die op dezelfde proefvelden voorkomen, wordt niet be-
invioed dooy de standaardisatiefouten. Wanneer de beide rassen op

; . ., 202
velden woorkowmten 1s de foevalsvarians van het verschil Pt
k

Het verschil tussen de gemiddelde opbrengst van %, en %, zoals
weergegeven in gem, I (tabel 307.53) is
(307.6) B —0p = (@, — ) +
T, + Ty +Ty-+T, T1—|—T2+T4)
+{ 7 — 3 +

+ ('511 T T+ Tyt T Tt Tt '534)
4 3 ’

Van deze vorm vallen de termen met T niet geheel tegen elkaar
weg. Men kan deze termen samenvatten volgens (307.7)

T1+T2+T3+T4_T1+T2+T4_
1 3 =

il (‘:}_‘%) (Tl + Tz + T4) + iTs-

Wij willen nu de asymptotische waarde berekenen wvan het
kwadraat van de totale fout van (2, — ). Daartoe maken wijj

(307.7)
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gebruik van onze (onjuiste) aanname dat de standaardisatiefouten
onafhankelijk zijn van de toevallige fouten en van elkaar. Op grond
van deze aanname kunnen wij dus veronderstellen dat alle dubbele
producten asymptotisch nul worden. We vinden dan voor %5 7
(zie ook 307.6 en 307.7)

(307.8) o’g p, =G — (TP + <TP> + <Tf>) +
2 2
+ @R <Te> + 7+ 5
Om de waarden <<72%> in o¢? uit te drukken nemen wij aan

dat de waarde <CTp%> van een proefveld p met m, rassen gelijk
) o2
is aan — dus

Wp

2

(307.9) < Tp2 = o
mp
In ons voorbeeld geldt dus
o
<> =5
0.2
< Ty =4
G
<Ty'> =3
0.2
<T42> :T.
Zodat (307.8) wordt
(307.10) o’g 0, =G — PG +Hi+ D+
62 0-2 0-2
132 - - 3
+ @5+ T =061

Omdat %, en %, in het schema onderling verwisselbaar zijn en
ky en &, ook (zowel £, als £, ontbreekt op een veld met mpy =3)
geeft (307.10) tevens de toevalsvarians van 2, —0Q, ; 2,— 2,
en O,— 0,

Tenslotte het verschil tussen %, en %, Dit bedraagt
§3—§4 :(ﬁa—'@‘;) +

(LTt Lbl LTy,
3 3

(731 + Tt T Tet T3t T44)
3 3 )

+

+



116

Van de termen met T vallen 7, en 7, tegen elkaar weg; er blijft
Tl T3
373
Kwadrateren van alle fouten geeft weer

a? o?
g g, =F(<TP> + <IP>) + =3 T3
2
Daar <<T*> en <7 *> beide gelijk aan -%— kunnen worden
genomen, staat hier

’5.p, —dr o'+ §o* =074l

Samenvattend kunnen wij de volgende regels opstellen voor
het berekenen van de toevalsvarians:

(307.11)

le Wanneer men de fout van het opbrengstverschil tussen twee
rassen k& en [ bestudeert, kan men met vrucht onderscheid
maken tussen de zuiver toevallige fouten 7 en de standaardi-
satiefouten 7. Deze fouten mogen als onafhankelijk worden
beschouwd.

2e De asymptotische waarde <It¥>»> =t

3e Voor een proefveld p met myprassen is de asymptotische waarde

g2
<Tpt> = P

Voor het vaststellen van m, tellen niet mee de rassen die slechts
op proefveld p voorkwamen en dus geen invlced op de
standaardisatie hadden,

4e Wanneer ras £ op #; velden voorkomt en ras [ op #; velden,
is de waarde van de toevalsvarians van het verschil, voor
zover voortgekomen uit de toevallige fouten v gelijk aan

1 |
(E + ;'?»—1) as,
5e Om het effect van de standaardisatiefouten na te gaan moet

men aannemen dat er @ velden zijn waarop % en ! beide voor-
kwamen; op b velden stond wel ras & en niet ras I; op & velden
stond wel ras / en niet ras A.
Verder is

a - by =unx

a—+ b =mn.
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6e De varians veroorzaakt door de & velden samen is
(“1_ _mi)2¢a [<T2%] = (U)gfa [« T2
V73 n RN
Onder ta[<<T?>>] wordt verstaan de som van de 4 waarden
<T?>, die volgens (307.11 3e) berekend worden voor de a
velden waarop £ en ! beide voorkomen.
Wanneer #z —#; wordt deze vorm =0.
7¢ De varians vercorzaakt door de b velden samen is

nikz 4o [<<TE>,
waarbij 14 [<c72>] op soortgelijke wijze wordt gedefinieerd
als tal<T?>]
8e De varians veroorzaakt door de & velden samen is

1
2
mzﬂ); [<72>].

J08 — CONTROLE OP DE EMPIRISCHE METHODE

In tabel (304.8) hebben we een voorbeeld gegeven hoe een schema
eruit zou kunnen zien, wanneer op verschillende proefvelden telkens
gedeeltelijk andere rassen beproefd werden. We hebben toen
verder nagegaan hoe we de gemiddelde opbrengst van de ver-
schillende rassen konden bepalen, terwijl op pag. 112 is aangegeven
hoe de toevalsvarians is van de diverse rasverschillen. In die
tabel zijn nl. steeds de coéfficienten van o? vermeld, die bij een
bepaald rasverschil horen. Met behulp van de empirische methode
die samengevat is in (307.11), zijn deze coéfficienten te schatten.
Om na te gaan hoe nauwkeurig de schatting is zijn in tabel (308.1)
naast elkaar vermeld de juiste coéfficienten en de geschatte
coéfficienten volgens (307.11). In de 4e kolom zijn de geschatte
waarden uitgedrukt in procenten van de juiste. Het blijkt dat
dit percentage nooit boven 100 komt.

Het blijkt dus dat wij de coéfficienten, en bijgevolg ook de
fouten van de verschillen, bijna steeds te laag schatten.

De grootste afwijking vinden wij in ons voorbeeld bij het wver-
schil 2, — 0,, waar o*3,-3, 8% te laag is geschat. Globaal wordt
93, 3, dus 4% te laag geschat. Om na te gaan of dit percentage
te groot is moge men bedenken, dat een berekend wverschil vaak
als betrouwbaar wordt aangenomen, wanneer het in absolute



118

(308.1)
Verschil Juiste scﬁZ;te Geschat
tussen Co.éfﬁ- coeffi- % age volgens % age | Volgens | %, age
clent . van van |gepaarde| wvan
de cient . (307.11, ‘. y
volgens juist juist | gegevensi juist
rassen pag. 112 volgens 4e)
(307.11)

1 2 3 4 5 6 7 8
L, m 0.7287 | 0.6925 95 0.6 82 1 137
L n 0.2330 | 0.2308 99 0.2256 97 0.25 107
I, p 0.2852 | 0.2802 98 0.2667 94 0.3333 117
I g 0.3918 | 0.3805 97 0.35 39 0.5 128
[ 0.3253 | 0.3210 99 0.3 02 0.4 123
5t 1.4118 1.3877 98 L1 78 2 142
Lou 0.2845 | 0.2820 99 0.26867 94 0.3333 117
I, w 0.2840 | 0.2818 99 0.2667 04 0.3333 117
we, # | 0.8261 | 0.7695 93 0.625 76 — —
we, p | 0.7642 | 0.7437 97 0.6667 87 1 131
we, ¢ | 0.9950 | 0.9165 92 0.75 75 —_ —
m, ¥ 0.8683 | 0.8219 95 0.7 81 2 230
wm, ¥ 2.0120 | 1.9324 96 1.5 5 — —
w, i 0.8398 0.7902 94 0.6667 79 2 238
m, w | 0.8438 | 0.7925 94 0.6667 79 2 237
n, P 0.3307 | 0.3183 96 0.2917 88 0.5 151
n, g 0.4062 | 0.4004 99 0.375 92 0.5 123
n, ¥ 0.3548 0,3497 99 0.325 92 0.5 141
n,t 1.4269 1.4004 98 1.125 79 2 140
#n, U 0.3109 | 0.3089 99 0.2917 o4 0.4 129
", w 0.3002 | 0.3077 100 0.2917 94 0.4 128
tq 0.5327 | 0.5014 94 0.4167 78 — —
p, ¥ 0.4147 | 0.4037 97 0.3667 83 0.6667 161
Pt 1.4443 | 1.4262 99 1.1667 81 2 138
Pou 0.3825 | 0.3706 97 (.3333 87 0.6667 174
f, w1 03860 | 0.3729 97 0.3333 86 0.6667 173
q. 7 0.5108 | 0.4979 97 045 88 1 196
q, ¢ 1.6825 1 1.6308 97 1.25 74 — —
q, u 0.4570 | 0.4500 98 0.4167 91 0.6667 146
q, w 0.4506 0.4454 09 0.4167 92 0.6667 148
¥, s 04 0.4 160 0.4 100 0.4 100
v, ¢ 1.6040 | 1.5647 98 1.2 75 — —
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Vervolg (308.1;

v, w | 03873 | 0381 | 99 ! 03667 ) 95 1 0.3 ‘ 129

v, w ; 0.4042 | 0.3986 | 99 ° 0.3667 91 0.6667 165
! i |

¢ u 1 1.5650 | 1.5283 ‘ 98 ‘ 1.1667 75 — ‘ —

¢, w | 1.56684 | 1.5306 93 \ 1.1667 75 ‘ -

u, w | 0.3561 | 0.3542 99 [ 0.3333 ‘ 94 l 0.5 [ 140

waarde minstens 2x zijn middelbare fout bedraagt. Dit cijfer
2 is tamelijk willekeurig gekozen. Het zou evengoed 1.9 of 2.1
kunnen zijn. Nu bedraagt het verschil tussen 2.0 en 2.1 5%. De
. willekeur” van de factor 2 weegt dus zwaarder dan onze grootste
schattingsfout.

Gezien de bovenaangeduide onzeketheid in het gebruik van
de ¢ kunnen wij wel zeggen, dat een schattingsfout van 109,
voor ¢ vaak toelaatbaar moet worden geacht. Dit zou dus een
fout van 209%, voor ¢* betekenen.

Aangezien onze empirische methode veel groter nauwkeurigheid
toestaat, zou men kunnen overwegen de schatting nog sterk te
vereenvoudigen door alleen rekening te houden met (307.11 4e).
De aldus geschatte coéfficienten zijn weergegeven in kolom 5 van
tabel (308.1). In de 6e kolom zijn ze in procenten van de juiste
waarden uitgedrukt. Het blijkt dat langs deze weg coéfficienten
worden gevonden, die over het algemeen minder dan 20%, te klein
zijn, Slechts in de gevallen dat een van de beide vergeleken rassen
slechts op 1 of 2 velden voorkwam zijn de schattingen soms be-
duidend slechter,

Wij kunnen dus zeggen dat in het algemeen de coéfficient van
o® geschat kan worden volgens (307.11 4e). Blijkt bij het inter-
preteren van de uitkomsten, dat de verhouding

verschil
fout van het wverschil

in de buurt van een belangrijk geachte waarde ligt (b.v, 5%, point),
dan kan met de volledige methode van (307.11) een betere schatting
van de fout worden verkregen. Meestal zal die schatting nauw-
keurig genoeg zijn. Desnoods kan men het gehele probleem op-
lossen met de methode der kileinste kwadraten, waarbij de coéffi-
cienten van o® juist bepaald worden. De waarde die voor o® zelf
berekend wordt, blijft echter ook dan een schatting. Ook dit laatste
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is een reden, waarom aan de nauwkeurigheid van de coéfficienten
geen al te hoge eisen mosten worden gesteld.

Het spreekt vanzelf, dat één uitgewerkt wvoorbeeld niet vol-
doende bewijs is voor de bruikbaarheid van een empirische methode,
Toch zullen wij geen nieuwe voorbeelden uitwerken, omdat ieder
die meer zekerheid wil, nieuwe voorbeelden kan maken, die meer
gelijken op de problemen, die hiyj bewerkt.

In de practijk heort men soms de bewering, dat twee rassen
alleen mogen worden vergeleken, door voor beide rassen het
gemiddelde te nemen van de (gestandaardiseerde) opbrengsten
van die velden, waarop beide rassen verbouwd werden. In tabel
(308.1) kolom 7 is vermeld, welke coéfficient o® dan moet hebben,
Rassen die op a velden gezamelijk voorkwamen hebben als coéffi-
cient 2/a. Rassen die op geen enkel veld gezamenlijk voorkwamen,
kunnen dan natuurlijk niet worden vergeleken, zodat hier ook een
foutenbepaling ontbreekt.

In kolom 8 zyn de cyjfers van kolom 7 uitgedrukt in procenten
van de waarden, die volgens kolom 2 hereikbaar zijn. Het blijkt
dat dit percentage in de regel ver boven 100 ligt, zodat wij mogen
concluderen, dat de wijze van samenvatten, zoals wij die in 304
uiteen zetten, voor onafhankelijhe rassen beter is.

309 - HET BEPALEN VAN DE CORRELATIE TUSSEN DE RASSEN

In 302 hebben wij gevonden dat er bij onafhankelijke rassen
een correlatie moet bestaan tussen de schijnbare fouten urs. Wiy
willen ev mog eens zeer nadrukkelijk op wijzen dal hel dus gaal over
correlalies wan gestandaardiseerde opbrengsiciyfers. De correlaties
van de niet-gestandaardiseerde opbrengsten zijn veel groter, maar
blijven hier buiten beschouwing. Wanneer er interpretaticfouten
zijn gemaakt kan er volgens (302.10) een ,correlatiecoéfficient”
— 1/m worden verwacht.

Wanneer op ieder proefveld ¢ telkens een ander aantal rassen
mp voorkomt, zal die correlatiecoéfficient voor ieder veld p asym-

ptotisch ongeveer _mi_ zijn. Dit is geen stabiele grootheid. Bjj
P

het toepassen van een formule die op (302.10) gelijkt valt daarom
moeilijk te voorspellen, welke waarde precies verwacht moet
worden, Het lijkt ons te ver te gaan deze waarde theoretisch uit
te zoeken,
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Een eenvoudiger theorie laat zich afleiden, wanneer men be-
denkt dat de bovengenoemde correlatie veroorzaakt wordt, door-
dat de op correlatie onderzochte rassen £ en / beide in het fictiefras
zijn opgenomen. Daardoor is de som van de interpretatiefouten
van een proefveld nul (zie 301,23 en 't begin van 302) en daardoor
is ook de som van de schijnbare toevallige fouten voor ieder proef-
veld 0.

Wanneer men een van de rassen & en / of beide buiten de definitie
van het fictiefras houdt, wordt het kunstmatig verband van
(301.23) verbroken, zodat onathankelijke rassen dan een correlatie
0 te zien moeten geven tussen hun interpretatiefouten en hun
toevallige fouten.

Om deze correlatie empirisch te berekenen kan men bij ket op
elkaar standaardiseven van de proefvelden de gegevens van ras
% of ras I, eventueel beide, buiten beschouwing laten. Na het
standaardiseren berekent men dan voor ieder ras, dus ook voor

en /, de afwijkingen van het gemiddelde. Van deze afwijkingen

ordt de correlatie op de gebruikelijke manier onderzocht.

Men moet dan eerst beslissen of men één ras buiten het fictiefras
zal houden, of beide. Wanneer er in totaal s rassen zijn, zijn er

?ﬁ_(_”%ll) combinaties (&, !) die onderzocht kunnen worden.
Zouden telkens beide rassen uitgeschakeld worden, dan moest
m (m—1)

het standaardiseren maal worden overgedaan. Wan-

2
neer één ras wordt uitgeschakeld, behoeft het standaardiseren
slechts m maal te worden herhaald. Het is daarom beter slechts
één Ttas uit te schakelen. Hierdeoor verkrijgt men bovendien het
voordeel, dat het fictiefras zo weinig mogelijk verandert.

Wi willen nu bij wijze van voorbeeld de correlatiecoéfficient
van ras / en ras # {zie 304.8) langs twee wegen berekenen. Eerst
sluiten we ras / buiten het fictiefras, daarna ras #.

Bij de berekening kunnen wij aansluiten bij het resultaat van
(304.12). Het feit dat ! buiten het fictiefras wordt gesloten zal wel
niet zo ingrijpend zijn, dat de uitkomsten veel veranderen. Wij
standaardiseren alle proefvelden dus op de reeds verkregen uit-
komstent voor de rassen Ul Ras ¢ doet natuurlifk weer niet mee,
daar het slechts eenmaal voorkomt.

Wanneer wij in (304.12) de gestandaardiseerde cijfers van veld
a met het de gemiddelde vergelijken, zien wij dat / daar 29 eenheden
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boven het gemiddelde ligt. De andere rassen liggen er gezamenljk
dus 29 onder. Er zijn 2 rassen L, deze liggen gemiddeld dus 15 te
laag. De opbrengsten van & moeten dus met [5 worden verhoogd,
Op dezelfde manier vinden wij dat de opbrengsten van & gelijk
blijven. Op ¢ ligt ras / 19 eenheden beneden het gemiddelde, de
5 rassen U/l dus gemiddeld 4 er boven. De cijfers van veld ¢ moeten
4 worden verlaagd. Langs deze weg vinden wij zeer snel de cijfers
van (309.1).

(309.1)
Iras
Wd_l! l m i # ‘ & q } 4 s H J % i
de gem.| 665 | 705 1 653 ‘ 643 | 705 l 661 | 686 ' 697 | 652
| ‘ )
. |
a | 705 645
b 720 | 612 700 | 714 700 | 602
¢ 629 | 655 654 | 684 713
d 686 | 666 615 | 659 871
P | 664 | 633
i | 661 | 66¢ 685 | 636
g | 644 719 | 655 | 670 713
A ! 587 721 | 679 | 699 709 | 658
i 688 680 © 643
£ 660 693 654 l 700
gem. 713 | 652 | 646 | 703 | 661 | 685 696 | 652

Het blijkt dat de grootste verandering in het gemiddelde van
ras m is opgetreden. Door deze verandering zal met name veld
@ op een hoger niveau moeten worden gestandaardiseerd, waar-
door het gemiddelde van s weer stijgt. Dit uitbalanceren is aan-
merkelijk te bekorten, door te schatten wat er uit moet komen,
en op dat schattingscijfer te standaardiseren. Wij willen deze
standaardisatie niet verder op de voet volgen, doch het eind-
resultaat geven in (309.2).

Uit de omlijste cijfers laat zich berekenen als correlatiecoéfficient
voor de rassen ! en # de waarde

(309.3) Yy, =—0.53

Bij het standaardiseren hadden wij ook ras # kunnen uitscha-
kelen, in plaats van /, dan hadden wij de cijfers van (309.4) ge-
vonden,
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(309.2)
__Ivel;as Z m n P g ¥ § ‘ H u w
| |
a 715 | 711 651 I T i
b 665 | 721 613 701 | 715 | 701 | 603
¢ 642 630 | 656 655 | 685 714
d 665 686 || 666 615 | 659 a7l
P 687 665 || 634 676
/ 650 661 | 664 685 | 636
g 632 643 718 | 654 | 66D 712
h 713 536 720 | 678 | 698 708 | 657
i 627 686 678 641
k 662 658 691 652 | 698
]

gem. | 666 | 716 | 652 | €47 ‘ 702 | 661 | 685 | 676 i 695 | 651

(309.4)

TéaS| i " ’ n I P ' q ’ ¥ ' § ( H U r HY
a 695 | 691 631 h
b 663 | 719 611 699 | 713 | 699 | 801
P 641 629 || 655 654 | 684 713
d 671 692 || 672 621 | 665 | 677
e 682 660 || 620 671
f 657 g6s ] em 692 | 643
£ 637 648 723 | 659 | 674 P 717
) 695 568 702 | 660 | 680 | 690 | 639
i .| 654 713 705 668
k [ 667 663 696 657 | 703

] L
gem. ‘ 666 | 705 | 654 | 645 | 706 | 659 | 683 \ 671 ‘ 695 | 655

Uit de omlijste cijfers berekenen wij nu als waarde van de
correlatiecoéfficient

(309.5) Vnj =—0.37

Dit is een geheel andere waarde dan in (309.3).

Om dit verschijnsel te verklaren denke men zich een aantal
proefvelden #, met op ieder veld dezelfde s rassen. Men heeft
dus een schema zonder hiaten. Nu laat zich volgens (302.10) een
negatieve correlatie verwachten bij onafhankelijke rassen. Evenals
bij onvolledige schema’s laat zich ook deze correlatiecoéfficient
nul maken, door bij het standaardiseren een of beide van de ge-
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correleerde rassen buiten het fictiefras te houden. Veronderstel
dat beide rassen (& en ) buiten het fictiefras worden gehouden.
Dan zal er maar én correlatiecoéfficient voor het paar (%, 1)
nodig zijn.

Om niet te abstract te spreken stelle men zich voor, dat de
oorzaak van vruchtbaarheidsverschillen in de grondwaterstand
is gelegen. Wanneer de grondwaterspiegel 1 cm daait, zal de op-
brengst van het fictiefras {veronderstel: het gemiddelde van 4
rassen [} 5 eenheden stijgen, De opbrengst van ras % stijgt 20
eenheden, die van ras / 6 eenheden. Wanneer er nu geen toevallige
fouten zijn gemaakt en er geen andere oorzaken van vruchtbaar-
heidsverschillen zjn, zal er een positieve correlatie 1 optreden.
Immers wanneer de grondwaterstand & cm beneden zijn ge-
middelde ligt zal ras £ 13a eenheden te hoog zijn en ras ! a een-
heden. De afwijking van ras % is steeds 15x die van ras /.

Wanneer de opbrengst van ras / per cm lagere grondwaterstand
niet 6 doch 5 eenheden steeg, zou ras / in zijn reactie steeds gelijk
zijn aan het fictiefras, zodat er geen aiwijking voor I bestond;
dan zou de correlatic met & dus @ zijn. Wanneer de stijging van
ras { kleiner was dan 5 zou de afwijking fussen ras !/ zijn gestan-
daardiseerd gemiddelde negatief zijn bij dalende grondwaterstand;
de correlatie met ras & zou dan — 1 zijn. Dat slechts de waarden
+ 1,0 en — 1 voorkomen, vindt zijn oorzaak in de aanname
dat er geen andere vruchtbaarheidsinvloeden en geen toevallige
fouten zijn.

Wi willen nu nagaan welke correlaties op zouden treden, wan-
neer ras k£ of ras / wel in het fictiefras waren opgenomen,
Wanneer de opbrengst van ras I 6 eenheden stijgt per cm lagere
grondwaterstand en het gemiddelde van 4 rassen Lkl 5, dan zal
435+ 6

441
is ons nieuwe fictiefras. Zowel ras & als ras { stijgen meer, dus de
correlatie blijft + 1.

Zou ras k in het fictiefras worden opgenomen, dan steeg dit
4 x 54+ 20
4+
waterstand. Ras 2 zou dan meer stijgen en ras ! minder; dan zou
de correlatie — 1 zijn.

Uit deze discussie blijki, dat de berekende correlatiecoéfficienten
de samenhang tussen de rassen steeds beschouwen fegen de achiergrond

het gemiddelde van de 5 rassen |&] =3/, stijgen. Dit

nieuwe fictiefras =8 eenheden per cm lagere grond-
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wan het ficiiefras. Vevandering van ficiiefras geeft dus verandering
van samenhang. Hiermee is het gevonden verschil tussen ¥, en
Vuy, (zie 309.3 en 309.5) voldoende verklaard.

310 - ANALYSE VAN DE CORRELATIEVERSCHIJNSELEN

In de voorgaande paragraaf hebben wij de correlatie tussen de
schijnbare fouten » van de rassen / en # onderzocht. Nu bestaan
de schijnbare fouten uit een toevallig element en een systematisch
element. Het toevallig deel kan niet de oorzaak zijn van een be-
langrijke correlatie; immers een correlatie tussen toevallige fouten
kan ook zelf slechts toevallig zijn. Doordat slechts een van beide
rassen in het fictiefras was opgenomen is gezorgd dat er niet kunst-
matig een correlatie tussen deze toevallige fouten te voorschijn
is geroepen.

Het belang van de correlatie ligt in het systematisch bestand-
deel. Men moet weten hoe de samenhang is tussen de interpretatie-
fouten van de verschillende rassen. A priori kunnen hierbij drie
gevallen worden onderscheiden.

In de eerste plaats is er het geval dat de correlatiecoéfficient
van de interpretatiefouten van twee rassen + 1 is, doordat de
rassen voor de onderzochte eigenschappen gelijk zijn of slechts
een constante wverschillen. Dit zou bijv. het geval kunnen zijn,
wanneer het ene ras een mutant is van het andere, of er uit ge-
selecteerd is. In zo'n geval zal de enige corzaak voor variaties
van het gevonden wverschil tussen beide rassen in de toevallige
fouten moeeten zijn gelegen. Of dit geval zich voordoet laat zich
het gemakkelijkst bepalen door op alle proefvelden het rasverschil
rechtstreeks te bepalen, en uit de verkregen cijfers de middelbare
fout van deze groothéid te berekenen. Deze m.f. moet o+/2 zijn.
Is de fout betrouwbaar groter, dan heeft men blijkbaar niet met
cen geval als boven aangeduid te maken.

In de tweede plaats moet men letten op het geval, dat van twee
rassen bekend is of stellig verwacht wordt, dat ze gecorreleerd
zijn, maar dat de mate van correlatie onbekend is. In de vorige
paragraaf is ecen methode gegeven om in dat geval de correlatie-
coéfficient te berckenen.

Wi bespraken reeds dat de daar gegeven grootheid zijn ont-
staan te danken heeft aan de samenwerking van interpretatie-
en toevallige fouten. Het is in zulke omstandigheden ook gewenst
de correlatie tussen de interpretatiefouten alleen te meten. Om
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na te gaan hoe men deze kan bepalen, willen wij eerst de berekening
bij een volledig schema (op alle velden dezelfde rassen) bestuderen.

Wij stellen dus, dat er # velden zijn met op ieder  rassen, o.a.
de rassen k& en /. Ras % is niet in het fictiefras opgenomen, ras I
wel. Het fictiefras is dus het gemiddelde van (m-— 1) rassen.
Wij willen dit aantal aanduiden door #¢.

Uit (301.27) laat zich nu afleiden (wanneer men 42 weer ver-
vangt door <(i%,>)

m — 1

—1 .
[ <ty>] =2 [ <] 4 (n— 1)
of

@31o.1y »

M (<] =t [<ul>]—(m—1) (1 f;?-zl-) a?.

Voor ras k laat zich naar analogie van (307.4) schrijven
(310.2) Q% = D+ Gp + Tap + Tp = b - 1y
Middelen van deze vorm over $ geeft

5 [Q*kw] 9 [gk'rrJ t# [Tkn'] + 1 [Tw]
» #

(310.3) — D+ + — B

Substitueren van 2y uit (310 3) in (310.2) geeft
Dy +inp+ wp + Tp = +
L (k] 1 19 [ The) 4 ’rn[ ]

n [

- pp
of

(310.4) sy =" — ! !

. n— 1 n—
tp e Tp b Tp—

ot 1p)]  tn—1[mp]  H-1)[Tip)]
7 # n ’

Aangezien ras k niet in het fictiefras was opgenomen, zijn de
fouten 7, v en T onderling onafhankelijk. Wanneer men aan-
neemt dat ook de verschillende waarden I onderling onafhankelijk
zijn en bovendien volgens {307.11 3¢) de waarde van <Tp*>

2
weer % stelt, berekent men gemakkelijk uit (310.4)

— 12 . — 1)
[ <> = ("‘7_1) 0 [ <tk 4 @—n—)— o? -
(m—1)2 o2 #n—1 o n—1 , n—1d
—}—————W “fmf?‘l' " [ ] + - a? -1 —

of
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[ <] = ”; : [ <] + (n— 1) (mm+ 1) a?
of
_ , 1
(310.5) " p ! [ it ] = [ <ulpe>] —(m—1) (1 +¢7{’) a?.

Om de asymptotische waarde <Z#pp #1,>> uit te rekenen moet
men de #y op dezelfde manier uitwerken als de #zp in (310.4).
Aangezien bij de afleiding van uxp niet tot uiting is gekomen, dat
ras & miet in het fictiefras was opgenomen, zal de formule voor
wip gelijk zijn aan (310.4) mits de % door een / wordt vervangen.

In verband met (301.23) is gemakkelijk in te zien, dat de 7 nu
ook nog onafhankelijk is van de interpretatiefout ¢. Immers, wan-
neer krachtens definitie de som van de interpretatiefouten van de
rassen, die in het fictiefras zijn opgenomen, voor leder proefveld
0 is, kan hier geen corzaak van foutieve standaardisatie liggen.

In tegenstelling hiermee zijn 7 en 7 niet onafthankelijk.
Wanneer weer dezelfde veronderstelling wordt gemaakt, die aan
(307.9) ten grondslag ligt, kunnen wij schrijven

(310.6) Ty —— T 1) [m 5]
m 7

waarbij wij door |Af| aanduiden dat zowel ras & als ras / unit de
som zijn uitgesloten,

Het minteken is nodig om aan te geven dat de standaardisatie-
fout de tendens heeft de toevallige fouten weg te verklaren. (Met
,,weg verklaren” wordt bedoeld, dat de berckende waarden
zodanig van de ware waarden afwijken, dat de schijnbare fouten
middelbaar kleiner zijn dan de ware fouten. Door de berckende
waarden, die de waarnemingen moeten verklaren, verdwijnt een
deel der fouten dus ogenschijnlijk).

Substitutie van T'p uit (310.6) in (310.4) geeft

n—1. #n—1 n—1 1
(310.7) wnp = il + o TR T Mf:? —
_n—=1 tlw-Dlvwe] el gy 1D [tagr |
wo n n 7
tin=1) [mp)] | 4+t 0 = U {m— 1) [[2002.]]
+ m'n + m'n '

De formule voor up is hieruit af te leiden door de index % door
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I te vervangen. De / mag niet door % worden vervangen, omdat
! in het fictiefras blijft. Wij vinden dan

#w—1 . wn—1 m —1
(3}0.8) %m:——n—ugy—l— i C Ty —

w— 1 1 1) [mimyp] A1) [np)]

!

no w #
=1 tl=Dfmp] 41 O = 1) = D7)
m n m'n '

Bij het berekenen van de asymptotische waarde <Tunp t1p>
vallen alle dubbele producten weg behalve die met 4. Dit geeft dus

(310.9)

(n—12 . (r— 1) m — 1
Cikp Wip=> == g T hpZ> — 5 <tp> +
(r— 1 tm’ — 1 [<o¥my p=>] | t— 1 [<inp) 11p) > ]
-+ ne 2 + 2 _
w 7
_om—1 tn—1 [<1‘2t[m>]+ t 1l = D= DI <mm 10> ])
m12 : H2 mlznz *

Wanneer wij de asymptotische waarden «<Cip, 9157 en <Cfrp) 516>
voorstellen door <(ig, %2> en de asymptotische waarden < t%>
door ¢%, wordt dit

w—1 ',
<%kf} Wpp> = "T T thg tp >
of

(310.10)

n—1

n
Uit (310.1), (310.5) en (310.10) vinden wij als bruikbare schat-
ting voor de correlatiecoéfficient I, van de correlatie tussen de

interpretatiefouten van ras k& en ras [ (waarbij ! in het fictiefras
1S opgenomen):

(310.11)

Iy, = 1 [ Ui Wi ,
V% o[} - (n-1) (1 + ;;m) gzg%m[u%w] ~(n-1) (1 _%) ng

waarbi] ¢® weer verondersteld wordt uit het verschil tussen de
blokken binnen de proefvelden te zijn berekend (zie verder op-
merking naar aanleiding van 311.19).

- iR J:<3kﬂrr f'.f:'r>:| = 1% [<%k1r Ti‘f’iﬂ'>].
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Bij onvolledige schema’s, zoals besproken in 304, zal m'
geen constante grootheid zijn, maar voor ieder proeiveld anders
kunnen uitvallen, Dan staat trouwens de gehele formule (310.11)
min of meer op losse schroeven, omdat wij in 309 aantoonden dat
de berekende correlatiecoéfficient beide rassen beschouwt tegen
de achtergrond van het fictiefras. Bij onvolledige schema’s is het
fictiefras niet constant en de correlatiecoéfficient dus min of meer
onbepaald. Toch kan men (310.11) gebruiken om een globale
indruk te krijgen. Om complicaties te voorkomen kan men dan

het best een waarde voor 1:7 berekenen als gemiddelde van de

1 . s e
waarden e die voor de onderzochte correlatiecoéfficient van
P

belang zifn.

Tenslotte moet nog worden gesproken over het geval, dat er
geen cortelatie verwacht wordt, doch dat de berekening een be-
paalde waarde voor de correlatiecoéfficient oplevert. Zulk een
correlatie kan toevallig optreden tussen de toevallige fouten,
maar evenzeer tussen de interpretatiefouten. Om te becordelen
nf de correlatie als een toevallig verschijnsel mag worden opgevat
zal men daarom geen onderscheid behoeven te maken tussen beide
soorten fouten. Blijkt de correlatie niet aan toeval te kunnen wor-
den geweten dan moet er een systematische correlatie tussen de
interpretatiefouten optreden, aangezien tussen toevallige fouten
geen systematische correlatie op kan treden. Zo nodig kan de
correlatie tussen de interpretatiefouten weer volgens (310.11)
worden vastgelegd.

De vraag is nu: wanneer moet een onverwachte correlatie als
reéel worden erkend. Daartoe moet worden nagegaan of de ge-
vonden correlatie betrouwbaar van 0 afwijkt. Dit gaat het ge-
makkelijkst met behulp van het door R. A. FisHER gevonden

resultaat dat de middelbare fout van de grootheid ¢ :7%
. 2

de waarde Vﬂ—i— heeft, indien er in werkelijkheid geen corre-

latie is. Door ¢ is de correlatiecoéfficient aangeduid. Wanneer
men als eis van betrouwbaarheid stelt, dat ¢ tweemaal zijn mid-
delbare fout moet zijn, vindt men dus:

2
n—4

14

Vi

o of




7 4
[y~ n—d ©°f
)t — 42 >4 — 4yt of
(310.12) y? < —:—.

Uit (310.12) blijkt wel dat een onverwachte correlatie zeer hoog
moet zijn, om bij een gering aantal waarmemingen betrouwhaar te
ziin. Formule (310.12} geeft ongeveer het ,,59% point”, het ,,19;
point” wordt bij benadering gegeven door

y2 6.5
— > f
1 —92 “p-a °

6.5

n+ 2.5

Door # wordt in (310.12) en (310.13) aangeduid het aantal proef-
velden waarop ras & en ras / beide wvoorkcmen, Het blijkt dat
dit aantal minstens 5 moet zijn om een toevallig gevonden correlatie
als belangrijk te kunnen aanvaarden. Verder moet er rekening
mee worden gehouden dat het standaardiseren misschien ook nog
een ongedachte invlioed heeft op de berekende correlatiecoéfficient,
Enige voorzichtigheid bij het aanvaarden van een correlatie als
systematisch is dus wel gewenst,

In het voorgaande hebben wij steeds een positieve correlatie
voor ogen gehad. Als materiéle grondslag daarvoor kan een extra
aantal gemeenschappelijke genen worden aangenomen. Ilet is
natuurlijk niet ondenkbaar dat er ook negatieve correlaties worden
waargenomen. In (303.2) toonden wij reeds aan dat een positieve
correlatie tussen twee rassen hun correlatie met de andere rassen
verlaagt. Het wil ons voorkomen dat hierin vrijwel de enige ocor-
zaak van negatieve correlatie gelegen kan zijn, Meestal zal met een
negatieve correlatie daarom voldoende zijn gerekend wanneer met
alle positieve op een passende manier rekening is gehouden. Op de
enkele uitzonderingen zullen wij hier niet ingaan.

(310.13) P2 >

311 — HET SAMENVATTEN VAN PROEVEN MET WISSELEND AANTAL
GEDEELTELIJK AFHANKELIJKE RASSEN

In 304 is nagegaan hoe proeven met een wisselend aantal onaf-
hankelijke rassen moeten worden samengevat. Als werkvoorbeeld
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hebbenr wij daar de cijfers van (304.3) genomen, die blijkens (304.7)
na standaardisatie hiet volgend resultaat geven.

311.1 ras
( ) — By | ke | ke | Ry | ks | ke
1 646 | 655 | 802 | 636 | 596
Ps 681 | 663 | 690 | 663 | 643 | 643
7 716 | 762 | 751 | 461 665
a 685 | 653 6856 | 675 | 642 | 642
gem, D | 682 | 683 | 732 | 609 | 627 | 650

Uit de cijfers van gem. D) blijkt dat ras &; veel beter is dan
ras ks. Deze conclusie is in tegenspraak met de waarnemingen op
P, en p, dat beide rassen precies gelijk zijn. Wat is nu de juiste
conclusie?

Wanneer inderdaad uit $, en $, mocht worden geconcludeerd,
dat %; en %; identiek waren, zou hier sprake zijn van sterk ge-
correleerde rassen, zodat de vooronderstellingen van 304 dan niet
van toepassing zouden zijn. Wanneer daarentegen ras k; en ras A,
in werkelijkheid onathankelijk zijn, moet het als een speling van
het toeval worden gezien, dat beide rassen op beide proefvelden
gelijke opbrengsten gaven. Uit de cijfers kan geen keuze tussen
beide zienswijzen worden gedaan, omdat blijkens (310.12) het aan-
tal proefvelden te gering is om een onverwachte correlatiecoéffi-
cient -4 1 als zeker te aanvaarden. Wel leent bovenstaand voor-
beeld zich er toe om het wezen van beide veronderstellingen dui-
delijk te maken.

Indien men wil volhouden dat de rassen onafhankelijk zijn,
zijn de cijfers van gem, D het geschiktst om het verschil tussen
Tas k; en ras kg weer te geven (zie eind van 308). Weliswaar hebben
beide rassen het evengoed gedaan op p, en p,, doch van ras &
is op veld p; aangetoond, dat het ook een lagere opbrengst kan
geven in vergelijking met het fictiefras. Wegens de onafhanke-
lijkheid mag hieruit niet geconcludeerd worden, dat %; het daar
ook slecht zou hebben gedaan. Zo heeft ras %, op veld 5 getoond
ook hogere opbrengsten te kunnen geven, zonder dat dit een con-
clusie toelaat over &;.

Men kan slechts zeggen, dat voor beide rassen drie monsters uit
het onderzochte gebied zijn getrokken om de rasvoortreifelijkheid
binnen het gebied vast te stellen. Bij gebrek aan beter zal men voor
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beide monsters aan moeten nemen, dat ze zo goed mogelijk genomen
zijn. Het kan zijn dat %, op p, te weinig opbracht en %; op #, te
veel; maar evenzeer kan &; en p, en p, te veel opgebracht hebben
en kg daar te weinig. Als de rassen onafhankelijk zijn valt er niets
van te zeggen,

Mocht men er van unit willen gaan, dat ras k; en kg identick
waren, dan zouden de cijfers van gem. D (zie 311.1) niet de meest
geschikte zijn om de onderlinge verschillen tussen alle rassen weer
te geven, De eindcijfers van de rassen &; en &g zouden gelijk moeten
zijn. De vraag is nu: Hoe bereikt men dat het rasverschil van k;
en kg zo goed mogelijk wordt vastgelegd, terwijl tevens het ver-
schil met de andere vier rassen op de juiste wijze wordt weer-
gegeven?

In overeenstemming met 310 moet men onderscheid maken
tussen rassen die gelijk zijn of slechts een constante verschillen,
en rassen die in meerdere of mindere mate gecorreleerd zijn. In
310 werd de laatste groep nog gesplitst al naar er een correlatie
werd verwacht of niet. Nu behceft dit onderscheid niet te worden
gemaakt, Wanneer een correlatie eenmaal is aanvaard moet er op
een bepaalde manier mee gewerkt worden,

Indien de verwante rassen slechts een constante (eventueel O)
verschillen voor de onderzochte eigenschap, valt er over deze
constante niets te leren uit de velden waarop niet beide Tassen
voorkwamen. De waarde van de constante moet rechtstreeks
worden bepaald op de velden, waarop beide rassen wel stonden.
Voor ras k5 en tas kg is deze constante in ons voorbeeld dus 0.
Hiermee is het verschil tussen k; en Ay zo goed mogelijk aange-
geven.

Nu moet deze gelijkheid nog in gem. D van (311.1) tot uitdruk-
king worden gebracht. Bij het bepalen van de methode willen
wij tevens trachten tegemoet te komen aan de wens, die wij bij de
discussie van (304.2) uitspraken, dat zoveel mogelijk rassen in het
fictiefras moeten worden opgenomen. Wij gaan daarom de ont-
brekende opbrengsten schatten, Wegens de gelijkheid van &g en %
kunnen wij in (311.1) de opbrengsten van beide rassen op de
velden #, en p; ook aan elkaar gelijk achten. Vullen we de ge-
schatte opbrengsten in, dan vinden wij (311.2)
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311.2 ras
( ) a2 ' Ry | oy | R | ks | ke
| ; | |
P4 646 1+ G55 | 802 | 636 ¢ 306 | oee
$a 681\ 663 | 600 | 663 | 643 , 643
b TI6 | 762 | 751 | 461 | % | 665
b 685 } 653 | 885 | 675 | 642 | 642
| 1
gom. E i (82 [ 683 | 732 | 609 ' 637 i 637

Omdat het schema nu volledig is zal gem. E ongevoelig zijn
voor een nieuwe standaardisering. Wel zal het niveau van de ver-
schillende proefvelden daardoor kunnen worden beinvloed.

Bij bovenstaande methode hebben wij dus de opbrengsten van
kg, en Ry overal gelijk geschat; wij kunnen evengoed zeggen, dat
wij overal de afwijking u5, gelijk hebben geschat aan de afwijking
#gp. Wanneer wij onder e, verstaan

A9 2
& =V | [% fi'n']
(]

kunnen we zelfs zeggen dat we de schatting hebben wverricht
volgens de formule
(311.3) Hep __ Hap.

g &5

Voor rassen die overal slechts een constante verschillen moeten
de waarden van ¢ immers gelijk zijn

Ogenschijnlijk is het gebruik van (311.3) in strijd met 124. De
afwijkingen #gp en #sp zijn beide normaal verdeeld, niet alleen
wat hun toevallige fout betreft, maar — naar wij in 302 aannamen —
ook wat hun interpretatiefout betreft, Dit moet dus een geval
zijn waar de correlatierekening moet worden toegepast, en niet
de lijnvereffening.

De waarden us, en #5p zijn niet absoluut met elkaar gecorreleerd;
beide grootheden zijn gedeeltelijk opgebouwd uit toevallige fouten,
die niet gecorreleerd zijn. Volgens 124 hadden inplaats van de
lange as (311.3) dus gebruikt moeten worden de regressielijnen

Yo _ ) Ys
(311.4) o=
iy _, v

&5
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Toch bevredigt het gebruik van de regressielijnen in dit geval
niet. Wanneer de rassen k; en &, in wezen als identiek worden
gezien, moet de opbrengst van de een zonder meer als schatting
van de opbrengst van de ander kunnen dienen. Naar het hjkt
hebben wij hier een gevoelsargument tegenover een exact argu-
ment. Maar om te zien of het exacte argument inderdaad de door-
slag moet geven, willen wij dit argument voor het onderhavige
geval nog eens op de voet volgen,

De opbrengst van ras %; op veld $, is abnormaal laag. In absolute
waarde is #;, dus groot. Omdat de toevallige fout s, normaal
verdeeld is, is het onwaarschijnlijk dat r,, zo groot is. En omdat
t5p ook normaal verdeeld is, is het eveneens onwaarschijnlijk
dat ¢, zo groot is. De grootste waarschijnlijkheid bereiken wij
wanneer we aannemen dat #;, en ¢; in dit geval hetzelfde teken
hebben. In absolute waarde schatten wij ¢, dus kleiner dan ;.

Wanneer wij de opbrengst van rtas &, schatten, is het niet juist
daar de toevallige fout z,; in op te nemen. Wij moeten de syste-
matische interpretatiefout iy schatten. Omdat 4, kleiner is in
absolute waarde dan w;; moet de opbrengst van ras &; op veld
$, hoger geschat worden dan de opbrengst van ras %; op dat
veld was, Door de regressieliin wordt uitgemaakt hoeveel hoger.
{In ons voorbeeld is dit onmogelijk doordat de toevallige fouten
toevallig absoluut gecorreleerd zijn (zie 310.12))

Bovenstaande uiteenzetting is slechts dan goed, wanneer wij
bereid zijn de consequenties eruit te trekken, die er in 124 ook uit-
getrokken werden. Aan het slot van die paragraaf kwamen wij
tot een conclusie die hierop neerkomt: De grootte van wsp, wordt
naar evenredigheid verdeeld over 45 en 5. Wanneer er een
grote absolule waarde van de afwiking usp wordt gevonden newmen
we op grond daarvan ook een grote foevallige foul 155 van. Welnu
deze consequentie kunnen wij hier niet aanvaarden.

Tenslotte is een interpretatiefout een grootheid die men niet
kent. Wanneer het proefveldgemiddelde van een ras sterk afwijkt
van het cijfer dat men verwacht, dan kan dit gemiddelde blijkens
zin middelbare fout wel zeer nauwkeurig zijn. Men zal dan niet
concluderen dat de toevallige fout groot zal zijn, maar alle
schuld op de interpretatiefout werpen. ‘

Wij zullen dus geen gebruik maken van formule (311.4) maar
van (311.3). Hiermee is evenwel niet gezegd dat wij nu de methoden
der lijnvereffening gaan toepassen. Ongetwijfeld hebben wij hier
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te maken met een geval van correlatic. Wij weigeren slechts iets
over de toevallige fout te zeggen op grond van de interpretatie-
fout. Daarom mag niet gewerkt worden met de totale correlatie 4,
maar moet gebruik worden gemaakt van de correlatie tussen de
interpretatiefouten; I' (zie 310.11). Bij identieke rassen is die corre-
latie 1. Dit is de motivering voor het gebruik van (311.3).

Wij zijn dus tot de conclusie gekomen dat men in het algemeen
gebruik moet maken van de correlatiecoéfficient I. Maar de vraag
blijft nog over, welke? Volgens (310.11) laten zich een [, en een
Iy berekenen, alnaar ras 2 of ras / buiten het fictiefras wordt
gelaten.

Om de keuze te bepalen stelle men zich voor dat men u
wil schatten aan de hand van uzs. Proefveld » moet dan zo goed
mogelijk op de andere proefvelden zijn gestandaardiseerd omdat
de standaardisatiefout de grootte van u beinvlcedt. Het , fictief-
ras” van p moet dus zoveel mogelijk rassen bevatten. Nu kan
ras £ wel in het fictiefras worden opgenomen, maar ras / niet,
omdat het niet op het veld $ voorkwam. Het is om deze reden
wenselijk & In het fictiefras fe handhaven, en dus 7 uit te
sluiten, zodat met de I}, moet worden gewerkt voor het schatten
van een opbrengst van /.

Wij vinden dus als formule voor het schatten van een onbekende
afwijking ws.

Uip _ Ukp

Als voorbeeld van het gebruik van deze formule willen wij aan-
nemen, dat wij verwachten, dat ras %; gecorreleerd is met ras &;.
Wi willen nu trachten de gestandaardiseerde opbrengst van
tas kg op veld 4, te schatten aan de hand van de gestandaardiseerde
opbrengst (2%, van ras k; op dat veld.

Omdat ras kg van het fictiefras wordt uitgesloten tnoeten de
gegevens van (311.1) opnieuw gestandaardiseerd worden. Dit geeft

311.6
( ) = B | Ry | Ry | R | R | ke
22! 646 655 802 636 596
£a 680 662 689 662 G42 642
D3 721 767 766 466 670
P4 684 | 652 | 684 | 674 | 641 | 641
gem, It 683 684 733 610 526 651
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Nu kan de opbrengst van ras & op veld #, worden berekend.
Daartoe moet eerst worden bepaald de gemiddelde opbrengst
van ras &, op de velden f,, f; en #,, en de gemiddelde opbrengst
van ras ky of dezelfde velden, We vinden

(311.7) Gem. van ras k; == 651
. ERl i kg = 7]0
De afwijkingen # van %, en k; op deze velden zijnn dus
311.8
(311.8) =] | A
P 21| -9
Pe 46 | 19
P4 26 | -10

Hicruit laat zich berekenen

(311.9) [16,%] = 3233
[1,%] = 542

[uqttg] == 1323

& =329

gg == 13.5.

Om I, te kunnen berekenen moet ¢* nog bekend zijn.
Wij willen aannemen dat uit het wverschil tussen de blokken
binnen de proefvelden is berekend dat

(311.10) o% =25.
De grootheid ;;—, is voor p,, ps en P, resp. Y, 1/4 en ;. De ge-

middelde waarde is
1
31111 poy =(),22.

Uit de cijfers van (311.(9, 10, 11)\ laat zich berekenen met behulp
van (310.11) ( =3)

1323 .
4/(542—61) (3233 — 39)
Wij vinden hier dat de correlatie tussen de interpretatiefouten
groter is dan 1. Dit is natuurlijk onmogelijk. Bij normale correlatie
is een dergelijke rekenresultaat zelfs onmogelijk omdat de be-
rekeningswijze dan geen grotere waarde dan 1 toelaat. Dt hangt
samen met de speciale foutenwetten van de correlatiecoéfficient.

1.07.

B1.12) Iy, =

2
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Van de hier gebruikte correlatiecoéfficient I'y;, (zie form. 310.11)
hebben wij nog geen foutenwet kunnen opstellen. Doordat in de
noemer gecorrigeerd wordt met de gevonden waarde van ¢2 zijn
de foutenwetten evenwel anders dan van een gewene corielatie-
coéfficient, Waarschijnlijk wordt de middelbare fout er groter
van, maar dit zegt niets over de vraag of de asymptotische waarde
van de [y, hierdoor ongunstig wordt beinviced. Het is mij ook
niet bekend. Zo lang er niet een betere oplossing is, is het n leder
geval beter met (310.11) te werken dan de correlaties tussen de
rassen te negerem.

Aangezien wij weten dat [}y, slechts groter dan I berekend kan
worden wegens schattingsfouten bij het gebruiken wvan een op
schattingen berustende formule, zullen wij de gevonden waarde
terugbrengen tot 1.

Hiermee is het voorbeeld niet teruggevoerd tot het probleem dat
in (311.2) werd besproken, nl. dat van de rassen, die gelijk waren of
slechts een constante verschilden. Ook in dat geval is Iy, =1,
maar daarbij is tevens g =g, wat in dit voorbeeld niet opgaat.

In ons onderhavig voorbeeld kan men zeggen dat ras &, op
dezelfde wijze op de omstandigheden reageert als ras k&, slechts
is de reactie minder heftig. Om het gemiddeld verschi! tussen beide
rassen te bepalen moeten nu wel de hiaten in het schema worden
opgevuld. Op veld $, waar de opbrengst van &, abnormaal hoog
was, zal het wverschil tussen %, en k; ook abnormaal groot zijn.
Dit zal het gemiddeld wverschil beinvloeden.

De vermoedelijke gestandaardiseerde opbrengst van ras kg op
veld $, berekenen wij nu alsvolgt: Blijkens (311.6) bracht ras %; op
veld p; 92 meer op dan het gemiddelde in (311.7). Volgens (311.9)
is dit 2.8 . De vermoedelijke opbrengst van ras % op #, moet
dus 2.8 g = 38 boven het gemiddelde in (311.7) liggen. Wij vinden
dus als waarde van deze opbrengst 689. Vullen wij dit bedrag in
(311.6) in dan vinden wij

311.13 ras
( ) W"‘I ky ‘ £y I kg Ry ks ‘ kg
1 646 655 802 636 596 680
Pa 680 662 689 662 642 642
Pa 721 767 766 466 650
1 684 652 684 674 641 641
gem. G 683 684 733 610 626 661
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De cijfers van (311.13) zullen nu nog op elkaar moeten worden
gestandaardiseerd met alle rassen in het fictiefras. Dit geeft

311.14 ras
( ) ) ky ky kg Ay kg ke
1 641 | 650 | 797 | 631 | 591 | o=
Pa 682 | 664 | 691 | 664 | 044 | G44
P 718 | 764 | 753 | 463 667
P4 687 | G35 | 687 | 677 | 644 1 644
gem, H | 682 | 683 | 732 | 609 | 626 | 660

Hiermee zijn de berekeningen van dit voorbeeld afgelopen.

Wij hebben nu dus tweemaal de opbrengst van ras &g op veld p,
geschat. Eenmaal in de veronderstelling dat ras kg identiek is
met A; (zie 311.2) en eenmaal in de veronderstelling dat ras %
gecorreleerd was met &,

Door (311.2) met (311.13) te vergelijken ziet men dat de schat-
tingen sterk uiteenlopen. Wij zullen nu het probleem moeten be-
spreken, hoe deze schattingen op elkaar zouden kunnen worden
vereffend, wanneer men de beide gemaakte veronderstellingen
even waarschijnlijk achtte. In het onderhavig geval waren de
veronderstellingen Awalitatief ongelijk. Eerst werd gelijkheid van
rassen verondersteld, vervolgens een nauwe correlatie.

Wij willen liever cen voorbeeld geven waar de veronderstellingen
kwalitatief gelijk zijn, daarom gaan wij uit van de opbrengsten
van (311.5), die op elkaar gestandaardiseerd zijn, zonder dat A
in het fictiefras was opgenomen,

311.15

( ) —;;E§ELT By | ka | By | ke | Bs | e
P4 646 | 655 | 802 | 636 | 596
P 680 | 662 | 689 | 662 | 642 | 642
P 719 | 765 | 754 | 464 668
s 684 | 652 | 684 | 674 | 641 | 651
s 660 | 669 | 736 | 605 | 656 | 700

gem 680 | 68] 733 | 608 | 634 | 665
Wij stellen verder
(311.16) ot =25,

Nu willen wij de opbrengst van ras %, op veld $, schatten in de
veronderstelling dat &, gecorreleerd is met %, en k.
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Voor de correlatie van %y met k; kunnen wij gebruik maken
van de velden p, t/m ps. Op dezelide wijze als in (311.9 enz.)
vinden wi
(311.17) Gem. opbrengst van k; =715

, ' ., kg =665
& = 20.8
g = 22.1

= 1849 =0.723.

4/ (3558 — 59) (1959 — 91)

Hieruit laat zich berekenen, als vermoedelijke waarde van de
opbrengst van ras % op veld $,, de waarde 711,

Bovenstaande waarde is natuurljk berekend met behulp van
formule (311.3). Voor het onderhavige probleem heeft het evenwel
zijn voordelen {zoals unit 312 zal blijken) om de waarde van
met behulp van de lange as (zie 311.3) te schatten, en de fy, te
beschouwen als het gewicht van de schatting.

Volgens (311.5) is gevonden ug, = 46 (met gewicht 1), volgens
(311.3) zou gevonden worden #'y, = 64 (met gewicht 0.723). Tus-
sen deze uitkomsten is geen verschil volgens defgewichtenstelling
{306.9).

(311.18) Op grond van deze gelijkheid kunnen wij als geschatte
opbrengst van ras %; op veld $, ook geven de waarde 729 (met
gewicht 0.723),

Voor de correlatie van %; en k; kunnen wij gebruik maken van

de velden $,, p, en p,. De berekening levert:

Iy,

(31119 Gem. opbrengst van k; = 646
. . . ke =064

g, =6.86

g, =25.5

Dy, =117,

In dit voorbeeld ziet men dat ¢; nauwelijks groter is dan ¢
(Volgens 311.16: 0 =5). Hoewel wij bij wijze van illustratie de
berekening verder zullen voortzetten, moeten wij er toch op
wijzen, dat dit resultaat het twijfelachtiz maakt of ras k&; wel
systematisch van het fictiefras afwijkt. Wanneer &; geheel aan het
toeval is te wijten, is het zoeken van correlaties met systematische
bestanddelen van g natnurlijk onjuist. In het algemeen kunnen
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" wij zeggen dat het gebruik van (310.11) bedenkelijk wordt, wan-
neer de daar genoemde t#[4%;] en tu [#%;] niet | betrouwbaar”
groter zijn dan (n — 1) g% Deze beperking geeft ock de garantie
dat de noemer van (310.11) steeds positief is. Om de uiteenzetting
verder voort te kunnen zetten negercn wij ditmaal dit bezwaar,

Wij beginnen weer met I%, tot 1 terug te brengen, evenals
bij (311.12).
(311.20) Uit (311.19) berekenen wij nu, als vermoedelijke waarde
van de opbrengst van ras % op veld $,, de waarde 478 (met ge-
wicht 1).

Om de beste schatting van de opbrengst van ras & op veld p,
te krijgen gaan wij de uitkomsten van (311.18) en (311.20) mid-
delen met behulp van de formule (311.21)

5 _&x]
X =",
14
Dit geeft ¥ = 583. Blijkens de formule

2
s U

o lg]

is het gewicht van deze uitkomst [g] = 1.723. Het zou echter niet
juist zijn dit gewicht aan de uitkomst toe te kennen. Men mag
niet hoger gewicht toekennen dan 1. De reden hiervan zal in 312
worden besproken.

Wij nemen dus als geschatte opbrengst van ras &; op veld p,
de waarde 583 met gewicht 1. Wanneer wij dit getal in {311.15)
invullen en vervolgens standaardiseren met alle rassen in het
fictiefras, vinden we (311.22)

311.22 ras

( ) veld ky Ay by o ks Ry
1 657 | 666 | 813 | 647 | 607 | s

P 681 | 663 | 690 | 663 | 643 | 643

£, 715 | 761 | 750 | 460 664

Pa 684 | 652 | 684 | 674 | 641 | 65l

Ps 661 | 661 | 727 | 597 | 648 | 0692

gem. 630 | 681 | 733 | 608 | 635 | 649

Het is natuurlijk mogelijk de opbrengst van %5 op veld g, ook
te schatten aan de hand van de correlatie tussen k; en 2. Omdat
op pg ras kg wel in het fictiefras kan worden opgenomen en kg
niet, is het wenselijk in dit geval met I, te gaan werken,
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312 - NADER ONDERZOEK VAN DE ONTWIKKELDE METHODEN

Tot dusver hebben wij in dit hoofdstuk verschillende methoden
besproken, die gebruikt kunnen woerden by het samenvatten der
proefveldresultaten, Deze methoden willen wij nu in onderlinge
samenhang nader bespreken.

Men moet steeds beginnen met de proeven samen te vatten
alsof alle rassen van eclkaar onafhankelijk zijn (zie 301 en 304).
De methode, die in 311 is gegeven voor afthankelijke rassen, doet
niet anders dan de methode van 304 corrigeren. Bij afhankelijke
rassen heeft men dus een samenvatting volgens 304 nodig als
uitgangspunt van de verdere berekening.

Wanneer de proeven op elkaar gestandaardisecerd zijn, kan
men controleren of er afhankelijkheid tussen sommige rassen op-
treedt. Bij schema’s die geheel of bijna orthogonaal zijn, zal dit
het best gaan aan de hand van de stellingen die uit de formules
(302.4) en (303.4) zijn afgeleid. Wanneer er geen afhankelijkheid
is moeten de asymptotische waarden van de interpretatievarians
van de verschillende rassen gelijk zijn; is er wel afhankelijkheid,
dan is de asymptotische waarde van de interpretatievarians voor
de afhankelijke rassen kleiner. Aangezien de middelbare toevallige
fout voor alle rassen vaak ook gelijk is, gelden bovenstaande
stellingen ook voor de asymptotische waarden van [#*] van
ieder ras.

Wanneer de schema’s onvolledig zijn geldt deze contréle niet
meer. Bij het standaardiseren zal een proefveld met weinig rassen
meer van de tcevallige fouten door de milicugunstigheid weg
kunnen verklaren (zie voor dit begrip tussen (310.6) en (310.7))
dan een met veel rassen. Zo zal ook het gemiddelde van een ras
dat weinig voorkomt, de fouten beter weg kunnen verklaren
dan het gemiddelde van een ras dat vaak voorkomt. Uit (301.16)
blijkt duidelijk dat er een tendens is dat bij een gegeven #rp de usp
kleiner wordt naarmate m en # kleiner zijn. Uit (301.24) blijkt
eveneens dat, bij een gegeven gy, iy kleiner wordt naarmate
‘# kleiner wordt. Wegens de definitie van het fictiefras zal een
klemne s vaak een verkleining van 4zp zelf tot gevolg hebben.

Bovenstaande tendens is min of meer te vermijden door het
onderzochte ras & buiten het fictiefras te houden, Dan hebben de
fouten van % geen inviced op de standaardisatie en worden dus
ook niet gedeeltelijk daardoor weg verklaard. De invioed van het
rasgemiddelde bhyft natuurlijjk bestaan, zodat niet zonder meer
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de vormen [#?] met elkaar kunnen worden vergeleken. Voor ieder
ras moet de vorm

o _ M [
ny — 1’

bepaald worden, waarbij ng het aantal velden aangeeft waarop
ras k voorkwamn.

Het is dus aan te bevelen bij onvolledige schema’s de standaardi-
satie m maal over te doen met telkens een ander ras buiten het
fictiefras gesloten. In 309 is besproken hoe deze m standaardisaties
gemakkelijk uit de standaardisatie met volledig fictiefras kunnen
worden afgeleid. Uit deze m standaardisaties zijn nu voor telkens
een ander ras s schattingen van ¢* te berekenen, die ongeveer
gelijk moeten zijn. Vindt men nu rassen met een kleine »* dan
zijn die vermoedelijk onderling gecorreleerd.

Het is misschien gewenst er op te wijzen, dat bovenstaande
methode slechts een globale indruk kan geven. Wanneer er b.v.
twee rassen zijn, die precies gelijk zijn aan het fictiefras, dan zal
hun interpretatiefout steeds 0 zijn. Dit houdt in dat ze onderling
niet gecorreleerd zijn in hun interpretatiefout, en toch een kleine
y® hebben. Bovenstaande contréle kan dus niet meer dan een
aanwijzing geven.

Waarschijnlijk is het meestal nog beter eerst grafisch te con-
troleren of er een correlatie verwacht kan worden. Dit zal meestal
direct kunnen na de berekening van 304.

Nauwkeuriger contréle bereiken we door gebruik te maken van
(302.10) of van de methoden, die in 310 genoemd zijn. Deze con-
trole is dan ook steeds gewenst wanneer men in onzekerheid ver-
keert, Komt men tot de conclusie, dat er inderdaad afhankelijkheid
van rassen optreedt, dan moeten onvolledige schema’s worden
samengevat volgens de principes van 311. Daar spraken wij er
reeds over dat dit beslist noodzakelijk is om goede uitkomsten te
krijgen. Op deze noodzaak willen wij nu iets dieper ingaan.

Bij het trekken van conclusies moet gelet worden op de zin van
het proefveld, zoals wi die in 201 bespraken. Daar hebben wij
met elkaar vergeleken de mogelijkheid het rassenonderzoek te
verrichten door middel van enquétes en door middel van een
proefveldonderzoek. Het bezwaar van de enquétes is, dat het
onderzochte gebied niet homogeen is, zodat er groot gevaar is
dat het ene ras steeds gunstige omstandigheden treft en het andere
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niet, Het is nu de taak van het proefveldonderzoek de relatieve
gevoeligheid van de rassen voor de omstandigheden te verminderen,
door alle rassen onder dezelfde omstandigheden te vergelijken. Het
proefveldonderzoek leidt tot het begrip | fictiefras’ en het begrip
,,interpretatiefout’, wat hier het systematisch verschil tussen op-
brengst van ras en fictiefras op een bepaald proefveld betekent.

Het bovenstaande is scherp gedefinieerd zolang alle onder-
zochte rassen op alle proefvelden hebben gestaan, dus zolang het
schema orthogonaal is. Met niet-orthogonale schema’s is dit niet
meer het geval. Wanneer het ene ras gedeeltelijk op andere proef-
velden wordt beproefd dan het andere, verkeert men in een
situatie, die het midden houdt tussen een enquéte en een proefveld-
onderzoek. Immers, nu is de kans in zekere mate aanwezig dat het
ene ras betere omstandigheden treft dan het andere. De prin-
cipiéle vraag is nu: hoe kan men bereiken, dat het cijfermateriaal
zoveel mogelijk aan een proefveldonderzoek doet denken en zo
weinig mogelijk aan een enquéte.

Men zal zijn materiaal slechts dan als een normaal proefveldon-
derzoek kunnen benutten, wanneer men kans ziet alle ontbrekende
opbrengsten te berekenen uit de aanwezige cijfers. Dit is het wat
we in 304 hebben gedaan. Wanneer men b.v. in (304.12) voor alle
ontbrekende opbrengsten het berekende rasgemiddelde invult,
zullen er geen andere gemiddelde opbrengsten worden berekend,
wanneer ook deze geschatte opbrengsten in het gemiddelde wor-
den opgenomen. Men zou (304.12) dus ook alsvolgt weer kunnen
geven

(312.1)
Tas
_@d_l l w w P q ’ ¥ I 5 H u w
a | 694 G690 853 630 706 861 888 862 897 52
b 664 | T20 868 612 705 700 | 714 L 700 | 602
c 646 105 634 ; 660 05 659 | 689 da8 718 652
d 665 705 686 | 666 708 615 | 659 888 897 671
e 679 705 657 626 705 agL ] 668 897 832
i 653 705 6684 | 667 05 661 688 803 688 | 639
g 638 705 649 843 724 | 660 | 675 a0 718 L
h 707 705 580 843 714 | 6%2 | €92 o8 702 } 651
: G38 708 697 643 689 661 | o8 668 897 652
B 664 705 660 943 I 693 881 638 668 654 | 700
665 | 705 | 653 | 643 | 705 | €61 686 | 668 | 697 | 652
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Wij kunnen dus zeggen dat 304 cen bepaalde techniek geeft
om opbrengsten te schatten van onafhankelijke rassen. Deze
techniek komt hierop neer dat men wvoor een bepaald proef-
veld nagaat hoeveel de opbrengsten van de verbouwde rassen ge-
middeld boven of beneden hun resp. rasgemiddelden zijn gebleven.
Men veronderstelt nu dat de niet verbouwde rassen cok zoveel
boven of beneden hun resp. gemiddelden zouden zijn gekomen,
als ze er ook verbouwd waren. Door de standaardisatie worden
deze veronderstelde opbrengsten dan gelijk aan het bijbehorend
gemiddelde,

Het is onwaarschijnlijk dat die veronderstelling voor een be-
paald proefveld juist is. Waren de rassen verbouwd dan hadden
ze ook een interpretatiefout gegeven. Toch is de veronderstelling
niet zinloos. Statistisch is zij juist, d.w.z. wanneer men een aantal
opbrengsten van een ras schat, zullen er ongeveer evenveel te
hoge als te lage schattingen bij zijn; wanneer men één opbrengst
schat, is er evenveel kans dat hij te hoog is als te laag.

Die gelijkheid van kans berust niet op de omstandigheden van
het proefveld. Deze omstandigheden kunnen zeer wel rmaken,
dat het ras er een abnormaal hoge of een abnormaal lage opbrengst
zou geven. Maar over het aanwezig zijn van die omstandigheden
weet men gewoonlijk niets, anders rekende men er wel mee. In
zijn kansenwaardering houdt men zich dus bezig met de kans-
verdeling van de onbekende omstandigheden, die ocorzaak zijn
van de interpretatiefout. Van deze interpretatiefouten zal men
vaak aan moeten nemen dat ze tamelijk normaal om het berekende
gemiddelde verdeeld zijn, uit gebrek aan betere gegevens.

Om met deze globale aanname te kunnen werken, moet men
dus weten dat er inderdaad geen betere gegevens zijn. Dit is de
achtergrond van het onderzoek van de correlaties. Wanneer van
het onderzochte ras de interpretatiefout gecarreleerd blijkt met de
interpretaticfout van een ander ras, is er meer over de kansver-
deling van deze interpretatiefout bekend dan boven en in 304
verondersteld werd,

Wanneer b.v. bekend is dat ras / in zijn interpretatiefouten vol-
ledig gecorreleerd is met een ander ras & (I%z=1), dan zal, al
mogen de cmstandigheden van een proefveld $ niet met name
bekend zyn, de reactie van ras / daarop toch wel volledig be-
paald zijn, Dit geeft de mogelijkheid de ontbrekende opbrengst van
ras [ op veld p nader te berekenen. Van deze mogelijkheid #oet
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gebruik worden gemaakt. Immers de berekening van 304 geeft
blijkens {(312.1) ook een schatting van de opbrengst en wel een
foutieve.

De opbrengst van ras {, die men aan de hand van de correlatie
berekent, behoeft niet gelijk te zijn aan de opbrengst die in wer-
kelijkheid verkregen zou zijn, als het ras inderdaad verbouwd was,
De geschatte opbrengst moet statistisch juist zijn, d.w.z. de kans
op een positief verschil tussen schatting en werkelijkheid moet
even groot zyn als de kans op een negatief verschil.

Ondertussen kan dit verschil wel erg groot zijn. Immers alle
beschikbare gegevens zijn behept met een toevallige fout. Dit
geldt met name van de opbrengst van ras & op veld p. Deze toe-
vallige fouten kunnen sterk vergroot worden bij het berekenen
van de geschatte opbrengst. Zo is bij het berekenen van (311.20)
met alleen de interpretatiefout van £2%;, maar ook de toevallige

fout vermenigvuldigd met 62_5852 Men mag dus verwachten dat de

toevallige fout van de geschatte £2%, minstens viermaal zo groot
is als die van de bestaande opbrengstcijfers.

Dit mag evenwel geen reden zijn aan de schatting een laag
gewicht, b.v, %, toe te kennen. Blijkens de gewichtenstelling,
(et uitvoerige motivering bij 306.9), zou dit er op neerkomen
dat de interpretatiefout door 16 gedeeld werd. Daarmee zou de
schatting zijn statistische juistheid wverliezen, omdat het teken
van de interpretatiefout niet toevallig is. Niettegenstaande de grote
verschillen in toevallige fout moeten alle gewichten dus gelijk
worden genomen,

In het algemeen Runmen wij als regel stellen, dat de toe te kennen
gewtchien witslustend af mogen hangen van de interprefaticfouten,
wanneer er . hel maleriaal inferpretatiefoulen en toevallige fouten
berde voorkomen. Deze regel vindl slechls hierin zijn beperking dat
het soms beter kan zign een kleine sysiematische fout tc maken dan een
grole loevalltge. Het is hier niet de plaats uit te zoeken wanneer
met deze beperking rekening moet worden gehouden,

Wij hebben tot dusver in deze paragraaf twee uitersten ge-
noemd; onafhankelijkheid van de interpretatiefouten en absolute
correlatie. In het laatste geval was alles over de ontbrekende
interpretatiefout te berekenen. Aan deze berekende waarde kon
dus het gewicht 1 worden toegekend. In geval van onafthankelijk-

10
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heid is niets over de interpretatiefout bekend, d.w.z. dat in dit
geval aan het rekenresultaat de waarde 0 moet worden gegeven.
Blijkens de gewichtenstelling behoeft dit niet in te houden dat
g =0 wordt gesteld, het 15 voldeende dat g de waarde O krijgt.
Men kan nu twee wegen bewandelen om gu =0 te bereiken.
In de cerste plaats kan men g = 0 stellen, en de % onbepaald laten;
dit deden wij in 304, waar wij geen geschatte opbrengsten ver-
meldden omdat het gewicht toch 0 was. Men kan evenwel ook
g =1 stellen en # ==0. Dit deden wij in (312.1), waar wij wel
opbrengsten vermeldden met gewicht 1, maar waar de u steeds
0 was.

Wanneer de Iy, in absolute waarde tussen 0 en 1 ligt, is er
natuurlijk een tussenpositie tussen beide uitersten. Er bestaat
wel een band, maar die band is niet absoluut. Hoe groter de corre-
latiecoéfficient, des te steviger de band.

Voor dit geval hebben wij in (311.5) een formule gevonden, die
een statistisch juiste schatting toelaat van de ontbrekende op-
brengsten. Dat deze schatting statistisch juist is betekent niet
dat de nferpretatiefout juist wordt geschat. Voor de interpretatie-
fout bestaan er drie mogelijkheden: De schatting volgens (311.5)
kan te klein zijn, goed, of te groot. Dat de schatting statistisch
juist is betekent, dat niet alleen de toevallige fout asymptotisch
0 wordt, maar dat ook de te grote en de te kleine schattingen van
het systematisch deel van w, elkaar asymptotisch in evenwicht
houden,

Omdat de schatting statistisch juist is, moet ze In de berekening
het gewicht 1 hebben, zoals wij zo juist op grond van de gewichten-
stelling nog eens mochten formuleren. Een ander gewicht verandert
smmers feitelijk de grootte wan de geschatie imterpretatiefoud,

Wanneer ras / alleen met één bepaald ras % is gecorreleerd, valt
er over de vraag, of in de berekende wj; de interpretatiefout te
groot of te klein geschat is, niets te zeggen. Anders wordt dit,
wanneer ras ! gecorreleerd is met twee rassen &, en A,. Wanneer
de u; die aan de hand van %, wordt berekend tegengesteld is
aan de wuy die aan de hand van %; is berekend, dan maken
beide schattingen elkaar dubieus.

Wanneer #;, aan dejhand van beide correlaties gelijk berekend
wordt zijn er nog weer twee mogelijkheden: Door de correlatie
met %, en die met £, zijn dezelfde vruchtbaarheidselementen aan-
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gewezen, die interpretatiefouten geven, of er zijn ongelijke vrucht-
baarheidselementen aangewezen.

Wanneer ongelifke vruchtbaarheidselementen zijn aangewezen
moeten de beide gevonden waarden van wi bij elkaar worden
opgeteld, immers beide groepen vruchtbaarheidselementen drijven
de #i in de gevonden richting, min of meer onafhankelijk van
elkaar,

Wanneer dezelfde vruchtbaarheidselementen zijn aangewezen,
moeten beide waarden w als twee berekeningen van dezelide
grootheid worden gezien. In dit geval moeten de gevonden waarden
van # dus worden gemiddeld. Dit laatste is stellig het geval wan-
neer de %k, en &, onderling volledig zijn gecorreleerd.

Wanneer %, en &, onderling niet volledig zijn gecorreleerd is
minder gemakkelijk te zeggen in welke geval men verkeert. Toch
vallen hier wel enkele regels op te stellen. Wanneer namelijk ras
! volledig met ras &, is gecorreleerd, dan is het onmogelijk, dat de
correlatie met &, vruchtbaarheidselementen aanwijst, die niet
door de correlatie met %, zijn aangewezen, In dit geval is opielling
van de gevonden waarden van wu; dus ongeoorioofd. Naarmate de
correlaties zwakker worden is er meer kans dat er ongelijke vrucht-
baarheidselementen door de verschillende correlaties worden aan-
gewezen. Er moet dus een samenvattingswijze zijn, die naar het
additieve helt, wanneer de correlaties klein zijn, en naar het mid-
delen, wanneer de correlaties groot zijn.

Een dergelijke berekeningswijze is te vinden, wanneer we de
afwijking uy schatten volgens de formule

Hip . Urp
R
- en aan deze schatting het gewicht Iy, toekennen. Deze methode
hebben wij gevolgd bij de bespreking van (311.15), zoals in de
tekst onder {311.17) is uiteengezet.

Bij (311.21) hebben wij gezegd dat men de opbrengsien, die zo
uit de verschillende correlaties zijn berekend, moet middelen met
de formule

7 - 18%]
(311.21) 7=

en dat aan de aldus berckende x het gewicht [¢] moet worden
toegekend, mits [g] niet groter is dan 1. In het licht van bovenstaande
overwegingen worden deze voorschriften duidelijk. Voor zover
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de berekende afwijkingen van het oorspronkelijke gestandaardi-
seerde gemiddelde elkaar tegenspreken heffen ze elkaar bij de
toepassing van (311.21) op. Aangezien blijkens de gewichtenstelling
de waarde gu feitelijk de invloed van de afwijking meet (dus het
effectief gewicht is), kunnen wij zeggen dat het effectief gewicht
van tegenstrijdige schattingen ongeveer 0 wordt.

Voor zover de berckende afwijkingen overeenstemmen, worden
ze opgeteld zolang [g] << 1, dus bij lage correlaties; en ze worden
steeds meer gemiddeld, zodra {g] > 1, terwijl er zuiver van mid-
delen sprake is zodra iedere g, dus iedere correlatie 1 is.

Tenslotte willen wij er nog op wijzen, dat het voor kan komen
dat waarden u;, die op grond van hoge correlaties zijn berekend
elkaar tegenspreken. In dit geval zijn de correlatiecoéfficienten
ten onrechte te hoog geschat, meestal wegens het toeval. Ook hier
geldt dat het gemiddelde van de geschatte waarden #; dan naar
verhouding klein wordt, zodat ook hier het effeciief gewicht uit-
eindelijk laag is.

In deze paragrafen hebben wij dus een aantal voorschriften
gegeven, die beter zijn dan het negeren van de correlatieverschijn-
selen, Maar de wvoorschriften zijn niet streng mathematisch af-
geleid. Het is: bij gebrek aan beter.

313 — ONDERZOEK VAN DE INTERPRETATIEFOUT

Tot dusver hebben wij veel gesproken over de interpretatiefout
als functie van de proefveldinvloeden, maar wij hebben nog niet
nagegaan, hoe het verband tussen omstandigheden en interpretatie-
fout was. Wel hebben wij door een correlatierekening soms trachten
op te sporett hoe een interpretatiefout op een bepaald veld af kan
hangen wvan onbekende omstandigheden, die een bekende uit-
werking hebben op een ander ras.

Wanneer de omstandigheden wvan de proefvelden met name
bekend zijn, kan getracht worden de interpretatiefout als furm
van de met name bekende inviloeden te zien. Hierbij moet et
probleem besproken worden op welke wijze de interpretatiefout
het gemakkelijkst kan worden uitgedrukt. wﬂ

Wanneer met een orthogonaal schema kan worden gewerkt is de
interpretatiefout eenvoudig te benaderen. Blykens (301.24) is het
systematisch deel van

. [Umj
Ukp — hp — 7.
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Aangezien de vorm o gedurende het onderzoek van ras k con-
stant is, en dus geen inviced heeft op de reactie van wugs op de
omstandigheden, kan men wspy als beste benadering van ¢zp zien.
De asymptotische waarde van de toevallige fouten is natuurlijk
ook 0. Men kan de waarden ., dus gewoon bestuderen aan de hand
van de bekende omstandigheden.

Bij onvolledige schema'’s is de werkwijze minder van zelfsprekend.
Bij het standaardiseren zullen alle geschatte opbrengsten het best
mee kunnen tellen. Het schatten heeft juist ten doel het samen-
vatten der proefvelden, en dus ook het standaardiseren te ver-
beteren.

Voor het verder onderzoek zijn de geschatte cijfers misschien
niet altijd even waardevol. Het probleem is nu immers niet, hoe
een aantal rassen onder dezelfde omstandigheden kunnen worden
vergeleken, waarbi] nergens een hiaat mag zijn; maar nu is de
vraag, hoe de ene grootheid een functie is van de ander, Hierbij
is het vaak niet belangrijk of er een gegeven meer of minder is.

Veronderstel b.v. dat men het verband tussen interpretatiefout
en pH grafisch wil weergeven. Dan is het ideaal een nauwe punten-
bundel te vinden. Fen cijfer moet dus niet alleen statistisch juist
zijn, maar ook een kleine toevallige fout hebben. Het is duidelijk
dat de gewichten nu volgens geheel andere principes moeten
worden toegekend, dan bij het samenvatten der proefvelden,
én dat met name die schattingen, die een gewicht g =1 kregen,
omdat de # toch 0 was, b een onderzoek, zoals nu bedoeeld, vaak
het gewicht 0 zullen moeten krijgen. Zo zullen de meeste schat-
tingen waarschijnlijk waardeloos zijn.

Maar ook aan de waargenomen cijfers kleven moeilijkheden.
Hoe minder rassen op een proefveld, hoe beter kan het fictiefras
zich aan de voorhanden rassen aanpassen, dus des te kleiner
interpretatiefout moet worden verwacht. Dit ongemak kan worden
voorkomen door het onderzochte ras buiten het fictiefras te sluiten,
een middel dat wij reeds vaker aanbevalen. Dit kan evenwel weer
het bezwaar opleveren, dat ieder ras in verband met ecen ander
fictiefras wordt beschouwd. Hier moet dus even op gelet worden.

Op welke wijze het verband tussen de interpretatiefouten en de
omstandigheden nader moet worden onderzocht, willen we niet
nagaan. Het is voldoende er op te wijzen dat de interpretatie-
fouten continue grootheden zijn, evenals de omstandigheden


file:///ikir

150

mecstal. Over de methodiek die voor dit scort problemen gewenst
is zijn reeds vele onderzockingen verricht, o.a. door Ir W. C.
VISSER.

Het spreekt van zelf dat de milieugunstigheid M, op dezelide
wijze tegen de omstandigheden kan worden afgezet als de inter-
pretatiefouten. Als resultaat hiervan zal men een nader inzicht
in de reacties van het gewas kunnen krijgen.

Voor zover de interpretatiefouten als functie van verschillende
invloeden zijn begrepen, kunnen ze wvoor de omstandigheden
worden gecorrigeerd. Het is niet uitgesloten dat na alle toe te
passen correcties bhjkt dat de interpretatiefouten nog niet geheel
zijn verklaard. Bij het becordelen van deze kwestie moet men be-
denken, dat iedere correctie met een fout behept is en dus de
toevallige fout van het nog verder te corrigeren cijfer vergroot.
Men moet zich dus steeds afvragen, hoe groot de toevallige fout
langzamerhand geworden is. Wanneer zeer zeker de afwijkingen
nog groter zijn dan de vergrote toevallige fout, is op bepaalde in-
vloeden niet gelet. Men staat dan voor de taak uit te zoeken welke
invloeden dat geweest kunnen zijn. Bij dit zoeken kan het steun
geven, wanneer men weet welke proefvelden op elkaar gelijken,
wat de reactic van de rassen betreft. Van zulke proefvelden kan
men nagaan welke eigenschappen ze gemeen hebben.

Om #n proefvelden met ieder s rassen in een aantal groepen
verwante velden in te delen, zou men als volgt te werk kunnen
gaan. Men rangschikt de wvelden volgens opklimmende waarde
van w14 (de afwijking van ras &, op de diverse velden). De % proef-
velden laten zich zo in a klassen verdelen met ieder ongeveer
evenveel velden.

Binnen iedere klasse rangschikt men dan de velden naar op-
klimmende waarde van #sp. Zo laat iedere klasse zich weerin
a klassen onderverdelen, Men heeft dan a2 klassen. Met de m rassen
vindt men zo am-1 klassen. (De interpretatiefouten van het me
ras zijn volledig afhankelijk van de eerste (m — 1}).

In iedere klasse moeten minstens 2 velden voorkomen, het

hoogst toelaatbare aantal klassen is dus —g— Uit de formule

an—1 <7 %

laat zich nu berekenen hoe groot & hoogstens gekozen mag
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worden. Het spreekt van zelf dat deze formule slechts als orién-
terend is bedoeld. :
Misschien is het soms ook mogelijk op dezelfde manier als in
(305.1) de gestandaardiseerde (zie begin van 309) opbrengsten te
verwerken en met behulp van de gevonden grootheden 7aa, 7,5 enz.
correlatiecijfers tussen de verschillende proefvelden te berekenen.
Wanneer iemand deze mogelijkheid practisch wil toepassen moet
hij vooraf bedenken dat het aantal onbekenden gelijk is aan de
som van het aantal proefvelden en het aantal rassen, min 1. Wan-
neer hij niet over benaderingsmethoden beschikt om zulke grote
vergelijkingen op te lossen is het meestal practisch onuitvoerbaar.



IV - HET BEREKENEN VAN VRUCHTBAARHEIDS-
CORRECTIES OP AFZONDERLIJKE PROEFVELDEN

401 — DE AARD VAN DE VRUCHTBAARHEIDSCORRECTIE

In het vorig hoofdstuk hebben wij gesproken over het samen-
vatten van de resultaten van wverschillende proefvelden. Deze
proefvelden konden in milieugunstigheid 3, aanzienlijk uit elkaar
lopen. Door deze verschillen had de rassenvergelijking erg kunnen
worden bemoeilijkt, wanneer wij niet in 202 reeds het begrip
,rekenopbrengst” hadden ingevoerd, dat deze moeilijkheden
grotendeels wegnam (zie formule 202.6). Dank zij dit begrip kan
de conclusie van hidst, IIT alsvolgt in het kort worden weergegeven:
Bij niet-orthogonale schema’s moeten de proefvelden op elkaar
worden gestandaardiseerd, om de juiste rasgemiddelden te be-
rekenen (zie b.v. 304); bij orthogonale schema’s is dit niet nodig
(zie 301.5). Wanneer de juiste rekenopbrengsten worden gebruikt,
komt bij orthogonale schema’s een extra gunstig milieu alle rassen
evenveel ten goede, een extra ongunstig milieu geeft alle rassen
evenveel nadeel. Het heeft in dat geval dus bij orthogonale sche-
ma’s geen invloed op de berekende rasverschillen of op de ver-
schillen in milieugunstigheid wordt gelet.

Toch worden deze verschillen gewoonlijk in het onderzoek
betrokken. Hun aanwezigheid veroorzaakt dat er een grote toe-
vallige fout wordt berekend, wanneer niet nagegaan wordt in
_ hoeverre deze berekende fout aan milieu-omstandigheden moet
worden geweten. Het rekenen met de milieugunstigheid heeft in
dit geval dus niet het doel, de rasverschillen beter te leren kennen,
maar de berekende fout kleiner te maken, en zo een gunstiger
indruk te krijgen van de betrouwbaarheid van het resultaat,

De methode, die aan het gehele prociveld één gunstigheid My
toekent, is in dit geval ook zeer voor de hand liggend. De ver-
schillen in milieugunstigheid worden wveroorzaakt, doordat het
ene proefveld in het Noorden lag, een ander in het Zuiden; het
ene werd vroeg gezaaid, een ander laat; het ene werd goed be-
mest, een ander matig, het ene had een gcede ontwatering en
cen ander een slechte. Kortom, de omstandigheden van de ver-
schillende proefvelden kunnen zozeer uiteenlopen, dat het van-
zelfsprekend is, een proefveld als een eenheid te zien.
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Dezelide rekentechniek, die gebruikt wordt voor het samen-
vatten van proefvelden, wordt vaak aangewend bi het verwerken
van de resultaten van één proefveld, wanneer dat proefveld van
alle objecten enkele herhalingen heeft. Hen zeer gebruikelijke
aanleg verdeelt het proefveld in # blokken en plaatst in ieder
blok de m objecten (b.v. rassen) eenmaal. Wanneer er gunstigheids-
verschillen in het veld zijn, zal het ene blok het waarschijnlijk
jets gunstiger treffen dan het andere. Ile meerdere of mindere
gunstigheid van een blok kan nu op dezelide wijze in rekening
worden gebracht als de meerdere of mindere gunstigheid van een
bepaald proefveld. En ook nu zal het resultaat zijn, dat de be-
rekende rasverschillen niet veranderen, doch dat de berekende
fout kleiner wordt.

Voor het verwerken van één proefveld is bovenstaande methode
ongetwijfeld toelaatbaar, maar niet vanzelfsprekend. Binnen een
proefveld zijn er maar weinig oorzaken van verschillen in milien-
gunstigheid. Het zijn de oorzaken die samengevat worden in het
begrip vruchtbaarheid. Om de gedachten te bepalen neme men aan
dat men een strokenproef heeft met 3 blokken en 5 rassen. In
zo’n proef komen dus 13 veldjes voor, die op één rij liggen. De
eerste vijf veldjes vormen een blok, de tweede en derde vijf even-
eens. Wanneer nu uit de berekening blijkt dat het eerste blok
per veldje 5 ecnheden vruchtbaarder is dan het gemiddelde, dat
het tweede blok de gemiddelde vruchtbaarheid heeft, en het derde
blok 5 cenheden beneden het gemiddelde ligt, dan kan inderdaad
met deze cijfers als . blokgunstigheid” worden gerekend.

Het ligt evenwel meer voor de hand uit bovenstaande gegevens
af te leiden, dat de vruchtbaarheid regelmatig 5 eenheden daalt
per 5 veldjes en dus 1 per veldje. Dit geeft de mogelijkheid, aan de
hand van dezelfde rekenresultaten een vruchtbaarheidscorrectie
binnen de blokken toe te passen. In figuur (401.1) zijn beide cor-
recties in beeld gebracht.

(401.1)

+5 —

+3

I, 3,3 4,856,727, 8,0 10| 12,1,4 15

1 biok £t biak, 3 bk
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Wanneer men voor leder blok een bepaald vruchtbaarheids-
niveau aanneemt, krijgt men een vruchtbaarheidsverloop, zoals
door de trapjeslijn is aangegeven. Wanneer men ook binnen de
blokken corrigeert vindt men een vruchtbaarheidsverloop, zoals
de stippelliin aangeeft.

Voor de proefveldverwerking zijn beide methoden geoorloofd,
maar wij kunnen ons toch niet aan de indruk onttrekken, dat de
methode, die binnen de blokken corrigeert, natuurlijker is. De
indeling in blokken heeft een kunstmatig karakter, dat niet door de
proefveldomstandigheden wordt gerechtvaardigd. Het is onwaar-
schijnlijk dat veldje no. 5 even vruchtbaar is als veldje no. 1, doch
veel vruchtbaarder dan veldje no. 6. Een blok is slechts een kunst-
matige eenheid, en wanneer men bij een vruchtbaarheidscorrectie
met zulke kunstmatige eenheden werxt, kan men niet anders
dan tamelijk ruwe correcties toepassen.

In de termen van R. A. FISHER uitgedrukt kunnen wij zeggen
dat een vruchtbaarheidscorrectie, die slechts met blokverschillen
(subblokverschillen) werkt, wel ,,consistent’’, maar niet ,effi-
cient™ is.

Dit gebrek aan ,.efficiency’” uit zich niet alleen hierin, dat de
vruchtbaarheid slechts globaal wordt uitgeschakeld. Een tweede
bezwaar is, dat er vaak te veel vrijheidsgraden worden gebruikt.
In voorbeeld (401.1) zijn er 2 vrijheidsgraden nodig om met de
blokverschillen te rekenen, terwijl met 1 vrijheidsgraad kan worden
volstaan om vast te leggen dat de vruchtbaarheid 1 eenheid per
veldje daalt.

Zo heeft men b.v. bij een Latijns vierkant met 8 objecten
(en dus 8 rijen en 8 kolommen) 14 vrijheidsgraden nodig om
de vruchtbaarheidsverschillen van de rijen en de kolommen vast
te leggen, dat is meer dan én per vijf veldjes. Het is duidelijk
dat de vruchtbaarheidscorrectie niet veel zou veranderen, wan-
neer de vruchtbaarheid van de le, de 3e, de 5e en de 7e kolom
berekend werd, terwijl de andere vruchtbaarheden hiertussen
werden geinterpoleerd, Wanneer men hetzelfde voor de rijen
deed, zou in totaal met 8 vrijheidsgraden kunnen worden vol-
staan. Nu willen wij niet graag beweren dat de vrijheidsgraden
dan wel efficient waren gebruikt, maar het zou al een hele be-
sparing zijn.

Wij willen nu dus nagaan hoe we een vruchtbaarheidscorrectie
aan moeten vatten om zo natuurlijk en dus zo efficient mogelijk
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te werken ¥). Daartoe moet men allereerst letten op het wveld,
waarop de proef genomen wordt. Dit veld heeft biina altijd cen
geologische wordingsgeschiedenis achter de rug, die maakt dat er
allerlei baren en uitzonderlijke hoeken in aanwezig zijn, meestal
in de ondergrond. Er kunnen b.v. door het veld sporen lopen van
allerlei kreken met hun ceverwallen. Dit kan op korte afstand
soms grote verschillen in vrachtbaarheid geven. Vruchtbaarheids-
verschillen van 10% op 20 meter afstand zijn geen zeldzaam
verschijnsel,

Wanneer men een dergelijk veld als proefveld gebruiken, moet
men op twee dingen letten:

In de eerste plaats zijn de veranderingen van vruchtbaarheid
in de regel continu, er kan een vruchtbaarheidskaart getekend
worden zonder plotselinge overgangen. Op de enkele uitzonde-
ringen op deze regel willen wij niet ingaan.

In de tweede plaats zijn de vormen van de kreken en zand-
ruggen zelden in wiskundige formules te vangen. Ilet verloop
van een zandrug of andere eigenaardigheid moet aan zekere wetten
beantwoorden, maar die wetten zijn er niet op gerichf, met weinig
constanten beschreven te kunnen worden.

Wanneer men b.v. ergens ecen strokenproef zou aanleggen met
100 veldjes in één rij, dan zou de vruchtbaarheidskaart hoogst-
waarschijnlijk gekenmerkt worden door een aantal maxima en
minima. Laten wij nu aannemen dat de minima worden veroor-
zaakt door een kreek en de maxima door een zandrug, dan is het
geologisch duidelijk dat het vruchtbaarheidsverloop van de ene
kant van een kreek samenhangt met het verlcop aan de andere
kant. Een kreek moet nu eenmaal twee zijden hebben. Maar het
is ‘evenzeer duidelijk dat het verband tussen de beide oevers
tamelijk los is, Wanneer iemand de ene oever kent, weet hij nog
de breedte van de kreek niet, en dus ook niet de plaats van de
andere oever, Zo is ook de gedetailleerde vorm van die oever niet
af te leiden.

Wij kunnen zo verder gaan en zeggen dat de plaats van de ene
kreek geen conclusies toelaat over de plaats van de volgende.
Kortom, uit de vruchtbaarheid op een bepaald veldje valt weinig
af te leiden over de vruchtbaarheid van een ander veldje dat
b.v. 30 m verder ligt.

*) Aan het eind van 404 wordt er op gewezen dat de efficiéntie van de
hier gegeven methode ook tegen kan vallen.
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Wij kunnen dus zeggen: De vruchtbaarheid van dicht bij elkaar
gelegen veldjes hangt ten nauwste samen, omdat de vrucht-
baarheid continu verloopt, maar de vruchtbaarheid van verder
uit elkaar liggende veldjes heeft weinig samenhang, omdat ecn
geologische detailkaart weinig extrapolaties toelaat.

Bovengenoemde eigenaardigheden van het wveld zijn bepalend
voor de wijze van vruchtbaarheidscorrectie. Wij wezen er reeds
op dat die correctiesystemen, die de vruchtbaarheid als een dis-
continue grootheid zien, gewoonlijk niet de meest natuurlijke zijn.
Maar er zijn ook bezwaren verbonden aan die methoden, die
de continuiteit van de vruchtbaarheid erkennen, en daarom de
vruchtbaarheidskaart in de vorm van een formule geven, die de
vruchtbaarheid geeft als functie van de plaats op het veld, Het
is een wezenlijke eigenschap van een formule, dat hij geéxtrapo-
leerd kan worden; het is even wezenlijk voor het proefveld, dat
extrapoleren slechts op korte afstand toelaatbaar is.

Wanneer men een formule berekent, die drie maxima en minima
moet beschrijven, dan zullen de constanten, die het eerste ma-
ximum beschrijven, dezelfde zijn als diegene die het derde vast-
leggen. Door het gebruiken van een formule wordt het eerste
maximum dus geéxtrapoleerd naar het derde en omgekeerd.
Hiermee wordt het probleem geweld aangedaan.

De enige oplossing, die natuurlijk is, is een grafische bewerking.
By het tekenen van grafieken wordt op korte afstand de conti-
nuiteit gehandhaafd, terwijl er geen noodzaak is over grotere
afstand te extrapoleren. Grafische bewerkingsmethoden worden
dan ock reeds lang toegepast.

Als bezwaar van de grafische verwerking wordt vaak gevoeld,
dat het moeilijk is, het overzicht over de vrijheidsgraden en fouten
te houden. Om deze reden willen wij in het vervolg van dit hoofd-
stuk nagaan, welke mogelijkheden er zijn om bij grafische correctie
bedoeld overzicht te houden. Om dit te bereiken worden de gra-
fieken voorlopig in een bepaalde wiskundige vorm gegoten, nl
die van het verschuivend gemiddelde.

402 -~ NADERE BEPALING VAN DE GEWENSTE METHODE
In 202 zijn wij gekomen tot de formule
(202.6) Ewp =Ry + My + C.

In 301 hebben wi deze formule uitgebreid tot de vorm
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(301.8) Dy — <D 4 B + fip + lipe

De vermelde #z werd in (301.18) nog gesplitst in sxp + Txp.
Wi zouden (301.8) dus kunnen schrijven in de vorm

(402.1) Qip = <Q> + 3+ fip + isp + Trp.

Wanneer we de p nu niet laten slaan op een proefveld, doch
op een bepaald blok van het onderzochte proefveld, dan moet
iip aanduiden, hoeveel dit blok in vruchtbaarheid van de ge-
middelde vruchtbaarheid afwijkt, terwijl ¢z, aangeeft, in hoeverre
de opbrengst £k van ras % in blok p systematisch van de som
<0> | ok + @iy verschilt. Aangezien binnen het proefveld ver-
ondersteld mag worden, dat de enige systematische invloed in de
vruchtbaarheidsverschillen ligt, duidt 4z, dus aan, in hoeverre
de vruchtbaarheid van het veldje waarop ras & verbouwd werd
van het blokgemiddelde afwijkt.

Omdat 4z hier een veel beperkter betekenis heeft dan in het
vorig hoofdstuk, willen wij hem vervangen door het symbool Zz,.
Het veldje, waarop 2z, betrekking heeft, noemen wij in het ver-
volg veldje (&p).

Het is niet noodzakelijk Axp beslist als een fout te beschouwen.
Wanneer men er naar streeft de vruchtbaarheid in rekening te
brengen door de waarden x en A gezamenlijk, dan is de A een deel
van de benodigde formule. Aangezien deze formule in principe in
staat is het vruchtbaarheidsprobleem op te lossen, is het niet meer
nodig van een noodformule te spreken. Hier is veeleer sprake van
een ideale formule (zie 106).

Slechts wanneer de vruchtbaarheidskaart voor het ene ras
anders zou unitvallen, dan voor het andere, zou men wvan een
noodformule moeten spreken, wanneer men toch maar één
kaart tekende. Dit komt evenwel weinig voor; tengevolge van
ons begrip ,,rekenopbrengst”. Daarom willen wij in het vervolg
aannemen, dat er met een ideale formule gewerkt wordt.

Dit heeft tot gevolg dat de asymptotische waarden gi en ip
als | ware waarden’” mogen worden opgevat. Wij willen ze daarom
gewoon aanduiden als gx en yp. Daarentegen moet de schrijfwijze
< Q> worden gehandhaafd omdat de vorm £ steeds besmet zal
zijn met toevallige fouten.

Formule (402.1) lezen wij nu dus als volgt

(402.2) Qup = <0> + o+ pp 4 hap + T
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Op grond van (301.23) en de discussie na (301.9) geldt nu, in
verband met het feit dat er geen monsterfouten mogelijk zijn,
bij een ideale formule,

(402.3) Toe] =0
[a] =0

[Aep] =0

[[Aer]] =0;

terwijl [Ar,] niet O behoeft te zijn.

Van de constanten die in (402.2) genoemd worden heeft o
betrekking op de rasinvloed, 7wz slaat op de toevallige fout van
veldje (kp), terwijl zijn vruchtbaarheid wordt vertegenwoordigd
door de waarden <0, tp en App.

Wij willen de betekenis van deze symbolen door een tekening
duidelijk maken. Daartoe stellen wij dat wij een strokenproef
bestuderen, waarbij de veldjes gelegen zijn op de manier als in
{402.4) in beeld gebracht. Alle blokken zijn 1 veldje breed en liggen
achter elkaar. Wij willen nu met name veronderstellen, dat wij
twee blokken hebben, met in ieder blok 7 rassen. Het vrucht-
baarheidsverloop is in fig. (402.4) door de lijn AC weergegeven.

(402.4)

o x> @

P
S
N i
-‘ J
. ke
!
5 Fzo w

1‘2.'3‘4‘\'5.6'7 alalmlullz‘w‘m

1* blok 2% blok

Wanneer wij de opbrengst van het fictiefras op een bepaald
veldje als de vruchtbaarheid van dat veldje beschouwen, kunnen
wij in verband met (402.3) zeggen dat < 2> de gemiddelde vrucht-
baarheid van het gehele veld is. Deze gemiddelde vruchtbaarheid
is weer te geven door de lijn DE. De waarde y, geeft aan hoeveel
de gemiddelde vruchtbhaarheid van het eerste blok van het totaal
gemiddelde afwijkt. Laten wi deze gemiddelde vruchtbaarheid
voorstellen door de lijn FG, dan is de loodrechte afstand tussen
FG en DE gelijk aan u,. Zo kunnen wij de gemiddelde vrucht-
baarheid van het tweede blok weergeven door HI, die op de af-
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stand p, van DE is verwijderd. De waarden Azp geven voor ieder
veldje de vertikale afstand tussen 4B en FG in het eerste blok,
en tussen BC en HI in het tweede.

Wanneer wij de opbrengst £2z» van een bepaald veldje grafisch
voor willen stellen in fig. (402.4) dan zal deze voorstelling niet
op de vruchtbaarheidsiijn AC liggen, doch daar een bedrag gx van
verwijderd zijn., {Omdat we in deze paragraaf de methodiek be-
studeren willen wij aannemen dat er geen toevallige fouten zijn).

Hoe kan nu uit de opbrengsteijfers £z, de lijn AC worden be-
rekend? Het is duidelijk dat daartoe de inviloed van gr moet
worden uitgeschakeld. Om dit te bereiken middelen wij (402.2)
over p. Wanneer wij tevens de toevallige fouten onvermeld laten,
geeft dit

(402.5)

118 [ Q] 19 o] | 9 [Raa]
o + -

=<0 4+ or + ” "

Substitutie van gz uit (402.5) in (402.2) geeft in verband met
(402.3), en onder weglating van de toevallige fout,

(402.6)
Qup -2 2]
#

1 (A n-1 A -1 [Anip1]
= Ak .

pptAkp ”

Het is de bedoeling van (402.6) de waarde van ps + Akp te be-
rekenen, maar er ontbreekt nog het een en ander aan. Allereerst
is daar de term

t(n=1) [Ae151]

¥

die storend werkt. Van deze term zullen wij de waarde moeten
bepalen.

Aangezien volgens (402.3) veor ieder blok geldt [Ap] =0, moet
de waarde van A in ieder blok om 0 schommelen, Dit schommelen
kan zeer systematisch plaats vinden. In fig. (402.2) is 1 aan
het begin van ieder blck sterk positief, met het opklimmen van de
veldjesnummers daalt de waarde van A tot hij sterk negatief is.

Om nu toch de waarde van

tn — 1) [ Anip)]
#
te kunnen bepalen mcet dit systematisch verloop worden cmzeild.
Dit kan bereikt worden door in ieder blok de rasvolgorde
door het toeval te laten bepalen, Het wverloop van A mag dan
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systematisch zijn binnen een blok, maar het is toevallig welke i
uit dit blok in de vorm

tir - 1) [Aep,]
#

wordt opgenomen. Uit het ene blok zal een positieve 4 worden
genomen en uit het ander een negatief. Bij gevolg mag de asympto-
tische waarde van de onderzochte vorm gelijk aan 0 worden ge-
steld wanneer aan de eis van toevallige verdeling is voldaan.
Op grond hiervan kunnen wij (402.6) dus bij benadering schrijven als

D] _ 7o 1
"

(402.7) D o+

;.kp .

De waarden die volgens (402.7) worden berekend zijn in figuur
(402.4) weergegeven door de stippellijnen KL en MN. Door dit
resultaat met ABC te vergelijken blijkt dat de gevonden lijn twee
gebreken heeft: de helling is verkeerd en er is een plotselinge
overgang op de blokgrens.

Van deze gebreken is de helling het gemalkkelijkst te verbeteren.
Daartoe schrijven wij (402.7) in de vorm

Dy — 0 Ef)k,,] :n—; 1 Qip— - 1) [2ripy] o+ n—;— 1

Akp.
7 ke

Door beide leden met te vermenigvuldigen vinden wij

n
#n—1

t=-Dep) n
w— 1 ~n-ﬂlM+;Lk”'

(402.8) Qnp —

De waarden die volgens (402.8) worden berekend, zijn in fig.
(402.4) aangegeven door de kruisjesliinen PG en HQ. Het blijkt
dat de helling van de lijnen nu goed is, maar dat de plotselinge
overgang op de blokgrens nog erger is geworden,

De moeilijkheid waarvoor wij staan komt scherp naar voren
door (402.7) met (402.8) te vergelijken. Volgens de eerste formule
wordt de up goed berekend, volgens de tweede de Agp. De pp en de
4ip gehoorzamen dus niet aan dezelfde wetten.

Zowel (402.7) als (402.8) vergelijken de opbrengst 4 met de
gemiddelde opbrengst van ras £ Om up goed te berekenen moef
xp zelf in dit gemiddelde zijn opgenomen; om Agp goed te be-
rekenen mag Qwp nief in dit gemiddelde opgenomen zin., Wat is
de oorzaak hiervan’



161

Bij het bespreken van (402.6) is gebleken dat de vorm

A1) {Aupl
F

asymptotisch de waarde 0 heeft. Dit is het gevolg van een kans-
verdeling waaraan iedere Az is gebonden, Wij zouden kunnen
zeggen dat iedere Az krachtens zijn aard een inhaerente kans-
verdeling heeft. Op grond daarvan kunnen wij ook zeggen, dat
iedere Ar s, asymptotisch 0 wordt. Wanneer wij aannemen dat ras &
in fig. (401.1) of fig. (402.4) op veldje no. 2 heeft gestaan, en wan-
neer wij in verband met deze aanname de vruchtbaarheid van veldje
2 onderzoeken, dan weten wij nog niets over de waarde van A1)
in de andere blokken, omdat de ligging van ras % in die andere
blokken onafhankelijk is van de ligging van ras & op veldje 2.
Wij weten slechts dat A1) in waarde om 0 schommelt en asym-
ptotisch 0O is.

Daarentegen mogen wij A niet asymptotisch 0 stellen omdat
bekend is dat Az op de vruchtbaarheid van veldje 2 betrekking
heeft. Om de vruchtbaarheid van veldje 2 te kunnen berekenen
moeten wij dus g, belichaamd in £z, buiten het rasgemiddelde
laten (zie 402.8).

‘Met g ligt de zaak heel anders, Blijkens (402.3) is [py] =0
Hieruit volgt

(402.9) wup == tm— 1) [pyp)]-

Wanneer pp niet 01is, is de vorm — t# {(— 1) [ 4] het ook niet.

Om up goed te berekenen moeten dus alle waarden pu,, be-
lichaamd in £, in het rasgemiddelde opgenomen worden (zie
402.7). Bij het bestuderen van (402.5) hebben wij van de eigen-
schap [uns] =0 gebruik gemaakt,
(402.10) Eenvoudig uitgedrukt kunnen wij zeggen, dat een
afwijking van een gewmnddelde slechis asymplotisch (0 kan worden,
wanneer zyj bewegingsvrijheid heeft over het gebied, waarvoor hel ge-
middelde berekend 1s.

Zo geven de waarden u de afwitkingen aan van het proefveld-
gemiddelde. Wanneer met formule {402.8) gewerkt wordt hebben
deze waarden geen bewegingsvrijheid over het gehele proefveld,
omdat ze bij het bepalen van het gemiddelde in de blokken [£)
moeten blijven. Formule (402.8) is voor het bepalen van g,
dus ongeschikt.

Daarentegen zijn de waarden A afwijkingen van het blokge-
11



162

middelde. Omdat de plaatsen van een bepaald ras in de diverse
blokken onderling onafhankelijk zijn, heeft iedere 2 volledige
bewegingsvrijheid, behalve de 2 in het blok dat onderzocht wordt.
Wanneer de A van veldje 2 wordt onderzocht, is A1 aan veldje 2
gebonden. Deze i moet dus buiten het rasgemiddelde worden
gehouden. Nu is (402.8) dus wel goed.

Uit het bovenstaande is duidelijk dat we p en 4 tijdens de
berekening van elkaar moeten scheiden. Hoe dit het best kan,
willen wij uitleggen aan de hand van fig. (402.11), waarin enkele
gegevens van (402.4) zijn overgenomen.

(402.11)

12,35 (3,8, 778,910 91, 12 1,44

1t blok 2¢ blok,

1

De lijn AC geeft weer het vruchtbaarheidsverloop met het
gemiddelde DE. Omdat u van i moet worden gescheiden,
hebben wij de lijnstukken 4B voor g, en BC voor y, gecorrigeerd.
Dit gaf als resultaat FG en HI. Wanneer wij nu formule (402.8)
toepassen omdat A nog gezocht moet worden, zullen we de 1ijn-
stukken FG en HI berekenen.

Hier blijft dus een kunstmatige plotselinge overgang op de
blokgrens voorhanden. Deze is gemakkelijk te verwijderen, door
bij de berekende waarden de correctie voor g weer ongedaan te
maken. Dan wordt de lijn AC teruggevonden.

Dit summiere overzicht zal in de volgende paragraaf worden
uitgewerkt en verduidelijkt, terwijl dan tevens de gemaakte fouten
worden bestudeerd.

403 — HET BEREKENEN VAN DE VRUCHTEAARHEIDSLITN

In de vorige paragraaf hebben wij gesproken over de formule
(402.2) Dy = <0 | on + pp + My + The

Van deze formule moeten de waarden <>, up €n Arp de vrucht-

baarheidskaart omschrijven. Wij willen dus trachten deze waarden
te berekenen,
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Het spreekt vanzelf dat de asymptotische waarde van de ge-
middelde opbrengst niet is te vinden. Wij moeten volstaan met de
empirische waarde ervan. Deze kan verkregen worden door
(402.2) over k en p te middelen. Dit geeft
. Q . = L4 T
1 [Qall 5. tmied | twisd

m m %
+ TTMW[[AKWN 1 timn [[Ttm]]

mn mn

E:

In verband met (402.3) kan dit vereenvoudigd worden tot

O 0 + dmen [[Tun]
(403.1) Q=<0> + — "
Substitutic van <> uit (403.1) in (402.2) geeft
(403.2) Qs — 8 = o1 + pp + M + w_ﬂ’ﬁ””m_gg‘ﬂﬂ,

De tweede constante die berekend moet worden is pp. Het
spreekt vanzelf dat ook hier niet de ware waarde is te vinden, doch
slechts de empirische zp. Uit (403.2) laat zich deze vorm berekenen
door over % te middelen. Dit geeft

_ tm[Re] = e hep) | 1 [Tep] 1+ temnt[[Tien]]
W:_mﬁ_gz'ﬁ‘l_””JraﬁJr mxph mn

In verband met (402.3) kan dit worden vereenvoudigd tot

t [tep] 4 1o [[Tun]]

(4033)  ppmpp+ 120 dliedl]
Substitutie van wp uit (403.3) in (403.2) geeft
= _ m
(403.4) Opp — 82— up =gk—|—1kp+rkp--j—g'i].
In het vervolg willen wij stellen
(403.5) wip = Doy — 2
@’ hp = Wrp — fip;
zodat {403.4) de vorm krijgt
(403.6) o' =0k + App - TEp — -T%%@

Nu moet Az worden berekend, Naar analogie van (402.5)
en (402.6) schakelen wij daartoe eerst g uit. Daartoe middelen
wij (403.6) over p. Dit geeft
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tnlesn] 19 [Ty 4t [T
(403.7) —F =@+ - IR

e
Substitutie van g uit (403.7) in (403.6), geeft

(403.8) V'ip= a'tp— ——_*”E:" ] gy AL ?E"""—‘ +

1o [oep] A0 (O]t 38 ([Tl

Thy —
+ R W a wn

In bovenstaande formule zijn in het rechterlid de vormen u
uitgeschakeld, en de vormen A aanwezig. In overeenstemming
met formule (402.8) moeten beide leden van de vergelijking nu

met

T worden vermenigvuldigd. Wij schrijven daartoe (403.8)

eerst in de vorm

Thp —

—1 - 1

_t=1) (]t (ng] |t dmn ([re]
n m man '

Door beide leden met ——— te vermenigvuldigen vinden wij nu

n—1
~ 1[4z
038) Fip= "oy =y 0l o
_tm—Dlmp] # ¢m[rxp]+ n 4 rmn [T ]
7— 1 n—1 m n—1 wmn )

Blijkens het voorschrift aan het eind van 402 moet de waarde
ip, die in {403.4) van het linkerlid van de vergelijking werd afge-
trokken, er nu weer bij worden opgeteld. Uit (403.3) en (403.9)
berekenen wij

¢ - - ‘f\ - 1 l ]
(403.10) Fip = F'sp + Fp = pp + iap— 01800y
_ 1 [za1p)] _ 1T tm[Tep) I 4 tmn [[Tea]]

#— 1 #n— 1 m +Mn—l wmn ’

In deze formule komen u; en Az op de juiste wijze voor,
maar ze zijn nog niet gescheiden van de toevallige fout zrp. Men
weet dus nog niet of de grootheld Fip, die men voor veldje (kp)
berekent, toegeschreven moet worden aan toeval of aan vrucht-
baarheidsinvloeden.
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Over deze vraag zijn inlichtingen te wverkrijgen door gebruik
te maken van de eigenschap dat vruchtbaarheidsverschillen
continu veranderen. Wanneer wij ons, om de gedachien te be-
palen, weer voorstellen dat wij te maken hebben met een stroken-
proef, kunnen wij de continujteit in formule brengen, door aan te
nemen dat het vruchtbaarheidsverloop over de korte afstand
van g veldjes als lineair mag worden beschouwd. Door deze aan-
name wordt onze formule een noodformule, Wij zullen de g steeds
oneven nemen, zodat de gemiddelde vruchtbaarheid van de g
veldjes gelijk is aan de vruchtbaarheid van het middelste veldje.

Wanneer het middelste veldje (&p) is, willen wij de g veldjes
aanduiden als {#*p). De verbouwde rassen noemen we p&*, met
bijbehorende lopende index px*. De p in het symbool herinnert
eraan, dat de rassen px* slechts in het blok $ naast elkaar ver-
bouwd werden op een rijtje van g veldjes (A*p); in de andere blok-
ken zijn deze rassen volgens toeval verspreid.

Op grond van onze aanname dat het vruchtbaarheidsverloop
op korte afstand lineair is kunnen wij nu stellen

18 [}‘PK‘PE
4

Wanneer wij (403.10) over de g veldjes (k*p) middelen, vinden
wij (in verband met (403.11))

(403.11) = Aup.

A F oF
(403.12) Pkﬁ—ﬂgﬁ’_f’}_#p + Ay —
1 1t — 1 [MAperipl]] | 28 [7pe]
gln—1) g
trgle— Dllrpeepn]]  tm[mep] 1 tmn ([Tenl]
- gm—1) Comn—1) " mn(n—1)

De waarde Prp kan nu worden beschouwd als een eerste be-
nadering van de vruchtbaarheid up + Axp. In de volgende para-
grafen zal er aandacht aan worden besteed of deze benadering
bruikbaar is en of zij verbeterd kan worden,

Tot slot moet nog worden opgemerkt, dat formule (403.11)
niet meer bruikbaar is aan de grens van twee achter elkaar lig-
gende blokken. Dan kan wel de gemiddelde vruchibaarheid van
g veldjes gelijk worden geacht aan de vruchtbaarheid {4zp) van het
middelste veldje, maar de g veldjes liggen niet meer alle in blok .
Door berekening is ons gebleken, dat dit de geldigheid van de
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hierna volgende conclusics en formules niet ongunstig beinvloedt.
Omdat de berekeningen erg ingewikkeld zijn laten wij ze liever
hier achterwege.

404 - DE TOELAATBAARHEID VAN EEN ALGEMENE VRUCHTBAAR-
HEIDSCORRECTIE

In formule (403.12) hebben wij een waarde gegeven voor de
vruchtbaarheid van het veldje (&p). Uit de formule blijkt dui-
delijk dat de berekende vruchtbaarheid met een fout behept is.
Dit brengt het gevaar mee, dat door een vruchtbaarheidscorrectie
de gemaakte toevallige fouten zoveel groter worden, dat het nut
van de vruchtbaarheidscorrectie hier niet tegen opweegt. Hierdoor
zou een vruchtbaarheidscorrectie de conclusies onbetrouwbaarder
kunnen maken.

Wij willen nu onderzoeken, wanneer op dit gevaar gelet moet
worden, Daartoe berekenen wij onze conclusies eerst met, en dan
zonder vruchtbaarheidscorrectie binnen de blokken. De aan-
wezige fouten zullen wij met elkaar vergelijken.

De schatting (pr)p van gr, die met behulp van de vruchtbaar-
heidscorrectie Prp voor ras & op veldje (%p) kan worden berekend,
is als volgt te omschrijven:

(404.1) (ee)p = Qup — 2 — Prp.

Deze waarde is het gemakkelijkst te berekenen aan de hand
van formules (403.2) en (403.12). Dit geeft

(404.2) (o) — or & 18— DAl 18 [rpere]
gn—1 T
gt — D) [[tpempi]]  ton [7e)] w4 rmn [T
gln—1 mn-—1) n—1 mn )

Uit ieder blok laat zich met (404.2) een waarde voor g bere-
kenen. Dit geeft in totaal dus # waarden. De beste schatting pz
van o krijgen wij door deze # waarden te middelen. Om dit
gemakkelijk te kunnen doen, zullen wij de rassen px* splitsen
in ras & en de overige rassen, die wij agn zullen duiden als
rassen px°. Wanneer wij deze scheiding aanbrengen in (404.2)
vinden wij
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tn— D] | 110 D= DiTApeeip ]

(404.3) (ox)p =er + cm—1 T CE=)
g—1 e — zgep] = 1){za]
Py e g glin—1)
tt {g—D—Hllrpens]] 1 7] # A tmn [T
+ gD =) TA=T  mn

Formule (404.3) moet nu dus over p gemiddeld worden. Voor
de overzichtelijkheid zullen wij de negen termen van het rechterlid
een voor een middelen. Wij vinden dan

le De eerste term geeft als gemiddelde gp.
2¢ Om de tweede term te middelen schrijven wij hem in de vorm

tr—1{Apr] A0 [Aea]  Aap
gn—1)  gla—1) gl —1)
Middelen wij dit over $, dan blijft de eerste term van het
ot [Arr]
gn(n—1Y

rechterlid onveranderd, de tweede term wordt —
De som van beide termen wordt dus

A0 [Aen] A9 [Aag] 4[]
gn(n—1) gn(n—1)  gn

3e Het gemiddelde van de derde term willen wij voorlopig aan-
duiden door

trtn{g—1) (0 — 1) [[Aela]l]
gn(n-—1)
4e Het gemiddelde van de vierde term wordt

g— 1 tn [Tkw]
g no
5e¢ Het gemiddelde van de vijide term wordt
g — Dlleen]
gn '
be Het gemiddelde van de zesde term is te vinden naar analogie
van de tweede. Het wordt

190 [Thar)
gn
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7¢c Het gemiddelde van de zevende term is te schrijven naar
analogic van de derde term. Wij schrijven

8¢ Het gemiddelde van de achtste term wordt

trma [ Ten]]
mn(n—1)"

Oe Het gemiddelde van de laatste term is
n i [T
#—1 k20 '

Van bovenstaand overzicht kunnen de vierde en de zesde term
worden samengenomen, evenals de achtste en de negende, Wiy
kunnen dus de formule opstellen

9 [ A n tran(g— 10— D[4 eI n

(404.4) on=or +

gn gn{n—1)
e, ttnlg—1)lvedl
no an *
ttru(g =D —Dlllgem]] 1w [Tl
gn(n—1) o mn '

Alles wat hier na de eerste term van het tweede lid staat, moet
worden beschouwd als de fout van g, wanneer er binnen de blokken
gecorrigeerd wordt,

Wanneer er geen correcties worden toegepast binnen de blokken
doch wel met blokverschillen wordt rekening gehouden, is de
schatting (gz)s" van gg, die wij voor ras % in blok p kunnen bere-
kenen, als volgt te omschrijven

(404.5) ()’ = Doy — £2 — Fp.
Deze waarde is gegeven in (403.4). In verband met (404.5)

lezen wij daar

(@046) (o' = on ot gt — 217
De beste schatting px’ van gz vinden wij nu door (404.6) over

# te middelen. Dit geeft

192 [ Aerr] L [tha) 1 oo [[en]]
n # mr )

(404.7) o' =@ +
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Alles wat hier na de eerste term van het tweede lid staat, moet
worden heschouwd als fout van o'

Een vruchtbaarheidscorrectie binnen de blokken is nu gewenst,
wanneer de fout van g (zie 404.4) kleiner is in absolute waarde
dan de fout van g’ (zie 404.7).

Hierbij moet evenwel nog op een bizonderheid worden gelet.
Zowel in (404.4) als in (404.7) komt als laatste de term

129 [[Tew]
wmn

voor. Het is duidelijk dat deze term wvoor alle rassen gelijk uitvalt
en dus op de rasverschillen geen inviced heeft. Om deze reden
kunnen wij deze term beter weglaten.

Door (404.4) en (404.7) te vergelijken komen wij dus tot de
volgende voorwaarde voor een vruchtbaarheidscorrectie binnen
de blokken

(404.8)
19 (k] 428 [Tor] ’ 1 [Aen] 1+t — 1)(n— DI A 11
w T gn gn(n—1)
1 (the] A tr{g—D[rueal] 1 mg—1) (=17 wml]]
n gn + gn(n— 1)

Deze ongelijkheid is overzichtelijker wanneer wij beide leden
in het lkwadraat verheffen,

Omdat (404.8} een algemene voorwaarde moet uitdrukken, die
geldt voor alle rassen en het gehele proefveld, hoeven wij slechts
de asymptotische waarde van de kwadraten vast te stellen. Dit
heeft het voordeel dat er gebruik van kan worden gemaakt, dat
het dubbele product van onafhankelijke factoren asymptotisch
= 0 is.

Bij het kwadrateren van (404.8) vindt deze regel echter slechts
beperkte toepassing, aangezien er in het rechterlid veel groot-
heden voorkomen die wel afhankelijk zijn.

In de eerste plaats wordt het begrip »° in ieder blok opnieuw
gedefinieerd. Er zijn dus » definities ,x°. Het is waarschynlijk dat
sommige rassen verschillende malen in een groep »° betrokken
worden zodat een aantal dubbele producten in werkelijkheid
zuivere kwadraten worden.

In de tweede plaats treden er tussen de waarden 1 dezelfde
correlaties op, die wij in 302 voor de ¢ bestudeerden.
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Wanneer wij met al deze correlaties rekening houden, worden
de berekeningen zo ingewikkeld, dat wij ze hier liever niet uit-
werken. Wij willen ons daarom beperken tot de zuivere kwadraten.

De asymptotische waarde van het kwadraat van alle toevallige
fouten duiden wij daarbij aan door ¢%, de asymptotische waarde
van het gemiddeld kwadraat van alle waarden 1 door A2 {zonder
indices).

Uit (404.8) leiden Wij op deze manier af

nig—Dm—1)
i e P

1 nig—Dn—1
e+ 2 e D RET A ) o

% #
Pagp? e
n2 n?

Wanneer wij alle termen met 22 naar het linkerlid brengen,
en alle termen met ¢* naar het rechter, wordt dit

1_ 1 g—1 2, 8 —1 g—1 2
_— — %A >?g2n +gﬂn(n——l)g‘

Door beide leden met het positieve getal g2 (n — 1} te vermenig-
vuldigen wordt dit

1) G =g D) 2> Y1) e 1) + (1) o
of

12 nig—1)
TE—Dig+Dmr—D—1f
Een kleine vercenvoudiging geeft
it %
A7 g D+ =D

Wanneer wij bij het kwadrateren van (404.8) met de afhanke-
lijkheid van de termen van het rechterlid volledig rekening hadden
gehouden, zou het rechterlid van (404.9) kleiner zijn geworden.
Voorwaarde (404.9) blijft dus aan de veilige kant.

Het vinden van deze voorwaarde heeft een principiéle betekenis.
In 401 hebben wij op aprioristische grenden aangenomen, dat
een grafische vruchtbaarheidscorrectie de meest efficiénte was.
Nu blijkt dat een grafische correctie aan grenzen is gebonden,
is dezefefficiéntie dubieus. Dit maakt ons onderzoek evenwel niet
waardeloos. Soms moet er grafisch gecorrigeerd worden, Maar in
andere gevallen kan dit onderzoek er toe leiden de proeven toch
volgens een FISHER-schema op te zetten.

(404.9)
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405 — OVER DE VOORWAARDEN VOOR CORRECTIE IN EEN BLOK

In voorwaarde (404.9) is weergegeven, hoe groot de vrucht-
baarheidsschommelingen in verhouding tot de toevallige fout
moeten zijn, opdat een vruchtbaarheidscorrectic voordeel zal
geven. Hierbij is rekening gehouden met de gemiddelde vrucht-
baarheidsschommelingen van het gehele preefveld.

Het laat zich denken, dat in het algemeen een vruchtbaarheids-
cortectie niet gewenst is, doch dat op een bepaalde plaats er wel
aanleiding toe bestaat. Wij zullen nu de voorwaarden voor vrucht-
baarheidscorrectie in één blok onderzoeken. Wij nemen daartoe
aan, dat in de blokken |p] de vruchtbaarheidscorrectie door middel
van de waarden up) afdoende is.

Indien wij bij het corrigeren van blok p de methode van 403
volgen, zal de berekende rasvoortreffelijkheid (or)p in formule
(404.3) zijn unitgedrukt, De # — 1 waarden (g&)(p; zijn weergegeven
in (404.6).

De beste schatting gr van de ware gr vinden wij nu met de
formule -

(405.1) g (@t 10— Dlowpy]

Uit (404.3) en (404.6) vinden wij
_ 1 §Qk o — 1) [Zrp] 1 @— 1) — 1) [[Aueip]]

A gln—1) gm—1)
g—1 tg—Dlitger] tm—1) [trip]
T T ¢ g(n—1)
) T(g - 1) (% _ 1) [[Tf,x"tﬁ.lﬂ tm [TKPJ
gw—1) mn—1)
n A Amn[[Te]]
Tu 1 mn § +
-+ %3?(% — 1)[Qk o+ Rblp) + Thipy o L2 E;Km}]%
of
(405.2) er=or + T(g;nlllﬁpﬂ 4= :2 ] |
t1 (g1 — D[4l _i_g* 1 o — tg—1) [tpep] n

en(n—1) an en
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1) gl |t Dimap] | 11 @— D —Dllwen

gn(n—1) # ' on(n—1)
Ly tmlag]  ptmGn—Dlwapl] 11t ]
‘2mn (n—1) mn n— 1 mn ’

Het deel van de formmule, dat tussen H is geplaatst, is voor

alle rassen gelijk, en kan dus bij het bestuderen van de rasver-
schellen worden weggelaten.

Wanneer er niet gerekend wordt met vruchtbaarheidscorrecties
binnen de blokken is de baste schatting gz’ van gx te vinden in
formule (404.7) waaruit de term

Pt [[a]]
MY

weer kan worden weggelaten.
Uit (405.2) en (404.7) zien wij dat een vruchtbaarheidscorrectic
zin heeft, wanneer

(4053> tn {E’:"kw} + tn [Tkw]

o ’{g("ﬁ D+ it — 1) [Ap)

% gn(m—1)
M E—DEm—D[Aenl] g—1 tg—1) [tpep]
gn(n—1) ’ ™ gn T £n =
{gtn—D+ 13t —Ulzep] 11 @D O—=D[lruelp]]]
m D) gD |

Evenals bij (404.8) zullen wij deze ongelijkheid in het kwadraat
verheffen. Hierbij moeten wij bedenken dat wij slechts in blok p
een vrachtbaarheidscorrectie nodig achten. In blok # zijn de
waarden van A naar onze mening dus groter dan in de blokken ..
In verband hiermee zullen wi de asymptotische waarde van de
kwadraten van de grootheden A in blok $ aanduiden met %
in de andere blokken met Ajp 2

Bij het kwadrateren van (404.8) hebben wij met de aanwezige
correlaties van de verschillende termen geen rekening gehouden.
Dat zullen wij nu wel doen. Bij (405.3) is dit vrij gemakkelijk
daar alle grootheden van het linkerlid onderling orafhankelijk zijn,
terwijl er in het rechterlid geen mogelijkheid is dat een bepaald
veldje tweemaal is genoemd. De toevallige fouten zijn dus allen
onderling onafhankelijk, terwijl bij de waarden 1 slechts met
correlaties in de zin van 302 behoeft te worden gerekend.
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Wij willen deze correlaties eerst nagaan, en beginnen daartoe
met het kwadraat te zoeken van de eerste twee fermen van het
rechterlid van (405.3}, dus van

{g -1 1l Hlde] 11D DilAuend]

(405.4) gn(n—1) mn—1)

De waarden 1 zijn genomen uit (» — 1} blokken, Volgens de
bespreking van formule (402.6) treden er geen correlaties op tus-
sen waarden 4 uit verschillende blokken. Wij kunnen dus beginnen
met een willekeurig blok g te bestuderen. Blok ¢ heeft tot (405.4)
het volgende bijgedragen:

{gn =) F 1} heg  tg—1) [Apeq]

gn(n—1) gn(n—1)
Het kwadraat van (405.5) is nu
(g — D+ 13248 tg—1) (L] L

gn? (n — 1) g2 (n — 1)
N gt — D+ 131 {g—1) g hpuegd | #1 (€ — D (g—2) [[A1g 4]

gnt (n— 1) EnE (n — 1)? ’

waarbij in de laatste term door I en [ twee willekeurige rassen
»&® worden aangeduid, die niet dezelfde mogen zijn.

De asymptotische waarde van de kwadraten uit de eerste twee
termen is 43 % de asymptotische waarde van de dubbele producten

(405.5)

(405.6)

2
uit de laatste twee termen is volgens (302.4) gelijk aan —- ”ﬁf—w—l
De asymptotische waarde van (405.6) is dus -

(gD H 1A (1) Bp?
g‘ZnE (n, — 1)2 g2n2 (% _ ])2

C 2{gn— D+ 1 g — DA g—1DE—2) 4p?

en?(n— 172 (m— 1) gtn—120m— 1)
Na enige vereenvoudiging wordt dit
g2n—1) 20— 1)+ ¢

P — T Ty e

! =g,
m—1" gmE(n— )2 el

of
—g 2(n—D L1,
U (- e et

1 m
po- T T o
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Dit 1s dus het kwadraat van (403.5). Het kwadraat van (405.4)
is (#— 1) maal zo groot omdat er (n — 1) blokken [$; zijn. Dit
kwadraat is dus
—g 2m—1)+1

2’ J2 + 1 . 3%2 (n ) AL?”J

Met behulp van deze uitkomst brengen wij (405.3) in de kwa-
dratische vorm (zie ook de tekst onder {405.3)):

1
EP +7 Mm T "ot Aip)® +
m—g 2 (n— N+ 1 (¢— 1)? —1
+ m—1" gntln—1) e0* T g*n® + g“‘ﬂ“"‘ o+
Lg— D11, g—DEr—1 ,
2n2 (.n 1)2 2.n2 (n )2
of, na enige vereenvoudiging,
—g 2(r—D+1 n 9
(405.7) lpz — g (‘H, 1) A!_pjz -+ W ag=,

. Wi willen voorwaarde (405.7) op twee manieren uitwerken.
In de eerste plaats willen wij veronderstellen

(405.8) Aps? =0,
Formule (405.7) wordt dan

#
3 o S — 0.2
#Z D
of
ﬂ.p2 "
(405.9) Ty
Wanneer wij ons herinneren dat (404.9) eist
A2 #

AT g — 1)+ (r—2)
dan zien wij dat de eis van (405.9) iets zwaarder is.

Wij willen nu (405.7) nogmaals bestuderen in de veronder-
stelling dat 4% niet gelijk is aan 0. Immers, wanneer A% te klein
is om aan voorwaarde (404.9) of (405.9) te voldoen, zal in de blok-
ken |p| geen correctie geoorloofd zijn. De waarde van 1,2 zal dan
invioed hebben op de gemaakte fouten, en dus ook op de eis die
wij aan een vruchtbaarheidscorrectie stellen.
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Volgens (405.9) is de grootste waarde van 4p+, die geen correctie
toelaat,

i
405.10 Ap?=—o?
( ) LB g (n _ 1)

Deze waarde kan 242 dus ook in (405.7) hebben. Wij zullen
die formule uitwerken in de veronderstelling dat dit inderdaad
het geval is, en vinden dan

—g 2(n-—1+1 # of |-

Apt > ;
i e Rt Sy e s Ly e
of, na enige uitwerking,
m—g 1
e
E # g m—1 n—1
(405.11) 2 >g(n—-l)' c .

406 — SAMENVATTING VAN DE VOORWAARDEN VOOR TOELAAT-
BAARHEID VAN EEN VRUCHTBAARHEIDSCORRECTIE
In de voorgaande paragrafen hebben wij enkele voorwaarden
gevonden voor de toelaatbaarheid van een vruchtbaarheidscorrectie.
In de eerste plaats zij herinnerd aan de formules

A2 7
(4049 7 g1~ (2
L om
(405.9) e Y
m—g 1
(405.11) Apt " g+m—1(2+n—l)

gn—1)" g

Deze drie formules geven minimumeisen. Wanneer de ver-

2
houding i kleiner is dan de waarde van het rechterlid is een

correctie gewoonh]k nadelig. Is de verhouding 12 gelijk aan de

waarde van het rechterlid dan geeft een correctie even vaak nadeel
als voordeel. Ts het linkerlid groter dan het rechterlid dan geeft
een correctic meestal voordeel, terwijl het gemiddeld voordeel
stijgt naarmate het linkerlid meer in waarde verschilt van het
rechterlid.

Nu is het duidelijk dat niet tot correctie zal worden overgegaan
wanneer het linkerlid en rechterlid precies gelijk zijn. Maar ook
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wanneer het linkerlid slechts weinig groter is dan het rechterlid,
heeft een correctie weinig zin. Dan zal de proeffout niet zoveel
verlaagd worden, dat de uitkomsten er veel betrouwbaarder door
worden,

Het is niet onze bedoeling na te gaan hoeveel het linkerlid
groter moet zijn dan het rechter-, om een correctie zinvol te maken.
Slechts deze conclusie willen wij trekken, dat het geen zin heeft
bovenstaande drie formules in de practijk te onderscheiden. Wij
kunnen in alle gevallen werken met formule (405.11), die de zwaarste
eisen stelt.

De betekenis van (404.9) is dan deze, dat hieruit blijkt dat een
vruchtbaarheidscorrectie over het gehele proefveld wenselijk is,
wanneer met formule (405.11) voor iedere plaats aangetoond kan
worden, dat een correctie daar nodig is. Deze conclusie lijkt van-
zelfsprekend, maar wegens de correlaties die tussen allerlei fouten
optreden gedurende de berekening, zou toch aan de juistheid hier-
van getwijfeld kunnen worden, als het niet rechtstreeks was aan-
getoond.

Nu zou men nog het bezwaar kunnen voelen, dat formule (403.11)
nog niet streng genoeg is. Deze formule is ontstaan door (405.9)
(in de vorm van (405.10)) in {(405.7) te substitueren. Men zou ook
nog {405.11) in (405.7) kunnen substitueren en zo doorgaan tot een
limiet bereikt werd.

Toch menen wij dat dit zelden noodzakelijk is. Het is onwaar-
schijnlijk dat de vruchtbaarheidsafwijking 4 op alle niet-gecorri-
geerde plaatsen juist zo groot is, dat een correctic bijna toeclaat-
baar is; en het. is ook onwaarschijnlijk, dat tot correctie wordt
besloten, wanneer aan (405.11) juist wordt voldaan. Mochten
deze uitzonderlijke gevallen zich voordoen, dan valt bovenbedoelde
limietwaarde ook nog gemakkelijk af te leiden. “354

Wij willen dus steeds werken met formule (405.11). Deze formule
heeft evenwel nog geen bruikbare vorm, omdat A,% het kwa-
draat van de ware vruchtbaarheidsafwijking, ons onbekend is.
Wij kunnen niet verder komen dan (Pzp— up), een schatting
van Ap. Deze schatting laat zich berekenen met behulp van de
formules (403.3) en (403.12}, waaruit we afleiden

(406.1)

_ , trg(n— D lAgepl] g [Tl
Prp— pup = hip — g(ﬂ—-—l)zb -+ alLag

o
o
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_ 11gn— Dzl

gn—1)
w1 [ Tep) 1 Amn [ Ve
T+  n—1 + n—1 wmn g

We zien naast Azp in de formule allerlei fouten vermeld. Hiervan
hebben de eersten invloed op de schatting van de vruchtbaar-
heidsverschillen in blok $; de fouten die tussen 3 % zijn geplaatst
kebben daarop geen inviced en kunnen dus verder worden ge-
negeerd.

Uit (406.1) laat zich nu een waarde van 2% afleiden door beide
leden te kwadrateren. Hierbi] moet er opgelet worden dat de
waarden onderling afhankelijk zijn voorzover ze in hetzelfde
blok liggen. Met sommige dubbele producten moet dus worden
gerekend als in de formules (405.4) tot (405.6). Verder moet er
weer onderscheid worden gemaakt tussen As® en A2, Wij streven
immers naar een bruikbare vorm van (405.11), die ook op dat
onderscheid is gebaseerd.

Door (406.1} te kwadrateren vinden wij dus als asymptotische
waarde

_ n— 1)
< (Prp—p)2 > = A* + g_gzg_n:ff)_Z At —
e—Negle—1) Ap® g ,, g1 ,
Fo—1p m—1 g% T e
of :
Ty 2 B 1 2 # 2
<(Prp )’ =Bt — e Aip) Lo 1
of

. e, m—g 1 __"
(406.2) Ap?= <(Prp—pup)*> mil-g(nfg’lmz g(n_l)"z‘

Wanneer wij Ap? uit (406.2) in (405.7) substitueren vinden wij

e & 1 5
<(PkP au?) > wm—1" g(ﬂ-l) ALPJ
. gom—g 2(n—0+1, , 7 .
(DT T m T gi=1y M T O
of
_ — 2n 2n
406.3) <(Prp—ip)t> > 28 NI L

12
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Deze formule is analoog aan (403.7). Door nu in deze formule
de waarde van 2y uit (405.10) te substitueren zullen wij een
formule vinden, die analoog is aan formule (405.11). Deze luidt

— wm—g 2n n 2n
<(Prap—jpp)t> >—2, . ¢* + o?
I =D g —D° | g

of
(406.4)

<(Prp—pp)> . 2n
o gln—1)

Deze formule moet dus worden gebruikt om te controleren
of een vruchtbaarheidscorrectie, die men in de practijk vindt,
wenselijk 1s. Maar ook deze formule is nog niet goed bruikbaar.
Zowel de teller als de noemer van het linkerlid zijn nog onbekend.
Van de teller is evenwel een schatting te verkrijgen door de asym-
ptotische waarde te vervangen door de empirische. Hierover
wordt in 407 en 408 nader gesproken. Een manier om de ¢* te
vinden wordt gegeven in 411.

Wij willen nu nog even letten op de vorm Z:‘;” uit het rech-

terlid. Uit deze vorm blijkt dat de verhouding tussen het aantal
rassen g, dat gebruikt wordt om de vruchtbaarheid van een be-
paald veldje te schatten, en het totaal aantal rassen s, invloed
heeft op de toelaatbaarheid van de vruchtbaarheidscorrectie op
een bepaalde plaats. Naarmate die verhouding groter wordt,
wordt de eis van toelaatbaarheid minder zwaar.

Dit verschijnsel vindt zijn verklaring in de vruchtbaarheids-
afwijkingen in de niet gecorrigeerde blokken |£]. Immers, wan-
neer wij deze afwijkingen =0 hadden gesteld (zie 405.8), dan
w—g
m—1

Wanneer nu g =, dan hebben deze afwijkingen geen in-
viced. In dit geval immers heeft men te maken met (402.3)

(402.3) [Aep) =0
Deze regel geldt voor ieder blok, zodat de invleed van A3 zich-

(1 pr2E 2 i).

m—1"n—1" ¢

niet in de formule voor {zie 405.9).

kwam de uitdrukking

zelf opheft, Dit komt hierin tot uiting dat Z:f =0 wordt.

Een ander uiterste wordt gevonden wanneer g = 1. Dan bereikt

de vorm m—g
m— 1

tussen 0 en 1 liggen. In verband met het feit, dat wij niet te snel

de waarde 1. In de practijk zal de waarde steeds
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tot vruchtbaarheidscorrectie willen overgaan is het gemakkelijk
de waarde van deze breuk gelijk aan 1 te nemen.

Wij willen nu de voorwaarden, die door formule (406.4) worden
gesteld, in tabelvorm brengen (zie 406.5). Voor het gemak geven
wij niet de verhouding van de kwadraten, maar van de absolute
grootten,

o . Prp— ..
(406.3) Minimuwmwaarde voor de verhouding L@—U—MJ bij een
toclaatbare vruchtbaarheidscorrectie, bij verschillende waar-
den van n en g (wanneer m = o)

i3

= 2 3 4 5 | 10 [ o
10347 | 274 250 [ 238 ] 217 | 2
3 150 | 1.23 | 114 | 1.09 | 1.01 | 0.94
5 | 1.06 | 0.89 | 0.83 | 079 | 074 | 070
7 | 0.86 | 0.72 | 0.67 | 0.65 | 0.61 | 0.57

9 | 074 | 062 | 0.58 | 0.56 | 0.53 | 0.50
11 [ 0.66 | .56 | 0.52 | 0,50 | 0.47 | 0.45
13 | .60 | 0.51 | 0.48 | 0.46 | (.43 | 0.41
15 | .56 | 0.47 ; 0.44 | 043 | 0.40 | 0.38

Uit formule (406.4) en ook uit tabel (406.5) blijkt, dat het aantal
blokken # een vri) geringe invloed heeft op de toelaatbaarheid
van de vruchtbaarheidscorrectie. Immers komt # steeds in de vorm

] voor. Vanuit het oogpunt van vruchtbaarheidscorrectie

heeft het daarom meestal geen zin » groter dan 3 te nemen,
Daarentegen heeft g een grote invloed op de toelaatbaarheid.
In (406.4) komt g uitsluitend in de noemer voor, Hieruit kunnen
wij de regel afleiden: Hoe smaller de vruchibaarheidstop is, des te
hoger moet hij zifn om weggecorrigeerd te mogen worden.
Wanneer men formule (406.4) of tabel (406.5) nauwkeurig

bekijkt, ziet men, dat er ook een voorwaarde is gevonden voor
een correctie over de breedte van [ veldje (g = 1). Zulk een cor-

rectie kan er op neerkomen dat het veldje wordt uitgeschakeld.

Het zou ons te ver voeren het probleem van het uitschakelen van
gegevens hier in zijn geheel te bespreken.

Tenslotte nog dit: In het bovenstaande hebben wij speciaal
gelet op de toelaatbaarheid van een correctie op een bepaalde
plaats. Hierbij hebben wij de conclusie getrokken, dat men steeds
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af kon gaan op de voorwaarden van {406.5). Dit mag ons evenwel
miet doen vergeten dat wij in 401 reeds over een ander criterium
hebben gesproken.

Bij het bespreken van fig. (401.1) hebben wij op grond van de
continuiteit van het vruchtbaarheidsverloop gebruik gemaakt van
de stelling dat de vruchtbaarheid over korte afstanden geinterpoleerd
mag worden. Van deze stelling kan ook gebruik worden gemaakt,
wanneer wij met het criterium van (406.5) werken. Aan de hand
van dit criterium zal voor bepaalde plaatsen geconcludeerd kun-
nen worden, hoe de vruchtbaarheid daar in rekening moet worden
gebracht. De vruchtbaarheidscorrectie wvan de tussenliggende
plaatsen kan gevonden worden door interpolatie.

407 - VOORBEELD VAN HET TOETSEN VAN EEN VRUCHTBAAR-
HEIDSLIJN

Het gebruik van het criterium van (406.5) kan het best worden
toegelicht aan de hand van een voorbeeld. Daartoe hebben wij in

(407.1)

o i
rrT T +++

+

+ - +
T P L [ I 1 {1 I - S

+

3 L 7 [ " [F] s 7 g ar a2 3 w7 oxN 3 35 3 N 4 43 43 47 4 51 B 5

fig. (407.1) een deel van een proefveld in beeld gebracht. Van dit
proefveld kunnen wij aannemen dat
(407.2) s =12
n =
m =70 {de veldjes 1—55 liggen allen in blok p)
pip = 0.
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De punten in grafick (407.1) geven voor ieder veldje de waarde
van Iz (zie 403.10). De rasinvloeden zijn dus reeds uitgeschakeld.
Om nu met behulp van formule (403.12) waarden Pzp te kunnen
berekenen moeten wi) nog de waarde van g kiezen.

Wij kiezen

(407.3) g =5

Met behulp van deze keuze hebben wij voor ieder veldje de
waarde van Ppp berekend. Deze waarden zijn in de grafiek weer-
gegeven, verbonden door een stippellyn.

Het blijkt duidelijk dat de stippellijn nog kieine fluctuaties ver-
toont tengevolge van de toevallige fout, maar deze fluctuaties
zijn toch zeer gering. Wanneer alle punten F door een lijn ver-
bonden werden, zouden de fluctuaties veel groter zijn.

Het is wellicht nuttig er op te wijzen dai de fluctiwaties geew
wmaal zgn voor de foevallige foutf. De waarden P, die voor twee
naast elkaar liggende veldjes zijn berekend, zijn in hoge mate
gecorreleerd omdat ze grotendeels uit dezelfde waarden I7 zijn
afgeleid. Bij gevolg zijn de fluctuaties abnormaal sterk onder-
drukt in verhouding tot de schommelingen van de waarden F.
De stippeliijn is dus minder betrouwbaar dan hij op het oog lijkt.
De waarde van de stippellijn is alleen te beoordelen met behulp
van (406.5).

Uit deze tabel lezen wij af dat de afwijking tussen de stippellijn
en de nullijn (£Prp — ) bij # =2 en g = 5 minstens 1.06 ¢ moet
zijn, dus minstens 1.06 x 12, of 13. Het blijkt, dat deze afwij-
kingen voorkomen op vier plaatsen nl. de veldjes (10, 11, 13),
(20—32), (41), en (4751).

Wij zien dus dat er een viertal plaatsen zijn, die voor correctie
in aanmerking komen. Maar nergens is de wenselijkheid over-
tuigend. Alle vier plaatsen zijn misschien ontstaan doordat telkens
de toevallige fout van één veldje , toevallig” erg groot was, nl. van
de veldjes 11, 31, 41 en 49. Asymptotisch is het wenselijk te corri-
geren, maar in het licht van deze mogelijkheid kunnen wij het
in dit geval misschien beter nalaten. Wij kunnen het ook zo zeggen:
In dit geval betwijfelen wij of het mogelijk is, de berekende waarde
van (Prp — pp) te zien als een voldoend nauwkeurige schatting
van de asymptotische waarde, die in (406.4) genoemd wordt.

Er zijn verschillende wegen, waarlangs wij een betere schatting
van de asymptotische waarde kunnen vinden. Wanneer wij b.v.
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de grafiek bezien voor de veldjes 1020 dan is het kennelijk dat
de kleine fluctuaties toevallig zijn. Wanneer deze fluctuaties
worden genegeerd door het trekken van een strakke lijn, wordt
de asymptotische afwijking beter benaderd. Ook op andere plaatsen
zouden wij dit kunnen proberen.

Een tweede weg ligt in het vergroten van g. Wanneer wij niet
stellen g =5, maar b.v. g =9 of g =15, dan zullen de kleine
fluctuaties steeds kleiner worden. Wij kunnen er dus naar gtreven
¢ zo groot’ mogelijk te kiezen. Dit geeft tevens het voordeel dat
aan de eis van (406.5) gemakkelijker kan worden voldaan, omdat
de eis bl toenemende g minder zwaar wordt,

Het vergroten van g heeft echter een grens. Wij hebben
formule (403.11) en de lateren opgebouwd op de verenderstelling
dat het vruchtbaarheidsverloop over een afstand van g wveldjes
als lineair mag worden beschouwd. In ons voorbeeld is deze ver-
onderstelling zeker niet meer te handhaven, wanneer g > 20 wordt.

Wi zouden nu als methode kunnen aanbevelen:

le kies de g zo groot mogelijk;
2¢ bereken het verschuivend g-voudig gemiddelde;
3c trek gevonden slingerlijn uit de hand strak.

De lijn die men langs deze weg krijgt, zal evenwel weinig ver-
schillen van de lyn die men vindt als men de stippellijn recht
trekt, die wij vonden in de veronderstelling dat g = 5 was. lemand
die een zekere oefening heeft, behoeft in de regel zelfs de steun van
het verschuivend gemiddelde (de stippellijn) niet.

De lijn, die in fig. (407.1) strak is getrokken, is op bovengenoemde
wijze gevonden. De afwijkingen tussen deze lijn en de nullijn
willen wij aanvaarden als betere benadering van de asympiotische
waarde <CPpp— up> dan de gevonden afwijkingen. Wi zullen
dus de strakke lijn op toelaatbaarheid moeten controleren.

Men ziet dat deze lijn drie extremen heeft: bij veldje 1C, bij
veldje 34 en bij veldje 30. Van iedere top moeten wij nagaan
of hij toelaatbaar is. Hierbij moeten wij bedenken, dat aanname
(407.3) zijn zin heeft verloren. Wanneer de strakke lijn goed is
getrokken, dan zouden wij dezelfde lijn hebben gevonden, wanneer
de stippellijn was berekend in de veronderstelling dat g =9.

Toch moeten wij de beschikking hebben over een bepaalde
waarde van g, omdat anders tabel (406.5) onbruikbaar is. Wij
zouden deze regel willen volgen:
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(407.4) Bij het beoordelen van de foclaatbaarheid wan de vrucht-
haarheidscorrectie op een bepaalde plaats wmoet g de grooisie af-
stand aangeven waarover de vruchthaarheid als voldoende lineaty kan
worden beschouwd.

Wanneer men cen strakke lijn uit de hand trekt, bestaat de

mogelijkheid dat men een verkeerde kijk op de puntenbundel
heeft. Zo is bij het trekken van de strakke lijn voor de veldjes
1—9 alleen maar aansluiting gezocht bij het traject 10—20, zonder
te letten op het verloop van de stippellijn ter plaatse. Men zou
nu ten onrechte voor dit gebied de strakke lijn als de beste schat-
ting van de asymptotische waarde <Py — pp>> kunnen be-
schouwen. Het is mogelijk dat de stippellijn hier een betere schat-
ting geeft. In verband hiermee zouden wij nog de volgende regel
willen formuleren:
(407.5) Bij het beoordelen van de toelaatbaarheid wvan een vruchi-
baarhetdscorvectic moet wiet alleen die waarde toelaatbaar blijken,
die gegeven wordt door de | strakke lijn’’, maar ook de waarde van hel
verschil, dat berekend wordt volgens formule (406.1) met de waarde
van g, die in (407.4) wordt genoemd.

Wanneer wij nu de eerste top in de practijk toetsen, zien wij
dat volgens de strakke lijn het wvruchtbaarheidsverloop over een
afstand van 15 veldjes zeker voldoende lineair is te noemen. Daar in
(407.2) is aangenomen dat n=2, is volgens tabel (406.5) een
vruchtbaarheidscorrectie toelaatbaar wanneer de afwijking 0.55 &
of ongeveer 7 is. Blijkens de grafiek voldoet de strakke lijn ruim-
schoots aan deze eis; blijkens berekening het gemiddelde van de
eerste 15 veldjes maar nauwelijks. De strakke Iijn is in het begin
Iager getrokken dan met de gegevens overeenkomt.

Wanneer wij alleen het traject van veldje 9—I8 in ogenschouw
nemen is g — 9. De afwijking moet dan 0.74 ¢ of 9 zijn. Het is
duidelijk dat nu zowel de strakke lijn als het berekend cijfer aan
de voorwaarde voldoet. In dit traject is dus een vruchtbaarheids-
correctie gewenst,

Bi het laatste extreem kan de vruchtbaarheidsliin rondom
veldje 49 over een afstand van 5 veldjes als voldoende lineair
worden beschouwd. Volgens (406.5) moet de afwijking 1.06 ¢ of 13
zijn. Dit is zowel voor de berekende waarde als voor de strakke
fjn het geval, dus ock hier is de vruchtbaarheidscorrectie ge-
wenst.

Met de top by 34 is het een eigenaardig geval. Hier is de
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strakke vruchtbaarheidslijn kennelijk krom. Ocok reeds over cen
afstand van 3 veldjes. Wanneer wij nu g =3 nemen, moet de
afwijking 18 zijn, wat niet het geval is; de maximale afwijking
is slechts 11. Indien wij nu toch g groter nemen, en dus het
krom zijn negeren, zien wij dat de eis snel daalt. Zo meet bij g =7
de afwijking 10 zijn, waaraan de veldjes 30—36 alle voldoen en
hun gemiddelde dus ook. Door een geschikie keuze wvan g kan ook
hier nog de toelaathaarheid vaw de correclie worden aangetoond.

Willen wij nu nog de contrdle van (407.5) toepassen, dan blijkt
ook hieruit dat de correctie toelaatbaar is. Toch zien we aan de
grafick dat het mogelijk is dat op de top, waar de grootste vrucht-
baarheid wordt aangenomen, ,,toevallig’” een paar slechte veldjes
liggen, zodat de contrdle (407.5) negatief vit zou vallen. In zufke
gevallen dient de wuitslag als positief te worden beschouwd, wanneer
het mogelijk is met een grotere g dan in (407.4) bedoeld, een positieve
witslag te krijgen. Hierbij moeten natuurlijk spitsvondigheden wor-
den vermeden.

408 — PRECISERING VAN DE VRUCHTBAARHEIDSLIJN

In de vorige paragraaf hebben wij aan de hand van een practisch
voorbeeld nagegaan hoe de ontwikkelde correctiemethode in de
practijk werkt. Hierbij bleek dat het mogelijk was op drie plaatsen
de noodzaak van een vruchtbaarheidscorrectie aannemelijk te
maken, nl. rondom de veldjes 10, 34 en 50.

Wanneer wij nader over de gebruikte criteria nadenken, is het
resultaat evenwel niet bevredigend. Dit laat zich als volgt aan-
tonen. In grafiek {407.1) zijn 35 veldjes afgebeeld. Volgens (407.2)
liggen er 70 veldjes in dit blok p. Wanneer wij nu eens aannemen
dat de veldjes 56—70 veel vruchtbaarder waren dan tot dusver
is aangenomen, dan verandert er aan de veldjes 1—55 niets. De
nullijn z, moet evenwel hoger komen te liggen, omdat deze nullijn
het gemiddelde van de 70 veldjes weergeeft. Hoewel de top bij
veldje 34 hierdoor niets verandert, wordt hij numeriek toch lager.
Onze conclusie aan het ecind van de vorige paragraaf, dat de
correctie toelaatbaar was, komt hierdoor dan zwak te staan. Dit
is natuurhjk onbevredigend.

Deze moeilijkheid ontstaat doordat de betekenis van pp is
overschat. Wanneer in de vorige paragraaf is bewezen dat rondom
de veldjes 10 en 30 betrekkelijk slechte plekken voorkomen, dan
15 voor het tussenliggend gebied de enige natuurlijke vraag, of de
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vruchtbaarheid daar betrouwbaar hoger is. M.a.w. men moet
weten of de tussenliggende top betrouwbaar afwijkt van de kruis-
jeslijn, die in fig. (407.1) beide slechte plekken verbindt. Dit is
met de top bij 34 kennelijk het geval.

Omdat pp dus blijkbaar niet de natuurlijkste vergelijkings-
basis is, moeten wij trachten zijn taak aan een andere grootheid
over te dragen. Daartoe moeten wij eerst nagaan welke taak
ip gedurende de berekening had te vervullen.

In 402 hebben wij de onderlinge verhouding tussen up en Az
nagegaan. Uit (402.7) en (402.8) bleek dat x en 2 ongelijke wetten
(402.10) volgden, zodat ze gescheiden moesten worden. Bljkens
is daarbij wezenlijk voor het gedrag van Az dat
(402.3) [Aep] =0

a. Wanneer upy door een andere grootheid wordt vervangen moet
deze stelling, dat [Awp] =0, blijven gehandhaafd. Onder App moed

n dif verband worden vevrstaan: Het verschil
tussen de ware vruchitbaarhetdslin en cen
Schatting er van zoals up ev ecen is.

In 403 is de functie van yxp nader bestudeerd. Volgens {403.3)
is het een schatting die van gp is te verkrijgen. Volgens (403.4)
wordt hiermee de waarde (@rp— £2) gecorrigeerd. Maar deze
correctie wordt in (403.10) weer ongedaan gemaakt, om te be-
reiken dat er geen plotselinge sprongen in de vruchtbaarheidslijn
ontstaan op de grens van twee blokken,

b. Wanneer pp door een andere grootheid wordl vervangen, woel or
voor gexorgd worden dat ook dan geen spromgen onistaan.

Doordat de correctie van (403.4) in (403.10) weer ongedaan is
gemaakt is de invloed van de fout van gp (als schatting van up)
slechts gering. Bovendien zagen wij bij het bespreken van (405.2)
dat deze fout ook nog mag worden verwaarloosd. Als derde eis
kunnen wij dus stellen

c. Wanneer pp door cen andere grootheid wordl vervangen, wmoet
deze grootheid practisch onafhankelijk zijn van de foevallige fouten
van de proef.

Aan al deze eisen kan de strakke vruchtbaarheidslijn die wij in
de vorige paragraaf trokken bevredigend voldoen. De waarde die
deze Iijn als eerste schatting -voor de vruchtbaarheid van veldje
{(kp) aangeeft, willen we aanduiden met 5zp; de ljn zelf als S-lijn.

Wij zullen nu de voorwaarden achtereenvolgens bespreken:
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ad a. Wanneer uit de vrije hand door de puntenzwerm een
vruchtbaarheidslijn wordt getrokken, is het niet zeker dat [Ap] =10
is, Na contrdle kan evenwel de lijn dusdanig gewijzigd worden
dat aan de voorwaarde bevredigend wordt voldaan.

ad b, Wanneer er verschillende blokken in het verlengde van
elkaar liggen, en in een grafiek alle waarden F afgezet zijn, dan
zal er geen gevaar voor plotselinge sprongen in de ¢-lijn ontstaan,
wanneer uit de vrije hand een vruchtbaarheidslijn door alle blok-
ken wordt getrokken. Slechts moet er op gelet worden dat de
aansluiting bewaard blijit, wanneer er achteraf wijzigingen in de
Iijn worden aangebracht om te zorgen dat aan voorwaarde & wordt
voldaan.

ad ¢, Wanneer uit de vrije hand een vrichtbaarheidslijn is
geconstrueerd zal deze lijn des te meer onafhankelijk zijn van de
toevallige fouten, naarmate hij eenvondiger is. In verband hier-
mee zouden: wij dan ook de eis willen stellen: Kies de vruchtbaar-
heidslijn zc eenvoudig mogelijk. In 409 wordt dit nader uitge-
werkt.

Het blijkt dus dat inderdaad de ¢-lijn de functie van de zp-lijn
mag overnemen. Het criterium van (406.5) geldt dus niet alleen
voor afwijkingen van de pp-lijn, maar ook voor afwijkingen van
de ¢-lijn.

409 — PRACTISCH VOORSCHRIFT VOOR DE VRUCHTBAARHEIDS-
CORRECTIE

Bij een vruchtbaarheidscorrectie kunnen wij verschillende
etappes onderscheiden,

Allereerst kan men aannemen dat er geen vruchtbaarheids-
verschillen zijn. De vruchtbaarheidslijn loopt dan horizontaal.
Deze lijn willen wij aanduiden als ¢,.

Vervolgens kan men voor ieder blok de waarde pp berekenen.
Volgens de methode die in fig. (401.1) is toegepast kan hieruit een
tweede ¢-lijn worden geconstrueerd, die zodanig moet lopen, dat
voor ieder blok bij benadering geldt (zie 408, ad a):

(409.1) L]

KA

Deze ¢-ljn willen wij aanduiden als ¢,. Wanneer door ,,FISEERen”
of anderszins is gebleken dat de blokverschillen ,,betrouwbaar”
zijn, is ook deze g, voldoende gemotiveerd. Er moet wel op gelet



187

worden dat er niet angstvallig kleine fluctuaties in worden aan-
gebracht om aan (409.1) te voldoen. In verband met de toevallige
fouten hoeft (409.1} slechts bij benadering te gelden, Wanneer
er geen betrouwbare blokverschillen zijn, is ¢, gelitk aan ¢,.

Bij ecn proefveld met kleine blokken kan cen nadere precisering
worden bereikt door per veldje af te zetten de waarde van het
verschil

Qup - L1 L]

Volgens (402.7) is dit verschil weliswaar behept met fouten, zodat
asymptotisch een lijn als KLMN uit fig. (402.4) wordt verkregen,
maar wanneer men zich dit bewust is, zal men vaak uit de vrije
hand toch een goede ¢-lijn kunnen trekken. Uit de ontwikkelde
theorie is immers wel te schatten in welke zin en in welke mate
de s-ijn van de getekende puntenzwerm af moet wijken.

Wanncer er veel objecten onderzocht worden, zodat de blokken
zeer groot worden, en ook wanneer de blokken zonder onderling
verband liggen, zal het nodig zijn de waarden Fgp uit (403.10)
te berekenen en deze in grafiek te brengen. Deor deze punten-
zwerm zal dan meestal een ¢-lijn uit de hand getrokken kunnen
worden. Desnoods moet eerst met een willekeurige waarde g
voor ieder veldje een waarde Prp worden berekend met behulp
van {403.12). De lijn die zo bij kleine of grote velden ontstaat,
willen wij aanduviden als ¢,.

Bij het controleren van g, zal men gebruik moeten maken van
het criterium van (406.5). Van ieder maximum en minimum
moet men controleren of het voldoende van ¢, (eventueel ¢)
afwijkt.

Wanneer cen aantal maxima of minima aanvaard moeten
worden, wordt voor de overigen gecontroleerd of ze veldoende
afwijken van de eenvoudigste lijn die de opeenvolgende erkende
maxima en minima verbindt. Als hiernit blijkt dat er nog enkele
,.uitstulpingen” erkend moeten worden, wordt er tenslotte een
nieuwe ¢-lijn getrokken, die alle erkende uitstulpingen verbindt,
en bovendien globaal moet voldoen aan (409.1). Deze ¢-lijn is
dus gelijk aan g, of eenvoudiger. Wij willen hem aanduiden
als g

Het is vaak nog mogelijk, vooral bij grote blokken, de correctie
¢y 0ok nog te verbeteren. Dit blijkt wanneer men let op formule
(403.10). Daar ziet men dat de fout van Fgp beinvloed wordt door



188

de waarden Azp). Zou men deze waarden kleiner kunnen maken
dan zou ook Frp nauwkeuriger bepaald kunnen worden.

Nu hebben wij in 408 besproken dat wij Ag, niet alleen kunnen
definiéren als het wverschil tussen ware vruchtbaarheid van het
veldje (kp) en het ware vruchtbaarheidsgemiddelde van blok #,
maar ook als het verschil tussen de ware vruchtbaarheid van
veldje (kp) en de waarde crp die door de gp-lijn wordt gegeven.
Wanneer g, als correctielijn nuttig is zal Azp volgens de tweede
definitie als regel kleiner zijn dan volgens de eerste. Het is
dan dus nuttig bij het berekenen van Fip volgens (403.10) de
Zrp in verband met ¢, te definiéren.

Wij willen nu nog even weer wijzen op formule (402.7). Wan-
neer men Agp op de laatstgenoemde wijze definieert moet hier
worden gelezen

(409.2) o

A?’b Q‘n’ n_] -
—L—E%szgkp+ Akp.

In verband met (405.10) mag aangenomen worden dat 2 niet
R

"
veel groter zal worden dan o 1" ?, omdat anders de waar-

.. o1
de van ¢kp anders zou zijn gekozen. Het verschil - Arp tussen de

ware vruchtbaarheid cgp + Agp en de waarde van het rechterlid van
(409.2) bedraagt in zijn systematisch deel dus niet veel meer dan

1
o Vn (n—NDg
Dit zal over het algemeen te verwaarlozen zijn. De volgende
methode spreekt nu verder voor zich zelf.

(409.3)
le Bereken de lijnen ¢o, ¢y, ¢» €0 g3 als boven omschreven.

2e Lees de waarden crp uit de lijn ¢, af.
3e Bereken de waarden
Fpp = Qup — Crp
4e Bereken het rasgemiddelde
0o b= j@@
#

Dit is nu de beste schatting van het rasgemiddelde waarover
men beschikt.
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3¢ Bepaal voor ieder veldje het verschil tussen de ongecorrigeerde
opbrengst enn het gecorrigeerde rasgemiddelde, dus

Vi, = Dy — D%
6e Breng de waarden V¥, in grafiek, en teken een nieuwe vrucht-
baarheidslijn.

7e Controleer de nieuwe ¢-lijn (¢,) op dezelide manier als g,
De lijn die na contréle gevonden wordt noemen we ;.

Omdat volgens (409.5¢) het verschil wordt bepaald tussen
vngecorrigeerde opbrengst en gecorrigeerd gemiddelde moet de lijn
¢4 worden gezien als een vervanging van ¢,. Bij de contrdle van ¢,
moet dus niet worden nagegaan of hij voldoende van ¢, of g,
afwijkt, maar of Ay voldoende van ¢, of ¢o verschill.

Verder moet er opgelet worden dat het criterium van (406.5)
is afgeleid ten behoeve van het controleren van ¢4 en niet ten be-
hoeve van het controleren van ¢,. Immers (406.5) is er opge-
baseerd dat (405.10) juist is. Deze veronderstelling is slechts te
motiveren, wanneer door een voorlopige ¢, lijn de grotere waarden
van A zijn gecorrigeerd. Het is dus theoretisch altijd noodzakelijk
cen ¢4-lijn te tekemen. Wanneer echter Axp overal klein is kan
soms met het tekenen van een g;-lijn worden volstaan.

Wanneer daarentegen ¢; sterk van ¢, afwykt, kan betwij-
feld worden of ¢ wel heeft bewerkt dat formule (405.10) juist
was. In dit geval kan men van ¢; uitgaan en zo tot een nieuwe
¢g en ¢; komen. Het eindpunt is bereikt wanneer de lijn waarvan
men uitgaat en de lijn waartoe men komt practisch gelijk zijn.

Aan de hand van de definitieve vruchtbaarheidslijn 7 vindt
men dan als gecorrigeerde opbrengst van ieder veldje

(409.4) ' up** = Oy — Tip
en als waarde van de rasconstante gz

w2 =2
(409.5) oR¥* = ” %%,

410 - HET VERBRUIKET AANTAL VRIJHEIDSGRADEN

Het grote bezwaar dat tegen een grafische vruchtbaarheids-
correctie wordt gevoeld is dat het niet gemakkelijk is een over-
zicht te houden over het gebruik van de vrijheidsgraden, zodat
zich geen toevallige fout laat berekenen. Wij willen nu nagaan
of dit bezwaar kan worden ondervangen,
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Om de gedachten te bepalen willen wij beginnen met een voor-
beeld te geven, In figuur (410.1) zijn een aantal waarden F af-
gezet, Volgens formule (403.12) zijn met een verschuivend drie-
voudig gemiddelde (¢ =3) de waarden P berekend. Deze zijn in
de grafiek getekend, verbonden door een stippellijn. Wij kunnen
de stippelliin nu dus als een vruchtbaarheidslijn beschouwen.
Hoeveel vrijheidsgraden heeft deze lijn geéist? Langs verschil-
lende wegen kunnen wij trachten hierop een antwoord te vinden.

In de eerste plaats kunnen wij trachten een formule voor de
gevonden lijn op te stellen en te zien hoeveel constanten deze
formule bevat. Het aantal verbruikte vrijheidsgraden is gelijk
aan het aantal constanten. Het is duidelijk dat het maar zelden
gelukt een passende formule te vinden.

In de tweede plaats kan getracht worden na te gaan door hoeveel
punien de lin bepaald wordt. Dit aantal is gelijk aan het aantal
constanten uit de formule, maar is gemakkelijker te vinden. (Denk
b.v. aan de Ljn v =mx + ¢, die door twee punten bepaald is
en ¥ =ax®+ bxr 4 ¢ die door drie punten bepaald is. Zo is
22+ bxy 4+ v+ dx 4+ ey + f =0 door 5 punten bepaald).

et aantal punten dat nodig is om onze gebroken lijn te be-
palen is gelijk aan het aantal knikpunten van de lijn en dus prac-
tisch gelijk aan het aantal veldjes. Wanneer dit aantal vrijheids-
graden inderdaad benodigd was voor het berekenen van de vrucht-
baarheidslijn zou het totaal aantal verbruikte vrijheidsgraden
groter worden dan het beschikbare aantal, daar het ook nog
mogelijk blijkt een aantal rasgemiddelden te berekenen. Dit is in
strijd met de stelling aan het eind van 101. Bovendien zou ver-
wacht mogen worden dat de kwadraatsom der afwijkingen de
waarde (0 aannam, wat blijkens grafiek (410.1) ook niet het geval
is. Dit is dus niet de juiste methode voor het vaststellen van het
verbruikte aantal vrijheidsgraden.

De fout van onze poging is dat wij iedere waarde Pgp die in fig.
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(410.1) in beeld is gebracht, als een ,,uitkomst’” hebben opgevat.
In 101 vonden wij echter dat men slechts dan van ,,uwitkomsten’”
kan spreken als ze onderling onafthankelijk zijn. Dit is met de
waarden P geenszins het geval. De waarden P die voor de veldjes
5 en 6 zijn berekend berusten beide op de waarden F van de
veldjes 5 en 6. Pas de waarde P van veldje 8 is onafhankelijk van
die van veldje 5. De waarden [ van de veldjes 6 en 7 zijn er op een
min of meer omslachtige manier tussen geinterpoleerd, zonder
nieuwe unitkomsten te verschaffen.

In verband met het feit dat we g =3 gekozen hebben zouden
wij dus kunnen zeggen dat er hoogstens 35/, =5 vrijheidsgraden
verbruikt kunnen zijn, omdat er niet meer onafhankelijke waarden
P zijn berekend.

Maar ook dit aantal is nog te hoog. In 409 bespraken wij dat
Wwij na een ¢, nog een ¢ en misschien een ¢, zochten tot we de
definitieve vruchtbaarheidslijn hadden gevonden. Bij dit zoeken
van de definitieve lijn wordt de natuurlijke verwantschap van de
P van veldje 5 en van veldje 8 in het oog gehouden. Over deze
afstand wordt naar een zekere continuiteit gestreefd in het vrucht-
baarheidsverloop, waardoor ook de waarden F van veldje 5 en
veldje 8 onderling afhankelijk worden.

Bij het bestuderen van het verbruikt aantal vrijheidsgraden
moeten wij ons dus baseren op de strakke ¢-lijn, die wij als defini-
tieve vruchtbaarheidslijn beschouwen.

Van deze lijn is soms een formule te vinden zoals in voorbeeld
(410.1) waar het een rechte lijn is. In dit geval is het verbruikte
aantal vrijheidsgraden hoogstens gelijk aan het aantal parameters
der lijn. Het verbruikt aantal kan lager zijn, wanneer de definitieve
vruchtbaarheidslijn ingewikkelder is gekozen dan uit de gegevens
valt af te leiden. Dit zou het geval geweest zijn wanneer de stip-
pelliin uwit (410.1) als definitieve vruchtbaarheidslin was be-
schouwd.

Van de ¢-lijn van figuur (407.1) is geen formule bekend. Wij
hebben getracht voldoende aansluiting te vinden bij een alge-
braische functie van de (# + 1)® graad wanneer er # maxima en
minima waren. Veor ons lijnstuk met 1 maximum en 2 minima
is a = 3, zodat de formule zou moeten worden

y =Axt + Bx* 4+ Cx* L Dy 4 F;

er zouden den dus (z -+ 2) vrijheidsgraden verbruikt zijn. Meestal
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is de aansluiting slecht, wat niet betekent dat er meer vrijheids-
graden verbruikt zijn, slechts is de contréle-methode verkeerd.

Meer succes heeft men wanneer men tracht na te gaan door
hoeveel punten de lijn bepaald wordt. Onder grafiek {407.1) hebben
wij 6 kruisjes geplaatst, Wanneer iemand gevraagd wordt door
deze kruisjes de eenvoudigste vloeiende lijn te trekken die mo-
gelijk is, zal er vermoedelijk een lijn ontstaan, die niet veel van de
s-lijn van {407.1) afwijkt. De gevonden ¢-lijn is dus door ongeveer
6 kruisjes wel bepaald.

Als regel voor het vaststellen van het verbruikt aantal vrijheids-

graden kunnen wij dus geven:
(410.2) Ga na hoeveel punten minstens gegeven moelen zijn om
de lyn dragelijk te reconstrueren. Met dragelijk reconstrueren be-
doelen wij, dat men zoveel punten kiest dat de verschillen tussen
de lijnen, die men er op 't oog door trekt, klein zijn in verhouding
tot de toevallige fouten. Het minimum aantal benodigde punten
willen wij & noemen,

Feitelijk is het getal b steeds 1 te hoog omdat de absclute hoogte
van de vruchtbaarheidslijn onbelangrijk is. In verband met het
feit dat & geschat is, kan men dit echter verwaarlozen. Het
getal b geeft nu aan hoeveel vrijheidsgraden Aoogstens verbruikt
Zijn,

411 - DE BEPALING VAN DE TOEVALLIGE FOUT

Wanneer men de formules met elkaar vergelijkt die Vax Uven
geeft voor de bepaling van de varians o?, ziet men dat ze kunnen
worden samengevat in de algemene formule

[#”]

N—M

waarbiy N het beschikbaar aantal vrijheidsgraden aangeeft, en
A het reeds verbruikte aantal. Uit het feit dat deze formule vaak
voorkomt mag niet worden afgeleid dat hij algemecen geldig is.
Wij willen op twee beperkingen wijzen,

In 128 hebben wij nagegaan volgens welk principe de formule
voor een geval van lijnvereffening moest worden gekozen. Wij
zagen dat de richting van middelen niet steeds doorslaggevend
was. Dit neemt niet weg, dat de deor VAN UVEN gegeven richting
van middelen bij regressielijnen wel beslissend is voor de richting
waarin de grootte van de fout moet worden gemeten. Wanneer

(411.1) o2 —
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men nu de voorkeur geeft aan een andere lijn dan die met de
methode der Eleinste kwadraten voor die richting van middelen
wordt berekend, dan houdt dit in dat men een grotere kwadraat-
som moet vinden. Uit het feit dat men toch de voorkeur aan de
liin met de kleinste kwadraten onthoudt, blijkt niet dat men o2
groter wil schatten. De noemer van (411.1) moet dus wel groter
worden genomen,

Dit ligt ook voor de hand. Een berekening volgens de methode
der klemste kwadraten is erop gespitst de fouten weg te verklaren.
Men zoekt immers de kleinste kwadraten, Blijkbaar geeft iedere
uitkomst die berekend wordt, een mogelijkheid meer de schijnbare
fout te verkleinen, Vandaar dat het aantal verbruikte vrijheids-
graden (M) dan voor compensatie in de noemer staat.

Wanneer men een ander principe volgt, eventueel grafisch
werkt, is men er niet zo op gespitst. Dan vervalt ook de reden,
M in zijn geheel van het beschikbaar aantal vrijheidsgraden
N af te trekken., Dus wanneer wolgens een ander principe wordl
vereffend dan wvolgens de methode der Rleinste kwadvaten is er de mo-
gelijhheid dat de schatitng van o® in (411.1) te hoog is.

Een tweede beperking van de geldigheid van (411.1) houdt ver-
band met formule {116.12). In deze formule wordt gezegd dat de
totale varians p?® bestaat uit de toevalsvarians o® en nog een
systematisch deel dat niet kleiner dan 0 kan worden.

Asymptotisch is dit juist, d.w.z. wanneer men een bepaalde
proefl steeds weer herhaalt, zal er steeds weer een varians berekend
kunnen worden. Het gemiddelde van al deze variansen voldoet
aan formule (116.12}. Ook het voorschrift, dat wij aan het eind
van 118 gaven, heeft slechts asymptotische geldigheid. Daar stelden
wij als regel voor het kiezen van een formule: Kies die {(nood)-
formule, die de kieinste varians geefl. W1 wezen er daar op dat
volgens dit principe de ideale formule gevonden moet worden
als die zich onder de beproefde formules bevindt. Gok dit is slechts
asymptotisch waar. D.w.z. als men steeds weer hetzelfde probleem
met dezelfde formule tracht op te lossen, zal men op den duur
met de ideale formule het best uitkomen.

Bij vruchtbaarheidscorrecties kan men niet asymptotisch wer-
ken. Een vrachtbaarheidskaart deet zich maar eenmaal voor,
Hetzelfde perceel geeft het volgend jaar onder andere weersom-
standigheden een ander vruchtbaarheidsbeeld. Bij vruchtbaar-
heidscorrecties mag men daarom niet veronderstellen dat de

13
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dubbele producten tussen toevallige en systematische fouten nul
zullen zijn. Er is een tendens dat ze negatief zullen zijn, ‘zodat
w? kleiner wordt dan o® is.

In verband met deze tweede beperking is het ook niet mogelijk
de doelmatigheid van een vruchtbaarheidscorrectie te becordelen
aan de hand van de resterende varians. Dit is de reden waarom
het criterium (406.5) nodig is.

Aangezien door dit criteriom het wegverklaren van toevallige
afwijkingen vaak wordt tegengegaan (zie 404.9; 405.9; 405.11)
willen wij aannemen dat ook het zoeken van negatieve dubbele
producten binnen redelijke grenzen blijft.

Bij grafische vruchtbaarheidscorrecties heeft men dus met twee
tendensen te maken. Er is een tendens om de schatting van de
varians te groot te laten zijn en er is een tendens om diezelfde
schatting te verkleinen.

Wanneer wij aannemen, dat dic beide tendensen elkaar in het
evenwicht houden, kunnen wij als formule voor de varians geven

Zu?
(411.2) wz:%’;mfb.'
waarbij » aanduidt het verschil tussen definitief gecorrigeerde
opbrengst en definitief rasgemiddelde.

In {411.2} hebben wij de varians aangeduid docor %2 en niet
door ¢?. Wij moeten niet vergeten dat de varians niet alleen is
opgebouwd uit zuivere toevallige fouten, maar ook uit geringe
vruchtbaarheidsverschillen die niet konden worden weggecorrigeerd
(zie 406.5). In formule (301.28) is aangetoond dat dergelijke be-
standdelen soms andere wetten volgen dan o2 Het lijkt ons waar-
schijnlijk dat dit verschil in dit geval mag worden verwaarloosd.

De waarde y? van formule (410.2) moet nu voor tweeérlei doel
gebruikt worden. In de eerste plaats moet de nauwkeurigheid
van de gecorrigeerde rasgemiddelden er door worden aangegeven,
Die nauwkeurigheid zal niet alleen beinvlced worden door de
toevallige fouten (¢), maar ook door het fe kort schieten van de
vruchtbaarheidcorrectie (). De waarde y, die beide elementen
bevat, mag wel als een geschikte grootheid worden beschouwd
om de onzekerheid weer te geven. Wij kunnen dus globaal van de
middelbare fout van het gerorrigeerde rasgemiddelde, en dus ook
van de berckende waarde gp** zeggen

Y
(411.3) a =,

Pk N
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In de tweede plaats moet p? dienen om na te gaan of een
correctie geoorloofd is. In tabel (406.5) is een criterium gegeven
voor de toelaatbaarheid, maar dit criterium hangt af van de waarde
van ¢, die niet bekend is. De waarde g kan als een schatting van
¢ worden genomen, waarbij men mag bedenken dat w wvoor
dit doel vermoedelijk te groot is, zodat wiei fe swel tot correctie
wordt overgegaan. Bij het toetsen van de ¢,lijn (zie 409) moet
dan een schatting van ¢ worden berckend met behulp van de
3y-lijn.

412 — VRUCHTBAARHEIDSCORRECTIES BIJ PROEVEN IN VIERKANTS-
VERBAND

Tot dusver hebben wij steeds verondersteld dat wij een stroken-
proef bewerkten, dus een proef, waarbij alle veldjes achter elkaar
in een strook lagen. Deze aanname diende alleen om iets gemakke-
lijker de gedachten weer te kunnen geven; geen enkele berekening
is er op gebaseerd, De voorgaande beschouwingen zijn dus ge-
lijkeljk toepasselijk wanneer men te maken heeft met een proef
in wvierkantsverband; waarbi] de veldjes dus gerangschikt zin
als de vakjes van een dambord.

Er zou dan ook geen enkele reden zijn speciaal over deze proeven
te spreken wanneer er niet de moeilijkheid was, dat er feitelijk
drie dimensionaal gewerkt moet worden. Er zijn twee assen nodig
voor de plaatshepaling van het veldje en een voor de vrucht-
baarheid.

Omdat er geen principiéle punten bij aan de orde komen, willen
wij hier gewoon een voorschrift geven. Dit voorschrift is er op
gebaseerd dat cen proef in vierkantsverband wvolgens twee rich-
tingen (evenwijdig aan de codrdinaatassen) in stroken kan worden
verdeeld. De stroken evenwijdig aan de ene as kunnen als ,,rijen”
worden aangeduid, de stroken evenwijdig aan de andere as als
, kolommen”’,

Een vruchtbaarheidscorrectie is nu in de eerste plaats mogelijk
door het proefveld in rijen of kolommen in te delen, en de ge-
vormde stroken gewoon als strokenproef te verwerken. De nauw-
keurigheid is dan even groot als die van een normale strokenproef
met stroken van dezelfde lengte.

Het ligt evenwel voor de hand de nauwkeurigheid op te voeren
door de vruchtbaarheidslijnen van naast elkaar liggende stroken

e - -
op elkaar te vereffenen. Aan het Landbouwproefstation in Gro-
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ningen werd mij een methode gedemonstreerd die op het volgende

nee
le
Ze
Je
de
5e
6e

Te

8e

r kwam: ‘

Het proefveld werd in rijen verdeeld.

In iedere ontstane strook werd een vruchtbaarheidslijn ge-
tekend.

Voor ieder veldje werd genoteerd welke vruchtbaarheid daar-
aan moest worden toegekend op grond van de vruchtbaar-
heidslijnen in de rijen.

Nu werd het proefveld in kolommen verdeeld.

In deze kolommen werden de waarden die volgens de rijen
waren gevonden op elkaar vereffend.

De waarden die nu werden gevonden werden nog eens volgens
de rijen vereffend.

Hetzelfde werd gedaan door de oorspronkelijke afwijkingen
eerst volgens kolommen te vereffenen, dan volgens rijen en
tenslotte weer volgens kolommen.

De waarden die langs beide wegen waren gevonden werden
tenslotte gemiddeld.

Deze methode heeft als nadeel dat het achteraf moeilijk is te
schatten hoeveel vrijheidsgraden verbruikt zijn. Verder kan het
onderling verband tussen naastliggende rijen of kolommen mis-
schien gemakkelijker langs ecn andere weg worden bereikt.

I

ie

Ze

n de practijk is onderstaande methode goed bevallen:

Vul op een plattegrond van het proefveld voor ieder veldje
de waarde Fgp (zie 403.10) in.

Vorm een blokje van g veldjes {meestal negen, dus 3x3).
Bereken uit de waarden F de waarde FPip (zie 403.12). Dit is
dan een schatting van de vruchtbaarheid van het middelste
veldje. Bereken zo voor ieder veldje de waarde P.

3e Voor de buitenste rijen en buitenste kolommen kan zo geen

4e

5e

waarde P worden berekend. Dit kan desnoods door deze als
strokenproef op te vatten maar mag meestal worden nage-
laten.

Teken voor iedere rij en iedere kolom een grafiek, waarin de
waarden P op elkaar worden vereffend. Hierbij moet het
verloop der punten wel tamelijk goed gevolgd worden.

Lees uit deze grafieken af op welke plaatsen in iedere tij en
iedere kolom de vruchtbaarheid een bepaalde waarde 4
heeft.
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Be Geef deze plaatsen door een pijltje aan op een plattegrond
van het proefveld. Laat daarbij het pijltje aanwijzen in welke
richting de vruchtbaarheid lager is.

Te Vereffen deze pijltjes op elkaar door er een niveaulijn tussen
door te trekken,

8e Construeer zo het benodigd aantal niveaulijnen. Voordat
met een volgende lijn begonnen wordt moeten alle pijltjes
van de voorgaande zijn uitgegomd, omdat anders verwarring
ontstaat.

9¢ Tracht de gevonden kaart zoveel mogelijk te vereenvoudigen.

102 Controleer met behulp van het criterium van (406.5) of de
vereenvoudigde kaart toelaatbaar is, en of de niet-vereen-
voudigde kaart ook teveel van de vereenvoudigde afwijkt.

" Maak in de geest van 409 een definitieve kaart.

Wanneer men langs deze weg een vruchtbaarheidskaart heeft
geconstrueerd, moet men nog trachten na te gaan hoeveel vrijheids-
graden er door zijn verbruikt. Hierbij staan dezelfde methoden
ten dienste die in 410 zijn besproken. In de eerste plaats kan men
trachten een formule voor de gevenden kaart te vinden. Dit ge-
lukt in de practijk bijna nooit.

In de tweede plaats kan men nagaan hoeveel ,,punten’” moeten
worden vastgelegd om de kaart voldoende te reconstrueren. Het
begrip ,,punten” hoeft dan niet zeer letterlijk te worden genomen.
Meestal is het 't gemakkelijkst één of enkele niveaulijnen door een
aantal punten vast te leggen, en van de anderen na te gaan op
welke afstand ze evenwijdig aan de cerste lopen. Wil men deze
methode toepassen, dan moet men er bij het tekenen van de kaart
naar streven de lijnen evenwijdig te trekken. Behalve naar even-
wijdigheid kan natuurlijk ook naar andere eenvoudige mathema-
tische samenhangen worden gestreefd.

In de derde plaats kan geconstateerd worden, dat het aantal
vrijheidsgraden mnooit groter is dan het aantal veldjes, gedeeld
door g. Dit is bij deze aanleg meestal de gemakkelijkste contrdle.
Geschat moet dan worden hoe groot ¢ genomen mag worden
om toch dezelfde vruchtbaarheidskaart te krijgen.



SUMMARY

This publication deals with some problems attaching to the
mathematical treatment of the results of agricultural trial fields.

One problem is that of making corrections with regard to
fertility variations, Especially when many varieties are investigated
on trial fields without subblocks, the methods of R. A. FISHER
and his followers are not satisfactory for correcting these variat-
ions. Graphical methods seem to be better, But when graphical
methods are employed one usually does not have a controll
on the graphs.

In Chapter IV some controll-methods have been given as well
as a manner to estimate the mean error.

Another problem is to find a method for combining the results
of trial fields containing different numbers of varieties. This
combination is essential for obtaining mean results. Because in
this case the varieties are not orthogonal to the trial ficlds, the
FisuER method cannot be employed here, In Chapter IIT another
method is suggested. As varieties are often interdependent, the
problem gets very complicated.

The areas to which conclusions are applied are not homogeneous.
The properties of the soil vary from place to place. Every variety
has its special reaction on these varying properties, but some-
times two or more varieties have about the same reaction. Such
varieties are therefore interdependant. A large part of Chapter I1I
deals with the mathematical difficulties arising from this inter-
dependency. A provisional selution is given, but without a theory
of errors.

The first two chapters deal with conceptions which are used
in the last two chapters. In Chapter [ special attention is given
to the difference between systematical and accidental errors; to
the difference between correlation or co-variation and linear
adjustment; and in Chapter II to the assumption that we may con-
sider the production of a variety on a trial field as the sum of a
contribution of the variety and a contribution of the trial field,
This assumption often needs some provisions.






