

Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper

Wouter Bac, Jochen Hemming, Eldert van Henten

Wageningen University and Research Centre, The Netherlands

Business Unit Greenhouse Horticulture & Farm Technology Group

Overview

- Explanation about CROPS project
- Article

EU project CROPS

■ Web page: <u>www.crops-robots.eu</u>

- 14 partners from 10 countries develop:
 - Harvesting robots for apple, grape and sweet-pepper
 - Spraying robot for apple and grape
 - Detection of trees for forestry

The team

Wageningen UR deals with sweet-pepper harvesting

- State of the project
 - We are in 3rd year
 - Currently integrating vision and arm control
 - Basic field test scheduled in July 2013
 - Large field test scheduled in 2014

Video of manipulator moving to fruit

PhD research

Thesis topic:

Development of a harvesting robot for sweet-pepper

Objectives:

- 1. Literature review of harvesting robots in high-value crops
- 2. Localization of hard (stem) and soft (leafs) obstacles
- 3. Collision-free detachment of the fruit
- 4. Field tests with the harvesting robot

2nd Part: Article

 Title: Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper

Article is in: Computers and Electronics in Agriculture 96: p. 148-162

http://www.sciencedirect.com/science/article/pii/S0168169913001099

Obstacles classification for robotic harvesting, why?

Motion planning tough \rightarrow requires loc. of obstacles

Group of 4 peppers in a range of 1 m

'Take home' messages of paper

- Obstacle detection for fruit harvesting hardly studied, most work focused only on fruit detection
- First study with quantitative performance, other studies reported performance only qualitatively
- Images recorded under varying lighting conditions
- New performance measure $P_{rob} \rightarrow$ consistent class.
- Multi-spectral is limited to detect plant parts

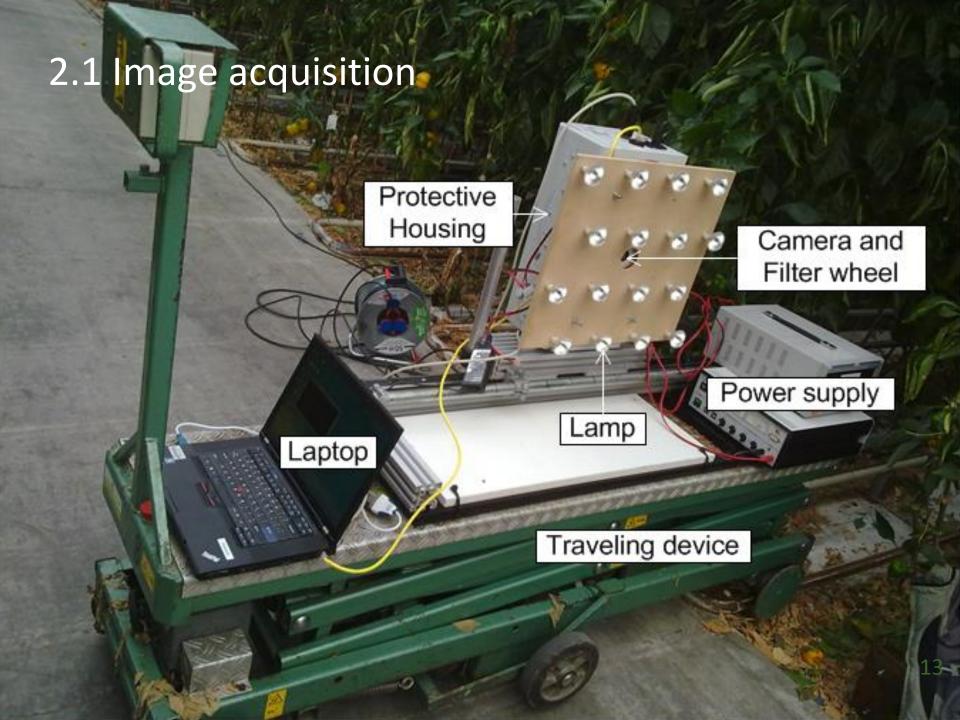
1. Introduction

- Hard obstacles should be avoided and soft obstacles can be pushed aside by a robot arm
- Related work
 - Cucumber stem, leaf and fruit (Van Henten, 2006; Noble, 2012)
 - Branches of citrus (Lu et al. 2011)
 - Stems of Lychee (Deng et al. 2011)
 - Branches and leaves of Grapes (Dey et al. 2012)
 - → All lack quantitative performance

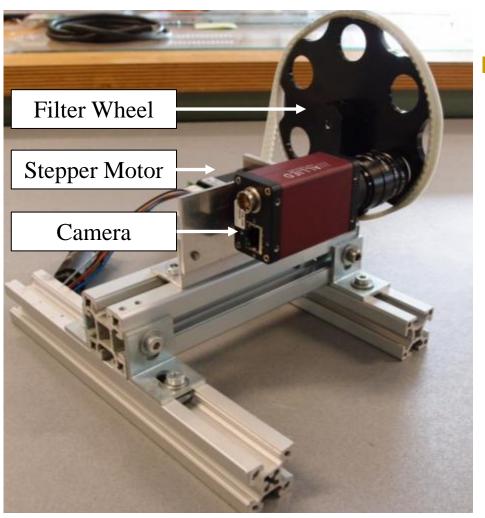
1. Introduction

Objectives

- (1) detect plant vegetation
- (2) segment non-vegetation objects;
- (3) prune a decision tree and select features such that the classifier is robust to variation among scenes;
- (4) classify hard and soft obstacles → stems, top of leaves, bottom of leaves, green fruits and petioles.



Multi-spectral camera

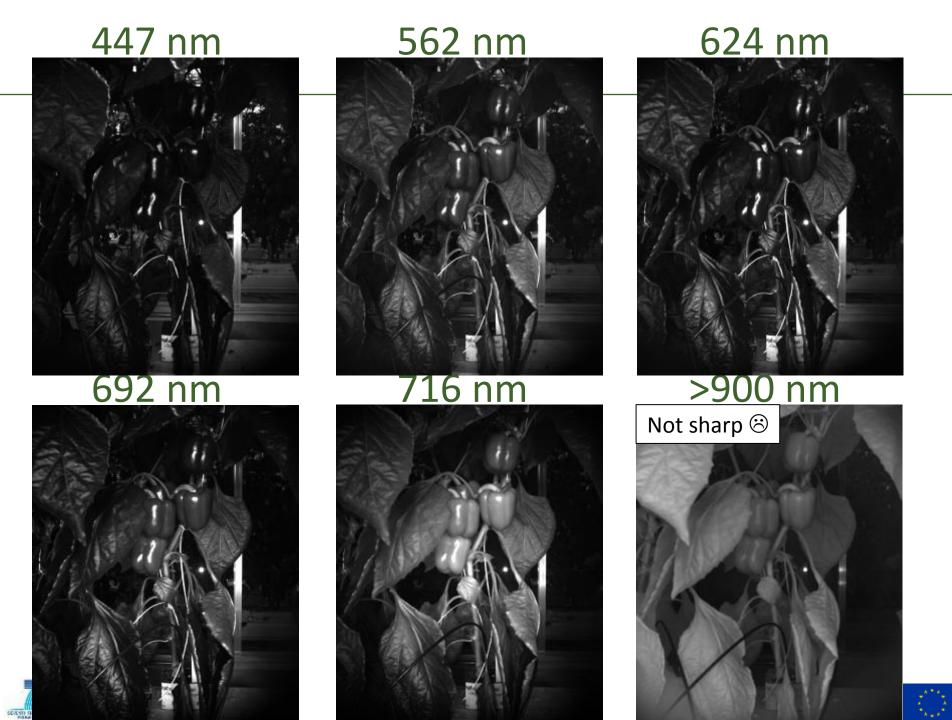


- Set-up
 - Filter wheel (Edmund Optics)
 - 6 (Ø25 mm) 40nm BP Filters
 - AVT Manta G-504
 Monochrome camera; 5 MP
 (Allied Vision Technologies)
 - Halogen lighting

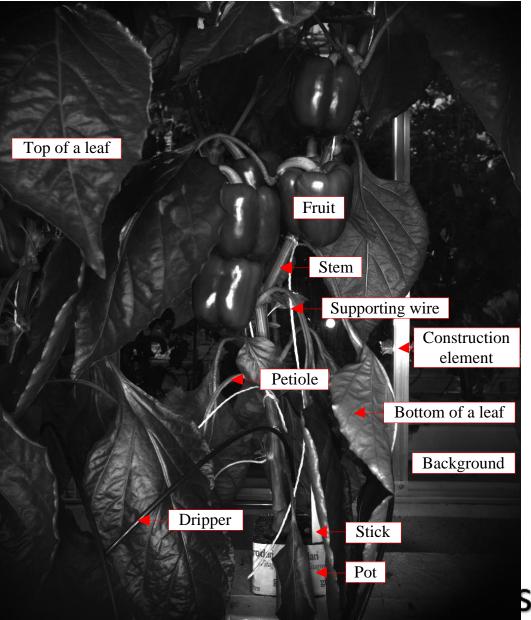
Camera to stem distance ≈ 50 cm

Data

- Data
 - 12 scenes during sunny day in Wageningen
 - Cultivar: Viper (Red)
 - 6 wavelengths per pixel



9 Objects occur in a scene



Object type	Classified for motion planning as
Objects with distance >1 m	Background
Unknown	Background
Supporting wire	Hard obstacle
Stick, dripper and pot	Hard obstacle
Construction elements	Hard obstacle
Stem	Hard obstacle
Petiole	Soft obstacle
Top of a leaf	Soft obstacle
Bottom of a leaf	Soft obstacle
Fruit	Target (ripe) or hard obstacle (unripe)

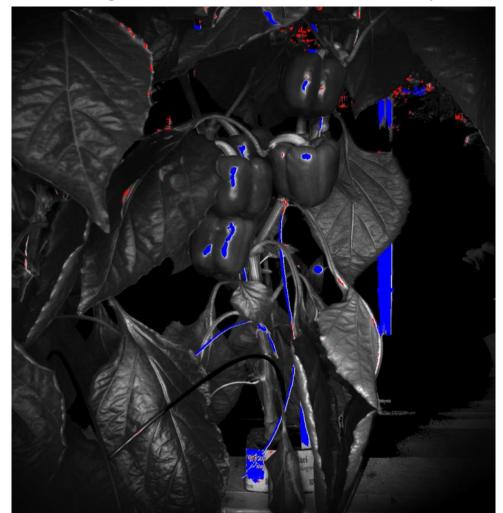
2.3 Background segmentation

Useful property: Solar irradiance drops at 925-975 nm

2.4 Segmentation of overexposed regions

Blue → hard obstacle, if area => 300 pixels

Red → background, if area < 300 pixels



3.1 Performance measure

Table 2 Confusion matrix.

		Actual class	
		Object I	Object II
Classified class	Object I Object II	TP _I FP _{II}	FP _I TP _{II}

$$TPR2(I) = \frac{100 \cdot TP_I}{TP_I + FP_{II}} \ (\%)$$

$$TPR2(II) = \frac{100 \cdot TP_{II}}{TP_{II} + FP_{I}} \ (\%)$$

3.1 Performance measures

Balanced accuracy (for one scene)

$$Acc2_{Bal} = 0.5 \cdot (TPR2(I) + TPR2(II))$$
 (%)

NEW: Robust-and-balanced accuracy (for several scenes)

$$P_{Rob} = \frac{Rob_{Mit} \cdot 0.5 \cdot (M_{TPR2(I)} + M_{TPR2(II)})}{0.5 \cdot (SD_{TPR2(I)} + SD_{TPR2(II)}) + Rob_{Mit}} (-)$$

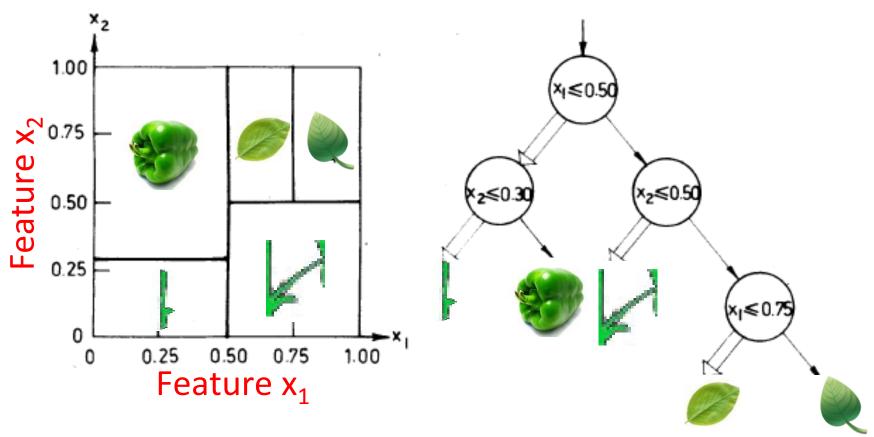
Rob_{Mit} is 'weighting factor' for robustness vs. accuracy

3.2-3.4 Classifier and features

- Classifier: CART decision tree (Breiman, 1984), in Matlab
- Feature selection algorithm: SFFS (Pudil, 1994)
- Pixel-based features
 - Raw data
 - Entropy
 - Normalized Difference Index (NDI)
 - Spectral Angle Mapper (SAM)
 - Mahalanobis Distance

Decision tree, how does it work?

Source: (Sethi and Sarvarayudu, 1982)

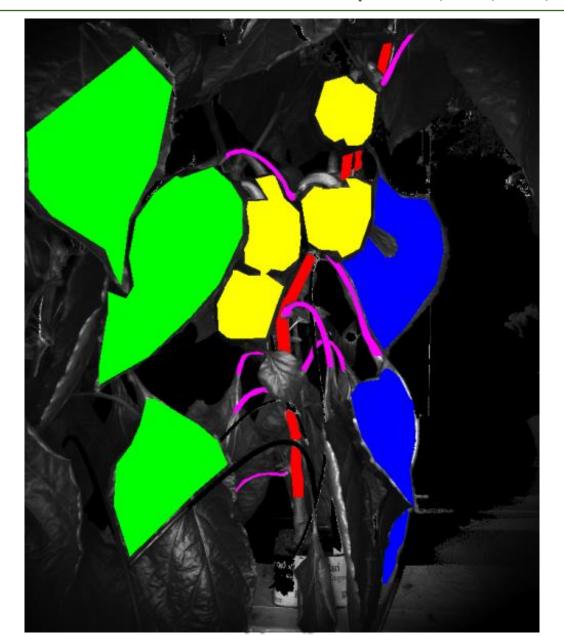


4. Experiments

Experiment 1: Evaluation of classifier robustness

- Experiment 2:
 - a. Separability for each binary combination of plant parts
 - b. Derive approach to classify 5 plant parts
 - c. Select features
 - d. Evaluate performance

4.1 Ground truth: drew 5 classes (stem, TL, BL, fruit, pet)



4.2 Training and testing data

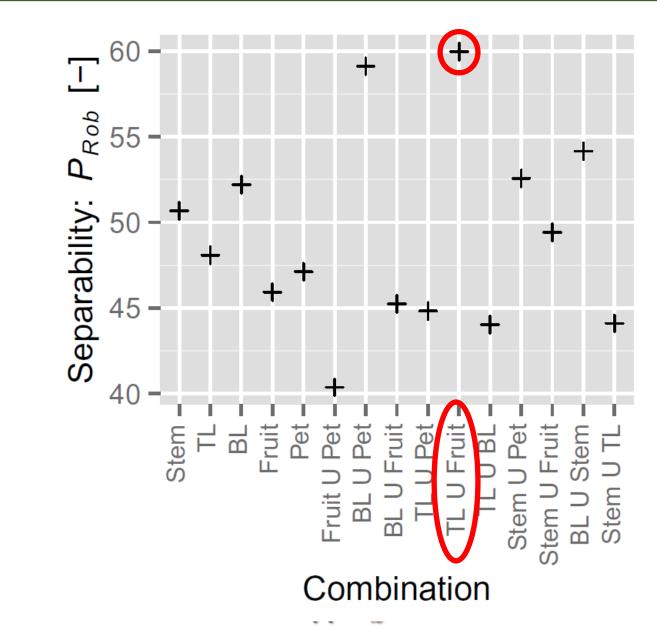
- 2 scenes for training
- 10 scenes for testing

Results

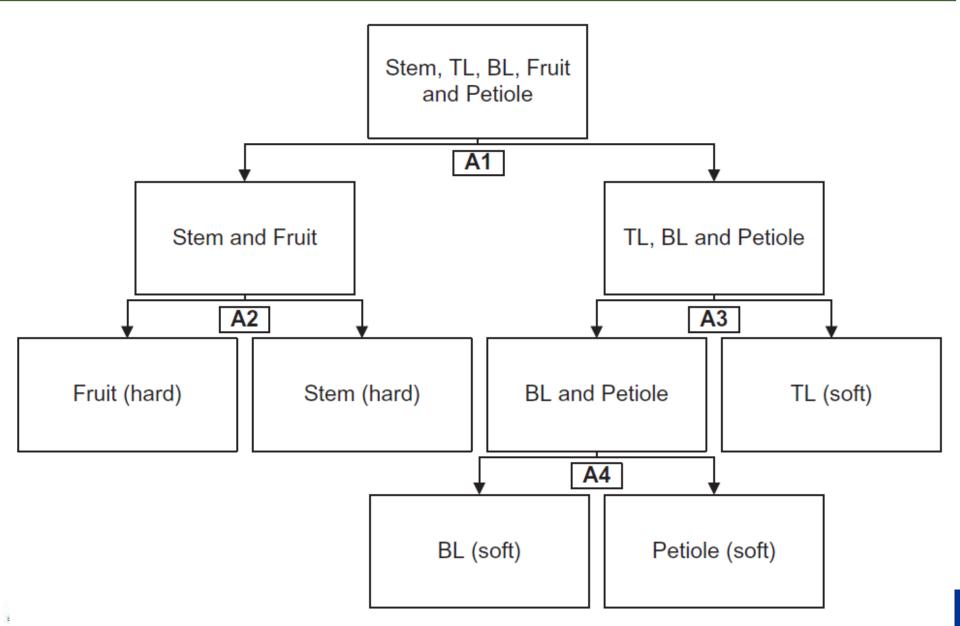
5.1 Comparison of performance measures

	Performance measure used		
	Balanced accuracy: Acc2 _{Bal}	Robust-and- balanced accuracy: P _{Rob}	
Features (NDI spectral) in the pruned decision tree; ordered on occurrence,	562&900; 692&716; 692&900; 562&716; 624&692; 562&624	447&624; 624&900; 692&716; 562&624	
Balanced accuracy $Acc2_{Bal}(\%)$	77.1 →Reduction of 29	%→75.4	
$M_{TPR2(hard)}(SD_{TPR2(hard)})$ (%) $M_{TPR2(soft)}(SD_{TPR2(soft)})$ (%)	66.5 (17.2) Reduction ± 50%	of 59.2 (7.1) 91.5 (4.0)	

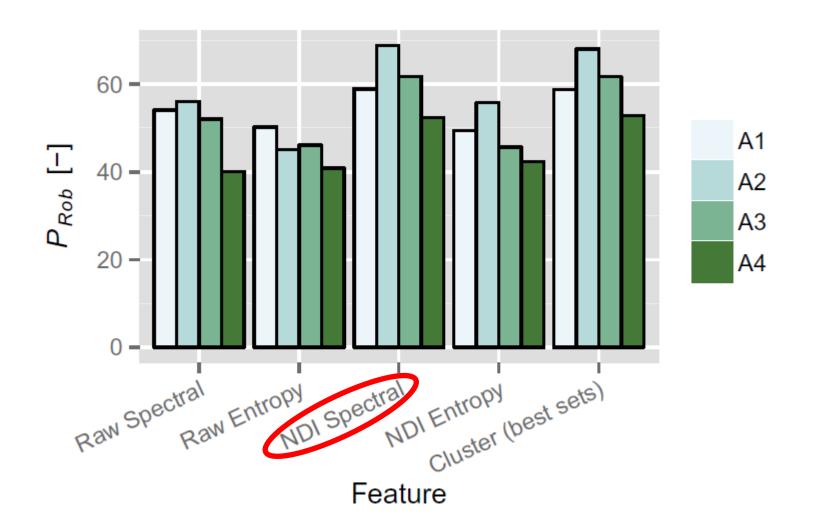
Separability for 15 binary combinations of plant parts



5.5 Approach to classify 5 plant parts



5.6 Performance per binary problem A1-A4



5.8 Result of classification into 5 classes

Mean true-positive detection rate

■ Stem: 40%

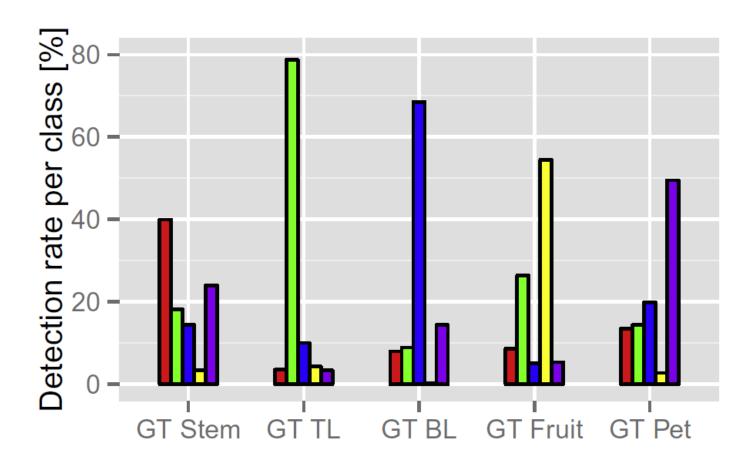
■ TL: 79%

■ BL: 69%

Fruit: 55%

Petiole: 50%

False positives



Discussion

- Two possible causes for low performance
 - Varying camera-object distances
 - Natural lighting varied during recording
- Possible solutions
 - Use of a reference card
 - Use of distance information
 - Addition of object-based features

Conclusion

- Performance too low for a reliable obstacle map for motion planning
- Mean TPR (SD)
 - Hard obstacles: 59.2 (7.1)%
 - Soft obstacles: 91.5 (4.0)%
- P_{Rob} renders classifier more robust to variation among scenes
- First study with quantitative results of obstacle detection for fruit harvesting

Thank you!!!

