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ABSTRACT: Traits related to resource use efficiency are 
dry matter intake (DMI), residual feed intake (RFI) and me-
thane (CH4) emission. In an experimental dataset of 588 
heifers, we showed that it is possible to decrease CH4 emis-
sion (predicted from DMI and ration composition) by select-
ing more efficient cows. Resource use efficiency pheno-
types are difficult and expensive to measure, but genomic 
selection is a promising tool to enable selection for resource 
efficient cows. Using genomic selection, a reduction in pre-
dicted CH4 (g/d) of 15% in 10 years is theoretically possi-
ble. For DMI, an international collaboration between 9 
countries in Europe, US and Australiasia has been estab-
lished to assemble DMI data on >6,000 cows with pheno-
types and genotypes. With all these developments, genetic 
selection is likely to make a major contribution to improv-
ing resource use efficiency, as long as feeding and manage-
ment are adapted accordingly. 
Keywords: Dairy cattle; Feed efficiency; Environmental 
impact 
 
 

Introduction 
 

Improving resource use efficiency is of growing inter-
national interest. For example, it is well established that the 
release of greenhouse gases (GHG) is a contributing factor 
to climate change. The global livestock sector, particularly 
ruminants, contributes approximately 18% of total anthro-
pogenic GHG emissions (Steinfeld et al. (2006)). Addition-
ally, because feed costs represent >50% of total costs of 
dairy production, lowering feed intake, while maintaining 
the same production level and health and fertility status, is a 
viable approach to increase herd profitability. 

 
This paper reviews our recent work to facilitate selec-

tive breeding for improved resource use efficiency. This 
entails firstly a strategy to enable selection for feed intake 
and efficiency, and secondly a strategy to reduce environ-
mental impact of dairy cattle. 
 
 

Dry Matter Intake 
 

National efforts. The major handicap in selecting for 
improved feed efficiency in dairy cattle is the lack of indi-
vidual cow dry matter intake (DMI) records. Several coun-
tries, in recent decades, have recorded individual cow DMI 
(Svendsen et al. (1993); Veerkamp et al. (1994); Buckley et 
al. (2000); Veerkamp et al. (2000); Buttchereit et al. (2011); 

Williams et al. (2011)). All these studies documented con-
siderable variation in feed intake and feed efficiency; how-
ever, inconsistencies exist between studies in estimates of 
genetic (co)variances, because of large associated standard 
errors due to small datasets. Thus, it is difficult to draw firm 
conclusions. Moreover, a major limitation is that it is im-
possible to generate accurate breeding values for DMI from 
these small datasets which could be used in national breed-
ing programs, since recording of DMI in a progeny testing 
scheme is generally not possible. Some countries initiated 
nucleus schemes where DMI was recorded on breeding 
cows, but the impact has, to date, been limited. 

 
A novel approach to obtain breeding values for DMI 

in a population is to use genomic selection, where pheno-
types (e.g., DMI) are measured in a subset of the population 
and genomic predictions are calculated for other animals 
that have genotypes, but no phenotypes. Since this approach 
is very appealing for facilitating selection for improved effi-
ciency, we embarked on the necessary research early on. 
The first approach was based on one experimental dataset 
with ~600 first parity heifers in the Netherlands (Verbyla et 
al. (2010)). However, the size of the reference population 
from which the genomic prediction equations were derived 
was too small to achieve satisfactory levels of accuracy of 
genomic breeding values. The dataset was therefore ex-
panded with data from nutritional experiments, and although 
the dataset grew to 3,179 lactations with at least one weekly 
record for DMI, this was still too limited for accurate ge-
nomic predictions (Veerkamp et al. (2014)). The same is 
true for other national datasets; they are simply too small to 
develop effective selection tools for dairy cattle within 
country. 

 
International collaboration. One approach to possi-

bly improve the accuracy of genomic prediction is to com-
bine datasets from multiple populations. Several challenges, 
however, exist when combining phenotypes from several 
countries such as the possible existence of genotype by en-
vironment (GxE) interactions, as well as possible differ-
ences in trait definitions and recording schemes. 

 
Europe-Australia pilot study. The aim of this pilot 

study was to estimate the accuracy of genomic prediction 
for DMI, when analysed together in a single-trait evaluation, 
or in a multi-trait evaluation, using both Australian data on 
growing heifers and European data on lactating first parity 
cows (De Haas et al. (2012)).  
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In total, DMI records were available on 1801 animals; 
843 Australian (AU) growing heifers with records on DMI 
measured over approximately a 70 day test period at approx-
imately 200 days of age (Williams et al. (2011); Pryce et al. 
(2012)), 359 Scottish (UK) and 588 Dutch (NL) lactating 
heifers with records on DMI during the first 100 days in 
milk (Banos et al. (2012); Veerkamp et al. (2012)). The 
genotypes used in this study were from the Illumina Bo-
vine50 Beadchip with 54,001 single nucleotide polymor-
phisms (SNPs) (UK and NL), or the Illumina High Density 
Bovine SNP chip, which comprises 777,963 SNP markers 
(AU). The AU, UK and NL genomic data were matched 
using the SNP name. Quality controls were applied by care-
fully comparing the genotypes of 40 bulls that were availa-
ble in each dataset. This resulted in a total of 30,949 SNPs 
being used in the analyses. Genomic predictions were esti-
mated with genomic REML (G-REML), using ASReml 
(Gilmour et al. (2009)). The accuracy of genomic prediction 
was evaluated in 11 validation sets. The reference set 
(where animals had both DMI phenotypes and genotypes) 
was either 1) within AU, 2) within Europe (UK and NL 
combined), or, 3) with a multi-country reference set consist-
ing of all data except the validation set.  
 

When DMI for each country was treated as the same 
trait (i.e., univariate analysis), using a multi-country refer-
ence set (uni-multi) the accuracy of genomic prediction in-
creased for DMI for UK, compared to the accuracy achieved 
with a univariate analysis with just the national reference 
set. The accuracy did, however, not increase for AU and NL 
(Table 1).  

 
Table 1. The average of the approximated accuracy of 
genomic prediction of dry matter intake (DMI), calcu-
lated as the correlation between genomic breeding value 
(GEBV) and the true breeding value (TBV), estimated in 
a univariate, bivariate or trivariate run between Aus-
tralia (AU), Europe (EU), United Kingdom (UK) and the 
Netherlands (NL), where “uni within” refers to the cur-
rent situation with a national reference set. In all other 
analyses, a multi-country reference set was taken con-
sisting of all data except the validation set (reproduced 
from De Haas et al. (2012)) 
Country uni within uni multi AU-EU AU-UK-NL 

AU 0.38 0.34 0.39 0.39 
UK 0.30 0.33 0.32 0.33 
NL 0.33 0.31 0.33 0.33 

 
 

Extending the model to a bivariate (AU-EU) or tri-
variate (AU-UK-NL) model increased the accuracy of ge-
nomic prediction for DMI in all countries (De Haas et al. 
(2012)). The greatest accuracies were achieved in all coun-
tries when data were analysed with a trivariate model. 
Hence an important conclusion of this study was that a mul-
ti-trait model needs to be used to assume traits measured in 

different environments are separate traits, and therefore treat 
both the GxE interaction and differences in trait definitions 
properly. Unfortunately, the combined dataset was still not 
large enough to provide accurate genomic predictions. 
 

global Dry Matter Initiative. In a global initiative, 
DMI data from ten research herds in nine countries in Eu-
rope, US and Australiasia were combined to address the 
major question: “Can accurate direct genomic breeding val-
ues (DGVs) be predicted for DMI for each country?”. 

 
A total of 224,174 test-day records from 10,068 parity 

one to five records from 6,957 cows, as well as records from 
1,784 growing heifers were available (Berry et al. (2014)). 
Genotype data of most of these animals were also available. 
The heifers from the Australian and New Zealand research 
herds were already genotyped at high density. The remain-
ing genotypes were imputed from the Illumina Bovine50 
beadchip to the Illumina high density beadchip (Pryce et al. 
(2014)). After editing, 591,213 genotypes on 5,999 animals 
remained. 

 
gDMI genetic parameters. Random regression mod-

els were fit to the lactating cow test-day records and pre-
dicted feed intake at 70 days post calving was extracted 
from these fitted profiles (Berry et al. (2014)). The random 
regression model included a fixed polynomial regression for 
each parity separately as well as herd-year-season of calving 
and experimental treatment as fixed effects; random effects 
in the model included individual animal deviation from the 
fixed regression for each parity as well as mean herd-
specific deviations from the fixed regression. Predicted DMI 
at 70-d post-calving was used as the phenotype for the ge-
netic analyses undertaken using an animal repeatability 
model.  

 
Heritability estimates of predicted cow feed intake 70-

d post-calving was 0.34 across the entire dataset and varied, 
within population, from 0.08 to 0.52 (Berry et al. (2014)). 
Repeatability of feed intake across lactations was 0.66. Her-
itability of feed intake in the growing heifers was 0.20 to 
0.34. The genetic correlation between feed intake in lactat-
ing cows and growing heifers was 0.67.  

 
A combined pedigree and genomic relationship matrix 

(H-1 matrix) was used to improve linkages between popula-
tions for the estimation of genetic correlations of DMI in 
lactating cows; genotype information was available on 
5,429 of the animals. Populations were categorized as North 
America, Grazing, Low input EU, and High input EU. Ge-
netic correlation estimates for DMI between populations 
varied from 0.14 to 0.84 but were stronger (0.76 to 0.84) 
between the populations representative of high input pro-
duction systems (Table 2). Genetic correlations with the 
grazing populations were weak to moderate varying from 
0.14 to 0.57. These results suggest that genetic evaluations 
for DMI can be undertaken using data collated from interna-
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tional populations; GxE interactions, however, with grazing 
production systems, in particular, need to be considered. 

 
Table 2. Genetic correlations (standard errors in paren-
thesis) between dry matter intake measured in groups of 
countries: North-America (NA), EU high-input (EUh), 
EU low-input (EUl) and Grazing (Gr) (reproduced from 
Berry et al. (2014))  
Region NA EUh EUl 

EUh 0.76 (0.21)   
EUl 0.79 (0.38) 0.84 (0.14)  
Gr 0.14 (0.43) 0.33 (0.20) 0.57 (0.43) 

 
To estimate the pairwise genetic correlations between 

each separate country in gDMI, 55 bivariate analyses will be 
run to estimate all genetic and residual (co)variances for 
average predicted DMI at 70 DIM with an animal linear 
mixed models in ASReml (Gilmour et al. (2009)), using the 
H-1 matrix. The model to be used is: 

 
 Yi Yj = µ + fixed effects + animal + e 
 

where µ is the overall mean. Y is the average predicted DMI 
at 70-d post-calving for cows, and the average DMI during 
the recording period for the growing heifers, and i and j are 
the ten research herds in gDMI, plus a set of 101 Australian 
lactating heifers that were recorded for DMI in their first 
parity as well. These records are included as a separate 
group. The fixed effects included in the model are parity and 
herd-year-season of calving. Finally, animal is fitted as a 
random additive genetic effect, distributed following 
N(0,Aσ2

g), where A is the numerator relationship matrix 
based on the combined pedigree and genomic relationship 
matrix, and e is the residual term. 

 
gDMI genomic predictions. The accuracies of ge-

nomic predictions of DMI in ten validation populations will 
be estimated by excluding each of those populations one at a 
time from the reference population (De Haas et al. (2014)). 
Validation populations are subsets of the dataset based on 
progeny groups of sires in the different countries, and each 
validation population represent all sources. With this ap-
proach it can be determined if the accuracy of a bull’s DGV 
can be increased by using multi-country reference popula-
tion. 

 
Correlations will be calculated for each of the different 

validation populations between the DGVs estimated for all 
individuals in that validation population with an 11-trait (ten 
research herds plus the Australian lactating heifers) analysis 
in MiXBLUP (Mulder et al. (2010)) and their phenotype. 
The accuracy of true breeding values will then be approxi-
mated by dividing this correlation by the square root of the 
estimated heritability of DMI (0.27, see Berry et al. (2014)). 
These accuracies will finally be averaged across all 10 vali-

dation populations within each country to answer the ques-
tion whether accurate DGVs can be predicted for DMI for 
each country. 

 
Predicted Methane Emission 

 
Opportunities for nutritional and microbial manipula-

tion to reduce enteric methane (CH4) emissions from live-
stock have been extensively researched and reviewed by 
several groups (e.g. (Beauchemin et al. (2008); McAllister 
and Newbold (2008))). An additional mitigation measure 
which is inexpensive and provides a long-term effect would 
be the use of natural variation to breed for animals with 
lower CH4 yield per unit intake [g CH4/kg dry matter intake 
(DMI)] (Cavanagh et al. (2008); Vlaming et al. (2008)). 
Recent forums have begun to address the potential impact of 
animal genetics on emission intensity at individual animal 
and whole-farm levels (Chagunda et al. (2009); Wall et al. 
(2010)). Genetic improvement of livestock is a particularly 
cost-effective technology, producing permanent and cumu-
lative changes in performance. 

 
Measuring CH4 emission rates directly in animals is 

difficult and hinders direct selection on reduced CH4 emis-
sion. Therefore, in our first study we aimed to quantify phe-
notypic and genetic variation in predicted methane (CH4) 
emission (PME), and to examine the potential use of ge-
nomic selection to facilitate selection programs (De Haas et 
al. (2011)). 
 

Dutch data from previous nutritional experiments were 
used, and records on daily DMI, weekly live weight and 
weekly milk production were available from 588 heifers 
(Veerkamp et al. (2000)). Predicted methane emission (g/d) 
is 6% of gross energy intake (method of International Panel 
on Climate Change (IPCC)) corrected for energy content of 
methane (55.65 kJ/g). All heifers were genotyped using the 
Illumina 50K SNP panel. Effects of SNPs were estimated 
using Bayesian stochastic search variable selection (SSVS; 
(George and McCulloch (1993))). A 10 fold cross-validation 
approach was employed to assess the accuracies of the two 
sets of predicted breeding values by correlating them with 
either PME or RFI. 

 
The estimated heritability for PME was 0.35 (Table 3). 

Using the genetic standard deviations in PME, theoretical 
predictions can be made about the expected impact of genet-
ic selection. When assuming a genetic progress of 0.22 ge-
netic SD per year (e.g., as in a classical dairy cattle breeding 
program (Rendel and Robertson (1950))), it follows that the 
average PME can be reduced in ten years by about 13 kg per 
cow per lactation, i.e. from 120 kg to 107 kg per average 
cow per lactation, or from 13 grams per kg milk to 9 grams 
per kg milk. Thus there is clear potential for genetic im-
provement for these two traits, with a potential reduction of 
11 and 26% in ten years, for PME (De Haas et al. (2011)). 
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Table 3. The estimated heritability (on diagonal), pheno-
typic (above diagonal) and genetic correlation (below 
diagonal) for residual feed intake (RFI) and predicted 
methane emission (PME). The corresponding standard 
errors are shown in parentheses (reproduced from De 
Haas et al. (2011)) 

 RFI PME 
RFI 0.40 (0.11) 0.72 (0.08) 
PME 0.32 (0.06) 0.35 (0.12) 

 
 

At first sight this might seem an excessively large 
improvement. However, when ranking the 588 cows in the 
current database on PME per kg milk, the 50 best cows pro-
duced 11.31 gram PME per kg milk, and the 50 worst cows 
produced 16.20 gram PME per kg milk (De Haas et al. 
(2011)). The worst cows produced therefore 42% more 
PME per kg milk than the best cows. An improvement up to 
25% can thus be assumed to be realistic. 
 

Enteric Methane Emission 
 

Predicted methane emission as described above was a 
function of DMI, and little information is known on oppor-
tunities to mitigate direct enteric CH4 via animal genetics. 
However, genetic diversity in a range of digestive parame-
ters likely to be associated with enteric CH4 production was 
apparent when reviewed by Hegarty (2004). The prospect 
for selection for a CH4 trait was investigated by multiple 
groups; some identified variation in CH4 traits amenable to 
animal selection (Robinson et al. (2010)) but some did not 
(Munger and Kreuzer (2008)). More recent research in beef 
(Donoghue et al. (2013)) and sheep (Pinares-Patino et al. 
(2013)) is increasingly supportive of CH4 traits being herit-
able with improvement by direct selection achievable. In 
dairy cattle, a heritability for CH4 (measured in ppm; i.e., as 
a concentration) of 0.21 has been documented (Lassen and 
Lovendahl (2013)).  

 
Enteric CH4 emissions (as g CH4/day, or as g CH4/kg 

DMI) can certainly be described as a “difficult to measure 
trait”. Methods to measure enteric CH4 emissions currently 
available are expensive and time consuming and subject 
animals to artificial environments. The methods to measure 
CH4 emissions under natural production environments (pas-
ture, feedlot or dairy feeding station) sample CH4 for only a 
part of a day and require repeat measurements; moreover 
their precision is questioned. Genomic selection opens the 
possibility to efficiently select for these difficult to measure 
traits. 

 
To date no genomic studies have been performed on 

direct enteric CH4, but improvements in reducing CH4 can 
possibly be made through selection on associated traits (e.g. 
feed efficiency (Verbyla et al. (2010))), or through selection 
on CH4 predicted from feed intake and diet composition (De 

Haas et al. (2011)). In dairy cattle, a positive genetic corre-
lation between residual feed intake (RFI) and PME of 0.32 
indicates that cows with lower RFI have lower PME as well 
(Table 3). Genomic selection of RFI and PME showed that 
the genomic model produced breeding values with reliabil-
ity double (for RFI) or triple (for PME) that of the breeding 
values produced by the polygenic model (Table 4). This 
strengthens the hypothesis that genomic selection opens the 
possibility to efficiently select for these difficult to measure 
traits. 

 
Table 4. Reliabilities of estimated breeding values (EBV) 
based on pedigree information only, and direct genomic 
values (DGV) based on both pedigree and marker (SNP) 
information for residual feed intake (RFI) and predicted 
enteric methane emission (PME) (reproduced from 
Verbyla et al. (2010) and De Haas et al. (2011)) 
 RFI PME 
EBV (Pedigree) 0.14 0.04 
DGV (Pedigree + SNP) 0.27 0.14 

 
 
It has been shown in beef that selection for RFI (less 

feed / weight and weight gain) results in lower total emis-
sions of CH4/head and a small non-significant increase in 
methane yield (g CH4/kg DMI) (Hegarty et al. (2007)). Se-
lection for low methane yield has been demonstrated in 
sheep (Pinares-Patino et al. (2013)). The mechanisms that 
contribute to genetic variation in methane yield (gCH4/kg 
DMI) of individual animals may include: reduced fermenta-
tion of organic matter in the rumen, due to shorter retention 
time of digesta and smaller rumen volume, different micro-
bial population in the rumen and potentially reductive 
acetogenesis. The extent to which these combine to produce 
natural variation in CH4 yield is unknown, but data from 
measurements of CH4 yield by sheep in respiration cham-
bers suggest that the coefficient of variation is 10.3% 
(Pinares-Patino et al. (2013)) and for cattle is 14%. This 
shows that not only for PME, but also for direct enteric CH4, 
it would not be unreasonable to anticipate a response to long 
term selection to exceed 2 SDs from the mean, suggesting 
that a reduction of up to 25% in CH4 yield may be feasible 
through selection of livestock for low CH4 yield (Pickering 
et al. (2014)). \ 
 

Overall conclusions 
 

The genetic and genomic solutions to improve feed ef-
ficiency and reduce environmental impact of dairy cattle 
were examined. The major handicap in selecting for im-
proved feed efficiency is the lack of individual DMI records 
on large numbers of animals. Our national and international 
efforts provide possible solutions on how to overcome this, 
and have shown that genetic solutions to improve resource 
efficiency traits are possible. International collaboration to 
assemble data on more cows improves the accuracy and 
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genetic gain. Higher accuracies and larger genetic gains can 
be achieved by using genomic selection for these minimally 
recorded traits. With all the developments, genetic selection 
is likely to make a major contribution to the improvement of 
resource use efficiency, as long feeding and management 
are adapted accordingly.  
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