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ABSTRACT: Whole genome sequencing technologies 
are rapidly developing. In some ways, the speed of this 
development has outstripped our capacity to use this type 
of data in selection strategies, especially in livestock 
diversity conservation. In this study, relationship matrices 
were computed for 118 Holstein bulls, key ancestors of 
the current population, from three different types of data: 
pedigree records, 50K SNP chips and whole genome 
sequences, considering three different scenarios (with, 
without or only using rare alleles). Estimates from 
different data were highly correlated. Rare alleles had a 
significant impact on relationship estimates, mostly when 
whole genome sequence data were used. Hence sequence 
data, and information from rare alleles, are potentially of 
use for improving relationship computation. Estimation of 
relationships made with this type of data may result in 
different individual optimal contributions and influence 
selection strategies and conservation decisions of 
livestock species. 
Keywords: Whole genome sequence; Additive genomic 
relationship; Genetic diversity 
 

Introduction 
 
The use of sequence data in animal breeding is 

expected to increase rapidly (Stock and Reent (2013)) due 
to technology improvement and reduction of costs. 
Compared to SNP chip data, whole genome sequence 
harbours more complete information on each individual 
that can be used to optimize breeding and conservation 
decisions. Breeding decisions rely partly on measures of 
relatedness between individuals in a population to select 
parents. Whole genome sequence data is expected to give 
“true relationship” values as it also includes information 
on rare alleles that are not accessible when using pedigree 
or common SNP chips. The main objective of this study 
was first of all to compare relationship estimates 
computed from pedigree, SNP chips or whole genome 
sequence data. A secondary objective was to infer the 
impact of including rare alleles, defined as having a 1 to 
5% frequency (Druet et al. (2014)), on such estimated 
relationships, as they are expected to be keystones for 
livestock diversity conservation.  
 

Materials and methods 
 
Data. This study was performed on data from 

118 European and North American Holstein bulls, 
selected as being key ancestors of the current population. 
Pedigree information was recorded since the 1950s (19 
generations maximum) and contained 4054 individuals. 

The 118 bulls, born between 1968 and 2004, had both 
parents recorded in the pedigree and included 43 parent-
offspring pairs, two full-sib pairs and 48 half-sib pairs. 
Whole genome sequence data for the selected bulls, 
including SNPs and insertion-deletion variants, were 
accessible through the 1000 bull genomes project (Run 
3.0), and were for each individual obtained as described 
by Daetwyler et al. (2013 (submitted)). SNPs that are 
included in the commonly used Illumina BovineSNP50 
version2 BeadChip (Illumina Inc., San Diego, CA) were 
selected from the whole genome sequence.  

Markers with a frequency lower <1%, meaning 
that fewer than three copies of the minor allele were 
observed in the whole data set, were excluded from the 
analysis as they may represent genotyping errors. Given 
the small sample size used in this study, 1% seemed to be 
a sensible threshold to distinguish errors and rare alleles. 
Larger sample sizes might enable using lower thresholds. 
Thus, across the 29 autosomes 15,871,933 SNPs among 
the initial 18,739,233 polymorphic markers in those 118 
Holstein bulls were kept for the whole genome sequence 
data and 44,548 out of 45,729 SNPs were used for the 
50K SNP chip.   
 

Relationship calculations. Pedigree (A) and 
genetic (G) relationship matrices were computed using 
the software calc_grm (Calus (2013)). The G matrix 
calculations were performed using the Yang et al. (2010) 
method:  𝑮 = 𝑾𝑾′

𝑁
, where N is the number of markers and 

W is the marker genotype matrix for all individuals, all 
loci. Each wij value was calculated as follows:  

𝑤𝑖𝑗 = 𝑥𝑖𝑗−2𝑝𝑖
�2𝑝𝑖∗(1−𝑝𝑖)

  , with xij marker genotypes coded as 0, 1 

and 2 for individual j locus i and pi the allele frequency at 
marker i. Relationships were computed using SNPs and 
whole genome sequence data in three scenarios: (1) using 
all markers with Minor Allele Frequency (MAF) >1% 
(scenario ≥0.01); (2) all markers with MAF >5% only 
(scenario ≥0.05); and (3) using markers with MAF 
between 1 and 5% (scenario 0.01_0.05). After MAF 
selection 44,548, 41,225 and 3,323 SNPs were kept from 
50K SNP chip data and 15,871,933, 11,953,905 and 
3,918,028 from whole genome sequence data, in scenario 
≥0.01, ≥0.05 and 0.01_0.05 respectively, for relationship 
computation.  
 

Comparison of different relationship 
estimates. Estimated relationships using the three types of 
data were plotted against each other. Goodness of fit, 
measured as R2, were estimated for diagonal and off-



diagonal elements. Differences between scenario ≥0.01 
and ≥0.05 were tested, using Wilcoxon tests, and 
goodness of fit between scenarios using each type of data 
were estimated in order to infer the impact of rare alleles 
on estimated relationships. 
 

Results 
 

Relationship estimates. The relationship 
estimates from pedigree data (A) ranged from 0 to 1.16, 
the G elements from SNP data from -0.06 to 1.32 and 
from sequence data from -0.02 to 1.18, depending on the 
scenario. Mean values ranged from 0.1 to 1.02 for 
diagonal elements and were approximately 0.05 for off-
diagonal elements (Table 1 and 2). 

 
Table 1. Descriptive statistics of diagonal relationships, 
computed from pedigree (A), SNP (G_SNP) or 
sequence data (G_seq) from the three different 
scenarios: ≥0.01, ≥0.05 or 0.01_0.05. 
 Minimum Mean Maximum SD 
A 1.000 1.027 1.163 0.031 
G_SNP 0.01 0.850 0.994 1.325 0.086 
G_SNP 0.05 0.812 0.924 1.110 0.059 
G_SNP 0.01_0.05 0.069 0.124 0.270 0.033 
G_seq 0.01 0.696 0.856 1.185 0.093 
G_seq 0.05 0.585 0.658 0.772 0.034 
G_seq 0.01_0.05 0.145 0.252 0.512 0.068 
 
 
Table 2. Descriptive statistics of off-diagonal 
relationships, computed from pedigree (A), SNP 
(G_SNP) or sequence data (G_seq) from the three 
different scenarios: ≥0.01, ≥0.05 or 0.01_0.05. 
 Minimum Mean Maximum SD 
A 0.000 0.063 0.663 0.067 
G_SNP 0.01 -0.065 0.046 0.639 0.061 
G_SNP 0.05 -0.064 0.047 0.583 0.059 
G_SNP 0.01_0.05 0.045 0.053 0.128 0.004 
G_seq 0.01 -0.022 0.050 0.501 0.045 
G_seq 0.05 -0.017 0.050 0.398 0.038 
G_seq 0.01_0.05 0.039 0.054 0.195 0.008 
 

Correlation between types of estimated 
relationships. Diagonal elements contain information on 
within individual relationships only, and did not show 
significant non zero correlations between different types 
of data. Therefore, we focused further analysis on off-
diagonal elements. Both plots of relationship (Figure 1) 
and goodness of fit estimates (Table 3) consistently show 
strong correlation between the three types of data. 
Pedigree relationships were more closely correlated to 
SNP than to whole genome sequence relationships, 
especially for the scenario 0.01_0.05. Estimated 
relationships in the G matrix had smaller (absolute) values 
than in the A matrix. Relationships for whole genome 
sequence and 50K SNP chip had high correlations for 
scenario ≥0.01 and ≥0.05 (R2 0.969 and 0.981), and 
somewhat lower for scenario 0.01_0.05 (0.675). In the 
comparative analysis, for both types of data, scenario 
≥0.01 gave higher relationship values than scenario ≥0.05 
and estimates from sequence data were smaller than 
estimates from SNPs, except in scenario 0.01_0.05. 

 
Figure 1. Comparative plots of linear regression of A 
relationship estimates, G relationship estimates for 
SNP and sequence data against each other in scenarios 
≥0.01, ≥0.05 and 0.01_0.05. In black is the regression 
line for an exact linear model (intercept=0, slope=1), in 
red is the actual regression line for all elements. 
 

Effect of MAF on relationship estimation. 
Comparative tests showed a significant difference 
between the scenarios ≥0.01 and ≥0.05. Wilcoxon test 
performed on relationship estimates from the 50K SNP 
chip or whole genome sequence in the scenario 0.01_0.05 
showed significant differences from 0. The R2 between 
same type of data for scenario ≥0.01 against ≥0.05 was 
0.999 for SNP and 0.988 for sequence data. In Table 3, R2 
between SNP and sequence data was higher in the ≥0.05 
scenario than in ≥0.01, so relationships computed from 
50K SNPs explain less of the variation in relationships 
computed with whole genome sequence when rare alleles 
are included for computation (scenario ≥0.01). Slopes of 
the linear regression of scenario ≥0.01 on scenario ≥0.05 
were higher than 1, indicating that estimates from 
scenario ≥0.01 have a higher variance than for scenario 
≥0.05.  
 

Discussion 
 

Relationship estimates from SNPs and whole 
genome sequences differed from pedigree, as expected 
(Simeone et al. (2011)), even though a strong correlation 
between the SNP and pedigree relationships was 
observed, similar to the results shown in Rolf et al. 
(2010). From comparison of scenarios with different sets 
of loci we concluded that rare alleles have a significant 
impact on estimated relationships, predominantly when 
using whole genome sequence. Estimated genomic 
relationships were lower than those based on pedigree. 
Hypotheses to explain this difference are: (i) the subset of 
markers used in the different scenarios showed departure 



from Hardy-Weinberg proportions, (ii) differences in the 
base population used in A and G matrix computation (Li 
et al. (2011)) which results in scaling differences in 
inbreeding estimates for individuals (Forni et al. (2011)) 
or, (iii) the use of IBS instead of IBD (Engelsma et al. 
(2012), Makgahlela et al. (2013)) to compute 
relationships. Departure from Hardy-Weinberg proportion 
is the most plausible explanation, especially for the 
extremely low relationships of scenario 0.01_0.05, and 
will be further investigated. This study focused on the use 
of different sets of MAF loci to compute relationship 
estimates. The Yang et al. (2010) method uses frequency 
for each locus independently, and is expected to give a 
more appropriate weighing of the markers compared to 
the Van Raden (2008) method for our purpose. 

Differences in relationship estimates due to 
inclusion of rare alleles, as observed in this study, can 
lead to selection of different individuals and change 
optimal contribution values of potentially selected bulls 
for breeding and genetic diversity conservation purposes. 
Information on rare alleles is of major interest for long-
term genetic improvement and management of livestock 
genetic diversity. Including rare alleles for optimal 
contribution decisions in livestock species is expected to 
help safeguard available genetic diversity for future 
genetic improvement. 
 

Conclusion 
 
Ignoring rare alleles, when using pedigree or 

SNP chip data instead of whole genome sequence, had a 
significant impact on relationship estimates. Although 
strongly correlated, pedigree, SNP and whole genome 
sequence relationship estimates showed differences when 
rare alleles were taken into consideration. Whole genome 
sequence, as it is the only type of data providing 
information on rare alleles, will be valuable for improved 
relationship computation for long term genetic diversity 
conservation purposes. Differences between relationship 

estimates computed including or not rare alleles is 
expected to affect selection decisions, long term selection 
strategy and conservation of livestock species. 
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Table 3. Numerical comparison between the three types of data in scenario ≥0.01, ≥0.05 and 0.01_0.05. R2 (below 
diagonal) and linear regression slope (above diagonal), for diagonal and off-diagonal elements separately. 

 A G_SNP0.01 G_SNP0.05 G_SNP0.01_0.05 G_seq0.01 G_seq0.05 G_seq0.01_0.05 
Diagonal  
A - 0.039 0.303 -0.264 -0.264 0.241 -0.504 
G_SNP0.01 0.000 - 1.398 2.291 0.918   
G_SNP0.05 0.024 0.929 - 1.291  0.535  
G_SNP0.01_0.05 0.060 0.770 0.515 -   1.685 
G_seq0.01 0.007 0.720   - 2.322 1.326 
G_seq0.05 0.048  0.894  0.701 - 0.326 
G_seq0.01_0.05 0.052   0.675 0.926 0.432 - 

 
Off-diagonal  
A - 0.721 0.689 0.047 0.524 0.446 0.078 
G_SNP0.01 0.616 - 1.043 12.080 0.720   
G_SNP0.05 0.612 0.999 - 11.261  0.646  
G_SNP0.01_0.05 0.613 0.634 0.600 -   1.655 
G_seq0.01 0.608 0.969   - 1.163 4.626 
G_seq0.05 0.604  0.981  0.987 - 3.628 
G_seq0.01_0.05 0.413   0.675 0.704 0.594 - 
Values significantly different from 0 and 1 for slope are in bold. 


