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ABSTRACT: Genomic prediction holds the promise to use 
information of other populations to improve prediction 
accuracy. Thus far, empirical evaluations showed limited 
benefit of multi-breed compared to single breed genomic 
prediction. We compared prediction accuracy of different 
models based on two closely related and one unrelated line 
of layer chickens. Multi-breed genomic prediction may be 
successful when lines are closely related, and when the 
number of training animals of the additional line is large 
compared to the line itself. Multi-breed genomic prediction 
requires models that are flexible enough to use beneficial 
and ignore detrimental sources of information in the 
training data. Combining linear and non-linear models may 
lead to small increases in accuracy of multibreed genomic 
prediction. Multitrait models, modelling a separate trait for 
each breed, appear especially beneficial when relationships 
between breeds are very low, or when the genetic 
correlation between breeds is negative. 
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Introduction 
 

Genomic selection alleviates the requirement to 
phenotype selection candidates and/or their close relatives. 
This holds the promise that genomic selection can be used 
across populations, such as different lines or breeds. Several 
simulation studies have supported this view by indicating 
that genomic selection across breeds or lines is effective 
(Ibanez-Escriche et al. (2009); Kizilkaya et al. (2010)), 
provided that the density of SNPs is sufficiently large, such 
that linkage disequilibrium (LD) is persistent across breeds 
(de Roos et al. (2009)). Based on these predictions, high 
density panels have been developed with 580,954 SNPs for 
chicken (Kranis et al. (2013)) and for cattle with 648,874 or 
777,962 SNPs (Rincon et al. (2011)). Results from 
empirical studies confirm that using information of other 
breeds or lines hardly improves the accuracy of genomic 
prediction when a 50k SNP chip is used (Hayes et al. 
(2009); Pryce et al. (2011); Karoui et al. (2012); Hidalgo et 
al. (2014)). When using a higher density SNP panel, a 
somewhat higher increase in accuracy is observed (Erbe et 
al. (2012)), but the benefit of multi-breed over single-breed 
genomic prediction still appears to be limited. 

One explanation for the discrepancy between the 
expectations of multi-breed genomic prediction based on 
simulation studies and the observed accuracies in empirical 
studies, is that most simulation studies oversimplified 
reality. Within breed genomic prediction relies heavily on 
family relationships, while multi-breed genomic prediction 
relies on similarities in allele frequencies, LD patterns and 
haplotypes (Wientjes et al. (2013)). If any of these factors is 
assumed similar across breeds in a simulation study, than 

the resulting accuracy will be higher than the accuracy in 
real life. 

Considering differences in allele frequencies, LD 
and segregating haplotypes between breeds or lines, it is 
important that the used genomic prediction models are 
flexible enough to accommodate for those differences. In 
fact, models used for multi-breed genomic prediction 
should be able to make use of beneficial information of 
other breeds, while they should also be able to ignore 
detrimental information of other breeds. Such model ideally 
would yield the same accuracy as single-breed genomic 
prediction if the information of the other breeds is not 
useful, while it would be able to increase the accuracy when 
the information of the other breeds is useful. Below we 
briefly discuss different types of genomic prediction models 
that can be used for multi-breed genomic prediction 

Most applications of multi-breed genomic 
prediction so far are based on linear genomic prediction 
models (Hayes et al. (2009); Simeone et al. (2012)). One 
drawback of such models is that the assumptions made are 
quite rigorous. By ignoring that animals originate from 
different breeds, the assumption is made that a trait is 
affected by the same QTL in different breeds, and that QTL 
effects are the same in different breeds. The assumptions 
made in linear models may be too rigorous, especially when 
breeds are very different. Non-linear models are actually 
able to avoid some of those assumptions, by putting more 
emphasis on information of animals that are closer to each 
other regardless of their origin. 

Another appealing option to enable flexibility in 
linear genomic prediction models is by modelling one trait 
as separate, but correlated, traits for the different breeds or 
lines (Karoui et al. (2012); Olson et al. (2012)). Whether or 
not information of one breed is useful for another breed, 
follows from the estimated genetic correlation between 
those breeds. This genetic correlation is an important 
parameter, both from a modelling and a quantitative 
genetics perspective. In terms of modelling, the genetic 
correlation defines the shrinkage of information from one 
breed to another. In terms of the genetic relationship 
between breeds, it is a factor that should be used to multiply 
e.g. estimated genomic relationships between breeds to 
obtain “effective” relationships. 

The objective of this paper is to compare several 
genomic prediction methods for multi-breed genomic 
prediction, to interpret their behavior in different scenarios, 
and to review in which situations multi-breed genomic 
prediction may be useful, depending on several factors 
impacting the accuracy of multibreed genomic prediction. 

 
Materials and Methods 

 



Data. The accuracy of multibreed genomic 
prediction with several models was investigated using data 
of three different lines of layers. Two of the lines, the 
brown layer lines B1 and B2, have been separated for at 
least 25 years and were more closely related to each other 
than the other white line (W1). The trait analyzed was 
number of eggs in the first production period. Phenotypes 
used in the analysis were pre-corrected for fixed effects of 
hatch week. In total, 3,753 female birds with phenotypes 
were genotyped with the chicken IIIumina Infinium iSelect 
Beadchip, that includes 57,636 SNPs. Genotype edits, 
performed across lines, included deleting SNPs with a call 
rate below 95%, a minor allele frequency below 2%, with 
no homozygote genotypes or with a Chi² value > 600 for a 
test of deviation from Hardy-Weinberg equilibrium. After 
these edits, 45,974 SNPs were available for 1,263 birds in 
line B1, 1,246 in line B2 and 1,244 in line W1.  

 
Assessment of prediction accuracy. The data was 

split into training and validation sets, to enable evaluation 
of the accuracy of multi-breed genomic prediction. The 
validation sets comprised per line the youngest generation 
of 238-240 birds. The prediction accuracy of the validation 
animals was computed as the correlation between their 
estimated breeding values and observed phenotypes, 
divided by the square root of the heritability. Heritability 
values were obtained from routine genetic evaluations, 
being 0.41 for lines B1 and B2 and 0.51 for line W1. Seven 
training sets were used to evaluate the accuracy of genomic 
prediction (Table 1). Across training sets, the number of 
segregating SNP ranged from 30,508 to 45,974 (Table 1). 

 
Table 1. Number of animals and segregating SNP for 

each training dataset  
Training # animals # segregating SNP 
B1 1,023 38,310 
B2 1,008 37,729 
W1 1,004 30,508 
B1+B2 2,031 40,953 
B1+W1 2,027 45,241 
B2+W1 2,012 44,913 
B1+B2+W1 3,035 45,974 

Table 2. Estimated genetic correlations between the 
three layer lines (standard errors in brackets) 

Line B2 W1 
B1 0.63 (0.14) -0.26 (0.37) 
B2  -0.55 (0.37) 

 
Linear prediction models. The applied linear 

models comprised ridge regression BLUP (RRBLUP; 
(Habier et al. (2007))), principal component analysis 
followed by ridge regression (RRPCA), and BayesC 
(Habier et al. (2011)). RRBLUP was solved using the 
preconditioned conjugated gradient method implemented in 
the package MiXBLUP (Mulder et al. (2010)). The model 
RRPCA was implemented in MATLAB (Calus et al. 
(2014)). The model BayesC was implemented in a Gibbs 
sampler using right-hand-side updating (Calus (2014)). 
More details on the models are described in the references 
cited above. 

 
Non-linear prediction models. In the context of 

multi-breed genomic prediction, most linear models assume 
that true allele effects are the same in different breeds. The 
assumption of linearity can be relaxed by using non-linear 
models depending crucially on similar animals. The applied 
non-linear models in our study comprised Radial Basis 
Function kernel regression (RBF) and Polynomial kernel 
regression (Poly). Both models use a kernel, that can be 
interpreted as a relationship matrix in the context of 
breeding value estimation models. For instance, the 
commonly used genomic relationship matrix is a type of 
linear kernel that can be used for linear regression. The 
polynomial kernel explicitly augments the input of 
regression model by the monomials of genotypes such that 
the similarity is measured by the inner product of 
polynomials of genotypes. The kernel used in RBF 
estimates the similarity by the distance between the 
genotypes of two animals. Only results of the RBF model 
are presented, because the results of the Poly model were 
very poor for all scenarios. More details on the non-linear 
models are described by Huang et al. (2014). 

 
Multi-trait model. The applied multi-trait model 

was a straightforward GBLUP model that assumed that the 
trait analyzed was a different trait in each line. The first step 
involved applying the model using ASReml (Gilmour et al. 
(2009)), once for each pair of lines, to estimate the genetic 
correlations between lines. This first step used the inverse 
of a combined pedigree and genomic relationship matrix 
(Aguilar et al. (2010)). Using this combined relationship 
matrix, the number of training records per line increased 
from 1,004-1,023 to 24,906-27,896. Once the pairwise 
genetic correlations were estimated, they were used in a 
series of GBLUP models to predict genomic breeding 
values for all validation animals using all training data sets. 

 
Prediction accuracies computed with selection 

index theory. Prediction of accuracy of multi-breed 
prediction, enables to derive whether two breeds can benefit 
from each other or not. A formula based on selection index 
theory to calculate accuracy when using one population to 
predict another, was derived by Wientjes et al. ((2014)). 
This formula can be applied when for the predicted breed 
limited genotypes and phenotypes are available and 
overcomes the need for cross-validation to investigate the 
accuracy. The accuracy of animal i is calculated as: 
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where 𝑟𝐴𝑇,𝑖  is the genetic correlation between the training 
animals and breed of the evaluated animal, 𝐠𝑇,𝑖

′  is a vector 
containing genomic relationships between training animals 
and evaluated animal, 𝐆𝑇 is the genomic relationship matrix 
of the training animals, I is a diagonal matrix, 𝜎𝑒𝑇

2  is the 
residual variance in the training population, and 𝜎𝑎𝑇

2  is the 
additive genetic variance in the training population. To 
calculate genomic relationship matrixes, genotypes of the 
training population were rescaled using allele frequencies in 
the training population, and genotypes of the validation 



animals were rescaled using the allele frequency of the line 
of the validation animal. We applied this formula to all six 
scenarios where one line was used to predict another, using 
the genetic correlations estimated with the multi-trait 
model. 
 

Results 
 

Relationships and genetic correlations between 
populations. To visualize the relationships between the 
three populations, a heat map of the Euclidean distances 
between all animals is presented in Figure 1. Lines B1 and 
B2 are relatively closely related to each other, while line 
W1 animals have a very low relationship with B1 and B2 
animals. Relationships within line W1 are higher than in 
lines B1 and B2, which is in agreement with the observation 
that white layers such as W1 are more inbred than brown 
layers (Qanbari et al. (2010)). The estimated genetic 
correlation of 0.63 between lines B1 and B2 confirms that 
those lines are closely related (Table 2). Its standard error 
shows that this genetic correlation is significantly greater 
than zero. The negative genetic correlations between lines 
B1 and B2 versus line W1, show that line W1 is very 
different from lines B1 and B2. The large standard errors of 
those estimates show that the estimated genetic correlation 
between line B1 and W1 is not significantly different from 
zero, while the correlation between B2 and W1 is 
significantly lower than zero. 

 
 

Figure 1. Euclidean distances between all animals. Black 
(light grey) indicates very small (large) distances. 

 
Prediction accuracies across lines. Single line 

genomic prediction for line B1 yielded prediction 
accuracies of 0.45-0.50 across models (Table 3). Adding 
information from the other lines did not improve nor 
deteriorate its accuracy. Even using information from the 
related line B2 did not improve the accuracy, despite the 
observation that using information of B2 alone did result in 
accuracies ranging across models from 0.13-0.30 for line 
B1. Using information only from line W1 resulted in 
slightly negative accuracies for four out of five models, 
illustrating the large distance between B1 and W1. Single 
line genomic prediction for line B2 yielded prediction 
accuracies of 0.30-0.45 across models (Table 4), being 
somewhat lower than those for B1. Similar to the 
observation for line B1, using information from the related 
line B2 did not improve the prediction accuracy for B1, 

despite the observation that using information of B1 alone 
did result in accuracies ranging from 0.05-0.14 for line B1. 
Surprisingly, there was a small, but consistent, 
improvement in accuracy for the linear models when 
additionally using information of line W1. Single line 
genomic prediction for line W1 yielded prediction 
accuracies of 0.76-0.78 across models (Table 5), being 
substantially higher than those for B1 and B2. Using 
information from line B1 and/or B2 either left the 
prediction accuracy unchanged, or slightly decreased it. 
Using only information from line B1 and B2 separately or 
combined, led to negative accuracies in all scenarios with 
the most extreme value being -0.39. 

 
Table 3. Accuracy of prediction using seven training 
data sets and five models§ for line B1 
Training RRB RRPCA BayesC RBF MT 
B1 0.453 0.447 0.452 0.460 0.441 
B2 0.302 0.230 0.266 0.132 0.304 
W1 -0.003 0.100 -0.093 -0.082 -0.058 
B1B2 0.467 0.439 0.466 0.481 0.465 
B1W1 0.438 0.436 0.429 0.463 0.441 
B2W1 0.272 0.244 0.215 0.191 0.301 
B1B2W1 0.452 0.432 0.447 0.482 0.466 

§RRB = ridge regression BLUP, RRPCA = RR using principal components, 
RBF = RBF Basis Function kernel regression; MT=multitrait GBLUP 
 
Table 4. Accuracy of prediction using seven training 
data sets and five models§ for line B2 
Training RRB RRPCA BayesC RBF MT 
B1 0.129 0.143 0.111 0.054 0.126 
B2 0.359 0.448 0.338 0.403 0.349 
W1 0.142 0.109 0.106 0.003 -0.134 
B1B2 0.373 0.476 0.318 0.400 0.382 
B1W1 0.176 0.185 0.139 0.049 0.072 
B2W1 0.369 0.463 0.354 0.386 0.333 
B1B2W1 0.390 0.494 0.357 0.399 0.367 

§RRB = ridge regression BLUP, RRPCA = RR using principal components, 
RBF = RBF Basis Function kernel regression; MT=multitrait GBLUP 
 
Table 5. Accuracy of prediction using seven training 
data sets and five models§ for line W1 
Training RRB RRPCA BayesC RBF MT 
B1 -0.252 -0.247 -0.235 -0.005 0.217 
B2 -0.192 -0.249 -0.224 -0.015 0.218 
W1 0.761 0.775 0.759 0.768 0.769 
B1B2 -0.393 -0.352 -0.355 -0.157 0.329 
B1W1 0.743 0.748 0.737 0.763 0.773 
B2W1 0.762 0.772 0.757 0.767 0.768 
B1B2W1 0.742 0.747 0.739 0.763 0.773 

§RRB = ridge regression BLUP, RRPCA = RR using principal 
components, RBF = RBF Basis Function kernel regression; MT=multitrait 
GBLUP



 
Prediction accuracies across models. Comparing 

the models amongst each other, clearly showed that the 
RBF model did behave different than the linear models. In 
general, it performed as well as the linear models for single 
line genomic prediction. When using only information from 
the related line, however, the accuracy of the RBF model 
had a value that was 50% lower compared to the linear 
models. In the specific situation where lines B1 and/or B2 
were used to predict W1, RBF appeared to be more robust 
than the linear models, in the sense that both classes of 
models resulted in negative accuracies, albeit that RBF had 
much less extreme values. The multitrait GBLUP model, 
however, was able to overcome the negative accuracies 
when only B1, B2 or both were used to predict W1. In fact, 
it yielded positive accuracies that had a similar absolute 
value as the other linear models, due to considering the 
(sign of) the genetic correlation between lines in the model.. 

To investigate potential complementarity between 
models, correlations between estimated DGVs are presented 
in Figure 2. This figure shows that the models cluster in 
four groups: 1) the linear models RRBLUP, BayesC, and 
multitrait GBLUP, 2) RRPCA, and 3) RBF. Considering 
that these groups of models achieved reasonably similar 
accuracies, the correlations between estimated DGV 
suggest that both RRPCA and the non-linear model RBF 
use part of the variance that is not used by the other linear 
models and vice versa. To investigate the potential of 
combining features of both types of models, we evaluated 
the prediction accuracy of weighted combinations of the 
predictions obtained with RR-PCA and RBF (Figure 3). 
The patterns of those prediction accuracies indicate that 
there was a slight benefit of combining methods, up to an 
increase in accuracy of ~0.02, when the combined models 
yielded a similar prediction accuracy. Whenever there was a 
difference in prediction accuracy between models of at least 
0.05, then combining predictions yielded an accuracy very 
similar to the highest accuracy obtained with one of the two 
models. 

 

 
Figure 2. Correlations between breeding values 
estimated with five different models for each of the three 
lines, based on the training data including all three lines. 
 

 
Figure 3. Prediction accuracy of weighted combinations 
of the models RR-PCA and RBF. The X-axis gives the 
weight for the first method in the header of the plot. 

 
Prediction accuracies computed with selection 

index theory. Prediction accuracies of all six scenarios 
where one line was used to predict another, were calculated 
based on selection index theory, using genomic 
relationships and estimated genetic correlations between 
lines (Table 2). Those calculated accuracies are plotted 
against the empirical accuracies obtained with RRBLUP 
(Figure 4). The regression line through those six data points  
indicates that the calculated accuracies are fairly unbiased 
predictors of the empirical accuracies. The two scenarios 
that deviate most from the regression line, are the scenarios 
where line W1 is used to predict B2, and when line B1 is 
used to predict W1. In these scenarios, the selection index 
and empirical accuracies have opposite signs. 

 

 
Figure 4. Selection index theory and empirical 
prediction accuracies for all six scenarios where one line 
was used to predict another. Data labels indicate 
“training line” => “predicted line”. 

 
 

Discussion 
 

Several studies have shown that using information 
from one population to genomically predict another, gives 
poor results, depending on the relationship between the 
popoulations (Andreescu et al. (2010); Kachman et al. 
(2013)). In our data, using information of B1 to predict B2, 
or vice versa, did result in accuracies with values op to 
0.30. Nevertheless, using both lines as training hardly 
improved the prediction accuracy compared to single line 
genomic prediction. This illustrates that closely related lines 
or breeds indeed may harbor useful information, but 
whether this actually improves the prediction may depend 
on the relative amount of information that is added on top 
of the information that is available for the line or breed 
itself. So for lines or breeds for which already a lot of 



information is available, it will be very difficult to improve 
prediction accuracy by using information of other breeds 
(Simeone et al. (2012)). It also means that multi-breed 
genomic prediction still may be especially useful for 
numerically smaller breeds, provided that a flexible model 
is used that utilizes useful information and ignores 
potentially detrimental information. 

One reason for the limited benefit of using 
information of multiple breeds when predicting animals 
from one breed, is that the relative contribution to 
prediction accuracy is much smaller for an animal from a 
different breed. For instance, theoretical predictions 
indicated that the training data consisting of animals from a 
different breed may need to be ~15 times as large to reach a 
reliability (squared accuracy) of 0.6 compared to using a 
reference population of the breed itself (Wientjes et al. 
(2013)). In such a scenario, however, the prediction model 
has to be able to use the information of a large breed on top 
of the information of small breed, while avoiding that the 
large breed overwhelms the prediction. When breeds are 
closely related such as lines B1 and B2 in our data, the 
assumption of linearity may still be valid, or at least not be 
detrimental to the predictions. When breeds are unrelated, 
such as B1 and B2 versus W1, using non-linear models or a 
multi-trait model appears to be useful to control the 
potential negative impact of the additional breed. Our 
results suggest that there is scope for combining features of 
linear and non-linear models, to build a prediction model 
that is more flexible than either model by itself, while 
bringing together features of both models. 

One important question is how the “relationship” 
between breeds can be evaluated. One way is to compare 
the value of relationships between breeds versus those 
within breeds. In the data that we analyzed, it was clear that 
the highest relationships between B1 and B2 animals were 
in the range of within line relationships of either line. For 
line W1, however, relationships with the other lines were 
clearly outside the range of relationships within the line 
itself. Another feature that is closely related with 
differences in relationship, is the difference in allele 
frequencies between lines. In the data used in our study, the 
correlations between allele frequencies were 0.35, -0.11, 
and -0.09, respectively, for lines B1 and B2, B1 and W1, 
and B2 and W1 (Calus et al. (2014)). In addition, LD 
consistency between lines is closely related with the 
relationship between lines (Andreescu et al. (2007)). 
Finally, the genetic correlation between lines or breeds is 
also a useful parameter (Karoui et al. (2012)) Due to how 
this genetic correlations is estimated, it reflects the 
similarities in estimated SNP-effects for different lines, but 
also includes similarities in terms of LD between lines. 

The estimated genetic correlations using the multi-
trait model are based on SNP data, while ideally they 
should reflect the correlation between allele substitution 
effects on the QTL. This indicates that differences in LD 
across lines could unintentionally have affected the 
estimated genetic correlation and that they are in fact 
depending on the density of the used SNP chip. The high 
genetic correlation between the lines B1 and B2 indicates 
that both QTL effects and LD are reasonably consistent 
across those lines. The negative genetic correlation between 

lines B1 and B2 versus W1 might be due to large 
differences in LD, due to differences in QTL effects or due 
to a combination of those factors. The formula to calculate 
the accuracy based on selection index theory is using the 
actual genetic correlation, i.e. the correlation between QTL 
effects. Due to differences in LD between SNP and QTL, 
the estimated genetic correlation might underestimate the 
actual genetic correlation, which results in an 
underestimation of the actual accuracies. Besides that, 
standard errors of the estimated genetic correlations were 
large. Those factors together can explain the differences 
between calculated and actual accuracy per scenario, but on 
average, both accuracies were in good agreement. 

The results showed that prediction accuracies for 
line B2 were always positive when using only information 
from line W1 in the prediction. The reciprocal situation, 
where only line B2 was used to predict W1, yielded 
however negative accuracies. This might be related with the 
observation that LD extends across larger distances in white 
layers (Megens et al. (2009)). Therefore, using W1 as a 
training population results in spreading QTL effect across a 
large number of SNPs whose phase with the QTL may not 
be persistent across lines. In the B2 line, inbreeding was 
less, resulting in more short-range LD, whose persistency of 
phase across breeds may be higher. This is an interesting 
hypothesis, and stresses that strong relationships within 
training data may be undesirable for multibreed prediction. 

In agreement with findings in the literature, our 
results showed limited differences between e.g. RRBLUP 
and BayesC, despite the expectation that variable selection 
methods should be better able to put more weight on SNPs 
associated with QTL. This raises the question whether such 
models should be further refined. One feature that has 
received little attention in the context of multibreed 
genomic prediction, is whether genotypes should be scaled 
with breed specific allele frequencies, or average allele 
frequencies across breeds. Results with a single step 
GBLUP model indicated that different ways of scaling have 
limited impact (Makgahlela et al. (2014)), but this has not 
been investigated when using variable selection models. 

In practice, the objective of poultry and pig 
breeding programs is to improve performance of crossbred 
production animals. Traditionally, selection is taken place 
in the purebred breeding animals, assuming a reasonable 
genetic correlation between purebred and crossbred 
performance. Nevertheless, this correlation is usually 
smaller than unity, and extreme values as low as 0.6 in 
poultry (Wei and Vanderwerf (1995); Besbes and Gibson 
(1998); Cavero et al. (2010)) and 0.3 in pigs (Lutaaya et al. 
(2001); Merks and De Vries (2002)) have been reported. 
This implies that selection based on purebred performance 
is suboptimal in many cases. Genomic prediction enables to 
link phenotypic information from crossbred production 
animals back to purebred breeding animals. Several 
simulation studies have shown promising results with this 
strategy (Dekkers (2007); Ibanez-Escriche et al. (2009); 
Zeng et al. (2013)). It was shown that accounting for line-
of-origin, which can be determined for alleles observed in 
crossbred animals (Bastiaansen et al. (2014)), hardly 
increased the accuracy. The benefit of using line-of-origin 
in prediction models may be much larger in real data, 



because differences between breeds or lines appear to be 
much larger in real data than compared in simulation 
studies, as we discussed earlier on. 

 
Conclusion 

 
Multi-line genomic prediction may be effective 

when lines are closely related, albeit that the added benefit 
strongly depends on the amount of information used from 
the additional line. Multi-breed genomic prediction may 
therefore be especially useful for numerically smaller 
breeds, provided that a flexible model is used that does 
enable using useful information and ignoring potentially 
detrimental information. When breeds are unrelated, such as 
B1 and B2 versus W1 in our study, using non-linear models 
or a multi-trait model is useful to control the potential 
negative impact of the additional breed, while 
straightforward linear models may be used when lines are 
closely related. Furthermore, linear and non-linear models 
are proven to be complementary to each other, and 
combining their predictions resulting in a combined 
prediction in fact may slightly improve the accuracy. 

Relatedness of lines can be investigated by 
evaluating: prediction accuracy when using one line to 
predict another, relationships between breeds, similarity of 
allele frequencies and LD between lines, and the genetic 
correlation between breeds. 
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