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SPECIFICATION AND ESTIMATION OF SPATIAL LINEAR 
REGRESSION MODELS: 

Monte Carlo Evaluation of Pre-Test Estimators 

Abstract 
Spatially correlated residuals lead to various serious problems in applied spatial research. 
In this paper several conventional specification and estimation procedures for models with 
spatially dependent residuals are compared with alternative procedures. The essence of the 
latter is a search procedure for spatially lagged variables. By incorporating the omitted 
spatially lagged variables into the model spatially dependent residuals may be remedied, 
in particular if the spatial dependence is substantive. The efficacy of the conventional and 
alternative procedures in small samples will be investigated by means of Monte Carlo 
techniques for an irregular lattice structure. 

1. Introduction 

Spatial dependence among the disturbances of spatial models is a serious problem in 

empirical research. In particular, the frequently applied ordinary least squares (OLS) 

estimator is inefficient, the estimator of the residual variance is biased, the values of the 

estimated Ä2 are inflated and inference procedures are invalid [cf. Cliff and Ord (1981)]. 

Furthermore, spatially correlated residuals affect the properties of tests regarding model 

selection and heteroscedasticity [Anselin and Griffith (1988), Anselin (1990)]. Conversely, 

heteroscedasticity affects tests on spatial dependence [cf. Anselin and Rey (1991)]. 

As the drawbacks of spatially correlated disturbances are severe, it is not surprising that 

various attempts have been made to handle this problem. In this connection the following 

procedures can be distinguished: 

- remedial action which consists of some kind of transformation of the sample observa­

tions, leading to estimated generalized least squares (EGLS), such as the Cochrane-

Orcutt [e.g. Hordijk (1974)] or the Durbin estimator [e.g. Ord (1975), Anselin (1988)], 

or to variables with the autoregressive components filtered out [Getis (1990)]; 

- maximum likelihood estimation, which has been applied to various spatial dependence 

models, such as spatial AR and MA models [e.g. Cliff and Ord (1981), Anselin (1988)]; 

and 

- adjustments in the context of model specification, either through spatial expansion 

[Casetti (1972), Jones (1983), Casetti and Jones (1988)], or spatial adaptive filtering 

[Foster and Gorr (1983, 1984)]. 

Various test statistics for spatial correlation among the residuals of linear regression 

models have been developed, such as the Moran coefficient, Geary's coefficient, the Cliff 

and Ord statistic and Lagrange Multiplier tests [cf. e.g. Cliff and Ord (1972, 1973, 1981), 
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Hordijk (1974), Anselin (1988), Getis (1991)]. The Moran coefficient has been found to 

be easily applicable and to perform reasonably well in a large variety of situations. Yet, 

recent results based on econometric simulation studies [Anselin and Rey (1991), Florax 

and Folmer (1991)] cast some doubt about whether the Moran coefficient is suitable for 

the detection of substantive spatial dependence, i.e. spatial correlation among the residuals 

as a result of erroneously omitted, spatially lagged, explanatory variables. 

Florax and Folmer (1991) show that, for an irregular lattice structure, the Moran 

coefficient has power against spatial autoregressive errors as well as in the case of models 

with an erroneously omitted, spatially lagged, dependent variable. With the spatially lagged, 

exogenous variables erroneously omitted, however, the use of the Moran coefficient may 

easily lead to excessive Type-II errors, depending on the variance of the error term. These 

conclusions are demonstrated to hold for inference based on the common asymptotic 

properties of the Moran coefficient as well as for non-parametric approaches, such as the 

bootstrap and the permutation procedure [see Cliff and Ord (1981), Folmer and Fischer 

(1984) and Folmer (1986) for these non-parametric resampling techniques in spatial 

analysis]. The results of Anselin and Rey (1991) among other things show that similar 

conclusions hold for regular lattice structures (except for omitted, spatially lagged, 

exogenous variables and resampling techniques which they did not investigate). A strategy 

to detect substantive spatial dependence based solely on the use of Moran's IR will 

therefore not be uniformly effective. 

The Lagrange Multiplier tests for spatially correlated residuals (LMERR) and for 

omitted, spatially lagged, dependent variables (LMLAG) have not been tailored to the 

detection of erroneously omitted, exogenous variables either. Hence, at the moment no 

adequate test statistics for the detection of erroneously omitted, spatially lagged, exogenous 

variables are available. As the consequences of this kind of specification error are serious 

(i.e. the coefficient estimator is biased, the disturbance variance is overestimated, and 

inference procedures are invalid), it is highly desirable to develop procedures to detect and 

remedy it. 

The purpose of the present paper is to present and analyze specification and estimation 

procedures designed to identify erroneously omitted, spatially lagged, systematic variables; 

to include these variables into the model, and to resort to data transformation or ML 

estimation only when there is sufficient evidence that the spatially correlated residuals are 

a consequence of spatial correlation among the variables represented by the error term. 

This approach to handling misspecification of spatial regression models is referred to as 

spatial variable expansion (SVE) in this paper. Two alternatives of the spatial variable 

expansion procedure are considered. One is based on the Moran coefficient for regression 



residuals (IR) and F tests on omitted, spatially lagged, explanatory variables (FOV). The 

only estimator applied in that case is ordinary least squares (OLS). A justification for this 

procedure is given in section four. The other alternative makes use of the Lagrange 

Multiplier test statistics for spatially lagged dependent variables (LMLAG) and for spatially 

correlated errors (LMERR) in conjunction with FOV or Likelihood Ratio (LR) tests to 

identify erroneously omitted, spatially lagged, explanatory variables. A limited variable 

expansion method, which only leads to expansion by the spatially lagged dependent 

variable, is also considered. 

In detail the organization of this paper is as follows. In section two a taxonomy of 

spatial dependence models is presented. Section three discusses some of the more 

traditional solutions to the spatial autocorrelation problem, viz. EGLS and ML estimation. 

In section four an overview of the variable expansion procedures will be given. In section 

five the performance of the variable expansion procedure is analyzed by means of a 

simulation study for an irregular lattice structure. Different forms of misspecification as 

well as the model with autoregressive disturbances are investigated. The simulations also 

include the EGLS and ML estimators so as to provide a bench-mark for the variable 

expansion procedures. In section six some concluding remarks wind up this paper. 

2. A taxonomy of linear spatial dependence models 

In order to provide a framework for the analysis of various forms of spatial dependence 

consider the following general linear regression model for spatial cross-sections r (= 1, 2, 

...,R): 

y = fWy + X/3 + WX*p + e (1.1) 

£ = XWt + /i (1.2) 

where y is the (R x 1) stochastic dependent variate, W an a priori specified (R x R) 

spatial weights matrix, X the (R x k) matrix of non-stochastic regressors, X* the (R x (k-

1)) matrix of explanatory variables with the constant term deleted, f the autocorrelation 

coefficient, ß the (k x 1) vector of coefficients of the non-weighted independent variables, 

p the ((k-1) x 1) vector of crosscorrelation coefficients, X the coefficient of the autoregres­

sive error term, and n a vector of random errors with E(fi) = 0 and £(/* fi') = a\ I. This 

general model will be called a mixed regressive-spatial regressive model with autoregressive 

disturbances. The following observations apply. First, for an unstandardized weights matrix 

the term WXp instead of WX*p can be included. In that case a regression coefficient is 

obtained which corresponds to a variable made up of the row sums of the weights matrix. 



Secondly, a model with both autoregressive disturbances and substantive spatial depend­

ence would require two (or more) different weights matrices, e.g. y = £Wty + Xß + 

WjX'p + e with e = XW2£ + /*, because otherwise the (3 + k + (M)) unknown parameters 

(fijS'.p'^o2)' are not identified [cf. Anselin (1988)]. For ease of exposition, and because 

only genuine submodels of the general model will be investigated here, a single weights 

matrix W is used. 

At least four special cases can be derived from the model given in (1.1) and (1.2) by 

putting constraints on the model. These special cases are the following. 

- A mixed regressive-spatial autoregressive model (p = (0,..., 0) ' and X = 0): 

y = f W y + X/S + jt (2) 

where /t is again a (if x 1) vector of disturbances with E(p) = 0 and E(fi /i') = ô  I. 

- A mixed regressive-spatial crossregressive model (f = 0 and X = 0): 

y = X/S + WX*p + /i (3) 

with n as given above. 

- A mixed regressive-spatial regressive model (X = 0) as a result of the combination of 

models (2) and (3): 

y = fWy + Xß + WX*p + M (4) 

with n as before. 

- A model with autoregressive disturbances (f = 0 and p = (0, ..., 0)'). Under the 

assumption that (I -XW) is invertible and |X| < 1 for reasons of stationarity [cf. also 

Anselin (1982, p. 1025)] this type of model reads as: 

y = X/5+ ( I - X W ) V (5) 

with fi as before. 

With respect to the taxonomy of linear spatial dependence models three observations are 

worth noticing. First, more variety in the taxonomy of spatial models can be obtained by 

introducing different weights matrices, i.e. weights matrices which differ along with, for 

instance, the (omitted) variables or with the order of contiguity [cf. Hordijk (1974), Cliff 



and Ord (1981)]. As a rule, the weights matrix consists of binary contiguity indexes, or is 

made up of indices based on distance, the relative common perimeter length [Cliff and 

Ord (1981)], or multidimensional scaling [Gatrell (1979)]. 

Secondly, the issue of the specification of the weights matrix has received little 

attention. However, there is evidence in the literature that the a priori and exogenous 

nature of the spatial weights matrix gives rise to two important caveats. First, as has been 

shown in simulation studies, the power of autocorrelation statistics (e.g. Moran's IR and 

LM statistics) is crucially dependent on both the type of weights matrix and whether or not 

it has been standardized [cf. Stetzer (1982), Anselin and Rey (1991), Florax and Folmer 

(1991)]. Secondly, misspecification of the weights matrix has an impact on hypothesis 

testing with respect to spatial dependence among residuals as well as a drawback in terms 

of bias regarding the estimated coefficients in models with spatially lagged variables. As 

this issue has been largely disregarded in the literature, it merits further attention [cf. 

Anselin (1985), Florax and Rey (1992)]. 

Thirdly, the phenomenon of crossregressive spatial dependence has received only sparse 

attention in the literature [cf. Folmer (1986, p. 99), for an explicit treatment, and Folmer 

and Nijkamp (1987) for an application]. The following example shows that it has a real 

and, depending on the specific context, also a policy relevant meaning. Consider an 

aggregate regional production function where regional production is treated as a function 

of inter alia the availability of labor. Autocorrelation then implies that regional production 

in region r is also influenced by regional production in region r ', whereas crosscorrelation 

indicates that regional production in region r is also influenced by the availability of labor 

in region r' (r *• r'). The influence of both types of spatial causation can of course occur 

simultaneously. Moreover, there may exist reciprocal influences; that is, from region r to 

region r ' and vice versa. 

Omission of spatially lagged variables is an important cause for spatially correlated 

residuals. To illustrate this, assume that the true model is the spatial Durbin or common 

factor model that includes spatially lagged variables, dependent as well as explanatory [cf. 

Burridge (1981), Anselin (1990)]. That is: 

y = X/3 + XW(y-X/5) + /i (6) 

If the hypothesized model is: 

y = Xß + e (7) 



then: 

e = \W(y-Xß) + n (8) 

It can be easily seen that the off-diagonal terms of the variance-covariance matrix of e in 

general are nonzero. The same holds when, spatially lagged, exogenous variables are 

erroneously omitted. 

It should be observed that spatial autocorrelation among the regression residuals may 

also imply the presence of non-linear relationships between the dependent variable and 

one or more explanatory variables, or the presence of spatial correlation among one or 

more non-systematic variables represented by the error term. Cliff and Ord (1981) give a 

detailed review of the causes and remedies with regard to these two types of spatial 

correlation. 

In the sequel two types of spatial autocorrelation will be investigated, which may be 

referred to as substantive spatial dependence and spatial dependence as a nuisance [cf. 

Doreian (1980), Anselin and Griffith (1988), Anselin and Rey (1990)]. Substantive spatial 

dependence is meant to imply an autoregressive residual structure due to the omission of 

spatial lags of the systematic variables included in the model. The nuisance case refers to 

the occurrence of an autoregressive error structure as such, which may be the result of 

non-linearities, of spatial correlation among variables represented by the error term, or of 

a poor match between the spatial pattern of a phenomenon and the spatial cross-sections 

for which data is available. Below, both substantive spatial dependence and spatial 

dependence as a nuisance will be investigated, although non-linearities and a poor match 

are not considered as causes for the non-spherical structure of the error variance-

covariance matrix. 

3. Conventional remedies: the use of EGLS and ML estimators 

The model given in (6)-(8) suggests that erroneously omitted, spatially lagged, systematic 

variables result in autoregressive residuals. Erroneously omitted, spatially lagged, 

systematic variables are a typical example of the omitted variable problem in a spatial 

context. This type of specification error causes the OLS estimator of the coefficients to be 

biased, with the bias being a linear combination of the coefficients of the omitted variables. 

Moreover, the true disturbance variance will, on average, be overestimated. 

The conventional solution to the spatial dependence problem is not, however, a search 

for a proper respecification of the matrix X, but rather to assume that the true model is 

the model at hand and that the autocorrelation among the disturbances is due to spatial 



dependence as a nuisance. This approach and its consequences will be briefly described in 

this section. 

The autoregressive structure is mostly represented by a stationary Markov scheme for 

the disturbances. Hence, in the general form for G orders of contiguity the model is 

specified as: 

y = X ß + e (9.1) 

£ = SgXgWg£ + ^ = ^ X + ^ (9.2) 

where Wg is the weighting matrix corresponding to g-th order contiguity (g = 1, 2,..., G), 

X is a vector made up of the elements \ with |Xj| < 1 and Eg \ < 1, V g, in order to 

obtain a stationary process, Ŵ  is the partitioned matrix [ W, E | W2 e \ ... | WG e], and 

H as before. 

In accordance with the familiar time-series result the non-diagonal structure of the 

variance-covariance matrix, due to spatial dependence as a nuisance, causes the OLS 

estimators: 

*«, = (X'X)-'X- y , and &, = [1/(Ä-*)] e'e (10) 

to result in unbiased but inefficient parameter estimators, and a biased variance estimator. 

The well-known EGLS time-series estimators due to Cochrane and Orcutt (1949) and 

Durbin (1960) have been extended to the spatial context [cf. Hordijk (1974), Ord (1975), 

Bartels (1979), Anselin (1980, 1981)]. The EGLS parameter estimator is given by: 

bEas = (X'A'AX^X'A'Ay (11) 

and the EGLS estimator for a2 is: 

4eu = [!/(**)] e'A'A e (12) 

with A = I - Eg \ Wg and e = y - XbEOLS. It should be observed that EGLS is only 

consistent when a consistent estimator is used for the nuisance parameters X. If that is the 

case EGLS is not only formally equivalent to OLS applied to the suitably transformed 

variables X* = AX and y* = Ay, but also a maximum likelihood estimator. 

The Cochrane-Orcutt (CO) procedure estimates X by applying OLS to the auxiliary 

regression: 



e = SgXgWge + M = Wk
sX + / t (13) 

where e is the OLS estimated residual vector, W^ is the partitioned matrix [ Wj e | W2 e 

| ... | WG e ], and p. as before. The CO estimator can be applied in an iterative fashion by 

substituting the estimates X in the matrix A, re-estimation of the vector of coefficients and 

a2 by means of (11) and (12), and so forth, until convergence. It is worth noticing that in 

spatial cross-section analysis data transformation does not lead to a loss of observations, 

so that the CO estimator is the analogue of the Prais-Winsten estimator frequently used 

in time-series analysis [cf. Judge et al. (1985, p. 286)]. When the nuisance parameters X are 

estimated by OLS, however, the CO estimator is not consistent [cf. Anselin (1988)]. 

The Durbin estimator (DU) is obtained in a similar manner. Starting point is the 

common factor model: 

= Eg Xg Wg y + X ß - Eg \ Wg X ß + n 

= WgX + X/3-W^7 + /t (14) 

with W° for [ W, y | W2 y | ... | WG y ], W' for [ W, X | W2 X | ... | WG X ], and 7 = 

(XjjS', Xj/3', ..., XQJS')'. Model (14) can be estimated by OLS either in an unconstrained 

fashion or with the following (G x k) constraints imposed, ß \ = - ß\, V g, with ß = (ß„ 

ß* •••> &)'• When a standardized weights matrix is used, the specification contains two 

constant terms which can of course not be identified separately. Consequently, WgX should 

be replaced by WgX* and just (G x (£-1)) constraints can be imposed. In practice, the DU 

estimator is mostly based on unconstrained estimation of (14) and subsequently (11) and 

(12) are estimated (non-iteratively) with X taken from the regressors W^ in (14). 

In contrast to the time-series case, the OLS estimator for X in (13) and (14) is inconsist­

ent irrespective of the properties of the error term n [cf. Anselin (1988)]. Several ML 

procedures have been developed as alternatives to the estimators mentioned above [for an 

overview see Cliff and Ord (1973,1981), Anselin (1980, 1981, 1988), Ripley (1981), Upton 

and Fingleton (1985), Griffith (1988)]. 

Assuming normally distributed errors, the ML estimator for the spatial autoregressive 

error model can be derived from the log-likelihood: 

L = -(R/2)lmr • (R^lna2 + ln\A\ - (l/l^iy-XßyX'My-Xß) (15) 



EGLS estimators for ß and a2 are maximum likelihood estimators provided the estimator 

of the nuisance parameters X are ML estimators. In that case ML estimates can be found 

through maximization of the concentrated log-likelihood conditional upon the estimates 

for e (= y - X bBCLS) as suggested in e.g. Brandsma and Ketellapper (1979a) and Anselin 

(1980). The problem is given by: 

max Lç(\) = -(R/2)lmr- (R/2)ln[(l/R)e'A'Ae] + ln\X\ (16.1) 

s.t. -1 < \ < 1, V g (16.2) 

which results in estimates for X. Via an iterative procedure with (11) and (12) MLERR 

estimates for the vector of unknowns (ß',~k',<?)' are obtained. 

For higher order autoregressive error models with Wg not orthogonal the estimation 

procedure is numerically rather cumbersome [cf. Hepple (1976), Brandsma and Ketellap­

per (1979b)]. For g = G = 1 the spatial connectivity structure is obviously represented by 

a single weights matrix, and Lc is a univariate function. Solving for the autoregressive 

parameter \ is then numerically not too complex, in particular as the Jacobian term In | A | 

can be written as S; ln(l • \ w;) with a); for the eigenvalues of the spatial weights matrix 

W [cf. Ord (1975)]. See the appendix for details. 

The following remarks apply. Although the maximum likelihood procedure has 

attractive asymptotic properties, it has been shown in Anselin (1980, 1981) that in small 

finite samples for the autoregressive error model the OLS and EGLS estimators may be 

superior in terms of bias, mean squared error, and mean absolute percentage error (see 

section five). It should be observed that in the simulations presented below the small finite 

sample properties of OLS and EGLS will not only be investigated in the case of the 

autoregressive error model but also in the context of substantive spatial dependence. 

Secondly, in practice the estimators described above are pre-test estimators (P7E). In 

the case of EGLS and Moran's IR test the pre-test estimator is defined as [cf. e.g. King and 

Giles (1984)]: 

yP7E = P[IR > IR(a)] • bEaLS + P[IR < ma)] • bos (17) 

where IR(a) denotes the critical value of a 100a percent level test. Similar definitions apply 

to the ML estimator. The actual properties of the estimators presented here can markedly 

differ from their asymptotic properties because of the use of small samples and because 

of the pre-testing aspect (see also below). 



4. The variable expansion method 

The variable expansion method aims at remedying substantive spatial dependence by 

including erroneously omitted, spatially lagged variables into the set of explanatory 

variables.1 Three kinds of spatial variable expansion methods will be elucidated below: 

limited spatial variable expansion (LSVE) which makes use of LM tests only; spatial 

variable expansion 1 (SVE1) which applies the autocorrelation test based on Moran's IR 

and F tests to the omitted, spatially lagged, explanatory variables; and spatial variable 

expansion 2 (SVE2) which applies LM autocorrelation tests, and LR or F tests to the 

omitted, spatially lagged, exogenous variables depending on whether or not the specifica­

tion contains the spatially lagged, dependent variable. 

In the limited spatial variable expansion strategy the only candidate for expansion is the 

spatially lagged dependent variable. The procedure is given in the following scheme. 

1. Estimate the initial model y = X ß + e by means of OLS. 
2. Test the residuals by means of LMERR and LMLAG. 
3. If neither leads to the rejection of Ho of no spatial correlation among the resid­

uals the ultimate model is the model obtained in step 1. 
4. If LMLAG does not lead to the rejection of HQ whereas LMERR does, or if both 

lead to the rejection of Ho and the probability value (i.e. the probability that the 
sample value would be as large as the value actually observed if Ho is true) corre­
sponding to LMERR is smaller than the one corresponding to LMLAG, the spatial 
autoregressive error model is estimated by means of MLERR. 

5. If LMLAG leads to the rejection of Ho, or if both lead to the rejection of H„ and 
the probability value corresponding to LMLAG is smaller than the probability 
value corresponding to LMERR the mixed regressive spatial autoregressive model 
is estimated by MLLAG. 

It should be observed that MLERR and MLLAG are ML estimators based on the assump­

tion of spatially correlated errors and on the expansion of the initial model with a spatially 

lagged, dependent variable, respectively. 

The SVE1 strategy is a full expansion method based on F tests on spatially lagged, 

exogenous and spatially lagged, dependent variables. The FOV tests amount to applying the 

standard F test to the hypothesis y = 0 in the augmented regression: 

y = X/S + 7 z + £ (18) 
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where z is a vector representing an omitted spatially lagged variable. The null hypothesis 

is tested with an F test, which is formulated in terms of the residual sum of squares of the 

restricted and the unrestricted model: 

{egeR-e{,ev) / q 
FOV = F (q, R-k) (19) 

e„ ev I (R - k) 

where eÄ' and eu are the estimated vectors of errors of the restricted and unrestricted 

models, respectively, and q is the number of variables omitted in the restricted model. It 

should be observed that when the model has been augmented by the spatially lagged 

dependent variable the F test is inappropriate. Instead the Likelihood Ratio (LR) test 

should be applied. For the following reasons, however, the F test will be used here. First, 

the asymptotic properties of the LR test may not hold in small samples (which will be 

analyzed in the simulations). Secondly, the F test is likely to be better known than the LR 

test, and may therefore be more easily applicable in practice. 

The SVE1 strategy can be summarized by means of the steps given in the scheme below. 

1. Estimate the initial model y = X ß + e by means of OLS. 
2. Identify the subset S of systematic explanatory variables for which the inclusion as 

spatially lagged variables into the model is plausible on theoretical grounds. 
3. Expand the initial model by successively including variables from S (one at a 

time) and estimate the models y = X ß + pipg Wg z; + e, z-, ë S, V i,g. 
4. Test the hypothesis p u = 0, z, £ £, V i,g, by means of FOV. 
5. Let E be the set of coefficients for which the hypothesis pig = 0 is rejected. 

Include z,- corresponding to p; €E E with the smallest probability value into the 
model. 

6. Steps 4. and 5. are repeated for the remaining relevant variables and orders of 
contiguity. 

7. The residuals of the ultimate model are calculated and tested for spatial depend­
ence by means of IR. If the hypothesis of no spatial dependence is rejected, the 
MLERR estimator is applied to the initial model. 

The following remarks apply. First, in step 7, OLS residuals are used to test for spatial 

correlation among the true errors. The OLS residuals are correlated whether or not the 

unobserved population errors are correlated. Simulation studies by Bartels and Hordijk 

(1977) and Brandsma and Ketellapper (1979a) show, however, that the power of IR is 

stronger for OLS-residuals than for a residual estimator with a scalar covariance matrix 

(such as BLUS, LUS, and RELUS). Secondly, application of MLERR, in step 7, to a 
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model containing the spatially lagged dependent variable is not feasible because of the 

identification problems related to the use of just one weights matrix for both substantive 

and nuisance dependence. Hence, one has to resort to MLERR estimation of the initial 

model. In the case of the presence of both spatially lagged exogenous variables and 

autoregressive errors MLERR would be feasible. As the latter model is not one of the 

generating models it will seldom occur, and has therefore been disregarded here. 

The SVE1 procedure is based on generally well-known tests and the OLS estimator. It 

is therefore easy to apply, and likely to be popular in applied research. However, when the 

unrestricted model contains the spatially lagged endogenous variable the OLS estimator 

is inconsistent and biased. In that case the MLLAG estimator should be used instead. 

Moreover, in the model containing the spatially lagged endogenous variable the standard 

F test should be replaced by the LR test [cf. Anselin (1988)]. 

Strategy SVE2 is a full expansion method based on LMERR and LMLAG tests on the 

residuals, and LR or FOV tests on the coefficients of the spatially lagged explanatory 

variable. In the present procedure the methodological flaws of strategy SVE1 are avoided. 

It should be observed, however, that the features of the present procedure are based on 

asymptotic theory, whereas in practice usually small samples are used. The procedure is 

made up of the following steps. 

1. Estimate the initial model y = X ß + e by means of OLS. 
2. Identify the subset S of systematic explanatory variables for which the inclusion as 

spatially lagged variables into the model is plausible on theoretical grounds. 
3. Test the hypotheses of no residual nor substantive spatial autocorrelation by 

means of LMERR and LMLAG. 
4. If both tests lead to acceptance of the null hypotheses test the hypothesis pi-g = 0, 

z, G S* where S* is the subset of S containing the exogenous variables only, V i,g, 
by means of FOV. Include z, corresponding to pi% E E (i.e. the set of coefficients 
found to be unequal to zero) with the smallest probability value into the model. 
Repeat this step for the remaining relevant variables and orders of contiguity. 

5. If LMERR is significant and LMLAG not, or if both tests lead to the rejection of 
HQ and the probability value corresponding to the former is smaller than the one 
corresponding to the latter, the model with autoregressive errors is taken as the 
ultimate model and is estimated by means of MLERR. 

6. If LMLAG is significant and LMERR not, or if both tests lead to the rejection of 
Ho and the probability value corresponding to the former is smaller than the one 
corresponding to the latter, the mixed regressive spatial autoregressive model is 
estimated by means of the MLLAG estimator. Next, the model is successively 
expanded by spatially lagged exogenous variables following the lines given in step 
4, although with LR tests instead of FOV tests. 
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The following remarks apply to the variable expansion methods described above. First, 

these procedures are the opposite of the classical way of model selection, which consists 

of the estimation of a tentative, general model and the deletion of those variables for 

which the estimated coefficients either have a wrong sign or are not significantly different 

from zero. 

Secondly, a possible alternative to the variable expansion method is to start with a 

general model including the various plausible, spatially lagged variables and to reduce the 

model in the classical way [cf. Hendry and Richard (1982)]. The advantages of the variable 

expansion methods described earlier are the, at least initially, lower sensitivity to 

multicollinearity and greater parsimony with respect to degrees of freedom. On the other 

hand, the variable expansion method is basically a forward step-wise regression. Exclusion 

of relevant variables does not only lead to biased, inconsistent estimators of the regression 

coefficients but the true disturbance variance will also be overestimated. The Hendry 

approach, which is essentially a backward step-wise regression, does not suffer from 

inconsistency or bias. In this paper the properties of forward step-wise methods have been 

investigated. An interesting and important topic for further research would be a compari­

son of these procedures with the Hendry approach. 

Thirdly, the models selected by means of the variable expansion methods clearly have 

a data-instigated nature. That is, the data set which has been used to find a model that fits 

the data at hand is also used to estimate the variability of the estimator. Because the data 

gave birth to it, the accuracy of the estimator of the parameter vector of a data-instigated 

model will be over-estimated to an unknown extent, and the goodness of fit to the sample 

data is likely to be greater than the fit to the population [cf. e.g. Learner (1978), Lovell 

(1983), Folmer (1988) with respect to autocorrelation in time series models]. The variable 

expansion method should primarily be applied in exploratory analyses. Moreover, only 

those spatially lagged explanatory variables should be considered for inclusion into the 

model for which there exists sufficient theoretical justification. Insight into the robustness 

of the model obtained via variable expansion methods (and other kinds of data-instigated 

models) can be attained by means of cross validation [cf. e.g. Mosteller and Tukey (1977) 

for details]. The problem of data-instigated models will not be considered any further here. 

For information about these problems, which frequently occur in the context of any kind 

of applied econometric research, the reader is referred to, among others, Judge and Bock 

(1978), Hendry and Richard (1982), Auctores varii (1984), and Gilbert (1986). 
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5. Experimental design and simulation results 

In this section the small sample performance of the variable expansion methods and of the 

various estimators mentioned in section three will be investigated in the case of both 

substantive spatial correlation and spatial dependence as a nuisance. The model chosen for 

experimentation reads as: 

y = f W j + Xß+ WX'p + (I-XW)-V (21) 

where y is the (R x 1) dependent variate vector with R = 26; X is made up of x0 , the unit 

vector, and of ̂  and x2 which are drawings from a uniform (0,10) distribution; W is the 

standardized binary first-order contiguity matrix of the O'Sullivan data for Ireland given 

in unstandardized form in Cliff and Ord (1981, p. 230); and fi = (/*„ ̂  ..., / t^)' — N(0, 

ol I) where I is the (R x R) identity matrix and al = 2.0. The true values contained in the 

vector ß are all set to 0.5. The elements of X are fixed between the experiments, and the 

characteristics of xt and x2 are appropriate in terms of e.g. multicollinearity (means 4.003 

and 5.157, standard deviations 2.815 and 2.529, and r = 0.156). The error variance has 

been set to 2.0 causing the estimated R2 to be on average approximately 0.55 when p = (0, 

0,..., 0) ' and f = X = 0, which seems to be a realistic bench-mark value found in applied 

spatial research. As mentioned in section two, different weights matrices are required for 

reasons of identification if the complete model were to be estimated. In the simulations, 

however, only genuine submodels are analyzed, which makes it possible to use a single 

weights matrix. 

The following model is estimated by OLS: 

y = X ß + e (22) 

where c is assumed to be white noise, whereas the true models are the regressive-spatial 

crossregressive, the regressive-spatial autoregressive, the regressive-spatial regressive and 

the autoregressive error model, respectively. Since in some runs the coefficients of the 

spatially lagged variables and the nuisance or autocorrelation parameter are zero, model 

(22) is also one of the true models. 

For the EGLS and ML estimators the null-hypothesis of no (substantive) spatial 

autocorrelation has been tested by means of the Moran coefficient with a nominal (two-

sided) Type-I error of 0.05. The variable expansion methods are sequential. This means 

that the nominal Type-I errors of the individual test should be adjusted so as to obtain the 

desired nominal a-level of 0.05 for the procedure as a whole. As the number of tests is not 
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known a priori, a correction for multiple comparisons, such as Bonferroni bounds, cannot 

be used [cf. Savin (1980)]. However, assuming independence of the individual tests upper 

and lower bounds of the overall level can be derived on the basis of the minimum and 

maximum number of comparisons required. Levels for the individual tests and overall 

levels for the various conventional and expansion procedures are given in Table 1. 

Table 1: a-levels for individual tests and overall a-levels for the different test strategies.* 

Method/ 
tests 

m 
LMERR 

LMLAG 
FOV 
LR 

Minimum # 
Maximum # 

comparisons 
comparisons 

Overall a-level 

Conventional 
method 

0.05 

1 
1 

0.05 

Limited spatial 
variable 

0.025 
0.025 

2 
2 

0.05 

expansion 

Full spatial 
variable expansion 
variant 1 

0.01 

0.01 

4 
7 

0.04-0.07 

Full spatial 
variable expansion 
variant 2 

0.01 
0.01 
0.01 
0.01 

2 
5 

0.02-0.05 

* For the approximate overall a-levels it is assumed that the tests are independent. 

The overall results are presented in terms of power of the tests, probabilities of finding the 

true model, absolute parameter bias (BIAS), mean squared error (MSE), and mean 

absolute percentage error (MAPE). The fit indices have been averaged over the number 

of samples. In addition, the fit indices regarding the ß coefficients of the x variables 

(excluding the constant term) have been averaged over the number of regressors also. The 

same applies to the coefficients of the spatially lagged x variables. The following definitions 

apply: 

BIAS = [l/(m x N)] S; Ç \ % - ft | (23.1) 

MSE = [l/(m x N)] E; E, (b, - ft)2 (23.2) 

MAPE = [l/(m x N)] S; Ç | (ft - bj / ft | (23.3) 

where i (= 1, 2, ..., m) indexes the (spatially lagged) x variables, and y (= 1, 2, ..., 5,000) 

the samples. 

15 



0.07 -

0.06 -

0.05 -

0.04 -

0.03 -

0.02 -

0.01 -

0 -

MSE 

• • - • • ^ f e s ä i ^ - ^ ^ 

1 

_^é*0^^ 

1 

OLS 

DU 

LSVE 

SVE1 

SVE2 

-0.5 0 
rho 

0.5 

Crossregressive model 

0.12 

0.1 

0.08 

0.06 -

0.04 -

0.02 

OLS 

MLERR 

LSVE 

SVE1 

SVE2 

- 1 - 0 . 5 

Autoregressive model 

0 
zeta 

0.5 

Figure 1: Mean squared error for OLS, CO or DU or MLERR, and the spatial variable expansion methods LSVE, 
SVEl, and SVE2 for four different true models. The fit index is averaged over both the number of samples and the 
ß coefficients. An irregularly spaced vertical axis implies that a log scale is used, and all results except for OLS 
refer to pre-test estimators. 
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The following additional technical details are relevant. The number of replications (or 

samples) has been set to 5000. The DU estimator has been applied in an unconstrained 

manner. In order to limit the number of variations in the simulation experiments, no 

distinction in parameter value has been made with regard to the elements of the vector p 

= (p[ p2)', i.e. Pi = p2. Regarding the regressive-spatial regressive model the same 

restriction applies, i.e. f = Pi = p2. Finally, for the same reason the simulation experiments 

have been limited to first-order contiguity which restricts the number of possible true 

models considerably. The latter does not necessarily imply that the results easily generalize 

to the higher order contiguity cases. From a technical point of view the use of higher order 

contiguities makes that the likelihood function becomes multivariate in terms of the spatial 

parameters to be estimated (see section three). Moreover, variants of the LMLAG statistic 

have to be developed in order to test for omitted, g-th order spatially lagged, dependent 

variables when the specification already contains the g'-th order, spatially lagged, 

dependent variable (g & g ')• 

The overall results for the conventional and variable expansion methods are summar­

ized in the Tables 2 - 4 and in the Figures 1 and 2. Table 2 gives an overview of the power 

of Moran's IR test and of the LM tests for four different true models. Table 3 gives the 

probability of finding the true model for the spatial variable expansion methods. Figure 1 

refers to the MSE of the ß coefficients of OLS, the variable expansion methods, and the 

best estimator of the conventional estimators CO, DU and ML, whereas Figure 2 gives the 

MSE for the coefficients of spatially lagged variables of the full spatial variable expansion 

methods. Finally, Table 4 gives an overview of the best estimator of the ß coefficients in 

terms of BIAS, MSE, and MAPE. 

From Table 2 it follows that when the true model is the mixed regressive-spatial 

crossregressive model the power of LMERR and of the test based on IR is highly insuffi­

cient. LMLAG outperforms its alternatives, although it is still insufficient. In the case of a 

mixed regressive-spatial autoregressive modelLML4G is superior, although LMERR and the 

IR based test perform reasonably well for positive values of f. In the case of autoregressive 

errors the IR based test outperforms LMLAG and also LMERR. However, for negative 

values of X the power of all three tests is insufficient. Finally, LMLAG is superior in the 

mixed regressive-spatial regressive model. The results found here are in conformity with 

various other studies, in particular Anselin and Rey (1991), and Florax and Folmer (1991). 

Table 3 gives the probabilities of finding the true model. In the case of a mixed 

regressive-spatial crossregressive generating model the variable expansion method based 

on Lagrange Multipliers and Likelihood ratio tests (SVE2) outperforms the method based 

on Moran's IR and FOV tests (SVEI), although for positive values of p the performance is 
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insufficient. For the mixed regressive-spatial autoregressive model SVE1 outperforms SVE2. 

Moreover, for positive values of f it is slightly inferior to the combination of LMERR and 

LMLAG tests (LSVE), which is tailored to this problem. In the cases of autoregressive 

errors and the mixed regressive spatial regressive model all three procedures perform 

rather poorly. 

In Figure 1 the mean squared error is depicted for the four different true models. From 

this figure the conclusion can be drawn that SVE2 usually belongs to the procedures with 

lowest MSE. A major exception is the autoregressive error model where Moran's JR test 

followed by CO, DU (not in the figure) or ML estimation of a model with autoregressive 

errors is superior. The difference between SVE2 on the one hand and CO, DU and ML 

on the other, however, is not substantial. Another major conclusion that follows from 

Figure 1 is that all three expansion methods perform about equally well in terms of MSE. 

In particular, the size of their MSE seldom exceeds 10 percent of the true value. 

Figure 2 shows the MSE of the estimators of the coefficients of the spatially lagged 

variables for four different true models. It can be concluded that SVE2 outperforms SVE1, 

though mostly only slightly except for the spatial regressive model with low positive values 

of p and £". A major exception of the superiority of SVE2 is the autoregressive model with 

values of f > 0.5. It should be observed that the size of the MSE for the coefficients of the 

spatially lagged variables is substantially larger than in the case of the ß coefficients. Given 

the low probability of finding the true model in many instances (see Table 3) this is not 

surprising. In many situations in which the spatial variable expansion methods are applied, 

the interest is not primarily on the coefficients of the spatially lagged variables or the 

nuisance parameters. The latter are mainly taken into consideration in order to obtain 

adequate estimators of the coefficients of the variables initially included into the model. 

Therefore, one may conclude from Figures 1 and 2 that the spatial variable expansion 

methods perform satisfactorily. 

Similar results hold in terms of bias, variance, and mean absolute percentage error. 

They are not presented in detail here for reasons of space [cf. Florax (1992) for more 

detailed results]. An overview of the performance in terms of BIAS, MSE, and MAPE is 

given in Table 4. From this table it follows that there is no uniformly superior procedure. 

However, SVE2 outperforms the other procedures in the cases of the crossregressive and 

the spatial regressive model. For the autoregressive and the autoregressive error model 

LSVE and the EGLS and ML estimators are superior respectively, although the differences 

with respect to the full variable expansion methods are relatively small. SVE1 is in most 

cases only slightly inferior to SVE2. 
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6. Conclusions 

At the outset of this paper it has been observed that spatial autocorrelation among the 

residuals of linear spatial models is a serious problem in applied spatial research. The 

conventional solution to this problem is to assume that the true model is the initial model 

with an autoregressive error structure. Estimators, such as the inconsistent CO or DU 

estimator and the consistent ML estimator are subsequently applied. 

From this paper the overall conclusion emerges that spatial variable expansion methods 

outperform the conventional procedures. This applies in particular to the spatial variable 

expansion method based on LM and LR tests (SVE2). However, in various cases the 

expansion methods do not identify the correct model. This may be due to the individual 

a-levels, which were set relatively low so as to make the overall a-level of the conventional 

and the expansion methods about the same size. In practical applications it is preferable 

to use higher values for a, because the consequences of erroneously assuming substantive 

correlation has less serious consequences than erroneously accepting the hypothesis of no 

substantive spatial correlation. 

It should be noted that the results are likely to be dependent upon the specification of 

the weights matrix and the size of the spatial system in terms of the number of regions. 

So, further investigations are needed for both regular and irregular lattice structures, and 

for various sample sizes. Moreover, differences over space may also show up in spatial 

heterogeneity. The joint occurrence of heterogeneity and dependence over space has not 

been investigated here, but may also have implications for the performance of the different 

approaches. 
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Appendix 

The maximization of the concentrated log-likelihood given in (16.1-2) corresponds to the minimization 
of the function .F(X), formally: 

min F(X) = (R/2) ln[(\IR)e 'A 'Ae] - In | A | 
s.t. -1 < X < 1 

with A = I - XW. A solution to the first-order condition dF(X)/dX = 0 can be obtained in a straightfor­
ward manner and reads as [cf. also Hepple (1976), Brandsma and Ketellapper (1979a)]: 

dF(X)/dX = -R (e'A'We / e'A'Ae) + trtA'W) = 0 (A.l) 

The minimization problem can be easily solved using a bisection routine, e.g. as given in Anselin (1988, 
pp. 216-217). Prefabricated routines, based on for instance steepest descent [cf. the UVMID routine in 
IMSL (1987, pp. 795-798)], work on the basis of adjustments per iteration defined in terms of the 
derivative of the log likelihood, a procedure that may easily result in out of bound solutions. 

In order to avoid multiple computations of the determinant the Jacobian term can be rewritten prior 
to the minimi ration of F(\) as a sum of eigenvalues, that is: 

fa|A| = E*.,/«(l -XaO (A.2) 

with («>; for the eigenvalues of W. In a FORTRAN programming environment the eigenvalues can be 
computed with IMSL routine EVLRG [cf. IMSL (1987, pp. 293-294)]. 

For symmetric W all eigenvalues are real and Ord (1975) contains some useful analytical results [cf. 
also Griffith (1988)]. Ord (1975) also presents a procedure to transform asymmetric W, which may have 
one or more complex eigenvalues, into a symmetric block diagonal form. The following procedure is an 
attractive alternative based on the original weighting matrix, regardless whether it is symmetric or not. 
The procedure is computational efficient and avoids complex number arithmetics. For any real (R x R) 
weighting matrix W with real and/or complex eigenvalues, and for all X with 11 - X W | ä 0: 

/ n | I -XW| = 

/n[(l-Xù)1)(l-Xa)2) ... (l-Xio*)] = 

/n[|l-Xü),| . . . |1-XÛ>,|] = 

£?„ In I 1-XÜ); I = 

E?., In J(Re(l-XüO)2 + (taa-Xuj))2 = 

lh If., inKl-XReWj)2 + X^mWi)2] (A.3) 

Straightforward application of calculus gives the first derivative of (A.3) as: 

Ef_, {[(XReüJi-^Reu; + (Im^X)2] / [(1-XReüO2 + X2(Imoji)
2]} (A.4) 
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Notes 
1 It should be observed that the variable expansion method bears some similarity to the 
spatial (parameter) expansion method [Casetti (1972, 1991)]. This approach boils down to 
the following procedure. Assume the following simple linear regression model with one 
explanatory variable (i.e. the initial or restricted model): 

y-=A> + ftje + e (1') 

Spatial dependence may inter alia show up when the regression coefficients are subject to 
parameter drift over the spatial observation units. The spatial expansion approach amounts 
to the assumption that the spatial variation in the parameters can be described as an exact 
function of a finite number, say E, of expansion variables: 

ßi = 7o + 7i s u + 72 S2,r + - + 7E %,r, V r ( 2 ' ) 

where se r (e = 1, 2, ..., E) are indexes denoting a region's position in the spatial system, 
mostly specified in terms of trend surface polynomials on the basis of location coordinates, 
or orthogonal principal components of trend surface expansions. After substitution of the 
expanded parameter and rewriting, equation (2') with all regions of the spatial system 
included, reads as: 

y = 0O + 7ox + 7, Si x + y2 S2x + ... + yB SEx + e (3') 

where Se = diag(s„,r), i.e.: 

{ S; ; = s.. if i = j 

s-ltj = 0 otherwise. 

As has been shown theoretically by Anselin (1988, pp. 127-129) and empirically by Jones 
(1983) and Casetti and Jones (1988) spatial parameter expansion may result in reduced 
spatial dependence as measured by the residual Moran coefficient. However, instead of 
spatial expansion of the parameter(s), which is a practical and attractive remedy for spatial 
heterogeneity, a different interpretation should be given to spatial expansion when spatial 
dependence occurs. 
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