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Abstract: In field trials the development of plants is regularly scored on a visual
scale. Plots of the data show strongly curved relationships with time. We inves-
tigate optimal scaling of the time axis in order to get linear curves and apply it
to decay data of potato plants.

Keywords: Optimal scaling; time axis; linear model

1 Introduction

In plant research field experiments are a common instrument to study the
behavior of a plant population under different environmental conditions.
However, there are many aspects that contribute to the uncertainty of the
data. On the one hand some phenotypic traits for plant development are
only registered on an ordinal scale by qualitatively judging the level of
development. It is not clear how this translates into a numeric scale used
in data analysis. The distances between two subsequent levels of the ob-
servation are often not known. On the other hand another data problem
might result from the different environmental conditions during a field ex-
periment. Weather cannot be kept constant. Temperature and exposure to
daylight are the main factors driving plant development. For better com-
parison between field experiments in different environments it is necessary
to have an uniform and adapted time scale that can capture these differ-
ences. In this analysis we will focus on transforming the time axis.

2 Data and objective

During a field experiment in Finland in 2004, haulm senescence of 200
potato varieties was recorded at 11 days (Zaban et al., 2006) on a discrete
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scale from “green plant” (1), “upper leaves with first signs of yellowing” (2)
etc. to “dead plant” (7). Figure (1.2) shows examples of three varieties. The
horizontal axis is not calendar time, but it is beta-thermal time (PBTT)
(Yin et al., 1995). This is a scale, developed by plant physiologists, in which
the history of daylength and temperature is integrated over the growing
season.
To summarize the senescence data for each variety, we would like to fit a
simple curve to them, so that only a few clearly interpretable curve char-
acteristics can be carried on to a genetic analysis. The simplest curve is
a straight line. We assume that PBTT is a first step in the direction of a
linear relationship between φ, i.e. transformed PBTT (indicated by τ), and
y, the observed scores. The same transformation of PBTT is to be used for
all varieties of the population.
We do not consider transformation of the response scale — nor of both
scales simultaneously — but we will return to this issue in the Discussion.

3 Theory

Let there be m time points and n varieties. The senescence scores are
collected in a matrix Y = [yij ], i = 1, . . . ,m, j = 1, . . . , n. For simplicity we
assume Y to be complete. If that is not the case, an appropriate indicator
vector can be introduced easily.
Our goal is to find a vector φ with m elements, such that φ is the optimal
transformed PBTT τ . Optimal means that we get the best possible linear
correlation between φ and each column of Y . This leads to the following
objective function to be minimized:

S =
∑

j

∑

i

(yij − αj − βjφi)
2

Given φ, we are looking for the least squares regression line for each variety.
This is an ill-posed problem, because any arbitrary shifting and scaling of
φ can be compensated by inverse scaling of βj and shifting of αj . In order
to find the unique solution we want φ to be standardized, i.e.

∑
i φi = 0

and
∑

i φ2

i = m. This is an arbitrary constraint, and it is only used for
fitting the model. Afterwards a linear transformation to a more meaningful
scale can be applied (see Figure 1 for an example, where we have made
minimum and maximum of φ equal to those of τ).
An intuitive algorithm repeats the following steps which start with an ap-
proximate solution φ̃:

1. Estimate (new) αj and βj by linear regression of column j of Y on φ̃

for each variety j.

2. Improve φ̃ by linear regression of yij −αj on βj for each time point i.
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In our experience this works well and convergence is obtained in few it-
erations. As starting values for φ̃ we take the integers from 1 to m and
standardize them.
The actual PBTT times, τ , do not occur in the estimation only their index
i does. This is a consequence of the fact that all varieties have been scored
on the same days. If this would not be the case, a second matrix T = [τij ]
would give the actual observation times. Instead of a vector φ we would
have to estimate a continuous function f(τ) that gives the transformation
at every point in time.
A possible approach is to use B-splines for this purpose: f(τ) =

∑
k Bk(τ)γk.

The second step of the algorithm above would then involve fitting the B-
splines, scaled by bj , to yij − αj .

4 Application

Optimal time scaling to linearity seems to be suitable for the present data.
The results for the transformation of the scale as well as the linear fit
before and after transformation are presented in Figure 1. The model is
parsimonious and the estimated coefficients can be directly related to the
development process. The slope bj describes the speed of senescence for
variety j. An important other characteristic deduced from the results is
the halfway point of the senescence process, i.e. the transformed time at
which the score halfway between 1 and 7 is reached.

5 Discussion and outlook

Optimal scaling is a standard tool in psychometric research and practice.
To our knowledge it has not been used in plant research yet. As shown we
got interesting — but also somewhat worrying — results: linearity is much
better on the real time scale (just counting the days after planting) than
on PBTT. The transformation we found was almost the inverse of the one
from real time to PBTT.
Similar ideas can be used to transform only the senescence scores in re-
lation to time. Technically it also possible to transform both time and
scores simultaneously. However, interpretation of the results is unclear. Any
monotone transformation of time combines with the corresponding inverse
transform of the scores. There is a fundamental identification problem, for
which we have no solution yet.
We did not show it in the examples, but a number of varieties show early
saturation at the highest possible score. This leads to an S-shaped curve.
No time transformation can accommodate that. Our next step will be to
introduce a standard S-shaped curve –like the logistic function– with aj +
bjφi as its argument. This is similar to the link function in generalized
linear models.
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A still more ambitious effort will be to investigate time transformations
including cumulative solar radiation and temperature as explanatory vari-
ables.
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FIGURE 1. (1.1) Original scale versus new scale retransformed to original range.
(1.2a-c) Original data (grey) and data on transformed time (black). Linear fit
before (grey) and after transformation (black) for three selected potato varieties.
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and Visser R.G.F. (2006) Physiological and genetic aspects of a diploid
potato population in the Netherlands and Northern Finland. Maat-

aloustieteen Päivät, 1-7.


