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WOORD VOORAF 

In de tijd dat ik voor de eerste maal verbonden was aan het 
Instituut voor Rassenonderzoek van Landbouwgewassen, heb ik 
mij bezig mogen houden met een paar problemen uit het brede 
veld van de wiskundige verwerking van waarnemingsuitkomsten. 

Het eenvoudigste probleem was dat van de vruchtbaarheids-
correcties. Met name bij de voedergewassen was het vaak nodig 
grote proefvelden aan te leggen met over de honderd rassen. Door­
dat zulke proefvelden vaak anderhalf tot twee ha groot werden, 
was niet altijd te vermijden, dat er hinderlijke onregelmatigheden 
in de grond aanwezig waren, die meestal vooraf op het oog niet 
waren te onderkennen. In de proefvelden waren dientengevolge 
vruchtbaarheidsverschillen van 30% niet zeldzaam. Aan de eis 
tot correctie was dus niet te ontkomen. 

Nu wordt in de laatste jaren de proefveldverwerking geheel 
gedomineerd door de methoden van de school van R. A. F ISHER. 

Deze methoden waren voor de bedoelde proefvelden evenwel niet 
bruikbaar, omdat bij de aanleg geen rekening gehouden was 
met de eisen van de FiSHER-schema's. 

Krachtens zijn grondslagen is de FiSHER-methode voor het 
onderhavige probleem ook niet erg geschikt, omdat F ISHER zich 
baseert op orthogonaliteit, terwijl het probleem van het vrucht-
baarheidsverloop binnen de blokken in wezen inorthogonaal is. 

Juist wegens die inorthogonaliteit is meer steun te verwachten 
van de grafische methoden, waaraan in Nederland vooral de 
naam van W. C. VISSER is verbonden. Van deze methode is dan 
ook een ruim gebruik gemaakt. Maar ook hierbij is er een bezwaar. 
Omdat de grafische methode meer afhankelijk is van de persoon­
lijke kijk op de resultaten, is het moeilijk een objectief oordeel 
over de fouten te krijgen. 

In hoofdstuk IV is getracht aan dit bezwaar tegemoet te komen. 

Een moeilijker probleem was dat van het samenvatten van de 
uitkomsten van rassenproeven, wanneer het aantal rassen wisselt. 
Dan kan namelijk niet „geFiSHERd" worden. In hoofdstuk I I I 
is gezocht naar een weg door deze moeilijkheid. 



VII 

Het bleek inderdaad mogelijk langs een uitvoerbare weg te 
komen tot samenvattende rasgemiddelden, die gelijk zijn aan de 
gemiddelden, die b.v. worden verkregen volgens de methode van 
hfdst. XII van Dr M. J . VAN UVEN: Mathematical treatment of 
the results of agricultural and other experiments. Deze laatste 
methode is in het onderhavige geval meestal niet te hanteren 
wegens het grote aantal onbekenden. 

Zonder meer zouden deze gemiddelden dus een zeker vertrouwen 
mogen genieten. Maar helaas is er een complicatie, ni. de afhanke­
lijkheid der rassen. De gebieden, waarop de conclusies van het 
proefveldonderzoek worden toegepast, zijn niet homogeen; er is 
een variatie in de milieufactoren. Als regel heeft ieder ras een eigen 
manier om op deze milieufactoren te reageren, maar soms zijn 
er twee of meer rassen, die in hun reacties sterk op elkaar gelijken. 
Bij deze rassen is er een zekere afhankelijkheid, die aanleiding 
geeft tot correlatieverschijnselen en die tevens oorzaak is, dat 
de berekende rasgemiddelden misleidend kunnen zijn. 

Aan het probleem dat hierdoor ontstaat is een groot deel van 
hfdst. IV gewijd, maar dit neemt niet weg dat de formules die in 
dit verband gegeven zijn nog maar een eerste stap in de richting 
van een oplossing zijn. Aan de bijbehorende foutentheorieën is 
nog niet begonnen. 

Over de eerste twee hoofdstukken kan ik kort zijn. Er worden 
allerlei begrippen in uitgewerkt, die in de laatste twee nodig zijn; 
er wordt soms ook extra lang stilgestaan bij onderwerpen, waarvan 
in de practijk bleek, dat er bij velen onduidelijkheid over heerste. 
Met name is in hfdst. I I stilgestaan bij de vooronderstellingen van 
de vaak gebruikte aanname, dat de opbrengst van een bepaald 
ras op een bepaald proefveld mag worden gezien als de som van een 
bijdrage van een rasinvloed en een bijdrage van een proefveld­
invloed. 

Tenslotte zij nog vermeld dat Prof. Dr M. J . VAN UVEN de tekst 
grondig heeft gecontroleerd, waardoor vele verbeteringen zijn aan­
gebracht. Ook aan Prof. Ir W. J. DEWEZ en Prof. Dr Ir J. C. DORST 
heb ik enkele belangrijke verbeteringen te danken. 



OPMERKING 

Bij het schrijven van deze studie is aangenomen, dat de lezer 
bekend is met 

Dr M. J. VAN UVEN: Mathematical Treatment of the Results of 
Agricultural and other Experiments. 2e ed. Groningen 1946 
309 pp. 

(in de tekst vaak genoemd: het leerboek van VAN UVEN) 

en met de hoofdzaken van differentiaal- en integraalrekening, 
de FiSHER-analyse en de correlatierekening. 



I - ENKELE ALGEMENE BEGRIPPEN 

A - IDEALE FORMULES EN NOODFORMULES 

101 - H E T VINDEN VAN EEN FORMULE, DIE DE GEGEVENS VER­

KLAART 

Iemand, die aan de landbouwers voorlichting zal geven aan­
gaande de rassenkeuze, dient daarbij een zo nauwkeurig mogelijke 
voorspelling te kunnen doen over de resultaten, die de verschillende 
rassen het volgend jaar zullen geven. 

Hiertoe is in de eerste plaats nodig dat hij zijn ervaring in­
ventariseert. Hij gaat na welke opbrengsten of andere eigenschappen 
van de diverse rassen hem bekend zijn, en met welke bizonder-
heden ze eventueel in verband kunnen worden gebracht. 

Ieder getal dat bekend is aangaande het object van onderzoek 
(dus b.v. aangaande een opbrengst) willen wij als gegeven aan­
duiden. De bizonderheden die eventueel kunnen dienen om het 
ontstaan van het gegeven te verklaren willen wij omstandigheden 
noemen. 

Het is nu de taak van de voorlichter een algemene wet te vinden, 
die het ontstaan van het gegeven verklaart aan de hand van de 
omstandigheden en de mogelijkheid biedt, aan de hand van toe­
komstige omstandigheden de toekomstige gegevens zo nauwkeurig 
mogelijk te voorspellen. Deze wet willen wij aanduiden als de 
conclusie. Vaak zal de conclusie geformuleerd worden in de vorm 
van een .formule. 

Van deze formule zal de voorlichter gebruik maken om een 
antwoord te geven op de vragen van de practijk. 

Wij willen aan de hand van een voorbeeld nagaan, waarop gelet 
moet worden bij het ontwerpen van een formule. 

Veronderstel dat er een are tarwe is. verbouwd in de Wageningse 
eng in het jaar 1942. Veronderstel verder dat als opbrengst 30 kg 
is verkregen. Het getal 30 is dus het gegeven. 

Dit gegeven moet dus dienen om antwoord te geven op allerlei 
practische vragen, b.v. 
a. Hoe vruchtbaar is de Wageningse eng? 
b. Hoe groeizaam was het weer in 1942? 

1 



c. Welk opbrengstvermogen heeft tarwe. 
d. Welke betekenis had het speciale ras dat verbouwd werd. 
e. enz. 

Dit zijn een aantal vragen, waarop men graag antwoord wil 
ontvangen. Voor het beantwoorden van al die vragen is men aan­
gewezen op het éne gegeven. Met behulp daarvan zou bijv. ge­
concludeerd moeten kunnen worden: 
/. De Wageningse eng kan 30 kg/are opbrengen. 
g. Het jaar 1942 gaf oogsten van 30 kg/are. 
h. Tarwe brengt 30 kg/are op. 

i. Het verbouwde ras kan gemakkelijk een opbrengst van 30 
kg/are bereiken. 

Of men zou de vragen moeten combineren en b.v. als volgt 
redeneren: 

j1 De Wageningse eng is niet erg vruchtbaar, de vrucht­
baarheid is 27 kg/are 

72 H e t gewas t a rwe is n ie t geschikt voor de eng, nega­

tieve opbrengst stijging - 4 kg/are 
7 3 Het jaar 1942 heeft nogal meegewerkt, de groei-

zaamheid was 5 kg/are 
74 Het gekozen ras was extra goed, productieoverschot 2 kg/are 

* ~ — • — — — — 

som 30 kg/are 

Wanneer zo één of meer vragen in onderlinge samenhang worden 
bestudeerd, willen wij spreken van een vraagstuk. Onder de letters 
/, g, h, i en ƒ is dus telkens één vraagstuk opgelost. 

Het is niet mogelijk een vraagstuk kwantitatief op te lossen 
zonder in de conclusie één of meer getallen te noemen. Een getal 
dat in een conclusie noodzakelijk is, willen wij een uitkomst 
noemen. 

In de conclusies /—i s taat dus telkens 1 uitkomst; in conclusie 
]\—j4 s taan er 4. Weliswaar zijn in conclusie jx—ji 5 getallen ge­
noemd, maar er zijn slechts 4 noodzakelijk; de som behoeft niet 
vermeld te worden, daar die zonodig uit de andere vier kan worden 
afgeleid. De uitkomsten moeten dus onderling onafhankelijk zijn. 

Wij willen nu nagaan of al deze conclusies toelaatbaar zijn. 
In de conclusies /—h wordt het gegeven telkens als het gevolg 

van één omstandigheid beschouwd, terwijl de andere omstandig­
heden worden genegeerd. Dit negeren gebeurt nog op ongelijke 



wijze. Formule ƒ spreekt van „kunnen": De Wag. eng kan 30 
kg/are opbrengen. Het verband tussen de Wag. eng en de 30 
kg/are is vrij los. Er blijft zo ruimte voor andere invloeden. 

De conclusies g en h daarentegen suggereren algemeen geldig­
heid. Tussen het jaar of het gewas enerzijds en de opbrengst ander­
zijds wordt een strak verband gelegd dat andere invloeden uitsluit. 
Niettegenstaande dit verschil wordt toch in alle drie conclusies 
één omstandigheid als oorzaak van het gegeven aangeduid. Volgens 
/ is het de grond, die de 30 kg opbrengt (zij het misschien via 
een bepaald gewas), volgens h daarentegen is het gewas de gever 
van de opbrengst (zij het dan ook met behulp van de grond). 

Wiskundig is er tegen geen van de drie conclusies bezwaar in 
te brengen. Het is niet een wiskundig probleem, of de opbrengst 
uiteindelijk te danken is aan de grond of aan het gewas. Maar 
er is wel bezwaar tegen, dat alle drie conclusies tegelijk worden 
aanvaard. Als gever van de ene opbrengst van 30 kg/are kunnen 
niet drie verschillende ,,omstandigheden" worden aangewezen, die 
ieder voor zich het verschijnsel geheel zullen verklaren. Wil men 
de verschillende invloeden erkennen, dan dienen ze gezamelijk 
in één conclusie vermeld te worden. 

Het zou dan b.v. mogelijk zijn een conclusie in de gedaante 
van jl—jt op te stellen. In deze conclusie worden 4 invloeden er­
kend, en aan ieder wordt een bepaalde werking toegeschreven. 
Bij nadere beschouwing blijkt echter dat de uitkomsten j1—jt 
niet uit het gegeven geconcludeerd zijn. Er is reeds eerder waar­
genomen dat de Wageningse eng niet vruchtbaar is, dat tarwe 
daar niet het aangewezen gewas is enz. Zou de opbrengst van 
30 kg/are zonder nadere kennis over de vier invloeden zijn ver­
deeld, dan had dit slechts als willekeur kunnen worden bestem­
peld. 

Om te weten wat men met zijn gegevens mag doen, zal men 
daarom moeten letten op het wiskundig begrip ,,vrijheidsgraad". 
Het aantal vrijheidsgraden geeft aan, hoeveel gegevens men onafhan­
kelijk van elkaar heeft verkregen. In het bovengenoemde voorbeeld 
is het aantal vrijheidsgraden dus 1, aangezien er slechts 1 gegeven 
is. Het is nu een wiskundige wet, dat men niet meer uitkomsten 
mag verkrijgen dan men vrijheidsgraden heeft. In bovengenoemd 
voorbeeld was er één vrijheidsgraad, daarom mag er ook slechts 
één getal in de conclusie worden genoemd. 

Wil men verschillende invloeden erkennen, dan moet men ze 



voorstellen als samenwerkende, om het ene gegeven voort te bren­
gen, b.v.: 

k. tarwe bracht in 1942 in de Wageningse eng 30 kg are op; 
l. de Wageningse eng bracht in 1942 per are 30 kg tarwe op. 

In de conclusies k en / wordt meer rekenschap gegeven van de 
begeleidende verschijnselen dan in g—i. Toch hebben ze wiskundig 
geen enkel voordeel. Conclusie / verklaart het verschijnsel van 
30 kg/are evengoed als conclusie /; h doet het evengoed als k. Van 
uit wiskundig oogpunt bezien mag er over de grond en het weer 
evengoed gezwegen worden als over de stand van de sterren en de 
schijngestalten der maan, die ook wel met de opbrengst in ver­
band zijn gebracht. 

Conclusie h is wiskundig evengoed als conclusie k. Maar men 
moet opletten, er niet meer in te lezen dan er gezegd wordt. In 
conclusie k mag niet gelezen worden, dat ongeveer hetzelfde 
resultaat verkregen zou zijn in 1943, of op een andere grond. In 
conclusie h mag men niet impliciet als uitkomst lezen, dat de 
grond dus geen invloed heeft. „Geen invloed" wil wiskundig zeggen 
een invloed 0; dit zou een tweede getal zijn. 

Hier ligt het bezwaar van conclusie i. Daar wordt gezegd dat 
het verbouwde ras gemakkelijk 30 kg/are op kan brengen. Door 
het woord ..gemakkelijk" worden de niet-ras-omstandigheden als 
tamelijk ongunstig gestempeld. Deze ongunstigheid kan niet uit 
de 30 kg are zijn gebleken, tenzij er meerdere gegevens beschikbaar 
waren, waarmee het getal 30 kon worden vergeleken. Dit is echter 
niet in overeenstemming met onze veronderstelling. 

Deze discussie kan als volgt worden samengevat. 
Bij het formuleren van een conclusie zal men scherf moeten onder­

scheiden, wat uit de gegevens is afgeleid, en wat of andere gronden 
wordt beweerd. 

De aard van de conclusie is vanuit wiskundig oogpunt onbelangrijk; 
slechts wordt vereist, dat ze zodanige uitkomsten aangeeft, dat die 
gezamelijk kwantitatief rekenschap geven van alle gegevens. 

De conclusie mag niet meer uitkomsten bevatten, dan er vrijheids­
graden beschikbaar zijn. 

Bij deze laatste regel kan nog worden opgemerkt dat in de 
practijk meestal getracht wordt uitkomsten te vergelijken. In dat 
geval is er een vergelijkingspunt nodig, dat ook een uitkomst is 
en dus 1 vrijheidsgraad verbruikt. Op grond hiervan kan men 
vaak lezen dat het aantal beschikbare vrijheidsgraden 1 lager is 



dan het aantal gegevens. De vrijheidsgraad voor het vergelijkings­
punt is er dan alvast afgetrokken. 

102 - H E T VINDEN VAN EEN FORMULE, DIE EEN BETROUWBARE 

VOORSPELLING TOELAAT 

De eisen die aan het eind van 101 verzameld zijn, mogen vrij 
streng lijken, toch valt er gemakkelijk aan te voldoen. Immers, 
de aard van de conclusie wordt vanuit wiskundig oogpunt onbe­
langrijk genoemd. Wanneer men de vragen als volgt zou formu­
leren: ,,Wat heeft de eerste waarneming opgeleverd, wat de tweede, 
enz." dan kon men al deze vragen .beantwoorden, door de gegevens 
rechtstreeks als uitkomst in te vullen. 

Door zo te handelen zou scherp naar voren worden gebracht, 
wat de gegevens waren; plaats voor vooroordeel zou er niet zijn. 
Verder zou van alle gegevens kwantitatief rekenschap zijn ge­
geven, en het aantal uitkomsten zou niet boven het aantal vrij­
heidsgraden uitkomen. 

Toch zou een conclusie van deze structuur niet bevredigen. Er 
moeten ook eisen aan gesteld worden, die rekenschap geven van 
het doel, waartoe de conclusie wordt opgesteld. In 101 is reeds 
uiteengezet dat het doel is, een formule te vinden, die voorspellingen 
toelaat. Dit voegt aan de eisen van 101 een aantal nieuwe toe. 

In de eerste plaats eist dit, dat de vragen van het vraagstuk 
opnieuw gesteld moeten kunnen worden. 

In de tweede plaats moet aan de hand van de uitkomsten voorspeld 
kunnen worden, welk gegeven zal worden verkregen door een nieuwe 
waarneming binnen het kader van het vraagstuk. 

Tenslotte moet het gegeven dat verkregen wordt, wanneer de waar­
neming werkelijk wordt verricht, gelijk zijn aan het voorspelde ge­
geven. 

Aan de hand van deze drie eisen willen wij de conclusie ƒ—k 
opnieuw beoordelen. De conclusie i en j waren reeds verworpen. 

Conclusie / luidde: De Wageningse eng kan 30 kg/are opbrengen. 
Dit is een antwoord op de vraag: Hoe vruchtbaar is de Wage­
ningse eng? Deze vraag voldoet inderdaad aan de gestelde eis. 
Niet alleen in 1942 kon die vraag gesteld worden, maar hij kan 
steeds worden herhaald. Aan de eerste voorwaarde is dus voldaan. 

De tweede voorwaarde eist, dat nu ook het resultaat van een 
nieuwe waarneming moet kunnen worden voorspeld. Veronderstel 
dat in 1950 de waarneming zal worden herhaald. Welk gegeven 
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zal worden verkregen? Dat is niet bekend. Het kan 30 kg/are zijn. 
Maar met dat woord „kunnen" wordt tevens uitgedrukt dat het 
ook anders kan. Er is geen zekerheid. Om deze reden moet con­
clusie / worden verworpen. 

Conclusie g luidt: Het jaar 1942 gaf oogsten van 30 kg/are. 
Dit beantwoordt de vraag, hoe groeizaam het weer in 1942 was. 
Tegen deze vraag moet men reeds bezwaren hebben. Deze vraag 
kan niet opnieuw gesteld worden. Het jaar 1942 is voorbij. Wan­
neer het jaar in rekening moet worden gebracht, kan er b.v. gezegd 
worden: een nat jaar brengt zoveel op, of een droge zomer zoveel. 
Natte jaren en droge zomers kunnen zich herhalen, maar 1942 
niet. Ook conclusie g zal dus moeten worden verworpen. 

In conclusie h s taat tenslotte: Tarwe brengt 30 kg/are op. Deze 
conclusie beantwoordt de vraag, welk opbrengstvermogen tarwe 
heeft. Ook deze vraag is aanvaardbaar. Dit opbrengst vermogen 
kan opnieuw worden onderzocht. 

Wanneer wij nagaan of aan de hand van de uitkomst het resul­
taat van een nieuwe waarneming kan worden voorspeld, dan is 
het succes bevredigend. „Tarwe brengt 30 kg/are op. Het gegeven 
dat verkregen zal worden zal dus luiden: 30 kg/are. 

Maar nu wordt in de derde plaats nog geëist, dat deze voor­
spelling juist zal blijken, wanneer die waarneming inderdaad 
wordt gedaan. Het is algemeen bekend, dat er meer kans is dat 
de nieuwe waarneming een afwijkend gegeven verschaft. Daar­
om lijkt ook de laatste conclusie verwerpelijk. 

Doch nu dient men te bedenken, wat reeds in 101 is geëist. Er 
moet duidelijk onderscheiden worden, wat uit de gegevens wordt 
geconcludeerd, en wat „vooroordeel" is. De zekerheid dat een 
nieuw gegeven wellicht niet met de conclusie zal overeenstemmen 
is niet uit dit ene gegeven verkregen maar uit andere, die formeel 
niet meegeteld hebben bij het verwerken van de gegevens. 

Die oudere gegevens, die bij de onderzoeker tot „vooroordeel" 
geworden zijn, worden licht meegeteld, omdat men graag wil 
controleren of aan de laatste eis werd voldaan. Voor een bevre­
digende conclusie is het dus nodig, dat er gecontroleerd wordt, 
of een nieuw gegeven zich inderdaad verdraagt met de uitkomsten, 
die met behulp van de oude gegevens zijn berekend. 

Dit maakt dat er uiteindelijk meer gegevens nodig zijn, dan 
aan het einde van 101 werd verondersteld. Hierdoor wordt de 
laatste eis van 101 verzwaard. Die moet luiden: De conclusie moet 



minder uitkomsten bevatten, dan er vrijheidsgraden beschikbaar 
zijn; of omgekeerd: Er moeten meer vrijheidsgraden zijn, dan er 
uitkomsten in de conclusie vermeld worden. 

103 - WISKUNDIGE FORMULERING VAN DE VEREISTE METHODE 

Door de eisen die in 102 zijn geformuleerd is de oplossing, die 
aan het begin van die paragraaf gegeven werd, wel helemaal on­
houdbaar geworden. Alleen al de vragen: „wat heeft de eerste 
waarneming opgeleverd?", „wat de tweede?" enz. zijn verwer­
pelijk, omdat ze niet opnieuw gesteld kunnen worden. Een nieuwe 
waarneming zal nooit weer de eerste kunnen zijn. 

Maar ook wordt aan de eis, dat het aantal uitkomsten kleiner 
moet zijn dan het aantal vrijheidsgraden, niet voldaan, daar een 
conclusie als bovengenoemd die aantallen automatisch gelijk 
maakt. 

Wanneer die laatste eis maar niet geformuleerd was, zou het 
probleem nog tamelijk eenvoudig zijn. Er zijn talloze manieren 
om van n gegevens n uitkomsten af te leiden. Men kan b.v. n 
eerste graadsvergelijkingen opstellen, waarbij telkens een ander 
gegeven in het rechterlid wordt geplaatst en een andere com­
binatie van de onbekenden met telkens wisselende coëfficiënten 
in het linkerlid. Er is niet veel geluk voor nodig om zo n onaf­
hankelijke niet-strijdige vergelijkingen te krijgen. Met behulp 
van een dergelijk willekeurig stel vergelijkingen kan men steeds 
een aantal uitkomsten verkrijgen, die aan de voorwaarden van 
101 voldoen. 

Nu komt 102 met de eis dat de vragen van het vraagstuk op­
nieuw gesteld moeten kunnen worden. Dit hoeft niet zo streng­
te worden opgevat, dat ieder van de n vergelijkingen weer toe­
passelijk moet kunnen zijn op een toekomstige situatie; maar 
het houdt wel in, dat met behulp'van de n onbekenden een nieuwe 
vergelijking moet kunnen worden opgebouwd, die op een toe­
komstige situatie kan slaan. 

De eis dat met behulp van deze vergelijking het resultaat van 
een nieuwe waarneming moet kunnen worden voorspeld is nogal, 
eenvoudig. Substitutie van de berekende uitkomsten in de nieuwe 
vergelijking geeft vanzelf een waarde in het rechterlid. Deze 
waarde moet als gegeven door de nieuwe waarneming worden 
geleverd. Uit de wijze van ontstaan van deze nieuwe vergelijking 
volgt dat zij afhankelijk zal zijn van de n andere. 



Tenslotte is geëist dat deze waarneming ook inderdaad ver­
richt wordt en met de voorspelling klopt. De eis is dus dat over een 
aantal onderling afhankelijke vergelijkingen wordt beschikt, voor men 
over de formule (conclusie) tevreden mag zijn. Door deze eis moet de 
willekeur bij het opstellen van vergelijkingen worden bestreden. 

Feitelijk staat men bij het trekken van een conclusie voor 
tweeërlei taak. In de eerste plaats moet men zorgen voor de juiste 
bouw van de formule en daarmee voor de juiste formulering van 
het vraagstuk. In de tweede plaats moet men zorgen voor een 
juiste beantwoording van de gestelde vragen. 

Door de juiste bouw van de formule wordt de conclusie kwali­
tatief goed, door de juiste beantwoording van de gestelde vragen 
kwantitatief. 

Voor het kwantitatief beantwoorden van een vraagstuk met n 
vragen zijn slechts n gegevens nodig, doch voor het aanvaarden 
van de formule in kwalitatief opzicht is het nodig de afhankelijk­
heid van een overtollig aantal vergelijkingen te bewijzen. 

Strict genomen zou bewezen moeten worden, dat alle mogelijke 
overtollige vergelijkingen van de eerste n afhankelijk waren. 
Immers, zo lang het denkbaar is een vergelijking vast te stellen 
die strijdig is met de voorgaanden is de juistheid van de conclusie 
onzeker. Absolute zekerheid is natuurlijk nooit bereikbaar. 

104 - H E T BEGRIP „ INVLOED" 

Alvorens dieper in te gaan op de mogelijkheid een aantal af­
hankelijke vergelijkingen te verkrijgen, zullen hun bestanddelen 
nader moeten worden bestudeerd. 

Het rechterlid is erg eenvoudig: het vermeldt de waarde van een 
bepaald gegeven. 

Met het linkerlid is het ingewikkelder. In 103 is de mogelijkheid 
genoemd hiervoor een eerste-graadsvorm te nemen, waarin telkens 
een aantal van de onbekenden voorkomen. Maar het bestaan van 
deze mogelijkheid is alleen zeker, wanneer er geen overtollige 
gegevens zijn die strijdigheid kunnen veroorzaken. De gedachte 
een eerste-graadsvorm te nemen is willekeurig. Door deze willekeur 
kan de conclusie fout zijn in kwalitatief opzicht. Aan het eind 
van 103 is besproken dat deze willekeur juist moet worden ver­
hinderd door de boventallige gegevens. Over de bouw van het 
linkerlid is dus niets bekend. 
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Om de gedachten te bepalen volgt hier zo maar een willekeurige 
vergelijking die voor een bepaald vraagstuk zou kunnen gelden 

j b g sin S 

(104.1) a - ßb + lg (y - c) •-, = = y. 
lg (s -f jj ~ de) 

In deze formule kan voor y telkens een waargenomen gegeven 
gesubstitueerd worden. In het linkerlid moet drieerlei worden 
onderscheiden: 
Ie de onbekenden a, b, c, d en e, waarvan de waarden moeten 

worden berekend. Het zijn deze waarden die in 101 als „uit­
komsten" zijn gedefinieerd. Deze uitkomsten zijn voor alle 
vergelijkingen gelijk; 

2e de constanten ß, y, ô, e, f, r\ en §, die voor een bepaalde ver­
gelijking a-priori vast staan, en voor een andere a-priori weer 
anders zijn. Twee vergelijkingen met precies dezelfde waarden 
voor de constanten zouden strijdig zijn bij ongelijke y en 
identiek bij gelijke y. Strijdigheid is ongeoorloofd, en identiteit 
van twee vergelijkingen brengt de oplossing van het probleem 
niet dichterbij. Vandaar de bewering, dat de waarden van de 
constanten voor de ene vergelijking a-priori anders moeten 
zijn dan voor de andere. Deze constanten zijn in 101 als „om­
standigheden" aangeduid; 

3e de bouw, die de samenwerking van al deze grootheden regelt, 
en de formule kwalitatief goed maakt. 

Tot dusver hebben wij al onze aandacht gericht op de uit­
komsten, die wij met behulp van de gegevens willen verkrijgen. 
Hierdoor hebben wij neiging de uitkomsten te zien als functie 
van de gegevens, en de gegevens als functie van de uitkomsten. 

Rekentechnisch is dit juist. Maar wanneer even nuchter boven­
staande formule (104.1) wordt bezien, blijkt het overigens hele­
maal niet redelijk. De eenmaal verkregen uitkomsten zijn de 
parameters, de constanten, die voor alle vergelijkingen gelden. 
Dat de gegevens telkens anders mogen zijn, wordt gemotiveerd 
door het wisselvallig karakter van de „constanten" ß, y, ô, e, C, 
Ï] en &. Feitelijk ligt de verhouding zo: Voordat het vraagstuk 
is opgelost, zijn a, b, c, d en e onbekende constanten en «, ß, y, ô, 
e, C, V en ê bekende variabelen. 

Het is wenselijk hier even nadrukkelijk bij stil te staan. Doordat 
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de min of meer toevallig opgetreden waarden van de verander­
lijken bekend zijn, nemen die gedurende de berekening de plaats 
van constanten in; doordat de constanten onbekend zijn moet 
hun waarde gezocht worden, hierdoor krijgen zij als onbekende 
de plaats van veranderlijken. Dit mag ons niet verhinderen in te 
zien, dat formule (104.1) y geeft als een functie van de verander­
lijken ß, y, d, e, £, V en #. 

Deze veranderlijken willen wij als invloeden aanduiden. De 
bepaalde getalwaarden, die voor één vergelijking {dienende ter ver­
klaring van één gegeven) aan de verschillende invloeden worden toe­
gekend, hebben wij reeds aangeduid met de naam omstandig­
heden van het gegeven. Een verandering van een invloed (m.a.w. 
het optreden van een andere omstandigheid) veroorzaakt dus een 
verandering van het gegeven. 

Dit geldt niet voor de constanten. Immers een constante kan 
niet veranderen. Wanneer dit ogenschijnlijk toch gebeurde, zou 
dit betekenen, dat er tot dusver een invloed in verborgen was 
gebleven, doordat die invloed (toevallig) constant was. Het zou 
betekenen dat het probleem niet juist was opgelost. De bouw 
van de formule zou verkeerd gekozen zijn, en de oplossing kwali­
tatief onjuist. 

105 - H E T VEREISTE AANTAL VRIJHEIDSGRADEN 

Aan het eind van 102 is het vereiste aantal vrijheidsgraden in 
verband gebracht met het benodigd aantal uitkomsten. Er moesten 
meer vrijheidsgraden dan uitkomsten zijn. Nu moet er op gelet 
worden of er ook verband bestaat tussen het vereiste aantal vrij­
heidsgraden en het aantal invloeden. Daartoe volgen hieronder 
twee formules. 

De formule 

y = axb -f- bxl - j- ex3 + dx2 + ex + ƒ 

geeft y als functie van één invloed x; doch er zijn zes uitkomsten: 
a, b, c, d, e en /. Er zijn zes gegevens nodig om de uitkomsten 
te bepalen, en verder nog een aantal om de formule te controleren 
op haar juistheid. Toch is hier maar één invloed. 

Daarentegen geeft de formule 

y = uvxz 

y weer als functie van vier invloeden. Er zijn evenwel geen gegevens 
nodig om uitkomsten te bepalen daar er geen onbekende para-
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meters zijn. Het eerste gegeven kan reeds dienen om de bouw van 
de formule te controleren. 

We zien dat het aantal uitkomsten en het aantal invloeden 
onafhankelijk van elkaar zijn. Het minimum aantal benodigde 
gegevens wordt uitsluitend bepaald door de uitkomsten. 

In de practijk hoeft een formule gewoonlijk niet alleen gecon­
troleerd te worden, doch hij moet eerst nog worden ontworpen. 
Voor dat doel zal het aantal gegevens wel een veelvoud moeten 
zijn van het aantal invloeden. Dit zal niet nader worden nagegaan. 

Er" is namelijk een belangrijker complicatie aan het probleem. 
Om afhankelijkheid van de formules te verkrijgen moeten de 
getalwaarden van alle omstandigheden nauwkeurig bekend zijn, 
evenals de getalwaarde van het gegeven. Dit is in de landbouw­
wetenschap nooit het geval. 

Iedere waarneming voegt daardoor een reeks speciale vragen 
toe aan de algemene vragen van het probleem: In welke mate 
is de ene omstandigheid verkeerd becijferd, en in welke mate de 
andere?, tenslotte in welke mate het gegeven? De beantwoording 
van deze vragen brengt een aantal correctieconstanten in de formules, 
die telkens maar eenmaal voorkomen. De waarden ervan moeten als 
uitkomst uit de berekening worden gevonden. Deze correctie­
constanten moeten niet alleen rekenschap geven van vergissingen 
en onnauwkeurigheden, maar ook van de toevalsonbepaaldheid 
die in sommige opzichten een fundamentele eigenschap van de 
natuur is. 

Omdat ieder gegeven minstens één correctieconstante eist, zal 
het beschikbare aantal vrijheidsgraden steeds beneden het ver­
eiste aantal uitkomsten blijven. Door deze omstandigheid is het 
ideaal van een aantal afhankelijke vergelijkingen onbereikbaar. 
Integendeel, de vergelijkingen zullen onbepaald blijven; daar er 
meer onbekenden dan gegevens zijn. 

106 - H E T UITSCHAKELEN VAN ONBEKENDEN 

Waar het niet mogelijk is, het aantal gegevens zo hoog op te 
voeren, dat het aantal onbekenden overtroffen wordt, zal het 
aantal onbekenden moeten worden verlaagd. Nagegaan moet dus 
worden welke onbekenden moeten vervallen. 

Reeds in 102 is geëist van de vragen van het probleem, dat 
ze opnieuw gesteld moeten kunnen worden. De berekende con­
stanten moeten in meer dan een vergelijking voorkomen en zo 



bijdragen tot het verklaren van meer dan een gegeven. Aan deze 
voorwaarde wordt niet voldaan door de correctieconstanten. 

De correctieconstanten komen daarom wel in de eerste plaats 
in aanmerking om weggelaten te worden. De formule die ontstaat 
door uit de „juiste" formule, die tot afhankelijkheid van de verge­
lijkingen zou moeten leiden, de correctieconstanten weg te laten 
willen wij als ideale formule aanduiden. Wanneer in de ideale for­
mule aan de constanten de , ,ware" waarden zijn toegekend zouden 
wij van ware formule willen spreken. 

Het is duidelijk dat de bouw van de ideale formule niet* ver­
andert door het toenemen van het aantal gegevens. Daarom moet 
het mogelijk geacht worden, voldoende gegevens te verzamelen 
om de ideale formule te berekenen. 

Toch wordt in de landbouwwetenschap vaak niet met de ideale 
formule gewerkt. En wel omdat die formule niet bekend is. Het 
landbouwkundig onderzoek is nog in volle gang. De invloeden 
die de plantengroei bepalen zijn nog niet alle bekend; van de 
wisselwerking tussen die invloeden is nog een groot deel duister. 
In die situatie is het niet mogelijk de ideale formule op te bouwen. 

Toch moet de een of andere formule gebruikt worden. Zo een 
formule, die in bouw van de ideale afwijkt, willen wij aanduiden 
als noodformule. 

Een noodformule kan tweeërlei doel hebben. In de eerste plaats 
stelt men zulke noodformules op om al tastende tot de ideale te 
komen. Dit is het doel van het wetenschappelijk onderzoek. 

Voor de landbouwvoorlichter is een ander doel belangrijker. 
Het is de taak van het rassenonderzoek: te voorspellen welke 
gegevens het volgend jaar verzameld zullen kunnen worden. De 
practijk moet vooraf weten welke ervaringen ze met een bepaald 
ras zal hebben. Deze ervaringen moet de voorlichter voorspellen, 
zonder dat hij de ideale formule weet. 

Hij heeft dus een noodformule nodig, die de vereiste voorspel­
lingen zo nauwkeurig mogelijk toelaat. Hoewel deze formule 
onjuist is, zal ze moeten worden gebruikt in de practijk; immers 
de landbouw gaat door. 

Wij komen dus tot het volgend overzicht van de besproken 
formules: 
(106.1) De juiste formule geeft steeds afhankelijkheid maar be­

staat niet. 
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De ware formule is kwalitatief en kwantitatief goed. 
De ideale formule is kwalitatief goed. 
De noodformule is kwalitatief onjuist. 

In wiskundige symbolen kunnen deze formules als volgt worden 
omschreven: 

juiste formule: yu = f ((xk — tx/l), {zu — tZ]i) . . . . a„, b0, c„ . . .)A-tyk 

ware formule: y = f (x, z, . , . . a0, b0, c0, . . . .) 
ideale formule: y = f (x, z, . . . . a, b, c, . . . .) 
noodformule: y — <p (x, , . . .) 

In deze formules worden door tXk, tyk, t%k . . . . aangeduid de 
correctieconstanten die volgens het eind van 105 bij het omstandig-
hedencomplex k nodig zijn. Door a0, b„, c0.... worden ware waarden 
van de parameters aangeduid door a, b, c parameters met onbe­
kende waarden. Verder wordt door / aangeduid de formule met de 
juiste bouw, door q> de formule met de onjuiste bouw. 

Het blijkt dat bij de juiste formule een identiteit ontstaat wan­
neer bij het omstandighedencomplex k het verkregen gegeven yk 
vergeleken wordt met de getalswaarde van het rechterlid, indien 
daarin naast de omstandigheden xi{, zk . . . . en de ware parameter­
waarden a0, b0, c0, ook de ware correctie constant en tXk, tyk, tZ]. 
zijn opgenomen. 

De ware formule geeft nooit identiteit, maar is voor alle om­
standigheden de beste benadering van de juiste. 

De ideale formule is gelijk aan de ware, behalve dat de waarden 
van de parameters niet bekend zijn, deze formule is ideaal als 
middel om de ware te vinden. 

De noodformule is verkeerd gebouwd. Bij gevolg komen de 
parameters a, b, c er misschien niet eens in voor, terwijl ook een 
deel van de omstandigheden, b.v. z, onvermeld kunnen zijn. 

Dit laatste type formule komt in de practijk zeer veel voor 
en zal dus nog onze speciale aandacht moeten vragen. 

B - FOUTEN EX GEWICHTEN BIJ NOODFORMULES 

1 1 1 - H E T METEN VAN DE STRIJDIGHEID 

Wanneer er niet met de juiste formule gewerkt wordt, doch 
met de ideale formule of een noodformule, zal er strijdigheid op­
treden zodra er meer gegevens zijn dan er uitkomsten gevraagd 
worden. 

Het berekenen van uitkomsten uit strijdige vergelijkingen wordt 
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vereffening genoemd. Met behulp van de uitkomsten kan nu uit 
de vergelijkingen worden berekend welke gegevens bij een bepaald 
omstandighedencomplex verwacht mogen worden. Deze „bere­
kende gegevens" willen we als ,,verwachtingen" of ,,verwachte 
gegevens" aanduiden. 

Deze verwachtingen zullen niet gelijk zijn aan de bijbehorende 
waargenomen gegevens. Er zal een afwijking overblijven tussen 
beide. Deze afwijkingen stellen ons in staat de strijdigheid in een 
getal vast te leggen. Een veel gebruikte maat voor de strijdigheid 
is de varians. 

Wanneer b.v. vier rassen in drie blokken met elkaar worden 
vergeleken is het met de FiSHER-methode mogelijk de volgende 
variansen te berekenen. 

Ie De varians van het gehele proefveld 
2e ,, ,, „ d e rasverschillen 
3e ,, ,, ,, de blokverschillen 
4e ,, ,, ,, de interactie tussen rassen en 

blokken. 

De eerste varians meet de strijdigheid, die ontstaat wanneer 
men alle opbrengsten identiek stelt. De tweede meet de strijdig­
heid die ontstaat wanneer men de rassen identiek verklaart. De 
derde doet hetzelfde wanneer men de blokken voor identiek 
verklaart. De vierde tenslotte meet de strijdigheid die ontstaat 
wanneer men verklaart dat alle rassen gelijk op de eventuele blok­
verschillen reageren. 

Wanneer de mening dat de rassen of de blokken identiek zijn 
juist is, werkt men dus met een ideale formule. In dat geval is de 
varians een maat voor de toevallige fouten. De varians gedraagt 
zich dan vaak in overeenstemming met bekende foutenwetten. 

Wanneer de aanname evenwel onjuist is werkt men met een 
noodformule. In dat geval meet de varians naast de toevallige 
ook de systematische fouten. Zonder meer mag dan niet aange­
nomen worden dat de varians de toevalswetten volgt. 

In verband hiermee willen wij alleen die varians, die toevallige 
fouten meet, aanduiden door o2. De varians die is opgebouwd 
uit toevallige en systematische fouten duiden wij aan als y>2. 

Aan de hand van een voorbeeld willen wij nu nagaan welke 
moeilijkheden zich bij een varians van een noodformule kunnen 
voordoen. 
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112 - VOORBEELD VAN HET GEBRUIKEN VAN EEN NOODFORMULE, 

Veronderstel dat onder de volgende omstandigheden x de bij­
behorende gegevens y zijn waargenomen. Zowel de gegevens als 
de omstandigheden zijn foutloos in cijfers uitgedrukt. 

x = 
y = 

1089 
142.56 

1156 
146.88 

1296 
155.52 

1369 
159.84 

1521 
168.48 

1681 
177.12 

1764 
181.44 

1936 
190.08 

Deze cijfers worden vereffend op de lijn y = mx + q (met de 
formules voor x zeker, y onzeker) onder aanname dat dat de ideale 
formule is. De varians duiden we dus aan door er2. Hieronder 
volgt de berekening 

X 

1089 
1156 
1296 
1369 

i 1521 
1681 

! 1704 

som | 

1936 

11812 
gemid. ,1476.5 

y 

142.56 
146.88 
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159.84 
168.48 
177.12 
181.44 
190.08 

1321.92 
165.24 

n 

i 

a' 

o-2 

m 

m 

^ 

G~„ 

u 

-387.5 
-320.5 
-180.5 
-107.5 

44.5 
204.5 
287.5 
459.5 

[uv 
1 = r 

[uu 
ï = y -

[vv] 

fl 

o* 
\_uu_ 

= 0.0C 

= 1.38 

V 

-22.68 
-18.36 
-9.72 
-5 .40 

3.24 
11.88 
16.20 
24.84 

uu 

150 156.25 
102 720.25 

32 580.25 
11 556.25 

1 980.25 
41 820.25 
82 656.25 

211 140.25 

634 610.00 

- = 0.05618 

-mx = 

[uvf 
[uu] 

— 2 

82.36 

= 0.5321 

= 0.000 000 838^ 

09 

x2 \ 
1 [uu]) 

o2 = 3.5É 

uv 

8 788.50 
5 884.38 
1 754.46 

580.50 
144.18 

2 429.46 
4 657.50 

11 413.98 

35 652.96 

1 

a2= 1.8S 

vv 

514.3824 
337.0896 

94.4784 
29.1600 
10.4976 

141.1344 
262.4400 
617.0256 

2006.2080 

43 

file:///_uu_
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Wc vinden dus als resultaat dat 

o2 = 0.5321 

m = 0.05618 ± 0.0009 

q = 82.36 ± 1.38 

Zowel de m als de q zijn dus ,,zeer betrouwbaar" afwijkend 
van 0. 

Omdat de lijn iets krom is willen wij voor nadere informatie 
ook eens proberen de lijn te vereffenen op y = a lg x -~ b. De 
berekening blijft dezelfde als de voorgaande, slechts wordt de x 
door lg x vervangen. 

De berekening geeft het volgend resultaat: 

ff2 = 0.4804 

af = 8.63 

af = 86.4720 

a = 190 ± 3 

b = -435.35 ± 9.30 

Ook de uitkomsten voor a en b maken in het licht van hun 
middelbare fout ,,zeer betrouwbaar" de indruk niet gelijk aan 
0 te zijn. 

Niet alleen zijn de uitkomsten van beide formules alle ,,zeer 
betrouwbaar" ongelijk 0, maar ze zijn ook lijnrecht met elkaar 
in tegenspraak. Wanneer door de q met practische zekerheid 
wordt uitgedrukt dat de lijn de positieve Y-as snijdt, terwijl de 
andere formule beweert dat de lijn de negatieve Y-as asymptotisch 
nadert en reeds voor de waarde x = 1 (lg x = 0) zeer zeker een 
sterk negatieve waarde heeft (b = -435.35), klopt er iets niet. 

Eerst wordt bewezen dat de constante term positief is (q = 82.26), 
dan wordt bewezen dat hij negatief is (b = — 435.35). Tweemaal 
is bijgevolg „zeer betrouwbaar" aangetoond dat er een constante 
term is. In werkelijkheid liggen alle punten foutloos op de lijn 
y = 4.32^'x. Deze lijn gaat door de oorsprong en heeft geen 
constante term! 



113 - D E ASYMPTOTISCHE WAARDE 

Het is duidelijk dat de berekende middelbare fout van de uit­
komsten hier niet inlicht over de afwijking'tussen de berekende 
en de ware waarde van de constanten. De constanten van een 
noodformule hebben geen ware waarde, want de noodformule 
is onjuist. 

Wel kan er gesproken worden van hun asymptotische waarde. 
Wanneer er een oneindig aantal waarnemingen verwerkt werden, 
die toevallig gekozen waren, zouden zeer bepaalde uitkomsten 
berekend worden. Deze waarden worden asymptotische waarden 
genoemd. Wij willen die waarden nu berekenen voor bovenstaand 
voorbeeld, waarbij wij als noodformule y = mx -f- q kiezen. Het 
resultaat van de berekening willen wij als asymptotische ver­
wachting aanduiden. 

Bij de waarneming w, verricht onder de omstandigheid xw hoort 
als ware waarde (y0) van het gegeven 

y„w = 4.32 v*!£' 

De waarde volgens de noodformule is 

yw = mxia -f- q 

De afwijking is dus 

(113.1) 4.32\Aio — mx-«, — q. 

Volgens de methode der kleinste kwadraten moeten wij de 
m en de q nu zodanig kiezen, dat de som van de kwadraten van 
deze afwijkingen zo klein mogelijk wordt. In het onderhavige 
geval is het aantal afwijkingen oneindig en de kwadraatsom dus 
ook. Daarom moeten wij werken met het gemiddelde. 

Wanneer wij voor de overzichtelijkheid 4.32 vervangen door c, 
is het kwadraat van (113.1): 

3 1 

m2xw
2 — 2cm xw'£ - r (c2 + 2mq) xw — 2cq xu^ + <?2 

Met deze formule kunnen wij niet verder werken, wanneer 
we niet eerst ons universum nader begrenzen. Wij stellen 
daartoe dat de x steeds tussen 1000 en 2000 ligt (wat in ons 
voorbeeld ook het geval was) en dat alle waarden van x in 
dat gebied evenveel kans hebben voor te komen. Nu kunnen 
wij de relatieve frequentie van de waarde Xw gelijk stellen aan 

/"2000 
TTTcnr ax-wt immer s / T"O <TTT ^XW =^ !• 

J 10(10 
2 



Het gemiddelde van de kwadraten zal nu gelijk zijn aan 

'•2000 

« = 1000 
(m2x2 — 2cmx2 4- (c2 + 2ptq) x — 2cq x*~ -f q2) dx 

Dit is 
6. S_ 

\m2xz — j-cm x2 -f- (^c2 — w?) ^2 — fc? * 2 9% 
2000 

1000 

Wanneer wij stellen 

xa = 2000 

xb = 1000 

wordt deze vorm 

(113.2) TÖV o \\™2 (*«3 — *&3) — ïcm (xai — xbi) -f 

-f (£c2 + w<?) (#a
2 — Xb2) — \cq {xc? — XbV -f q2 {xa — Xb). 

Om na te gaan voor welke waarde van m en q deze vorm zo 
klein mogelijk wordt, moeten wij hem partieel naar m en q differen­
tiëren. Door die differentiaalquotienten gelijk aan 0 te stellen 
zullen wij in dit geval het minimum vinden. 

Wij vinden zo de vergelijkingen 

• Xb3) • ' roVô )ïm (Xa3 (xa2 

Tö'oö ) m (X*2 •Xb2) ie {xà2 

- Xb2) ~r~ q {xa2 — Xb2) = 0 

Xb2) ~r 2q (xa — %&) = 0 

Door Xa = 2000 en Xb = 1000 te substitueren wordt dit (wan­
neer wij tevens de eerste vergelijking door 1000 delen) 

m ! ( 4 V 2 — l ) c V 1 0 0 0 ^ 3 ? = 0 

| (2V2 — 1) eVIOOO -f 2q = 0. 3000 m 

Wij lossen hieruit op 

3c (12 — 8V2) 
m 5V1000 

_ £ (128^2 — 172) -y/1000 
q - j ^ . 

Substitutie van c = 4.32 geeft 

(113.3) m = 0.05625273179 

q = 82.14233671 
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Dit zijn dus de asymptotische verwachtingen van de constanten 
van de onjuiste noodformule. Wanneer wij deze asymptotische 
verwachtingen in de noodformule invullen willen wij spreken van 
de asymptotisch verwachte noodiormule. 

114 - D E FOUTEN BIJ HET GEBRUIKEN VAN EEN NOODFORMULE 

Nu verschillende begrippen zijn besproken is het mogelijk na 
te gaan welke soorten fout er gemaakt kunnen worden, wanneer 
de juiste formule wordt vervangen door een noodformule. Dit 
vervangen willen wij in gedeelten doen (Zie voor de namen der 
formules 106.1). 

a. In de eerste plaats vervangen wij de juiste formule door de 
ware formule. Hierbij worden dus de correctieconstanten wegge­
laten. 

Doordat deze correctieconstanten bij iedere waarneming weer 
andere waarden hebben kan hun grootte niet stuk voor stuk 
worden vastgesteld. Daarom tracht men bij het nemen van proeven 
zoveel voorzorgen te nemen, dat de gegevens en de omstandig­
heden zo nauwkeurig mogelijk bekend zijn. Soms kan de orde 
van grootte van deze correctieconstanten vooraf geschat worden; 
dit kan aanleiding geven tot het toekennen van „gewichten" 
(Zie voor de theorie hierover het leerboek van VAN UVEN, hfdst. 
I II) . Verder is er niets aan te doen. 

Daarom hoopt men deze onbekende correctieconstanten als 
„toevallige" fouten op te mogen vatten, die gezamelijk aanleiding 
geven tot een toevallige afwijking bij de waarneming. In formule 
uitgedrukt is deze afwijking t0 bij een waarneming w 

t°w = y™ y°w 

waarbij yw weergeeft de waarde van het gegeven, zoals het is 
waargenomen en y0w de „ware waarde" er van. 

Wanneer er geen andere fouten gemaakt zijn, dus wanneer 
met de ideale formule gewerkt is, is deze t0 de enige oorzaak van 
de varians. In 111 hebben wij reeds gezegd dat wij in dit geval 
de varians door a% zullen aanduiden. 

Deze varians wordt gewoonlijk genoemd de toevalsvarians. De 
wortel hiervan (o) is volgens de bekende foutentheorieën de 
beste schatting van de asymptotische middelbare waarde van de 
ware toevallige fouten van de gegevens. 
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b. In de tweede plaats vervangen wij de ware formule door de 
asymptotisch verwachte noodformule. Dit komt er op neer dat 
het verband tussen omstandigheden en gegevens onjuist geïnter­
preteerd wordt. Wij zouden hier dan ook van interpretatief out 
willen spreken. De afwijking ti tengevolge van de interpretatie-
fout kan als volgt in formule worden weergegeven. 

tiw = % — y„w 

waarbij yw de waarde voorstelt, die het gegeven y zou moeten 
hebben bij de waarneming w volgens de asymptotisch verwachte 
noodformule, terwijl de y„w op dezelfde manier als boven kan 
worden omschreven. 

Van deze afwijkingen ti mag niet worden aangenomen dat ze 
toevallig verdeeld zijn. Bij bepaalde omstandigheden behoort een 
bepaalde interpretatieafwijking. Dit is b.v. te zien wranneer men 
voor het voorbeeld uit 112 de afwijkingen berekent en die tegen 
de omstandigheden x afzet. Bij gebruikmaking van de nood­
formule y = mx -f- q vindt men dat de afwijking positief is bij 
lage x, daarna negatief wordt om tenslotte weer positief te 
zijn. 

Wanneer de gevonden afwijkingen een systematisch verband 
vertonen met een of meer invloeden spreekt men van systema­
tische fout. Dergelijke afwijkingen zijn dus het gevolg van een 
interpretatief out. De invloeden, die bij de systematische fout 
een rol spelen zijn in de noodformule op een onjuiste wijze opge­
nomen, of geheel weggelaten. 

Een verwachting van het gemiddeld kwadraat van de inter­
pretatieafwijkingen ti laat zich voor ons voorbeeld met behulp 
van formule (113.2) berekenen. Wanneer daarin de asymptotische 
verwachtingen voor m en q (zie 113.3) worden gesubstitueerd, 
wordt de waarde 0.5144 gevonden. 

Naast de symbolen f2 en er2, die we in 111 bespraken, willen wij 
voor de varians tengevolge van de interpretatiefout nog het sym­
bool Ç92 invoeren. De wortel <p kan dan worden aangeduid als 
middelbare interpretatiefout. 

c. In de derde plaats moet de asymptotisch verwachte nood­
formule worden vervangen door de berekende. Ook in ons voor­
beeld was er verschil tussen beide, zoals de volgende vergelijking 
leert 
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(114.1) Berekende waarde Asymptotische waarde volgens 
volgens 112 113 en 114 

m 0.05618 m 0.05625 

q 82.36 q 82.14 

V2 0.5321 < v 2 > ( = <p2) 0.5144 

De varians werd in 112 nog als o2 aangeduid. Daar wij aan de 
vereffeningsformules het karakter van noodformules herkenden 
hebben wij nu de notatie ip2 genomen. 

In (114.1) blijkt dat er onderscheid is tussen de berekende 
varians f2 en de asymptotisch verwachte interpretatievarians q>2. 
Hierbij speelt de toevalsvarians geen rol, want er is uitgegaan 
van foutloze waarden, en er is bovendien voor gezorgd dat ook de 
afrondingsfouten niet te groot werden. 

De oorzaak van het verschil ligt hier, dat volgens onze aanname 
alle omstandigheden tussen x = 1000 en x = 2000 evenveel kans 
hebben op te treden, terwijl van al die mogelijke waarden slechts 
8 verwerkelijkt zijn in de cijfers van 112. Deze 8 waarden hebben 
nu de taak het gehele gebied tussen x = 1000 en x = 2000 te ver­
tegenwoordigen. Ze zijn er als het ware een monster uit. Maar het 
monster is niet zo ideaal mogelijk getrokken. Dit blijkt als wij het 
gebied van x in 8 gelijke delen verdelen en daar naast vermelden 
welke x als vertegenwoordiger moet worden beschouwd (zie onder­
staande tabel). 

1000 1500 
) 1089 ) 1521 

1125 1625 
) 1156 ) 1681 

1250 1750 
) 1296 ) 1764 

1375 1875 
) 1369 ) 1936 

1500 2000 

Het blijkt dat de omstandigheid x = 1369 zelfs buiten zijn 
gebied ligt; verder liggen er maar een paar redelijk in het midden. 
De fout die hier gemaakt is zouden wij als monster fout willen aan­
duiden. 

Wanneer het monster volgens toeval getrokken wordt doet 
deze fout misschien aan de toevallige fout denken. Maar de monster-
fout is opzettelijk te beïnvloeden, en daarom veel gevaarlijker. 
Wij willen dit aantonen aan de hand van vier voorbeelden (steeds 
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gebruiken we punten die voldoen aan y 
duiden wij aan met y2. 

(114.2) 

4.32-y/x). De varians 

x = 

1024 
1089 
1406 
1483 
1521 
1561 
1936 
1980 

y = 

138.24 
142.56 
162.00 
166.32 
168.48 
170.64 
190.08 
192.24 

u = 

-476 
-411 

-94 

-17 
21 
61 

436 
480 

-28.08 
-23.76 j 

-4 .32 ] 
0 

2.16 
4.32 

23.76 
25.92 

n 

q 

•A 

\un] = 829280 
\uv] = 46647.38 
\vv] = 2631.3984 

= 0.05625 -J- 0.0012 
= 81.95 4- 1.88 

-= 1.2436 

gem. 1500 166.32 

(114.3) 

gem. 

1156 
1225 
1261 
1333 
1641 
1723 
1764 
1849 

1494 

y = 

146.88 
151.20 
153.36 
157.68 
174.96 
179.28 
181.44 
185.76 

166.32 

-338 
-269 
-233 
-161 
147 
229 
270 
355 

-19.44 
-15.12 
-12.96 

-8 .64 
8.64 

12.96 
15.12 
19.44 

luit] = 539 790 
luv] = 30 270.24 
Ivv] = 1 698.2784 

m = 0.05608 ± 0.0005 
q = 82.54 ± 0.74 

^ = 0.1316 

(114.4) 

gem. 

x = 

1024 
1089 
1156 
1260 
1332 
1406 
1521 
1764 

1319 

y = 

138.24 
142.56 
146.88 
153.36 
157.68 
162.00 
168.48 
181.44 

156.33 

ii = 

-295 
-230 
- 163 
- 59 

13 
87 

202 
445 

v = 

-18.09 
-13.77 

-9 .45 
-2 .97 

1.35 
5.67 

12.15 
25.11 

[uu] = 416 542 
luv] = 24358.32 
[vv] = 1427.0904 

m = 0.05848 + 0.0010 
q = 79.19 ± 1.40 

^ = 0.4463 
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(114.5) 

gem. 

x = 

1226 
1483 
1561 
1641 
1723 
1849 
1936 
1981 

1675 

y = 

151.20 
166.32 
170.64 
174.96 
179.28 
185.76 
190.08 
192.24 

176.31 

u = 

- 449 
-192 
-114 

-34 
48 

174 
261 
306 

v = 

-25.11 
-9 .99 
-5 .67 
-1 .35 

2.97 
9.45 

13.77 
15.93 

m 

~q 

r 

[uu] = 446 954 
\uv] = 24 140.16 
[TO] = 1 305.7848 

= 0.05401 ± 0.00086 
= 85.84 = 1.45 

= 0.3276 

In deze vier voorbeelden hebben wij met de gebruikelijke for­
mules de middelbare fout van de uitkomsten uit de y>2 berekend, 
zonder daarmee te zeggen dat zo iets geoorloofd is. Deze middelbare 
fouten zullen wij in het volgende tabelletje (114.6) aanduiden als 
f m en tpq. In die tabel willen wij onze uitkomsten als volgt samen­
vatten: 

(114.6) 

m 
m 

\m—m\ 

'I'm 

\m—m\ 

'Pm 

<? 
1 

!?—<?! 
n 

\q—q\ 

•Pq 

4>2 

V 

Asymp­

tot i sche 
ver­

wach­
t ing 

0.05625 

82.14 

0.5144 

Voorb. 
114.2 

0.05625 

— 
0.0012 

81.95 
0.19 
1.88 

0.1 

1.2436 

Voorb. 
114.3 

j 0.05608 
0.00017 
0.0005 

0.34 

82.54 
0.40 
0.74 

0.54 

0.1316 

Voorb. 
114.4 

0.05848 
0.00223 
0.0010 

2.23 

79.19 
2.95 
1.40 

2.1 

0.4463 

Voorb. 
114.5 

0.05401 
0.00224 
0.00086 

2.6 

85.84 
3.70 
1.45 

2.55 

0.3276 

| ( 3 =114 .4 
4=114.6) 

j 

Verschil 
t ussen 

114.4 en 
114.5 

l»%—mi\ 

N3—mt\ 

Vniz—mi 

0.00447 
0.0013 

3.39 

!?3—1i\ 

l?3 g4l 

6.65 
2.00 

3.32 
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Het blijkt dat de uitkomsten van de eerste twee voorbeelden 
bizonder goed zijn; de varians wordt echter totaal verkeerd be­
rekend. De varians van het eerste voorbeeld is ongeveer tienmaal 
die van het tweede. Wij willen deze speciale vorm van monsterfout 
aanduiden als deviatie] out. 

In het derde en vierde voorbeeld zijn de afwijkingen veel beter 
geschat, doch hier deugen de uitkomsten niet. De verschillen 
tussen de uitkomsten van het derde en het vierde voorbeeld zijn 
zelfs „zeer betrouwbaar", hoewel ze voor hetzelfde gebied gelden 
en het uitgangsmateriaal „foutloos" was. Deze vorm van monster-
fout willen wij aanduiden als parameter f out, omdat de uitkomsten, 
de berekende waarden van de parameters van de noodformule, 
afwijken van de asymptotische verwachting daarvan. 

In 116 en 117 zullen deze fouten nader worden bestudeerd. 

115 - H E T TOEKENNEN VAN GEWICHTEN 

Evenals bij de toevallige fouten kan men ook bij de monster-
fouten trachten hun invloed te corrigeren door het toekennen 
van gewichten. Men zou als volgt kunnen redeneren: Het gebied 
dat bemonsterd moet worden ligt tussen x = 1000 en x = 2000. 
Hieruit zijn 8 waarnemingen getrokken, die ieder een deel van dit 
gebied vertegenwoordigen. Wegens de monsterfout vertegen­
woordigt ieder niet een even groot deel. De grootte van het ver­
tegenwoordigd gebied zou men als gewicht van de waarneming 
kunnen nemen. 

In ons geval is de grootte van het gebied als volgt te schatten: 
De omstandigheden x worden gerangschikt volgens opklimmende 
grootte. Neem nu aan dat de grenzen van twee delen telkens 
midden tussen twee omstandigheden liggen. Ter illustratie zijn 
in tabel (115.1) de gewichten van voorbeeld (114.2) berekend. 

Om kleine getalwaarden voor het gewicht te krijgen is in dit 
geval het vertegenwoordigd deel gedeeld door 20. Op deze manier 
zijn voor alle 4 voorbeelden gewichten berekend, deze zijn ver­
meld in tabel (115.2). Het gewicht is voorgesteld door g. 

Met deze gewichten zijn de berekeningen overgedaan. In tabel 
(115.3) zijn de resultaten vermeld. De voorbeelden waarbij ge­
wichten zijn gebruikt zijn aangeduid als (114.2a, 114.3a) enz. 
Ter vergelijking zijn de uitkomsten zonder gewicht er nog weer 
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(115.1 

Vertegen-
Grenzen woordigd 

deel 

1024 
1089 
1406 
1483 
1521 
1561 
1936 
1980 

1000 
1056 
1247 
1444 
1502 
1541 
1748 
1958 
2000 

56 
191 

97 
58 
39 

207 
210 

42 

Gewicht ' 

3 
10 

10 
10 

15.2) 

Voorbeeld 
114.2 

Voorbeeld 
114.3 

Voorbeeld 
114.4 

Voorbeeld 
114.5 

X 

1024 

1089 

1406 

1483 

1521 

1561 

1936 
1 980 

g 
3 

10 
5 
3 
2 

10 
10 
2 

X 

1156 

1225 

1261 

1333 

1641 

1723 

1764 ; 

1849 

g 
3 
i 

1 
3 
3 
1 
i 

3 

X 

1024 

1089 

1156 

1260 ; 

1332 

1406 

1521 

1764 

g 
1 
1 
2 
2 
2 
2 
4 
8 

X 

1226 

1483 

1561 

1641 

1723 

1849 

1936 

1981 

g 
18 
8 
4 
4 
5 
5 
3 
2 

naast vermeld. De waarden van f2 zijn herleid op het gemiddeld 
gewicht, dat aan de waarnemingen werd toegekend. 

Het valt op dat de schattingen van de \p% in de voorbeelden 
(114.2 en 114.3) niet veel zijn verbeterd; de uitkomsten (m en q) 
van de voorbeelden (114.4 en 114.5) daarentegen wel. Het wil 
ons voorkomen dat dit zijn oorzaak vindt in de keuze van het 
monster. Als algemene conclusie zouden wij willen trekken, dat 
het toekennen van gei&ichten stellig invloed heeft, maar niet afdoende 
helpt. 

Een andere conclusie is misschien nog belangrijker. Wanneer 
bij het gebruik van een noodformule gewichten worden toegekend 
op grond van de toevallige fouten, zullen deze gewichten invloed 
krijgen op de monsterfouten. Omdat de monsterfouten met de 
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systematische interpretatiefouten samenhangen kan dit zeer on­
gewenst zijn. 

116 - D E VARIANSANALYSE 

Onder leiding van Prof. R. A. F ISHER heeft zich een mathe­
matische school ontwikkeld, die zich toelegt op de zgn. varians­
analyse (analysis of variance). 

De grondgedachte van bovengenoemde school is de volgende: 
Wanneer er verschillende fouten onafhankelijk van elkaar werken, 
die allen bijdragen tot de varians, dan kan de totale varians ver­
kregen worden door de som te nemen van de variansen die iedere 
fout op zich zelf veroorzaakt. 

Wanneer er geen monsterfout is mag in ons geval dus gesteld 
worden 

(116.1) xp2 = o2 - f <p2. 

De toevallige fout is immers naar zijn aard onafhankelijk van 
iedere andere foutenbron. (Misschien niet altijd wat de absolute 
grootte betreft, maar zeker wat het teken aangaat). 

Wanneer er wel een monsterfout is gemaakt zouden wij deze 
formule graag uitbreiden met een paar termen B en C, die reken­
schap konden geven van de deviatie- en de parametervarians. 
Wij zouden dan krijgen 

(116.2) y,2 = a2 + (p2 + B + C. 

Dit mag echter niet zonder meer. De monsterfout is niet onaf­
hankelijk van de interpretatief out. Wanneer er geen interpretatie-
fout is, kan er geen monsterfout zijn. . ndien onze gegevens inder­
daad werden vereffend op de lijn y = c-\/x, zou het onbelangrijk 
zijn in welk gebied voor x onze waarnemingen lagen. 

Aangenomen moet dus worden dat de B en de C afhankelijk 
zijn van de <p2. In verband hiermee willen wij ze voorlopig aan­
duiden als deviatie- en parameter term. 

Naar zijn aard is de a2 van deze termen evenzeer onafhankelijk 
als van cp2. Voor de eenvoudigheid willen wij daarom tijdelijk 
aannemen dat o2 = 0. Wanneer wij ons bovendien het speciale 
geval denken dat C = 0, wordt formule (116.2) gereduceerd tot 

(116.3) y>2 = (p2-1rB. 

Aangezien de minimumwaarde van f2 = 0 is, volgt hieruit 



dat de minimumwaarde van B gelijk aan — <p2 is. Ook hieruit 
blijkt duidelijk dat de B geen „varians" is. 

Wanneer wij nu definiëren 

(116.4) ~Bi = A 

dan blijkt dat 

(116.5) A> — \ 

Een maximumwaarde van A laat zich niet vaststellen. Die 
is afhankelijk van de bouw van de ideale en de noodformule en 
van het onderzochte gebied. 

In verband met (116.4) kan (116.3) worden geschreven als 

(116.6) f
2 = (1 + A)<p2 

Wanneer wij weer o2 = 0 stellen krijgt (116.2) nu de gedaante 

(116.7) y,2 = (1 + A)v
2 + C 

Ook deze vorm kan niet negatief worden dus 

(116.8) C > — (1 + A)<p2 

Van C is niet alleen een minimumwaarde te vinden, maar ook 
een maximumwaarde. De C geeft rekenschap van de parameter-
fout, d.w.z. van het feit dat de berekende noodformule afwijkt 
van de asymptotisch verwachte. Wanneer de vereffening met de 
methode der kleinste kwadraten (kleinste varians) is uitgevoerd, 
houdt dit dus in dat de varians ten opzichte van de berekende 
noodformule (f2) kleiner is dan de varians ten opzichte van ieder 
ander, en dus ook ten opzichte van de asymptotisch verwachte 
noodformule. Laatstgenoemde varians is in (116.6) gegeven. 

Hieruit volgt dus 

i1 < (1 -f A) cp.2 

of 

(116.9) C < 0 

Wanneer wij nu een grootheid Z definiëren als 

(116-10> Z - - ( . - ^ 

volgt uit (116.8) en (116.9) 

(116.11) 0 < Z < 1. 
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In verband met (116.7) en (116.10) kan (116.2) nu worden ge­
schreven als 

(116.12) v
2 = o2 -f (1 — Z) (1 + A) y2 

117 - H E T GEBRUIK VAN DE VAKIANS 

Het bestuderen van een vraagstuk kan tweeërlei doel hebben. 
In de eerste plaats is het mogelijk dat men een algemene wet wil 
omschrijven. In de tweede plaats kan het doel zijn een toekomstig 
gegeven te voorspellen. Naarmate het eerste doel beter bereikt is, 
willen wij de conclusie nauwkeuriger noemen, naarmate het tweede 
doel beter te bereiken valt, noemen wij de formule bruikbaarder. 

Wanneer met een ideale formule is gewerkt, zijn de nauwkeurig­
heid en de bruikbaarheid alsvolgt uit de varians (o2) af te leiden. 

De nauwkeurigheid wordt gemeten door de middelbare fout 
van alle berekende parameters (uitkomsten). Wij veronderstellen 
de methoden hiertoe als bekend. 

De bruikbaarheid hangt af van de middelbare fout van de enkele 
waarneming (o) en van de nauwkeurigheid der formule. 

De a geeft nl. slechts aan wat de middelbare afwijking is tussen 
het waargenomen, of waar te nemen, en het ware gegeven, d.w.z. 
het gegeven dat uit de ware formule voor de gegeven omstandig­
heden kan worden berekend. 

Maar men kan de ware formule niet vinden. De berekende formule 
wijkt door een te kort aan nauwkeurigheid iets van die ware af. 
Met behulp van de middelbare fouten der verkregen uitkomsten 
kan nu worden nagegaan, wat de middelbare afwijking is tussen 
het verwachte gegeven, dat voor een bepaald omstandigheden-
complex k uit de berekende formule kan worden afgeleid, en het 
ware gegeven dat voor diezelfde omstandigheden uit de ware 
formule zou zijn berekend. Deze middelbare afwijking willen wij 
aanduiden door Uk. Deze Uk heeft natuurlijk ook invloed op het 
slagen van een voorspelling. Hoe groter de Uk, des te slechter de 
voorspelling. 

Nu is de toevallige fout, die bij een volgende waarneming ge­
maakt wordt, onafhankelijk van de middelbare fouten van de 
verkregen uitkomsten. De afwijking Vk, die het middelbaar ver­
schil aangeeft tussen een voorspelling voor bepaalde omstandig­
heden en de eventuele waarneming, die onder deze omstandigheden 
zal volgen, kan dus worden berekend uit de formule 
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(117.1) Vk' Uli2 

Naarmate de Vk kleiner is, is de bruikbaarheid van de berekende 
formule voor de betreffende omstandigheden groter. 

Wanneer met een noodformule is gewerkt, heeft het geen zin 
over nauwkeurigheid te spreken. Er kan dan slechts sprake zijn 
van bruikbaarheid. Wij willen nu nagaan wat het verband is tussen 
de varians van (116.12) en de bruikbaarheid van de noodformule. 

Hierbij moet er aan gedacht worden dat er over afwijkingen 
tussen ideale en noodformules geen gedetailleerde wetten zijn 
op te stellen. Een noodlijn blijft van de ideale afwijken omdat de 
onderlinge relatie niet nauwkeurig bekend is. Voor een zeer een­
voudig verband willen wij trachten een paar regels op te stellen 
in de verwachting, dat in ingewikkelde gevallen min of meer 
analoge regels zullen gelden. 

Bij de uiteenzetting willen wij gebruik maken van figuur (117.2) 

(117.2) 

waarin een ideale lijn en een asymptotisch verwachte noodlijn zijn 
getekend. De snijpunten van de ideale en de noodlijn hebben als 
abscis x = c en x = g. De uiterste grenzen van x zijn a en i; het 
gemiddelde is e. De waarden b, d, f en h liggen ongeveer midden 
tussen eerstgenoemde in. 

Wij kunnen nu formule (116.12) het best bestuderen door ons 
weer voor te stellen dat er geen toevallige fouten zijn. Die zijn 
toch onafhankelijk van alle andere. 

Eerst willen wij letten op de invloed van A. Daartoe nemen wij 
aan dat de asymptotisch verwachte noodlijn (toevallig) precies 
is berekend, dus dat Z = 0. 

Geval (117.3) Voor het geval A = — 1 liggen alle waargenomen 
punten op de snijpunten, waarvoor x = c en x = g. 

In dit geval is de vorm (1 + A) = 0, zodat if = er2. Wanneer 
men hieruit zou concluderen, dat de berekende waarde y> de middel­
bare afwijking tussen een waar te nemen en een (met de nood-



formule) voorspeld gegeven zou aangeven, zou men verwaarlozen, 
dat voor andere waarden van x dan c en g de interpretatiefout 
zeker mee moet tellen. Met name in de buurt van x = a of e zou 
de afwijking veel te laag geschat zijn. In dit geval zou de bruik­
baarheid van de formule dus te hoog worden aangeslagen. 

Geval (117.4) Wij willen nu aannemen dat de waarnemings-
punten zich van x = c en x = g naar weerskanten verspreiden. 
De helft van c gaat naar b, de andere helft naar d; die van g ver­
delen zich zo in de richting naar / en naar h. Het is mogelijk dat 
dit verschuiven zo plaats vindt, dat de zwaartepunten van beide 
groepen zich practisch niet verplaatsen, zodat de berekende lijn 
niet verandert. Dan zal de A toch groter worden. De grootte van A 
hoeft de bruikbaarheid van de noodformule niet te beïnvloeden. 

Geval (117.5) Het vergroten van A gaat door tot de punten 
zich bevinden in x = a, x = i en in de buurt van x = e. Dan 
heeft de A zijn maximum bereikt, maar is de asymptotisch ver­
wachte noodlijn nog behouden gebleven, zodat nog geldt Z = 0. 
Formule (116.12) wordt dan ip2 = o2 -f- (1 -j- A) <p2. Zou men nu 
de ip gelijkstellen aan de boven aangeduide middelbare afwijking 
tussen waar te nemen en voorspeld gegeven, dan zou de afwijking 
te groot worden geschat. Deze afwijking zou voor de extreme 
gevallen x = a, e of i gelden, niet voor de tussenliggende om­
standigheden. In dit geval zou de bruikbaarheid van de formule 
dus te laag worden aangeslagen. 

Uit het voorgaande is duidelijk dat aan het berekenen van de 
bruikbaarheid vooraf moet gaan de {misschien onbetrouwbare) aan­
name dat A = 0 is. 

Geval (117.6) Wij willen nu de Z nader bestuderen. Daartoe 
denken wij ons eerst dat de beide groepen punten in x = c en 
x = g bij elkaar blijven en gezamelijk verschuiven; b.v. van c 
naar b en van g naar /. I dit geval blijft de vorm (1 -j- ̂ 4) niet 
nul, want de A reageert op de afstand tot de asymptotisch ver­
wachte lijn. De vorm (1 —Z) (1 -j- A) cp2 blijft daarentegen wel 
nul, want alle punten zullen op de berekende noodlijn liggen. 
De Z moet dan dus 1 zijn. 

Strikt genomen is de Z dus geen maat voor de afwijking tussen 
de berekende en de asymptotisch verwachte noodformule. Hij geeft 
aan hoever de waargenomen punten van de berekende lijn ver­
wijderd zijn. Wanneer die punten met de berekende lijn samen­
vallen is de Z = 1. Aangezien in geval (117.3) de punten samen-
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vallen met de asymptotisch verwachte lijn, die dan tegelijk de 
berekende is, zou men kunnen verdedigen, dat de Z dan ook 1 
is en niet nul, zoals wij boven aannamen. Geval (117.3) is een 
limietgeval, die zich ongelijk laat belichten al naar de manier, 
waarop de limiet wordt bereikt. De waarde van Z is in dit speciaal 
geval onbepaald. 

Geval (117.7) Xu moet gelet worden op de afwijkingen die er 
zullen zijn tussen de berekende en de asymptotisch verwachte 
noodformule. Laat hun varians zijn E2. Het verband tussen E2 

enerzijds en de grootheden A en Z anderzijds moet nu nader 
worden bestudeerd. Wij laten daartoe de beide groepen punten 
zich zeer geleidelijk uit x = c en x = g verwijderen. De A zal 
dus langzaam groter worden. En even langzaam groeit de 
kans dat een berekende noodlijn beduidend van de asymptotisch 
verwachte afwijkt. Laten wij eens aannemen dat op een gegeven 
ogenblik de punten zich willekeurig over de waarden x = b, d, f 
en h hebben verdeeld. 

Laten de punten b, d, ƒ en h nauwkeurig zo gedefinieerd zijn, 
dat voor deze waarden van x de afstand tussen asymptotisch 
verwachte noodlijn en ware lijn y bedraagt. Dan zal de waarde 
van A bij het bereiken van deze punten tot 0 zijn gestegen. 

In dit geval kunnen alle punten zich geconcentreerd hebben 
in b en /, of d en /. In beide gevallen zal de Z = 1 zijn, doch de 
gemiddelde afwijking tussen de berekende en asymptotisch ver­
wachte noodlijn zal geheel ongelijk zijn. Het verband tussen de 
gezochte afwijking en de grootheden A en Z is tamelijk los. 

Toch is er wel enig verband: zolang de punten zich over 
x = b, d, ƒ en h verdelen, kan de berekende noodlijn de ideale 
lijn niet bij x = a en x = e snijden. Wij kunnen dus zeggen dat 
de kans op een grote E2 groter wordt naar mate A groter wordt. 

Geval (117.8) Wanneer de punten zeer evenredig over x = b, d, 
f en h verdeeld zijn zal de asymptotisch verwachte noodlijn wel 
behouden zijn gebleven. De Z zal dus nul zijn. We willen nu de 
Z laten toenemen terwijl we de A constant houden. Daartoe laten 
we telkens 1 punt van h naar / gaan en b.v. van d naar b. Door 
deze verplaatsingen zal de noodlijn draaien en de Z groter worden. 
Dit gaat zo door tot alle punten in / en b zijn. Dan is de Z = 1. 
Hieruit blijkt dat bij constante A de gezochte kwadraten (E2) groter 
worden naarmate de Z groter wordt. Aangezien de kans op een grote E2 

ook groter wordt naarmate de <p2 groter is kunnen we zeggen dat 
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E2 = P (A, Z, <p2) 

waarbij P een zodanige kansfunctie is dat van E2 asymptotisch 
verwacht mag worden dat hij groter wordt met A, Z en <p2. 

Wij willen nu nagaan hoe groot het kwadraat (V2) van de af­
wijkingen tussen waar te nemen en voorspeld gegeven wordt. In 116 
zijn de volgende bestanddelen gevonden: 

Het eerste bestanddeel is de toevallige varians a2. 
Het tweede bestanddeel, hiervan onafhankelijk is de inter-

pretatievarians cp2. 
Een derde bestanddeel zou de deviatieterm kunnen zijn. 

Dit is echter niet het geval. Zolang de asymptotisch verwachte 
noodformule goed berekend wordt uit een verkeerd gekozen mon­
ster zal deze verkeerde keuze van het monster geen kwaad doen. 
De grootheid A speelt in dit verband dus geen rol. 

Als laatste bestanddeel komt de parameterterm naar voren. De 
parameterfout heeft de berekende varians ip2 verlaagd. Maar deze 
fout maakt tevens, dat de berekende lijn minder goed voor het 
gehele gebied geldt. De V2 zal er dus door worden verhoogd, met 
het bedrag P (A, Z, <p2). 

Als totale waarde van V2 wordt dus verkregen 

(117.9) V2 = a2 + <p2 + P{A, Z, (p2) 

Vergelijking van deze formule met (116.12) toont duidelijk aan, 
dat een grote Z de V2 verhoogt en dus de gevonden conclusie 
slechter maakt, terwijl tegelijkertijd de y2 wordt verlaagd. Wan­
neer de ip als „middelbare fout" wordt opgevat wordt de middel­
bare fout dus kleiner naarmate de conclusie slechter wordt. Wij 
kunnen het ook zo zeggen: Wanneer er een parameterfout wordt ge­
maakt is er een sterke tendens dat de gevonden conclusie des te beter 
lijkt naarmate hij slechter is. 

Om de formules (116.12) en (117.9) aan elkaar gelijk te mogen 
stellen is het nodig dat zowel de Z als de A gelijk zijn aan 0. Pas 
wanneer dit het geval is kan uit de ip2 de V2 worden voorspeld, 
zodat een uitspraak kan worden gedaan over de bruikbaarheid. 
Om aan deze voorwaarden te voldoen is het nodig het gehele gebied 
zojuist mogelijk te bemonsteren. 

Hoewel dit ideaal gemakkelijk te stellen is, is er toch moeilijk aan 
te voldoen. Een noodformule wordt juist gebruikt omdat men de 
stof niet voldoende beheerst. Men weet vaak niet welke invloeden 
werkzaam zijn, hoe kan men ze dan juist in het monster opnemen? 

3 
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Er zal altijd een afwijking zijn tussen berekende en asymptotisch 
verwachte noodformule, d.w.z. de Z en de A zullen nooit 0 zijn. 
Daarom zal men de grootte van A en Z moeten schatten. Dit is 
echter vaak onmogelijk. De interpretatiefout cp is een systema­
tische fout, die men niet kent en waarvan men gewoonlijk dus ook 
geen foutenwetten kent. Pas wanneer men een bewuste reden heeft 
om aan te nemen dat de q>2 de wetten van o2 volgt, kan men trachten 
te schatten in hoeverre de berekende noodlijn van de asymptotisch 
verwachte afwijkt. Voor ieder speciaal geval zal daarvoor de 
juiste weg moeten worden gevonden. 

Dat uit de cp2 geen betrouwbaarheid kan worden berekend is 
ook de reden waarom de „zeer betrouwbare" conclusies van 112 
zo zeer onjuist konden zijn. Het behoeft geen nader betoog dat de 
conclusies daar alsvolgt hadden moeten luiden: 

Wanneer men aanneemt dat y = mx + q de ideale formule is, 
neemt men met zeer grote waarschijnlijkheid impliciet aan dat m en 
q positief zijn. 

Wanneer men daarentegen aanneemt dat y = a lg x + b de ideale 
formule is, neemt men daarmee met zeer grote waarschijnlijkheid 
impliciet aan, dat a positief en b negatief is. 

Omdat het onmogelijk is beide formules als ideaal aan te nemen spreken 
de hoge {schijnbare) betrouwbaarheid van q en b elkaar niet tegen. 

118 - H E T KIEZEN VAN EEN MONSTER EN EEN FORMULE 

Uit het voorgaande laten zich enkele regels afleiden waaraan 
men zich in de practijk moet houden. 

In de eerste plaats moet men zorgen dat het zwaartepunt van het 
monster samenvalt met het zwaartepunt van het onderzochte gebied. 

Dit laat zich het gemakkelijkst aantonen door van geval (117.7) 
uit te gaan. Daar is verondersteld, dat de waarnemingspunten 
zich over x = b, d, f en h hadden verdeeld. Nu liet zich denken 
dat in werkelijkheid de punten slechts in twee van die vier plaatsen 
waren, b.v. x = b en /, of d en ƒ. 

Wanneer de punten over d en / of b en h verdeeld zijn is de 
afwijking tussen berekende en asymptotisch verwachte noodlijn 
kleiner dan bij verdeling over b en / of d en h. Bij verdeling over 
b en d of / en h zou de afwijking nog veel groter zijn. In dezelfde 
mate als de afwijkingen groeiden, zou ook de verschuiving van het 
zwaartepunt groter worden. 

Wanneer evenveel punten in b als in h liggen, valt x wel ongeveer 
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in e. Zijn de punten evenredig over ô en ƒ verdeeld, dan ligt het 
gemiddelde lager. Door een onevenredige verdeling kan het ge­
middelde evenwel nog naar e verschoven worden. Wanneer de 
punten in b en d liggen kan dit niet meer. Door te zorgen dat het 
zwaartepunt van de omstandigheden van het monster goed ligt 
vermijdt men dus de zeer extreme fouten. 

In de tweede plaats mag men niet extrapoleren. Wanneer wij in 
figuur (117.1) de lijnen verlengen tot buiten x = a en x = i, zien 
wij dat de afwijking zeer snel toeneemt. De <p2 is buiten het onder­
zochte gebied groter dan hier binnen. De f2 is daar dus groter dan 
werd berekend. Wij kunnen deze eis ook zo formuleren: Zorg dat 
het monster uit het gehele onderzochte gebied wordt genomen en niet 
uit een speciaal deel. 

In de derde plaats moet men zorgen dat de Z zo klein mogelijk is. 
Daarvoor is het nodig dat men meer omstandigheden onderzoekt 
dan men uitkomsten verwacht. De noodlijn y = mx — q wordt door 
twee punten bepaald, en heeft daarom zeker twee snijpunten met 
de ideale lijn. W'anneer nu alle waarnemingen op twee willekeurig 
gekozen omstandigheden betrekking hebben zullen deze beide 
omstandigheden de plaats van de snijpunten bepalen. De Z zal 
dan dus ongeveer 1 zijn. 

Aan het eind van 102 hebben wij reeds geëist, dat er meer vrij­
heidsgraden, en dus meer waarnemingen moesten zijn, dan er 
uitkomsten verwacht werden. Nu wordt hier dus de eis aan toe­
gevoegd, dat al deze waarnemingen op verschillende omstandig­
heden betrekking moeten hebben. Het is nodig dat de onderzochte 
omstandigheden zo gevarieerd mogelijk zijn. 

Door sterk gevarieerde omstandigheden te zoeken heeft men 
het gevaar dat de A positief wordt. Wij hebben reeds gezien dat 
de A = 0 moet zijn (zie conclusie aan het eind van geval (117.5). 
Bij het variëren van de omstandigheden moet men zich dus hoeden 
voor overdrijving. 

Overigens heeft men de zekerheid dat de ip2 (116.12) door een 
grote A wordt verhoogd, en slechts de kans dat dit met F 2 (117.9) 
het geval is (zie conclusie na geval (117.4). Een te grote A heeft 
dus de tendens te veroorzaken, dat de V2 te groot geschat wordt 
en de bruikbaarheid te klein, een te kleine A veroorzaakt het 
omgekeerde. Een te grote A zal daarom wellicht niet zo funest 
zijn als een te kleine. Wij zouden daarom willen eisen: Tracht te 
zorgen dat het monster het onderzochte gebied goed weerspiegelt; maar 
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bedenk dat het beter is, dat er wat teveel extreme gevallen worden 
opgenomen, dan te weinig. (Extreem wil zeggen: ver van de snij­
punten) . 

Wanneer dus het monster aan al de bovenstaande eisen voldoet, 
moet getracht worden, de bruikbaarste formule te zoeken. Daartoe 
moet men de noodformule als een geheel beoordelen door middel 
van de varians f2. 

Wanneer alle voorzorgen zijn genomen, willen wij aannemen 
dat de y> een redelijke schatting is van de middelbare afwijking 
tussen een waar te nemen en een voorspeld gegeven. Meer dan een 
redelijke schatting mag men niet verwachten daar men A en de 
Z niet in de hand heeft. Wij willen nu als principe voor het kiezen 
van een noodformule opstellen: Kies die noodformule, die de kleinste 
varians geeft. 

Ook in het licht van formule (116.12) lijkt dit principe redelijk, 
daar «//efkleinste varians betekent dat %p2 —. o2. Indien de ideale 
formule zich onder de beproefde formules bevindt zou zich op grond 
hiervan laten verwachten dat deze automatisch de voorkeur 
geniet. Toch is dit niet helemaal waar. Formule (116.12) is een 
asymptotische formule. Dubbele producten tussen q> en a zijn 
asymptotisch 0, maar kunnen in een speciaal geval wel negatief 
zijn. Waanneer men slechts één geval onderzoekt, zal er allicht 
een noodformule te vinden zijn die een negatief dubbel product 
geeft. Deze noodformule krijgt met bovenstaand criterium de 
voorkeur. Pas wanneer men een voldoend aantal proeven op ge­
lijke wijze bewerkt mag men verwachten dat de ideale formule 
door de kleinste varians wordt aangewezen. 

Wanneer wij dus nu eindelijk een keuze willen doen tussen de 
beide noodformules van 112, geven wij aan de formule y = algx-\-b 
de voorkeur, omdat die een varians laat zien van 0.4804 tegen 
0.5321 voor de lijn y = mx + q. Deze voorkeur geldt natuurlijk 
uitsluitend het onderzochte gebied 1000 < x < 2000. Voor x = 0 
is het extrapoleren van y = a lg x + b veel funester dan van 
y = mx -f q. 

C - CORRELATIEREKENING EN LIJNVEREFFENING 

121 - INLEIDING 

Het komt vaak voor dat twee variabele grootheden x en y 
een onderlinge samenhang vertonen. Zo is er b.v. samenhang 
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tussen de lengte van een staaf en de temperatuur er van; er is 
samenhang tussen de lengte van de pink van een volwassen man 
en de lengte van zijn duim. 

Het is gebruikelijk de mogelijke gevallen al naar de manier van 
samenhang in twee groepen te splitsen: het functioneel verband 
en het stochastisch verband. Ingeval van een functioneel 'verband 
wordt aangenomen dat bij een bepaalde x slechts 1 bepaalde y 
behoort; bij een stochastisch verband wordt aangenomen dat bij 
een bepaalde x verschillende waarden van y kunnen behoren, 
welke waarden ieder een bepaalde kans hebben op te treden. 

Ingeval van een functioneel verband wordt gebruik gemaakt 
van de methode der lijnvereffening, in geval van een stochastisch 
verband van de correlatierekening. Dit lijkt een scherp verschil, 
doch is het niet, aangezien lijnvereffening en correlatierekening 
in hun methoden nauw verwant zijn. Het is dan ook niet mogelijk 
inzicht te verkrijgen in de ene methode zonder kennis te nemen 
van de andere. 

Er is niet alleen een nauwe samenhang tussen de methoden, 
het verschil tussen een functioneel en een stochastisch verband 
is ook maar zeer betrekkelijk. Immers zelfs bij een staaf waarvan 
lengte en temperatuur onderling vergeleken worden moet men 
erkennen dat het niet waar is dat bij een bepaalde temperatuur 
een zeer bepaalde lengte behoort. De warmtebeweging van de 
ijzeratomen is een statistisch verschijnsel, waaraan kansver­
delingen inhaerent zijn, en de variaties in lengte die het gevolg 
zijn van de warmtebeweging zijn minstens aan dezelfde kans­
wetten onderworpen. Ook bij deze staaf moet men dus spreken 
van een stochastisch verband, aangezien bij een bepaalde tem­
peratuur niet een minitieus bepaalde lengte behoort. Wanneer 
men het verband nagaat tussen de waargenomen lengte en de 
waargenomen temperatuur komt hierbij nog een ander statistisch 
verschijnsel nl. de kansverdeling van de meetfouten. Deze kans­
verdeling kan men desnoods als onbehoorlijk verwerpen. Maar 
dit neemt niet weg dat er bij onze staaf naast het functioneel 
verband ook een essentieel stochastisch verband is. Zo moet er 
omgekeerd bij correlatierekening steeds naast het stochastisch 
verband sprake zijn van een functioneel element. 

De besproken staaf gaf dus bijna een functioneel verband te 
zien. Een iets ,,stochastischer" verband zal men vinden bij het 
volgend onderzoek: Men gaat na wat de samenhang is tussen de 
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leeftijd van een kind en zijn armlengte. Wanneer men allerlei 
kinderen in het onderzoek betrekt zal blijken dat niet alle kin­
deren van 3 jaar dezelfde armlengte hebben. Hier is duidelijk een 
stochastisch verband. Toch is hier niet steeds plaats voor corre­
latierekening. Wanneer er b.v. kinderen van 0—20 jaar in het 
onderzoek worden betrokken, moeten de resultaten met de methode 
der lijnvereffening verwerkt worden. (De reden staat aan het eind 
van 122 aangegeven). 

Dit geldt ook wanneer men niet de leeftijd als één van de varia­
belen neemt, maar voor kinderen van 0—20 jaar b.v. het verband 
tussen de lengte van arm en voet nagaat. Niettegenstaande het 
stochastisch verband moet ook hier lijnvereffening worden toegepast. 

Wij willen nu trachten in de sfeer van de correlatierekening 
te komen door het functioneel element, nl. het groeien van het 
kind met al zijn ledematen uit te schakelen. 

Wanneer men kinderen neemt van dezelfde leeftijd, en dan het 
verband tussen lengte van arm en voet bestudeert, zal er zeker 
van correlatierekening gebruik kunnen worden gemaakt. Maar . . . . 
wat is „dezelfde leeftijd"? Moet de leeftijd tot op de dag gelijk zijn, 
of is een speling van een maand toegelaten, een paar jaar mis­
schien nog? Het is niet mogelijk te zeggen: hier houdt de lijn­
vereffening op en begint de correlatierekening! 

Voor de scheiding is zeker niet beslissend in hoeverre het func­
tioneel element verdwenen is. Immers wanneer men kinderen 
neemt die op de dag nauwkeurig 3 jaar zijn, dan mag men zeker 
gebruik maken van de correlatierekening; maar een functioneel 
verband is hier aanwezig. Zou men deze kinderen rangschikken 
naar toenemende lichaamslengte, dan zullen korte kinderen 
meestal korte armen en korte voeten hebben. Door het sorteren 
naar leeftijd is de invloed van het groeien niet geheel uitgeschakeld. 
Het ene kind groeit sneller dan het ander. 

Wij kunnen zelfs zeggen dat zonder functioneel element geen 
correlatie mogelijk is. Toevallige fouten zijn immers niet gecorre­
leerd. In zekere zin is de correlatiecoëfficient een maat voor de 
verhouding waarin toevallig en functioneel element dooreen ge­
weven zijn. 

Onze conclusie moet dus zijn dat zowel in de correlatierekening 
als bij de lijnvereffening gewerkt wordt met een universum waarin 
een functioneel element ligt, waaraan de leden van het universum 
stochastisch gebonden zijn. 
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Blijft de vraag: Wat is het verschil tussen de twee methoden. 
Dit zal in de volgende paragrafen nagegaan worden. 

122 - D E BETEKENIS VAN DE KANSVERDELING VOOR DE CORRE­

LATIEREKENING 

Wanneer telkens aan een lid van een universum twee grootheden 
x en y gemeten kunnen worden, dan noemen wij x en y aan elkaar ge­
correleerd wanneer x en y ieder aan een kansverdeling zijn onderworpen. 

In het vervolg zal slechts rekening worden gehouden met het 
geval dat x en y beide normaal verdeeld zijn. 

Het is nu mogelijk uit het universum die leden uit te zoeken 
die een bepaalde x gemeenschappelijk hebben. Indien men voor 
zo'n „ondergroep" de gemiddelde y bepaalt zal deze gemiddelde 
y een functie zijn van de gemeenschappelijke x. 

Er laten zich nu drie gevallen onderscheiden. 
Ie Wanneer x groter wordt, wordt de gemiddelde y groter. Dit 

heet positieve correlatie. 
2e Wanneer de x groter wordt, wordt de gemiddelde y kleiner. 

Dit heet negatieve correlatie. 
3e Wanneer de x verandert, verandert de gemiddelde y niet. 

Dit kan worden aangeduid als geen correlatie, maar moet als 
grensgeval in de beschouwingen worden betrokken. Vandaar 
dat we deze mogelijkheid in de definitie van correlatie niet 
hebben uitgesloten. 

Wij willen nu een paar eigenschappen beschouwen van de 
normale positieve correlatie. Daartoe veronderstellen wij als be­
kend, dat in een correlatiediagram plaatsen van gelijke kans­
dichtheid verbonden kunnen worden door een ellips. In figuur 
(122.1) is zulk een ellips in beeld gebracht. 

Wanneer wij de waarde van de kansdichtheid van iedere ellips 
langs een derde as (Z-as) hadden afgezet, zouden wij een drie­
dimensionale figuur hebben gekregen, die de kansdichtheid (z) 
weergaf als functie van x en y. Wij veronderstellen weer als bekend 
dat iedere vertikale doorsnede door deze figuur, evenwijdig aan 
de Y-as, weer een normale kansverdeling laat zien van de waarden 
van y bij de constant gehouden waarde van x. Al deze vertikale 
doorsneden hebben dezelfde (partiële) standaardafwijking. 

Zo kunnen wij ook van de vertikale doorsneden evenwijdig 
aan de X-a.s zeggen dat ze allen normale verdelingen te zien geven 
met dezelfde (partiële) standaardafwijkingen. 
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Wij kunnen zelfs nog verder gaan en zeggen dat de vorm van de 
figuur onafhankelijk is van de ligging van de X en Y coördinaten. 
Wij mogen het coördinatenstelsel laten draaien om de Z-as. 
Aangezien in iedere positie de doorsneden, evenwijdig aan de 
X- of Y-as, een normale kansverdeling laten zien, kunnen wij in 
het algemeen zeggen dat een vertikale doorsnede volgens iedere 
koorde van de kansellips een normale verdeling te zien geeft. Hier 
kan weer als bizonderheid aan worden toegevoegd, dat evenwijdige 
doorsneden steeds dezelfde standaardafwijking hebben. 

Wij willen nu twee toegevoegde richtingen beschouwen van de 
kansellips. Uit de analitische meetkunde is bekend dat een mid­
dellijn in de ene richting (A) alle koorden die in de toegevoegde 
richting (i?) lopen middendoor deelt. De normale kansverdelingen 
die in de vertikale doorsneden volgens de koorden in de richting 
B worden gevonden, hebben dus allen hun top boven de mid­
dellijn in de richting A. 

Wij kunnen nu alle doorsneden in de richting B zodanig naar 
de middellijn in die richting verschuiven, dat ieder punt even­
wijdig aan de richting A wordt verplaatst (zie fig. 122.1). Wij 
krijgen dan boven deze middellijn een aantal normale verdelingen 

(122.1) f »CM,„9A ( 122 .2 ) ff,cht,v,jA 

//1/7/7/rv R'àliii}B 

gesuperponeerd, die allen hun top boven het middelpunt der ellips 
hebben en allen dezelfde standaardafwijking hebben. De kanskrom-
men zijn dus congruent wanneer men het kansoppervlak binnen 
iedere doorsnede = 1 stelt en op eenzelfde schaal standaardiseert. 

Inplaats van de doorsneden te verschuiven kunnen wij ook het 
grondvlak in smalle, onderling even brede, strookjes indelen, zo­
danig dat de overeenkomstige delen der in bovenbedoelde zin con­
gruente kanskrommen in de verschillende doorsneden in dezelfde 
strook komen te liggen (zie fig. 122.2). De grenzen der stroken 
lopen dan in de richting A. 

Uit het voorgaande volgt nu, dat het aantal punten dat in iedere 
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strook verwacht mag worden, aan de normale verdeling moet 
beantwoorden. 

Maar ook binnen iedere strook zijn de punten normaal verdeeld,om -
dat ook in doorsneden in de richting A normale verdeling optreedt. 

Het voorgaande kunnen wij in het kort alsvolgt samenvatten. 
(122.3). 

a. Het correlatiediagram kan op willekeurige wijze in smalle 
maar even brede evenwijdige stroken verdeeld worden. De richting 
waarin de stroken lopen zij A. 

(Deze stroken moeten zo smal zijn dat ze als benadering van 
een koorde kunnen gelden). 

b. De verdeling van de punten die binnen een strook vallen 
zal aan de normale verdeling beantwoorden. 

c. De aantallen punten, die binnen de opeenvolgende stroken 
vallen zullen ook aan de normale verdeling beantwoorden. 

d. De lijn, die de gemiddelden uit iedere strook verbindt zal 
lopen in de richting B, die toegevoegd is aan richting A. 

Wij willen de richting A aanduiden als „richting van middelen", 
een term die ook door Ir W. C. VISSER wordt gebruikt. De lijn 
die de gemiddelden verbindt, duiden wij aan als de vereffeningslijn. 

De vereffeningslijn moet rekenschap geven van het functioneel 
element, dat in het materiaal voorhanden is (zie slot van 121); 
de kansverdeling die we vinden volgens de „richting van mid­
delen" moet rekenschap geven van het stochastisch verband 
dat er nu eenmaal is. 

Uit het voorgaande zal duidelijk zijn dat de richting van mid­
delen geheel willekeurig kan zijn, en dat dus ook iedere vereffe­
ningslijn mogelijk is. De vraag is nu: welke vereffeningslijn is de 
meest juiste? 

Om dit na te gaan kan men als criterium stellen, dat men het 
functioneel element zo sterk mogelijk wil schatten, en het 
stochastisch verband zo zwak mogelijk. Dit criterium is hierom 
redelijk omdat het (asymptotisch) niet mogelijk is een deel van het 
stochastisch verband bij het functioneel element te trekken. 
Daarentegen is het wel mogelijk, door verkeerde interpretatie 
een deel van het functioneel element als niet functioneel, en dus 
als stochastisch te zien. 

Ons criterium komt dus hierop neer, dat men die richting van 
middelen zoekt, die de kleinste standaardafwijking binnen de 
strook geeft. 
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Bij het zoeken van die richting kan men gebruik maken van 
de wet dat de standaardafwijking in evenwijdige stroken gelijk is, 
zodat het voldoende is die stroken onderling te vergelijken, waarin 
het middelpunt van de ellips is gelegen. 

Als maat voor de standaardafwijking van een bepaalde strook 
kan genomen worden de afstand van het middelpunt tot de om­
trek van de ellips binnen de strook. (Dit vloeit voort uit het feit 
dat de ellips punten van gelijke kansdichtheid verbindt, dus 
vergelijkbare punten. De genoemde afstanden zijn dus even­
redig met de standaardafwijkingen). 

Het is duidelijk dat deze afstand het kortst is wanneer de strook 
loopt langs de korte as van de ellips. De toegevoegde richting van 
de korte as geeft dus de beste vereffeningslijn. Dit is de lange as. 

Wij kunnen dus concluderen dat de lange as het geschiktst 
is om het functioneel element van het materiaal weer te geven. 

In verband met deze keuze kunnen wij nu zeggen: Het is typerend 
voor een normale correlatie dat er niet alleen een normale kansver­
deling is in de richting loodrecht of de vereffeningslijn, maar ook in 
de lengterichting van deze lijn. 

Om de beide normale kansverdelingen gemakkelijk te kunnen 
onderscheiden willen wij het voetpunt van de loodlijn, die uit een 
waarnemingspunt op de vereffeningslijn wordt neergelaten aan­
duiden als de totaalindruk van dat waarnemingspunt. Wij hebben 
dus een normale verdeling van de totaalindrukken en een normale 
verdeling van de waarnemingspunten rond hun totaalindruk. 

123 - D E MAATEENHEDEN VAN X EN y 

In de vorige paragraaf is uiteengezet dat de lange as het ge­
schiktst is om het functioneel element van het materiaal weer te 
geven. Deze conclusie wordt enigszins verwonderlijk wanneer men 
bedenkt dat de lange as niet tegen projectie bestand is. Hiermee 
wordt dit bedoeld: Wanneer men uit de gegeven ellips een nieuwe 
figuur afleidt, door de afstand van ieder punt van de ellips tot de 
X-as b.v. te halveren, dan zal de nieuwe figuur weer een ellips 
zijn, maar de middellijn die op deze manier uit de lange as van de 
oude ellips wordt verkregen zal niet meer de lange as zijn. De 
nieuwe lange as ligt in dit voorbeeld horizontaler dan de gevonden 
middellijn. 

Wij komen dus tot de conclusie dat de meest plausibele weer­
gave van het functioneel element afhankelijk is van de maat-
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eenheden, waarin x en y zijn uitgedrukt; een conclusie, die niet 
zonder meer plausibel is. 

De betekenis van deze conclusie kan aan de hand van een voor­
beeld worden toegelicht. Veronderstel dat de correlatie is onder­
zocht tussen de lengten van vaders en hun volwassen oudste 
zonen. Veronderstel verder dat de lange as aangeeft dat bij een 
lengtetoename van de vaders van 1 cm ook een lengtetoename 
van de zoons van 1 cm behoort. 

Wanneer nu de lengte van de vaders in cm wordt uitgedrukt 
en de lengte van de zoons in mm dan mag uit bovenstaande aan­
name niet afgeleid worden, dat bij een lengtetoename van de 
vaders van 1 cm een lengtetoename van de zoons van 10 mm 
behoort. De lengtetoename van de zoons, in mm uitgedrukt, zal 
groter zijn. 

Om deze abnormaliteit te verklaren moeten wij nagaan welke 
invloed de x en de y uitoefenen op de totaalindruk, die aan het 
eind van 122 gedefinieerd is. 

(123.1) 

In figuur (123.1) is een waarnemingspunt P getekend en de 
vereffeningslijn QV, die een hoek <p met de X-as maakt. Het 
punt T geeft de totaalindruk van P weer. 

Nagegaan moet dus worden in welke mate de totaalindruk T 
verandert, wanneer een der coördinaten x of y van P varieert. 
Uit de figuur valt gemakkelijk af te leiden dat een verandering 
in de x van P tot P' een verandering in de totaalindruk van T 
tot T' geeft die gelijk is aan 

(123.2) TT =PP coscp; 

evenzo laat zich vinden bij een verandering in de y van P tot P" 

(123.3) TT" =~PP" sin cp. 

Wanneer de veranderingen PP' en PP" aan elkaar gelijk zijn 
verhouden hun invloeden op de totaalindruk T zich dus als 
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cos (fi : sin <p. 

Naarmate de hoek q> kleiner wordt heeft dus de x meer invloed op 
de totaalindruk, en de y minder. 

In de correlatierekening hangt de waarde van de hoek <p ten-
nauwste samen met de standaardafwijking van x en y. Naarmate 
de standaardafwijking van x groter wordt in verhouding tot die 
van y wordt de hoek <p kleiner. De bovenstaande regel kan dus ook 
alsvolgt worden geformuleerd. 

Naarmate de standaardafwijking van x groter wordt ten opzichte 
van die van y wordt de invloed van x op de totaalindruk groter en . 
die van y kleiner 
of, nog anders gezegd 

Die coördinaat heeft de grootste invloed op de totaalindruk die de 
grootste standaardafwijking heeft. 

Wat dit betekent willen wij toelichten aan de hand van de 
reeds besproken correlatie tussen de lengte van vaders en hun 
volwassen oudste zonen. Verondersteld werd dat de lange as 
aangaf dat bij een lengtetoename van de vaders van 1 cm ook 
een lengtetoename van de zoons van 1 cm behoorde. In dit geval 
is de hoek y dus 45° en de invloed van vaders en zoons op de totaal­
indruk gelijk. 

Wanneer daarentegen als maateenheid voor de lengte der vaders 
de cm wordt genomen, en voor die van de zoons de mm, dan wordt 
de (p veel groter dan 45°, indien de lengten der zoons langs de Y-as 
zijn afgezet. In dit geval hebben de zoons dus meer invloed op de 
totaalindruk dan de vaders, wat in een verschuiving der lange as 
tot uiting komt. 

Tot dusver hebben wij een aantal wiskundige wetten beschreven; 
nu moet nagegaan worden hoe die wetten in de practijk moeten 
worden toegepast. Met name moet de vraag gesteld worden of 
het zinvol is dat de ene coördinaat meer invloed heeft op de totaal­
indruk dan de ander. 

Het is zonder meer duidelijk dat de beide coördinaten dan niet 
meer gelijksoortige plaatsen innemen, maar principieel in aard 
verschillen. Dit nu is bij correlatierekening bijna (en waarschijnlijk 
helemaal) nooit de bedoeling. Men wil de beide coördinaten in 
de regel gelijkwaardig zien. 

Laten wij dit nagaan aan de hand van de correlatie tussen 
de lengte van een volwassen vrouw en de lengte van haar haar. 
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Het is duidelijk dat hier sprake is van een stochastisch verband, 
van de vrouwen van een bepaalde lengte hebben sommigen kort 
haar, anderen hebben het lang of halflang. Er zal echter ook 
een functioneel element moeten zijn. Wanneer een korte vrouw 
hetzelfde kapsel kiest als een lange zullen haar haren naar even­
redigheid korter zijn. 

Wanneer wij als maateenheid voor beide lengten de cm kiezen 
zal de standaardafwijking van de lengte van het haar vermoedelijk 
verreweg het grootst zijn, door het verschil in kapsel dat een vrouw 
kan kiezen. In verband met bovenstaande regel is dus duidelijk 
dat de lengte van het haar verreweg de grootste invloed heeft op 
de totaalindruk. Is er enige grond om de lengte van het haar 
meer bepalend te achten voor de totaalindruk dan de lengte van 
de vrouw zelf? Zo'n reden lijkt moeilijk te vinden. Veeleer zou 
men kunnen overwegen de lengte van de vrouw de grootste invloed 
te geven. De lengte van het lichaam lijkt toch wèl zo'n karak­
teristieke eigenschap als de lengte van het haar! Maar ook deze 
gedachte heeft een twijfelachtige waarde. Het gaat niet om de 
totaalindruk van de vrouw, maar om de totaalindruk van het 
waarnemingspaar „lengte van het lichaam van een vrouw, lengte 
van haar haar". En dit waarnemingspaar dient niet om de vrouw 
te bestuderen, maar om de algemene samenhang tussen lichaams­
lengte en haarlengte na te gaan. In verband met die laatste samen­
hang is het begrip totaalindruk gedefinieerd, en in verband met 
deze samenhang zijn beide waarnemingen gelijkwaardig. Ze be­
horen dus ook dezelfde invloed te hebben op de totaalindruk. 

Onze conclusie aan het eind van 122 moeten wij dus in zoverre 
aanvullen, dat wij zeggen: 

De lange as is het geschiktst om het functioneel element van het 
materiaal weer te geven, wanneer de maateenheden zodanig gekozen 
zijn dat deze as een hoek van 45° met de X-as maakt. In dit geval 
zijn de standaardafwijkingen van x en y gelijk. 

Het probleem is dus niet hoe de lange as te vinden, maar hoe de 
juiste verhouding tussen de maateenheden te vinden. 

124 - D E REGRESSIELIJNEN 

Een veel voorkomend probleem bij de correlatierekening is 
het volgende. Stel dat van een bepaald lid dat tot het universum 
behoort slechts de x of de y is bepaald, wat is dan de waarschijn­
lijkste waarde van de andere coördinaat? Bij de correlatie van de 
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lengten van vaders en zoons is de vraag dus deze: wanneer men de 
lengte van een bepaalde zoon weet, hoe lang is zijn vader dan 
vermoedelijk. 

Om dit probleem op te lossen zou men de onbekende coördinaat 
kunnen berekenen door substitutie van de bekende in de formule 
van de lange as, waarvan wij vonden dat hij het functioneel verband 
het beste weergeeft. Zoals bekend mag worden verondersteld 
zou dit onjuist zijn. In dit geval moet gebruik worden gemaakt 
van de z.g.n. regressielijnen. Dit is duidelijk, wanneer men let op 
de regel van (122.3) sub d. Wanneer alleen de x bekend is weet 
men dat het waarnemingspunt ligt in een strook evenwijdig van 
de y as. De vereffeningslijn, die bij deze richting van middelen 
behoort loopt in een richting, toegevoegd aan de richting van de 
y as. Zo zal bij een bekende y als vereffeningslijn die genomen 
moeten worden, die loopt in de richting toegevoegd aan de x as. 
Het zijn deze lijnen die als regressielijnen bekend staan. 

Hoewel de juistheid van het gebruik van de regressielijnen 
dus gemakkelijk is aan te tonen, lijkt het toch even verwonderlijk, 
dat de meest geschikte vereffeningslijn niet gebruikt mag worden. 

Wij willen daarom nagaan waarom de lange as niet bruikbaar 
is om de ene coördinaat van een waarnemingspunt uit de ander 
af te leiden. 

Wij noemen de coördinaten van het waarnemingspunt (zie 
fig. (124.1) (xp, yp) ; die van de totaalindruk (xT, yT) 

(124.1) 

Wanneer de vereffeningslijn QV vaststaat is de plaats van punt 
T volledig bepaald door de waarde van xT. Het is gemakkelijk in 
te zien dat de stelling dat er een normale kansverdeling is in de 
lengterichting van de vereffeningslijn (zie eind 122) inhoudt dat 
de waarden van xT normaal verdeeld zijn. 

Wanneer naast de vereffeningslijn QV ook nog de totaalindruk 
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T (xT, yT) bekend is wordt de ligging van het waarnemingspunt 
P volkomen bepaald door de waarde van xp. Het is weer gemak­
kelijk in te zien dat de stelling dat er een normale kansverdeling 
is in de richting loodrecht op de vereffeningslijn (zie eind 122) 
inhoudt dat de waarden van xp (bij vaststaande xr) normaal 
verdeeld zijn. Het gemiddelde van deze waarden xp is xT, zoals 
uit de definitie van de vereffeningslijn blijkt. 

Het probleem uit de bekende xp de onbekende yp af te leiden 
kan nu ook anders worden geformuleerd. Wij kunnen vragen: 
Welke totaalindruk hoort waarschijnlijk bij de bekende waarde 
van xp? Immers wanneer naast de lijn QV de waarde van xp en 
de totaalindruk (xT, yT) gegeven zijn is de yp bepaald. Men moet 
dus trachten uit de gevonden waarde xp de waarschijnlijkste 
waarde van xT af te leiden. 

Een eerste benadering van de oplossing vindt men, wanneer 
men met elkaar vergelijkt de mogelijkheden (bij vaststaande xT) 

(124.2) a Xp' = xT — a 

b Xp" = xT + «• 

Omdat de xp normaal verdeeld is om xT is de kans op een 
afwijking — a steeds even groot als de kans op een afwijking 
+ a. Het lijkt daarom redelijk de xp als schatting van xT te nemen. 
Dit geeft dus de schatting dat de totaalindruk op de lange as 
moet liggen in T' (zie fig. 124.1). 

Een nauwkeuriger resultaat krijgt men wanneer men de vol­
gende mogelijkheden vergelijkt 

(124.3) a xr' =xp-\-a 

b xT" = Xp — a. 

Wanneer de xp niet gelijk is aan de abscis van het middelpunt 
der kansellipsen xM zal de kans op xT' en xr" niet gelijk zijn. Die 
waarde van xT, die het dichtst bij xM ligt zal de meeste kans hebben, 
aangezien xT normaal om xM is verdeeld. Wanneer wij veronder­
stellen dat Xp > xu dan is de kans op x'T kleiner dan de kans op 
x"T; dit geldt voor alle mogelijke waarden van a. 

In (124.2) hadden wij daarom moeten vergelijken de mogelijk­
heden 

(124.4) a Xp =xT' — a 

b Xp = xT" -f- a. 

Omdat in evenwijdige stroken de standaardafwijkingen gelijk 
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zijn (zie pag. 39, laatste alinea) is de kans dat er een afwijking 
— a optreedt bij gegeven xT' even groot als de kans dat er een af­
wijking -\- a optreedt bij gegeven xT". Maar de kans op het optreden 
van xT" is groter dan van xT' (wanneer xp > xA[), en daarom is de 
kans op (124.46) groter dan op (124.4a). 

Wij vinden dus de volgende stelling: 
Van wege de kansverdeling in de richting van de lange as ligt 

een gevonden waarde xp ( > xM) gemiddeld boven de bijbehorende 
xT; een waarde xp ( < xM) ligt gemiddeld beneden de bijbehorende 
xT. De bijbehorende yp ligt dus ook dichter bij de yM dan door de 
lange as wordt aangegeven. 

Onze conclusie is dus: 

Het gebruik van de regressielijnen in de correlatierekening is nodig, 
om de invloed van de kansverdeling in de richting van de lange as 
tot gelding te brengen. 

Voor de duidelijkheid is de onderlinge positie van de lange as 
en de regressielijn nog eens in beeld gebracht in fig. (124.5) 

(124.5) 
Unçe as 

'ressittijn 

Verondersteld is dat uit de reeds beschikbare gegevens van een 
correlatiegeval berekend konden worden het middelpunt M, de 
lange as en de regressielijnen, waarvan een in tekening is gebracht. 
Nu is van een nieuw waarnemingspunt P de xp vastgesteld. De 
vraag is, wat is de yp1 

Uit het gegeven xp\% bekend dat P moet liggen op de stippellijn 
AB. Indien men de yp uit de lange as zou moeten berekenen zou 
men het waarnemingspunt T' aan moeten nemen. Omdat men 
de regressielijn moet gebruiken dient men de P in P* aan te nemen. 
Hiermee neemt men dus tegelijk aan dat de totaalindruk van P 
in T valt. Er kan dus evengoed gezegd worden dat niet de plaats 
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van P is gekozen in P*, maar dat de plaats van zijn totaalindruk 
is gekozen in T. 

Waardoor wordt de keuze van T nu bepaald? Door de kansver­
deling in de richting van de lange as, en de kansverdeling in de 
richting TP. Hoe korter de afstand MT, des te meer kans is er 
dat T als totaalindruk voorkomt; hoe korter de afstand PT, 
des te groter is de kans dat T de totaalindruk van P is. Omdat P 
op de lijn AB moet blijven kan TP alleen korter worden wan­
neer T naar T' nadert. Als T tussen M en T' ligt wordt MT 
daardoor juist langer en onwaarschijnlijker. De plaats van T is 
dus een compromis tussen het streven de afstand TM en de 
afstand TP zo klein mogelijk te houden. Wanneer de hoek tussen 
lange as en regressielijn ß is, is gemakkelijk in te zien dat de waarde 

TM 
van de breuk , „_ . steeds cot ß is, dus constant. 

1 P* 
Wij vinden dus als vaste regel van de regressielijn: Wanneer 

er een verschil bestaat tussen een waargenomen waarde van x (xp) 
en de gemiddelde waarde xA[, dan wordt dit verschil bij een bepaald 
correlatiegeval naar een vaste verhouding verdeeld over de invloed 
van de kansverdeling in de richting van de lange as, en de invloed 
van de kansverdeling loodrecht daarop. 

Niettegenstaande in alle stroken loodrecht op de lange as dezelfde 
standaardafwijking voorkomt, wordt dus groter afwijking aangenomen 
naarmate de strook verder van het middelpunt verwijderd is. 

Tenslotte nog deze opmerking. De regressielijnen zijn ongevoelig 
voor de maateenheden van x en y, evenals de correlatiecoëfficient. 
Omdat dit de grootheden zijn waarmee in de correlatierekening 
meestal wordt gewerkt is het in de practijk gewoonlijk niet nodig 
op de maateenheden te letten. Wij hebben er in de vorige paragraaf 
uitvoerig bij stilgestaan in verband met de problemen van de 
lijnvereffening, die wij nu gaan bespreken. 

125 - VERGELIJKING VAN DE METHODEN VAN CORRELATIEREKE­

NING EN LIJNVEREFFENING 

Aan het eind van 122 werd uiteengezet, dat het typerend is 
voor de normale correlatie, dat er niet alleen een kansverdeling 
is in de richting loodrecht op de vereffeningslijn, maar ook in de 
lengterichting van die lijn. 

Wij kunnen hier nu tegenoverstellen dat het typerend is voor de 
4 
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lijnverefjening dat de kansverdeling in de lengterichting van de ver­
effeningslijn ontbreekt. 

Niettegenstaande dit verschil worden bij de lijnvcreffening de­
zelfde formules gebruikt als bij de correlatierekening, zoals uit 
het volgende zal blijken: 

VAN UVEN bespreekt in hoofdstuk IX van zijn leerboek twee 
algemeen bekende mogelijkheden van lijnvereffening 
Ie één coördinaat (b.v. x) is vrij van fouten; 
2e de fouten van x en y zijn even groot. 

In het eerste geval wordt bij foutloze x als richting van middelen 
genomen de richting evenwijdig aan de Y-as. In het tweede geval 
de richting loodrecht op de vereffeningslijn. De formules die in het 
eerste geval gevonden worden zijn identiek met die van de regressie-
lijnen uit de correlatierekening; de formules van het tweede geval 
geven bij correlatierekening de vergelijking van de lange as. 

Wanneer men de toepassing van deze formules bij correlatie­
rekening en lijnvereffening vergelijkt, vallen een paar trekken op. 

Bij het gebruik maken van de lange as is er een verschil in het 
begrip standaardafwijking bij correlatie en lijnvereffening. Bij 
correlatie kan men onderscheiden tussen twee soorten standaard­
afwijking. In de eerste plaats de standaardafwijking van de ene 
variabele (b.v. x), die men vindt wanneer men alle gevonden 
waarden van x samenvat zonder te letten op de waarde van de 
andere variabele. In de tweede plaats de standaardafwijking 
van die waarden van x, die behoren bij waarnemingspunten, die de 
y gemeenschappelijk hebben. Deze laatste standaardafwijking 
wordt partiële standaardafwijking genoemd, de eerste zouden wij 
totale standaardafwijking kunnen noemen. 

Bij correlaties geldt nu de wet dat de partiële standaardafwijking 
s/\ — y2 maal de totale standaardafwijking is voor iedere variabele. 
(Door y duiden wij de correlatiecoëfficient aan). De verhouding 
tussen beide standaardafwijkingen is dus voor x en voor y gelijk. 

Aangezien de x en y slechts dan gelijke totale standaardafwij­
kingen kunnen hebben wanneer de lange as onder een hoek van 
45° met de X-as staat, moet deze voorwaarde dus ook vervuld zijn 
om gelijke partiële standaardafwijkingen te hebben. 

Rekentechnisch komt met het begrip partiële standaardafwijking 
uit de correlatierekening het begrip middelbare fout van de enkele 
waarneming uit de lijnvereffening overeen. Hier is evenwel geen 
verband tussen middelbare waarnemingsfout en totale variatie. 
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Bij gevolg kan bij lijnvereffening de vereffeningslijn wel een andere 
hoek dan 45° met de X-as maken. 

Bovenstaand verschijnsel leidt tot eigenaardige consequenties. 
Op grond van het feit dat de fouten van x en y gelijk zijn, raadt 
VAN UVEN als richting van middelen de richting loodrecht op de 
vereffeningslijn aan. De invloed die de coördinaten x en y op de 
totaalindruk van het punt hebben, zal nu beantwoorden aan 
(123.2) en (123.3). Wanneer de daargenoemde hoek <p niet 45° 
is zal de ene coördinaat meer invloed hebben op de totaalindruk 
dan de ander, niettegenstaande beide coördinaten even goed zijn. 

Ook de projectie geeft moeilijkheden. Wanneer de maateenheid 
langs de X-as gehalveerd wordt, worden de waarden van x nu­
meriek tweemaal zo groot, de fout van x dus ook. Omdat de hoek 
(p hierdoor kleiner wordt zal de invloed van de x op de totaal­
indruk ook vergroten. 

Wij vinden hier dus de regel terug die wij in 123 bij de corre­
latierekening vonden: Wanneer door verandering van de maat­
eenheden van de variabelen de middelbare jout van x groter wordt 
ten opzichte van die van y, wordt de invloed van x op de totaalindruk 
ook groter en die van y kleiner. Het is duidelijk dat dit een onprettige 
eigenschap is. 

Ook bij de regressielijnen moeten wij nog even stil staan. Bij de 
correlatierekening vonden wij dat het gebruik van de regressie-
lijnen gemotiveerd werd door de kansverdeling in de lengterichting 
van de lange as. Daar deze kansverdeling bij lijnvereffening niet 
voorkomt, moet er nu een andere reden zijn voor het gebruik 
er van. VAN UVEN motiveert het gebruik van de regressielijnen 
door een voorkeur voor een zekere richting van middelen. In 
hoeverre dit juist is zullen wij in 128 nagaan. 

126 - H E T PSEUDO-CORRELATIEKARAKTER VAN DE LIJNVEREFFE­

NING 

In 125 hebben wij uiteengezet dat het typerend is voor lijn­
vereffening dat er wel een kansverdeling is in de richting van 
middelen, maar niet in de lengterichting van de vereffeningslijn. 
Wij kunnen dus een kansfiguur ontwerpen zoals in (128.1) is 
uitgebeeld. 

De lijnen van gelijke kansdichtheid lopen evenwijdig aan de 
vereffeningslijn AB. Het valt gemakkelijk in te zien dat de richting 
van middelen onbelangrijk is. Wanneer in de richting loodrecht 
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op de vereffeningslijn een normale verdeling optreedt, treedt in 
iedere andere richting (behalve die van de vereffeningslijn) ook een 
normale verdeling op, met de top boven de vereffeningslijn AB. 

Hier is dus een wezenlijk verschil met de correlatierekening, 
waar bij iedere richting van middelen een eigen middellijn behoort. 
Daar vindt men bij een richting van middelen evenwijdig aan de 
assen de regressielijnen; bij een richting van middelen loodrecht 
op de vereffeningslijn vindt men de lange as. Bij lijn vereffening-
moet men met alle methoden de lijn AB vinden. Wij kunnen 
dus zeggen dat bij de lijnvereffening de formules van de regressie-
lijnen en de formule van de lange as „asymptotisch" steeds de lijn 
AB zullen aangeven. 

Hier staat tegenover dat bij het uitwerken van een bepaald 
geval van lijnvereffening de drie oplossingen steeds ongelijk zijn. 
De lijn die berekend wordt met een vertikale richting van mid­
delen zal steeds kleiner hoek maken met de positieve X-as dan de 
„lange as", de andere regressielijn maakt een nog grotere hoek. 

Hoewel de drie oplossingen asymptotisch de lijn AB aanwijzen, 
vallen ze asymptotisch nooit samen. 

De oorzaak van deze absurditeit ligt hierin dat het materiaal 
dat bij een lijnvereffening verwerkt wordt noodzakelijk meer op 
een geval van correlatie dan op een geval van lijnvereffening 
lijkt. Wij hebben gezien dat een lijnvereffening daar wordt toe­
gepast waar in de lengterichting van de vereffeningslijn geen kans­
verdeling optreedt. Op grond hiervan zou men over de gehele 
lengte van de lijn dezelfde frequentie van de waarnemingen kunnen 
begeren. Om proef technische redenen zal men evenwel steeds een 
frequentieverdeling van de waarnemingen aantreffen, die met de 
normale kansverdeling althans dit gemeen heeft, dat buiten een 
bepaalde grens practisch geen waarnemingen meer voorkomen. 

Dit alleen maakt reeds dat het waarnemingsmateriaal meer 
op een geval van correlatie dan van lijnvereffening gaat lijken. 
Het is dit pseudo-correlatiekarakter van het empirisch materiaal, 
dat een verschil tussen de verschillende oplossingen doet ont­
staan. Dit verschil is dus steeds het gevolg van een fout; een fout 
in de frequentieverdeling van het empirisch materiaal. Een be­
trouwbaar verschil tussen de vereffeningslijnen die uit hetzelfde 
materiaal berekend worden, behoort dus onmogelijk te zijn. For­
mules die asymptotisch hetzelfde resultaat behoren te geven 
mogen onderling geen betrouwbare verschillen vertonen. 
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Bij de foutenberekening van de lijnvereffening wordt evenwel 
geen rekening gehouden met de fout in de frequentieverdeling, 
slechts op de afstanden tussen waarnemingspunt en vereffenings­
lijn wordt gelet. In de practijk is het dan ook wel mogelijk materiaal 
te verzamelen waarin de regressielijnen betrouwbaar ongelijk zijn. 
Wanneer bij een bepaald materiaal de beide regressielijnen be­
rekend zijn en de lange as, dan zullen deze lijnen weinig veranderen, 
wanneer (bij gelijkblijvende frequentieverdeling in de richting 
van de vereffeningslijn en gelijkblijvende middelbare fout) het 
aantal waarnemingspunten sterk wordt opgevoerd. De middelbare 
fout van de berekende parameters der lijnen zal daardoor evenwel 
naar wens kunnen worden gedrukt. Met voldoende materiaal 
moet het dus mogelijk zijn betrouwbare verschillen aan te tonen 
tussen de verschillende lijnen, niettegenstaande alle lijnen asympto­
tisch de vereffeningslijn AB moeten opleveren. 

127 - H E T VERSCHIL TUSSEN CORRELATIE EN LIJNVEREFFENING 

In het voorgaande hebben wij reeds enige pogingen gedaan 
het verschil tussen correlatie en lijnvereffening te benaderen. 
In 121 trachtten wij onderscheid te maken doordat wij het stochas­
tisch verband wezenlijk achtten voor correlatierekening en het func­
tioneel verband voor lijnvereffening. Bij nadere beschouwing bleek 
evenwel, dat zowel bij lijnvereffening als bij correlatierekening 
een stochastisch en een functioneel element voorkwamen. 

In 125 dachten wij het verschil zo aan te kunnen geven dat er 
bij correlatierekening sprake zou zijn van een kansverdeling in 
de lengterichting van de lange as; deze kansverdeling zou bij lijn­
vereffening uitbreken. Maar in 126 vonden wij dat er a priori 
enige uitspraken konden worden gedaan over de frequentiever­
deling van de totaalindruk van de waarnemingspunten bij lijn­
vereffening. En wat is een aprioristische uitspraak over een ko­
mende frequentieverdeling anders dan een kansverdeling? 

Wij zullen nu trachten nog een scherpere omschrijving van het 
verschil te geven: 

In gevallen waarin lijnvereffening moet worden toegepast dient 
men de onbekende coördinaat van een waarnemingspunt 
uit de bekende te berekenen met behulp van de vereffeningslijn, die het 
verband tussen beide coördinaten het beste weergeeft. 

In gevallen waarin correlatie moet worden toegepast dient men de 



54 

onbekende coördinaat van een waarnemingspunt uit de bekende te 
berekenen met behulp van een regressielijn, die van de beste vereffe­
ningslijn verschilt. 

Deze beide stellingen zijn terstond duidelijk wanneer men 
zich 124 te binnen brengt. Om het practisch verschil te door­
voelen willen wij nog een paar voorbeelden bespreken. 

Stel dat men uit een bepaald stadje van de volwassen manne­
lijke inwoners tussen 20 en 50 jaar het verband tussen lichaams­
lengte en armlengte heeft bepaald. Dan weet men dat de lange 
as van de correlatie-ellips het geschiktst is orn de samenhang 
tussen beide lengten weer te geven. 

Indien men nu een reus uit dat stadje ontmoet die men niet 
gemeten heeft, dan kan men de uitspraak doen dat hij „waar­
schijnlijk" naar verhouding korte armen heeft. Nauwkeuriger ge­
zegd: De kans dat zijn armen naar verhouding kort zijn is groter 
dan de kans dat zijn armen naar verhouding lang zijn. 

Waarom? Niet, omdat reuzen over het algemeen naar ver­
houding korte armen hebben. Het begrip naar verhouding wordt 
juist gebruikt in verband met de algemene indruk over reuzen, 
die door de lange as wordt weergegeven. Maar wel omdat er meer 
kans is dat men te maken hebben met een persoon, waarvan de 
lichaamslengte iets groter is dan met de totaalindruk overeen­
komt, dan met iemand waarvan de lichaamslengte te klein is in 
verhouding tot de totaalindruk. De uitspraak berust op de kans­
verdeling van de totaalindruk. Wij kunnen er daarom de uit­
spraak naast zetten: Wanneer men van iemand uit dat stadje 
ontdekt dat hij erg lange armen heeft zal hij „waarschijnlijk" 
naar verhouding kort zijn. 

Laten wij hier tegenover stellen een voorbeeld uit de lijnver-
effening. Stel dat men de lengte van een staaf en zijn temperatuur 
vergelijkt. Hierbij kunnen wij aprioristische uitspraken doen over 
de frequentieverdeling. Een lagere temperatuur dan het absolute 
nulpunt wordt niet gevonden, een hogere dan het smeltpunt van 
de staaf ook niet. Wanneer wij de apparatuur van de onderzoeker 
kennen kan de uitspraak nog verder gaan. Wellicht kan niet ge­
koeld worden, zodat de ondergrens bij kamertemperatuur ligt. 
Wellicht wordt een thermometer gebruikt die niet verder gaat 
dan 200° C. 

Laten wij aannemen dat op grond van de apparatuur vaststaat 



55 

dat de waarnemingen tussen de 20 en 200° C zullen vallen. Dan 
kan op grond van 126 worden vastgesteld dat men materiaal zal 
verzamelen met een pseudo-correlatiekarakter. Het zal mogelijk 
zijn een lange as en regressielijnen te berekenen. Wij willen aan­
nemen dat op bepaalde gronden mag worden aangenomen dat de 
lange as de juiste vereffeningslijn is. Dan mag nu niet gebruik 
worden gemaakt van de regressielijnen om de ene coördinaat 
van een waarnemingspunt uit de ander te berekenen. Er kan nu 
niet gezegd worden: Wanneer er een temperatuur is gemeten van 
198° C zal de staaf op dat moment „waarschijnlijk" naar verhouding 
kort zijn geweest. Ongetwijfeld zullen bij een bepaalde temperatuur 
verschillende lengten gevonden worden, en bij een bepaalde lengte 
verschillende temperaturen; maar er is geen kansverdeling van 
de totaalindruk. Wij kunnen niet zeggen: De gemeten temperatuur 
ligt boven het gemiddelde en dus is de kans dat de „ware" tem­
peratuur 0.01° C lager lag groter dan de kans dat die temperatuur 
0.01° C hoger lag. Zolang de temperaturen binnen het bereik van 
de apparatuur vallen zijn beide kansen gelijk bij normale ver­
deling der afwijkingen. De kans op een bepaalde totaalindruk 
neemt niet toe, naarmate die totaalindruk dichter bij het ge­
middelde ligt, want binnen de mogelijkheden van de apparatuur 
zijn alle kansen gelijk. 

128 - D E KEUZE VAN DE JUISTE VEREFFENINGSLIJ N 

In 126 hebben wij gezien dat de formules uit de correlatie­
rekening voor het vinden van de lange as en de regressielijnen 
bruikbaar zouden moeten zijn om de juiste vereffeningslijn bij 
lijnvereffening te vinden. Door de boven- en benedengrens, die 
empirisch niet te vermijden zijn, krijgt het materiaal evenwel een 
pseudo-correlatiekarakter waardoor de lijnen, die langs de ver­
schillende wegen berekend zijn, niet samenvallen. Hier dringt 
zich de vraag op, welke formule nu in de practijk gebruikt moet 
worden. 

In 127 zagen wij dat het bij correlaties juist is, de ene coördinaat 
van een punt uit de ander af te leiden met behulp van een andere 
lijn dan de vereffeningslijn. Wij zagen tevens dat dit bij lijn-
vereffening niet mag. Daar moet steeds de vereffeningslijn worden 
gebruikt. We staan dus uitsluitend voor de vraag hoe de vereffe­
ningslijn te kiezen. 

Zoals wij reeds zagen vindt dit probleem zijn oorzaak in het 
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voorkomen van onvermijdelijke grenzen. Wij zullen daarom 
trachten een keuze tussen de mogelijke formules te maken door de 
grenzen te bestuderen. 

Daartoe hebben wij in fig. (128.1) de kansverdeling weergegeven, 
die bij lijnvereffening verwacht mag worden. De figuur is aan de 
bovenkant op 4 manieren scherp begrensd. De grenslijn DH 
staat loodrecht op de vereffeningslijn; de grenslijn FK loopt even-

(128.1) 

wijdig aan de Y-as, de lijnen EI en GL nemen nog andere posities 
in. Wij willen aannemen dat aan de onderkant grenslijnen lopen 
evenwijdig aan dè genoemde. Hoe moet nu de juiste vereffeningslijn 
worden gekozen? 

Het is duidelijk dat de richting van middelen evenwijdig aan 
de grenslijnen moet lopen. Dat is de enige richting die toelaat 
dat overal stroken worden gevormd over de gehele breedte van 
het waarnemingsmateriaal. Dit toch is noodzakelijk opdat het 
midden van iedere strook op AB valt. Wanneer DH de grenslijn 
aangeeft moet er dus gewerkt worden met de formule voor de 
lange as, geeft FK de grenslijn aan, dan is een van de regressie-
lijnen nodig. Wanneer FK de grenslijn is en er zou toch gewerkt 
worden met de formule van de lange as, dan zou de lijn aan de 
bovenkant te hoog komen te liggen, is DH de grenslijn dan komt 
de ene regressielijn aan de bovenkant te laag. 

Het blijkt tevens dat er nog meer mogelijkheden zijn. Loopt 
de grenslijn in de richting EI dan is de lange as te hoog en de 
regressielijn te laag; bij een grenslijn als GL is zelfs de regressielijn 
te hoog. 

Is het nu mogelijk de vorm van de grenslijn a priori vast te 
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stellen? Soms wel. Laten wij weer blijven bij ons voorbeeld van de 
staaf. Het is denkbaar dat de gehele apparatuur toelaat te werken 
tussen 0 en 300° C, maar dat de thermometer ons slechts in staat 
stelt temperaturen waar te nemen van 20—200° C. Wanneer wij 
er naar streven het gehele gebied te onderzoeken zullen wij grenzen 
krijgen evenwijdig aan de staaflengte-as. Een temperatuur van 
201° C wordt nooit waargenomen, bij de waargenomen temperatuur 
200° C heeft de lengte nog geen enkele beperking van mogelijk­
heden. 

De gevonden grenslijn is niet strict gebonden aan de toevallige 
fout van de waargenomen lengte en temperatuur. Het is zeer 
wel denkbaar dat de lengte zeer nauwkeurig wordt waargenomen 
en dat de thermometer zeer slecht is. Misschien is de temperatuur 
soms 198° C maar tracht de thermometer meer dan 200° C aan te 
wijzen, zodat de waarneming mislukt; misschien is een andere keer 
de temperatuur 201° maar blijft de thermometer bij 199° C staan, 
zodat deze temp. wordt genoteerd met een lengte die bij de tem­
peratuur van 201° C hoort. De fout van de temperatuurwaar-
nemingen heeft hier geen invloed op de richting van de grenslijn. 
De grenslijn zal evenwijdig aan de as van de staaflengte verlopen, 
en de richting van middelen zal dus ook zodanig moeten zijn. 
In geval de lengtemetingen practisch foutloos zijn in verhouding 
tot de grote fouten van de temperatuur beveelt VAN UVEN even­
wel een richting van middelen aan, evenwijdig aan de temperatuur-
as. Wij zien dus dat de richting van middelen niet steeds uit de 
grootteverhouding van de fouten volgt. 

Meestal is dit echter wel het geval. Wanneer er voldoende waar­
nemingen zijn, zodat het observeren van een bepaald,,waar" punt 
op AB een groep toevallig verdeelde waarnemingen geeft, dan 
kunnen deze waarnemingen worden getypeerd door een kansellips 
met de middelbare fouten van x en y als lange en korte as. In 
de ellips van het meest extreme geobserveerde ware punt op AB 
als grenslijn kan nu worden beschouwd de middellijn, die toe­
gevoegd is aan de richting van de vereffeningslijn. Wanneer x 
foutloos is ontaardt de ellips tot een lijn evenwijdig aan de Y-as 
en dus de genoemde middellijn ook. Wanneer x en y gelijke fouten 
hebben wordt de ellips een cirkel, en de bedoelde middellijn staat 
dan loodrecht op de vereffeningslijn. 

Men moet evenwel letten op de voorwaarde, dat er voldoende 
waarnemingen zijn, zodat om ieder punt van AB een normale 
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kansverdeling van waarnemingen mag worden verwacht. Meestal 
is het aantal waarnemingen zo gering dat aan deze voorwaarde 
niet wordt voldaan. Dan blijft de berekening asymptotisch na­
tuurlijk wel goed, maar wellicht kan uit de bizonderheden van het 
waarnemingsmateriaal (een monster uit het universum van moge­
lijkheden) soms een conclusie worden getrokken over de vraag 
hoe de berekende lijn van de ware afwijkt. 

Wij zullen daartoe naar een nieuw criterium moeten zoeken. 
Als zodanig zouden wij dit kunnen nemen: Wanneer de juiste 
vereffeningslijn is berekend zal binnen iedere strook, die in de 
richting van middelen uit de puntenbundel wordt genomen, de 
middelbare fout, die uit de punten boven de vereffeningslijn 
wordt berekend, gelijk moeten zijn aan de middelbare fout, die in 
dezelfde strook uit de punten beneden de vereffeningslijn wordt 
berekend. Een eventueel verschil tussen deze waarden moet toe­
vallig zijn en dus onafhankelijk van de plaats van de strook. 

Wanneer een strook in een willekeurige richting wordt beschouwd 
geldt dezelfde eis, doch dan moet bedacht worden dat aan de 
uiteinden onvolledige stroken kunnen ontstaan, waarvan b.v. 
de benedenhelft ontbreekt (b.v. DBF in fig. 128.1, wanneer FK 
de grenslijn is en DH de richting van middelen aangeeft). In zulke 
gevallen moet geëist worden dat het aanwezig deel harmonisch 
aansluit aan de verdere gegevens. Zo zal in fig. (128.2) de lijn 

(128.2) 

AC als juiste vereffeningslijn kunnen worden genomen, omdat 
de complete stroken aan de gestelde voorwaarde voldoen, en de 
niet complete stroken tussen B en C harmonisch bij het overige 
deel aansluiten. 

Bij het gebruik van dit criterium gaan wij er dus toe over de 
juistheid van de lijn achteraf vast te stellen. Wanneer wij door de 
puntenbundel van (128.2) een lijn hadden berekend zou hij steiler 
gestaan hebben; dit geldt voor de lange as en de beide regressie-
lijnen. Toch zijn we overtuigd dat de aangegeven lijn de beste is, 
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(128.3) 

I Lï\ , jTi ' 

op grond van het nieuwe criterium. Dit criterium leidt dus uit de 
abnormaliteit van het monster bepaalde conclusies af over het 
universum. 

Ons nieuwe criterium laat een volledig mathematische controle 
toe, maar is vooral gemakkelijk bij een grafische verwerking. Bij 
een grafische verwerking blijkt het nl. vaak gemakkelijk de niveau-
lijnen van kansdichtheid te bepalen, die op een afstand van 1 % à 
2 x de middelbare fout van de vereffeningslijn zijn verwijderd. 
Deze lijnen laten zich meestal veel gemakkelijker vinden dan de 
vereffeningslijn zelf. 

Om dit aan te tonen hebben wij de grafiek van de normale ver­
deling op logarithmisch papier afgezet (zie fig. 128.3). Visueel 
ziet men nl. niet in de eerste plaats de frequenties op de verschil­
lende plaatsen, maar de ivequentieverhoudingen. Men ziet op de 
grafiek dat er visueel binnen de aangegeven grenzen weinig ver­
schil is, en dat de dichtheid van punten buiten de grenzen snel 
afneemt. Dit snel afnemen blijkt ook wel hieruit dat buiten de 
niveaulijnen op een afstand van 1.6 c nog 11% van de punten 
valt, buiten de lijnen van 1.8 er nog 7% en buiten de lijnen van 
2 o- nog slechts 4.5%. 

Wanneer men aan weerszijden van de puntenbundel niveau-
lijnen heeft getrokken, moet men als vereffeningslijn nemen de 
lijn die er midden tussen doorloopt. Door deze keuze bereikt men 
dat in iedere strook, die dwars over de puntenbundel wordt gelegd, 
de middelbare fout aan weerszijden van de lijn gelijk geschat 
wordt. Daar is immers de afstand tussen niveaulijn en vereffenings­
lijn een maat voor. Tevens bereikt men dat onregelmatigheden 
in de verdeling der punten (b.v. einden van de empirische bundel) 
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geen invloed op de verkregen uitkomsten behoeven te hebben. 
Het belangrijkste voordeel van een grafische verwerking is 

evenwel niet, dat bepaalde toevallige fouten daarmee kunnen 
worden uitgeschakeld. Vaak werkt een numerieke bewerking 
nauwkeuriger, en is dan kwantitatief beter. 

Het nut van een grafische bewerking ligt vooral op kwalitatief 
gebied. Reeds bij het eenvoudig probleem van rechtlijnige ver­
effening is het moeilijk de juiste formule te vinden om boven­
vermelde redenen. Wanneer een verkeerde formule wordt ge­
nomen heeft men in wezen te maken met een noodformule, met 
alle nadelen van dien. Bij kromlijnige vereffening is de kans op een 
juiste keuze nog veel kleiner, tenzij de keuze a priori theoretisch 
stevig gefundeerd is. Daar zal men dus nog eerder tot grafische 
verwerking moeten overgaan. 

Wij willen eindigen met de volgende regel: Een grafische ver­
werking is kwantitatief vaak slechter dan een numerieke, maar kwa­
litatief vaak beter, omdat er minder kans is dat er met een noodformule 
gewerkt wordt. Abnormale verdeling van het waarnemingsmateriaal 
kan soms reden zijn ook bij ideale formules een grafische verwerking 
te -prefereren. 



II - ENIGE BIZONDERHEDEN VAN HET 
RASSENONDERZOEK 

201 - D E ZIN VAN HET PROEFVELD 

Een landbouwgewas reageert in zijn opbrengst en andere eigen­
schappen op allerlei invloeden. Vele daarvan zijn met name be­
kend, en misschien zijn er ook nog vele onbekende. In ieder geval 
is de reactie van het gewas op al deze gevarieerde invloeden niet 
steeds bekend. Zelfs is de reactie van het ene ras in de regel 
anders dan die van het andere ras. 

In deze situatie stelt het rassenonderzoek zich tot taak aan te 
geven welke rassen aan de landbouwpractijk moeten worden aan­
bevolen. Daartoe moet de weg gevonden worden door al deze 
onbekende en bekende invloeden met hun al of niet kwalitatief 
en kwantitatief bepaalde werkingen. 

Een methode van rassenonderzoek, waarbij al deze moeilijk­
heden ten volle tot gelding komen, is de rassenenquête. Wanneer 
aan allerlei mensen gevraagd wordt naar hun practijkervaring 
met een bepaald ras, is aan de hand van de antwoorden een ge­
middelde ervaring voor het onderzochte gebied vast te stellen. 
Onderzoekt men zo het gemiddelde van verschillende rassen, dan 
kunnen deze rassen worden vergeleken. Bij deze methode komt 
de onzekerheid, die nog bestaat aangaande de invloeden, ten 
volle tot gelding in de onzekerheid, waaraan de vergelijking der 
rassen onderworpen blijft. 

Gelukkig is aan de moeilijkheden, zoals die werden uiteen­
gezet, gedeeltelijk te ontkomen. Het moge waar zijn, dat de rassen 
ongelijk op de omstandigheden reageren, het is evenzeer waar, 
dat er in de reacties der verschillende rassen toch ook een grote 
mate van overeenstemming is. Wanneer van een perceel wordt 
gezegd dat het vruchtbaar is, dan wordt daarmee uitgedrukt, 
dat de omstandigheden voor alle rassen gunstig zijn; is een stuk 
land te nat of te zuur dan schaadt dit alle rassen in meer of mindere 
mate. 

Van dit feit kan het rassenonderzoek gebruik maken doordat 
het niet vraagt naar de opbrengsten der verschillende rassen, 
maar naar de onderlinge opbrengstver schillen. Het is zeer wel 
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mogelijk dat van twee rassen niet op 10% nauwkeurig te zeggen 
valt, wat ze op een bepaald perceel zullen opbrengen, maar dat 
wel kan worden verzekerd dat het ene ongeveer 5% meer op zal 
brengen dan het andere. De oorzaak hiervan is dus deze, dat de 
diverse rassen gewoonlijk globaal op de uitwendige omstandig­
heden gelijk reageren. Een ras dat onder de ene omstandigheid 
extra veel opbrengt zal het vaak onder vele andere omstandigheden 
ook doen. Dit feit is voldoende bekend, zodat het niet verder 
behoeft te worden besproken. Wij zullen er evenwel van uit moeten 
gaan om de zin van het proefveldwezen te begrijpen. 

Omdat de rassen globaal op de uitwendige omstandigheden 
gelijk reageren, kunnen de uitwendige omstandigheden globaal 
worden uitgeschakeld. Dit gebeurt op het rassenproefveld, waar 
alle rassen naast elkaar worden gezet onder practisch dezelfde om­
standigheden. Over het gehele land verspreid worden onder allerlei 
omstandigheden zulke proefvelden aangelegd. Wanneer een be­
paald rasverschil op al die proefvelden wordt geconstateerd, mag 
wel worden geconcludeerd dat het verschil tussen de rassen onder 
allerlei omstandigheden blijft bestaan, en dat de rassenkeuze 
onder al die omstandigheden ook niet moet veranderen. 

In de practijk zal blijken dat de rasverschillen onder al die 
omstandigheden niet helemaal constant zijn, er blijft een zekere 
schommeling over. De werking van de omstandigheden is slechts 
globaal uitgeschakeld. 

De overblijvende schommelingen zullen meestal ook van al de 
invloeden afhangen, die op de opbrengsten en andere gegevens 
werken. Door de proefvelden wordt het aantal belangrijke invloeden 
niet verminderd; slechts wordt hun werking grotendeels uitgeschakeld, 
zodat met veel minder kennis toch een tamelijk goede rassenkeuze 
mogelijk is. 

202 - H E T C O N D E N S E R E N VAN D E I N V L O E D E N EN H E T NORMA­

L I S E R E N VAN DE GEGEVENS 

In de vorige paragraaf hebben we over talloze invloeden ge­
sproken, waarvan men veel te weinig weet. Het ligt voor de hand 
dat in de practijk met al die onbekende en vage invloeden niet te 
werken valt. Daarom moeten ze worden samengevat tot een paar 
hanteerbare begrippen. 

Omdat op de rassenproefvelden, waarvan wij de wiskundige 
bewerking nu nader bestuderen, alle rassen geheel onder dezelfde 
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omstandigheden worden verbouwd (voor zover men die in de hand 
heeft), willen wij alle invloeden, die op het proefveld werkzaam 
zijn, samenvatten als de invloed van het milieu. 

Door een dergelijke schematisering krijgt de te gebruiken for­
mule uitgesproken het karakter van een noodformule. Er zal 
daarom op gelet moeten worden, dat er een interpretatief out wordt 
gemaakt. Deze zal met de verborgen invloeden en de variabiliteit 
de oorzaak zijn van het optreden van strijdigheid en dus van een 
varians. 

Bij het rassenonderzoek willen wij dus in eerste instantie de op­
brengst of. de andere gegevens zien als functie van een ras- en van een 
milieuinvloed; terwijl wij door de varians trachten te meten in hoever 
ons pogen geslaagd is. 

In formule uitgedrukt is onze wens dus dat wij kunnen stellen: 

(202.1; Okp=<P(Rk;Mp), 

waarbij Okp voorstelt het gegeven (b.v. opbrengst) dat met ras k 
in het milieu p is A^erkregen; Rk stelt voor de invloed van ras k 
en Mp de invloed van het milieu p. 

Omdat in deze formule alle invloeden tot twee gecondenseerd 
zijn, willen wij deze formule een condensatieformule noemen en 
de interpretatiefout, die hierbij gemaakt wordt, een condensatie-
fout. 

In formule (202.1) wordt het gegeven O dus beschreven als 
een functie 0 van twee veranderlijken R en M. Over de bouw 
van de functie 0 wordt evenwel niets gezegd: Daardoor wordt er 
aan de formule een derde element van variatie toegevoegd. Om 
algemene beschouwingen over formule (202.1) te kunnen ont­
wikkelen is het nodig, dat de bouw stabiel is, en liefst eenvoudig. 

Wij willen aannemen dat deze stabiele en eenvoudige bouw 
bereikt kan worden door de gegevens Okp te transformeren (b.v. 
de logarithme er van te nemen). Wij krijgen dan een grootheid 
Qkp, die een functie (0) is van Okp, dus (zie 202.1). 

(202.2) Qkp = 0 (Okp) =0{0(Rk; Mp)} = A(Rk; Mp). 

De gegevens O, zoals ze zijn waargenomen, noemen wij bepaal-
gegevens; de getransformeerde waarden ervan (Q), waarmee de 
berekening zal worden volvoerd, de rekengegevens. 

Evenals de O is de Q een functie van uitsluitend R en M. Omdat 
de bouw van 0 nog onbepaald is kunnen wij aan de functie A 
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aprioristische eisen stellen, die hun compensatie in de O zullen 
vinden. De eis die wij willen stellen is deze: 

Wanneer men in een bepaald muien px het rasverschil bepaalt 
van de rekengegevens Q van de rassen klt k2, k3,. . . , dan moet men 
dezelfde getallen vinden als wanneer men die rasv er schillen bepaalt 
in het milieu p2, p3, . . . . 

Dus b.v. (wanneer Q21 betekent het rekengegeven van ras k2 

in milieu px) 

(202.3) ß 2 1 — i 3 u = f i 2 2 — ß 1 2 

Het verschil ü2i — ün kunnen wij opvatten als de aangroeiing 
van Ükp wanneer men in milieu px van ras verandert. Deze aan­
groeiing willen wij aanduiden door 

(202.4) A fi(M>)i = ß 2 i — ß n 

Dat het gaat over een verschil tussen ras k2 en ras kx duiden 
wij aan door (k2 — Ax); dat de p de waarde px houdt duiden wij 
aan door de p te vervangen door 1. 

De aangroeiing A •0(&2-Ä,):I mogen wij beschouwen als gevolg 
van een aangroeiing A R(k.,-kl)l van de gunstigheid van de ras-
eigenschappen R, wanneer men van ras kx op ras k2 overgaat. 
Formule (202.3) is het gemakkelijkst te hanteren, wanneer deze 
aangroeiing er ook in vermeld wordt. Wij lezen hem dus als volgt 
(zie ook 202.4) 

(202.5) AjQfv*,)! __ A ß(/r,-fc,)2 _ _ A Qjkr-kjp 
~A~K(ftä-*~) ~ '7\R(k^k~) "" " A R(h-k,) ' 

(Door A ^(k.-k^p willen wij aanduiden dat de k varieert van 
kx naar k2, en dat de p wordt vastgehouden op een willekeurige 
waarde). Aangezien de overgang van kx op k2 slechts een voor­
beeld is van een overgang van het ene ras op een ander, doch onze 
formulering voor alle overgangen toepasselijk moet zijn willen wij 

de indicatie (k2 — kx) weglaten, en in ' t algemeen zeggen dat -j—y, 

onafhankelijk moet zijn van het milieu, deze waarde moet alge­
meen geldig zijn. 

Hoewel de raseigenschappen niet continu verlopen, zullen wij 

toch aannemen, dat wij het differentiequotient ---,-> mogen ver­

vangen door het differentiaalquotient 
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De waarde van —= laat zich het best uit (202.2) afleiden door 
<m 

de vergelijking ükp = A {Ru; Mp) partieel naar R te differentiëren. 
Dit geeft 

ÏR 
7>Q 
-qj zou dus een functie kunnen zijn van R en M beide. Wij 

hebben in (202.5) geëist dat het geen functie van M is, dus 
mag het uitsluitend een functie van R zijn. Stellen we deze 
functie voor door W, dan geeft dit 

fR=W'(R). 

Integreren van deze functie geeft 

Q =W(R) + r. 

Wij zien dus dat onze eis meebrengt dat de Q een zodanige 
functie is, dat hij bestaat uit de som van twee delen W(R) en F. 
Het eerste deel is een zuivere functie van R; het tweede deel is 
onafhankelijk van R (het verdwijnt bij differentiëren naar R), 
doch kan wel afhankelijk van M zijn, wat volgens (202.2) inder­
daad het geval is. r bevat dus een functie van M, maar kan ook 
nog een onafhankelijk constante bevatten. Wij geven hem weer 
als r(M) + C. 

Samenvattend kunnen wij dus zeggen dat onze eis is dat 

Ükp =W(Rh) + r(Mp) + C. 

Nu moet nog beslist worden over de bouw van W en ƒ". 
De functie W geeft weer dat de rekengegevens ü afhangen van 

rasinvloeden R. Deze invloeden zijn vaak niet in getallen uit te 
drukken. De invloed wordt b.v. uitgeoefend door de bouw van een 
chromosoom. Het enige wat zich gemakkelijk uit laat drukken 
is de werking van die invloeden op het gegeven. Hiervoor is de 
¥ (Rk) een geschikte maat. Zo is de r(Mp) een maat voor de 
werking van het milieu p. 

In het vervolg willen wij ¥ (Ru) weergeven door Ru en T{Mp) 
door Mp. Onder Ru moet dan worden verstaan: de bijdrage van 
het ras aan het rekengegeven, onder Mp de bijdrage van het milieu 
aan dat gegeven. We vinden dus als te gebruiken formule 

(202.6) Ükp =Rk + Mp + C. 
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Deze formule is niet nieuw. In de variansanalyse wordt er 
regelmatig mee gewerkt. Nieuw is slechts dat wij het niet van 
de betaalgegevens willen beweren doch van de rekengegevens. Niet 
altijd zal formule (202.6) voor de bepaalgegevens juist zijn. In 
vele gevallen kunnen er dan rekengegevens worden gevonden, 
die beter aan (202.6) beantwoorden. Dit lukt echter lang niet 
altijd! Hoe men kan trachten de rekengegevens uit de bepaal­
gegevens af te leiden zullen wij in 203 bespreken. 

Nu volstaan wij met er op te wijzen, dat door de normalisatie­
functie 0 alle cijfers op gelijke wijze verwerkt kunnen worden. 
Er blijft geen onderscheid tussen opbrengst-, kwaliteits-, waar-
derings- en andere cijfers. Om niet te abstract te zijn, zullen wij 
in het vervolg niet van „het gegeven" spreken, doch van de op­
brengst. Daarbij wordt onder „opbrengst" steeds verstaan het 
,,rekengegeven", tenzij uitdrukkelijk anders vermeld wordt. 

De waarde Rk willen wij aanduiden als rasvoortreffelijkheid, de 
waarde Mp als milieugunstigheid. 

203 - H E T TRANSFORMEREN VAN BEPAALGEGEVENS IN REKEN­

GEGEVENS 

In formule (202.2) hebben wij neergeschreven 

(202.2) Ükp = 0 (Ohp). 

d.w.z. de rekenopbrengst Qkp is een functie van de bepaalopbrengst 
Okp. Deze functie willen wij aanduiden als transformatiefunctie. 
Het is. nu onze taak de transformatiefunctie te vinden. Hiertoe 
moeten wij aansluiting zoeken bij onze eis uit formule (202.6) 

(202.6) Qkp =Rk + Mp + C. 

Wij beginnen met formule (202.2) te differentiëren en vinden dan 

(203.1) ^L=&'{Ohp). 
UVKTT 

Wij hebben de k en de p in het linkerlid door y. en n vervangen 
om aan te geven dat k en p lopende indices zijn geworden. De 
letters k en p blijven wij gebruiken wanneer ze worden „vastge­
houden". In het linkerlid van (203.1) is dus uitgedrukt dat de 
aangroeiing mag plaats vinden door een verandering van k of 
van p of van beide. In het rechterlid hebben wij k en p 
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gehandhaafd, omdat de grootteverhouding van de veranderingen 
in Q en 0 een functie is van de niet tegelijkertijd veranderende 
waarde Okp. 

Hoewel dus k en p in het linkerlid tegelijk mogen veranderen, 
kan er geen bezwaar tegen zijn een index tijdelijk vast te houden 
en te schrijven: 

(203.2) S r * = ®' (pkp) 
auKp 

In de formules (203.2) wordt slechts uitgedrukt dat een for­
mule (203.1) die geldt bij alle combinaties van rassen en proef­
velden, ook geldt wanneer men zich tot een proefveld p of een 
ras k beperkt. 

Voor de verdere verwerking is het gemakkelijk het differentiaal-
quotiënt te vervangen door het differentiequotient. Wij gaan dus 
niet een aangroeiing van de raseigenschappen of de proefveld­
eigenschappen bestuderen, maar het verschil tussen twee rassen 
(k1 — k2) of twee proefvelden (p1 — p2). In verband hiermee 
kunnen wij de aanduiding van de opbrengst, waarop de aan­
groeiing betrekking heeft, ook niet meer algemeen houden. Wij 
moeten aanduiden, dat wij te maken hebben met de rassen kx en k2, 
eventueel de proefvelden px en p2, en schrijven daarom (203.2) 
als volgt: 

(203.3) 4 ^ * c W É = = 0 ' ( o w ) 

A^M = e' (0kpits). 
A Ukfo-Ps) 

Op dezelfde manier kunnen wij op grond van (202.6) neer­
schrijven 

(203.4) A A v * ^ = j 

A GkJPr-p,) = j 
A M(Pi-p2) 
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In verband met (203.4) lezen wij (203.3) nu alsvolgt 

(203.5) 

A ®{k,-k2)p __ A Q(K-k2)p A R{k,-kt) _ A R(k,-ks) 
A 0{k1-h2)p A R(K-^) ' A 0(kl-k2)p A 0(k,-k,)p 

A ®Hpi-$i) = A @k(p,-ps) A M{pi-p,) ^ A Mfa-pj 
A Ok(Pl-p2) AM\Pl-p2) ' A Ok(Pl-p) A Ok(p,-p2) 

Uit (203.5) is gemakkelijk af te leiden 

(203.6) A Ö f * A = 0 ( o w ) 

©' (0/^„2). 

A o*(/w»: 
A MiPl.p2] 

waarbij 

(203.7) ê (Oku2p) 

= * ( 0 *O 

ï 

1 

In (203.6) staan nu twee condities waaraan voldaan moet zijn, 
wanneer men de juiste transformatiefunctie heeft gekozen. Om 
deze condities goed te begrijpen willen wij er een van in woorden 
formuleren. 

In de eerste vergelijking van (203.6) staat het volgende uit­
gedrukt: Wanneer men van een bepaald proefveld p de opbrengsten 
van twee rassen vergelijkt, is er een verschil mogelijk in de bepaal-
opbrengsten; er kan een A 0(hl-k2)p bestaan. Wanneer er met 
r ekenopbrengsten wordt gewerkt, is het mogelijk tussen die zelfde 
rassen een verschil in rasvoortreffelijkheid vast te stellen; men vindt 
een A R(k,~k2)- De verschillen tussen de bepaalopbrengsten en 
die tussen de rasvoortreffelijkheden zullen onderling samenhangen. 
Deze samenhang wordt op een zekere manier ($), verband houdende 
met de gekozen transformatiefunctie (zie 203.7), bepaald door het 
opbrengstniveau Ok1!2p waarop beide rassen met hun bepaal­
opbrengsten op dit proefveld staan. 

Doordat in de besproken vergelijking is uitgedrukt dat men 
zich moet beperken tot proefveld p, is de mogelijkheid gegeven 
dat de manier van samenhang (#) op ieder proefveld anders wordt 
gekozen. Indien enigszins mogelijk moet men trachten dit te ver-



69 

mijden. Wij eisen daarom, dat de gekozen transformatiefunctie geldt 
voor alle proefvelden en alle rassen. 

In verband hiermee kunnen wij in (203.6) de ft vervangen door 
de lopende index n en om gelijksoortige reden de k door x. 

Wij schrijven dus 

(203.8) A O ( V * > = f l ( 0 w ) 

A K{h-k-i) 

A OK(P,-P2) 

A M(PH>i) 
= ®(0KpJ. 

Hiermee hebben wij een paar vergelijkingen verkregen, die als 
volgt de geschiktste transformatiefuncties kunnen verschaffen. 

Van alle proefvelden die men in de loop der jaren heeft ver­
kregen kan men voor twee rassen k1 en k2 berekenen het verschil 
tussen de bepaalopbrengsten op ieder proefveld afzonderlijk 
(A 0(kl-k2)p) en de gemiddelde bepaalopbrengst (Ok^.p). Bij 
het kiezen van het rassenpaar moet men zorgen dat het verschil 
tussen beide rassen niet te groot en niet te klein is. Niet te groot, 
want A ö^-zy p is een benadering van dOKp en zou dus heel klein 
moeten zijn; en toch niet te klein, want de toevallige fouten mogen 
de systematische verschillen niet overheersen. 

Van de bovenste formule is nu nog slechts de A R^-k,) on­
bekend. Aangezien deze grootheid onafhankelijk moet zijn van de 
proefvelden kunnen wij hem vervangen door het symbool C. In 
dit geval is de C dus afhankelijk van het verschil tussen kt en k2. 
Straks zullen wij waarden van C aantreffen die van andere ver­
schillen afhankelijk zijn. Dan zullen we de C van een index moeten 
voorzien. 

Omdat in de besproken formule slechts n veranderlijk is 
kunnen wij A O^-U^TT als zuivere functie van Ok1>tw zien. 
Wanneer er een voldoend aantal punten is, moet aan de hand 
van een grafiek een functie gevonden kunnen worden, die het 
verband genoegzaam weergeeft. Op deze wijze vindt men de 
functie &, die volgens (203.7) in 0' en daarna in de transformatie­
functie 0 is om te zetten. 

Wanneer er niet voldoende punten zijn, zal men verschillende 
rassenparen en verschillende proefveldenparen moeten onder­
zoeken, en de gegevens samenvoegen. Dit is om een andere reden 
ook reeds wenselijk, aangezien anders misschien voor één rassen-
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paar een transformatiefunctie wordt genomen, die bij de andere 
rassen minder goed past. 

Wij staan dus voor de vraag, hoe de gegevens moeten worden 
samengevat. Aanwezig zijn een aantal lijnen, die aan de volgende 
formules beantwoorden. 

(203.9) A 0{kl-k2)„ 

A 0(k3-ki)7r 

A 0K (Pl-Pz) 

A 0K {Ps-Pl) 

= Q 

= ca . 
= c3 
= Q 

•*(0*u,W) 
• # (OkM„) 

• & (OKPJ 

•#(OKPJ 

enz. 

waarbij Cx, C2, C3 en C4 weergeven de waarden van A R-iK-h), 

A Ä ( Ä ^ ) , A M(PH>lA en A A ^ - t ó -
Doordat iedere C weer anders is zullen de lijnen een ongelijke 

vorm hebben. Als de lijnen recht zijn zal de één steiler staan dan 
de ander, zijn de lijnen krom, dan zal de kromming ongelijk zijn. 
Het is duidelijk dat het in deze omstandigheden niet gemakkelijk 
is een „gemiddelde" lijn te krijgen door de afzonderlijke lijnen 
over en aan elkaar te passen. Dit bezwaar is te ondervangen door 
de waarden van C te schatten. De waarde van Cx is A R(K-K), 
dus het verschil in rasvoortreffelijkheid tussen ras kx en ras k2. 
Bij benadering zal hier voor kunnen worden genomen het verschil 
tussen de gemiddelde bepaalopbrengsten van ras kx en ras k2 op 
de onderzochte proefvelden. Wanneer achteraf aan de figuren 
blijkt dat een betere onderlinge aansluiting wordt verkregen door 
enkele waarden van C anders te kiezen, dan kan voor ieder spe­
ciaal geval worden nagegaan, of een dergelijke verandering ook 
wenselijk is. 

Wij komen dus tot de volgende methode 

(203.10) 

Ie Deel de rassen in, in groepen van twee, die niet te veel en niet 
te weinig in opbrengst verschillen. Doe hetzelfde met de proef­
velden. 

2e Bepaal voor iedere groep de waarde 

A O ( = A 0(kl-K)p) =Oklp — 0Kp 

of 

AO(= AOk (ft-^j) = OkPi — Okpt. 
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3e Bepaal voor iedere groep de waarde 

of 

ne n, \ — 0k^ + 0kp* O ( = O ftftj. — 2 • 

4e Schat voor iedere groep de waarde 

C ( = A % - y ) * Ö*,* — Ökm 

C ( = A il^-£2) ** 0 ^ — 0Kp2. 

(Door OAIW wordt aangeduid dat O^p over >̂ is gemiddeld). 

C 
5e Bepaal voor iedere groep de waarde van _. 

6e Zet -^— af als functie van O. Volgens (203.8) en (203.7) 

geldt nu 

7e Tracht een functie 0' te vinden die bij de gevonden lijn goed 
aansluit, en zoek de transformatiefunctie 0 door te integreren. 

Wanneer men zijn transformatiefunctie voor practische doel­
einden zoekt en niet voor theoretische, is er geen essentiële eis 
over de bouw, doch slechts de practische voorwaarde dat de for­
mule de lijn behoorlijk moet benaderen en aan het integreren niet 
teveel moeilijkheden in de weg moet leggen. 

204 - CONTRÔLE OP DE JUISTHEID VAN DE TRANSFORMATIE­

FUNCTIE 

Bij het opstellen van de methode voor het vinden van een trans­
formatiefunctie hebben wij als ideaal gesteld, dat alle rassen en 
alle proefvelden dezelfde vergelijkingsfunctie zouden krijgen. Met 
het stellen van dit ideaal is evenwel helemaal niet gezegd dat het 
ook inderdaad mogelijk is. Het is om deze reden wenselijk dat men 
achteraf controleert of men misschien ook een bepaald ras of een 
bepaald proefveld geweld heeft aangedaan. 

Deze controle is mogelijk wanneer men met de verkregen trans­
formatiefunctie rekenopbrengsten heeft bepaald, en deze cijfers 
heeft samengevat volgens de methoden van 304, zodat voor 
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ieder ras de voortreffelijkheid Rk bekend is, en voor ieder proef­
veld de gunstigheid Mp. 

Met behulp van (202.6) laat zich nu voor ras k op veld ft de 
waarde Qkp uitrekenen. (De invloed van C wordt in hfdst. I I I 
ook nader besproken). 

Voor ieder ras en ieder proefveld laat zich nu controleren of 
het verband tussen O en ü aan de transformatiefunctie 0 voldoet. 
Eventueel kan men de algemene functie 0 voor ieder ras en ieder 
proefveld vervangen door een speciale functie 0u of 0p. 

Met het openen van deze mogelijkheid willen wij niet zeggen 
dat het nu ook steeds wenselijk is. Hierover zal de practijk moeten 
beslissen. Er zijn evenwel gevallen waarin wij wel zonder meer 
kunnen zeggen dat het wenselijk is van deze mogelijkheid gebruik 
te maken. Dit is het geval met schattingscijfers. 

Allerlei kwalitatieve eigenschappen van het gewas worden vaak 
in schattingscijfers vastgelegd, b.v. smaak, strostevigheid, winter­
vastheid enz. Nu is het vaak moeilijk de betekenis van de cijfers 
nauwkeurig vast te leggen, de een gebruikt cijfers tussen 7 en 9, 
de ander tussen 4 en 10. Wanneer al deze cijfers moeten worden 
samengevat is het nodig eerst de schalen bij elkaar aan te passen. 

In dit geval zijn de waarden van M onbelangrijk, omdat de 
grootte hiervan vaak meer van de waarnemer dan van het proef­
veld afhankelijk is. Men kan dus een willekeurige waarde van M 
aannemen. In verband hiermee is het in dit geval niet nodig een 
algemene transformatiefunctie op te stellen volgens de methode 
van 203. Van de verschillende waarden Rk mag men voorlopige 
cijfers schatten door de j a a r gegevens eerst samen te vatten, 
of door cijfers te nemen uit vroegere proeven. Uit de aangenomen 
waarde van M en de voorlopige waarden van Rk laten zich voor­
lopige waarden Qkp berekenen. 

Voor ieder proefveld kan nu grafisch het verband worden na­
gegaan tussen Okp en Qkp. Uit de grafiek wordt voor iedere O up de 
bijbehorende Qkp afgelezen. Deze rekengegevens ondergaan nu 
een definitieve bewerking volgens hfdst. I I I . 

205 - H E T METEN VAN DE MILIEUGUNSTIGHEID 

In formule (202.6) hebben wij tot uitdrukking gebracht, dat 
wij de opbrengst van een bepaald ras in een bepaald milieu wilden 
zien als de som van een bijdrage van het ras en een bijdrage van 
het milieu. Dit ideaal hebben wij ons durven stellen omdat wij 
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weten dat de verschillende rassen globaal gelijk op uitwendige 
omstandigheden reageren. 

Wanneer die gelijkheid van reactie nu maar volkomen was, 
zou ieder ras in staat zijn de gunstigheid van de verschillende 
milieu's te meten door de variaties van zijn rekenopbrengst. Doch 
die gelijkheid van reacties gaat in de regel niet tot in details, doch 
blijft globaal, ook wanneer rekenopbrengsten worden gebruikt. Dit 
stelt ons voor speciale moeilijkheden, die wij nu moeten bestu­
deren. 

Wij beginnen met ons een stikstofbemestingsproef te denken, 
waarin twee rassen, kx en k2, onderzocht zijn bij verschillende 
stikstof hoeveelheden. Omdat verandering van stikstof hoeveelheid 
een verandering van milieu meebrengt, hebben wij als waarde 
van de milieu-index p de stikstof hoeveelheid genomen. In fig. 
(205.1) ziet men de bepaalopbrengsten Okp afgezet als functie 
van f. 

Wij zijn er van uitgegaan dat de stikstof eerst gunstig werkt, 
en dat later een overmaat aan stikstof schadelijk is. Om extreme 
gevallen te bestuderen hebben wij aangenomen dat de opbrengst 
tot 0 kan dalen, hoewel dat in de practijk niet erg waarschijnlijk is. 

(205.1) Opfcr. 

^^ 
'~^s^ 

,'"'^^ 
^^Vz 

\ 
SN 

\ \ 
X \ 
X ^ X N V . 

N-g.ft 

In dit voorbeeld ziet men dat het verschil van de bepaalop­
brengsten van kx en k2 bij een bepaalde stikstofgift overal gelijk 
is. De bepaalopbrengsten kunnen hier dus tevens als reken-
opbrengsten worden gebruikt (zie 202.5). 

Dit voorbeeld is wel uiterst eenvoudig. De gelijkheid van reactie 
op uitwendige omstandigheden is voor de rassen k1 en k2 

volkomen. Hoe zullen wij nu de bijdrage van het ras van die van 
het milieu moeten scheiden? 

Wij zullen uit moeten gaan van formule (202.6) 

(202.6) Okp( = Qhp) =Rk + Mp + C. 
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De constante C kan naar wens over Rk en Mp worden ver­
deeld; ook kan hij geheel of gedeeltelijk onafhankelijk vermeld 
blijven. Dit geeft ons de vrijheid de nulpunten van waaruit R 
en M becijferd worden, willekeurig te kiezen. Wij willen nu het 
nulpunt van R onafhankelijk kiezen, en dan dat van M zo 
vaststellen dat C verdwijnt. 

Voor wij het nulpunt van R kiezen moeten wij bedenken dat 
deze proef in zoverre abnormaal is, dat wij het milieu door de 
waarde van ft (in dit geval de stikstofhoeveelheid) konden karak­
teriseren. Meestal zal ft een willekeurige index zijn; dan moet 
het milieu door de Mp worden getypeerd. 

Om ons dit nog weer duidelijk bewust te worden denken wij 
ons enige plaatsen in Nederland waar onze proef precies de mee­
gedeelde resultaten zou opleveren. Inplaats van een bemestings-
proef wordt op al deze „identieke" gronden een rassenproef aan­
gelegd, dus een proef waarin de verschillende rassen bij één be­
paalde iV-bemesting worden vergeleken. 

De toegediende ZV-bemesting hangt op iedere plaats van het 
inzicht van de boer af, omdat die in het algemeen de grond het 
best kent. Nu rekent de ene boer op een nat jaar en geeft weinig 
stikstof, de ander verwacht een droog jaar en geeft veel. Wanneer 
de proefveldresultaten moeten worden samengevat hebben wij 
dus te maken met verschillende milieu-invloeden. Het ene proef­
veld heeft de bemesting ftx ontvangen, een volgende ft2 enz. 

Nu zou men veronderstellen dat ook nu de meststofhoeveel-
heden ft dienst zouden kunnen doen om het milieu te typeren, 
omdat door het verspreiden van de IV-trappen over verschillende 
plaatsen met identieke omstandigheden niets veranderd is. Toch 
is dat niet het geval. Wanneer men de verschillende stikstofgiften 
naast elkaar op een proefveld geeft is men van de identiteit der 
gronden tamelijk zeker. Zijn diezelfde giften ruimtelijk verspreid, 
dan mag die identiteit in het algemeen niet worden verwacht. 
Een practische methode moet haar dus buiten beschouwing laten. 

Wij zien immers dat ook reeds op identieke gronden wegens 
de invloed van de boer verschillende bemestingen zouden worden 
gegeven. Bovendien zijn in de practijk de gronden niet identiek. 
Aangezien de 2V-behoefte van verschillende gronden heel ongelijk 
is, zegt de gegeven iV-bemesting in de practijk gewoonlijk niets 
over de gunstigheid van het milieu. Dit is de reden dat het milieu 
in het algemeen door Mp moet worden getypeerd. 
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Wij willen nu nagaan wat er gebeurt wanneer wij volgens de 
algemene principes proefvelden zouden samenvatten, die wel 
identiek waren, behalve dat ze verschillende ^-bemestingen ont­
vingen. Dan zou in het geval van (205.1) de opbrengst van ras k1 

beter geschikt zijn voor het typeren van het milieu dan de op­
brengst van ras k2. Immers tussen p5 en fi6 zijn er nog gunstigheids-
verschillen, die niet door k2 worden aangetoond, maar waar wel 
ras kx op reageert. In dit geval zouden wij daarom kunnen over­
wegen het nulpunt van de R zodanig te kiezen dat 

(205.2) Rx = 0. 

Aangezien in ons geval bepaalopbrengst en rekenopbrengst 
gelijk zijn volgt hieruit: 

(205.3) Oip =Qip =MP. 

Wanneer wij nu het contante verschil tussen de opbrengsten 
van ras kj_ en ras k2 = A stellen, kunnen wij van 02p zeggen 
dat 

(205.4) 02p = MP — A 

behalve wanneer (Mp — A) < 0; dan is 02p = 0. 

Een speciaal ras kz dat tot taak heeft de milieugunstigheid Mp 
door middel van zijn opbrengst Q vast te leggen, wordt een 
standaardras genoemd. In gevallen als fig. (205.1) weergeeft, is 
het productiefste ras dus vanuit dit oogpunt het geschiktst als 
standaardras. 

Figuur (205.1) geeft echter een zeer speciaal geval weer, dat 
zelden voorkomt. Immers de rassen reageren in werkelijkheid 
slechts globaal gelijk op de uitwendige omstandigheden. Een 
grafiek als in fig. (205.5) is weergegeven, is in de practijk waar­
schijnlijker; wanneer wij tenminste weer aannemen, dat bij een 
hoge stikstofgift de opbrengst geheel kan uitblijven. 

(205.5) Opbr. 
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Beide rassen geven een stijgende bepaalopbrengst bij stijgende 
iV-hoeveelheid, tot er een maximum bereikt wordt; dan daalt de 
opbrengst weer tot 0. 

We zien dat in dit voorbeeld niet geldt, dat het verschil 
(Oip — Osp) constant is. Hier is het nodig de bepaalopbrengsten 
O in rekenopbrengsten Û te transformeren. Omdat dit momenteel 
niet ons onderwerp is, willen wij aannemen dat in dit geval door 
een zodanige transformatie niets valt te bereiken, zodat ook nu 
de bepaalopbrengsten de meest geschikte rekenopbrengsten zijn. 

Om het milieu te typeren zouden wij ook nu weer het produc­
tiefste ras (A3) als standaardras kunnen nemen en stellen 

(205.6) O; sp 
: &3p = Mp. 

Aangezien de rasverschillen niet constant zijn kunnen wij de 
raseigenschappen het best onderzoeken door de opbrengsten van 
beide rassen tegen de milieugunstigheid Mp af te zetten en de 
opbrengstlijn van beide rassen te vergelijken (zie fig. 205.7) 

(205.7) Opkr. n 

De lijn voor ras k3 is gemakkelijk te tekenen. Uit formule (205.6) 
volgt dat het een lijn is door de oorsprong onder een hoek van 45°, 
die zich uitstrekt van het minimum p6 tot het maximum pà. De 
lijn voor ras ki is moeilijker te construeren. Van p1 tot p2 (zie 
205.5) ligt hij op een constante afstand boven die van k3. Bij p2 

is het maximum bereikt dan buigt de &4-lijn naar beneden, terwijl 
Mp nog stijgt. Bij p3 snijden de k3- en &4-lijn elkaar, dan daalt 
de lijn regelmatig door tot bij pi het maximum van üsp en dus 
van Mp is bereikt. Verder daalt de lijn van ki bij teruglopende Mp. 
Bij p5 is de opbrengst van ras kt = 0, dan is de Mp nog vrij hoog. 
Verder volgt de £4-lijn de MP-a.s tot de oorsprong. 

Wij zien dat ras k3 een zeer regelmatige lijn oplevert, ras kt 

daarentegen een zeer onregelmatige. Dit ligt niet aan belangrijke 
rasverschillen; uit fig. (205.5) blijkt dat beide rassen ongeveer 
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gelijk reageren. De oorzaak is dat het ene ras tot standaard is 
verheven en het andere niet. Wij zouden ook ras &4 als standaard­
ras kunnen nemen en dus stellen 

(205.8) OiP =MP 

Dan zou blijken dat ras k3 een onregelmatig verloop heeft, terwijl 
hi een rechte lijn geeft (zie fig. 205.9) 

(205.9) Opbr Q. 

p>m Mp. 

Het is natuurlijk onjuist dat een bepaald ras een extra prettige 
indruk maakt doordat het als standaardras is gekozen. In het 
algemeen moet men dus van het gebruik van standaardrassen 
afzien, wanneer niet alle onderzochte rassen kwalitatief gelijk 
reageren. Veel beter is het alle rassen gelijke kansen te geven en 
als „standaardras" het gemiddelde van de onderzochte rassen te 
nemen. Wij willen dit fictief ras als ,,fictief ras" aanduiden. Voor 
dit fictiefras ks geldt dus 

. [üKp] 
(205.10) üsi sP 

m 
= MP. 

Wanneer wij het aantal rassen door m voorstellen. 
Hoeveel wij in gevallen als (205.5) vooruitgaan door het ge­

bruik van een fictiefras moge blijken uit fig. (205.11), waar de 
opbrengsten van de rassen k3 en ki zijn afgezet tegen de Mp zoals 
die bepaald wordt door het fictiefras. 

(205.11) OpbrQ 

, îâi 
*' Sri 

> s'S\t " />' ƒ 1 

f'SIS / 'l 
' f'X S i 

/sA A, ij 
hi ,/ lil 

P6 E, P5 w> 
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We zien dat beide rassen nu gelijksoortige lijnen vertonen. Ook 
valt het op dat in fig. (205.7) en (205.9) het niet-standaardras 
ongunstig voor de dag komt in vergelijking met (205.11) ten be­
hoeve van het standaardras. Het werken met een fictiefras is dus 
veel eerlijker. 

Om de eigenschappen van het fictiefras duidelijk in het licht 
te laten komen is de opbrengstlijn van het fictiefras (ks) in fig. 
(205.5) ingetekend (zie fig. 205.12) 

(205.12) 

N-qift 

Men ziet hier dat het fictiefras in zijn reactie op stikstof het 
midden houdt tussen ks en kit dit is een gunstige eigenschap. 
Voorbij p5 is de opbrengst van ki = 0; dan is Mp = y2 Ogp. Dit 
heeft tot gevolg dat het fictiefras evenlang op stikstof blijft rea­
geren als ks. De voordelen van het productieve standaardras (zie 
conclusie na (205.4)) worden dus ook bereikt met het fictiefras. 
In gevallen als weergegeven in (205.1) kan het fictiefras daarom 
evengoed dienst doen als het standaardras. 

Wij kunnen daarom de algemene conclusie trekken, dat het wen­
selijk is steeds met een fictiefras te werken en nooit met een standaard­
ras. De opbrengst van het fictiefras wordt daarbij verondersteld gelijk 
te zijn aan het gemiddelde van de rekenopbrengsten van alle onder­
zochte rassen. 

206 - D E NOODZAAK HET MILIEU TE „ W E G E N " 

In 201 hebben wij gezien dat het milieu uitermate gecompliceerd 
is. In 202 spraken wij de wens uit, een bepaald milieu toch door 
één getal Mp te typeren. In 205 voerden wij het „fictiefras" in„ 
dat als opbrengst Mp zou moeten geven. Bij dit alles moeten 
wij dus de consequentie aanvaarden dat een bepaalde waarde 
van Mp verkregen kan worden bij allerlei verschillende omstandig­
heden. Men ziet dit reeds in fig. (205.12) waar p2 en pt ongeveer 
dezelfde Mp ( = üs) opleveren, zo ook p1 en p-. In deze verschillende 
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omstandigheden reageert een afzonderlijke ras niet steeds precies 
gelijk, zodat er verdubbeling van lijnen optreedt, wanneer de 
opbrengst Qkp van een bepaald ras tegen de milieugunstigheid Mp 
wordt afgezet (fig. 205.11). 

Nu is hier nog maar sprake van één invloed (stikstof). Bij talloze 
invloeden wordt het aantal milieu's met gelijke gunstigheid veel 
groter. Voor een bepaald ras zal men dan geen verdubbeling van 
de lijn vinden maar een gehele lijnenbundel. Wanneer de om­
standigheden continu veranderen zal men zelfs geen aparte lijnen 
kunnen onderscheiden. Ieder ras geeft een bepaald gebied waar­
binnen waarnemingen mogen worden verwacht. Zolang men wil 
volstaan met het berekenen van globale rasverschillen verlangt 
men door dit gebied een lijn met de formule 

Qkp = Mp + Rk. 

Door deze formule wordt weergegeven hoeveel ras k meer op­
brengt dan het fictief ras. 

Wanneer wij deze lijnen in fig. (205.11) voor beide rassen zouden 
intekenen, zou onze conclusie zijn dat de ki beslist slechter is 
dan de k3. Wij zouden immers zowel voor k3 als kt midden 
tussen beide takken door willen gaan. Wanneer wij de rassenkeuze 
aan de hand van fig. (205.5) moesten bepalen, zouden wij dezelfde 
conclusie trekken. 

Bij een landbouwkundige beoordeling moet er evenwel rekening 
mee worden gehouden, dat de bemesting niet groter mag zijn dan 
de optimale, dus p^ Beneden pt ligt de opbrengst van Ä4 duidelijk 
gemiddeld hoger dan die van kz. Zo zijn wij ook niet billijk: te lage 
stikstofgiften moeten ook vermeden worden. De toestand tussen 
p1 en p2 heeft daarom ook maar weinig waarde. Tussen p2 en p± 
wint p3 het weer. Aan de hand van fig. (205.5) is op deze wijze 
gemakkelijk de noodzaak en mogelijkheid van het „wegen" van 
milieu's te bespreken. Wanneer men moet werken met figuren 
als (205.11) is de noodzaak natuurlijk even groot, maar de mogelijk­
heid kleiner. 

Men staat hier voor de practische toepassing van de theorieën 
die wij in hoofdstuk I ontwikkelden. Formule (202.6) is uitge­
sproken een noodformule. Wanneer men er mee werkt moet men 
niet alleen letten op de vrij onschuldige toevallige fouten, maar 
juist bizonder bedacht zijn op de systematische fouten, waar­
onder de monsterfouten zo'n grote plaats innemen. 
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Daarom moet men bedenken dat men het materiaal niet min of 
meer toevallig mag verzamelen, doch dat men zeer zorgvuldig een 
typisch monster uit het onderzochte gebied moet trekken naar 
tijd, plaats en omstandigheden. Het is onmogelijk aan deze eis te 
voldoen! Om een redelijk klimaatmonster te trekken heeft men 
reeds vele jaren nodig. Het beoordelen van een nieuw ras mag 
niet zoveel jaren duren. Het zal nodig zijn door het toedienen van 
gewichten deze monsterfouten te corrigeren. In 114 bleek, dat het 
moeilijk zal vallen een goed gewichtenstelsel te verzinnen. Het 
zal geen toelichting meer behoeven wanneer wij er nog even op 
wijzen dat de „toevallige fout" van een proefveld vaak geen 
maatstaf voor het gewicht zal mogen zijn, en het aantal herhalingen 
nog veel minder. 

Uit het voorgaande moge duidelijk zijn, dat er vaak met monster­
fouten gewerkt moet worden. Door het toedienen van gewichten 
is hier enig herstel mogelijk. Zodra de gegevens het toelaten zal 
evenwel een theoretische verdieping van de kennis moeten worden 
nagestreefd. Aan het eind van hfdst. I I I zal hierop iets dieper 
worden ingegaan. 



I l l - HET SAMENVATTEN VAN RASSENPROEVEN 

301 - D E INTERACTIE TUSSEN RAS EN PROEFVELD 

Bij het samenvatten van proefvelden komen een aantal pro­
blemen naar voren, die zich het gemakkelijkst laten toelichten, 
wanneer wij uitgaan van de schema's die gebruikt worden in de 
varians-analyse volgens de school van R. A. F ISHER. Om deze 
reden willen wij beginnen met enige aspecten van een F ISHER-

analyse te bestuderen. 
Wij gaan weer uit van formule (202.6) 

(202.6) Qkp =Rk + Mp + C. 

In 205 merkten wij reeds op, dat de C ons in staat stelt de nul­
punten van R en M naar believen te kiezen. Daar gaven wij er 
de voorkeur aan de C met de Mp te laten samensmelten. In dit 
hoofdstuk kiezen wij liever de nulpunten zodanig dat 

[RK] = 0 

[M„] = 0 . 

Evenals in (203.1) hebben wij de k door een x vervangen, omdat 
hij een lopende index is, zo is de f vervangen door een ji. Om aan 
te geven dat Ä e n M vanuit hun gemiddelde worden geteld willen 
wij ze vervangen door resp. Q en /n, zodat wij lezen 

(301.1) [eJ = o 

[fi„] = 0. 

Substitutie van g en [i in (202.6) geeft 

(301.2) Qkp = Qk + [ip + C. 

Wanneer wij het aantal rassen door m aangeven en het aantal 
proefvelden door n, geeft sommatie van (301.2) over k en p 

[[QKn]] = n [QK] + m [/!„] + mnC. 

of (zie 301.1) 

(301.3) C = i ^ ! I = QK7T = Q. 

mn 

Substitutie van C in (301.2) geeft 

(301.4) Qkp =Q + Qk + [ip. 
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De waarden van Q en JA laten zich (in verband met 301.1) nu 
berekenen volgens de formules 

(301.5) ^ I % ] _ ß 
m 

n 

In de formules (301.4) en (301.5) zijn onze wensen aangaande 
het rekenschema vastgelegd. Via (202.6) hangen ze immers samen 
met 202, waar wij onze idealen formuleerden. 

Maar misschien wordt aan deze wensen niet geheel voldaan. 
Hoewel wij wensen dat een rekenopbrengst alleen afhangt van 
totaalgemiddelde, rasvoortreffelijkheid en milieugunstigheid (zie 
202), kan het zijn dat in werkelijkheid ook invloeden van het 
toeval aanwezig zijn. Het kan zelfs zijn dat ons streven, de juiste 
transformatiefunctie (zie 203) te vinden mislukt is, zodat er syste­
matische fouten zijn. Hoe de fouten ook mogen zijn, wij moeten 
rekening houden met hun aanwezigheid. 

Dit heeft b.v. tot gevolg dat de waarden pcp en QU die wij volgens 
(301.5) berekenen niet gelijk zijn aan de waarden die wij wensen. 

Wij zullen ze daarom aanduiden door /j,p' en Qk'', zodat (301.5) 
wordt: 

(301.6) /=EM_ë 
m 

Qk = IJ-

n 
Bovendien zullen wij in formule (301.4) niet alleen de pk en fip 

door Qk' en jup' moeten vervangen, maar bovendien nog door een 
fikp moeten aanduiden dat ook na die verandering nog fouten 
aanwezig kunnen zijn. Formule (301.4) wordt dus 

(301.7) Qkp — ü = Qk' + m>' + Ukp. 

In formule (301.7) hebben wij nu als belangrijke elementen 
overgehouden Qk', fip' en ü, die allemaal afhankelijk zijn van 
toevallige fouten. Dit is ongewenst, vandaar dat wij liever werken 
met de asymptotische waarden Qk, up en < ß > . 

Deze asymptotische waarden zouden worden verkregen, wanneer 
wij met onze m rassen oneindig veel proeven zouden kunnen nemen 
onder vermijding van monsterfouten (zie voor dit begrip 114). 
In dit geval zouden de toevallige fouten hun invloed verliezen. 
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Daarentegen zouden eventuele systematische fouten blijven be­
staan. Zo b.v. fouten, die ontstaan wanneer er geen goede trans­
formatiefunctie is te vinden; kortom steeds wanneer er met een 
noodformule gewerkt wordt. Wanneer wij nu kortheidshalve van 
„asymptotisch" spreken, bedoelen wij dus dat begrip dat in 113 
„asymptotisch verwacht" is genoemd. 

Wanneer wij deze asymptotische waarden in (301.7) invullen 
krijgen wij 

(301.8) Qkp—<Ö>=Qk + h + thp. 

De grootheden t willen wij aanduiden als „asymptotische fout". 
Sommeren van (301.8) over k en p geeft 

(301.9) [ [ Ö J ] — mn <Q> = n fôj + m [fa,] + [[*„,]]. 

De vorm [gK] moet gelijk aan 0 zijn omdat „asymptotisch" 
slechts m rassen onderzocht worden. Dit blijkt uit de definitie 
van het „fictiefras" als gemiddelde van alle onderzochte rassen. 
De vorm [p,„] zal slechts dan 0 zijn, wanneer er geen „parameter-
fout" (zie 114) is gemaakt. Wij zullen dus met een mogelijke pa-
rameterfout rekening moeten houden. 

Uit (301.9) laat zich nu gemakkelijk berekenen 

(301.10) s — < s> = J^] + JML. 
' n mn 

Trekken wij (301.10) van (301.8) af dan vinden wij 

(301.11) Qkp — Ü=%H + Ïkp lM + tkp — ^ H . 

Middelen van deze formule over k geeft (zie ook 301.6) 

(301.12) \M-Q=^>=fo-IM + M_IML. 
m n m mn 

Zo is ook 

(301.13) ¥*OA—Q =ek' = 3 A + M_I!MI. 
n n mn 

Substitueren wij uit (301.12) en (301.13) fiP' en Qk' in (301.7) 
dan vinden wij 

(301.14) Qkp — Q=^k+ pp — ^M + \M+M^2^^ + uki 

n n m mn 



_ [M + 
w 

['**] 

[tKp] 
m 

[tiep] 

2 [[WU 
WW 

! [ [ « ] 

+ Wft£ 
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Wanneer wij dit vergelijken met (301.11) vinden wij 

of 

(301.15) Ukp =thp 
v y ^ ' w w ww 

Het blijkt dus dat het geen rechtstreekse schadelijke invloed 
heeft op de schijnbare fout wanneer [pn] ^ 0 is. 

Bij verschillende uiteenzettingen die zullen volgen is het prettig 
vermeld te zien over hoeveel getallen gesommeerd wordt. Het 

m 
gebruikelijke symbool daarvoor is E tkp. Hier is uitgedrukt dat 

k = i 

over k wordt gesommeerd en dat k w waarden aan kan nemen. 
Deze schrijfwijze vinden wij evenwel minder gemakkelijk. We 
sluiten liever aan bij het sommatieteken [ ] . De vorm [tKp] is de 
som van m getallen tKp, waarbij x loopt van 1 tot w. Dit getal 
m willen wij plaatsen voor de vorm [tKp], en vooraf laten gaan 
door een t- Door \m [tKp\ drukken wij dus uit dat [tKp] d e somi s 
van w termen. Zo betekent f f mn [[tKV\] dat [[tKTr]] de dubbele 
som is van ww termen. 

Vaak zal x alle waarden van 1 tot m mogen aannemen met 
uitzondering van een bepaalde, b.v. I. Onder \{m— 1) \tyi\p\ wordt 
nu verstaan de som van (w — 1) termen tKp, waarbij % alle waarden 
van 1 tot w mag aannemen behalve l. 

In deze symbolen uitgedrukt wordt formule (301.15) 
in[tk„] '\m[tKp] tfww[pK7r]] 

Ukp = tup h 
r * AA AAA 

+ 

W W WW 

_ t(w-l)[fe|j,j] tkp f{n~ï) [tjkjp] tkp 
* w w w w 

t t (m— l ) ( n — l ) [piMj. j ] ] + t (w- l ) [ fL f t j» ] + 

WW WW 

l(n-i)[Wj] + j £ = (,_±__L + _ 1W,_ 
WW WW V w w WW/ 

l _ -L ) t (» - i ) [ * Ä L * j ] — ( - 1-)t(w-i)[^jp] + 
w WW/ \w WW/ 

t t ( W — 1)(W— l)[pLftJLj.j]] 
WW 

of 

file:///tyi/p/
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(301.16) ukp = (™ ^ -} hp ~ t (» - 1) 

\{m - 1) 

mn 

(w — 1) t\k\p 
mn 

(m — 1) tkipj 

mn 

+ 11 (m — 1) (n — 1) hktipi 

mn 

Men ziet duidelijk dat de schijnbare fout unp afhankelijk is van 
alle asymptotische fouten tkp. Wanneer er twee rassen op twee 
proefvelden worden onderzocht (m = 2, n = 2) krijgt formule 
(301.16) de vorm 

ukp ~\thp — xtk\pi — ïhk}p + ihkiipj', 

dan hebben alle asymptotische fouten evenveel invloed op Ukp. 
Worden m en n beide groter dan gaat tkp snel domineren. 

Uit de schijnbare fouten u pleegt de varians van de interactie 
tussen rassen en proefvelden berekend te worden. Daartoe worden 
eerst alle waarden u gekwadrateerd. Voor ukp geeft dit 

2 (m—\f{n~\)\ 
Ukp2 = - '—^ -tkp2+ t ( « - l ) 

(m— l)2fetf j ' 

m V 

+ f (m - l ) 

— 2 t ( » - l 

(n — \)2 tlk]p
2] . 

, „L 2 + f ](m — 1) (n — 1) 
H T 

(m— l)2(w— 1) 

+ ' 
'kkilpf 

m2n2 

tkp tkipj ]+•••• enz. 

Het is niet nodig alle termen verder op te schrijven. Voor de 
overzichtelijkheid willen wij alle coëfficiënten buiten de som-
matietekens brengen, zodat we krijgen 

(301.17) ukp
2 = 

(m— \)2(n — l )2 ( w — 1 ) 
W 4 » 1 2^2 v + »rw" 

-t(n-\)[tklP1
2] + 

+ 
(n— l )2 

t ( « - l ) [ ^ j / ] " m2n2 U(m~\)(n-l)[[tMlPJ
2]] 

2(m~ l )2 ( « — 1 ) , ,, r j 
• -^ - t y -; t ( » - l ) [**/> feu>j] + . . • . enz. 

m'n* 

Men ziet dat er eerst enige termen zuivere kwadraten komen; 
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dan volgen een groot aantal dubbele producten. De kwadraat­
sommen zijn natuurlijk alle positief. Verder is het een bekende 
stelling dat de asymptotische waarde van de som van de dubbele 
producten 0 mag worden gesteld, wanneer de beide factoren onaf­
hankelijk van elkaar zijn. Laten wij b.v. de dubbele som[[feL£j tikjpj] 
nemen. Deze waarde wordt verkregen door iedere waarde tkyp\ te 
vermenigvuldigen met iedere waarde t\k\p. Wij kunnen daarom 
zeggen 

[[tku>] hkip}] = [ikipj [hk]p]] =[tMp][ikipj]. 

De som van de producten is gelijk aan het product van de 
sommen. Wanneer alle waarden t onafhankelijk van elkaar zijn, 
zijn beide sommen asymptotisch gelijk aan 0 en het product 
dus ook. 

In ons geval mogen wij er echter niet op rekenen dat de asymp­
totische fouten t onderling onafhankelijk zijn. Immers de waarden 
t zijn opgebouwd uit interpretatiefout en toevallige fout gezamenlijk. 
Voor zover de t uit toevallige fouten is voortgekomen is er onaf­
hankelijkheid, maar voorzover er een interpretatiefout is gemaakt 
moet dit nog nader worden bewezen. 

Wij willen daarom de waarden t splitsen in de bestanddelen 
i en T, waarbij i rekenschap geeft van de interpretatiefout en r 
van de toevallige fout. Wij stellen dus 

(301.18) tkp =ikp + tkp. 

Wanneer wij met behulp van deze formule tkp in (301.17) 
substitueren krijgen wij naast de vormen met uitsluitend i of r 
natuurlijk ook nog mengtermen [ir]. Van deze sommen kan in 
ieder geval worden gezegd dat ze asymptotisch gelijk aan 0 zijn, 
omdat de onafhankelijke toevallige fouten r er in een oneven 
graad in voorkomen. Wij kunnen daarom (301.17) uiteen laten 
vallen in twee gelijke delen, waarbij in het ene deel de t vervangen 
is door i, in het tweede deel door r. 

Wij zullen eerst het deel met de toevallige fouten bestuderen. 
Hierbij vallen asymptotisch alle dubbele producten weg. Wanneer 
alle waarnemingen a-priori even betrouwbaar zijn, kunnen wij 
verder alle kwadraten T2 zien als een schatting van de middelbare 
toevalsvarians o2. Door de kwadraten t2 in (301.17) te vervangen 
door a2 vinden wij 
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(301.19) Toevallig deel van <Ukp2> = 

(m— \f{n~\y 2 (m— l)2 . ,, r T . 

f« n2 1 
+ L ^ / t ( ^ - i ) M t ^ t t O » - i ) ( » - i)[[a2]] = 

(m-Yf(n-Y? + (m-\f(n-\) + (w-l)2(m-l) + (m-l)(«-l) . 

= (m— !)(» — l ) g 2 

Om de invloed van de interpretatiefout na te gaan, kunnen wij 
beter niet uitgaan van (301.17), maar van (301.15). Wanneer 
wij daarin de t door Î vervangen krijgen wij voor het systematisch 
deel van Ukp 
(301.20) Systematisch deel van ukp = 

[ikn] [up] , [[W]] 
^ n m mn 

Om de grootheden i beter te leren kennen willen wij een ogen­
blik aannemen dat wij kunnen werken met opbrengsten Qkp* die 
vrij zijn van toevallige fouten. Formule (301.8) zou dan luiden 

(301.21) Qkp* — <ü> =Qk + jùp + ikp. 

Middelen van deze formule over k geeft 

(301.22) ^k!- ] — <Ü> = &J + Up + !M. 
m m m 

Nu is het linkerlid de definitie van pp, terwijl [QK] = 0 is. 
Hieruit volgt dat 

(301.23) [iKP] = 0 

t[w]] = 0 . 

Substitutie van de waarden uit (301.23) in (301.20) geeft 

(301.24) Systematisch deel van Ukp = 

= • [hn] _n— 1 . f(«-l)[ikipj] 
n n n 

Voor wij formule (301.24) kwadrateren dienen wij wel na te gaan 
of alle voorkomende waarden i^ onderling onafhankelijk zijn. 
Dat deze onafhankelijkheid niet vanzelf spreekt volgt duidelijk 
uit (301.23) waar aangetoond wordt dat de waarden iKp onderling 



wel afhankelijk zijn. De som van een eindig aantal onafhankelijke 
waarden kan immers niet gegarandeerd 0 zijn. 

De afhankelijkheid van de waarden iKp vindt zijn oorzaak in de 
definitie van het fictief ras, die een asymptotisch getal p,p laat af­
hangen van een eindig aantal rassen (zie 301.22). Het asymptotisch 
getal Qk hangt in tegenstelling daarmee niet af van een eindig 
aantal proefvelden. Het aantal proefvelden kan misschien naar 
plaats beperkt zijn, maar niet naar tijd; ieder jaar kan nieuwe 
verrassingen geven. Ook wanneer er geen toevallige fouten waren, 
zouden er oneindig veel waarnemingen nodig zijn om QU te bere­
kenen. In verband hiermee zijn de waarden ikn inderdaad onderling 
onafhankelijk. 

Bij het kwadrateren zullen de sommen der dubbele producten 
van verschillende waarden i^ daarom asymptotisch 0 worden, 
zodat alleen op de zuivere kwadraten behoeft te worden gelet. 
Uit (301.24) laat zich nu berekenen voor de asymptotische waarde 
van het systematisch deel van Ukp2 

(301.25) Systematisch deel van < w ^ 2 > = 

(w — 1) 
n2 

2 

tkp2 + i(n—1) 
ikipi 

De waarden ik„ zijn systematische grootheden zonder toevallige 
fout, die zelf hun asymptotische waarde zijn. Met een bepaald ras 
op een bepaald proefveld in een bepaald jaar hoort een zeer be­
paalde interpretatiefout gevonden te worden. Deze interpretatie-
fout is evenwel ook maar van zeer plaatselijk belang. 

Bij globale onderzoekingen interesseert ons vaker de middelbare 
waarde der interpretatiefouten. Wanneer wij de asymptotische 
waarde daarvan voorstellen door j , kunnen wij iedere concrete 
ikp2 zien als een schatting van j 2 . Substitutie van deze j2 in formule 
(301.25) geeft 

(301.26) Systematisch deel van <Ukp2> = 

f + -Zó- f = —r- f 

De bedoeling ikp2 te zien als een benadering van een asymp­
totisch gemiddelde waarde zullen wij vaak aanduiden door het 
symbool <ikp2>. 

Uit (301.26) en (301.19) laat zich nu als totale waarde van 
<Ukp2> berekenen 
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(301.27) <urf> = ̂  f + ̂ Zm-^1 a*. 

Als formule voor de interactievarians is gebruikelijk 

t jmn [[MCT
2]] 

(m — 1) (n — 1)' 

Wanneer wij deze grootheid weergeven door ippiJi
2 kunnen we 

schrijven: 

Men ziet hier een middel de grootte van de middelbare inter­
pretatief out j te schatten, wanneer de interactievarians en de 
toevalsvarians bekend zijn. De toevalsvarians kan vaak berekend 
worden uit het verschil tussen de blokken (herhalingen) binnen 
de proefvelden. Hierop zullen wij in hfdst. IV dieper ingaan. 

302 - D E CORRELATIE VAN DE SCHIJNBARE FOUTEN VAN ONAF­

HANKELIJKE RASSEN 

Wanneer men de rassen als volkomen onafhankelijk beschouwt, 
zijn de interpretatiefouten onderling afhankelijk. Dit volgt direct 
uit formule (301.23) waar staat 

(301.23) [iKP\ = 0 

Hieruit is af te leiden 

t ( w — 1) [tikjp] = — ikp 
of 

(302 1) t(w-l)[tLfeJ^] = ikp 
m — 1 m — 1' 

In deze formule wordt een verband gezien tussen de rassen \k\ en 
ras k. Om dit verband nader te bestuderen is het gemakkelijk een 
typische vertegenwoordiger voor de rassen \k\ te kiezen. Wij 
willen dit ras aanduiden als ras l. 

Wanneer men nu weet, dat de interpretatiefout van ras k op 

proefveld f gelijk aan ikp is, volgt uit (302.1) dat de gemiddelde 

waarde van de interpretatiefout van een ras / ( ^ k) op dat proef­

veld i> gelijk is aan ~ . Wij willen de fout i\p ontleden 
m — 1 

in zijn gemiddelde ^—r en de afwijking van dat gemiddelde 
aip, zodat 
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(302.2) tip = -~—r + aip. 

In deze formule wordt dus een verband gelegd tussen de waarden 
iip en iup. Het is nu de vraag of wij het verband mogen zien als een 
geval van correlatie, of als een „geval van lijnvereffening". Om dit 
uit te maken zullen wij het criterium aanleggen van 122. 

Volgens dat criterium zou er van correlatie gesproken mogen 
worden, wanneer iip en iup beide normaal verdeeld waren. Wij 
hebben aan het eind van 117 uiteengezet dat het moeilijk kan zijn 
hierover een uitspraak te doen, omdat de interpretatiefouten 
systematische fouten zijn. Wij hebben daar geëist dat er een bewuste 
reden moet zijn om aan te nemen dat de besproken interpretatie­
fouten de toevalswetten volgen. Welnu, zo'n reden is hier te noe­
men. In hfdst. I I werd besproken dat de milieugunstigheid Mp 
van talloze invloeden afhangt, die allen door het proefveld globaal 
zijn uitgeschakeld (zie 201 slot). 

Nu is het een bekende wiskundige wet, dat er een normale ver­
deling optreedt, wanneer er vele onderling onafhankelijke in­
vloeden zijn, waarvan niet één domineert. Doordat door het 
proefveld de invloeden globaal zijn uitgeschakeld, zal er van 
domineren vermoedelijk geen sprake meer zijn. 

Wij komen dus tot de conclusie dat de interpretatiefouten 
iip en iup waarschijnlijk normaal verdeeld zijn, zodat het juist is 
de samenhang tussen ikp en iip als een geval van correlatie op te 
vatten. 

Wij willen nu trachten de correlatiecoëfficient te berekenen. 
Daartoe gaan wij uit van (302.2) 

Substitutie van de i uit (302.2) in (301.18) geeft 

tkp = iup + Tkp 

tip = 7 -f- a-ip + tip. 
m — 1 

De asymptotische waarde <tkp tip~> zal dus zijn 

(302.3) <tkptip> = <ikpiip> = ^—j—h <ikpaip>. 

De producten met t worden immers asymptotisch 0 wegens 
onafhankelijkheid van de factoren. 

Om de waarde van <ikp aip> te kunnen berekenen willen wij 
eerst formule (302.2) sommeren over /. Dit geeft 
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t(m — 1) [iikjp] = — ihp+ t (w — 1) [aip]. 

Vergelijking met (302.1) toont dat 

\{m — 1 ) [aip] = 0. 
Wanneer wij < % , %>> over l middelen fungeert ikp als een 

constante. Deze term wordt dan dus ook 0. 
Waar wij aan het begin van deze paragraaf volkomen onaf­

hankelijkheid der rassen hebben aangenomen, sluit dit uit, dat 
een bepaald ras l systematisch in een andere verhouding tot ras k 
staat, dan het gemiddelde van alle rassen l. Voor een bepaald 
ras / moet <ikp aip> dus evenzeer 0 worden, als voor het gemid­
delde van allen. (302.3) wordt dus 

<hp2> 
(302.4) <tkptip> =<ikpiip> = 

Op dezelfde manier laat zich bewijzen 

<iip2> 

m • 1 

<ikp tip> ==• 
m- 1 

Hieruit moet dus volgen dat de asymptotische waarden <ikp2> 
en <iip2> aan elkaar gelijk zijn. Op deze weg voortgaande kun­
nen wij zeggen dat de asymptotische waarde van de interpretatie-
varians voor alle rassen gelijk is, mits er geen afhankelijkheid tussen 
bepaalde rassen bestaat. Deze asymptotische waarde hebben wij 
in formule (301.27) aangeduid door j 2 . Wanneer wij dit ook doen 
in (302.4) vinden wij 

(302.5) <-tkp t\p~> r 
m • Y 

In de practijk is het niet mogelijk de waarde van de asymp­
totische fout tkp te bepalen. Er moet gewerkt worden met de schijn­
bare fout Ukp. Wij zullen daarom na moeten gaan wat de asymp­
totische waarde is van het product Ukp u\p. 

Uit (301.16) is het toevallig deel van Ukp te vinden door de t 
te vervangen door T; in (301.24) is het systematisch deel van Ukp 
gegeven, zodat wij weten 

(302.6) Ukp = 

— i(n—1) 

n— 1 
kp— \{n— 1) ikyp\ 

+ 
(m— \)(n— 1) 

mn 
- tkp -

(m— 1) xk\_p\ 

mn 
— i(m — 1 ) O — 1) nkiP 

mn + 
+ f \{m— 1) (n — 1) 

rik\ip\ 
mn 
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Voor uip is een soortgelijke formule op te stellen. 
Bij het berekenen van <Ukp uip> mogen wij bedenken dat 

alle producten ix asymptotisch 0 worden; producten van twee 
toevallige fouten x met ongelijke indices worden eveneens 0. 
Evenwel moet bedacht worden dat [kj soms / betekent en da t 
[Ij de betekenis k kan hebben. 

Rekening houdend met het bovenstaande vinden wij als waarde 
van <Ukp uip> 

(302.7) 

<Ukp Ulp> 

~ \{n—i; 

+ <t(w-

( «— l)2 

<lkp Hp> (n-l) 
(«- -1) <ikjp\ iip> 

/M2 

(n— 1) <iiiPiikp> 

• \ ) 

ikip\ 

+ < 
(m — l)(w- 1) 

Hip} 

\{n—11 

mn 

(m-

Tip X 

+ 
> + 

— 1 
Tip> + 

mn 

< 
!) riu>i x B^J > 

n — 1 
— < — — xkp X 

mn mn 

(m— 1) (n — 1) 

mn 

+ t(»-i; mn 

mn 

m — 1 

tkp> + 

mn 
tkip\> 

De termen met i laten zich nog aanzienlijk vereenvoudigen. 

Volgens (302.4) is <hp hp> = — <np2> V 
m — 1 m — 1' 

De waarde van <ik\j>i iip> en <.iiyp\ hp> is 0, aangezien beide 
interpretatiefouten aan een ander proefveld ontleend zijn. Bij de 
bespreking van (301.24) zagen wij dat zelfs de waarden ikp en ikyp) 
onderling onafhankelijk zijn. Deze onafhankelijkheid blijft na­
tuurlijk gehandhaafd wanneer wij ook nog van ras verwisselen. 

Om de waarde van 

<\{n- \) ikip) i(n—1) Hyp\ 
> 

te berekenen zullen wij de vorm voluit moeten schrijven. Dan 
lezen wij 
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> = - Ö < ( 4 1 + 4 2 + )fa,+*/2+ ) > = 

n' 
t (w-1 ) [<Likq iiq>]-\-een aantal dubbele producten die 0 worden. 

In verband met (302.4) en (302.5) is de waarde van deze vorm 
n — 1 

gelijk te stellen aan X n2 (m — 1 ) ' 
Wanneer wij verder iedere waarde r2 zien als een schatting 

van o2 vinden wij als asymptotische waarde van (302.7). 

(302.8) <u'kp uip> = • 

m^n' 

n2 (m — 1) 

+ 

r 
ï 

n2 (m — 1) r 

i 
n (m — 1) f 

2(m— l ) ( n — 1) 
m2w 

Sommatie van (302.8) over >̂ geeft 

of 

(302.9) 

n 
m-

2(m— l ) (w— 1) 
OT2 

t W ^ M f a ] 7' 
— 1 \w-

Men ziet hier dat de vorm 

+ 
2(m—1) a 

» 4 

w- 1 

wat zijn systematisch deel betreft de waarde aanneemt die op 
grond van (302.5) verwacht kan worden. Verrassend is evenwel 
de grote invloed van de toevallige fout. De coëfficiënt van o2 

is bij niet te kleine m ongeveer het dubbele van die van j 2 . 
Om een correlatiecoëfficient te berekenen moeten wij de j2 en o2 

uit (302.9) wegdelen. Dit kan gedaan worden met behulp van de 
waarde yPjli

2 uit form. (301.28). 
De j2 en o2 komen in (302.9) evenwel in een andere verhouding 

voor dan in (301.28). In verband hiermee kunnen wij de correlatie­
coëfficient wellicht het best berekenen volgens de formule 
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t n [m* in*] f, i ' L "w 'WJ i 

(302.10) = ~ -
» . m — 2 w 

[het <v teken is nodig omdat van asymptotische naar empirische 
waarden is overgegaan]. 

Mocht de waarde van de breuk uit formule (302.10) inderdaad 

ongeveer zijn, dan wordt daardoor het vermoeden van 

onafhankelijkheid van de onderzochte rassen gesteund. Wordt 
er een sterk afwijkende waarde gevonden, dan moet er aan af­
hankelijkheid van rassen worden gedacht. 

Voor de volledigheid is het misschien wenselijk nog op twee 
punten te wijzen. 

In de eerste plaats is onze conclusie uit formule (302.4), dat 
de asymptotische waarde van alle interpretatievariansen gelijk 
is, in werkelijkheid geen conclusie, maar de vooronderstelling, 
die de overgang van (302.1) naar (302.2) redelijk maakt. Wanneer 
de interpretatiefouten i\k\p wezenlijk ongelijk zijn kunnen wij ze 
niet laten vertegenwoordigen door een bepaalde iip. 

In de tweede plaats zijn de formules voor de regressielijnen nl. 
(zie 302.2) 

ikp . 
Hp = T + dip 

m — 1 ^ 
iip , 

np = 7 + a-kp y m — 1 

reeds vastgesteld voor over normale correlatie gesproken was. 
In dit geval zouden ook van regressielijnen gebruik zijn gemaakt, 
wanneer er geen sprake was van correlatie. Dat hier afgeweken 
wordt van de voorschriften voor lijnvereffening vindt hierin zijn 
oorzaak, dat iip geen zuivere functie van ikp is. Dat hier regressie­
lijnen worden genomen hangt samen met hetgeen wij bespraken 
in 124, naar aanleiding van figuur (124.5). Wij kwamen daar tot 
de conclusie dat de regressielijn de gevonden afwijkingen naar 
evenredigheid verdeelt over de verschillende kansverdelingen. 
Volgens (302.2) wordt zo een grote tip niet alleen geweten aan een 
grote ikp, maar ook aan een grote waarde van de fouten iikijp. 
Deze verdeling hangt weer samen met de aprioristische gelijk­
waardigheid van alle interpretatiefouten. 
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303 - AFHANKELIJKHEID VAN RASSEN 

Aardappelrassen worden langs vegetatieve weg vermeerderd 
en zijn dus klonen. Alle individuen van een ras zijn erfelijk gelijk. 
Nu worden in deze klonen soms mutanten gevonden. Van deze 
planten zijn één of enkele eigenschappen toevallig veranderd. 
Worden deze veranderingen op de proefvelden onderzocht, dan 
wordt de mutant als een apart ras beschouwd, althans proefveld-
technisch. Het spreekt vanzelf dat zo'n mutant sterk verwant is 
aan de oorspronkelijke kloon. Ook door andere oorzaken kan 
er verwantschap ontstaan. Zweedse graanrassen zullen vaak col­
lectief anders op wintervastheid reageren dan Franse rassen. 
Kortom, het is op allerlei wijze mogelijk dat twee rassen extra 
veel op elkaar gelijken. 

Wij willen nu voor enkele formules van de vorige paragraaf 
nagaan, hoe ze worden, wanneer tegelijk ras k wordt onderzocht 
en een knopmutant k', die niet voor de onderzochte eigenschap is 
gemuteerd. In dit geval kunnen wij stellen dat de interpretatie-
fouten van k en k' gelijk zijn, zodat 

(303.1) ikp =ik'p 

Formule (302.1) wordt nu 

\{m — 2) \ykk'jp] = — (ikp + ik'p) = — 2 ikp 

of 

ï(m-2)[i[kk'}p] 2 
" - ikp, m — Z m-

waarbij \kk'\ betekent, dat x alle waarden aanneemt behalve 
k en k'. Eén ras uit deze groep willen wij als ras l aanduiden. Het 
is nu gemakkelijk in te zien dat 

(303.2) <zikP ik'p> = <ikp2> 

2 <ikp2> 
<ikp iip> 

m-

Vergelijkt men deze formule met (302.4) dan ziet men dat de 
correlatie tussen twee verwante rassen algebraïsch hoger wordt 

dan -, terwijl deze hogere correlatie meebrengt, dat de 

correlatie met een willekeurig onafhankelijk ras algebraïsch lager 
wordt. 
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Wanneer wij van ras l uitgaan in onze beschouwingen kunnen 
wij (302.1) schrijven 

\(m — 1) \i\i\p\ = — iip 
of 

\(m—\)[i\i\p] _ _ Hp 
m — 1 m — 1" 

Wanneer wij nu voor ikp en i^p een gemiddelde waarde berekenen 
zal het in beide gevallen zijn 

Hp 

ik'p 

np 
m — 1 

iip 

m • 

Dit is niet in strijd met (303.1). Formule (302.4) gaat dus voor 
ons geval in zoverre op dat geldt 

(303.3) <ikp iip> = * z r r -

Vergelijking van (303.2) en (303.3) leert 

<iip2> _ 2 <ikp2> 
m — 1 m — 2 

of 

< V > 2 0»—1) 
(303.4) 

<ikp2> (m — 2) 

Wij zien zo, dat de middelbare waarde van ikp kleiner is dan 
die van %. In woorden uitgedrukt: Wanneer twee of meer rassen 
afhankelijk van elkaar zijn, wordt daardoor de absolute grootte van 
hun interpretatief out ten opzichte van die van de onafhankelijke rassen 
gedrukt. 

Eigenlijk is dit niet verwonderlijk. Wanneer men b.v. 10 ver­
schillende knopmutanten van één kloon onderzoekt, die voor de 
onderzochte eigenschap niet zijn veranderd en één heel ander ras, 
dan zal het fictiefras, zoals gedefinieerd in (205.10) bijna identiek 
zijn met de soms mutanten gevende kloon. De afwijkingen tussen 
de mutanten en het fictiefras zullen dan ook veel kleiner zijn, 
dan die tussen het fictiefras en een vreemde kloon. Wij zien dus 
dat de formules (301.26), (301.28), (302.8) en (302.9) die alle asymp­
totische waarden -0K7r

2> gelijkstellen aan /2 niet juist zijn, wan­
neer er afhankelijkheid tussen sommige rassen bestaat. 

file:///i/i/p/
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Toch behouden ze hun nut. Formule (301.28) is belangrijk om 
te controleren of er naast de toevallige fouten nog systematische 
voorkomen. Wanneer uit formule (301.28) blijkt dat er geen syste­
matische fouten voorkomen, zijn ze ook niet verwant. Wanneer 
er wel systematische fouten voorkomen moeten ze toch nader 
worden onderzocht. Formule (302.9) vindt zijn bestemming in 
(302.10). Deze formule dient er voor om te controleren of er af­
hankelijkheid tussen de rassen bestaat of niet. 

Het lijkt ons onbegonnen werk formule (302.10) zodanig te 
wijzigen, dat de weg wordt geopend voor een empirische bepaling 
van de mate van correlatie. In 309 wordt een betere mogelijkheid 
besproken. 

304 - H E T SAMENVATTEN VAN PROEVEN MET WISSELEND AANTAL 

ONAFHANKELIJKE RASSEN 

Veronderstel dat men in het jaar a 
5 rassen had, aan te duiden als kv k2, 

van een bepaald gewas 
. . . . k5. In het volgend 

jaar (a + 1) is ras kx van de rassenlijst afgevoerd, dat ras werd 
dus niet langer onderzocht. Daarentegen boden de kwekers twee 
nieuwe rassen aan (k6 en k7). Ook het volgend jaar (a -f 2) traden 
er mutaties op. Enz. In tabel (304.1) is samengevat welke rassen 
in de verschillende jaren onderzocht zijn. 

(304.1) 

ras 
jaar | 

a 
a + 1 
a -f- 2 
a + 3 
a + 4 
a + 5 

* i 

X 

ti2 

X 

X 

ks 

X 

X 

X 

X 

K 

X 

X 

X 

X 

X 

* 5 

X 

X 

X 

X 

X 

X 

A 6 

X 

X 

A, 

X 

X 

X 

X 

X 

kg 

X 

X 

«9 

X 

X 

Moet nu de voortreffelijkheid van al deze rassen worden verge­
leken?; en zo ja, hoe? Zie hier een paar vragen waarvoor het prac-
tische proef veldwerk de onderzoeker steeds stelt. 

Om met de eerste vraag te beginnen: Wanneer er een nieuwe 
ziekte optreedt, waarvoor kx ongevoelig is en de andere rassen 
meer of minder vatbaar, dan is het zeker nodig voor alle rassen 

7 
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de onderlinge voortreffelijkheidsverschillen te bepalen. Pas dan 
kan beoordeeld worden hoeveel oogstderving men moet accepteren 
wanneer men ras k± verbouwt om het risico van de ziekte te ver­
mijden. 

De onderlinge voortreffelijkheidsverschillen zullen bepaald moe­
ten worden aan de hand van de gegevens van bovenvermelde 
proeven. Men kan niet een proef van het volgend jaar afwachten, 
omdat de practijk dan reeds over een goede richtlijn voor de rassen-
keuze moet beschikken. 

Bij het verwerken van bovenstaande proeven valt geen gebruik 
te maken van de FiSHER-methode. Het schema is niet orthogonaal 
en kan dat ook niet gemaakt worden. Het is theoretisch mogelijk 
afgevoerde rassen steeds te blijven onderzoeken om de orthogo-
naliteit te handhaven, doch nieuw gekweekte rassen laten zich 
niet voor hun ontstaan op de velden plaatsen. Orthogonaliteit 
is dus onbereikbaar. Daarom is het nodig een methode te hebben 
voor het verwerken van niet-orthogonale schema's van boven­
staand type. Wanneer die methode eenmaal ontwikkeld is, kunnen 
ook binnen het jaar zonder bezwaar een variërend aantal rassen 
worden onderzocht op de diverse proefvelden. In Nederland wordt 
hiertoe vaak de behoefte gevoeld. 

Wij willen nu nagaan hoe deze proeven kunnen worden samen­
gevat. Daartoe moeten wij eerst letten op onze definitie van fictief-
ras, zoals gegeven in (205.10). Daar wordt geëist dat het fictiefras 
het gemiddelde is van alle onderzochte rassen. Het begrip ,,alle 
onderzochte rassen" is in schema (304.1) niet duidelijk. In totaal 
zijn onderzocht de rassen k1 . . . . k9, maar „alle onderzochte 
rassen" voor het jaar a zijn kx . . . . k5. Wanneer wij de opbrengst 
van ras kx in ' t jaar a (dus Q\a) in verband met (205.10) en (301.4) 
willen splitsen in 

(304.2) Qla =Ql + Ma 

dan is de grootheid Ma moeilijk te bepalen, wanneer daaronder 
verstaan moet worden de gemiddelde opbrengst van de negen 
rassen, die er maar gedeeltelijk gestaan hebben. Omgekeerd is het 
onderling verband tussen Ma, Ma+i, Ma+2 enz. onduidelijk, wan­
neer het fictiefras, waarvan dit de opbrengsten zijn, niet steeds 
hetzelfde is. Wij kunnen zeggen: het is wenselijk alle rassen in het 
fictiefras op te nemen, maar misschien kan het niet. Wij eisen 
daarom. Neem zoveel m o g el ij k rassen op in het fictiefras. 
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Omdat de theoretische problemen het gemakkelijkst te bespreken 
zijn wanneer de methode ons duidelijk voor ogen staat, willen 
wij eerst een geschikte methode uitleggen. Wegens het grillig 
karakter van de voorkomende schema's kunnen wij daarbij beter 
met voorbeelden werken dan met formules. 

Wij veronderstellen dat wij vier proeven (px . . . . />4) hebben 
genomen met de rassen kx . . . . k6. De opbrengsten QK77 waren 
als volgt: 

(304.3) ras 
proet | 

Pi 
P». 
P* 
P* 

*x 

663 
681 
556 
623 

ffi2 

672 
663 
602 
591 

" 3 

819 
690 
591 
623 

* 4 

653 
663 
301 
613 

* 5 

613 
643 

580 

«e 

643 
505 
580 

Men ziet dat op veld p1 ras ke heeft ontbroken, op veld p3 ras k5. 
Het zijn dus de proefvelden px en p3 die moeilijkheden geven. Voor 
de velden p2 en pt is het begrip „fictiefras" ondubbelzinnig bepaald. 
Wij beginnen daarom met de velden p2 en p^ samen te vatten. Met 
behulp van (205.10) berekenen wij voor M2 en Af4 als afgeronde 
waarden 

M2 = 664 

= 602. 

Men ziet dat het milieu p2 62 eenheden gunstiger was dan het 
milieu pt. Om p2 en pi geheel vergelijkbaar te maken kunnen wij 
b.v. de gunstigheid van pi met 62 verhogen door bij alle waarden 
üKi het bedrag 62 op te tellen. Wij willen dit aanduiden door te 
zeggen dat pi op p2 wordt gestandaardiseerd. Het op p2 gestan­
daardiseerde milieu pi willen wij aanduiden door pt'. Wij vinden dus 

(304.4) 

ras 
proef | 

P2 
Pi' 

som A 
gem. A 

k, 

681 
685 

1366 
683 

A2 

663 
653 

1316 
658 

« 3 

690 
685 

1375 
687 

K 

663 
675 

1338 
669 

* 5 

643 
642 

1285 
642 

" 6 

643 
642 

1285 
642 

M 

664 
664 

664 
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Om vorenstaand resultaat in de verdere berekening gemakkelijk 
te kunnen aanhalen, hebben wij de aanduidingen som A en 
gem(iddelde) A gebruikt. Zo zal straks gesproken worden van 
som en gem. B, C, D enz. 

Men ziet in (304.4) dus driemaal meegedeeld wat de verschillende 
rassen als opbrengst geven bij de milieugunstigheid M — 664. 
Welke van deze mededelingen is nu het betrouwbaarst? Aan­
vankelijk zou men kunnen overwegen aan de cijfers van ft2 de 
voorkeur te geven, omdat deze cijfers inderdaad bij de gunstigheid 
664 verkregen zijn. Deze voorkeur zou evenwel in strijd zijn 
met 202 waar wij van de rekenopbrengsten ü eisten, dat ze 
in zulke grootheden werden uitgedrukt, dat de voortreffe-
lijkheidsverschillen van de onderzochte rassen onafhankelijk 
werden van de gunstigheid van het milieu, waarin het onderzoek 
plaats vond. 

De enige reden, verschil in waarde tussen de drie bovenstaande 
„mededelingen" te zien, ligt hierin dat gem. A gebaseerd is op 
meer gegevens dan de cijfers van ft2 of ft/. Niet alleen is de invloed 
van de toevallige fout hierdoor verkleind, maar ook de monster-
name uit het onderzochte gebied kan hierdoor verbeterd zijn. Wij 
willen dus verder werken met gem. A. 

Nu is het dus nodig de gegevens van de velden ft1 en ft3 nog in 
onze conclusie te betrekken. Wanneer wij met ftx beginnen, staan 
wij voor de noodzaak als definitie van het fictiefras te gebruiken 

M* = t5 [ .QL 6 j i ] 

Wij moeten de gemiddelde opbrengst van de rassen kx . . . . k5 

nemen. Dit heeft slechts zin wanneer wij dit gemiddelde verge­
lijken met het gemiddelde van dezelfde rassen uit gem. A. Wan­
neer wij dit gemiddelde aanduiden door MA* vinden wij 

MA* = 6 6 8 

M* = 6 84 . 

Men ziet dus dat de gunstigheid van ftx 16 hoger ligt dan die 
van gem. A. Om de getallen vergelijkbaar te maken verlagen wij 
alle opbrengsten van veld ft^ met 16. Wanneer wij het aldus op 
gem. A gestandaardiseerde milieu px aanduiden door ft/ vinden wij 
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(304.5) 

ras 
proef 1 

gem. A 
som A 

Pi 

som B 
gem. B 

*i 

683 
1366 

647 

2013(3) 

671 

k2 

658 
1316 

656 

1972(3) 

657 

«3 

687 
1375 

803 

2178(3) 

726 

K 

669 
1338 

637 

1975(3) 

658 

*5 

642 
1285 

597 

1882(3) 

627 

«6 

642 
1285 

1285(2) 

642 

M* 

668 

668 

Gem. A en pt' zijn twee reeksen opbrengsten, zoals die bereikt 
kunnen worden bij de milieugunstigheid M* = 668. Van deze 
reeksen is gem. A gebaseerd op twee proefvelden, px' op een. 
Wanneer wij nu aannemen dat er geen noodzaak is het milieu 
te wegen in de zin van 206 kan het gewicht van alle opbrengsten 
gelijk worden genomen. Het gewicht van gem. A is dan dus twee­
maal het gewicht van pt'. Wij moesten dus som A met p-[ samen-
tellen en daaruit het nieuwe gemiddelde B berekenen. Omdat nu 
niet alle uitkomsten op evenveel gegevens berusten is voor ieder 
ras het aantal waarnemingen tussen haakjes vermeld. 

Aangezien gem. B nu de betrouwbaarste schatting geeft van 
de rasverschillen, standaardiseren we p3 op gem. B. Wij vinden 

(304.6) 

ras 
proef | 

gem. B 
som B 

P/ 

som C 
gem. C 

*i 

671 

2013(3) 

716 

2729(4) 

682 

Ag 

657 

1972(3) 

762 

2734(4) 

683 

«3 

726 

2178(3) 

751 

2929(4) 

732 

K 

658 

1975(3) 

461 

2436(4) 

609 

*5 

627 
1882(3) 

1882(3) 

627 

RQ 

642 

1285(2) 

665 

1950(3) 

650 

M** 

671 

671 

Zo zien wij dus dat gem. C een schatting geeft van de onderlinge 
rasverschillen, die gebaseerd is op alle gegevens. Toch is het mis­
schien mogelijk een betere schatting te verkrijgen. Bij het stan­
daardiseren van veld p1 is geen rekening gehouden met de gegevens 
van p3. Deze onvolkomenheid kan hersteld worden door nu alle 
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vier proefvelden op gem. C te standaardiseren. Eventuele ver­
gissingen worden langs deze weg tevens automatisch weer hersteld. 
Wij vinden 

(304.7) 

ras 
proef | 

gem. C 

Pi" 
PÎ' 
P3" 
P: 

som D 
gem. D 

*i 

682 

646 
681 
716 
685 

2728(4) 

682 

kt 

683 

655 
663 
762 
653 

2733(3) 

683 

"3 

732 

802 
690 
751 
685 

2928(4) 

732 

K 

609 

636 
663 
461 
675 

2435(4) 

609 

*6 

627 

596 
643 

642 

1881(3) 

627 

k. 

650 

643 
665 
642 

1950(3) 

650 

Men ziet dat gem. C en gem. D gelijk zijn. Dit gemiddelde geeft 
nu de betrouwbaarste schatting van de rasverschillen. 

Het bovenstaande voorbeeld was erg eenvoudig. Wij geven nu 
nog een ingewikkelder (304.8). De velden zijn gemakshalve aan­
geduid met de letters a . . . . k, de rassen met l . . . . w. 

(304.8) 

ras 
veld | 

a 
b 
c 
d 
e 

f 
g 
h 
i 
k 

l 

732 
372 
525 
712 
662 
517 
656 
695 
618 
659 

m 

728 
428 

n 

513 
733 
640 
528 
667 
568 
677 
655 

P 

668 
320 
539 
713 
609 
531 

? 

742 
702 
669 
688 

r 

408 
538 
662 

678 
660 

s 

422 

t u 

\ 

568 
706 

651 

408 
597 

552 
693 
680 

j 

736 
690 

649 

310 

718 

503 

639 
632 
695 

Wij zoeken eerst weer die velden bij elkaar die de meeste rassen 
gemeenschappelijk hebben, dit zijn b en h. Als standaardisatie­
niveau nemen wij Mj -4- 300. Dit getal 300 wordt bij Mi, opge­
teld, omdat dan ongeveer het niveau van de meeste velden wordt 
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Ŝ  

"̂—̂  
„ 
CO 

"O CM 
CN • * 
OS t o 

'""' 
_̂ 

CO 

• * 00 OS 
CM © - * 
^ i t ~ t ~ 
CM 

_ 
•* 
CM 00 tO 
l o o o r -
r - co co 
O l 

^ 
• * 

- * i - l - H 
• * t o t o 
t o t o t o 
C M 

CO CO l O 
H H M 
r - r-- r~ 

^ 
CO 

t - t o 
CO • * 
OS t o 

"* 
r ^ 
CO 

o o o 
OS CO uo 
oo t o t o 

^ 
_, 
00 00 
<M (M 
r— t -

^ 
^ O O O J 
OO t - CO 
CO CO CO 

<N 

se' 
o v -
us oo îac 

00 t o 
OS OS 
<M (N 
CO CO 

§ 

s~ 
sC 

„ 

s 
1 ^ 1 

.̂ ^̂ -̂ . 
^^ 
CO 

*0 (M t o 
N • * CO 
OS t o t o 
1-1 

T)H 

CO i-H l O 
T)< r-1 OO 
00 c^ t o 
<M 

^ 
o 

oo t o 
CM 0 0 
• * t o 
C O 

„ 
o 

l O M 
O t o 
co t o 
CO 

c>) 

0 0 OS 
CO ^ i 

1—1 

; 
C0~ 

r - t o • * 
CO • * t o 
OS t o t o 

^ 
^ ^ 
• * 

O I O H 
^ o j t o 
l O t o t o 
oq 

^ ^ 
00 00 
CN CM 
i.-- r -

^ 
l O 

OS • * o 
H t O l O 
CO t o t o 
CO 

s a' 
O } ) , 
us 0JD-+~. 

t o t o 
t o t o 
CO CO 
CO CO 

ä 
s" 
5Ü 

„ 

s 

.̂—-—-. 
^^ 
• * 

H O » 
t o • * (35 
xo t o t o 
(M 

^^ 
l O 

oo t o CO 
( N O I Q 
l O i ^ - t o 
C O 

^ 
<a 

00 t o 
CM 00 
T f t O 
C O 

^^ 
>o 

l O ^ H 
o t o 
co t o 
CO 

2J-
0 0 OS CM 
CO F - . OS 
• * c~ t o 

£ i-H O 
o «o 
t o t o 
oq 

^ 
l O 

i-H O OS 
o - * <a 
CM t O t O 
C O 

00 00 
CM CN 
1> I -

s~ 
OS i - l CO 
t o t o t o 
os t o t o 
CO 

es' 
0 O v 

us be i« : 

C^ 00 
t o t o 
t o CO 
CM CM 

à 
5P 

„ 

s 
• ^ ^ ^ ^ • ^ 

CT 
O CM O 
CC l O l O 
CM t o t o 
CO 

£~ 
.-H r^ 
0 0 OS 
—i t o 
• * 

s~ oo t o 
CM 00 
*̂< t o 

CO 

s~ U0 H 
o t o 
co t o 
CO 

CO 

© © r -
CO ^H 0 0 
H f - C O 
CM 

s i-H © 
© »o 
t o t o 
CM 

^ 
t o 

© CO lO 
t o - ^ OS 
oo t o t o 
CO 

00 00 
CM CM 
t > c~ 

^^ 
L ^ 

I M 1M t O 
CO t o CO 
o t o t o 
• * 

SB' 
0 ^ v 
us bJO-^ 

OS OS 
>o l O 
OS OS 

rt rt 

• ^ . 

_ s 

*̂ *̂ -
^^ 
t o 

© CM 
H l O 
OS CO 
C O 

^^ 
t o 

^ i r ~ 
00 OS 
H CO 
TH 

t -
t o 
t o 

^^ 
o 

00 ^ 
CM 00 
T * CO 
CO 

^. 
o 

l O .—i 
© CO 
CO CO 
CO 

• * 

c ~ • * 
^ 1 © 
oo r^ 
CM 

^ 
"* 
r-H © l O 
© O CM 
CO CO CO 
CM 

^ 
t ^ 

l O ^ - i CO 
uo l O U0 
l O CO CO 
T * 

^ 
00 00 
CM CM 
i ^ r ~ 

^_ 
00 

00 00 00 
o i a r -
CM CO CO 
l O 

SB 
O <U v 
US OJO -is 

• ^ o 
CO CO 
© o 
CN CM 

-Ç», 

^ s 
— ~̂̂ . 

^__ 
t o 

© CM 
,-H tO 
OS CO 
C O 

^ 
CO 
^ H t ^ 
00 OS 
i-H CO 
-eti 

t ~ t ~ 
t o CO 
CO CD 

^ 
l O 

0 0 CO 
CM 0 0 
Tt< CO 
C O 

^^ 
l O 

l O rt 
© CO 
CO CO 
CO 

TH 

t ^ ^H 
- H © 
oo r -
CM 

^ 
>o 

t o lO t ~ 
CM " ^ CO 
CM CO CD 
CO 

^^ 
00 
^ ^ , 1 

l-H l O 
CM CO 
l O 

r 
oo oo r -
(M CM OS 
t ^ r~ o 

^_ 
OS 
O r t H 

- * CO © 
os t o r~ 
o 

s s' 
O as v 
us b c es 

CD 

© CM 
— i l O 
os co 
co 

r ^ 
CO 
^H t ^ 
00 os 
i-H CO 
T(( 

t ~ t -
CO CO 
CD CD 

o 

00 co 
CM 00 
Tt< CO 
co 

l O 

l O i-H 
O CD 
co co 
co 

• * 

t ~ TH 
r-H O 
0 0 t ^ 
CM 

r ^ CO 

co > * 
CO ^ ( 
00 co 
co 

r ^ 
00 
i—1 r—< 
i-H " O 
CM CD 
»o 

, 
C M 

l O CM 
CM i-H 
Ti. c^ 

© ~ 
^H 

t ~ l O 
^ co 
co co 
CD 

BB 
0 p 
(fi 0£> 



104 

bereikt; het heeft geen theoretische betekenis. Slechts wordt de 
onbelangrijkheid van de hoogte van het standaardisatieniveau 
hierdoor onderstreept. 

In (304.9) geven wij de berekening zonder verdere verklaring, 
zodat duidelijk naar voren komt, hoe snel het resultaat bereikt is. 
Naast de berekening is vermeld uit welke rassen telkens het fictief-
ras is opgebouwd, en wat de som is van de opbrengst van die 
rassen ([M]). 

In (304.9) is dus ons eerste gemiddelde verkregen. Nu worden 
alle proeven ter controle op dit gemiddelde gestandaardiseerd. 
Daarbij moeten wij bedenken dat het gemiddelde van t volledig 
afhankelijk is van proefveld e, zodat de hoogte van dit cijfer niets 
zegt over de juistheid van de standaardisatie van e. Wij moeten 
het gemiddelde van t dus negeren. 

Wij geven in (304.10) nu de tweede standaardisatie. 

(304.10) 

Ie gem. 

a" 
b" 
c" 
d" 
e" 

f" 
g" 
h" 
i" 
k" 

2e gem. 

1 

665 

696 
665 
646 
665 
678 
653 
638 
707 
637 
664 

665 

m 

712 

692 
721 

706 

n 

651 

634 
686 
656 
664 
649 
580 
696 
600 

653 

P 

644 

632 
613 
660 
666 
625 
667 

644 

? 

704 

724 
714 
688 
693 

705 

r 

661 

701 
659 
615 

660 
672 

661 

s 

686 

715 
689 
659 

675 
692 

686 

t 

667 

667 

u 

697 

701 
718 

688 
718 
702 

654 

697 

w 

652 

603 

671 

639 

651 
651 
700 

652 

Bij vergelijking van het eerste en het tweede gemiddelde valt 
het op dat er drie uitkomsten anders zijn geworden. Wij zullen 
daarom nog eens op het tweede gemiddelde moeten standaardiseren 
om volledige stabiliteit te bereiken (zie 304.11). 
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(304.11) 

2e gem. 

a'" 
b'" 
c'" 
d'" 
e'" 

f" 
g'" 
h'" 
i'" 
k'" 

3e gem. 

1 

665 

694 
664 
646 
665 
679 
653 
638 
707 
638 
664 

665 

m 

706 

690 
720 

705 

n 

653 

634 
686 
757 
664 
649 
580 
697 
660 

653 

P 

644 

630 
612 
660 
666 
626 
667 

643 

? 

705 

724 
714 
689 
693 

705 

r 

661 

700 
659 
615 

660 
672 

661 

5 

686 

t 

i 

i 
714 
689 
659 

675 
692 

686 

668 

668 

u 

697 

700 
718 

688 
718 
702 

654 

697 

w 

652 

602 

671 

639 

651 
652 
700 

652 

Aangezien de uitkomsten nog niet geheel stabiel zijn standaar-
verdiseren wij nogmaals (304.12) 

(304.12) 

3e gem. 

aly 

blr 

c'y 

d'y 

e'y 

r e'T 

hly 

ïy 

k'y 

4e gem. 

/ 

665 

694 
664 
646 
665 
679 
653 
638 
707 
638 
664 

665 

m 

705 

690 
720 

705 

n 

653 

634 
686 
657 
664 
649 
580 
697 
660 

653 

P 

643 

630 
612 
660 
666 
626 
667 

643 

? 

705 

724 
714 
689 
693 

705 

r 

661 

700 
659 
615 

660 
672 

661 

s 

686 

714 
689 
659 

675 
692 

686 

t 

668 

668 

u 

697 

700 
718 

688 
718 
702 

654 

697 

w 

652 

602 

671 

639 

631 
652 
700 

652 

De cijfers van het 4e gem. zijn gelijk aan die van het 3e gem. 
zodat de berekening is afgelopen. 

305 - CONTRÔLE OP DE GEVOLGDE METHODE 

De gegevens, zoals die zijn weergegeven in tabel (304.8) laten 
zich ook verwerken met de methode van de kleinste kwadr aten 
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De techniek hiervan wordt door VAN UVEN besproken in hfdst. 
XI I van zijn leerboek. 

Bovenbedoelde methode wordt als volgt toegepast. In formule 
(202.6) laat men C samensmelten met Mp. De 53 gegevens uit 
tabel (304.8) kunnen nu als volgt in 53 vergelijkingen worden ge­
schreven 

(305.1) Aa 
e^ma 

Qpa 

Qib 

iJmb 

enz. 

= Ri 

= Rm 

= Rp 

= Ri 

= Rm 

+ Ma 
+ Ma 

+ Ma 

+ Mb 

+ Mb 

= 732 
= 728 
= 668 
= 372 
= 428 

Omdat het uitsluitend om rasverschillen begonnen is, kan het 
nulpunt van R willekeurig worden gekozen. Wij stellen daarom 

(305.2) Ri = 0. 

Dit geeft dan 10 onbekenden M en 9 onbekenden R. Uit de 
53 vergelijkingen van (305.1) moeten deze 19 onbekenden worden 
gevonden. Wij hebben al deze waarden berekend, en daarna de 
voortreffelijkheidsverschillen tussen ras l en de overige rassen 
uitgerekend. Uit tabel (304.12) laten zich dezelfde afwijkingen 
berekenen. Beide uitkomsten zijn vermeld in (305.3). 

(305.3) 

Afwijkingen van ras / 

volgens (304.12) 
volgens me thode der 

k le ins te kwad ra t en 

l 

0 

0 

m 

40 

40 

n 

-12 

-11 

P 

-22 

-22 

? 

40 

41 

r 

- 4 

- 4 

s 

21 

21 

t u 
l 

3 

3 

32 

32 

w 

- 13 

-12 

Het blijkt dat de verschillen die verkregen worden met onze 
standaardisatiemethode gelijk zijn aan die, verkregen volgens de 
methode der kleinste kwadraten. De geringe afwijkingen die 
(305.3) te zien geeft zijn het gevolg van afrondingsfouten. 

306 - H E T TOEKENNEN VAN GEWICHTEN 

In 304 hebben wij een methode uiteengezet voor het samen­
vatten van de proefvelden. Bij het ontwikkelen van deze methode 
zijn wij er van uitgegaan dat alle waarnemingen gelijk gewicht 
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hadden. In 206 hebben wij er echter nog eens nadrukkelijk op 
gewezen dat het vaak nodig zal zijn aan de cijfers gewichten toe te 
kennen op grond van de monsterfout. 

Bij het toekennen van gewichten zijn twee gevallen te onder­
scheiden. In de eerste plaats kan het ene proefveld een ander ge­
wicht krijgen dan het andere. In de tweede plaats is het mogelijk 
dat men aan de opbrengst van een bepaald ras op een bepaald 
proefveld een eigen gewicht toekent. Immers, wanneer niet op alle 
proefvelden dezelfde rassen staan, zullen de monsterfouten voor 
ieder ras anders zijn. Het gewicht dat een bepaald proefveld moet 
krijgen om de monsterfouten van dat ras te herstellen zal dan ook 
telkens anders zijn, d.w.z. iedere Qup zal eventueel zijn eigen 
gewicht moeten krijgen. 

Wij moeten dus nagaan op welke wijze deze gewichten het best 
kunnen worden toegekend. In de practijk is gebleken, dat het 
standaardiseren niet prettig verloopt, wanneer iedere waarde een 
ander gewicht heeft. Het is beter de waarden met wisselend ge­
wicht te vervangen door andere waarden, waaraan het gewicht 
1 kan worden toegekend. 

Dit gaat gemakkelijk door eerst de proefvelden ongewogen op 
elkaar te standaardiseren, en vervolgens de afwijkingen Ukp te 
bepalen volgens de formule 

(306.1) Ukp=Q*kp — ÏÏk. 

In deze formule duidt Q*kp aan de gestandaardiseerde opbrengst 
van ras k op veld p, en ûk de verkregen gemiddelde opbrengst van 
ras k. 

Aan de opbrengst Q*up kan nu het gewicht g worden toegekend 
door de waarde 

Q*kp =Qk + Ukp (met gewicht g) 

te vervangen door 

(306.2) Q*kp = ßft + aiikp (met gewicht 1) 

en vervolgens weer te standaardiseren. 

Voor het berekenen van de juiste waarde van a willen wij een 
algemener formulering kiezen. Stel dat er n waarnemingen van 
x zijn (ieder met gewicht 1). Het gemiddelde der waarnemingen 
is X(n). Hieraan wordt toegevoegd een nieuwe waarneming 

Xn^l = X(n) + Un + l 

(met gewicht g). Het nieuwe gemiddelde zal zijn 
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(306.3) X{n+i) = — ^ 5— -ö- - =X(n) H -. Un+l. 

n + g n + g 

Wanneer wij 

Xn+i =X(„) + Un+i (met gewicht g) 

vervangen door 

x'n+i =X(n) + aun+i (met gewicht 1), 

kunnen wij als nieuw gemiddelde berekenen 
(306.4) X (n+l) = n ^ x ï- = X{n) + ^ p ^ «»+1. 

Uit (306.3) en (306.4) laat zich berekenen 

/one K\ - - , Sn + g — an — aS 
(306.5) Xn+l) — *( n+l) = b

( n +
6

g ) ( n + t ) ~ «»+1, 

Het verschil tussen de juiste waarde X(n+i) en de benaderde 
waarde x\n+i) is nul, wanneer 

gn + g — aw — ag = 0 
of 

(306.6) a = = ! L ± J . g . 
» + g 

Wanneer g klein is ten opzichte van n kunnen we bij bena­
dering stellen 

(306.7) a=g. 

Wij willen nu controleren hoe lang deze benadering geoorloofd 
is. Daartoe vervangen wij in (306.5) de a door g zodat wij krijgen 

J?(l —g) 
(306.8) * ( B + 1 ) —*' ( n+U = ^ + g ) ( w ^ f ) »»+ i . 

Deze formule geeft dus de fout, die men maakt wanneer men 
van (306.7) uitgaat. Haar waarde is nul voor g = 1 en voor g = 0. 

Voor het gebied 0 < g < 1 wordt ongeveer de grootste 
waarde bereikt wanneer g = % e n n =\. Men vindt dan 
1/lzun+i. Bij g = %; w = 2 vindt men nog slechts 1fsoun+i. 
Wanneer men deze fouten accepteert kaumen dus zeggen dat 
(306.8) zeker geldt voor 0 < g < 1. 

Maar ook wanneer g groter is dan 1, is de fout vaak nog gering. 
Om een indruk te krijgen willen wij nu nagaan hoe groot g mag 
worden wanneer wij een fout van —1/20 un+i toelaten. Wij moeten 
de g dan oplossen uit de vergelijking 
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gO-g) i _ 
20-(» + g) (n + 1) 

Hieruit wordt gevonden als positieve wortel 

_n + 21 + V81w2 + 122w + (21)2 

g ~ 40 
of 

n + 21 + V(9« + 6.777)2 + 212 — 6.7772 

of 

6 40 
Wanneer wij voor de eenvoudigheid de eis verzwaren geeft dit 

_ 10» + 27.7 
g ~ 40 

g = i / 4 « + 0.69. 
Een vollediger beeld krijgt men wanneer men stelt 

g ( l - g ) = * 
(n + g) (n + 1) 

en voor enkele waarden van ô en n de maximumwaarde van g 
berekent. Men vindt dan de waarden van onderstaand tabelletje. 

n 

« i 

i 
T5" 1 
2 0 
1 

To" 
1 
5 

1 

1.07 
1.18 
1.35 
1.64 

5 

1.52 
2.04 
2.71 
3.78 

10 

2.21 
3.24 
4.53 
6.56 

20 

3.69 
5.72 

8.2 
.12.2 

50 

8.15 
13.2 
19.3 
28.9 

100 

15.8 
25.7 
37.8 
56.8 

Samenvattend kunnen wij dus concluderen: 
(306.9^ Aan een ,,af wij king van een gemiddelde" u kan men bij be­
nadering een bepaald gewicht g toekennen door u door gu te vervangen 
met gewicht 1, mits g niet te groot wordt. Anders moet u worden 

n + 1 
vervangen door 

n 
gu (zie 306.6). 

Deze stelling willen wij aanduiden als de ,,gewichtenstelling". 
Het is wenselijk even uitdrukkelijk bij de inhoud van deze 

gewichtenstelling stil te staan, aangezien op het eerste gezicht 
de inhoud tegenstrijdig is met de gangbare gewichtentheorieën. 
Volgens de gangbare opinie hoort een groot gewicht bij een 
kleine fout, volgens onze gewichtenstelling maakt een groot ge­
wicht de fout groot (immers gu wordt groot). 
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De tegenstelling is slechts schijn. De gangbare gewichtentheo­
rieën gaan over de vraag, waarom iets gedaan wordt, de gewichten­
stelling over de vraag wat er gedaan wordt. De gewichtentheorieën 
zeggen hoe de fout geschat wordt, de gewichtenstelling, hoe hij 
als ' t ware gemaakt wordt. Wanneer een fout groot geschat wordt, 
krijgt hij een klein gewicht en wordt dan als ' t ware klein gemaakt. 

Wanneer men de conclusie uit (306.9) wil toepassen op (306.2) 
moet men bedenken dat Ük berekend moet zijn uit de opbreng­
sten Q*kip], en dat de waarde van n niet het aantal proefvelden 
aanduidt, maar het aantal (nu) waarop ras k gestaan heeft min 1 
dus 

(306.10) Qk = Hnk-\)[ûyi] 
m - 1 

n =nk — 1. 

In verband met de bestaande fouten zal het in de practijk 
meestal niet belangrijk zijn hierop te letten, behalve dan dat de n 
ongeveer de nu aanduidt. 

Tot dusver hebben wij gesproken over het toekennen van een 
bepaald gewicht aan een bepaalde opbrengst Q*kp. Wanneer men 
aan een geheel proefveld een gewicht wil toekennen gaat het veel 
eenvoudiger. Men kan zich daarbij houden aan de volgende regel: 
Wil men aan een proefveld p het gewicht g toekennen (g niet te 
groot) dan is dit mogelijk door alle opbrengsten üKp met g te ver­
menigvuldigen en daarna aan de cijfers het gewicht 1 toe te 
kennen. Is g te groot dan moet vermenigvuldigd worden met 
n + 1 
n~+~g-g-

Met deze cijfers laat zich natuurlijk geen Mp uitrekenen. Dit 
dient te geschieden met behulp van de ongewijzigde cijfers. 

Met behulp van deze gewogen cijfers laat zich dus het beste 
gemiddelde berekenen voor alle rassen. Om een juist inzicht in de 
verhoudingen binnen het proefveld te verkrijgen moeten onge-
wogen cijfers worden vermeld. Deze zijn te verkrijgen door op de 
definitieve rasgemiddelden de ongewogen proefveldcijfers te 
standaardiseren. Dan wordt tevens de best bereikbare waarde 
voor Mp gevonden. 
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3 0 7 - H E T S C H A T T E N V A N D E F O U T E N V A N D E B E R E K E N D E R A S -

VERSCHILLEN 

In 305 hebben wij laten zien dat de standaardisatiemethode 
dezelfde resultaten geeft als de methode der kleinste kwadraten, 
en als voordeel heeft dat er veel sneller gewerkt kan worden. Als 
nadeel staat hiertegenover dat geen exacte foutenberekening 
mogelijk is. Van onderstaande methode zal in 308 worden aange­
toond dat de bereikte resultaten voldoende nauwkeurig zijn. Wij 
zullen de methode alleen uitwerken voor het geval alle gewichten 
1 zijn. 

Wanneer er geen interpretatie- of andere fouten gemaakt werden, 
zouden in tabel (304.12) alle gestandaardiseerde opbrengsten ge­
lijk moeten zijn aan de rasgemiddelden. Door de fouten zijn er 
afwijkingen Ukp (zie 306.1). Het aantal gegevens (ÜKV) in deze proef 
is 53, het aantal onbekenden is 19, nl. 10 waarden Mp en 9 waar­
den Rk (zie ook 305.2). 

De formule voor de varians y>2 is dus 

„ f 53 [uu] 

Indien uit de blokken van ieder proefveld er2 is berekend, 
kan nu worden nagegaan of ip2 zuiver aan toevallige fouten moet 
worden geweten, dan wel of er interpretatiefouten zijn gemaakt. 
In deze paragraaf willen wij veronderstellen dat 

(307.1) y2=<x2 . 

Hoe kan nu de middelbare fout van de verschillen der rasge­
middelden uit a2 worden afgeleid? 

Met de methode der kleinste kwadraten is dit niet moeilijk. 
Wij gaan eerst na de verschillen tussen Ri en RUJ. Aangezien wij 
in (305.2) hebben gesteld Ri = 0, zijn de berekende waarden 
i?Lzj tegelijk de waarden van het verschil iv̂ zj — Ru Wanneer 
wij als voorbeeld van lij ras m nemen is 

-ti-m = Rm — Ru 

De fout van het verschil is de fout van Rm. Nu geldt volgens 
VAN UVEN 

(307.2) °«J=rmmo2. 

Voor de andere rassen L/J gelden soortgelijke formules. 
De fout van een verschil P = Rm — Rn is volgens VAN UVEN 

(zie hfdst. XI I form. 35 van zijn leerboek) 



112 

\ó\J I .o J Gp — [Ymm ^mn ~T Ynn) O 

Aan de hand van form. (307.2) en (307.3) zijn de waarden van 
de coëfficiënten van a voor alle verschillen uit te rekenen. De 
waarden zijn weergegeven in onderstaande tabel . Daar is in de 
eerste kolom vermeld op welke rassen de fout van het verschil be­
trekking heeft. In kolom 2 is de coefficient, als in (307.2) en (307.3) 
bedoeld, aangegeven in gewone breuken. De noemer is steeds 
6.901.234.530; de teller is voor ieder geval afzonderlijk vermeld. 
In kolom 3 is de coëfficiënt uitgedeeld. 

Ver­
schil 

t u ssen 
de 

rassen 

7 

l, m 
l, n 

i, P 
h 1 
l, r 
I, t 
1, u 
l, w 

m, n 
m, p 
m, q 
m, r 
m, t 
m, u 
m, w 

n, p 
n, q 
n, r 
n, t 
n, u 
n, w 

Coëfficiënt x 
0.901.234.530 

5.029.116.186 
1.608.301.236 
1.968.410.874 
2.703.615.834 
2.245.044.679 
9.742.890.976 
1.963.276.93G 
1.959.668.536 

5.701.358.250 
5.274.261.786 
6.867.012.666 
5.992.172.143 

13.885.565.680 
5.795.337.400 
5.823.506.920 

2.282.219.796 
2.803.038.276 
2.448.534.463 
9.847.493.950 
2.145.533.470 
2.133.980.590 

Coëf­
ficiënt 
u i tge­
deeld 

0.7287 
0.2330 
0.2852 
0.3918 
0.3253 
1.4118 
0.2845 
0.2840 

0.8261 
0.7642 
0.9950 
0.8683 
2.0120 
0.8398 
0.8438 

0.3307 
0.4062 
0.3548 
1.4269 
0.3109 
0.3092 

Ver­
schil 

t ussen 
de 

rassen 

P. 1 
p, f 
P. t 
p, u 
p, w 

q, r 

q, t 
q, u 
q, w 

r, s 
y, t 

r, u 
r, w 

t, u 
t, w 

u, w 

Coefficient x 
6.901.234.530 

3.676.024.800 
2.862.171.919 
9.967.530.496 
2.639.988.856 
2.663.588.536 

3.524.968.699 
11.611.546.576 

3.153.823.936 
3.109.403.416 

2.760.493.812 
11.069.237.293 
2.672.766.753 
2.789.685.393 

10.800.253.360 
10.803.066.160 

2.457.677.880 

Coef­
ficient 
u i tge­
deeld 

0.5327 
0.4147 
1.4443 
0.3825 
0.3860 

0.5108 
1.6825 
0.4570 
0.4506 

0.4 
1.6040 
0.3873 
0.4042 

1.5650 
1.5654 

0.3561 

Aangezien ras r en ras s steeds op dezelfde velden voorkomen 
jzijn de fouten van de verschillen met ras s gelijk aan die van de 
verschillen met ras r. In bovenstaande tabel is ras s daarom 
slechts genoemd voor het verschil tussen r en s. 
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Het is nu de vraag, hoe de coëfficiënten die in deze tabel 
zijn vermeld kunnen worden verkregen, wanneer de uitkomsten 
volgens de standaardisatie methode zijn uitgerekend. Empirisch 
is een methode bruikbaar gebleken, die wij voor de eenvoudigheid 
willen uitleggen aan de hand van een schema als in (304.7). Het 
aantal rassen willen wij voor het gemak tot vier terugbrengen. 
Wij veronderstellen dus dat er vier proefvelden waren p1 . . . . pt. 
Op veld px ontbrak ras kit op veld p3 ontbrak ras k3. Na een paar 
keer standaardiseren bleek het laatste gemiddelde (D te noemen) 
gelijk te zijn aan het voorlaatste gem. (C), zodat gem. C dus reeds 
de juiste uitkomsten aangaf. 

Voor onze empirische foutbepaling nemen wij nu aan dat de 
cijfers van gem. C geheel foutloos zijn. Deze aanname is natuurlijk 
onjuist, maar voert tot goede resultaten. De gegevens die op dit 
gemiddelde C gestandaardiseerd worden, hebben allen een toe­
vallige fout %kp. (Krachtens (307.1) hoeven wij niet te rekenen 
met een systematische fout). Wegens deze toevallige fouten zal 
ieder proefveld foutief op gem. C worden gestandaardiseerd. Wij 
stellen de standaardisatiefout van proefveld p voor door Tp. 

De gestandaardiseerde waarde, die wij hadden moeten krijgen 
als alles foutloos was, noemen we Qu. Als werkelijke waarde voor de 
gestandaardiseerde opbrengsten (Q*kp) vinden we dus 

(307.4) Q*kp =Qk + Tp + xkp. 

De fouten T en x zijn met elkaar gecorreleerd. Empirisch is het 
mogelijk gebleken ze als onafhankelijk te beschouwen. Naar analogie 
van (304.7) kunnen wij ons schema nu als volgt in formules brengen: 
(307.5) 

ras 
veld | 

Pr 

P-i 

Ps 

Pi 

l 
gem. D < 

^ 

* i 

^ 1 + T 3 - T T 1 3 

T i T ' T i 
1 1TJ 2~1 3 T 

4 
T 1 1 + T 1 2 + T T 3 

4 

Ti 1 

f T H 

rt2 

A 

•°2 + ^ l + T 2 1 

•Q 2 + T 2 + T 2 2 

A 
ß a + r 3 + T 2 3 
A 
ß 2 + J r 4 + T 2 4 

Q2+' 

4 
T 2 1 + T22 + T23 

4 

T 
1 4 

24 

«3 

n3 + T2+TS2 

ß 3 + ^ 4 + T 3 4 

4 + 
3 

T31+1"3 2 + T 3 4 

3 

h 

&i ~r T„ + T 4 2 

A 
ß 4 + ^ 3 T - 7 " 4 3 

ß 4 + ^ 4 + T 4 4 

4 + 
r 2+T 3+7- 4 

3 
T42"r T43 + T44 

3 
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Het blijkt dat in gem. D allerlei fouten worden genoemd, die 
verondersteld worden niet in gem. C aanwezig te zijn, terwijl toch 
gem. C =gem. D. Ook in deze tegenstrijdigheid komt het be­
naderingskarakter nogmaals tot uiting. 

Het verschil tussen de gemiddelde opbrengst van kt en k2 zoals 
weergegeven in gem. D (tabel 307.5) is 

Qx — Q2 =01 — âa) + 

+ (T1±II±II±IA _ r i + T2 + Ts + TA + 

r ^12 ~T T13 "f" ^14 T 21 ~)~ T22 ~T~ ^23 "T" T24 

+ 
Van deze vorm is (Û1 — ü2) het gezochte verschil. De termen 

met T vallen tegen elkaar weg. De fout van het verschil wordt 
dus uitsluitend veroorzaakt door de toevallige fouten r. Volgens 

o2 

bekende wetten is de toevalsvarians van het verschil 2 X —r. 
4 

Wij kunnen dus dit zeggen: Het berekend opbrengstverschil tussen 
twee rassen, die op dezelfde proefvelden voorkomen, wordt niet be-
invloed door de standaardisatiefouten. Wanneer de beide rassen op nu 

2a2 

velden voorkomen is de toevalsvarians van het verschil — . 
nu 

Het verschil tussen de gemiddelde opbrengst van kx en k3, zoals 
weergegeven in gem. D (tabel 307.5) is 

(307.6) Qx — Q3 = (Q1 — 4 ) + 

+ ( r i + T2 + T3 + T, _ T, + T2 + TA + 

i l u i + T 1 8 T T"i3 + T14 T31 - f T32 -f- TS4 

Van deze vorm vallen de termen met T niet geheel tegen elkaar 
weg. Men kan deze termen samenvatten volgens (307.7) 

(307.7) 
7\ + T2 + T3 + T, Tx + T2 + r 4 

4 3 

= &-$(?! + Tt + TJ + iT» 

Wij willen nu de asymptotische waarde berekenen van het 
A. A . 

kwadraat van de totale fout van (Qx — Q3). Daartoe maken wij 
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gebruik van onze (onjuiste) aanname dat de standaardisatiefouten 
onafhankelijk zijn van de toevallige fouten en van elkaar. Op grond 
van deze aanname kunnen wij dus veronderstellen dat alle dubbele 
producten asymptotisch nul worden. We vinden dan voor O2Q _Q 
(zie ook 307.6 en 307.7) 

(307.8) o ^ f l , = (J - W « 7 7 > + <T2> + < 7 Y » + 

ff2 <T2 

+ (i)2 <TZ
2> + x + X-

Om de waarden < T 2 > in o2 uit te drukken nemen wij aan 
dat de waarde <.Tp2~> van een proefveld p met mp rassen gelijk 

is aan dus 
mp 

(307.9) 

In ons voorbeeld geldt dus 

<TP
2> 

dus 

<T2> 

<?Y> 

<T3
2> 

<T*> 

_ ff2 

mp 

o2 

~ 3 
ff2 

~ 4 
<72 

~~ 3 

o2 

~ 4 ' 
Zodat (307.8) wordt 

(307.10) < r * M = ( i - 1 ) 2 *2 Q + i + i ) + 
(T2 

+ & 3 + -V+-V=0.61 f f
2 . 

Omdat Aj en &2 in het schema onderling verwisselbaar zijn en 
k3 en &4 ook (zowel k3 als Ä4 ontbreekt op een veld met mp = 3) 
geeft (307.10) tevens de toevalsvarians van Q2—Q3 ; Q1 — i24 

en Q2 — ß 4 . 
Tenslotte het verschil tussen k3 en &4. Dit bedraagt 

+ 

Q3 

+ 

i 

— # 4 

^ 1 + 

/%1 + 

= (4 
^2 + 
3 

T32 \ 

T, 

T34 

^4) + 
^2 + 

*42 + 

^3 
3 

T43 

+ 

+ 

T; 

T 4 4 
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Van de termen met T vallen T2 en Ti tegen elkaar weg; er blijft 

Il-Il 
3 3 ' 

Kwadrateren van alle fouten geeft weer 

0*0,-0, = i (<ri2> + <T^»+4-+4--
ff2 

Daar < 7 \ 2 > en < T 3
2 > beide gelijk aan —=- kunnen worden 

genomen, staat hier 
^fl,-fl. = W ^ + §^ a =0-741 a\ 

Samenvattend kunnen wij de volgende regels opstellen voor 
het berekenen van de toevalsvarians: 

(307.11) 

Ie Wanneer men de fout van het opbrengstverschil tussen twee 
rassen k en l bestudeert, kan men met vrucht onderscheid 
maken tussen de zuiver toevallige fouten r en de standaardi-
satiefouten T. Deze fouten mogen als onafhankelijk worden 
beschouwd. 

2e De asymptotische waarde < T 2 > = o2. 

3e Voor een proefveld p met nip rassen is de asymptotische waarde 
T2 

< 7 V > = — . 
nip 

Voor het vaststellen van nip tellen niet mee de rassen die slechts 
op proefveld p voorkwamen en dus geen invloed op de 
standaardisatie hadden. 

4e Wanneer ras k op nu velden voorkomt en ras l op ni velden, 
is de waarde van de toevalsvarians van het verschil, voor 
zover voortgekomen uit de toevallige fouten T gelijk aan 

(± + ±V. 
\nh nu 

5e Om het effect van de standaardisatiefouten na te gaan moet 
men aannemen dat er a velden zijn waarop k en l beide voor­
kwamen; op bk velden stond wel ras k en niet ras l; op bi velden 
stond wel ras / en niet ras k. 
Verder is 

a + bk =m 

a + h —m. 
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6e De varians veroorzaakt door de a velden samen is 

1-± ) ' t« [<7>>] = (w^=^) 2
t« [<T'>1 

nu nil \ nkfii I 
Onder ja [ < T 2 > ] wordt verstaan de som van de a waarden 
< T 2 > , die volgens (307.11 3e) berekend worden voor de a 
velden waarop k en / beide voorkomen. 
Wanneer nu =ni wordt deze vorm = 0 . 

7e De varians veroorzaakt door de bk velden samen is 

^ t f c [ < T » > ] , 

waarbij f£ f t [<T 2>] op soortgelijke wijze wTordt gedefinieerd 
als t « [ < T 2 > ] . 

8e De varians veroorzaakt door de bi velden samen is 

m2 ̂ k[<T*>]. 

308 - CONTRÔLE OP DE EMPIRISCHE METHODE 

In tabel (304.8) hebben we een voorbeeld gegeven hoe een schema 
eruit zou kunnen zien, wanneer op verschillende proefvelden telkens 
gedeeltelijk andere rassen beproefd werden. We hebben toen 
verder nagegaan hoe we de gemiddelde opbrengst van de ver­
schillende rassen konden bepalen, terwijl op pag. 112 is aangegeven 
hoe de toevalsvarians is van de diverse rasverschillen. In die 
tabel zijn nl. steeds de coëfficiënten van CT2 vermeld, die bij een 
bepaald rasverschil horen. Met behulp van de empirische methode 
die samengevat is in (307.11), zijn deze coëfficiënten te schatten. 
Om na te gaan hoe nauwkeurig de schatting is zijn in tabel (308.1) 
naast elkaar vermeld de juiste coëfficiënten en de geschatte 
coëfficiënten volgens (307.11). In de 4e kolom zijn de geschatte 
waarden uitgedrukt in procenten van de juiste. Het blijkt dat 
dit percentage nooit boven 100 komt. 

Het blijkt dus dat wij de coëfficiënten, en bijgevolg ook de 
fouten van de verschillen, bijna steeds te laag schatten. 

De grootste afwijking vinden wij in ons voorbeeld bij het ver­
schil üm — Dg, waar CPQ _Q 8% te laag is geschat. Globaal wordt 
aQm-Q ^U S 4% te laag geschat. Om na te gaan of dit percentage 
te groot is moge men bedenken, dat een berekend verschil vaak 
als betrouwbaar wordt aangenomen, wanneer het in absolute 
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(308.1) 

Verschil 
t u ssen 

de 
rassen 

1 

l, m 
l, n 

h P 
l q 
l, r 
l, t 
l, u 
l, w 

m, n 
m, p 
m, q 
m, r 
m, t 
m, u 
m, w 

n, p 
n, q 
n, r 
n, t 
n, u 
n, w 

P. q 
p, y 
P, t 
p , u 
p , w 

q, r 

q, t 
q, u 
q, w 

r, s 
v, t 

Ju i s t e 
coëffi­
ciënt 

volgens 
pag. 112 

2 

0.7287 
0.2330 
0.2852 
0.3918 
0.3253 
1.4118 
0.2845 
0.2840 

0.8261 
0.7642 
0.9950 
0.8683 
2.0120 
0.8398 
0.8438 

0.3307 
0.4062 
0.3548 
1.4269 
0.3109 
0.3092 

0.5327 
0.4147 
1.4443 
0.3825 
0.3860 

0.5108 
1.6825 
0.4570 
0.4506 

0.4 
1.6040 

Ge­
scha t t e 
coëffi­
ciënt 

volgens 
(307.11) 

3 

0.6925 
0.2308 
0.2802 
0.3805 
0.3210 
1.3877 
0.2820 
0.2816 

0.7695 
0.7437 
0.9165 
0.8219 
1.9324 
0.7902 
0.7925 

0.3183 
0.4004 
0.3497 
1.4004 
0.3089 
0.3077 

0.5014 
0.4037 
1.4262 
0.3706 
0.3729 

0.4979 
1.6308 
0.4500 
0.4454 

0.4 
1.5647 

% age 
van 
ju is t 

4 

95 
99 
98 
97 
99 
98 
99 
99 

93 | 
97 
92 
95 
96 
94 
94 

96 
99 
99 
98 
99 

100 

94 
97 
99 
97 
97 

97 
97 
98 
99 

100 
98 

Geschat 
volgens 
(307.11, 

4e) 

5 

0.6 
0.225 
0.2667 
0.35 
0.3 
1.1 
0.2667 
0.2667 

0.625 
0.6667 
0.75 

0.7 
1.5 
0.6667 
0.6667 

0.2917 
0.375 
0.325 
1.125 
0.2917 
0.2917 

0.4167 
0.3667 
1.1667 
0.3333 
0.3333 

0.45 
1.25 
0.4167 
0.4167 

0.4 
1.2 

% age 
v an 
ju i s t 

6 

82 
97 
94 
89 
92 
78 
94 
94 

76 
87 
75 
81 
75 
79 
79 

88 
92 
92 
79 
94 
94 

78 
88 
81 
87 
86 

88 
74 
91 
92 

100 
75 

Volgens 
gepaarde 
gegevens 

7 

1 
0.25 
0.3333 
0.5 
0.4 
2 
0.3333 
0.3333 

1 

— 
2 

— 
2 

2 

0.5 
0.5 
0.5 
2 
0.4 
0.4 

— 
0.6667 
2 

0.6667 
0.6667 

1 

— 
0.6667 
0.6667 

0.4 

— 

% age 
v an 
ju is t 

8 

137 
107 
117 
128 
123 
142 
117 
117 

— 
131 

— 
230 

— 
238 
237 

151 
123 
141 
140 
129 
129 

— 
161 
138 
174 
173 

196 

— 
146 
148 

100 

— 
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Vervol 

r, u 
r, w 

t, u 

g (308.1) 

0.3873 

0.4042 

1.5650 

t, w ! 1.5654 

u, w 0.3561 

0.3851 

0.3986 

1.5283 

1.5306 

0.3542 

99 
99 

98 
98 

99 

0.3667 

0.3667 

1.1667 

1.1667 

0.3333 

95 
91 

75 
75 

94 

0.5 
0.6667 

— 

0.5 

129 
165 

— 

— 

140 

waarde minstens 2 X zijn middelbare fout bedraagt. Dit cijfer 
2 is tamelijk willekeurig gekozen. Het zou evengoed 1.9 of 2.1 
kunnen zijn. Nu bedraagt het verschil tussen 2.0 en 2.1 5%. De 
„willekeur" van de factor 2 weegt dus zwaarder dan onze grootste 
schattingsfout. 

Gezien de bovenaangeduide onzekerheid in het gebruik van 
de a kunnen wij wel zeggen, dat een schattingsfout van 10% 
voor o vaak toelaatbaar moet worden geacht. Dit zou dus een 
fout van 20% voor a2 betekenen. 

Aangezien onze empirische methode veel groter nauwkeurigheid 
toestaat, zou men kunnen overwegen de schatting nog sterk te 
vereenvoudigen door alleen rekening te houden met (307.11 4e). 
De aldus geschatte coëfficiënten zijn weergegeven in kolom 5 van 
tabel (308.1). In de 6e kolom zijn ze in procenten van de juiste 
waarden uitgedrukt. Het blijkt dat langs deze weg coëfficiënten 
worden gevonden, die over het algemeen minder dan 20% te klein 
zijn. Slechts in de gevallen dat een van de beide vergeleken rassen 
slechts op 1 of 2 velden voorkwam zijn de schattingen soms be­
duidend slechter. 

Wij kunnen dus zeggen dat in het algemeen de coëfficiënt van 
o2 geschat kan worden volgens (307.11 4e). Blijkt bij het inter­
preteren van de uitkomsten, dat de verhouding 

verschil 
fout van het verschil 

in de buurt van een belangrijk geachte waarde ligt (b.v. 5% point), 
dan kan met de volledige methode van (307.11) een betere schatting 
van de fout worden verkregen. Meestal zal die schatting nauw­
keurig genoeg zijn. Desnoods kan men het gehele probleem op­
lossen met de methode der kleinste kwadraten, waarbij de coëffi­
ciënten van o2 juist bepaald worden. De waarde die voor a2 zelf 
berekend wordt, blijft echter ook dan een schatting. Ook dit laatste 
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is een reden, waarom aan de nauwkeurigheid van de coëfficiënten 
geen al te hoge eisen moeten worden gesteld. 

Het spreekt vanzelf, dat één uitgewerkt voorbeeld niet vol­
doende bewijs is voor de bruikbaarheid van een empirische methode. 
Toch zullen wij geen nieuwe voorbeelden uitwerken, omdat ieder 
die meer zekerheid wil, nieuwe voorbeelden kan maken, die meer 
gelijken op de problemen, die hij bewerkt. 

In de practijk hoort men soms de bewering, dat twee rassen 
alleen mogen worden vergeleken, door voor beide rassen het 
gemiddelde te nemen van de (gestandaardiseerde) opbrengsten 
van die velden, waarop beide rassen verbouwd werden. In tabel 
(308.1) kolom 7 is vermeld, welke coëfficiënt o2 dan moet hebben. 
Rassen die op a velden gezamelijk voorkwamen hebben als coëffi­
ciënt 2/a. Rassen die op geen enkel veld gezamenlijk voorkwamen, 
kunnen dan natuurlijk niet worden vergeleken, zodat hier ook een 
foutenbepaling ontbreekt. 

In kolom 8 zijn de cijfers van kolom 7 uitgedrukt in procenten 
van de waarden, die volgens kolom 2 bereikbaar zijn. Het blijkt 
dat dit percentage inde regel ver boven 100 ligt, zodat wij mogen 
concluderen, dat de wijze van samenvatten, zoals wij die in 304 
uiteen zetten, voor onafhankelijke rassen beter is. 

309 - H E T BEPALEN VAN DE CORRELATIE TUSSEN DE RASSEN 

In 302 hebben wij gevonden dat er bij onafhankelijke rassen 
een correlatie moet bestaan tussen de schijnbare fouten Ukp. Wij 
willen er nog eens zeer nadrukkelijk of wijzen dat het dus gaat over 
correlaties van gestandaardiseerde opbrengstcijfers. De correlaties 
van de niet-gestandaardiseerde opbrengsten zijn veel groter, maar 
blijven hier buiten beschouwing. Wanneer er interpretatiefouten 
zijn gemaakt kan er volgens (302.10) een „correlatiecoëfficient" 
— l/m worden verwacht. 

Wanneer op ieder proefveld p telkens een ander aantal rassen 

nip voorkomt, zal die correlatiecoëfficient voor ieder veld p asym­

ptotisch ongeveer zijn. Dit is geen stabiele grootheid. Bij 
mp 

het toepassen van een formule die op (302.10) gelijkt valt daarom 
moeilijk te voorspellen, welke waarde precies verwacht moet 
worden. Het lijkt ons te ver te gaan deze waarde theoretisch uit 
te zoeken. 
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Een eenvoudiger theorie laat zich afleiden, wanneer men be­
denkt dat de bovengenoemde correlatie veroorzaakt wordt, door­
dat de op correlatie onderzochte rassen k en l beide in het fictiefras 
zijn opgenomen. Daardoor is de som van de interpretatiefouten 
van een proefveld nul (zie 301.23 en 't begin van 302) en daardoor 
is ook de som van de schijnbare toevallige fouten voor ieder proef­
veld 0. 

Wanneer men een van de rassen k en / of beide buiten de definitie 
van het fictiefras houdt, wordt het kunstmatig verband van 
(301.23) verbroken, zodat onafhankelijke rassen dan een correlatie 
0 te zien moeten geven tussen hun interpretatiefouten en hun 
toevallige fouten. 

Om deze correlatie empirisch te berekenen kan men bij het op 
elkaar standaardiseren van de proefvelden de gegevens van ras 
k of ras /, eventueel beide, buiten beschouwing laten. Na het 
standaardiseren berekent men dan voor ieder ras, dus ook voor 

en /, de afwijkingen van het gemiddelde. Van deze afwijkingen 
ordt de correlatie op de gebruikelijke manier onderzocht. 
Men moet dan eerst beslissen of men één ras buiten het fictiefras 

zal houden, of beide. Wanneer er in totaal m rassen zijn, zijn er 

—^—^ combinaties (k, T) die onderzocht kunnen worden. 

Zouden telkens beide rassen uitgeschakeld worden, dan moest 

het standaardiseren —-—= maal worden overgedaan. Wan­

neer één ras wordt uitgeschakeld, behoeft het standaardiseren 

slechts m maal te worden herhaald. Het is daarom beter slechts 

één ras uit te schakelen. Hierdoor verkrijgt men bovendien het 

voordeel, dat het fictiefras zo weinig mogelijk verandert. 
Wij willen nu bij wijze van voorbeeld de correlatiecoëfficient 

van ras l en ras n (zie 304.8) langs twee wegen berekenen. Eerst 
sluiten we ras l buiten het fictiefras, daarna ras n. 

Bij de berekening kunnen wij aansluiten bij het resultaat van 
(304.12). Het feit dat l buiten het fictiefras wordt gesloten zal wel 
niet zo ingrijpend zijn, dat de uitkomsten veel veranderen. Wij 
standaardiseren alle proefvelden dus op de reeds verkregen uit­
komsten voor de rassen Ui. Ras t doet natuurlijk weer niet mee, 
daar het slechts eenmaal voorkomt. 

Wanneer wij in (304.12) de gestandaardiseerde cijfers van veld 
a met het 4e gemiddelde vergelijken, zien wij dat l daar 29 eenheden 
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boven het gemiddelde ligt. De andere rassen liggen er gezamenlijk 
dus 29 onder. Er zijn 2 rassen II], deze liggen gemiddeld dus 15 te 
laag. De opbrengsten van a moeten dus met 15 worden verhoogd. 
Op dezelfde manier vinden wij dat de opbrengsten van b gelijk 
blijven. Op c ligt ras l 19 eenheden beneden het gemiddelde, de 
5 rassen L/J dus gemiddeld 4 er boven. De cijfers van veld c moeten 
4 worden verlaagd. Langs deze weg vinden wij zeer snel de cijfers 
van (309.1). 

(309.1) 

ras 
veld | 

4e gem. 

a 
b 
c 
d 

1 

665 

m 

705 

\ 705 

e [ 

f 
g 
h 
i 
k 

gem. 

720 

713 

n 

653 

629 
686 
664 
661 
644 
587 
688 
660 

652 

P 

643 

645 
612 
655 
666 
633 
664 

646 

? 

705 

719 
721 
680 
693 

703 

r 

661 

700 
654 
615 

655 
679 

661 

s 

686 

714 
684 

t 

659 

670 
699 

685 

u 

697 

700 
713 

685 
713 
709 

654 

696 

652 

602 

671 

636 

658 
643 
700 

652 

Het blijkt dat de grootste verandering in het gemiddelde van 
ras m is opgetreden. Door deze verandering zal met name veld 
a op een hoger niveau moeten worden gestandaardiseerd, waar­
door het gemiddelde van m weer stijgt. Dit uitbalanceren is aan­
merkelijk te bekorten, door te schatten wat er uit moet komen, 
en op dat schattingscijfer te standaardiseren. Wij willen deze 
standaardisatie niet verder op de voet volgen, doch het eind­
resultaat geven in (309.2). 

Uit de omlijste cijfers laat zich berekenen als correlatiecoëfficient 
voor de rassen l en n de waarde 

(309.3) 7 i / B = —0.53 

Bij het standaardiseren hadden wij ook ras n kunnen uitscha­
kelen, in plaats van /, dan hadden wij de cijfers van (309.4) ge­
vonden. 
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(309.2) 

ras 
veld 

a 
b 
c 
d 
e 
f 
g 
h 
i 
k 

gem. 

1 

715 
665 

642 
665 
687 
650 
632 
713 
627 
662 

m 

711 
721 

n 

630 
686 
665 
661 
643 
586 
686 
658 

i i 

666 716 652 

P 

651 
613 

656 
666 
634 
664 

647 

? 

718 
720 
678 
691 

702 

r 

701 

655 
615 

654 
678 

661 

s t 

i 

715 

685 
659 

669 
698 

685 

676 

676 

u 

701 

714 

685 
712 
708 

652 

695 

w 

603 

671 

636 

657 
641 
698 

651 

(309.4) 

ras 
veld 

a 
b 
c 
d 
e 
i 
g 
h 
i 
k 

gem. 

1 

695 
663 

641 
671 
682 
657 
637 
695 
654 
667 

m 

691 
719 

n 

629 
692 
660 
668 
648 
568 
713 
663 

[ i 

666 705 654 

P 

631 
611 

655 
672 
629 
671 

645 

? 

723 
702 
705 
696 

706 

y 

699 

654 
621 

659 
660 

659 

5 

713 

684 
665 

674 
680 

683 

t 

671 

671 

u 

699 

713 

692 
717 
690 

657 

695 

601 

677 

643 

639 
668 
703 

655 

Uit de omlijste cijfers berekenen wij nu als waarde van de 
correlatiecoëfficient 

(309.5) Y*li= — O-37 

Dit is een geheel andere waarde dan in (309.3). 
Om dit verschijnsel te verklaren denke men zich een aantal 

proefvelden n, met op ieder veld dezelfde m rassen. Men heeft 
dus een schema zonder hiaten. Nu laat zich volgens (302.10) een 
negatieve correlatie verwachten bij onafhankelijke rassen. Evenals 
bij onvolledige schema's laat zich ook deze correlatiecoëfficient 
nul maken, door bij het standaardiseren een of beide van de ge-
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correleerde rassen buiten het fictiefras te houden. Veronderstel 
dat beide rassen (k en /) buiten het fictiefras worden gehouden. 
Dan zal er maar één correlatiecoëfficient voor het paar (k, l) 
nodig zijn. 

Om niet te abstract te spreken stelle men zich voor, dat de 
oorzaak van vruchtbaarheidsverschillen in de grondwaterstand 
is gelegen. Wanneer de grondwaterspiegel 1 cm daalt, zal de op­
brengst van het fictiefras (veronderstel: het gemiddelde van 4 
rassen [kil) 5 eenheden stijgen. De opbrengst van ras k stijgt 20 
eenheden, die van ras l 6 eenheden. Wanneer er nu geen toevallige 
fouten zijn gemaakt en er geen andere oorzaken van vruchtbaar­
heidsverschillen zijn, zal er een positieve correlatie 1 optreden. 
Immers wanneer de grondwaterstand a cm beneden zijn ge­
middelde ligt zal ras k 15a eenheden te hoog zijn en ras l a een­
heden. De afwijking van ras k is steeds 15 X die van ras /. 

Wanneer de opbrengst van ras l per cm lagere grondwaterstand 
niet 6 doch 5 eenheden steeg, zou ras l in zijn reactie steeds gelijk 
zijn aan het fictiefras, zodat er geen afwijking voor l bestond; 
dan zou de correlatie met k dus 0 zijn. Wanneer de stijging van 
ras l kleiner was dan 5 zou de afwijking tussen ras l zijn gestan­
daardiseerd gemiddelde negatief zijn bij dalende grondwaterstand; 
de correlatie met ras k zou dan — 1 zijn. Dat slechts de waarden 
+ 1,0 en — 1 voorkomen, vindt zijn oorzaak in de aanname 
dat er geen andere vruchtbaarheidsinvloeden en geen toevallige 
fouten zijn. 

Wij willen nu nagaan welke correlaties op zouden treden, wan­
neer ras k of ras l wel in het fictiefras waren opgenomen. 
Wanneer de opbrengst van ras l 6 eenheden stijgt per cm lagere 
grondwaterstand en het gemiddelde van 4 rassen Ykl\ 5, dan zal 

4 x 5 + 6 
het gemiddelde van de 5 rassen Vk\ —-j——=— = 5x/5 stijgen. Dit 

is ons nieuwe fictiefras. Zowel ras k als ras l stijgen meer, dus de 
correlatie blijft + 1. 

Zou ras k in het fictiefras worden opgenomen, dan steeg dit 
4 X 5 + 20 

nieuwe fictiefras — j ~ r ~ i — = ^ eenheden per cm lagere grond­
waterstand. Ras k zou dan meer stijgen en ras l minder; dan zou 
de correlatie — 1 zijn. 

Uit deze discussie blijkt, dat de berekende correlatiecoëfficienten 
de samenhang tussen de rassen steeds beschouwen tegen de achtergrond 
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-van het fictief ras. Verandering van fictief ras geeft dus verandering 
van samenhang. Hiermee is het gevonden verschil tussen 7\in en 
7nji (zie 309.3 en 309.5) voldoende verklaard. 

310 - ANALYSE VAN DE CORRELATIEVERSCHIJNSELEN 

In de voorgaande paragraaf hebben wij de correlatie tussen de 
•schijnbare fouten u van de rassen l en n onderzocht. Nu bestaan 
•de schijnbare fouten uit een toevallig element en een systematisch 
element. Het toevallig deel kan niet de oorzaak zijn van een be­
langrijke correlatie; immers een correlatie tussen toevallige fouten 
kan ook zelf slechts toevallig zijn. Doordat slechts een van beide 
rassen in het fictiefras was opgenomen is gezorgd dat er niet kunst­
matig een correlatie tussen deze toevallige fouten te voorschijn 
is geroepen. 

Het belang van de correlatie ligt in het systematisch bestand­
deel. Men moet weten hoe de samenhang is tussen de interpretatie-
fouten van de verschillende rassen. A priori kunnen hierbij drie 
gevallen worden onderscheiden. 

In de eerste plaats is er het geval dat de correlatiecoëfficient 
van de interpretatiefouten van twee rassen -+- 1 is, doordat de 
rassen voor de onderzochte eigenschappen gelijk zijn of slechts 
een constante verschillen. Dit zou bijv. het geval kunnen zijn, 
wanneer het ene ras een mutant is van het andere, of er uit ge­
selecteerd is. In zo'n geval zal de enige oorzaak voor variaties 
van het gevonden verschil tussen beide rassen in de toevallige 
fouten moeten zijn gelegen. Of dit geval zich voordoet laat zich 
het gemakkelijkst bepalen door op alle proefvelden het rasverschil 
rechtstreeks te bepalen, en uit de verkregen cijfers de middelbare 
fout van deze grootheid te berekenen. Deze m.f. moet o\/2 zijn. 
Is de fout betrouwbaar groter, dan heeft men blijkbaar niet met 
een geval als boven aangeduid te maken. 

In de tweede plaats moet men letten op het geval, dat van twee 
rassen bekend is of stellig verwacht wordt, dat ze gecorreleerd 
zijn, maar dat de mate van correlatie onbekend is. In de vorige 
paragraaf is een methode gegeven om in dat geval de correlatie-
coëfficiënt te berekenen. 

Wij bespraken reeds dat de daar gegeven grootheid zijn ont­
staan te danken heeft aan de samenwerking van interpretatie-
en toevallige fouten. Het is in zulke omstandigheden ook gewenst 
de correlatie tussen de interpretatiefouten alleen te meten. Om 
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na te gaan hoe men deze kan bepalen, willen wij eerst de berekening­
bij een volledig schema (op alle velden dezelfde rassen) bestuderen. 

Wij stellen dus, dat er n velden zijn met op ieder m rassen, o.a. 
de rassen k en l. Ras k is niet in het fictiefras opgenomen, ras l 
wel. Het fictiefras is dus het gemiddelde van (m—1) rassen. 
Wij willen dit aantal aanduiden door m'. 

Uit (301.27) laat zich nu afleiden (wanneer men j2 weer ver­
vangt door <i2i„>) 

>yi 1 AM' 1 

\n [<u2
in>] = \n [<i2i„>] + (n — 1) — o2 

n m 
of 
(310.1) V^zl t » [<,-2 f a >] = t » [ < « s

f a > ] — ( » — l ) ( l \ 

Voor ras k laat zich naar analogie van (307.4) schrijven 
-\ — 

(310.2) Q*kp = ß f t + iup + Xkp + Tp = Qk + unp 

Middelen van deze vorm over f geeft 

(310.3) M g ^ = 4 + ^ ^ ] + t»foJ + M 5 J =ük. 
J n n n n 

Substitueren van Qk uit (310.3) in (310.2) geeft 

@k + ikp + tkp + Tp = Qu -{-
\n\ih^\ \n[rk7r] jn[T„] 

-\ • -\ \- Ukp 
n n n F 

of 
, 1 1 A , , n— 1 . n— 1 n— 1 
(310.4) Ukp = tkp -\ Tkp H lp — 

\n — 1 [ikipi] in — 1 [T-ÄL Ĵ] t (w - l ) [Tjpj] 

n n n 

Aangezien ras k niet in het fictiefras was opgenomen, zijn de 
fouten i, t en T onderling onafhankelijk. Wanneer men aan­
neemt dat ook de verschillende waarden T onderling onafhankelijk 
zijn en bovendien volgens (307.11 3e) de waarde van <Tp2> 

o2 

weer —-, stelt, berekent men gemakkelijk uit (310.4) 
m 

I*, i \ 2 (n n 2 
\n [<uh„>] = \-^~) t » [<ih*>] + K

 n
 } a* + 

n m n2 n n m 
of 
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t« <^2
ft77>] = f« [<*2fcr>] + (« — 1) ^ ff2 

of 

(310.5) ^ ^ f » [<»'aAw>] = t» [<uhn>] — (» — 1) f 1 + —) a\ 

Om de asymptotische waarde <Ukp uip~> uit te rekenen moet 
men de uip op dezelfde manier uitwerken als de Ukp in (310.4). 
Aangezien bij de afleiding van Uhp niet tot uiting is gekomen, dat 
ras k niet in het fictiefras was opgenomen, zal de formule voor 
uip gelijk zijn aan (310.4) mits de k door een l wordt vervangen. 

In verband met (301.23) is gemakkelijk in te zien, dat de T nu 
ook nog onafhankelijk is van de interpretatiefout i. Immers, wan­
neer krachtens definitie de som van de interpretatiefouten van de 
rassen, die in het fictiefras zijn opgenomen, voor ieder proefveld 
0 is, kan hier geen oorzaak van foutieve standaardisatie liggen. 

In tegenstelling hiermee zijn np en Tp niet onafhankelijk. 
Wanneer weer dezelfde veronderstelling wordt gemaakt, die aan 
(307.9) ten grondslag ligt, kunnen wij schrijven 

(310.6) Tp =-rJtr- \{m'-\)[rmp\ 

waarbij wij door \kl\ aanduiden dat zowel ras k als ras l uit de 
som zijn uitgesloten. 

Het minteken is nodig om aan te geven dat de standaardisatie-
fout de tendens heeft de toevallige fouten weg te verklaren. (Met 
„weg verklaren" wordt bedoeld, dat de berekende waarden 
zodanig van de ware waarden afwijken, dat de schijnbare fouten 
middelbaar kleiner zijn dan de ware fouten. Door de berekende 
waarden, die de waarnemingen moeten verklaren, verdwijnt een 
deel der fouten dus ogenschijnlijk). 

Substitutie van TP u it (310.6) in (310.4) geeft 

/ Q t n 7v n—1 . n—1 n— 1 np 

(310.7) Ukp = ikp H tkp . —, — 

n— 1 \{m' -1) [rikijp] t f o - l ) fem i(n-\) [thip] 
n ' m' n n 

t ( n - l ) [xiipü t î (m' - \)(n- 1 ) [ [T L WJ L ^] ] 
m'n m'n 

De formule voor uip is hieruit af te leiden door de index k door 

+ 
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/ te vervangen. De / mag niet door k worden vervangen, omdat 
/ in het fictiefras blijft. Wij vinden dan 

« m ö̂  n—l. n—lm'—l 
(310.8) Ulp = lip -\ . ;— . np — 

J n ^ n m * 
n—l \{m'-l) [xim p] t (« - 1 ) [iiipj] 

n m n 
m' —l l (w - l ) [ T ^ J ] f f (m' - l)(n~ l)[[rlkinpj] 

m' ' n m'n 

Bij het berekenen van de asymptotische waarde <.Ukp uip> 
vallen alle dubbele producten weg behalve die met i. Dit geeft dus 

(310.9) 
(n—lf . . (n—lfm'—l 

<ukp u,p> = — ^ — <tkp np> -2— . - ^ - <xhp> + 

, (n— l)2 \m' — 1 [<r2iki]p>] \n—l [<ikip\ hyp\>] _ 
n2 m'2 n2 

_ . m' ~ 1 tw— 1 [<r\Pj>] f f (m'-l)(n- l)[[<TLft;j ipj>]] 
miz • w2 m'2n2 

Wanneer wij de asymptotische waarden <ikp %>> en <.ik\_p\ ü\_p\> 
voorstellen door <^7rj ';7r> en de asymptotische waarden < T 2 > 

door a2, wordt dit 

n — 1 
<Ukp Ulp> = <lkn MTT> 

Th 

of 
•yj 1 

(310.10) ïn [<iil7T ii„>] = \n [<uk^ uiv>\ 

Uit (310.1), (310.5) en (310.10) vinden wij als bruikbare schat­
ting voor de correlatiecoëfficient Fk^ van de correlatie tussen de 
interpretatiefouten van ras k en ras l (waarbij / in het fictiefras 
is opgenomen): 

(310.11) 

\n [uk„ ui„] 
1 kli. = —f — — . 

waarbij a2 weer verondersteld wordt uit het verschil tussen de 
blokken binnen de proefvelden te zijn berekend (zie verder op­
merking naar aanleiding van 311.19). 
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Bij onvolledige schema's, zoals besproken in 304, zal m' 
geen constante grootheid zijn, maar voor ieder proefveld anders 
kunnen uitvallen. Dan staat trouwens de gehele formule (310.11) 
min of meer op losse schroeven, omdat wij in 309 aantoonden dat 
de berekende correlatiecoëfficient beide rassen beschouwt tegen 
de achtergrond van het fictief ras. Bij onvolledige schema's is het 
fictiefras niet constant en de correlatiecoëfficient dus min of meer 
onbepaald. Toch kan men (310.11) gebruiken om een globale 
indruk te krijgen. Om complicaties te voorkomen kan men dan 

het best een waarde voor —7 berekenen als gemiddelde van de 
m 

waarden —r-, die voor de onderzochte correlatiecoëfficient van 
mp 

belang zijn. 
Tenslotte moet nog worden gesproken over het geval, dat er 

geen correlatie verwacht wordt, doch dat de berekening een be­
paalde waarde voor de correlatiecoëfficient oplevert. Zulk een 
correlatie kan toevallig optreden tussen de toevallige fouten, 
maar evenzeer tussen de interpretatiefouten. Om te beoordelen 
of de correlatie als een toevallig verschijnsel mag worden opgevat 
zal men daarom geen onderscheid behoeven te maken tussen beide 
soorten fouten. Blijkt de correlatie niet aan toeval te kunnen wor­
den geweten dan moet er een systematische correlatie tussen de 
interpretatiefouten optreden, aangezien tussen toevallige fouten 
geen systematische correlatie op kan treden. Zo nodig kan de 
correlatie tussen de interpretatiefouten weer volgens (310.11) 
worden vastgelegd. 

De vraag is nu: wanneer moet een onverwachte correlatie als 
reëel worden erkend. Daartoe moet worden nagegaan of de ge­
vonden correlatie betrouwbaar van 0 afwijkt. Dit gaat het ge­
makkelijkst met behulp van het door R. A. F ISHER gevonden 

y resultaat dat de middelbare fout van de grootheid t = — 

,-p- Vi-r 
de waarde 1/ j heeft, indien er in werkelijkheid geen corre­

latie is. Door y is de correlatiecoëfficient aangeduid. Wanneer 

men als eis van betrouwbaarheid stelt, dat t tweemaal zijn mid­

delbare fout moet zijn, vindt men dus: 

Vï^y 2 
2 

> of 
\/n — 4 

9 
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y2 4 
T^—2 > — -A o f 

1 — yi n — 4 
Wy2 _ 4y2 > 4 _ 4 y 2 

y 2 < - ^ . 

of 

(310.12) 

Uit (310.12) blijkt wel dat een onverwachte correlatie zeer hoog 
moet zijn, om bij een gering aantal waarnemingen betrouwbaar te 
zijn. Formule (310.12) geeft ongeveer het „ 5 % point", het ,,1 
point" wordt bij benadering gegeven door 

y2 6.5 
> „ of 

O' 
'o 

(310.13) y 2 > 

1 — y2 

6.5 

n + 2.5' 
Door n wordt in (310.12) en (310.13) aangeduid het aantal proef­

velden waarop ras k en ras / beide voorkomen. Het blijkt dat 
dit aantal minstens 5 moet zijn om een toevallig gevonden correlatie 
als belangrijk te kunnen aanvaarden. Verder moet er rekening 
mee worden gehouden dat het standaardiseren misschien ook nog 
een ongedachte invloed heeft op de berekende correlatiecoëfficient. 
Enige voorzichtigheid bij het aanvaarden van een correlatie als 
systematisch is dus wel gewenst. 

In het voorgaande hebben wij steeds een positieve correlatie 
voor ogen gehad. Als materiële grondslag daarvoor kan een extra 
aantal gemeenschappelijke genen worden aangenomen. Het is 
natuurlijk niet ondenkbaar dat er ook negatieve correlaties worden 
waargenomen. In (303.2) toonden wij reeds aan dat een positieve 
correlatie tussen twee rassen hun correlatie met de andere rassen 
verlaagt. Het wil ons voorkomen dat hierin vrijwel de enige oor­
zaak van negatieve correlatie gelegen kan zijn. Meestal zal met een 
negatieve correlatie daarom voldoende zijn gerekend wanneer met 
alle positieve op een passende manier rekening is gehouden. Op de 
enkele uitzonderingen zullen wij hier niet ingaan. 

311 - H E T SAMENVATTEN VAN PROEVEN MET WISSELEND AANTAL 

GEDEELTELIJK AFHANKELIJKE RASSEN 

In 304 is nagegaan hoe proeven met een wisselend aantal onaf­
hankelijke rassen moeten worden samengevat. Als werkvoorbeeld 
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hebben wij daar de cijfers van (304.3) genomen, die blijkens (304.7) 
na standaardisatie het volgend resultaat geven. 

(311.1) ras 
veld | 

Pi 
Pz 
Pz 
Pi 

gem. D 

*i 

646 
681 
716 
685 

682 

k^ 

655 
663 
762 
653 

683 

«3 

802 
690 
751 
685 

732 

K 

636 
663 
461 
675 

609 

k, 

596 
643 

642 

627 

#6 

643 
665 
642 

650 

Uit de cijfers van gem. D blijkt dat ras k6 veel beter is dan 
ras £5. Deze conclusie is in tegenspraak met de waarnemingen op 
p2 en pt dat beide rassen precies gelijk zijn. Wat is nu de juiste 
conclusie? 

Wanneer inderdaad uit p2 en p± mocht worden geconcludeerd, 
dat £5 en k6 identiek waren, zou hier sprake zijn van sterk ge­
correleerde rassen, zodat de vooronderstellingen van 304 dan niet 
van toepassing zouden zijn. Wanneer daarentegen ras ks en ras k6 

in werkelijkheid onafhankelijk zijn, moet het als een speling van 
het toeval worden gezien, dat beide rassen op beide proefvelden 
gelijke opbrengsten gaven. Uit de cijfers kan geen keuze tussen 
beide zienswijzen worden gedaan, omdat blijkens (310.12) het aan­
tal proefvelden te gering is om een onverwachte correlatiecoèffi-
cient • + 1 als zeker te aanvaarden. Wel leent bovenstaand voor­
beeld zich er toe om het wezen van beide veronderstellingen dui­
delijk te maken. 

Indien men wil volhouden dat de rassen onafhankelijk zijn, 
zijn de cijfers van gem. D het geschiktst om het verschil tussen 
ras kb en ras k6 weer te geven (zie eind van 308). Weliswaar hebben 
beide rassen het evengoed gedaan op p2 en pit doch van ras ks 

is op veld px aangetoond, dat het ook een lagere opbrengst kan 
geven in vergelijking met het fictiefras. Wegens de onafhanke­
lijkheid mag hieruit niet geconcludeerd worden, dat k6 het daar 
ook slecht zou hebben gedaan. Zo heeft ras k6 op veld pz getoond 
ook hogere opbrengsten te kunnen geven, zonder dat dit een con­
clusie toelaat over kh. 

Men kan slechts zeggen, dat voor beide rassen drie monsters uit 
het onderzochte gebied zijn getrokken om de rasvoortreffelijkheid 
binnen het gebied vast te stellen. Bij gebrek aan beter zal men voor 
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beide monsters aan moeten nemen, dat ze zo goed mogelijk genomen 
zijn. Het kan zijn dat k5 op p1 te weinig opbracht en k6 op p3 te 
veel; maar evenzeer kan k5 en p2 en pt te veel opgebracht hebben 
en k6 daar te weinig. Als de rassen onafhankelijk zijn valt er niets 
van te zeggen. 

Mocht men er van uit willen gaan, dat ras kh en k6 identiek 
waren, dan zouden de cijfers van gem. D (zie 311.1) niet de meest 
geschikte zijn om de onderlinge verschillen tussen alle rassen weer 
te geven. De eindcijfers van de rassen k5 en k6 zouden gelijk moeten 
zijn. De vraag is nu: Hoe bereikt men dat het rasverschil van k5 

en k6 zo goed mogelijk wordt vastgelegd, terwijl tevens het ver­
schil met de andere vier rassen op de juiste wijze wordt weer­
gegeven? 

In overeenstemming met 310 moet men onderscheid maken 
tussen rassen die gelijk zijn of slechts een constante verschillen, 
en rassen die in meerdere of mindere mate gecorreleerd zijn. In 
310 werd de laatste groep nog gesplitst al naar er een correlatie 
werd verwacht of niet. Nu behoeft dit onderscheid niet te worden 
gemaakt. Wanneer een correlatie eenmaal is aanvaard moet er op 
een bepaalde manier mee gewerkt worden. 

Indien de verwante rassen slechts een constante (eventueel 0) 
verschillen voor de onderzochte eigenschap, valt er over deze 
constante niets te leren uit de velden waarop niet beide rassen 
voorkwamen. De waarde van de constante moet rechtstreeks 
worden bepaald op de velden, waarop beide rassen wel stonden. 
Voor ras ks en ras k6 is deze constante in ons voorbeeld dus 0. 
Hiermee is het verschil tussen kh en ke zo goed mogelijk aange­
geven. 

Nu moet deze gelijkheid nog in gem. D van (311.1) tot uitdruk­
king worden gebracht. Bij het bepalen van de methode willen 
wij tevens trachten tegemoet te komen aan de wens, die wij bij de 
discussie van (304.2) uitspraken, dat zoveel mogelijk rassen in het 
fictiefras moeten worden opgenomen. Wij gaan daarom de ont­
brekende opbrengsten schatten. Wegens de gelijkheid van ks en k6 

kunnen wij in (311.1) de opbrengsten van beide rassen op de 
velden p1 en pa ook aan elkaar gelijk achten. Vullen we de ge­
schatte opbrengsten in, dan vinden wij (311.2) 
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(311.2) ras 
veld 1 

Pi 
P* 
P3 
Pi 

gem. E 

*i 

646 
681 
716 
685 

682 

k 2 

655 
663 
762 
653 

683 

h 

802 
690 
751 
685 

732 

K 

636 
663 
461 
675 

609 

k, 

596 
643 
665 

642 

637 

Ac 

596 

643 
665 
642 

637 

Omdat het schema nu volledig is zal gem. E ongevoelig zijn 
voor een nieuwe standaardisering. Wel zal het niveau van de ver­
schillende proefvelden daardoor kunnen worden beïnvloed. 

Bij bovenstaande methode hebben wij dus de opbrengsten van 
ks en k6 overal gelijk geschat; wij kunnen evengoed zeggen, dat 
wij overal de afwijking u$p gelijk hebben geschat aan de afwijking 
usp. Wanneer wij onder eu verstaan 

Ek 
\n [U2kn] 

kunnen we zelfs zeggen dat we de schatting hebben verricht 
volgens de formule 

(311.3) 
Ußp Ubp 

e 5 ' 

Voor rassen die overal slechts een constante verschillen moeten 
de waarden van e immers gelijk zijn 

Ogenschijnlijk is het gebruik van (311.3) in strijd met 124. De 
afwijkingen ugp en u$p zijn beide normaal verdeeld, niet alleen 
wat hun toevallige fout betreft, maar — naar wij in 302 aannamen —• 
ook wat hun interpretatief out betreft. Dit moet dus een geval 
zijn waar de correlatierekening moet worden toegepast, en niet 
de lijnvereffening. 

De waarden u@p en u^p zijn niet absoluut met elkaar gecorreleerd; 
beide grootheden zijn gedeeltelijk opgebouwd uit toevallige fouten, 
die niet gecorreleerd zijn. Volgens 124 hadden inplaats van de 
lange as (311.3) dus gebruikt moeten worden de regressielijnen 

(311.4) *«i 51 
e 6 e 5 

«5 V 
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Toch bevredigt het gebruik van de regressielijnen in dit geval 
niet. Wanneer de rassen k5 en k6 in wezen als identiek worden 
gezien, moet de opbrengst van de een zonder meer als schatting 
van de opbrengst van de ander kunnen dienen. Naar het lijkt 
hebben wij hier een gevoelsargument tegenover een exact argu­
ment. Maar om te zien of het exacte argument inderdaad de door­
slag moet geven, willen wij dit argument voor het onderhavige 
geval nog eens op de voet volgen. 

De opbrengst van ras k5 op veld p± is abnormaal laag. In absolute 
waarde is u51 dus groot. Omdat de toevallige fout TS/> normaal 
verdeeld is, is het onwaarschijnlijk dat T51 ZO groot is. En omdat 
iöp ook normaal verdeeld is, is het eveneens onwaarschijnlijk 
dat i51 zo groot is. De grootste waarschijnlijkheid bereiken wij 
wanneer we aannemen dat u51 en i51 in dit geval hetzelfde teken 
hebben. In absolute waarde schatten wij i51 dus kleiner dan ubl. 

Wanneer wij de opbrengst van ras k6 schatten, is het niet juist 
daar de toevallige fout T51 in op te nemen. Wij moeten de syste­
matische interpretatiefout i61 schatten. Omdat i61 kleiner is in 
absolute waarde dan u51 moet de opbrengst van ras ke op veld 
p1 hoger geschat worden dan de opbrengst van ras kh op dat 
veld was. Door de regressielijn wordt uitgemaakt hoeveel hoger. 
(In ons voorbeeld is dit onmogelijk doordat de toevallige fouten 
toevallig absoluut gecorreleerd zijn (zie 310.12)) 

Bovenstaande uiteenzetting is slechts dan goed, wanneer wij 
bereid zijn de consequenties eruit te trekken, die er in 124 ook uit­
getrokken werden. Aan het slot van die paragraaf kwamen wij 
tot een conclusie die hierop neerkomt: De grootte van u$p wordt 
naar evenredigheid verdeeld over i-0p en r5p. Wanneer er een 
grote absolute waarde van de afwijking u-0p wordt gevonden nemen 
we op grond daarvan ook een grote toevallige fout r-0p van. Welnu 
deze consequentie kunnen wij hier niet aanvaarden. 

Tenslotte is een interpretatiefout een grootheid die men niet 
kent. Wanneer het proefveldgemiddelde van een ras sterk afwijkt 
van het cijfer dat men verwacht, dan kan dit gemiddelde blijkens 
zijn middelbare fout wel zeer nauwkeurig zijn. Men zal dan niet 
concluderen dat de toevallige fout groot zal zijn, maar alle 
schuld op de interpretatiefout werpen. 

Wij zullen dus geen gebruik maken van formule (311.4) maar 
van (311.3). Hiermee is evenwel niet gezegd dat wij nu de methoden 
der lijnvereffening gaan toepassen. Ongetwijfeld hebben wij hier 
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te maken met een geval van correlatie. Wij weigeren slechts iets 
over de toevallige fout te zeggen op grond van de interpretatie-
fout. Daarom mag niet gewerkt worden met de totale correlatie y, 
maar moet gebruik worden gemaakt van de correlatie tussen de 
interpretatiefouten: r (zie 310.11). Bij identieke rassen is die corre­
latie 1. Dit is de motivering voor het gebruik van (311.3). 

Wij zijn dus tot de conclusie gekomen dat men in het algemeen 
gebruik moet maken van de correlatiecoëfficient r. Maar de vraag 
blijft nog over, welke? Volgens (310.11) laten zich een A / ( en een 
i"y berekenen, alnaar ras k of ras l buiten het fictiefras wordt 
gelaten. 

Om de keuze te bepalen stelle men zich voor dat men uip 
wil schatten aan de hand van Ukp. Proefveld ft moet dan zo goed 
mogelijk op de andere proefvelden zijn gestandaardiseerd omdat 
de standaardisatiefout de grootte van u beïnvloedt. Het „fictief­
ras" van ft moet dus zoveel mogelijk rassen bevatten. Nu kan 
ras k wel in het fictiefras worden opgenomen, maar ras / niet, 
omdat het niet op het veld ft voorkwam. Het is om deze reden 
wenselijk k in het fictiefras te handhaven, en dus / uit te 
sluiten, zodat met de ri/k moet worden gewerkt voor het schatten 
van een opbrengst van l. 

Wij vinden dus als formule voor het schatten van een onbekende 
afwijking uip. 

(311.5) 
Uip 

El 
= Ti ilk 

Ukp 

Sk ' 

Als voorbeeld van het gebruik van deze formule willen wij aan­
nemen, dat wij verwachten, dat ras k6 gecorreleerd is met ras k3. 
Wij willen nu trachten de gestandaardiseerde opbrengst van 
ras k6 op veld ftx te schatten aan de hand van de gestandaardiseerde 
opbrengst J2*31 van ras k3 op dat veld. 

Omdat ras k6 van het fictiefras wordt uitgesloten moeten de 
gegevens van (311.1) opnieuw gestandaardiseerd worden. Dit geeft 

(311.6) ras 
veld | 

Pi 
P2 

Pz 
Pi 

gem. F 

Äi 

646 
680 
721 
684 

683 

K 2 

655 
662 
767 
652 

684 

«3 

802 
689 
756 
684 

733 

K 

636 
662 
466 
674 

610 

*5 

596 
642 

641 

626 

A6 

642 
670 
641 

651 
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Nu kan de opbrengst van ras k6 op veld ftj worden berekend. 
Daartoe moet eerst worden bepaald de gemiddelde opbrengst 
van ras ke op de velden ft2, ft3 en ft4, en de gemiddelde opbrengst 
van ras k3 oft dezelfde velden. We vinden 

(311.7) Gem. van ras kR 651 

k, = 710 . 

De afwijkingen u van k3 en k6 op deze velden zijn dus 

(311.8) ras 
veld | 

P2 
Pz 
Pi 

« 3 

-23 
46 

- 26 

" 6 

- 9 
19 

- 10 

Hieruit laat zich berekenen 

(311.9) [%2] =3233 

[u*] = 542 

[u3u6] = 1323 

e3 = 32.9 

e6 = 13.5. 

Om r«;3 te kunnen berekenen moet o2 nog bekend zijn. 
Wij willen aannemen dat uit het verschil tussen de blokken 

binnen de proefvelden is berekend dat 

(311.10) er2 = 2 5 . 

De grootheid —; is voor ft2, ft3 en fti resp. 1/5,
 1/i en 1/a. De ge-

f/t 

middelde waarde is 

(311.11) - ^ = 0 . 2 2 . 
m 

Uit de cijfers van (311.(9, 10, 1 l)ï laat zich berekenen met behulp 
van (310.11) (n = 3 ) 

1323 
(311.12) TV, = — = = . = = 1.07. 

V(542— 61) (3233 — 39) 
Wij vinden hier dat de correlatie tussen de interpretatiefouten 

groter is dan 1. Dit is natuurlijk onmogelijk. Bij normale correlatie 
is een dergelijke rs&ewresultaat zelfs onmogelijk omdat de be­
rekeningswijze dan geen grotere waarde dan 1 toelaat. Dit hangt 
samen met de speciale f outenwetten van de correlatiecoëfficient. 
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Van de hier gebruikte correlatiecoëfficient 7 ^ (zie form. 310.11) 
hebben wij nog geen foutenwet kunnen opstellen. Doordat in de 
noemer gecorrigeerd wordt met de gevonden waarde van a2, zijn 
de foutenwetten evenwel anders dan van een gewone correlatie­
coëfficient. Waarschijnlijk wordt de middelbare fout er groter 
van, maar dit zegt niets over de vraag of de asymptotische waarde 
van de A a hierdoor ongunstig wordt beïnvloed. Het is mij ook 
niet bekend. Zo lang er niet een betere oplossing is, is het in ieder 
geval beter met (310.11) te werken dan de correlaties tussen de 
rassen te negeren. 

Aangezien wij weten dat F^ slechts groter dan 1 berekend kan 
worden wegens schattingsfouten bij het gebruiken van een op 
schattingen berustende formule, zullen wij de gevonden waarde 
terugbrengen tot 1. 

Hiermee is het voorbeeld niet teruggevoerd tot het probleem dat 
in (311.2) werd besproken, nl. dat van de rassen, die gelijk waren of 
slechts een constante verschilden. Ook in dat geval is A / ; = 1 , 
maar daarbij is tevens sk = ei, wat in dit voorbeeld niet opgaat. 

In ons onderhavig voorbeeld kan men zeggen dat ras k6 op 
dezelfde wijze op de omstandigheden reageert als ras k3, slechts 
is de reactie minder heftig. Om het gemiddeld verschil tussen beide 
rassen te bepalen moeten nu wel de hiaten in het schema worden 
opgevuld. Op veld p1 waar de opbrengst van k3 abnormaal hoog 
was, zal het verschil tussen ks en k6 ook abnormaal groot zijn. 
Dit zal het gemiddeld verschil beïnvloeden. 

De vermoedelijke gestandaardiseerde opbrengst van ras k6 op 
veld p1 berekenen wij nu alsvolgt: Blijkens (311.6) bracht ras k3 op 
veld px 92 meer op dan het gemiddelde in (311.7). Volgens (311.9) 
is dit 2.8 e3. De vermoedelijke opbrengst van ras ks op p-, moet 
dus 2.8 e6 = 38 boven het gemiddelde in (311.7) liggen. Wij vinden 
dus als waarde van deze opbrengst 689. Vullen wij dit bedrag in 
(311.6) in dan vinden wij 

(311.13) ras 
veld | 

Pi 
P2 

Pz 
Pt 

gem. G 

* i 

G46 
680 
721 
684 

683 

rt2 

655 
662 
767 
652 

684 

"3 

802 
689 
756 
684 

733 

A« 

636 
662 
466 
674 

610 

A5 

596 
642 

641 

626 

«6 

689 

642 
670 
641 

661 
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De cijfers van (311.13) zullen nu nog op elkaar moeten worden 
gestandaardiseerd met alle rassen in het fictief ras. Dit geeft 

(311.14) ras 
veld | 

Pi 
P2 
Pz 
Pi 

gem. H 

A, 

641 
682 
718 
687 

682 

«2 

650 
664 
764 
655 

683 

«3 

797 
691 
753 
687 

732 

K 

631 
664 
463 
677 

609 

£5 

591 
644 

644 

626 

/ü6 

684 

644 
667 
644 

660 

Hiermee zijn de berekeningen van dit voorbeeld afgelopen. 
Wij hebben nu dus tweemaal de opbrengst van ras k6 op veld p± 

geschat. Eenmaal in de veronderstelling dat ras k6 identiek is 
met k5 (zie 311.2) en eenmaal in de veronderstelling dat ras ka 

gecorreleerd was met ks. 
Door (311.2) met (311.13) te vergelijken ziet men dat de schat­

tingen sterk uiteenlopen. Wij zullen nu het probleem moeten be­
spreken, hoe deze schattingen op elkaar zouden kunnen worden 
vereffend, wanneer men de beide gemaakte veronderstellingen 
even waarschijnlijk achtte. In het onderhavig geval waren de 
veronderstellingen kwalitatief ongelijk. Eerst werd gelijkheid van 
rassen verondersteld, vervolgens een nauwe correlatie. 

Wij willen liever een voorbeeld geven waar de veronderstellingen 
kwalitatief gelijk zijn, daarom gaan wij uit van de opbrengsten 
van (311.5), die op elkaar gestandaardiseerd zijn, zonder dat k6 

in het fictiefras was opgenomen. 

(311.15) ras 
veld | 

Pi 
P* 
PS 
Pi 
Ps 

gem. 

*i 

646 
680 
719 
684 
669 

680 

Ä9 

655 
662 
765 
652 
669 

681 

«3 

802 
689 
754 
684 
735 

733 

K 

636 
662 
464 
674 
605 

608 

K 

596 
642 

641 
656 

634 

«6 

642 
668 
651 
700 

665 

Wij stellen verder 

(311.16) :25. 

Nu willen wij de opbrengst van ras kü op veld p1 schatten in de 
veronderstelling dat k6 gecorreleerd is met k.a en k5. 
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Voor de correlatie van ke met k3 kunnen wij gebruik maken 
van de 
vinden 7 

(311 .17) 

velden 
wij 

Gem. 

h t/m ps 

opbrengst 

£6 = 

TV = 

, Op 

van 

29.8 

22.1 

dezelfde wijze 

k3 = 715 

= 665 

1849 

als in (311.9 enz 

= 0.723. 

•) 

-v/(3558 —59) (1959 — 91) 

Hieruit laat zich berekenen, als vermoedelijke waarde van de 
opbrengst van ras k6 op veld px, de waarde 711. 

Bovenstaande waarde is natuurlijk berekend met behulp van 
formule (311.5). Voor het onderhavige probleem heeft het evenwel 
zijn voordelen (zoals uit 312 zal blijken) om de waarde van Uip 
met behulp van de lange as (zie 311.3) te schatten, en de i~i/ft te 
beschouwen als het gewicht van de schatting. 

Volgens (311.5) is gevonden wgl = 4 6 (met gewicht 1), volgens 
(311.3) zou gevonden worden u'61 = 6 4 (met gewicht 0.723). Tus­
sen deze uitkomsten is geen verschil volgens de^gewichtenstelling 
(306.9). 
(311.18) Op grond van deze gelijkheid kunnen wij als geschatte 
opbrengst van ras k6 op veld p1 ook geven de waarde 729 (met 
gewicht 0.723). 

Voor de correlatie van k5 en ke kunnen wij gebruik maken van 
de velden p2, pt en p5. De berekening levert: 

(311.19) Gem. opbrengst van k5 = 6 4 6 

„ K = 6 6 4 

e5 = 6.86 

£6 = 25.5 
rv. =1.17. 

In dit voorbeeld ziet men dat e5 nauwelijks groter is dan a 
(Volgens 311.16: a = 5 ) . Hoewel wij bij wijze van illustratie de 
berekening verder zullen voortzetten, moeten wij er toch op 
wijzen, dat dit resultaat het twijfelachtig maakt of ras k5 wel 
systematisch van het fictief ras afwijkt. Wanneer e5 geheel aan het 
toeval is te wijten, is het zoeken van correlaties met systematische 
bestanddelen van e5 natuurlijk onjuist. In het algemeen kunnen 
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wij zeggen dat het gebruik van (310.11) bedenkelijk wordt, wan­
neer de daar genoemde \n [W2ÄJ en ^n[u2i„] niet „betrouwbaar" 
groter zijn dan (n— 1) o2. Deze beperking geeft ook de garantie 
dat de noemer van (310.11) steeds positief is. Om de uiteenzetting-
verder voort te kunnen zetten negeren wij ditmaal dit bezwaar. 

Wij beginnen weer met J1«/,. tot 1 terug te brengen, evenals 
bij (311.12). 
(311.20) Uit (311.19) berekenen wij nu, als vermoedelijke waarde 
van de opbrengst van ras k6 op veld plt de waarde 478 (met ge­
wicht 1). 

Om de beste schatting van de opbrengst van ras k6 op veld px 

te krijgen gaan wij de uitkomsten van (311.18) en (311.20) mid­
delen met behulp van de formule (311.21)' 

Dit geeft 583. 

Ie - [ g x ] 

w 
Blijkens de formule 

is het gewicht van deze uitkomst [g] = 1.723. Het zou echter niet 
juist zijn dit gewicht aan de uitkomst toe te kennen. Men mag 
niet hoger gewicht toekennen dan 1. De reden hiervan zal in 312 
worden besproken. 

Wij nemen dus als geschatte opbrengst van ras k6 op veld py 

de waarde 583 met gewicht 1. Wanneer wij dit getal in (311.15) 
invullen en vervolgens standaardiseren met alle rassen in het 
fictiefras, vinden we (311.22) 

(311.22) ras 
veld | 

Pi 
P2 
Ps 
PK 

Ps 

gem. 

k, 

657 
681 
715 
684 
661 

680 

A2 

666 
663 
761 
652 
661 

681 

"3 

813 
690 
750 
684 
727 

733 

K 

647 
663 
460 
674 
597 

608 

*5 

607 
643 

641 
648 

635 

ftG 

594 

643 
664 
651 
692 

649 

Het is natuurlijk mogelijk de opbrengst van kb op veld p3 ook 
te schatten aan de hand van de correlatie tussen ks en k6. Omdat 
op p3 ras ke wel in het fictiefras kan worden opgenomen en k5 

niet, is het wenselijk in dit geval met r*u te gaan werken. 
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312 - NADER ONDERZOEK VAN DE ONTWIKKELDE METHODEN 

Tot dusver hebben wij in dit hoofdstuk verschillende methoden 
besproken, die gebruikt kunnen worden bij het samenvatten der 
proefveldresultaten. Deze methoden willen wij nu in onderlinge 
samenhang nader bespreken. 

Men moet steeds beginnen met de proeven samen te vatten 
alsof alle rassen van elkaar onafhankelijk zijn (zie 301 en 304). 
De methode, die in 311 is gegeven voor afhankelijke rassen, doet 
niet anders dan de methode van 304 corrigeren. Bij afhankelijke 
rassen heeft men dus een samenvatting volgens 304 nodig als 
uitgangspunt van de verdere berekening. 

Wanneer de proeven op elkaar gestandaardiseerd zijn, kan 
men controleren of er afhankelijkheid tussen sommige rassen op­
treedt. Bij schema's die geheel of bijna orthogonaal zijn, zal dit 
het best gaan aan de hand van de stellingen die uit de formules 
(302.4) en (303.4) zijn afgeleid. Wanneer er geen afhankelijkheid 
is moeten de asymptotische waarden van de interpretatievarians 
van de verschillende rassen gelijk zijn; is er wel afhankelijkheid, 
dan is de asymptotische waarde van de interpretatievarians voor 
de afhankelijke rassen kleiner. Aangezien de middelbare toevallige 
fout voor alle rassen vaak ook gelijk is, gelden bovenstaande 
stellingen ook voor de asymptotische waarden van [u2] van 
ieder ras. 

Wanneer de schema's onvolledig zijn geldt deze controle niet 
meer. Bij het standaardiseren zal een proefveld met weinig rassen 
meer van de toevallige fouten door de milieugunstigheid weg 
kunnen verklaren (zie voor dit begrip tussen (310.6) en (310.7)) 
dan een met veel rassen. Zo zal ook het gemiddelde van een ras 
dat weinig voorkomt, de fouten beter weg kunnen verklaren 
dan het gemiddelde van een ras dat vaak voorkomt. Uit (301.16) 
blijkt duidelijk dat er een tendens is dat bij een gegeven tup de Ukp 
kleiner wordt naarmate m en n kleiner zijn. Uit (301.24) blijkt 
eveneens dat, bij een gegeven ikp, Ukp kleiner wordt naarmate 

'n kleiner wordt. Wegens de definitie van het fictief ras zal een 
kleine m vaak een verkleining van ikp zelf tot gevolg hebben. 

Bovenstaande tendens is min of meer te vermijden door het 
onderzochte ras k buiten het fictiefras te houden. Dan hebben de 
fouten van k geen invloed op de standaardisatie en worden dus 
ook niet gedeeltelijk daardoor weg verklaard. De invloed van het 
rasgemiddelde blijft natuurlijk bestaan, zodat niet zonder meer 
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de vormen [M2] met elkaar kunnen worden vergeleken. Voor ieder 
ras moet de vorm 

ipk 2 fWfe [Uk2] 

nk—l' 

bepaald worden, waarbij nu het aantal velden aangeeft waarop 
ras k voorkwam. 

Het is dus aan te bevelen bij onvolledige schema's de standaardi­
satie m maal over te doen met telkens een ander ras buiten het 
fictiefras gesloten. In 309 is besproken hoe deze m standaardisaties 
gemakkelijk uit de standaardisatie met volledig fictiefras kunnen 
worden afgeleid. Uit deze m standaardisaties zijn nu voor telkens 
een ander ras m schattingen van ip2 te berekenen, die ongeveer 
gelijk moeten zijn. Vindt men nu rassen met een kleine yj2 dan 
zijn die vermoedelijk onderling gecorreleerd. 

Het is misschien gewenst er op te wijzen, dat bovenstaande 
methode slechts een globale indruk kan geven. Wanneer er b.v. 
twee rassen zijn, die precies gelijk zijn aan het fictiefras, dan zal 
hun interpretatief out steeds 0 zijn. Dit houdt in dat ze onderling 
niet gecorreleerd zijn in hun interpretatiefout, en toch een kleine 
rp2 hebben. Bovenstaande controle kan dus niet meer dan een 
aanwijzing geven. 

Waarschijnlijk is het meestal nog beter eerst grafisch te con­
troleren of er een correlatie verwacht kan worden. Dit zal meestal 
direct kunnen na de berekening van 304. 

Nauwkeuriger controle bereiken we door gebruik te maken van 
(302.10) of van de methoden, die in 310 genoemd zijn. Deze con­
trole is dan ook steeds gewenst wanneer men in onzekerheid ver­
keert. Komt men tot de conclusie, dat er inderdaad afhankelijkheid 
van rassen optreedt, dan moeten onvolledige schema's worden 
samengevat volgens de principes van 311. Daar spraken wij er 
reeds over dat dit beslist noodzakelijk is om goede uitkomsten te 
krijgen. Op deze noodzaak willen wij nu iets dieper ingaan. 

Bij het trekken van conclusies moet gelet worden op de zin van 
het proefveld, zoals wij die in 201 bespraken. Daar hebben wij 
met elkaar vergeleken de mogelijkheid het rassenonderzoek te 
verrichten door middel van enquêtes en door middel van een 
proef veldonderzoek. Het bezwaar van de enquêtes is, dat het 
onderzochte gebied niet homogeen is, zodat er groot gevaar is 
dat het ene ras steeds gunstige omstandigheden treft en het andere 
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niet. Het is nu de taak van het proefveldonderzoek de relatieve 
gevoeligheid van de rassen voor de omstandigheden te verminderen, 
door alle rassen onder dezelfde omstandigheden te vergelijken. Het 
proefveldonderzoek leidt tot het begrip „fictiefras" en het begrip 
„interpretatiefout", wat hier het systematisch verschil tussen op­
brengst van ras en fictief ras op een bepaald proefveld betekent. 

Het bovenstaande is scherp gedefinieerd zolang alle onder­
zochte rassen op alle proefvelden hebben gestaan, dus zolang het 
schema orthogonaal is. Met niet-orthogonale schema's is dit niet 
meer het geval. Wanneer het ene ras gedeeltelijk op andere proef­
velden wordt beproefd dan het andere, verkeert men in een 
situatie, die het midden houdt tussen een enquête en een proefveld­
onderzoek. Immers, nu is de kans in zekere mate aanwezig dat het 
ene ras betere omstandigheden treft dan het andere. De prin­
cipiële vraag is nu: hoe kan men bereiken, dat het cijfermateriaal 
zoveel mogelijk aan een proefveldonderzoek doet denken en zo 
weinig mogelijk aan een enquête. 

Men zal zijn materiaal slechts dan als een normaal proefveldon­
derzoek kunnen benutten, wanneer men kans ziet alle ontbrekende 
opbrengsten te berekenen uit de aanwezige cijfers. Dit is het wat 
we in 304 hebben gedaan. Wanneer men b.v. in (304.12) voor alle 
ontbrekende opbrengsten het berekende rasgemiddelde invult, 
zullen er geen andere gemiddelde opbrengsten worden berekend, 
wanneer ook deze geschatte opbrengsten in het gemiddelde wor­
den opgenomen. Men zou (304.12) dus ook alsvolgt weer kunnen 
geven 

(312.1) 

ras 
veld | 

a 
b 
c 
d 
e 

f 
g 
h 
i 
k 

l 

694 
664 
646 
665 
679 
653 
638 
707 
638 
664 

665 

m 

690 
720 
705 

70S 

705 

70S 

705 

705 

705 

705 

705 

M 

653 

653 

634 
686 
657 
664 
649 
580 
697 
660 

653 

P 

630 
612 
660 
666 
626 
667 
643 

643 

643 

643 

643 

? 

705 

705 

705 

705 

705 

705 

724 
714 
689 
693 

705 

r 

661 

700 
659 
615 
661 

661 

660 
672 
661 

661 

661 

s 

686 

714 
689 
659 
686 

686 

675 
692 
686 

686 

686 

t 

668 

668 

668 

668 

668 
668 

668 

668 

668 

668 

668 

u 

697 

700 
718 
697 

697 

688 
718 
702 
697 

654 

697 

652 

602 
652 

671 
652 

639 
652 

651 
652 
700 

652 
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Wij kunnen dus zeggen dat 304 een bepaalde techniek geeft 
om opbrengsten te schatten van onafhankelijke rassen. Deze 
techniek komt hierop neer dat men voor een bepaald proef­
veld nagaat hoeveel de opbrengsten van de verbouwde rassen ge­
middeld boven of beneden hun resp. rasgemiddelden zijn gebleven. 
Men veronderstelt nu dat de niet verbouwde rassen ook zoveel 
boven of beneden hun resp. gemiddelden zouden zijn gekomen, 
als ze er ook verbouwd waren. Door de standaardisatie worden 
deze veronderstelde opbrengsten dan gelijk aan het bijbehorend 
gemiddelde. 

Het is onwaarschijnlijk dat die veronderstelling voor een be­
paald proefveld juist is. Waren de rassen verbouwd dan hadden 
ze ook een interpretatiefout gegeven. Toch is de veronderstelling 
niet zinloos. Statistisch is zij juist, d.w.z. wanneer men een aantal 
opbrengsten van een ras schat, zullen er ongeveer evenveel te 
hoge als te lage schattingen bij zijn; wanneer men één opbrengst 
schat, is er evenveel kans dat hij te hoog is als te laag. 

Die gelijkheid van kans berust niet op de omstandigheden van 
het proefveld. Deze omstandigheden kunnen zeer wel maken, 
dat het ras er een abnormaal hoge of een abnormaal lage opbrengst 
zou geven. Maar over het aanwezig zijn van die omstandigheden 
weet men gewoonlijk niets, anders rekende men er wel mee. In 
zijn kansenwaardering houdt men zich dus bezig met de kans­
verdeling van de onbekende omstandigheden, die oorzaak zijn 
van de interpretatiefout. Van deze interpretatiefouten zal men 
vaak aan moeten nemen dat ze tamelijk normaal om het berekende 
gemiddelde verdeeld zijn, uit gebrek aan betere gegevens. 

Om met deze globale aanname te kunnen werken, moet men 
dus weten dat er inderdaad geen betere gegevens zijn. Dit is de 
achtergrond van het onderzoek van de correlaties. Wanneer van 
het onderzochte ras de interpretatiefout gecorreleerd blijkt met de 
interpretatiefout van een ander ras, is er meer over de kansver­
deling van deze interpretatiefout bekend dan boven en in 304 
verondersteld werd. 

Wanneer b.v. bekend is dat ras / in zijn interpretatiefouten vol­
ledig gecorreleerd is met een ander ras k (-H/fc = 1)> dan zal, al 
mogen de omstandigheden van een proefveld p niet met name 
bekend zijn, de reactie van ras l daarop toch wel volledig be­
paald zijn. Dit geeft de mogelijkheid de ontbrekende opbrengst van 
ras / op veld p nader te berekenen. Van deze mogelijkheid moet 
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gebruik worden gemaakt. Immers de berekening van 304 geeft 
blijkens (312.1) ook een schatting van de opbrengst en wel een 
foutieve. 

De opbrengst van ras l, die men aan de hand van de correlatie 
berekent, behoeft niet gelijk te zijn aan de opbrengst die in wer­
kelijkheid verkregen zou zijn, als het ras inderdaad verbouwd was. 
De geschatte opbrengst moet statistisch juist zijn, d.w.z. de kans 
op een positief verschil tussen schatting en werkelijkheid moet 
even groot zijn als de kans op een negatief verschil. 

Ondertussen kan dit verschil wel erg groot zijn. Immers alle 
beschikbare gegevens zijn behept met een toevallige fout. Dit 
geldt met name van de opbrengst van ras k op veld p. Deze toe­
vallige fouten kunnen sterk vergroot worden bij het berekenen 
van de geschatte opbrengst. Zo is bij het berekenen van (311.20) 
niet alleen de interpretatiefout van i3*51, maar ook de toevallige 

25.5 
fout vermenigvuldigd met Ö-K^. Men mag dus verwachten dat de 

toevallige fout van de geschatte ß* 6 1 minstens viermaal zo groot 
is als die van de bestaande opbrengst cijfers. 

Dit mag evenwel geen reden zijn aan de schatting een laag 
gewicht, b.v. T\, toe te kennen. Blijkens de gewichtenstelling, 
(met uitvoerige motivering bij 306.9), zou dit er op neerkomen 
dat de interpretatiefout door 16 gedeeld werd. Daarmee zou de 
schatting zijn statistische juistheid verliezen, omdat het teken 
van de interpretatiefout niet toevallig is. Niettegenstaande de grote 
verschillen in toevallige fout moeten alle gewichten dus gelijk 
worden genomen. 

In het algemeen kunnen wij als regel stellen, dat de toe te kennen 
gewichten uitsluitend af mogen hangen van de interpretatiefouten, 
wanneer er in het materiaal interpretatiefouten en toevallige fouten 
beide voorkomen. Deze regel vindt slechts hierin zijn beperking dat 
het soms beter kan zijn een kleine systematische fout te maken dan een 
grote toevallige. Het is hier niet de plaats uit te zoeken wanneer 
met deze beperking rekening moet worden gehouden. 

Wij hebben tot dusver in deze paragraaf twee uitersten ge­
noemd: onafhankelijkheid van de interpretatiefouten en absolute 
correlatie. In het laatste geval was alles over de ontbrekende 
interpretatiefout te berekenen. Aan deze berekende waarde kon 
dus het gewicht 1 worden toegekend. In geval van onafhankelijk-

10 
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heid is niets over de interpretatiefout bekend, d.w.z. dat in dit 
geval aan het rekenresultaat de waarde 0 moet worden gegeven. 
Blijkens de gewichtenstelling behoeft dit niet in te houden dat 
g = 0 wordt gesteld, het is voldoende dat gu de waarde 0 krijgt. 
Men kan nu twee wegen bewandelen om gu = 0 te bereiken. 
In de eerste plaats kan men g = 0 stellen, en de u onbepaald laten; 
dit deden wij in 304, waar wij geen geschatte opbrengsten ver­
meldden omdat het gewicht toch 0 was. Men kan evenwel ook 
g = 1 stellen en u = 0. Dit deden wij in (312.1), waar wij wel 
opbrengsten vermeldden met gewicht 1, maar waar de u steeds 
0 was. 

Wanneer de Fijk in absolute waarde tussen 0 en 1 ligt, is er 
natuurlijk een tussenpositie tussen beide uitersten. Er bestaat 
wel een band, maar die band is niet absoluut. Hoe groter de corre-
latiecoëfficient, des te steviger de band. 

Voor dit geval hebben wij in (311.5) een formule gevonden, die 
een statistisch juiste schatting toelaat van de ontbrekende op­
brengsten. Dat deze schatting statistisch juist is betekent niet 
dat de interpretatielout juist wordt geschat. Voor de interpretatie-
fout bestaan er drie mogelijkheden: De schatting volgens (311.5) 
kan te klein zijn, goed, of te groot. Dat de schatting statistisch 
juist is betekent, dat niet alleen de toevallige fout asymptotisch 
0 wordt, maar dat ook de te grote en de te kleine schattingen van 
het systematisch deel van uip elkaar asymptotisch in evenwicht 
houden. 

Omdat de schatting statistisch juist is, moet ze in de berekening 
het gewicht 1 hebben, zoals wij zo juist op grond van de gewichten­
stelling nog eens mochten formuleren. Een ander gewicht verandert 
immers feitelijk de grootte van de geschatte interpretatiefout. 

Wanneer ras l alleen met één bepaald ras k is gecorreleerd, valt 
er over de vraag, of in de berekende uip de interpretatiefout te 
groot of te klein geschat is, niets te zeggen. Anders wordt dit, 
wanneer ras l gecorreleerd is met twee rassen kx en k2. Wanneer 
de uip die aan de hand van k2 wordt berekend tegengesteld is 
aan de uip die aan de hand van Aj is berekend, dan maken 
beide schattingen elkaar dubieus. 

Wanneer uip aan de] hand van beide correlaties gelijk berekend 
wordt zijn er nog weer twee mogelijkheden: Door de correlatie 
met k1 en die met k2 zijn dezelfde vruchtbaarheidselementen aan-
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gewezen, die interpretatiefouten geven, of er zijn ongelijke vrucht-
baarheidselementen aangewezen. 

Wanneer ongelijke vruchtbaarheidselementen zijn aangewezen 
moeten de beide gevonden waarden van uip bij elkaar worden 
opgeteld, immers beide groepen vruchtbaarheidselementen drijven 
de uip in de gevonden richting, min of meer onafhankelijk van 
elkaar. 

Wanneer dezelfde vruchtbaarheidselementen zijn aangewezen, 
moeten beide waarden uip als twee berekeningen van dezelfde 
grootheid worden gezien. In dit geval moeten de gevonden waarden 
van uip dus worden gemiddeld. Dit laatste is stellig het geval wan­
neer de A1 en k2 onderling volledig zijn gecorreleerd. 

Wanneer kx en k2 onderling niet volledig zijn gecorreleerd is 
minder gemakkelijk te zeggen in welke geval men verkeert. Toch 
vallen hier wel enkele regels op te stellen. Wanneer namelijk ras 
l volledig met ras kx is gecorreleerd, dan is het onmogelijk, dat de 
correlatie met k2 vruchtbaarheidselementen aanwijst, die niet 
door de correlatie met kx zijn aangewezen. In dit geval is optelling 
van de gevonden waarden van uip dus ongeoorloofd. Naarmate de 
correlaties zwakker worden is er meer kans dat er ongelijke vrucht­
baarheidselementen door de verschillende correlaties worden aan­
gewezen. Er moet dus een samenvattingswij ze zijn, die naar het 
additieve helt, wanneer de correlaties klein zijn, en naar het mid­
delen, wanneer de correlaties groot zijn. 

Een dergelijke berekeningswijze is te vinden, wanneer we de 
afwijking uip schatten volgens de formule 

Ulp _ Ukp 

ei eu 

en aan deze schatting het gewicht J//A toekennen. Deze methode 
hebben wij gevolgd bij de bespreking van (311.15), zoals in de 
tekst onder (311.17) is uiteengezet. 

Bij (311.21) hebben wij gezegd dat men de opbrengsten, die zo 
uit de verschillende correlaties zijn berekend, moet middelen met 
de formule 

(311.21) x=M 

en dat aan de aldus berekende x het gewicht [g] moet worden 
toegekend, mits [g] niet groter is dan 1. In het licht van bovenstaande 
overwegingen worden deze voorschriften duidelijk. Voor zover 
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de berekende afwijkingen van het oorspronkelijke gestandaardi­
seerde gemiddelde elkaar tegenspreken heffen ze elkaar bij de 
toepassing van (311.21) op. Aangezien blijkens de gewichtenstelling 
de waarde gu feitelijk de invloed van de afwijking meet (dus het 
effectief gewicht is), kunnen wij zeggen dat het effectief gewicht 
van tegenstrijdige schattingen ongeveer 0 wordt. 

Voor zover de berekende afwijkingen overeenstemmen, worden 
ze opgeteld zolang [g] < 1, dus bij lage correlaties; en ze worden 
steeds meer gemiddeld, zodra [g] > 1, terwijl er zuiver van mid­
delen sprake is zodra iedere g, dus iedere correlatie 1 is. 

Tenslotte willen wij er nog op wijzen, dat het voor kan komen 
dat waarden uip die op grond van hoge correlaties zijn berekend 
elkaar tegenspreken. In dit geval zijn de correlatiecoëfficienten 
ten onrechte te hoog geschat, meestal wegens het toeval. Ook hier 
geldt dat het gemiddelde van de geschatte waarden uip dan naar 
verhouding klein wordt, zodat ook hier het effectief gewicht uit­
eindelijk laag is. 

In deze paragrafen hebben wij dus een aantal voorschriften 
gegeven, die beter zijn dan het negeren van de correlatie verschijn­
selen. Maar de voorschriften zijn niet streng mathematisch af­
geleid. Het is: bij gebrek aan beter. 

313 - ONDERZOEK VAN DE INTERPRETATIEFOUT 

Tot dusver hebben wij veel gesproken over de interpretatiefout 
als functie van de proefveldinvloeden, maar wij hebben nog niet 
nagegaan, hoe het verband tussen omstandigheden en interpretatie­
fout was. Wel hebben wij door een correlatierekening soms trachten 
op te sporen hoe een interpretatiefout op een bepaald veld af kan 
hangen van onbekende omstandigheden, die een bekende uit­
werking hebben op een ander ras. 

Wanneer de omstandigheden van de proefvelden met name 
bekend zijn, kan getracht worden de interpretatiefout als functie 
van de met name bekende invloeden te zien. Hierbij moet het 
probleem besproken worden op welke wijze de interpretatiefout 
het gemakkelijkst kan worden uitgedrukt. 

Wanneer met een orthogonaal schema kan worden gewerkt is de 
interpretatiefout eenvoudig te benaderen. Blijkens (301.24) is het 
systematisch deel van 

[ik-n ! 
^ - n 
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\ikir] 
Aangezien de vorm - — gedurende het onderzoek van ras k con-

n 
stant is, en dus geen invloed heeft op de reactie van Ukp op de 
omstandigheden, kan men Ukp als beste benadering van ikp zien. 
De asymptotische waarde van de toevallige fouten is natuurlijk 
ook 0. Men kan de waarden Ukn dus gewoon bestuderen aan de hand 
van de bekende omstandigheden. 

Bij onvolledige schema's is de werkwijze minder van zelf sprekend. 
Bij het standaardiseren zullen alle geschatte opbrengsten het best 
mee kunnen tellen. Het schatten heeft juist ten doel het samen­
vatten der proefvelden, en dus ook het standaardiseren te ver­
beteren. 

Voor het verder onderzoek zijn de geschatte cijfers misschien 
niet altijd even waardevol. Het probleem is nu immers niet, hoe 
een aantal rassen onder dezelfde omstandigheden, kunnen worden 
vergeleken, waarbij nergens een hiaat mag zijn; maar nu is de 
vraag, hoe de ene grootheid een functie is van de ander. Hierbij 
is het vaak niet belangrijk of er een gegeven meer of minder is. 

Veronderstel b.v. dat men het verband tussen interpretatiefout 
en pH grafisch wil weergeven. Dan is het ideaal een nauwe punten-
bundel te vinden. Een cijfer moet dus niet alleen statistisch juist 
zijn, maar ook een kleine toevallige fout hebben. Het is duidelijk 
dat de gewichten nu volgens geheel andere principes moeten 
worden toegekend, dan bij het samenvatten der proefvelden, 
en dat met name die schattingen, die een gewicht g — 1 kregen, 
omdat de u toch 0 was, bij een onderzoek, zoals nu bedoeld, vaak 
het gewicht 0 zullen moeten krijgen. Zo zullen de meeste schat­
tingen waarschijnlijk waardeloos zijn. 

Maar ook aan de waargenomen cijfers kleven moeilijkheden. 
Hoe minder rassen op een proefveld, hoe beter kan het fictiefras 
zich aan de voorhanden rassen aanpassen, dus des te kleiner 
interpretatiefout moet worden verwacht. Dit ongemak kan worden 
voorkomen door het onderzochte ras buiten het fictiefras te sluiten, 
een middel dat wij reeds vaker aanbevalen. Dit kan evenwel weer 
het bezwaar opleveren, dat ieder ras in verband met een ander 
fictiefras wordt beschouwd. Hier moet dus even op gelet worden. 

Op welke wijze het verband tussen de interpretatiefouten en de 
omstandigheden nader moet worden onderzocht, willen we niet 
nagaan. Het is voldoende er op te wijzen dat de interpretatie­
fouten continue grootheden zijn, evenals de omstandigheden 

file:///ikir
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meestal. Over de methodiek die voor dit soort problemen gewenst 
is zijn reeds vele onderzoekingen verricht, o.a. door Ir W. C. 
VISSER. 

Het spreekt van zelf dat de milieugunstigheid Mp op dezelfde 
wijze tegen de omstandigheden kan worden afgezet als de inter­
pretatief outen. Als resultaat hiervan zal men een nader inzicht 
in de reacties van het gewas kunnen krijgen. 

Voor zover de interpretatiefouten als functie van verschillende 
invloeden zijn begrepen, kunnen ze voor de omstandigheden 
worden gecorrigeerd. Het is niet uitgesloten dat na alle toe te 
passen correcties blijkt dat de interpretatiefouten nog niet geheel 
zijn verklaard. Bij het beoordelen van deze kwestie moet men be­
denken, dat iedere correctie met een fout behept is en dus de 
toevallige fout van het nog verder te corrigeren cijfer vergroot. 
Men moet zich dus steeds afvragen, hoe groot de toevallige fout 
langzamerhand geworden is. Wanneer zeer zeker de afwijkingen 
nog groter zijn dan de vergrote toevallige fout, is op bepaalde in­
vloeden niet gelet. Men staat dan voor de taak uit te zoeken welke 
invloeden dat geweest kunnen zijn. Bij dit zoeken kan het steun 
geven, wanneer men weet welke proefvelden op elkaar gelijken, 
wat de reactie van de rassen betreft. Van zulke proefvelden kan 
men nagaan welke eigenschappen ze gemeen hebben. 

Om n proefvelden met ieder m rassen in een aantal groepen 
verwante velden in te delen, zou men als volgt te werk kunnen 
gaan. Men rangschikt de velden volgens opklimmende waarde 
van u\p (de afwijking van ras kx op de diverse velden). De n proef­
velden laten zich zo in a klassen verdelen met ieder ongeveer 
evenveel velden. 

Binnen iedere klasse rangschikt men dan de velden naar op­
klimmende waarde van u^p. Zo laat iedere klasse zich weer in 
a klassen onderverdelen. Men heeft dan «2 klassen. Met de m rassen 
vindt men zo am~l klassen. (De interpretatiefouten van het me 

ras zijn volledig afhankelijk van de eerste (m — 1)). 
In iedere klasse moeten minstens 2 velden voorkomen, het 

"Vb 

hoogst toelaatbare aantal klassen is dus -y. Uit de formule 

n < y 

laat zich nu berekenen hoe groot a hoogstens gekozen mag 
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worden. Het spreekt van zelf dat deze formule slechts als oriën­
terend is bedoeld. 

Misschien is het soms ook mogelijk op dezelfde manier als in 
(305.1) de gestandaardiseerde (zie begin van 309) opbrengsten te 
verwerken en met behulp van de gevonden grootheden raa, ?ab enz. 
correlatiecijfers tussen de verschillende proefvelden te berekenen. 
Wanneer iemand deze mogelijkheid practisch wil toepassen moet 
hij vooraf bedenken dat het aantal onbekenden gelijk is aan de 
som van het aantal proefvelden en het aantal rassen, min 1. Wan­
neer hij niet over benaderingsmethoden beschikt om zulke grote 
vergelijkingen op te lossen is het meestal practisch onuitvoerbaar. 



IV - HET BEREKENEN VAN VRUCHTBAARHEIDS-
CORRECTIES OP AFZONDERLIJKE PROEFVELDEN 

401 - D E AARD VAN DE VRUCHTBAARHEIDSCORRECTIE 

In het vorig hoofdstuk hebben wij gesproken over het samen­
vatten van de resultaten van verschillende proefvelden. Deze 
proefvelden konden in milieugunstigheid Mp aanzienlijk uit elkaar 
lopen. Door deze verschillen had de rassenvergelijking erg kunnen 
worden bemoeilijkt, wanneer wij niet in 202 reeds het begrip 
„rekenopbrengst" hadden ingevoerd, dat deze moeilijkheden 
grotendeels wegnam (zie formule 202.6). Dank zij dit begrip kan 
de conclusie van hfdst. I l l alsvolgt in het kort worden weergegeven: 
Bij niet-orthogonale schema's moeten de proefvelden op elkaar 
worden gestandaardiseerd, om de juiste rasgemiddelden te be­
rekenen (zie b.v. 304); bij orthogonale schema's is dit niet nodig 
(zie 301.5). Wanneer de juiste re^ewopbrengsten worden gebruikt, 
komt bij orthogonale schema's een extra gunstig milieu alle rassen 
evenveel ten goede, een extra ongunstig milieu geeft alle rassen 
evenveel nadeel. Het heeft in dat geval dus bij orthogonale sche­
ma's geen invloed op de berekende rasverschillen of op de ver­
schillen in milieugunstigheid wordt gelet. 

Toch worden deze verschillen gewoonlijk in het onderzoek 
betrokken. Hun aanwezigheid veroorzaakt dat er een grote toe­
vallige fout wordt berekend, wanneer niet nagegaan wordt in 
hoeverre deze berekende fout aan milieu-omstandigheden moet 
worden geweten. Het rekenen met de milieugunstigheid heeft in 
dit geval dus niet het doel, de rasverschillen beter te leren kennen, 
maar de berekende fout kleiner te maken, en zo een gunstiger 
indruk te krijgen van de betrouwbaarheid van het resultaat. 

De methode, die aan het gehele proefveld één gunstigheid Mp 
toekent, is in dit geval ook zeer voor de hand liggend. De ver­
schillen in milieugunstigheid worden veroorzaakt, doordat het 
ene proefveld in het Noorden lag, een ander in het Zuiden; het 
ene werd vroeg gezaaid, een ander laat; het ene werd goed be­
mest, een ander matig, het ene had een gcede ontwatering en 
een ander een slechte. Kortom, de omstandigheden van de ver­
schillende proefvelden kunnen zozeer uiteenlopen, dat het van­
zelfsprekend is, een proefveld als een eenheid te zien. 
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Dezelfde rekentechniek, die gebruikt wordt voor het samen­
vatten van proefvelden, wordt vaak aangewend bij het verwerken 
van de resultaten van één proefveld, wanneer dat proefveld van 
alle objecten enkele herhalingen heeft. Een zeer gebruikelijke 
aanleg verdeelt het proefveld in n blokken en plaatst in ieder 
blok de m objecten (b.v. rassen) eenmaal. Wanneer er gunstigheids-
verschillen in het veld zijn, zal het ene blok het waarschijnlijk 
iets gunstiger treffen dan het andere. De meerdere of mindere 
gunstigheid van een blok kan nu op dezelfde wijze in rekening 
worden gebracht als de meerdere of mindere gunstigheid van een 
bepaald proefveld. En ook nu zal het resultaat zijn, dat de be­
rekende rasverschillen niet veranderen, doch dat de berekende 
fout kleiner wordt. 

Voor het verwerken van één proefveld is bovenstaande methode 
ongetwijfeld toelaatbaar, maar niet vanzelfsprekend. Binnen een 
proefveld zijn er maar weinig oorzaken van verschillen in milieu-
gunstigheid. Het zijn de oorzaken die samengevat worden in het 
begrip vruchtbaarheid. Om de gedachten te bepalen neme men aan 
dat men een strokenproef heeft met 3 blokken en 5 rassen. In 
zo'n proef komen dus 15 veldjes voor, die op één rij liggen. De 
eerste vijf veldjes vormen een blok, de tweede en derde vijf even­
eens. Wanneer nu uit de berekening blijkt dat het eerste blok 
per veldje 5 eenheden vruchtbaarder is dan het gemiddelde, dat 
het tweede blok de gemiddelde vruchtbaarheid heeft, en het derde 
blok 5 eenheden beneden het gemiddelde ligt, dan kan inderdaad 
met deze cijfers als . ,blokgunstigheid" worden gerekend. 

Het ligt evenwel meer voor de hand uit bovenstaande gegevens 
af te leiden, dat de vruchtbaarheid regelmatig 5 eenheden daalt 
per 5 veldjes en dus 1 per veldje. Dit geeft de mogelijkheid, aan de 
hand van dezelfde rekenresultaten een vruchtbaarheidscorrectie 
binnen de blokken toe te passen. In figuur (401.1) zijn beide cor­
recties in beeld gebracht. 

(401.1) 
___ 

" • - - " -

f , 2 , 3 , 4 , 5 

i« Mok 

' i ' i ' i • i " 

2« Mill 

-^^^ 

II | 12 | <3 , ,4 | 15 

3 ' Wok 
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Wanneer men voor ieder blok een bepaald vruchtbaarheids­
niveau aanneemt, krijgt men een vruchtbaarheidsverloop, zoals 
door de trapjeslijn is aangegeven. Wanneer men ook binnen de 
blokken corrigeert vindt men een vruchtbaarheidsverloop, zoals 
de stippellijn aangeeft. 

Voor de proefveldverwerking zijn beide methoden geoorloofd, 
maar wij kunnen ons toch niet aan de indruk onttrekken, dat de 
methode, die binnen de blokken corrigeert, natuurlijker is. De 
indeling in blokken heeft een kunstmatig karakter, dat niet door de 
proefveldomstandigheden wordt gerechtvaardigd. Het is onwaar­
schijnlijk dat veldje no. 5 even vruchtbaar is als veldje no. 1, doch 
veel vruchtbaarder dan veldje no. 6. Een blok is slechts een kunst­
matige eenheid, en wanneer men bij een vruchtbaarheidscorrectie 
met zulke kunstmatige eenheden wenct, kan men niet anders 
dan tamelijk ruwe correcties toepassen. 

In de termen van R. A. F ISHER uitgedrukt kunnen wij zeggen 
dat een vruchtbaarheidscorrectie, die slechts met blokverschillen 
(subblokverschillen) werkt, wel ,,consistent", maar niet „effi­
cient" is. 

Dit gebrek aan „efficiency" uit zich niet alleen hierin, dat de 
vruchtbaarheid slechts globaal wordt uitgeschakeld. Een tweede 
bezwaar is, dat er vaak te veel vrijheidsgraden worden gebruikt. 
In voorbeeld (401.1) zijn er 2 vrijheidsgraden nodig om met de 
blokverschillen te rekenen, terwijl met 1 vrijheidsgraad kan worden 
volstaan om vast te leggen dat de vruchtbaarheid 1 eenheid per 
veldje daalt. 

Zo heeft men b.v. bij een Latijns vierkant met 8 objecten 
(en dus 8 rijen en 8 kolommen) 14 vrijheidsgraden nodig om 
de vruchtbaarheidsverschillen van de rijen en de kolommen vast 
te leggen, dat is meer dan één per vijf veldjes. Het is duidelijk 
dat de vruchtbaarheidscorrectie niet veel zou veranderen, wan­
neer de vruchtbaarheid van de Ie, de 3e, de 5e en de 7e kolom 
berekend werd, terwijl de andere vruchtbaarheden hiertussen 
werden geïnterpoleerd. Wanneer men hetzelfde voor de rijen 
deed, zou in totaal met 8 vrijheidsgraden kunnen worden vol­
staan. Nu willen wij niet graag beweren dat de vrijheidsgraden 
dan wel efficient waren gebruikt, maar het zou al een hele be­
sparing zijn. 

Wij willen nu dus nagaan hoe we een vruchtbaarheidscorrectie 
aan moeten vatten om zo natuurlijk en dus zo efficient mogelijk 
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te werken *). Daartoe moet men allereerst letten op het veld, 
waarop de proef genomen wordt. Dit veld heeft bijna altijd een 
geologische wordingsgeschiedenis achter de rug, die maakt dat er 
allerlei banen en uitzonderlijke hoeken in aanwezig zijn, meestal 
in de ondergrond. Er kunnen b.v. door het veld sporen lopen van 
allerlei kreken met hun oeverwallen. Dit kan op korte afstand 
soms grote verschillen in vruchtbaarheid geven. Vruchtbaarheids-
verschillen van 10% op 20 meter afstand zijn geen zeldzaam 
verschijnsel. 

Wanneer men een dergelijk veld als proefveld gebruiken, moet 
men op twee dingen letten: 

In de eerste plaats zijn de veranderingen van vruchtbaarheid 
in de regel continu, er kan een vruchtbaarheidskaart getekend 
worden zonder plotselinge overgangen. Op de enkele uitzonde­
ringen op deze regel willen wij niet ingaan. 

In de tweede plaats zijn de vormen van de kreken en zand-
ruggen zelden in wiskundige formules te vangen. Het verloop 
van een zandrug of andere eigenaardigheid moet aan zekere wetten 
beantwoorden, maar die wetten zijn er niet op gericht, met weinig 
constanten beschreven te kunnen worden. 

Wanneer men b.v. ergens een strokenproef zou aanleggen met 
100 veldjes in één rij, dan zou de vruchtbaarheidskaart hoogst­
waarschijnlijk gekenmerkt worden door een aantal maxima en 
minima. Laten wij nu aannemen dat de minima worden veroor­
zaakt door een kreek en de maxima door een zandrug, dan is het 
geologisch duidelijk dat het vruchtbaarheidsverloop van de ene 
kant van een kreek samenhangt met het verloop aan de andere 
kant. Een kreek moet nu eenmaal twee zijden hebben. Maar het 
is [evenzeer duidelijk dat het verband tussen de beide oevers 
tamelijk los is. Wanneer iemand de ene oever kent, weet hij nog 
de breedte van de kreek niet, en dus ook niet de plaats van de 
andere oever. Zo is ook de gedetailleerde vorm van die oever niet 
af te leiden. 

Wij kunnen zo verder gaan en zeggen dat de plaats van de ene 
kreek geen conclusies toelaat over de plaats van de volgende. 
Kortom, uit de vruchtbaarheid op een bepaald veldje valt weinig 
af te leiden over de vruchtbaarheid van een ander veldje dat 
b.v. 30 m verder ligt. 

*) Aan het eind van 404 wordt er op gewezen dat de efficiëntie van de 
hier gegeven methode ook tegen kan vallen. 
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Wij kunnen dus zeggen: De vruchtbaarheid van dicht bij elkaar 
gelegen veldjes hangt ten nauwste samen, omdat de vrucht­
baarheid continu verloopt, maar de vruchtbaarheid van verder 
uit elkaar liggende veldjes heeft weinig samenhang, omdat een 
geologische detailkaart weinig extrapolaties toelaat. 

Bovengenoemde eigenaardigheden van het veld zijn bepalend 
voor de wijze van vruchtbaarheidscorrectie. Wij wezen er reeds 
op dat die correctiesystemen, die de vruchtbaarheid als een dis­
continue grootheid zien, gewoonlijk niet de meest natuurlijke zijn. 
Maar er zijn ook bezwaren verbonden aan die methoden, die 
de continuiteit van de vruchtbaarheid erkennen, en daarom de 
vruchtbaarheidskaart in de vorm van een formule geven, die de 
vruchtbaarheid geeft als functie van de plaats op het veld. Het 
is een wezenlijke eigenschap van een formule, dat hij geëxtrapo­
leerd kan worden; het is even wezenlijk voor het proefveld, dat 
extrapoleren slechts op korte afstand toelaatbaar is. 

Wanneer men een formule berekent, die drie maxima en minima 
moet beschrijven, dan zullen de constanten, die het eerste ma­
ximum beschrijven, dezelfde zijn als diegene die het derde vast­
leggen. Door het gebruiken van een formule wordt het eerste 
maximum dus geëxtrapoleerd naar het derde en omgekeerd. 
Hiermee wordt het probleem geweld aangedaan. 

De enige oplossing, die natuurlijk is, is een grafische bewerking. 
Bij het tekenen van grafieken wordt op korte afstand de conti­
nuiteit gehandhaafd, terwijl er geen noodzaak is over grotere 
afstand te extrapoleren. Grafische bewerkingsmethoden worden 
dan ook reeds lang toegepast. 

Als bezwaar van de grafische verwerking wordt vaak gevoeld, 
dat het moeilijk is, het overzicht over de vrijheidsgraden en fouten 
te houden. Om deze reden willen wij in het vervolg van dit hoofd­
stuk nagaan, welke mogelijkheden er zijn om bij grafische correctie 
bedoeld overzicht te houden. Om dit te bereiken worden de gra­
fieken voorlopig in een bepaalde wiskundige vorm gegoten, nl. 
die van het verschuivend gemiddelde. 

402 - NADERE BEPALING VAN DE GEWENSTE METHODE 

In 202 zijn wij gekomen tot de formule 

(202.6) Ükp =Rk + Mp + C. 

In 301 hebben wij deze formule uitgebreid tot de vorm 
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(301.8) ükp = <ü> + ok + pp + tkP. 

De vermelde tkp werd in (301.18) nog gesplitst in ikp + xkp. 
Wij zouden (301.8) dus kunnen schrijven in de vorm 

(402.1) ünp = <ü> + Qk + fip + hp + tup. 

Wanneer we de p nu niet laten slaan op een proefveld, doch 
op een bepaald blok van het onderzochte proefveld, dan moet 
Jip aanduiden, hoeveel dit blok in vruchtbaarheid van de ge­
middelde vruchtbaarheid afwijkt, terwijl ikp aangeeft, in hoeverre 
de opbrengst ükp van ras k in blok p systematisch van de som 
<ü> + Qk + up verschilt. Aangezien binnen het proefveld ver­
ondersteld mag worden, dat de enige systematische invloed in de 
vruchtbaarheidsverschillen ligt, duidt ikp dus aan, in hoeverre 
de vruchtbaarheid van het veldje waarop ras k verbouwd werd 
van het blokgemiddelde afwijkt. 

Omdat ikp hier een veel beperkter betekenis heeft dan in het 
vorig hoofdstuk, willen wij hem vervangen door het symbool hp-
Het veldje, waarop hp betrekking heeft, noemen wij in het ver­
volg veldje (kp). 

Het is niet noodzakelijk hp beslist als een fout te beschouwen. 
Wanneer men er naar streeft de vruchtbaarheid in rekening te 
brengen door de waarden /i en X gezamenlijk, dan is de % een deel 
van de benodigde formule. Aangezien deze formule in principe in 
staat is het vruchtbaarheidsprobleem op te lossen, is het niet meer 
nodig van een noodformule te spreken. Hier is veeleer sprake van 
een ideale formule (zie 106). 

Slechts wanneer de vruchtbaarheidskaart voor het ene ras 
anders zou uitvallen, dan voor het andere, zou men van een 
noodformule moeten spreken, wanneer men toch maar één 
kaart tekende. Dit komt evenwel weinig voor; tengevolge van 
ons begrip „rekenopbrengst". Daarom willen wij in het vervolg 
aannemen, dat er met een ideale formule gewerkt wordt. 

Dit heeft tot gevolg dat de asymptotische waarden Qk en jup 
als ,,ware waarden" mogen worden opgevat. Wij willen ze daarom 
gewoon aanduiden als Qk en fip. Daarentegen moet de schrijfwijze 
< ß > worden gehandhaafd omdat de vorm ü steeds besmet zal 
zijn met toevallige fouten. 

Formule (402.1) lezen wij nu dus als volgt 

(402.2) ükp = <ü> + Qk + fip + hp + Tkp. 
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Op grond van (301.23) en de discussie na (301.9) geldt nu, in 
verband met het feit dat er geen monsterfouten mogelijk zijn, 
bij een ideale formule, 

(402.3) [ßK] = 0 

[/vi =o 
[Kp\ = 0 

[ [ 4 J ] = 0 ; 

terwijl [Xk„] niet 0 behoeft te zijn. 
Van de constanten die in (402.2) genoemd worden heeft ok 

betrekking op de rasinvloed, rkp slaat op de toevallige fout van 
veldje (kp), terwijl zijn vruchtbaarheid wordt vertegenwoordigd 
door de waarden <ü>, fip en fap. 

Wij willen de betekenis van deze symbolen door een tekening 
duidelijk maken. Daartoe stellen wij dat wij een strokenproef 
bestuderen, waarbij de veldjes gelegen zijn op de manier als in 
(402.4) in beeld gebracht. Alle blokken zijn 1 veldje breed en liggen 
achter elkaar. Wij willen nu met name veronderstellen, dat wij 
twee blokken hebben, met in ieder blok 7 rassen. Het vrucht-
baarheidsverloop is in fig. (402.4) door de lijn AC weergegeven. 

(402.4) 

^ • • • • - . . . 

'e. ^ ^ " ~ ~ ^ L 
M 
M 

1 ^ ^ ^ ^ S ^ ^ 

i * blok 

L 

~-^^^^ N 

8 , 0 , 10 , 11 ! 1Z ! 13 | 14 

z ' 6(ok 

Wanneer wij de opbrengst van het fictiefras op een bepaald 
veldje als de vruchtbaarheid van dat veldje beschouwen, kunnen 
wij in verband met (402.3) zeggen dat <Q> de gemiddelde vrucht­
baarheid van het gehele veld is. Deze gemiddelde vruchtbaarheid 
is weer te geven door de lijn DE. De waarde /j,x geeft aan hoeveel 
de gemiddelde vruchtbaarheid van het eerste blok van het totaal 
gemiddelde afwijkt. Laten wij deze gemiddelde vruchtbaarheid 
voorstellen door de lijn FG, dan is de loodrechte afstand tussen 
F G en DE gelijk aan Ja1. Zo kunnen wij de gemiddelde vrucht­
baarheid van het tweede blok weergeven door Hl, die op de af-
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stand /j,2 van DE is verwijderd. De waarden Xkp geven voor ieder 
veldje de vertikale afstand tussen AB en FG in het eerste blok, 
en tussen BC en Hl in het tweede. 

Wanneer wij de opbrengst Qkp van een bepaald veldje grafisch 
voor willen stellen in fig. (402.4) dan zal deze voorstelling niet 
op de vruchtbaarheidslijn AC liggen, doch daar een bedrag QU van 
verwijderd zijn. (Omdat we in deze paragraaf de methodiek be­
studeren willen wij aannemen dat er geen toevallige fouten zijn). 

Hoe kan nu uit de opbrengstcijfers Qkp de lijn AC worden be­
rekend? Het is duidelijk dat daartoe de invloed van QU moet 
worden uitgeschakeld. Om dit te bereiken middelen wij (402.2) 
over f. Wanneer wij tevens de toevallige fouten onvermeld laten, 
geeft dit 

(402.5) *" [Ük"] = <Q> +gk + ^M + Üt l^J. 
' n n n 

Substitutie van QU uit (402.5) in (402.2) geeft in verband met 
(402.3), en onder weglating van de toevallige fout, 

(402.6) 
\n [Qkir] . \n [fan~\ n - 1 \{n-\)[hip\] 

kp n = to + hp-— = H> + —- hp • 

Het is de bedoeling van (402.6) de waarde van pp + hp te be­
rekenen, maar er ontbreekt nog het een en ander aan. Allereerst 
is daar de term 

t (w - l ) [Xkipü 
n ' 

die storend werkt. Van deze term zullen wij de waarde moeten 
bepalen. 

Aangezien volgens (402.3) voor ieder blok geldt [XKp\ = 0, moet 
de waarde van X in ieder blok om 0 schommelen. Dit schommelen 
kan Jzeer systematisch plaats vinden. In fig. (402.2) is X aan 
het begin van ieder blok sterk positief, met het opklimmen van de 
veldjesnummers daalt de waarde van .X tot hij sterk negatief is. 

Om nu toch de waarde van 

t ( w - l ) [ A ^ j ] 
n 

te kunnen bepalen meet dit systematisch verloop worden omzeild. 
Dit kan bereikt worden door in ieder blok de rasvolgorde 
door het toeval te laten bepalen. Het verloop van X mag dan 
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systematisch zijn binnen een blok, maar het is toevallig welke X 
uit dit blok in de vorm 

n»-i)[AftLj,j] 
n 

wordt opgenomen. Uit het ene blok zal een positieve X worden 
genomen en uit het ander een negatief. Bij gevolg mag de asympto­
tische waarde van de onderzochte vorm gelijk aan 0 worden ge­
steld wanneer aan de eis van toevallige verdeling is voldaan. 
Op grond hiervan kunnen wij (402.6) dus bij benadering schrijven als 

(402.7) Qkp - m&aà =FP +
 nszl. hp. 

De waarden die volgens (402.7) worden berekend zijn in figuur 
(402.4) weergegeven door de stippellijnen KL en MN. Door dit 
resultaat met ABC te vergelijken blijkt dat de gevonden lijn twee 
gebreken heeft: de helling is verkeerd en er is een plotselinge 
overgang op de blokgrens. 

Van deze gebreken is de helling het gemakkelijkst te verbeteren. 
Daartoe schrijven wij (402.7) in de vorm 

_ tn[flw] = i = i ß _ n^mM = H, + ^ = 1 hP. 
' n n n y n 

Door beide leden met r- te vermenigvuldigen vinden wij 

(402.8) 0kp - l^mmï = _ ^ _ ,p + hp. 

De waarden die volgens (402.8) worden berekend, zijn in fig. 
(402.4) aangegeven door de kruisjeslijnen PG en HQ. Het blijkt 
dat de helling van de lijnen nu goed is, maar dat de plotselinge 
overgang op de blokgrens nog erger is geworden. 

De moeilijkheid waarvoor wij staan komt scherp naar voren 
door (402.7) met (402.8) te vergelijken. Volgens de eerste formule 
wordt de fip goed berekend, volgens de tweede de XkP. De fip en de 
hp gehoorzamen dus niet aan dezelfde wetten. 

Zowel (402.7) als (402.8) vergelijken de opbrengst Qkp met de 
gemiddelde opbrengst van ras k. Om /up goed te berekenen moet 
Qkp zelf in dit gemiddelde zijn opgenomen; om hp goed te be­
rekenen mag Qkp niet in dit gemiddelde opgenomen zijn. Wat is 
de oorzaak hiervan? 
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Bij het bespreken van (402.6) is gebleken dat de vorm 

t(n-l)[A f t | i , j] 
n 

asymptotisch de waarde 0 heeft. Dit is het gevolg van een kans­
verdeling waaraan iedere Xk\_p\ is gebonden. Wij zouden kunnen 
zeggen dat iedere Xkip\ krachtens zijn aard een inhaerente kans­
verdeling heeft. Op grond daarvan kunnen wij ook zeggen, dat 
iedere hip' asymptotisch 0 wordt. Wanneer wij aannemen dat ras k 
in fig. (401.1) of fig. (402.4) op veldje no. 2 heeft gestaan, en wan­
neer wij in verband met deze aanname de vruchtbaarheid van veldje 
2 onderzoeken, dan weten wij nog niets over de waarde van /ULij 
in de andere blokken, omdat de ligging van ras k in die andere 
blokken onafhankelijk is van de ligging van ras k op veldje 2. 
Wij weten slechts dat AÄLIJ in waarde om 0 schommelt en asym­
ptotisch 0 is. 

Daarentegen mogen wij Xki niet asymptotisch 0 stellen omdat 
bekend is dat hi op de vruchtbaarheid van veldje 2 betrekking 
heeft. Om de vruchtbaarheid van veldje 2 te kunnen berekenen 
moeten wij dus hi, belichaamd in ük\, buiten het rasgemiddelde 
laten (zie 402.8). 

Met /Lip ligt de zaak heel anders. Blijkens (402.3) is [/^] = 0. 
Hieruit volgt 

(402.9) (ip = — t ( » — l ) [ > y . j ] . 

Wanneer /ip niet 0 is, is de vorm — \n (— 1) \_nip\\ het ook niet. 
Om /up goed te berekenen moeten dus alle waarden ^w, be­
lichaamd in ükn, in het rasgemiddelde opgenomen worden (zie 
402.7). Bij het bestuderen van (402.5) hebben wij van de eigen­
schap [/!„] = 0 gebruik gemaakt. 
(402.10) Eenvoudig uitgedrukt kunnen wij zeggen, dat een 
afwijking van een gemiddelde slechts asymptotisch 0 kan worden, 
wanneer zij bewegingsvrijheid heeft over het gebied, waarvoor het ge­
middelde berekend is. 

Zo geven de waarden /u, de afwijkingen aan van het proefveld­
gemiddelde. Wanneer met formule (402.8) gewerkt wordt hebben 
deze waarden geen bewegingsvrijheid over het gehele proefveld, 
omdat ze bij het bepalen van het gemiddelde in de blokken \_f\ 
moeten blijven. Formule (402.8) is voor het bepalen van ftp 
dus ongeschikt. 

Daarentegen zijn de waarden A afwijkingen van het blokge-
11 
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middelde. Omdat de plaatsen van een bepaald ras in de diverse 
blokken onderling onafhankelijk zijn, heeft iedere X volledige 
bewegingsvrijheid, behalve de X in het blok dat onderzocht wordt. 
Wanneer de X van veldje 2 wordt onderzocht, is Xui aan veldje 2 
gebonden. Deze X moet dus buiten het rasgemiddelde worden 
gehouden. Nu is (402.8) dus wel goed. 

Uit het bovenstaande is duidelijk dat we /.i en X tijdens de 
berekening van elkaar moeten scheiden. Hoe dit het best kan, 
willen wij uitleggen aan de hand van fig. (402.11), waarin enkele 
gegevens van (402.4) zijn overgenomen. 

(402.11) 

De lijn AC geeft weer het vruchtbaarheidsverloop met het 
gemiddelde DE. Omdat fi van X moet worden gescheiden, 
hebben wij de lijnstukken AB voor ^ en BC voor fi2 gecorrigeerd. 
Dit gaf als resultaat FG en Hl. Wanneer wij nu formule (402.8) 
toepassen omdat X nog gezocht moet worden, zullen we de lijn-
stukken FG en HÏ berekenen. 

Hier blijft dus een kunstmatige plotselinge overgang op de 
blokgrens voorhanden. Deze is gemakkelijk te verwijderen, door 
bij de berekende waarden de correctie voor fj, weer ongedaan te 
maken. Dan wordt de lijn AC teruggevonden. 

Dit summiere overzicht zal in de volgende paragraaf worden 
uitgewerkt en verduidelijkt, terwijl dan tevens de gemaakte fouten 
worden bestudeerd. 

403 - H E T BEREKENEN VAN DE VRUCHTBAARHEIDSLIJN 

In de vorige paragraaf hebben wij gesproken over de formule 

(402.2) ükp = < • £ > + Qk + fip + Xkp + tkp. 

Van deze formule moeten de waarden <Q>, fip en Xkp de vrucht-
baarheidskaart omschrijven. Wij willen dus trachten deze waarden 
te berekenen. 
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Het spreekt vanzelf dat de asymptotische waarde van de ge­
middelde opbrengst niet is te vinden. Wij moeten volstaan met de 
empirische waarde ervan. Deze kan verkregen worden door 
(402.2) over k en f te middelen. Dit geeft 

= = t fwn[[i2CT]] = < = \m [QK] \n\jMr] 
mn m n 

Umn[[AK„]] f \mn [ [TCT]] 

mn mn 

In verband met (402.3) kan dit vereenvoudigd worden tot 

(403.1) 5 = <ü> + t t W W [ [ T - 3 ] . v ' mn 

Substitutie van <Q> uit (403.1) in (402.2) geeft 

(403.2) Qkp — ü = Qk + fip + hup + tkp — -
mn 

De tweede constante die berekend moet worden is /up. Het 
spreekt vanzelf dat ook hier niet de ware waarde is te vinden, doch 
slechts de empirische Jip. Uit (403.2) laat zich deze vorm berekenen 
door over k te middelen. Dit geeft 

\m[QKp] = [QK] [ V ] \m[rKp\ f \mn[[rim\] 
r m m m m mn 

In verband met (402.3) kan dit worden vereenvoudigd tot 

(403.3) ïp = n>+ t w [ T ^ ] - l^üt^S^. 
' ry ry m mn 

Substitutie van up uit (403.3) in (403.2) geeft 

(403.4) Qkp — Q — Jip = Qk + hp + xkp — im^Kp] • 

In het vervolg willen wij stellen 

(403.5) a>kp =Qkp — O 

Oi'kp= K>hp — P-p', 

zodat (403.4) de vorm krijgt 

(403.6) co'kp = Qk + hp + xkp - t W [tKp] 

m 

Nu moet Xkp worden berekend. Naar analogie van (402.5) 
en (402.6) schakelen wij daartoe eerst Qk uit. Daartoe middelen 
wij (403.6) over p. Dit geeft 

file:///n/jMr
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J n n n mn 

Substitutie van Qk uit (403.7) in (403.6), geeft 

(403.8) V kp=co kp = /.kp \-

\m[xKp\ in[tkn] , t twraUiw]] 
+ TÄ* 1 •. 

m n mn 

In bovenstaande formule zijn in het rechterlid de vormen //, 
uitgeschakeld, en de vormen X aanwezig. In overeenstemming 
met formule (402.8) moeten beide leden van de vergelijking nu 

met r worden vermenigvuldigd. Wij schrijven daartoe (403.8) 
rb I 

eerst in de vorm 

V%=ï=± hP- t(»-l)frm +n-^l rkp-y n ^ n n 

_ t ( w - l ) [nipj] _ \m [rKp] \\mn[[xim\] 
n m mn 

n 
Door beide leden met te vermenigvuldigen vinden wij nu 

n — 1 

/Ann n\ T?> n T " : Hn -l)[hi\pß , 
(403.9) Fkp = ^ZTTT ' *P = hP n__\ + TkP — 

f{n-l)[tk[pj] n \m\_xKp"\ n \\mn [ [TCT]] 

n — 1 n — 1 m n — 1 mn 

Blijkens het voorschrift aan het eind van 402 moet de waarde 
Jip, die in (403.4) van het linkerlid van de vergelijking werd afge­
trokken, er nu weer bij worden opgeteld. Uit (403.3) en (403.9) 
berekenen wij 

(403.10) Fkp = F'kp + up = up + hp — HLzzU^ÉÛ. + rkp — 

\n—\[xkipï\ 1 t« [VJ , 1 ft»»»[M 
n — 1 n — 1 m n — 1 mn 

In deze formule komen /up en hp op de juiste wijze voor, 
maar ze zijn nog niet gescheiden van de toevallige fout xkp. Men 
weet dus nog niet of de grootheid Fkp, die men voor veldje (kp) 
berekent, toegeschreven moet worden aan toeval of aan vrucht-
baarheidsin vloeden. 
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Over deze vraag zijn inlichtingen te verkrijgen door gebruik 
te maken van de eigenschap dat vruchtbaarheidsverschillen 
continu veranderen. Wanneer wij ons, om de gedachten te be­
palen, weer voorstellen dat wij te maken hebben met een stroken-
proef, kunnen wij de continuïteit in formule brengen, door aan te 
nemen dat het vruchtbaarheidsverloop over de korte afstand 
van g veldjes als lineair mag worden beschouwd. Door deze aan­
name wordt onze formule een noodformule. Wij zullen de g steeds 
oneven nemen, zodat de gemiddelde vruchtbaarheid van de g 
veldjes gelijk is aan de vruchtbaarheid van het middelste veldje. 

Wanneer het middelste veldje (kp) is, willen wij de g veldjes 
aanduiden als (k*p). De verbouwde rassen noemen we pk*, met 
bijbehorende lopende index px*. De p in het symbool herinnert 
eraan, dat de rassen py* slechts in het blok p naast elkaar ver­
bouwd werden op een rijtje van g veldjes (k*p); in de andere blok­
ken zijn deze rassen volgens toeval verspreid. 

Op grond van onze aanname dat het vruchtbaarheidsverloop 
op korte afstand lineair is kunnen wij nu stellen 

(403.11) UttpK'p] 

Wanneer wij (403.10) over de g veldjes (k*p) middelen, vinden 
wij (in verband met (403.11)) 

(403.12) PkP = ' g pK*P =vp + hp — 
o 

t f g (n — 1) [ßpK*ipj]] tg [rpK*p] 

g(n—\) 

ttg(n—\) [[rpK*LPj]] \m [TKP] t \ \mn [[rK7r]] 
r. + -g{n—1) min—1) mnin—1) 

De waarde Pup kan nu worden beschouwd als een eerste be­
nadering van de vruchtbaarheid /up + Akp. In de volgende para­
grafen zal er aandacht aan worden besteed of deze benadering 
bruikbaar is en of zij verbeterd kan worden. 

Tot slot moet nog worden opgemerkt, dat formule (403.11) 
niet meer bruikbaar is aan de grens van twee achter elkaar lig­
gende blokken. Dan kan wel de gemiddelde vruchtbaarheid van 
g veldjes gelijk worden geacht aan de vruchtbaarheid (hp) van het 
middelste veldje, maar de g veldjes liggen niet meer alle in blok p. 
Door berekening is ons gebleken, dat dit de geldigheid van de 
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hierna volgende conclusies en formules niet ongunstig beïnvloedt. 
Omdat de berekeningen erg ingewikkeld zijn laten wij ze liever 
hier achterwege. 

404 - D E TOELAATBAARHEID VAN EEN ALGEMENE VRUCHTBAAR-

HEIDSCORRECTIE 

In formule (403.12) hebben wij een waarde gegeven voor de 
vruchtbaarheid van het veldje (kp). Uit de formule blijkt dui­
delijk dat de berekende vruchtbaarheid met een fout behept is. 
Dit brengt het gevaar mee, dat door een vruchtbaarheidscorrectie 
de gemaakte toevallige fouten zoveel groter worden, dat het nut 
van de vruchtbaarheidscorrectie hier niet tegen opweegt. Hierdoor 
zou een vruchtbaarheidscorrectie de conclusies onbetrouwbaarder 
kunnen maken. 

Wij willen nu onderzoeken, wanneer op dit gevaar gelet moet 
worden. Daartoe berekenen wij onze conclusies eerst met, en dan 
zonder vruchtbaarheidscorrectie binnen de blokken. De aan­
wezige fouten zullen wij met elkaar vergelijken. 

De schatting (çk)p van Qk, die met behulp van de vruchtbaar­
heidscorrectie Pup voor ras k op veldje (kp) kan worden berekend, 
is als volgt te omschrijven: 

(404.1) (Qk)p =QkP~0 — Pkp. 

Deze waarde is het gemakkelijkst te berekenen aan de hand 
van formules (403.2) en (403.12). Dit geeft 

(404.2) (Qk)p = m + t t g ^ ^ V ^ ] ] ÜCVV] 

t tg (n — 1) [[rpK*ip]J] im [xKp] n \ \mn [ [ T ^ ] ] 

g (n—1) m(n—1) n—1 mn 

Uit ieder blok laat zich met (404.2) een waarde voor Qk bere­
kenen. Dit geeft in totaal dus n waarden. De beste schatting Qk 
van Qk krijgen wij door deze n waarden te middelen. Om dit 
gemakkelijk te kunnen doen, zullen wij de rassen px* splitsen 
in ras k en de overige rassen, die wij aan zullen duiden als 
rassen py°. Wanneer wij deze scheiding aanbrengen in (404.2) 
vinden wij 
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(404.3) (Qk)P = g H -, rr -f T^ h 
g(n—l) g(n~l) 

g— ! t g — 1 [V*>] t(«-l)[T*LW] , 
•̂ -r"̂  r + g ( « - D + 

t t (g—l)(n—\)[[TpK°lP1]] im[rKp]^ n Umn[[TK„]] 

g(n—1) min—1) n—1 mn 

Formule (404.3) moet nu dus over p gemiddeld worden. Voor 
de overzichtelijkheid zullen wij de negen termen van het rechterlid 
een voor een middelen. Wij vinden dan 

le De eerste term geeft als gemiddelde QU. 

2e Om de tweede term te middelen schrijven wij hem in de vorm 

\n— 1 [h[pß _\n [hn] hp 
g(n—l) ~g(n—l] g{n—\y 

Middelen wij dit over f, dan blijft de eerste term van het 

rechterlid onveranderd, de tweede term wordt — gn in — 1)' 
De som van beide termen wordt dus 

n^n[hn] ïn[fa„] = \n [A^] 
gnin—1) gnin—1) gn 

3e Het gemiddelde van de derde term willen wij voorlopig aan­
duiden door 

m » ( g — 1 ) ( « — i)[[[V[.J]] 

gn in — 1) 

4e Het gemiddelde van de vierde term wordt 
g \ \Vl [tkn] 

g n 

5e Het gemiddelde van de vijfde term wordt 

t t » ( g — i ) [ [ v J ] 

6e Het gemiddelde van de zesde term is te vinden naar analogie 
van de tweede. Het wordt 

\n [Tfar] 
gn 
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7e Het gemiddelde van de zevende term is te schrijven naar 
analogie van de derde term. Wij schrijven 

t t \n (g — 1) O — 1) [ [ [vo.^j j] 

gn (n — 1 ) 

8e Het gemiddelde van de achtste term wordt 

f fmn[[rK7T]] 
mn (n — 1) 

9e Het gemiddelde van de laatste term is 

n t fwn[[TCT]] 
n — 1 mn 

Van bovenstaand overzicht kunnen de vierde en de zesde term 
worden samengenomen, evenals de achtste en de negende. Wij 
kunnen dus de formule opstellen 

t » [Afar] , t t t « (Jg - 1) (» - 1) [ [ [VW]] ] , 
(404.4) Qk = Qk H -, rr + 
v gn gn (n — 1) 

t» [rkJ _ t t * (g — l ) [ [ y j ] 
n gn 

111 n (g — 1) (n — 1) [ [ [ T ^ J ] ] ] f \mn [[rKJ] 

gn (n — 1) mn 

Alles wat hier na de eerste term van het tweede lid staat, moet 
worden beschouwd als de fout van Qk, wanneer er binnen de blokken 
gecorrigeerd wordt. 

Wanneer er geen correcties worden toegepast binnen de blokken 
doch wel met blokverschillen wordt rekening gehouden, is de 
schatting (Qk)p van Qk, die wij voor ras k in blok p kunnen bere­
kenen, als volgt te omschrijven 

(404.5) (Qk)p = Qkp — ü — Jip. 

Deze waarde is gegeven in (403.4). In verband met (404.5) 
lezen wij daar 

(404.6) (ek)p' =Qk + hp + tkp - ^ n ^ . 

De beste schatting Qk' van Qk vinden wij nu door (404.6) over 
p te middelen. Dit geeft 

(A(\A 1\ - ' n _L_ ^ ^ f e ] _l_ ^n LTÄ"] î ^mn f [T^] ] (4U4./) Qk = Pk H . 
n n mn 
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Alles wat hier na de eerste term van het tweede lid staat, moet 
worden beschouwd als fout van OA'. 

Een vruchtbaarheidscorrectie binnen de blokken is nu gewenst, 
wanneer de fout van ~Qk (zie 404.4) kleiner is in absolute waarde 
dan de fout van ÖA' (zie 404.7). 

Hierbij moet evenwel nog op een bizonderheid worden gelet. 
Zowel in (404.4) als in (404.7) komt als laatste de term 

t \mn [ [TCT]] 

mn 

voor. Het is duidelijk dat deze term voor alle rassen gelijk uitvalt 
en dus op de rasverschülen geen invloed heeft. Om deze reden 
kunnen wij deze term beter weglaten. 

Door (404.4) en (404.7) te vergelijken komen wij dus tot de 
volgende voorwaarde voor een vruchtbaarheidscorrectie binnen 
de blokken 

gn (n — 1) 

t t t » ( g — ! ) («— i)[[[y°Lg j ] ]3 
gn ' gn(n — 1) 

Deze ongelijkheid is overzichtelijker wanneer wij beide leden 
in het kwadraat verheffen. 

Omdat (404.8) een algemene voorwaarde moet uitdrukken, die 
geldt voor alle rassen en het gehele proefveld, hoeven wij slechts 
de asymptotische waarde van de kwadraten vast te stellen. Dit 
heeft het voordeel dat er gebruik van kan worden gemaakt, dat 
het dubbele product van onafhankelijke factoren asymptotisch 
= 0 is. 

Bij het kwadrateren van (404.8) vindt deze regel echter slechts 
beperkte toepassing, aangezien er in het rechterlid veel groot­
heden voorkomen die wel afhankelijk zijn. 

In de eerste plaats wordt het begrip x° in ieder blok opnieuw 
gedefinieerd. Er zijn dus n definities „x0. Het is waarschijnlijk dat 
sommige rassen verschillende malen in een groep x°. betrokken 
worden zodat een aantal dubbele producten in werkelijkheid 
zuivere kwadraten worden. 

In de tweede plaats treden er tussen de waarden X dezelfde 
correlaties op, die wij in 302 voor de i bestudeerden. 

(404.8) 

\n [fair] | t « [thn] 

\ n n > 
in [fa^\ 

gn 

fn[tkn] t trcfe— 1)[[V°W]] 
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Wanneer wij met al deze correlaties rekening houden, worden 
de berekeningen zo ingewikkeld, dat wij ze hier liever niet uit­
werken. Wij willen ons daarom beperken tot de zuivere kwadraten. 

De asymptotische waarde van het kwadraat van alle toevallige 
fouten duiden wij daarbij aan door o2, de asymptotische waarde 
van het gemiddeld kwadraat van alle waarden X door X2 (zonder 
indices). 

Uit (404.8) leiden wij op deze manier af 

n2 n2 g2n2 g2n2 (n—l)2 

nl g2nL g2n*(n—\y 

Wanneer wij alle termen met X2 naar het linkerlid brengen, 
en alle termen met a2 naar het rechter, wordt dit 

I__L £ZLJ_J » ̂  tezii V > fHr^- + ' 2n (n — 1)( ) g2n g2n (n — 1)( 

Door beide leden met het positieve getal g2n (n — 1) te vermenig­
vuldigen wordt dit 

\g2 (n-\) - (n-l) - ( g - l ) j X2 > j(«_l) (g_l) + (g-l)j o2 

of 
X2

> n(g-\) 

°2 fe-l){fe+l)(«-l)-l}-
Een kleine vereenvoudiging geeft 

X2 •" 

(404.9) - 2 > o2 g (n — 1) + (n — 2)' 
Wanneer wij bij het kwadrateren van (404.8) met de afhanke­

lijkheid van de termen van het rechterlid volledig rekening hadden 
gehouden, zou het rechterlid van (404.9) kleiner zijn geworden. 
Voorwaarde (404.9) blijft dus aan de veilige kant. 

Het vinden van deze voorwaarde heeft een principiële betekenis. 
In 401 hebben wij op aprioristische gronden aangenomen, dat 
een grafische vruchtbaarheidscorrectie de meest efficiënte was. 
Nu blijkt dat een grafische correctie aan grenzen is gebonden, 
is dezejefficientie dubieus. Dit maakt ons onderzoek evenwel niet 
waardeloos. Soms moet er grafisch gecorrigeerd worden. Maar in 
andere gevallen kan dit onderzoek er toe leiden de proeven toch 
volgens een FiSHER-schema op te zetten. 
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4 0 5 - OVEK DE VOORWAARDEN VOOR CORRECTIE IN EEN BLOK 

In voorwaarde (404.9) is weergegeven, hoe groot de vrucht-
baarheidsschommelingen in verhouding tot de toevallige fout 
moeten zijn, opdat een vruchtbaarheidscorrectie voordeel zal 
geven. Hierbij is rekening gehouden met de gemiddelde vrucht -
baarheidsschommelingen van het gehele proefveld. 

Het laat zich denken, dat in het algemeen een vruchtbaarheids­
correctie niet gewenst is, doch dat op een bepaalde plaats er wel 
aanleiding toe bestaat. Wij zullen nu de voorwaarden voor vrucht­
baarheidscorrectie in één blok onderzoeken. Wij nemen daartoe 
aan, dat in de blokken Ifiï de vruchtbaarheidscorrectie door middel 
van de waarden Ji\p\ afdoende is. 

Indien wij bij het corrigeren van blok p de methode van 403 
volgen, zal de berekende rasvoortreffelijkheid (QU)P in formule 
(404.3) zijn uitgedrukt. De n— 1 waarden {ou\p\ zijn weergegeven 
in (404.6). 

De beste schatting g/j van de ware QU vinden wij nu met de 
formule 

(405.1) Qk-
{QU)P + t (n — 1) [ekipi] 

Uit (404.3) en (404.6) vinden wij 

1) ihm] U_ l)(»-l)[LVu>j]] 

t (n • 1) [>ftL#j] 
g(n—\) 

\m\xKp\ 

n 

g ( » — 1 ) 

\\mn[[rK7T]\ 

min — 1 ) 

1 

t (n • 

mn + 
Qk + + tkipi — 

lm[rK[P]] 

m 

of 

(405.2) Qk--

t t (g-

Qk + 
i(n • 1) [A*[#j] + Hw- 1 ) [ ^ LPii 

gn (n — 1) 

-1) [[Vu-tf , s 
gn(n — 1) gn 

n 

rhp • 

+ 

+ 

'(g—O [y*>] 
gn + 
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J_ i ^ J z i l Ü ^ J + ï(n~l)lTkiPi] ^ f f (g— ! ) ( »— l ) [ [ y ^ j l ] 
' gn (n— 1) w ' g% (w—1) 

, <| t « [ y ] _ f jmjn — l)[[rKipß]_ _ J f fw»[[TOT]] 
')mn(n—1) »m « — 1 » n 

Het deel van de formule, dat tussen j > is geplaatst, is voor 

alle rassen gelijk, en kan dus bij het bestuderen van de ra.sver-
schillen worden weggelaten. 

Wanneer er niet gerekend wordt met vruchtbaarheidscorrecties 
binnen de blokken is de beste schatting ~Qk' van QU te vinden in 
formule (404.7) waaruit de term 

f tW«[[TC T ] ] 
mn 

weer kan worden weggelaten. 
Uit (405.2) en (404.7) zien wij dat een vruchtbaarheidscorrectie 

zin heeft, wanneer 

{g(n — 1 ) + l } t ( » — l)[hipi , 
(405.3) 

in [fa*-] in [Tkn] 
- ] 

n 
> gn (n — 1) 

i -, 7\— Tkp 
gn(n— 1) gn gn 

{g(n— 1 ) + l } f ( w — l)[nL»j] f f (g— l)(w— l ) [ [y °b j ] ] 
gw (w—1) gw (n—1) 

Evenals bij (404.8) zullen wij deze ongelijkheid in het kwadraat 
verheffen. Hierbij moeten wij bedenken dat wij slechts in blok p 
een vruchtbaarheidscorrectie nodig achten. In blok p zijn de 
waarden van X naar onze mening dus groter dan in de blokken ip\. 
In verband hiermee zullen wij de asymptotische waarde van de 
kwadraten van de grootheden X in blok p aanduiden met Ap2. 
in de andere blokken met X\p\^. 

Bij het kwadrateren van (404.8) hebben wij met de aanwezige 
correlaties van de verschillende termen geen rekening gehouden. 
Dat zullen wij nu wel doen. Bij (405.3) is dit vrij gemakkelijk 
daar alle grootheden van het linkerlid onderling onafhankelijk zijn. 
terwijl er in het rechterlid geen mogelijkheid is dat een bepaald 
veldje tweemaal is genoemd. De toevallige fouten zijn dus allen 
onderling onafhankelijk, terwijl bij de waarden X slechts met 
correlaties in de zin van 302 behoeft te worden gerekend. 
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Wij willen deze correlaties eerst nagaan, en beginnen daartoe 
met het kwadraat te zoeken van de eerste twee termen van het 
rechterlid van (405.3), dus van 

{ g ( » - l ) + l } t ( « - i p * i w ] , t t ( £ - l ) 0 ~ - l ) [ [ V L W ] ] 
(405.4) gn(n—1) gn (n—1) 

De waarden / zijn genomen uit (n—1) blokken. Volgens de 
bespreking van formule (402.6) treden er geen correlaties op tus­
sen waarden 1 uit verschillende blokken. Wij kunnen dus beginnen 
met een willekeurig blok q te bestuderen. Blok q heeft tot (405.4) 
het volgende bijgedragen: 

(405.5) -, ^ -. fr—. 
J gn(n—1) gn{n—1) 

Het kwadraat van (405.5) is nu 

Mr™ {gfo-o + U 'w t(g-i)[yg
2] • 

(4U£ ,-b) gHi(n—\f + g2w2(w_J)2 + 

2{g(n-l)+l}t(g-l)[^yg] tt(g-l)(g-2)[[^Arg3] 
+ g2wa(w l)2 + g2M2(w— l)2 

waarbij in de laatste term door l en V twee willekeurige rassen 
pk0 worden aangeduid, die niet dezelfde mogen zijn. 

De asymptotische waarde van de kwadraten uit de eerste twee 
termen is / l^j2 ; de asymptotische waarde van de dubbele producten 

1 2 

uit de laatste twee termen is volgens (302.4) gelijk aan ^—. 
De asymptotische waarde van (405.6) is dus 

U (n-\)_+\ }2 X[P? + (g-J) lLPf 
g2n2 (n — l)2 g2«2 (n — l)2 

2 {g (n - 1) + 1} (g - 1) hp? (g - 1) (g - 2) hp? 
g2n2 (n — l)2 (m — 1) g2n2 (n — l)2 (m — 1)' 

Na enige vereenvoudiging wordt dit 

g2(n-\y 2g(n-l) + g 2 _ 
g«»a C» — l ) a gV(n—lf Alpi 

g—l 2g(n— l)+g. 2 

of 
m — 1 g2«2 (n — l)2 / t f j ' 

Aa 2 ! m~g 2(w—1) + 1 , 2 
n2^J + w _ i • gn2(n— l)2 /LW • 
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Dit is dus het kwadraat van (405.5). Het kwadraat van (405.4) 
is (n— 1) maal zo groot omdat er (n— 1) blokken \_p\ zijn. Dit 
kwadraat is dus 

n~l2 2 | w ~ g 2 ( » — l ) + 1 a 
~ ^ T - XLW + m _ j • - gn2 (n _ ] } / l#j • 

Met behulp van deze uitkomst brengen wij (405.3) in de kwa­
dratische vorm (zie ook de tekst onder (405.3)): 

1 

] m — 

i-n 

-g 

.— 1 
n2 

2(n 

W + 

- 1 ) + 

n 
n2 

1 

*2>-^r-w + 
,2 I [K 12. „2. I ? _ ff2 I 

1 m — \' gn2(n—\) "irj ^ g2n2 ^ g2n2 ^ 

{g(n-\)+\}2(n-\) ( g - i ) ( n - l ) 

of, na enige vereenvoudiging, 

(405.7) V > ^ =1 | . - ^ V M 1 A1W" + V S ^ -2-v y F m — 1 g(n—1) ^ g(n—1) 

Wij willen voorwaarde (405.7) op twee manieren uitwerken. 
In de eerste plaats willen wij veronderstellen 

(405.8) lm
2 = 0 . 

Formule (405.7) wordt dan 

V > f
 n

 n o2 

of 

V n (405.9) ^ > ... 
<72 g(«— 1) 

Wanneer wij ons herinneren dat (404.9) eist 

A2 n 
a2> g(n — 1) + (» — 2)' 

dan zien wij dat de eis van (405.9) iets zwaarder is. 
Wij willen nu (405.7) nogmaals bestuderen in de veronder­

stelling dat lypf niet gelijk is aan 0. Immers, wanneer A^j2 te klein 
is om aan voorwaarde (404.9) of (405.9) te voldoen, zal in de blok­
ken \j>\ geen correctie geoorloofd zijn. De waarde van AL£j2 zal dan 
invloed hebben op de gemaakte fouten, en dus ook op de eis die 
wij aan een vruchtbaarheidscorrectie stellen. 
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Volgens (405.9) is de grootste waarde van X\_pi, die geen correctie 
toelaat, 

/Vf 

(405.10) hp?=-, r ^ 2 -

Deze waarde kan A^j2 dus ook in (405.7) hebben. Wij zullen 
die formule uitwerken in de veronderstelling dat dit inderdaad 
het geval is, en vinden dan 

V > m ~ g 2(n~])+] n
 a2 , n

 CT2 
p m—1' g(n—1) ' g(n—1) gin—1) 

of, na enige uitwerking, 

+ ̂ f ( 2 + 1 

(405.11) X4> n m~XX n ~ l 

e2 g (n — 1) ' g 

406 - SAMENVATTING VAN D E VOORWAARDEN VOOR TOELAAT­

BAARHEID VAN EEN VRUCHTBAARHEIDSCORRECTIE 

In de voorgaande paragrafen hebben wij enkele voorwaarden 
gevonden voor de toelaatbaarheid van een vruchtbaarheidscorrectie. 
In de eerste plaats zij herinnerd aan de formules 

(404.9) ^ > 
a2 gin — 1) + (n — 2)' 

(405.9) ^ - > p 
a2 g(n—\y 

kp2 n m + ?-Sl2+: 
(405.11) ^ L > 

o2 g(n— 1) g 

Deze drie formules geven minimumeisen. Wanneer de ver-
7? 

houding —^ kleiner is dan de waarde van het rechterlid is een 
° X2 

correctie gewoonlijk nadelig. Is de verhouding —^ gelijk aan de 

waarde van het rechterlid dan geeft een correctie even vaak nadeel 
als voordeel. Is het linkerlid groter dan het rechterlid dan geeft 
een correctie meestal voordeel, terwijl het gemiddeld voordeel 
stijgt naarmate het linkerlid meer in waarde verschilt van het 
rechterlid. 

Nu is het duidelijk dat niet tot correctie zal worden overgegaan 
wanneer het linkerlid en rechterlid precies gelijk zijn. Maar ook 
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wanneer het linkerlid slechts weinig groter is dan het rechterlid, 
heeft een correctie weinig zin. Dan zal de proeffout niet zoveel 
verlaagd worden, dat de uitkomsten er veel betrouwbaarder door 
worden. 

Het is niet onze bedoeling na te gaan hoeveel het linkerlid 
groter moet zijn dan het rechter-, om een correctie zinvol te maken. 
Slechts deze conclusie willen wij trekken, dat het geen zin heeft 
bovenstaande drie formules in de practijk te onderscheiden. Wij 
kunnen in alle gevallen werken met formule (405.11), die de zwaarste 
eisen stelt. 

De betekenis van (404.9) is dan deze, dat hieruit blijkt dat een 
vruchtbaarheidscorrectie over het gehele proefveld wenselijk is, 
wanneer met formule (405.11) voor iedere plaats aangetoond kan 
worden, dat een correctie daar nodig is. Deze conclusie lijkt van­
zelfsprekend, maar wegens de correlaties die tussen allerlei fouten 
optreden gedurende de berekening, zou toch aan de juistheid hier­
van getwijfeld kunnen worden, als het niet rechtstreeks was aan­
getoond. 

Nu zou men nog het bezwaar kunnen voelen, dat formule (405.11) 
nog niet streng genoeg is. Deze formule is ontstaan door (405.9) 
(in de vorm van (405.10)) in (405.7) te substitueren. Men zou ook 
nog (405.11) in (405.7) kunnen substitueren en zo doorgaan tot een 
limiet bereikt werd. 

Toch menen wij dat dit zelden noodzakelijk is. Het is onwaar­
schijnlijk dat de vruchtbaarheidsafwijking A op alle niet-gecorri-
geerde plaatsen juist zo groot is, dat een correctie bijna toelaat­
baar is; en het is ook onwaarschijnlijk, dat tot correctie wordt 
besloten, wanneer aan (405.11) juist wordt voldaan. Mochten 
deze uitzonderlijke gevallen zich voordoen, dan valt bovenbedoelde 
limietwaarde ook nog gemakkelijk af te leiden. , (g^ 

Wij willen dus steeds werken met formule (405.11). Deze formule 
heeft evenwel nog geen bruikbare vorm, omdat lp2, het kwa­
draat van de ware vruchtbaarheidsafwijking, ons onbekend is. 
Wij kunnen niet verder komen dan (Pkp — /lp), een schatting 
van Xp. Deze schatting laat zich berekenen met behulp van de 
formules (403.3) en (403.12), waaruit we afleiden 

(406.1) 

t tg(»— 1)ŒV*LWU . tg[v*rf 
Pkp — l*P =hp g(n—l) + g 
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t t g ( « — l)[[TpK*ip\]] 

g(n—\) 

{ n îm[rKp] n 
) n — 1 m n — 1 

f \mn [[rK1T}}) 

mn { 

We zien naast hp in de formule allerlei fouten vermeld. Hiervan 

hebben de eersten invloed op de schatting van de vruchtbaar-

heidsverschillen in blok p; de fouten die tussen \ i zijn geplaatst 

hebben daarop geen invloed en kunnen dus verder worden ge­

negeerd. 
Uit (406.1) laat zich nu een waarde van Xp2 afleiden door beide 

leden te kwadrateren. Hierbij moet er opgelet worden dat de 
waarden onderling afhankelijk zijn voorzover ze in hetzelfde 
blok liggen. Met sommige dubbele producten moet dus worden 
gerekend als in de formules (405.4) tot (405.6). Verder moet er 
weer onderscheid worden gemaakt tussen Xp2 en Xipf. Wij streven 
immers naar een bruikbare vorm van (405.11), die ook op dat 
onderscheid is gebaseerd. 

Door (406.1) te kwadrateren vinden wij dus als asymptotische 
waarde 

<Pkp - /iv > = V + Jr^zriy* W -
_ (n— l ) g ( g — 1) Xm

2 , g _ a , g (w—1) . 
I _9. ° ~T „9. / . . 1V2 " g2 (n—l)2 'm—1 g2 g2 (n—1) 

of 

<(pkp - jLPy> = ip* + * ^ 1 . l xvp]
2 + - jT-^-f , e?2 

r m — \ gin—1) ^ g (n—1) 
of 

(406.2) lp*=<(Pkp — Jipf>— ^ ^ f . ,X ..Xm
2 T ^ f f 2 . 

' m—1 gin—1) g(w~l) 
Wanneer wij Xp2 uit (406.2) in (405.7) substitueren vinden wij 

<(PkP -ÏP)2> - f n ^ ^ . l Xm
2-

y' m—1 gin—1) F 

n . m-
a2> 

g 2 
1 ' 

m-
m-

(n — 
g{n 

— g 
- 1 " 

-1) + 
- 1 ) 

2« 
g(n — 

1 3 2 

hp\2 

j -Aw 

n 
g(n — 

2 , 2 n 

gin — 

rß 
1 ) " 

- 1 ) ° 

gin—1) m 

of 

(406.3) <(PkP—iïp)2> > 

12 
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Deze formule is analoog aan (405.7). Door nu in deze formule-
de waarde van kj>\ uit (405.10) te substitueren zullen wij een 
formule vinden, die analoog is aan formule (405.11). Deze luidt 

^/-n - NP m—£ 2« n , , 2w 
<(Php—Hp)2> >- f . - , jT . - , 7T<T2 + m—\'g{n—\)'g(n—1) g(n—1) 
of 

(406.4) <PkP-^>>
 2n (i I m — g __! L 

a2 g(n— 1) \ m — I ' M — 1 ' g 

Deze formule moet dus worden gebruikt om te controleren 
of een vruchtbaarheidscorrectie, die men in de practijk vindt, 
wenselijk is. Maar ook deze formule is nog niet goed bruikbaar. 
Zowel de teller als de noemer van het linkerlid zijn nog onbekend. 
Van de teller is evenwel een schatting te verkrijgen door de asym­
ptotische waarde te vervangen door de empirische. Hierover 
wordt in 407 en 408 nader gesproken. Een manier om de o2 te 
vinden wordt gegeven in 411. 

m — g 
Wij willen nu nog even letten op de vorm 1 uit het rech-

m — 1 
terlid. Uit deze vorm blijkt dat de verhouding tussen het aantal 
rassen g, dat gebruikt wordt om de vruchtbaarheid van een be­
paald veldje te schatten, en het totaal aantal rassen m, invloed 
heeft op de toelaatbaarheid van de vruchtbaarheidscorrectie op 
een bepaalde plaats. Naarmate die verhouding groter wordt, 
wordt de eis van toelaatbaarheid minder zwaar. 

Dit verschijnsel vindt zijn verklaring in de vruchtbaarheids-
afwijkingen in de niet gecorrigeerde blokken [pj. Immers, wan­
neer wij deze afwijkingen = 0 hadden gesteld (zie 405.8), dan 
kwam de uitdrukking 1 niet in de formule voor (zie 405.9). 

m — 1 
Wanneer nu g =m, dan hebben deze afwijkingen geen in­

vloed. In dit geval immers heeft men te maken met (402.3) 
(402.3) [XKP] = 0 
Deze regel geldt voor ieder blok, zodat de invloed van X\_p\ zich-

fn — g 
zelf opheft. Dit komt hierin tot uiting dat r = 0 wordt. 

m — 1 
Een ander uiterste wordt gevonden wanneer g = 1. Dan bereikt 

de vorm f de waarde 1. In de practijk zal de waarde steeds 
m — 1 

tussen 0 en 1 liggen. In verband met het feit, dat wij niet te snel 
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tot vruchtbaarheidscorrectie willen overgaan is het gemakkelijk 
de waarde van deze breuk gelijk aan 1 te nemen. 

Wij willen nu de voorwaarden, die door formule (406.4) worden 
gesteld, in tabelvorm brengen (zie 406.5). Voor het gemak geven 
wij niet de verhouding van de kwadraten, maar van de absolute 
grootten. 

Pkp — /J,p | (406.5) Minimumwaarde voor de verhouding bij een 

toelaatbare vruchtbaarheidscorrectie, bij verschillende waar­
den van n en g [wanneer m = co) 

n 

g l 

i 
3 
5 
7 
9 

11 
13 
15 

2 

3.47 
1.50 
1.06 
0.86 
0.74 
0.66 
0.60 
0.55 

3 

2.74 
1.23 
0.89 
0.72 
0.62 
0.56 
0.51 
0.47 

4 

2.50 
1.14 
0.83 

0.67 
0.58 
0.52 
0.48 
0.44 

5 

2.38 
1.09 

0.79 
0.65 
0.56 
0.50 
0.46 
0.43 

10 

2.17 
1.01 
0.74 
0.61 
0.53 
0.47 
0.43 
0.40 

2 . ~ 
0.94 
0.70 
0.57 
0.50 
0.45 
0.41 
0.38 

Uit formule (406.4) en ook uit tabel (406.5) blijkt, dat het aantal 
blokken n een vrij geringe invloed heeft op de toelaatbaarheid 
van de vruchtbaarheidscorrectie. Immers komt n steeds in de vorm 

n 
n— 1 

voor. Vanuit het oogpunt van vruchtbaarheidscorrectie 

heeft het daarom meestal geen zin n groter dan 3 te nemen. 
Daarentegen heeft g een grote invloed op de toelaatbaarheid. 

In (406.4) komt g uitsluitend in de noemer voor. Hieruit kunnen 
wij de regel afleiden: Hoe smaller de vruchtbaarheidstop is, des te 
hoger moet hij zijn om weggecorrigeerd te mogen worden. 

Wanneer men formule (406.4) of tabel (406.5) nauwkeurig 
bekijkt, ziet men, dat er ook een voorwaarde is gevonden voor 
een correctie over de breedte van 1 veldje (g = 1). Zulk een cor­
rectie kan er op neerkomen dat het veldje wordt uitgeschakeld. 
Het zou ons te ver voeren het probleem van het uitschakelen van 
gegevens hier in zijn geheel te bespreken. 

Tenslotte nog dit: In het bovenstaande hebben wij speciaal 
gelet op de toelaatbaarheid van een correctie op een bepaalde 
plaats. Hierbij hebben wij de conclusie getrokken, dat men steeds 
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af kon gaan op de voorwaarden van (406.5). Dit mag ons evenwel 
niet doen vergeten dat wij in 401 reeds over een ander criterium 
hebben gesproken. 

Bij het bespreken van fig. (401.1) hebben wij op grond van de 
continuïteit van het vruchtbaarheidsverloop gebruik gemaakt van 
de stelling dat de vruchtbaarheid over korte afstanden geïnterpoleerd 
mag worden. Van deze stelling kan ook gebruik worden gemaakt, 
wanneer wij met het criterium van (406.5) werken. Aan de hand 
van dit criterium zal voor bepaalde plaatsen geconcludeerd kun­
nen worden, hoe de vruchtbaarheid daar in rekening moet worden 
gebracht. De vruchtbaarheidscorrectie van de tussenliggende 
plaatsen kan gevonden worden door interpolatie. 

407 - VOORBEELD VAN HET TOETSEN VAN EEN VRUCHTBAAR-

HEIDSLIJN 

Het gebruik van het criterium van (406.5) kan het best worden 
toegelicht aan de hand van een voorbeeld. Daartoe hebben wij in 

(407.1) 

3 0 -

10_ 

-10 -

•sa­

tt.. 

-10_ 

7Ù 

* 

+ 
1 1 

V, 

* 
• 

1 ! 

fiff^TZi+ 

+ 
i i 

4-4-4-+.-t.4"t-+-+ 

1 1 

>̂-

•+-4-++4"t"t-+ + 

+ 

1 1 

V - -. . 

1 1 " 

• 

^ » • C L . 

! 1 

+ + -M«-+4<+t>-* 

1 1 

. 

/. 

1 I * 

3 5 7 g 11 13 13 17 19 21 23 23 27 20 31 33 35 37 30 41 -43 +5 47 40 51 53 53 

fig. (407.1) een deel van een proefveld in beeld gebracht. Van dit 

proefveld kunnen wij aannemen dat 

(407.2) tr = 12 
n = 2 
m = 70 (de veldjes 1—55 liggen allen in blok p) 

[ip = 0. 
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De punten in grafiek (407.1) geven voor ieder veldje de waarde 
van Fkp (zie 403.10). De rasinvloeden zijn dus reeds uitgeschakeld. 
Om nu met behulp van formule (403.12) waarden Pkp te kunnen 
berekenen moeten wij nog de waarde van g kiezen. 

Wij kiezen 

(407.3) g = 5 

Met 'behulp van deze keuze hebben wij voor ieder veldje de 
waarde van Pkp berekend. Deze waarden zijn in de grafiek weer­
gegeven, verbonden door een stippellijn. 

Het blijkt duidelijk dat de stippellijn nog kleine fluctuaties ver­
toont tengevolge van de toevallige fout, maar deze fluctuaties 
zijn toch zeer gering. Wanneer alle punten F door een lijn ver­
bonden werden, zouden de fluctuaties veel groter zijn. 

Het is wellicht nuttig er op te wijzen dat de fluctuaties geen 
maat zijn voor de toevallige fout. De waarden P, die voor twee 
naast elkaar liggende veldjes zijn berekend, zijn in hoge mate 
gecorreleerd omdat ze grotendeels uit dezelfde waarden F zijn 
afgeleid. Bij gevolg zijn de fluctuaties abnormaal sterk onder­
drukt in verhouding tot de schommelingen van de waarden F. 
De stippellijn is dus minder betrouwbaar dan hij op het oog lijkt. 
De waarde van de stippellijn is alleen te beoordelen met behulp 
van (406.5). 

Uit deze tabel lezen wij af dat de afwijking tussen de stippellijn 
en de nullijn (Pkp — Jïp) bij n = 2 en g = 5 minstens 1.06 a moet 
zijn, dus minstens 1.06 X 12, of 13. Het blijkt, dat deze afwij­
kingen voorkomen op vier plaatsen ni. de veldjes (10, 11, 13), 
(29—32), (41), en (47—51). 

Wij zien dus dat er een viertal plaatsen zijn, die voor correctie 
in aanmerking komen. Maar nergens is de wenselijkheid over­
tuigend. Alle vier plaatsen zijn misschien ontstaan doordat telkens 
de toevallige fout van één veldje „toevallig" erg groot was, nl. van 
de veldjes 11, 31, 41 en 49. Asymptotisch is het wenselijk te corri­
geren, maar in het licht van deze mogelijkheid kunnen wij het 
in dit geval misschien beter nalaten. Wij kunnen het ook zo zeggen: 
In dit geval betwijfelen wij of het mogelijk is, de berekende waarde 
van (Pkp — Jip) te zien als een voldoend nauwkeurige schatting 
van de asymptotische waarde, die in (406.4) genoemd wordt. 

Er zijn verschillende wegen, waarlangs wij een betere schatting 
van de asymptotische waarde kunnen vinden. Wanneer wij b.v. 
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de grafiek bezien voor de veldjes 10—20 dan is het kennelijk dat 
de kleine fluctuaties toevallig zijn. Wanneer deze fluctuaties 
worden genegeerd door het trekken van een strakke lijn, wordt 
de asymptotische afwijking beter benaderd. Ook op andere plaatsen 
zouden wij dit kunnen proberen. 

Een tweede weg ligt in het vergroten van g. Wanneer wij niet 
stellen g = 5, maar b.v. g = 9 of g = 1 5 , dan zullen de kleine 
fluctuaties steeds kleiner worden. Wij kunnen er dus naar etreven 
g zo groot' mogelijk te kiezen. Dit geeft tevens het voordeel dat 
aan de eis van (406.5) gemakkelijker kan worden voldaan, omdat 
de eis bij toenemende g minder zwaar wordt. 

Het vergroten van g heeft echter een grens. Wij hebben 
formule (403.11) en de lateren opgebouwd op de veronderstelling 
dat het vruchtbaarheidsverloop over een afstand van g veldjes 
als lineair mag worden beschouwd. In ons voorbeeld is deze ver­
onderstelling zeker niet meer te handhaven, wanneer g > 20 wordt. 

Wij zouden nu als methode kunnen aanbevelen: 

lc kies de g zo groot mogelijk; 

2e bereken het verschuivend g-voudig gemiddelde; 

3e trek gevonden slingerlijn uit de hand strak. 

De lijn die men langs deze weg krijgt, zal evenwel weinig ver­
schillen van de lijn die men vindt als men de stippellijn recht 
trekt, die wij vonden in de veronderstelling dat g = 5 was. Iemand 
die een zekere oefening heeft, behoeft in de regel zelfs de steun van 
het verschuivend gemiddelde (de stippellijn) niet. 

De lijn, die in fig. (407.1) strak is getrokken, is op bovengenoemde 
wijze gevonden. De afwijkingen tussen deze lijn en de nullijn 
willen wij aanvaarden als betere benadering van de asymptotische 
waarde <Pkp — J'P> dan de gevonden afwijkingen. Wij zullen 
dus de strakke lijn op toelaatbaarheid moeten controleren. 

Men ziet dat deze lijn drie extremen heeft: bij veldje 10, bij 
veldje 34 en bij veldje 50. Van iedere top moeten wij nagaan 
of hij toelaatbaar is. Hierbij moeten wij bedenken, dat aanname 
(407.3) zijn zin heeft verloren. Wanneer de strakke lijn goed is 
getrokken, dan zouden wij dezelfde lijn hebben gevonden, wanneer 
de stippellijn was berekend in de veronderstelling dat g = 9. 

Toch moeten wij de beschikking hebben over een bepaalde 
waarde van g, omdat anders tabel (406.5) onbruikbaar is. Wij 
zouden deze regel willen volgen: 



183 

(407.4) Bij het beoordelen van de toelaatbaarheid van de vrucht-
baarheidscorrectie op een bepaalde plaats moet g de grootste af­
stand aangeven waarover de vruchtbaarheid als voldoende lineair kan 
worden beschouwd. 

Wanneer men een strakke lijn uit de hand trekt, bestaat de 
mogelijkheid dat men een verkeerde kijk op de puntenbundel 
heeft. Zo is bij het trekken van de strakke lijn voor de veldjes 
1—9 alleen maar aansluiting gezocht bij het traject 10—20, zonder 
te letten op het verloop van de stippellijn ter plaatse. Men zou 
nu ten onrechte voor dit gebied de strakke lijn als de beste schat­
ting van de asymptotische waarde <.Pup — ~fip> kunnen be­
schouwen. Het is mogelijk dat de stippellijn hier een betere schat­
ting geeft. In verband hiermee zouden wij nog de volgende regel 
willen formuleren: 

(407.5) Bij het beoordelen van de toelaatbaarheid van een vrucht-
baarheidscorrectie moet niet alleen die waarde toelaatbaar blijken, 
die gegeven wordt door de ,,strakke lijn", maar ook de waarde van het 
verschil, dat berekend wordt volgens formule (406.1) met de waarde 
van g, die in (407.4) wordt genoemd. 

Wanneer wij nu de eerste top in de practijk toetsen, zien wij 
dat volgens de strakke lijn het vruchtbaarheidsverloop over een 
afstand van 15 veldjes zeker voldoende lineair is te noemen. Daar in 
(407.2) is aangenomen dat n = 2, is volgens tabel (406.5) een 
vruchtbaarheidscorrectie toelaatbaar wanneer de afwijking 0.55 a 
of ongeveer 7 is. Blijkens de grafiek voldoet de strakke lijn ruim­
schoots aan deze eis; blijkens berekening het gemiddelde van de 
eerste 15 veldjes maar nauwelijks. De strakke lijn is in het begin 
lager getrokken dan met de gegevens overeenkomt. 

Wanneer wij alleen het traject van veldje 9—18 in ogenschouw 
nemen is g = 9. De afwijking moet dan 0.74 er of 9 zijn. Het is 
duidelijk dat nu zowel de strakke lijn als het berekend cijfer aan 
de voorwaarde voldoet. In dit traject is dus een vruchtbaarheids­
correctie gewenst. 

Bij het laatste extreem kan de vruchtbaarheidslijn rondom 
veldje 49 over een afstand van 5 veldjes als voldoende lineair 
worden beschouwd. Volgens (406.5) moet de afwijking 1.06 ff of 13 
zijn. Dit is zowel voor de berekende waarde als voor de strakke 
lijn het geval, dus ook hier is de vruchtbaarheidscorrectie ge­
wenst. 

Met de top bij 34 is het een eigenaardig geval. Hier is de 



184 

strakke vruchtbaarheidslijn kennelijk krom. Ook reeds over een 
afstand van 3 veldjes. Wanneer wij nu g = 3 nemen, moet de 
afwijking 18 zijn, wat niet het geval is; de maximale afwijking 
is slechts 11. Indien wij nu toch g groter nemen, en dus het 
krom zijn negeren, zien wij dat de eis snel daalt. Zo moet bij g = 7 
de afwijking 10 zijn, waaraan de veldjes 30—36 alle voldoen en 
hun gemiddelde dus ook. Door een geschikte keuze van g kan ook 
hier nog de toelaatbaarheid van de correctie worden aangetoond. 

Willen wij nu nog de controle van (407.5) toepassen, dan blijkt 
ook hieruit dat de correctie toelaatbaar is. Toch zien we aan de 
grafiek dat het mogelijk is dat op de top, waar de grootste vrucht­
baarheid wordt aangenomen, „toevallig" een paar slechte veldjes 
liggen, zodat de controle (407.5) negatief uit zou vallen. In zulke 
gevallen dient de uitslag als positief te worden beschouwd, wanneer 
het mogelijk is met een grotere g dan in (407.4) bedoeld, een positieve 
uitslag te krijgen. Hierbij moeten natuurlijk spitsvondigheden wor­
den vermeden. 

408 - PRECISERING VAN DE VRUCHTBAARHEIDSLIJN 

In de vorige paragraaf hebben wij aan de hand van een practisch 
voorbeeld nagegaan hoe de ontwikkelde correctiemethode in de 
practijk werkt. Hierbij bleek dat het mogelijk was op drie plaatsen 
de noodzaak van een vruchtbaarheidscorrectie aannemelijk te 
maken, nl. rondom de veldjes 10, 34 en 50. 

Wanneer wij nader over de gebruikte criteria nadenken, is het 
resultaat evenwel niet bevredigend. Dit laat zich als volgt aan­
tonen. In grafiek (407.1) zijn 55 veldjes afgebeeld. Volgens (407.2) 
liggen er 70 veldjes in dit blok p. Wanneer wij nu eens aannemen 
dat de veldjes 56—70 veel vruchtbaarder waren dan tot dusver 
is aangenomen, dan verandert er aan de veldjes 1—55 niets. De 
nullijn Jïp moet evenwel hoger komen te liggen, omdat deze nullijn 
het gemiddelde van de 70 veldjes weergeeft. Hoewel de top bij 
veldje 34 hierdoor niets verandert, wordt hij numeriek toch lager. 
Onze conclusie aan het eind van de vorige paragraaf, dat de 
correctie toelaatbaar was, komt hierdoor dan zwak te staan. Dit 
is natuurlijk onbevredigend. 

Deze moeilijkheid ontstaat doordat de betekenis van jip is 
overschat. Wanneer in de vorige paragraaf is bewezen dat rondom 
de veldjes 10 en 50 betrekkelijk slechte plekken voorkomen, dan 
is voor het tussenliggend gebied de enige natuurlijke vraag, of de 
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vruchtbaarheid daar betrouwbaar hoger is. M.a.w. men moet 
weten of de tussenliggende top betrouwbaar afwijkt van de kruis­
jeslijn, die in fig. (407.1) beide slechte plekken verbindt. Dit is 
met de top bij 34 kennelijk het geval. 

Omdat ~fip dus blijkbaar niet de natuurlijkste vergelijkings­
basis is, moeten wij trachten zijn taak aan een andere grootheid 
over te dragen. Daartoe moeten wij eerst nagaan welke taak 
Jip gedurende de berekening had te vervullen. 

In 402 hebben wij de onderlinge verhouding tussen fip en Xkp 
nagegaan. Uit (402.7) en (402.8) bleek dat (i en X ongelijke wetten 
(402.10) volgden, zodat ze gescheiden moesten worden. Blijkens 
is daarbij wezenlijk voor het gedrag van Xkp dat 
(402.3) [XKp] = 0 

a. Wanneer Jlp door een andere grootheid wordt vervangen moet 
deze stelling, dat [XKp] = 0, blijven gehandhaafd. Onder Xkp moet 

n dit verband worden verstaan: Ret verschil 
tussen de ware vruchtbaarheidslijn, en een 
schatting er van zoals lip er een is, 

In 403 is de functie van Jip nader bestudeerd. Volgens (403.3) 
is het een schatting die van /up is te verkrijgen. Volgens (403.4) 
wordt hiermee de waarde (Qkp — ü) gecorrigeerd. Maar deze 
correctie wordt in (403.10) weer ongedaan gemaakt, om te be­
reiken dat er geen plotselinge sprongen in de vruchtbaarheidslijn 
ontstaan op de grens van twee blokken. 

b. Wanneer Jtp door een andere grootheid wordt vervangen, moet er 
voor gezorgd worden dat ook dan geen sprongen ontstaan. 

Doordat de correctie van (403.4) in (403.10) weer ongedaan is 
gemaakt is de invloed van de fout van Jip (als schatting van fip) 
slechts gering. Bovendien zagen wij bij het bespreken van (405.2) 
dat deze fout ook nog mag worden verwaarloosd. Als derde eis 
kunnen wij dus stellen 

c. Wanneer Jip door een andere grootheid wordt vervangen, moet 
deze grootheid practisch onafhankelijk zijn van de toevallige fouten 
van de proef. 

Aan al deze eisen kan de strakke vruchtbaarheidslijn die wij in 
de vorige paragraaf trokken bevredigend voldoen. De waarde die 
deze lijn als eerste schatting voor de vruchtbaarheid van veldje 
(kp) aangeeft, willen we aanduiden met Qkp', de lijn zelf als Ç-lijn. 

Wij zullen nu de voorwaarden achtereenvolgens bespreken: 
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ad a. Wanneer uit de vrije hand door de puntenzwerm een 
vruchtbaarheidslijn wordt getrokken, is het niet zeker dat [ÀKp] = 0 
is. Na controle kan evenwel de lijn dusdanig gewijzigd worden 
dat aan de voorwaarde bevredigend wordt voldaan. 

ad b. Wanneer er verschillende blokken in het verlengde van 
elkaar liggen, en in een grafiek alle waarden F afgezet zijn, dan 
zal er geen gevaar voor plotselinge sprongen in de ç-lijn ontstaan, 
wanneer uit de vrije hand een vruchtbaarheidslijn door alle blok­
ken wordt getrokken. Slechts moet er op gelet worden dat de 
aansluiting bewaard blijft, wanneer er achteraf wijzigingen in de 
lijn worden aangebracht om te zorgen dat aan voorwaarde a wordt 
voldaan. 

ad c. Wanneer uit de vrije hand een vruchtbaarheidslijn is 
geconstrueerd zal deze lijn des te meer onafhankelijk zijn van de 
toevallige fouten, naarmate hij eenvoudiger is. In verband hier­
mee zouden wij dan ook de eis willen stellen: Kies de vruchtbaar­
heidslijn zo eenvoudig mogelijk. In 409 wordt dit nader uitge­
werkt. 

Het blijkt dus dat inderdaad de ç-lijn de functie van de //^,-lijn 
mag overnemen. Het criterium van (406.5) geldt dus niet alleen 
voor afwijkingen van de jip-lijn, maar ook voor afwijkingen van 
de g-lijn. 

409 - PRACTISCH VOORSCHRIFT VOOR DE VRUCHTBAARHEIDS-

CORRECTIE 

Bij een vruchtbaarheidscorrectie kunnen wij verschillende 
etappes onderscheiden. 

Allereerst kan men aannemen dat er geen vruchtbaarheids-
verschillen zijn. De vruchtbaarheidslijn loopt dan horizontaal. 
Deze lijn willen wij aanduiden als ç0. 

Vervolgens kan men voor ieder blok de waarde ~fip berekenen. 
Volgens de methode die in fig. (401.1) is toegepast kan hieruit een 
tweede ç-lijn worden geconstrueerd, die zodanig moet lopen, dat 
voor ieder blok bij benadering geldt (zie 408, ad a): 

(409.1) [-^- = ]2p. 
n 

Deze ç-lijn willen wij aanduiden als çx. Wanneer door „FiSHERen" 
of anderszins is gebleken dat de blokverschillen „betrouwbaar" 
zijn, is ook deze çx voldoende gemotiveerd. Er moet wel op gelet 
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worden dat er niet angstvallig kleine fluctuaties in worden aan­
gebracht om aan (409.1) te voldoen. In verband met de toevallige 
fouten hoeft (409.1) slechts bij benadering te gelden. Wanneer 
er geen betrouwbare blokverschillen zijn, is g1 gelijk aan ç0. 

Bij een proefveld met kleine blokken kan een nadere precisering 
worden bereikt door per veldje af te zetten de waarde van het 
verschil 

n 
Volgens (402.7) is dit verschil weliswaar behept met fouten, zodat 
asymptotisch een lijn als KLMN uit fig. (402.4) wordt verkregen, 
maar wanneer men zich dit bewust is, zal men vaak uit de vrije 
hand toch een goede ç-lijn kunnen trekken. Uit de ontwikkelde 
theorie is immers wel te schatten in welke zin en in welke mate 
de ç-lijn van de getekende puntenzwerm af moet wijken. 

Wanneer er veel objecten onderzocht worden, zodat de blokken 
zeer groot worden, en ook wanneer de blokken zonder onderling 
verband liggen, zal het nodig zijn de waarden Fkp uit (403.10) 
te berekenen en deze in grafiek te brengen. Door deze punten­
zwerm zal dan meestal een ç-lijn uit de hand getrokken kunnen 
worden. Desnoods moet eerst met een willekeurige waarde g 
voor ieder veldje een waarde Pup worden berekend met behulp 
van (403.12). De lijn die zo bij kleine of grote velden ontstaat, 
willen wij aanduiden als ç2. 

Bij het controleren van ç2 zal men gebruik moeten maken van 
het criterium van (406.5). Van ieder maximum en minimum 
moet men controleren of het voldoende van çx (eventueel ç0) 
afwijkt. 

Wanneer een aantal maxima of minima aanvaard moeten 
worden, wordt voor de overigen gecontroleerd of ze voldoende 
afwijken van de eenvoudigste lijn die de opeenvolgende erkende 
maxima en minima verbindt. Als hieruit blijkt dat er nog enkele 
„uitstulpingen" erkend moeten worden, wordt er tenslotte een 
nieuwe ç-lijn getrokken, die alle erkende uitstulpingen verbindt, 
en bovendien globaal moet voldoen aan (409.1). Deze ç-lijn is 
dus gelijk aan ç2 of eenvoudiger. Wij willen hem aanduiden 
als ?3. 

Het is vaak nog mogelijk, vooral bij grote blokken, de correctie 
ç3 ook nog te verbeteren. Dit blijkt wanneer men let op formule 
(403.10). Daar ziet men dat de fout van Fkp beïnvloed wordt door 
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de waarden Xk\p\. Zou men deze waarden kleiner kunnen maken 
dan zou ook F up nauwkeuriger bepaald kunnen worden. 

Nu hebben wij in 408 besproken dat wij hp niet alleen kunnen 
definiëren als het verschil tussen ware vruchtbaarheid van het 
veldje (k-p) en het ware vruchtbaarheidsgemiddelde van blok p, 
maar ook als het verschil tussen de ware vruchtbaarheid van 
veldje (kp) en de waarde cup die door de ç3-lijn wordt gegeven. 
Wanneer ç3 als correctielijn nuttig is zal hp volgens de tweede 
definitie als regel kleiner zijn dan volgens de eerste. Het is 
dan dus nuttig bij het berekenen van Fkp volgens (403.10) de 
hp in verband met ç3 te definiëren. 

Wij willen nu nog even weer wijzen op formule (402.7). Wan­
neer men hp op de laatstgenoemde wijze definieert moet hier 
worden gelezen 

una o\ n ï'n ^ J i n ~ ] 7 (409.2) ihp = çkp H Mp. 

In verband met (405.10) mag aangenomen worden dat 1 niet 

y fl 1 
r . —, omdat anders de waar-

n — 1 g 

de van çkp anders zou zijn gekozen. Het verschil — hp tussen de 

ware vruchtbaarheid cup + hp en de waarde van het rechterlid van 
(409.2) bedraagt in zijn systematisch deel dus niet veel meer dan 

' n In — n(n — 1) g' 

Dit zal over het algemeen te verwaarlozen zijn. De volgende 
methode spreekt nu verder voor zich zelf. 

(409.3) 

Ie Bereken de lijnen ç0, çlt ç2 en ç3 als boven omschreven. 

2e Lees de waarden çkp uit de lijn ç3 af. 

3e Bereken de waarden 

Q*kp = Qhp — Çkp 

4e Bereken het rasgemiddelde 

n 

Dit is nu de beste schatting van het rasgemiddelde waarover 
men beschikt. 
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5e Bepaal voor ieder veldje het verschil tussen de ongecorrigeerde 
opbrengst en het gecorrigeerde rasgemiddelde, dus 

V*kp = Qkp — Q*k 

6e Breng de waarden V*up in grafiek, en teken een nieuwe vrucht-
baarheidslijn. 

7e Controleer de nieuwe ç-lijn (ç4) op dezelfde manier als g2. 
De lijn die na controle gevonden wordt noemen we g5. 

Omdat volgens (409.5e) het verschil wordt bepaald tussen 
ongecorrigeerde opbrengst en gecorrigeerd gemiddelde moet de lijn 
ç4 worden gezien als een vervanging van ç2. Bij de controle van ç4 

moet dus niet worden nagegaan of hij voldoende van ç2 of ç3 

afwijkt, maar of hij voldoende van ç1 of ç0 verschilt. 
Verder moet er opgelet worden dat het criterium van (406.5) 

is afgeleid ten behoeve van het controleren van ç4 en niet ten be­
hoeve van het controleren van ç2. Immers (406.5) is er opge-
baseerd dat (405.10) juist is. Deze veronderstelling is slechts te 
motiveren, wanneer door een voorlopige ç3 lijn de grotere waarden 
van 1 zijn gecorrigeerd. Het is dus theoretisch altijd noodzakelijk 
een ç4-lijn te tekenen. Wanneer echter fap overal klein is kan 
soms met het tekenen van een ç3-lijn worden volstaan. 

Wanneer daarentegen ç5 sterk van ç3 afwijkt, kan betwij­
feld worden of ç3 wel heeft bewerkt dat formule (405.10) juist 
was. In dit geval kan men van ç6 uitgaan en zo tot een nieuwe 
ç6 en ç7 komen. Het eindpunt is bereikt wanneer de lijn waarvan 
men uitgaat en de lijn waartoe men komt practisch gelijk zijn. 

Aan de hand van de definitieve vruchtbaarheidslijn ~ç vindt 
men dan als gecorrigeerde opbrengst van ieder veldje 

(409.4) Qkp** = Qkp — 'cup 

en als waarde van de rasconstante QU 

(409.5) pk*~* = Ü^J2*?LÜ] _ JF*. 
n 

410 - H E T VERBRUIKT AANTAL VRIJHEIDSGRADEN 

Het grote bezwaar dat tegen een grafische vruchtbaarheids-
correctie wordt gevoeld is dat het niet gemakkelijk is een over­
zicht te houden over het gebruik van de vrijheidsgraden, zodat 
zich geen toevallige fout laat berekenen. Wij willen nu nagaan 
of dit bezwaar kan worden ondervangen. 
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(410.1) 

Om de gedachten te bepalen willen wij beginnen met een voor­
beeld te geven. In figuur (410.1) zijn een aantal waarden F af­
gezet. Volgens formule (403.12) zijn met een verschuivend drie­
voudig gemiddelde (g = 3) de waarden P berekend. Deze zijn in 
de grafiek getekend, verbonden door een stippellijn. Wij kunnen 
de stippellijn nu dus als een vruchtbaarheidslijn beschouwen. 
Hoeveel vrijheidsgraden heeft deze lijn geëist? Langs verschil­
lende wegen kunnen wij trachten hierop een antwoord te vinden. 

In de eerste plaats kunnen wij trachten een formule voor de 
gevonden lijn op te stellen en te zien hoeveel constanten deze 
formule bevat. Het aantal verbruikte vrijheidsgraden is gelijk 
aan het aantal constanten. Het is duidelijk dat het maar zelden 
gelukt een passende formule te vinden. 

In de tweede plaats kan getracht worden na te gaan door hoeveel 
punten de lijn bepaald wordt. Dit aantal is gelijk aan het aantal 
constanten uit de formule, maar is gemakkelijker te vinden. (Denk 
b.v. aan de lijn y = nix + q, die door twee punten bepaald is 
en y = ax2 + bx + c die door drie punten bepaald is. Zo is 
x2 + bxy + cy2 -f dx + ey -f- / = 0 door 5 punten bepaald). 

Het aantal punten dat nodig is om onze gebroken lijn te be­
palen is gelijk aan het aantal knikpunten van de lijn en dus prac-
tisch gelijk aan het aantal veldjes. Wanneer dit aantal vrijheids­
graden inderdaad benodigd was voor het berekenen van de vrucht­
baarheidslijn zou het totaal aantal verbruikte vrijheidsgraden 
groter worden dan het beschikbare aantal, daar het ook nog 
mogelijk blijkt een aantal rasgemiddelden te berekenen. Dit is in 
strijd met de stelling aan het eind van 101. Bovendien zou ver­
wacht mogen worden dat de kwadraatsom der afwijkingen de 
waarde 0 aannam, wat blijkens grafiek (410.1) ook niet het geval 
is. Dit is dus niet de juiste methode voor het vaststellen van het 
verbruikte aantal vrijheidsgraden. 

De fout van onze poging is dat wij iedere waarde Pkp die in fig. 
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(410.1) in beeld is gebracht, als een „uitkomst" hebben opgevat. 
In 101 vonden wij echter dat men slechts dan van „uitkomsten" 
kan spreken als ze onderling onafhankelijk zijn. Dit is met de 
waarden P geenszins het geval. De waarden P die voor de veldjes 
5 en 6 zijn berekend berusten beide op de waarden F van de 
veldjes 5 en 6. Pas de waarde P van veldje 8 is onafhankelijk van 
die van veldje 5. De waarden P van de veldjes 6 en 7 zijn er op een 
min of meer omslachtige manier tussen geïnterpoleerd, zonder 
nieuwe uitkomsten te verschaffen. 

In verband met het feit dat we g = 3 gekozen hebben zouden 
wij dus kunnen zeggen dat er hoogstens 15/3 = 5 vrijheidsgraden 
verbruikt kunnen zijn, omdat er niet meer onafhankelijke waarden 
P zijn berekend. 

Maar ook dit aantal is nog te hoog. In 409 bespraken wij dat 
wij na een ç3 nog een ç5 en misschien een ç7 zochten tot we de 
definitieve vruchtbaarheidslijn hadden gevonden. Bij dit zoeken 
van de definitieve lijn wordt de natuurlijke verwantschap van de 
P van veldje 5 en van veldje 8 in het oog gehouden. Over deze 
afstand wordt naar een zekere continuïteit gestreefd in het vrucht-
baarheidsverloop, waardoor ook de waarden P van veldje 5 en 
veldje 8 onderling afhankelijk worden. 

Bij het bestuderen van het verbruikt aantal vrijheidsgraden 
moeten wij ons dus baseren op de strakke ç-lijn, die wij als defini­
tieve vruchtbaarheidslijn beschouwen. 

Van deze lijn is soms een formule te vinden zoals in voorbeeld 
(410.1) waar het een rechte lijn is. In dit geval is het verbruikte 
aantal vrijheidsgraden hoogstens gelijk aan het aantal parameters 
der lijn. Het verbruikt aantal kan lager zijn, wanneer de definitieve 
vruchtbaarheidslijn ingewikkelder is gekozen dan uit de gegevens 
valt af te leiden. Dit zou het geval geweest zijn wanneer de stip­
pellijn uit (410.1) als definitieve vruchtbaarheidslijn was be­
schouwd. 

Van de ç-lijn van figuur (407.1) is geen formule bekend. Wij 
hebben getracht voldoende aansluiting te vinden bij een alge­
braïsche functie van de (a -\- l ) e graad wanneer er a maxima en 
minima waren. Voor ons lijnstuk met 1 maximum en 2 minima 
is a = 3, zodat de formule zou moeten worden 

y = Ax^ + Bx3 + Cx2 + Dx + E; 

er zouden dan dus (a + 2) vrijheidsgraden verbruikt zijn. Meestal 
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is de aansluiting slecht, wat niet betekent dat er meer vrijheids­
graden verbruikt zijn, slechts is de controle-methode verkeerd. 

Meer succes heeft men wanneer men tracht na te gaan door 
hoeveel punten de lijn bepaald wordt. Onder grafiek (407.1) hebben 
wij 6 kruisjes geplaatst. Wanneer iemand gevraagd wordt door 
deze kruisjes de eenvoudigste vloeiende lijn te trekken die mo­
gelijk is, zal er vermoedelijk een lijn ontstaan, die niet veel van de 
ç-lijn van (407.1) afwijkt. De gevonden ç-lijn is dus door ongeveer 
6 kruisjes wel bepaald. 

Als regel voor het vaststellen van het verbruikt aantal vrijheids­
graden kunnen wij dus geven: 
(410.2) Ga na hoeveel punten minstens gegeven moeten zijn om 
de lijn dragelijk te reconstrueren. Met dragelijk reconstrueren be­
doelen wij, dat men zoveel punten kiest dat de verschillen tussen 
de lijnen, die men er op 't oog door trekt, klein zijn in verhouding 
tot de toevallige fouten. Het minimum aantal benodigde punten 
willen wij b noemen. 

Feitelijk is het getal b steeds 1 te hoog omdat de absolute hoogte 
van de vruchtbaarheidslijn onbelangrijk is. In verband met het 
feit dat b geschat is, kan men dit echter verwaarlozen. Het 
getal b geeft nu aan hoeveel vrijheidsgraden hoogstens verbruikt 
zijn. 

411 - D E BEPALING VAN DE TOEVALLIGE FOUT 

Wanneer men de formules met elkaar vergelijkt die VAN UVEN 
geeft voor de bepaling van de varians o2, ziet men dat ze kunnen 
worden samengevat in de algemene formule 

<«>••> - = Ä 
waarbij N het beschikbaar aantal vrijheidsgraden aangeeft, en 
M het reeds verbruikte aantal. Uit het feit dat deze formule vaak 
voorkomt mag niet worden afgeleid dat hij algemeen geldig is. 
Wij willen op twee beperkingen wijzen. 

In 128 hebben wij nagegaan volgens welk principe de formule 
voor een geval van lijnvereffening moest worden gekozen. Wij 
zagen dat de richting van middelen niet steeds doorslaggevend 
was. Dit neemt niet weg, dat de door VAN UVEN gegeven richting 
van middelen bij regressielijnen wel beslissend is voor de richting 
waarin de grootte van de fout moet worden gemeten. Wanneer 
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men nu de voorkeur geeft aan een andere lijn dan die met de 
methode der kleinste kwadraten voor die richting van middelen 
wordt berekend, dan houdt dit in dat men een grotere kwadraat­
som moet vinden. Uit het feit dat men toch de voorkeur aan de 
lijn met de kleinste kwadraten onthoudt, blijkt niet dat men o2 

groter wil schatten. De noemer van (411.1) moet dus wel groter 
worden genomen. 

Dit ligt ook voor de hand. Een berekening volgens de methode 
der kleinste kwadraten is erop gespitst de fouten weg te verklaren. 
Men zoekt immers de kleinste kwadraten. Blijkbaar geeft iedere 
uitkomst die berekend wordt, een mogelijkheid meer de schijnbare 
fout te verkleinen. Vandaar dat het aantal verbruikte vrijheids­
graden (M) dan voor compensatie in de noemer staat. 

Wanneer men een ander principe volgt, eventueel grafisch 
werkt, is men er niet zo op gespitst. Dan vervalt ook de reden, 
J / in zijn geheel van het beschikbaar aantal vrijheidsgraden 
N af te trekken. Dus wanneer volgens een ander principe wordt 
vereffend dan volgens de methode der kleinste kwadraten is er de mo­
gelijkheid dat de schatting van o2 in (411.1) te hoog is. 

Een tweede beperking van de geldigheid van (411.1) houdt ver­
band met formule (116.12). In deze formule wordt gezegd dat de 
totale varians y>2 bestaat uit de toevalsvarians o2 en nog een 
systematisch deel dat niet kleiner dan 0 kan worden. 

Asymptotisch is dit juist, d.w.z. wanneer men een bepaalde 
proef steeds weer herhaalt, zal er steeds weer een varians berekend 
kunnen worden. Het gemiddelde van al deze variansen voldoet 
aan formule (116.12). Ook het voorschrift, dat wij aan het eind 
van 118 gaven, heeft slechts asymptotische geldigheid. Daar stelden 
wij als regel voor het kiezen van een formule: Kies die (nood)-
formule, die de kleinste varians geeft. Wij wezen er daar op dat 
volgens dit principe de ideale formule gevonden moet worden 
als die zich onder de beproefde formules bevindt. Ook dit is slechts 
asymptotisch waar. D.w.z. als men steeds weer hetzelfde probleem 
met dezelfde formule tracht op te lossen, zal men op den duur 
met de ideale formule het best uitkomen. 

Bij vruchtbaarheidscorrecties kan men niet asymptotisch wer­
ken. Een vruchtbaarheidskaart doet zich maar eenmaal voor. 
Hetzelfde perceel geeft het volgend jaar onder andere weersom­
standigheden een ander vruchtbaarheidsbeeld. Bij vruchtbaar­
heidscorrecties mag men daarom niet veronderstellen dat de 

13 
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dubbele producten tussen toevallige en systematische fouten nul 
zullen zijn. Er is een tendens dat ze negatief zullen zijn, rzodat 
ip2 kleiner wordt dan a2 is. 

In verband met deze tweede beperking is het ook niet mogelijk 
de doelmatigheid van een vruchtbaarheidscorrectie te beoordelen 
aan de hand van de resterende varians. Dit is de reden waarom 
het criterium (406.5) nodig is. 

Aangezien door dit criterium het wegverklaren van toevallige 
afwijkingen vaak wordt tegengegaan (zie 404.9; 405.9; 405.11) 
willen wij aannemen dat ook het zoeken van negatieve dubbele 
producten binnen redelijke grenzen blijft. 

Bij grafische vruchtbaarheidscorrecties heeft men dus met twee 
tendensen te maken. Er is een tendens om de schatting van de 
varians te groot te laten zijn en er is een tendens om diezelfde 
schatting te verkleinen. 

Wanneer wij aannemen, dat die beide tendensen elkaar in het 
evenwicht houden, kunnen wij als formule voor de varians geven 

Yifi 

(411.2) w*= — ,. 
v ' mn — m — b 
waarbij u aanduidt het verschil tussen definitief gecorrigeerde 
opbrengst en definitief rasgemiddelde. 

In (411.2) hebben wij de varians aangeduid door ip2 en niet 
door er2. Wij moeten niet vergeten dat de varians niet alleen is 
opgebouwd uit zuivere toevallige fouten, maar ook uit geringe 
vruchtbaarheidsverschillen die niet konden worden weggecorrigeerd 
(zie 406.5). In formule (301.28) is aangetoond dat dergelijke be­
standdelen soms andere wetten volgen dan o2. Het lijkt ons waar­
schijnlijk dat dit verschil in dit geval mag worden verwaarloosd. 

De waarde ip2 van formule (410.2) moet nu voor tweeërlei doel 
gebruikt worden. In de eerste plaats moet de nauwkeurigheid 
van de gecorrigeerde rasgemiddelden er door worden aangegeven. 
Die nauwkeurigheid zal niet alleen beïnvloed worden door de 
toevallige fouten (o), maar ook door het te kort schieten van de 
vruchtbaarheidcorrectie (A). De waarde y>, die beide elementen 
bevat, mag wel als een geschikte grootheid worden beschouwd 
om de onzekerheid weer te geven. Wij kunnen dus globaal van de 
middelbare fout van het gecorrigeerde rasgemiddelde, en dus ook 
van de berekende waarde Qk** zeggen 

(411.3) V = J 7 = -
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In de tweede plaats moet f2 dienen om na te gaan of een 
correctie geoorloofd is. In tabel (406.5) is een criterium gegeven 
voor de toelaatbaarheid, maar dit criterium hangt af van de waarde 
van o, die niet bekend is. De waarde \p kan als een schatting van 
a worden genomen, waarbij men mag bedenken dat y> voor 
dit doel vermoedelijk te groot is, zodat niet te snel tot correctie 
wordt overgegaan. Bij het toetsen van de ç4-lijn (zie 409) moet 
dan een schatting van ip worden berekend met behulp van de 
,-3-lijn. 

412 - VRUCHTBAARHEIDSCORRECTTES BIJ PROEVEN IN VIERKANTS­

VERBAND 

Tot dusver hebben wij steeds verondersteld dat wij een stroken-
proef bewerkten, dus een proef, waarbij alle veldjes achter elkaar 
in een strook lagen. Deze aanname diende alleen om iets gemakke­
lijker de gedachten weer te kunnen geven; geen enkele berekening 
is er op gebaseerd. De voorgaande beschouwingen zijn dus ge­
lijkelijk toepasselijk wanneer men te maken heeft met een proef 
in vierkantsverband; waarbij de veldjes dus gerangschikt zijn 
als de vakjes van een dambord. 

Er zou dan ook geen enkele reden zijn speciaal over deze proeven 
te spreken wanneer er niet de moeilijkheid was, dat er feitelijk 
drie dimensionaal gewerkt moet worden. Er zijn twee assen nodig 
voor de plaatsbepaling van het veldje en een voor de vrucht­
baarheid. 

Omdat er geen principiële punten bij aan de orde komen, willen 
wij hier gewoon een voorschrift geven. Dit voorschrift is er op 
gebaseerd dat een proef in vierkantsverband volgens twee rich­
tingen (evenwijdig aan de coördinaatassen) in stroken kan worden 
verdeeld. De stroken evenwijdig aan de ene as kunnen als „rijen" 
worden aangeduid, de stroken evenwijdig aan de andere as als 
„kolommen". 

Een vruchtbaarheidscorrectie is nu in de eerste plaats mogelijk 
door het proefveld in rijen of kolommen in te delen, en de ge­
vormde stroken gewoon als strokenproef te verwerken. De nauw­
keurigheid is dan even groot als die van een normale strokenproef 
met stroken van dezelfde lengte. 

Het ligt evenwel voor de hand de nauwkeurigheid op te voeren 
door de vruchtbaarheidslijnen van naast elkaar liggende stroken 
op elkaar te vereffenen. Aan het Landbouwproefstation in Gro-
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ningen werd mij een methode gedemonstreerd die op het volgende 
neer kwam: 
Ie Het proefveld werd in rijen verdeeld. 
2e In iedere ontstane strook werd een vruchtbaarheidslijn ge­

tekend. 
3e Voor ieder veldje werd genoteerd welke vruchtbaarheid daar­

aan moest worden toegekend op grond van de vruchtbaar-
heidslijnen in de rijen. 

4e Nu werd het proefveld in kolommen verdeeld. 
5e In deze kolommen werden de waarden die volgens de rijen 

waren gevonden op elkaar vereffend. 
6e De waarden die nu werden gevonden werden nog eens volgens 

de rijen vereffend. 
7e Hetzelfde werd gedaan door de oorspronkelijke afwijkingen 

eerst volgens kolommen te vereffenen, dan volgens rijen en 
tenslotte weer volgens kolommen. 

8e De waarden die langs beide wegen waren gevonden werden 
tenslotte gemiddeld. 

Deze methode heeft als nadeel dat het achteraf moeilijk is te 
schatten hoeveel vrijheidsgraden verbruikt zijn. Verder kan het 
onderling verband tussen naastliggende rijen of kolommen mis­
schien gemakkelijker langs een andere weg worden bereikt. 

In de practijk is onderstaande methode goed bevallen: 

Ie Vul op een plattegrond van het proefveld voor ieder veldje 
de waarde Fkp (zie 403.10) in. 

2e Vorm een blokje van g veldjes (meestal negen, dus 3 x3 ) . 
Bereken uit de waarden F de waarde Pup (zie 403.12). Dit is 
dan een schatting van de vruchtbaarheid van het middelste 
veldje. Bereken zo voor ieder veldje de waarde P. 

3e Voor de buitenste rijen en buitenste kolommen kan zo geen 
waarde P worden berekend. Dit kan desnoods door deze als 
strokenproef op te vatten maar mag meestal worden nage­
laten. 

4e Teken voor iedere rij en iedere kolom een grafiek, waarin de 
waarden P op elkaar worden vereffend. Hierbij moet het 
verloop der punten wel tamelijk goed gevolgd worden. 

5e Lees uit deze grafieken af op welke plaatsen in iedere rij en 
iedere kolom de vruchtbaarheid een bepaalde waarde A 
heeft. 
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6e Geef deze plaatsen door een pijltje aan op een plattegrond 
van het proefveld. Laat daarbij het pijltje aanwijzen in welke 
richting de vruchtbaarheid lager is. 

7e Vereffen deze pijltjes op elkaar door er een niveaulijn tussen 
door te trekken. 

8e Construeer zo het benodigd aantal niveaulijnen. Voordat 
met een volgende lijn begonnen wordt moeten alle pijltjes 
van de voorgaande zijn uitgegomd, omdat anders verwarring 
ontstaat. 

9e Tracht de gevonden kaart zoveel mogelijk te vereenvoudigen. 
10e Controleer met behulp van het criterium van (406.5) of de 

vereenvoudigde kaart toelaatbaar is, en of de niet-vereen­
voudigde kaart ook teveel van de vereenvoudigde afwijkt. 
Maak in de geest van 409 een definitieve kaart. 

Wanneer men langs deze weg een vruchtbaarheidskaart heeft 
geconstrueerd, moet men nog trachten na te gaan hoeveel vrijheids­
graden er door zijn verbruikt. Hierbij staan dezelfde methoden 
ten dienste die in 410 zijn besproken. In de eerste plaats kan men 
trachten een formule voor de gevonden kaart te vinden. Dit ge­
lukt in de practijk bijna nooit. 

In de tweede plaats kan men nagaan hoeveel „punten" moeten 
worden vastgelegd om de kaart voldoende te reconstrueren. Het 
begrip „punten" hoeft dan niet zeer letterlijk te worden genomen. 
Meestal is het ' t gemakkelijkst één of enkele niveaulijnen door een 
aantal punten vast te leggen, en van de anderen na te gaan op 
welke afstand ze evenwijdig aan de eerste lopen. Wil men deze 
methode toepassen, dan moet men er bij het tekenen van de kaart 
naar streven de lijnen evenwijdig te trekken. Behalve naar even­
wijdigheid kan natuurlijk ook naar andere eenvoudige mathema­
tische samenhangen worden gestreefd. 

In de derde plaats kan geconstateerd worden, dat het aantal 
vrijheidsgraden nooit groter is dan het aantal veldjes, gedeeld 
door g. Dit is bij deze aanleg meestal de gemakkelijkste controle. 
Geschat moet dan worden hoe groot g genomen mag worden 
om toch dezelfde vruchtbaarheidskaart te krijgen. 



SUMMARY 

This publication deals with some problems attaching to the 
mathematical treatment of the results of agricultural trial fields. 

One problem is that of making corrections with regard to 
fertility variations. Especially when many varieties are investigated 
on trial fields without subblocks, the methods of R. A. F ISHER 

and his followers are not satisfactory for correcting these variat­
ions. Graphical methods seem to be better. But when graphical 
methods are employed one usually does not have a controll 
on the graphs. 

In Chapter IV some controll-methods have been given as well 
as a manner to estimate the mean error. 

Another problem is to find a method for combining the results 
of trial fields containing different numbers of varieties. This 
combination is essential for obtaining mean results. Because in 
this case the varieties are not orthogonal to the trial fields, the 
FISHER method cannot be employed here. In Chapter I I I another 
method is suggested. As varieties are often interdependent, the 
problem gets very complicated. 

The areas to which conclusions are applied are not homogeneous. 
The properties of the soil vary from place to place. Every variety 
has its special reaction on these varying properties, but some­
times two or more varieties have about the same reaction. Such 
varieties are therefore interdépendant. A large part of Chapter I I I 
deals with the mathematical difficulties arising from this inter-
dependency. A provisional solution is given, but without a theory 
of errors. 

The first two chapters deal with conceptions which are used 
in the last two chapters. In Chapter I special attention is given 
to the difference between systematical and accidental errors; to 
the difference between correlation or co-variation and linear 
adjustment; and in Chapter II to the assumption that we may con­
sider the production of a variety on a trial field as the sum of a 
contribution of the variety and a contribution of the trial field. 
This assumption often needs some provisions. 




