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Foreword 

D. R. Nielsen, Chairman Working Group on Spatial and Temporal 
Variability of Field Soils, International Society of Soil Science 

J. Bouma, Secretary Working Group on Spatial and Temporal Variabil­
ity of Field Soils, International Society of Soil Science 

These proceedings refer to the first meeting of the Working Group 
on Spatial and Temporal Variability on Field Soils on behalf of 
Commissions I (Soil Physics) and V (Soil Genesis, Classification 
and Cartography), of the International Society of Soil Science. 
The meeting entitled "Workshop on Soil Spatial Variability", was 
sponsored by the International Society of Soil Science, The Soil 
Science Society of America and the U.S. Department of Agriculture. 
The objectives of the Workshop were to explore and discuss alter­
native statistical concepts and procedures of (1) enhancing the 
understanding and development of pedology, and (2) improving 
technology of soil survey, soil science and hydrology applied to 
present-day management of field soils. During the past decade, 
several national and international symposia have focused on the 
collection and analysis of soil and related environmental data as 
regards their spatial and temporal variations. Amongst these 
symposia, we consider the intellectual framework of this Workshop 
to be unique because it attempted to relate current efforts on 
statistical and mathematical interpretation of variability to 
contemporary soil classification programs with a viewpoint to 
future research. 

The Workshop consisted of invited papers and extended discussions 
in four general areas. The resulting one-half day sessions focused 
on general statistical concepts of quantifying variability and 
upon applications to hydrology, soil survey, and miscible displace­
ment and leaching. In each session two or three invited speakers 
presented 30 - 45 minute lectures designed as reviews of conceptual 
models, statistical approaches and experimental methods useful in 
studies of spatial variation. Each speaker's presentation was 
followed by an open discussion during which participants presented 
comments based upon their own experiences or questions directed 
towards the speaker or the audience. The contents of this book 
are the unabridged presentations of Workshop participants. Each 
gave a full measure of his knowledge and experience to contribute 
toward the objectives of the Workshop. 

On behalf of all participants, we wish to express our gratitude for 
the support of the three sponsoring organizations, and especially 
the effort of David M. Krai and his staff of the Headoffice of the 
Soil Science Society of America for providing the logistics 



necessary for the Workshop. We also wish to express, on behalf of 
the participants, our sincere appreciation to each of the invited 
speakers - every one of whom was articulate and erudite - for 
focusing our attention on the underlying principles of the Workshop. 

And, finally, the two of us are especially mindful and thankful 
for the participation of the more than 200 persons who attended 
and made the Workshop a successful event. We look forward to them 
and future readers of this book to continue to develop our under­
standing of soil variability and its application to soil management. 



The role of geostatistics in the design and 
analysis of field experiments with reference 
to the effect of soil properties on crop yield 

Alex B. McBratney, CSIRO Division of Soils, Cunningham Laboratory, 
St. Lucia, Queensland 4067, Australia 

"Soil isn't important for crop yield, it doesn't give a 
significant effect." 

A statement such as this or some close version of it has been 
heard by the author at various agronomic centers around the world. 
We, as soil scientists, find these expressions frustrating. My 
aim here is to discuss briefly why such statements are^ade and to 
suggest how geostatistical methods can lead to improved methods of 
field experimental design and analysis. 

The Effects of Fisherian Design 

There are two main reasons for statements of the kind made 
above. The first is Fisher's field experimental design and 
analysis. Fisher's great agronomic achievement in the 'twenties 
was to find a technological solution to the problem of soil varia­
tion in field experiments. Through randomisation and blocking he 
removed, without estimating, the effect of soil and other uncon­
trolled environmental variables. His approach was outstandingly 
successful and the methodology has largely stood the test of time. 
From this point of view, the statement above is an artifact of the 
method. Probably also as a result of the success of the method, 
the number of uniformity trials and studies of soil and crop yield 
covariation diminished markedly after the 1920's (cf Vieira 
et al., 1983). The second reason for the statement is that soil 
scientists, over a period of 60 years, have evidently not 
explained with sufficient clarity to statisticians and agronomists 
the importance of soil in crop growth and how it could be taken 
into account. 

Recent Developments in Field Experimental Design 

Recently, there have been some new ideas on field experi­
mental design and analysis which at least try to account for the 
spatial variation of the crop (Green et al., 1984; Wilkinson 
et al., 1983; Patterson and Hunter, 1984; and Williams and 
Patterson, in press). The first two methods assume a smooth trend 
plus independent errors model, which seems unrealistic. The 
method of Patterson and Hunter assumes an isotropic exponential 
semi-variogram and that of Williams and Patterson an isotropic 
linear semi-variogram. These latter two methods do not appear to 



be sufficiently general; my studies of uniformity trials, two of 
which are depicted in Fig. 1, show that the form of variation of 
crop yields may be non-stationary or periodic or anisotropic, or 
some combination thereof. Clearly, a method is required which 
allows the form of the semi-variogram to be estimated from the 
experiment, such a method is outlined below. 

The Role of Geostatistical Methods 

Briefly, geostatistics has a "part to play in field experi­
mental design because of its ability to describe quantitatively 
soil and crop variation and covariation..and to perform block pre­
dictions and co-predictions. I see the use of geostatistics in 
three, proceedingly more involved, applications. 

1. The use of soil property semi-variograms to design plot and 
block size and shape. 

Assuming that there are a few soil properties controlling the 
spatial yield variation of the crop and there is some proportional 
relation between these variances, then the anisotropy of the semi-
variogram will suggest plot (and Mock) shape. The smaller plot 
dimension should be in thé direction of maximum variation and the 
larger dimension perpendicular with the ratio of the sides equal 
to the geometric anisotropy ratio. The size of the plots and 
blocks will depend on the form of the variation and variances for 
them can be calculated using integrals of the semi-variogram. 
Qualitatively, if transitive behaviour is observed blocking will 
not be required if plots with dimensions similar to the range can 
be used. If the range is very large compared to the available 
experimental region then blocking will proably be required. (It 
appears that classical experimental designers assume a linear 
semi-variogram! ) 

2. Co-spatial soil and crop surveys 

If one does not wish to assume the form of the relationship 
between the variances of soil and crop attributes then a co-
spatial soil and crop survey should be carried out. This is a 
combination of a geostatistical soil survey and a uniformity 
trial. For this to be fruitful, the size of yield plots and soil 
grids should be less than the range of spatial dependence. This 
should allow the calculation of cross semi-variograms of the soil 
and crop attributes as well as the regression of yield on soil 
attributes (allowance should be made for spatial dependence and a 
method such as that described by Cook and Pocock (1983) should be 
used). 

3. Embedded field experimental designs 

In an attempt to account for spatial soil and crop variation 
in field experiments, it is possible to perform a co-spatial soil 



Fig. 1 Spatial analysis of two uniformity trials. 

Left upper The navel orange uniformity trial of Batchelor and 
Reed (1918). Surface showing the yield of oranges 
on 20 by 50 trees on a 22 ft. grid, 

middle Two dimensional autocorrelation surface to lag 10 
in both directions. The ridge from center back to 
center front of this surface is in the same 
direction as the yield surface from back to front. 
Note the slight anisotropy. 

lower Two dimensional spectral density surface smoothed 
with a two dimensional Barlett window to lag 10. 
Directions are the same as the autocorrelation 
surface. There is no significant periodic 
behavior; all the power is at low frequencies. 

Right upper The IR8 rice uniformity trial of Gomez and Gomez 
(1976). Surface showing the yield of rice on 18 
by 36, 1 meter square plots. Note the non 
stationarity from left to right, 

middle Two dimensional autocorrelation surface to lag 10 
in both directions. The ridge from center back to 
center front of this surface is in the same direc­
tion as the yield surface from back to front. 
Note the strong anisotropy probably caused by the 
non stationarity. 

lower Two dimensional spectral density surface smoothed 
with a two dimensional Barlett window to lag 10. 
Directions are the same as the autocorrelation 
surface. There is no significant periodic 
behavior; almost all the power is at low 
frequencies. 

For further discussion of the methods used to compute these 
diagrams, and for an example of periodic variation in a 
uniformity trial, see McBratney and Webster (1981). 
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Fig. 2 Embedded field experimental designs 

Left upper First order nearest neighbor (4 neighbors) 
embedded Latin square design with 2 replicates on 
a square grid, 

lower First, order nearest neighbo'r embedded Latin 
square design on an equilateral triangular grid. 

Right upper Second order nearest neighbor (8 neighbors) 
embedded Latin square design on a square grid, 

lower Second order nearest neighbor embedded 2 cubed 
factorial design with 4 replicates on a square 
grid. 

N.B. The grey plots need not necessarily be as large as 
the main treatment plots. 

http://fc._i__i._i


and crop survey as described above and follow it up in the next 
growing season with a classical field experiment on the same area. 
If spatial patterns vary from season to season then perhaps a 
better approach is to combine the co-spatial soil and crop survey 
and classical experimental designs - such a combination may be 
called an embedded design. Such schemes based on square and tri­
angular grids are shown in Fig. 2. These diagrams are diagram­
matic and are primarily intended to show the spatial nature of the 
designs. For example, in Fig. 2, it is questionable whether 
blocking of the replicates is required because of the local con­
trol afforded by these designs. The grey plots in each diagram 
are control plots and the named white plot is a treatment plot. 
The control plots can be measured for soil attributes and crop 
yield and a regression model obtained. These values can then be 
used to krige (or co-krige) the environmental yield on the treat­
ment plots. Further soil analyses on the treatment plots will 
allow detection of any deviation between predicted soil effects 
and those observed, suggesting some interaction between treatments 
and soil properties. 

Statisticians will eschew these embedded designs because 
relative to classical designs they will be regarded as ineffi­
cient. Presumably this inefficiency is measured by equating 
information gained with increased effort and area of the experi­
ment. It may not be a simple matter to estimate the information 
gained from an experiment and the formulation of an economic or 
scientific loss function seems difficult. Statisticians have been 
extremely parsimonious in their experimental designs, however this 
has not led to complete satisfaction with the users of such 
schemes. Inefficiency is refuted on the grounds that these 
designs allow realistic spatial models to be fitted explicitly. 
To the experimenter there is no real substitute for this. 

Conclusions 

(1) At present there is a lack of quantitative co-spatial soil 
and crop data. 

(2) The design, execution and analysis of spatially integrated 
soil and crop surveys and field experiments should become a 
joint research topic for agronomists, soil scientists and 
statisticians. 
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Spatial variability: geostatistical methods 

Allan Gutjahr, Department of Math and Statistical Research Center 
New Mexico Institute of Mining and Technology, Socorro, NM 87801,USA 

Introduction 

Recent research in the soil sciences (Byers and 
Stephens, 1983; Bresler and Dagan, 1983) and hydrology 
(Delhomme, 1978, 1979; Bakr et.al. 1978; Sutjahr 
et. al., 1978; Butjahr and Belhar, 1981) emphasize the 
concepts o-f spatial variability in the study of soil 
properties and flow problems. The papers cited 
emphasize the statistical and stochastic nature o-f the 
phenomena. x 

In this paper I will present some o-f the basic 
concepts o-f spatial variability and illustrate their 
meaning. I will also discuss the assumptions involved, 
the type o-f data needed, and the advantages and 
limitations of these procedures. 

Problems of variation in soil properties have 
certainly been recognized for many years. In fact 
much of the statistical work on design of experiments 
and analysis of variance originated in agricultural 
research. The main concern, however, was with 
differences between mean values and variation was often 
viewed as a nuisance to be controlled for in some 
manner. 

By contrast, the geostatistical study of spatial 
variability deals with data and problems that involve 
uncontrollable variation that still has some kind of 
structure. Thus the data in space (or time) is 
presumed to have some connectedness or continuity 
embedded within the randomness. The objectives of such 
a study vary and include attempts to explain variation, 
to build predictive models, to interpolate or 
extrapolate values, to design sampling plans and to 
interrelate variations of different properties (e.g. to 
relate the variability of conductivity and head in a 
hydrologie context). Thus this approach views 
variation as part of an overall problem which can 
convey vital information about the phenomena studied. 

Random Fields 

The starting point in the geostatistical study of 
spatial variability is the notion of a random field or 



random -function in space (x will designate a vector in 
1, 2, or 3, space. The Glossory contains a more 
complete de-finition of terms). Simply, put a random 
-field, V(x) or spatial stochastic process is a random 
variable -for any -fixed value o-f x. V(x) might 
represent quantities like hyraulic conductivity, grain 
size or head at location x. 

A complete description o-f V(x) would require the 
joint probability distribution at any set of locations, 
x., j = l ... n. In "practice this amount o-f 
information is virtually impossible to obtain and 
instead only descriptions o-f moments are used. These 
include the mean, V(x) = E<V(x)), the variance, 
Var(V(x)). and, most importantly, a measure o-f the 
statistical relationship between y<jj.) and V<x„) known 
as the covariance cov(V(x.), V<x_)). 

We start by examining the concept of statistical 
homogeneity or second—order stationary. V(x_) is 
statistically homogeneous (second-order stationary) if 
V(x) has constant .mean and if Cov<V<x,), V<x„>) only 
depends upon the vector difference x.. - x_. namely if 

(i) E<V<x)) ='m, a constant 

and (ii) Cov<V<x«), V(x„)) = R(x.-x„), or 

Cov(V<x+y), V(x)> = R<y). 

R(y) is the covariance function evaluated at lag y. 
"** The covariance condition states the statistical or 

probabilistic dependence, is only related to the 
separation between the points. The constant mean 
condition is not a controlling factor if m<x> = E<V(x)) 
is known. Note also that Var<V<x;)) = R<0) for the 
statistically homogeneous case. In'some applications 
the homogeneity assumption is further specialized by 
assuming R(y) only depends upon y = l%l * the length of 
the , separation vector in which case we say the process 
is statistically isotropic. 

How can R(y) be estimated? In the general 
statistically isotropic case we could first estimate 
the mean, V, based upon observations V<x.) ... V Çx ) 
and then estimate R<y) by grouping points. Thus if & 
is some fixed value, we could group those points (x., 
jx.) into the set A<y) where y-A 5 lx.-̂ < I $ y+A afîd 
then estimate R(y) as follows: 

R(y) = E CV<x .)-V3CV(x, )-VD/# pts in A(y) 
pts in A(y) J 

Some examples of possible one—dimensional or 
isotropic covariance functions are shown in Figure 1. 

10 



Fig. 1 Isotropie covariances 

Generally, we expect covariances to decrease as y 
increases — i.e. the "influence" of V<^<) dies out as we 
move -further away from that point. An average distance 
over which significant correlation <R<y)/R(0) = the 
correlation function) is called a scale. A common 
procedure is to take the scale X to be that value where 
R<X)/R<0> = e (e-fold drop). 

There are cases where, at least within the area 
studied, V(x) does not appear to be statistically 
homogeneous. To study these situations the French 
geostatistics school (Matheron, 1971; 1973) has 
introduced the notion of intrinsic random functions 
where the increments or changes are assumed to be 
statistically homogeneous. 

An intrinisic random function of order zero is a 
random field V<x) with 

(i) E<V<x>> = m 

(ii) -r(y) = E<CV(x+y)-V(x) 3^3/2 

± VarCV(x+y)-V<x)3 

11 
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Fig. 2 Isotropie variograms 

The function Y<^> only depends on the lag y and is 
called the semi-variogram or just variogram. Typical 
variograms are shown in Figure 2 -for 1—dimension. I-f 
V(#) is also statistically homogeneous, Y<y) = R<0) -
R(y) and as y increases, Y<y,) approaches^ Var(V<y>) 
which is also called the sill. Correspondingly, the 
scale X is sometimes called the range »of the variogram. 

If V(}0 is not statistically homogeneous Y<y) will 
not approach a sill value <e.g. Figure 2-b). Figure 
2—c shows a variogram with a jump at O — called a 
nugget effect.' Buch an effect isn't really possible if 
VCx,) is continuous but it may be observed in estimates 
because fine-scale estimates aren't available; it 
can also be used to model measurement error. 

Using the same set A(y) introduced for estimating 
R(y) an isotropic variogram can be estimated by 

Y<y) 
pts in A 

CV(x .)-V(x, )3 /C2. #pts in A<y)3 

In some cases non—isotropy can be detected by 
calculating Y<y> in different directions and possibly 
correcting for trends in the mean (see Figure 3) 

12 
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n-s 

Fig. 3 Non-isotropic variograms 

R<£> and -y(y) are thus used to characterize the 
variability that~can exist for a random field. What 
else can be done with these functions? 

Kriging 

If V<x,), V(x_) ... V(x ) are measurements at n 
'N'l ~ 2 "Tl 

locations we may want to use them to interpolate or 
predict V at some other location x,. 
done using either R<y) or ir(y)? 
procedure commonly used to do this. 

In kriging, linear estimators, 

How can this be 
Kriging is the 

V(x) = E X . V(x .) , 
j=l J ~ J 

are used for the unknown value V(x). 
chosen so that 

The 
J 

(1) the estimator is unbiased: 

E<V(x>) = E(V<x>> 

13 



2 
and <2) The mean squared error E<CV(x)-V(x)3 Î is 

minimum. 

In bath the statistically homogeneous and the 
intrinsic random -function case minimizing the mean 
square error while using linear unbiased estimators 
will lead to n+1 linear equations in n+1 unknowns: 
X. ... X and y a Langrange multiplier. Note that the 
X,s and M depend upon the location j< so that at each 
location we get different weights. Usually this 
dependence on x is not explicitly shown. 

The kriging variance, or 'minimum mean squared 
error is also usually obtained 

ff.2 = varEV(x)-V(x)1 = ECV(x)-V(x) I2 . 
k ~ ~ ~ ~ 

The kriging equations and kriging variances for the two 
cases discussed are given below. 

a. Statistically homogeneous case 

E X. R(x.-x.)-|i = R(x-x.); i = 1 

E X . = 1 

2 " 
ff. = R(0)- E X. R(x.-x)+|i. 

k j = 1 J ~ j ~ 

b. I n t r i n s i c Random Funct ion of order O 

14 

E X. Y < X . - X . ) + U = - r < x - x . ) ; i = 1 
. = 1 j ~ i •"* ~ ~ i ' 

E X . = 1 
j = l J 

2 " ff, = E X . T ( X . — x ) + j i 
k j ~ j ~ 



The equations in (b) can be obtained -formally -from 
those in (a) by taking R<Q) = 0, Y<y> = -R(^). 

The kriging estimators or "interpolators have 
several other interesting properties in addition to 
unbiasedness and minimum mean square error. 

(1) V(x) is an exact interpolator: V(x.) = V(x.) 
at the observation points 

(2) The weights X . and u depend on the covariance 
•function or variogram and the locations, but 
not on the actual values observed 

(3) m, the mean, is not needed to calculate the 
estimate V(x) 

2 
(4) a. yields a measure of the precision and 

again only depends on the X's, M , and the 
covariance -function or var iogram. / 

In a kriging study the above points are used in a 
variety of ways. For example, to validate a kriging 
model, an estimate is made at x. , an observation 

J 0 
point, by leaving out that point and using the 
remaining n—1 points to develop the kriging equations. 
This procedure is repeated with sucessively different 
points are excluded. The values CV . (x . >—V(x. )3 /<r. 

Jo ~Jo ~Jo k 

are calculated and averaged where the subscript j 0 

indicates the omitted point. This average value should 
be close to 1 if the model assumptions are true and the 
correct covariance function (variagram) are used. 

The fact that kriging variances only depend upon 
location and not actual V values can be used to see 
what effects added sampling can have on the estimates. 
Thus a fictitious point can be placed and the kriging 
weights and variances calculated for the changed 
situation. By moving the point one can decide on an 
"optimal" location for an added sample. 

Figure 4 shows schematically what kriging 
estimates would look like. The kriged path is smoother 
than the actual path, as one might suspect. In Figure 
5 the effect on c. of an added point is illustrated: 
note ar. = 0 at observations since values are exact at 
those points. 

Extensions and Modifications 

The kriging procedure can be extended to cases 

15 
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where mix) = E(V(>0) depends on x but the covariance or 
variogram assumptions still apply. 

One procedure is to approximate mix) by 
K 
E a, P. (x) where the P's are a set o-f "basis" 

k=l k k ~ 
-functions e.g polynomials). The unbiasedness conditions 
lead to K constraints and K Lagrange multipliers. The 
resulting kriging equations are called the universal 
kriging equations (Matheron, 1971). 

An alternative is to look at higher-order 
differences and assume some kind o-f stationarity or 
homogeneity for these differences. This leads to 
higher-order intrinsic random functions and generalized 
covariances (Matheron, 1973). Again kriging equations 
can be developed for this case. 

Another extension covers cases where we have more 
than one random field. This is an especially 
interesting case because one can speak/ of the 
"transfer" of information from one field to the other. 
In this case, for statistically homogeneous random 
fields U(x), V<x), the cross-covariance R (y) = 
cov<U(x+y), V(x)) is used as well as the auto-
covariance functions. The kriging question now becomes 
the following: Given U<x.,.) . .., U(x4 ) and V(x_.) ..., 

^11 '•'•'in ^21 
V(x_ ) find the prediction of V<x). The unbiasedness 
conditions can become more complicated. The use of 
this co-kriging procedure along with physical models 
that interlink the two fields is especially intriging 
because it can tell us something about the worth of 
different pieces of data. 

In Figures 6 and 7 I show some plots of kriging 
variance for a head/transmissivity model where the two 
quantities are related by a flow equation. The cross— 
covariances needed are found by using the flow equation 
and a spectral approach I will touch upon briefly and 
that I'm sure Lynn Gelhar will refer to in his talk. 
In the Figures kriging variance contours are shown for 
2 networks of observations in each case. The 
observations are taken at points separated by one or 
two correlation lengths of the jfnT random function 
where 0's denote transmissivity (T) measurements and 
crosses indicate head measurements. In Figure 6 the 
dashed contours correspond to the network with five 
head measurements (each one correlation scale apart) 
and 2 transmissivity measurements (2 correlation scales 
apart), while in Figure 7 the contours are for 
measurements on observations 2 correlation scales 
apart. The contours are only shown for the first 
quadrant and the networks are presumed to have their 
centers at the origin. This model contains within it 
the seeds for a kind of inverse procedure and a method 
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•for evaluating worth of different types of data. 
Kriging has also been used to study methods for 

creating what might be called possible realities or 
realizations of random fields. Recall the kriged paths 
(e.g. Figure 4) are smoother than the real paths. In 
some studies we want to re-create paths through the 
sampled data points (as a kriging estimator does) 
that exhibit the kinds of variation and correlation 
seen in reality. 

Thus we want a conditional random field V(j^), 
given observations V(x.) ... V(x ) . Delhomme (1978, 

^1 ~n 
1979) gives examples of such conditional simulations 
which use the kriging procedure. One need not use 
kriging to do this but it does lead to a rapid method 
for generating these realizations. 

The conditional simulation approach first finds 
the kriging weights for the given covariance function 
and data locations. Then an unconditional random field 
s (£) is generated with the desired covariance 
behaviour. Finally this field is kriged, using the 
previous weights to get s (x) and then the conditioned 
field, u 

s (x) = V(x) + Cs (x) - s (x)3 
c ~ ~ u ~ u ~ 

will have the desired properties. Conditional 
simulations are useful for studying input-output 
relationships in cases where two fields are related to 
each other. 

Kriging — uses, abuses, advantages and disadvantages 

The ready availability of computer codes makes 
kriging and its relatives good candidates for use and 
abuse in a variety of applications. In carrying out 
kriging studies there are things to be aware of and in 
this section some uses, warnings about misuses and 
problems that may be encountered will be discussed. 

First let me discuss advantages of kriging some of 
which I have already mentioned. 

(1) The X's depend on x, R(y) (or Y<y>) and the 
x . locations but not on 1:he V(x .) 's. This 
makes sample design studies possible and 
studies of where points should be placed to 
minimize variances. 

(2) V(x>) is an exact interpolator. If the 
V(x.)'s contain measurement error that can 
also be incorporated into the kriging 
equation. 
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<3) The mean m is not needed to get V(£). 

(4) The kriging variance yields a useful measure 
of accuracy. 

(5) The procedure is general and flexible if the 
assumption are valid. 

What are some disadvantages and things to watch 
out for? 

(1) The covariance (variogram) must be known. 
Very often the estimates of the 

. covariance (variogram), behave poorly and are 
difficult to interpret.,- In addition the same 
points used to estimate the 
covariance (variogram) are often used in the 
kriging procedure. To minimize the effects 
of correlation apd bias, standard 
functions are fit by eye to the 
experimentally observed functions. The 
effects on the kriging variance of using 
the same data for both the 
covariance (variogram) estimates and for 
obtaining the weights still needs 
exploration. 

(2) The mean must be constant or have a known 
form. One can get around some of the 
problems by using intrinsic random function 
theory and generalized differences or by 
using universal kriging. However both of 
these options are considerably harder to 
apply and interpret. Ip addition these 
procedures are not as readily implemented. 
An alternative is to fit a mean equation or 
trend and remove that mean from the data. 
This may, however, have an undesirable effect 
on the covariance (variogram) estimates. 

(3) The statistics of covariance (variogram) 
estimates are difficult to study and not well 
known. 

(4) In theory, kriging can handle anisotropic 
covariance functions or variograms but again 
in practice that is hard to do. Virtually 
all standard kriging packages don't include 
options for anisotropy. 

Kriging is not an automatic procedure. In carrying it 
out one should validate the model as much as possible 
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and be aware of the limitations. Used in that way, 
with thought, it can be a useful technique for studying 
spatial variability in space and time and its 
consequences. 

Spectral Methods and Representations 

Kriging is a kind o-f orthogonal projection 
procedure involving projection onto the data. It is 
similar in that respect to regression and other 
multivariate techniques. In carrying out analytical 
calculations that involve equations connecting 
statistically homogeneous random fields we often use 
yet another "orthogonalization" procedure. This is 
generally referred to as the spectral representation 
theorem (Lumley and Panofsky, 1964; Koopmans, 1974; 
Rosenblatt, 1973). I will state it and then discuss 
what is says and why it is so important. 

The Spectral Representation Theorem / 

If V<x) is a statistically homogeneous random 
field with mean 0 and R<^> = cov(V(x.+v), v(x)) 
continuous at 0, then there is a unique (with 
probability 1) complex process Z(k) and a positive non-
decreasing function F<k) with the following properties: 

(i) R<y) = S expîik-yîdF(y) 

» 
<ii) V(x) = S exp{ik-xîdZ(k) 

—» 

(iii) E(dZ(k)) = 0, E(dZ (k)dZ*(k' ) ) = O, k £ Jk' 

E<ldZ(k)I2) = dF(k) 

In the above the integrals are 1—2 or 3 
dimensional depending on the region, dF(k) = f(k>dk if 
a spectral density f (Jk) exists; F(k) is~the spectral 
distribution and * designates complex conjugate. 

Now what does this formidable expression mean? 
We can take the original process which involves 

correlation and inter—relationship and write it as an 
integral of a (complex) process that has uncorrelated 
components. It involves a disentangling of the V(x,) 
process into "independent" pieces in the Z(k) process. 
For many problems the spectral representation will 
allow us to study terms in isolation because they don't 
mix or interact. 
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This procedure is analoguous to decompositions of 
sums of squares encountered in analysis of variance. 
There one tries to split the sources of variability 
into different parts and assign them to different 
causes. Namely, (ss = sum of squares) 

ss total = ss between groups + ss within groups 
is a basic identity in one-way analysis of variance. 
The same kind of decomposition occurs in the spectral 
representation above. In fact, 

var(V<j«>> = ƒ f (k)dk 

S f<k )Ak. + f <k2>Ak. + ... 
With f<k.)Ak = variance associated with frequency k'., 
the décomposition of variance is like that in tMe 
analysis variance. 

The study of spatial variability by using 
stochastic methods is still being developed. It can 
yield insights into the variation that exists in the 
field, the continuity of the field and the uncertainty 
one can expect. ' With proper care the methods should 
help in interpretation *of data and in developing 
fundamental understanding of physical models. 
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A BLOSSARY OF TERMS AND SYMBOLS IN SPATIAL VARIABILITY 

Random -field or spatial stochastic process V(x): This 

means -for each fixed x (e.g. a location in space) 

V(x) is a random variable. 

Probability density o-f V<x); The -function g<v: x) such 

that the Probability v<x) is between a and b, 

denoted by P<a < V(x) $ b) ,. is given by 

b 
P(a < v(x> $ b) = S g<v: x)dv. 

-v. a « ~ 

Expected value or mean o-f^.V(x): The expected value or 

mean (denoted by E(V(x)) or V(x)) is the 

probability-weighted average, 

» 
E<V<x)> = S v g(vs x)dv. 

-» 

Covariance -function for a random field: This 

designated by cov(V(x,!, V(x„)) and is defined as 

tovtVfXj), V(x2>) = 

EC(v<x )-V<x ))<V(x )-V(x ))3 
"w* •*#•* *\#-^ » v ^ 

It measures statistical relationship between field 

values at two different locations. 

Statistical homogeneity or second—order stationarity: 

The random field V(x) is statistically homogeneous 

or second—order stationary if 
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(i) E<V(x)) = m, a constant, 

and <ii) covtVfx.), V(x^)) = R(x.—x„> only depends 

upon the separation vector x.-x_. 

y = x.-x7 is called the lag vector. 

Covariance -function for statistically homogeneous 

processes: R(y) = cov(V(x+y), V(x)), the covariance 

•function as a -function o-f the lag y. 

Statistically isotropic process: A statistically 

homogenous process where R(y) = R(lyl) = R(y) only 

depends on the separation distance, y = lyK 

Correlation -function: p(y) = R(y)/R(0). 

Scale: An average distance over which points are 

significantly correlated. For an isotropic 

covariance function this is sometimes taken as that 

value X where e = fl<M, an e-fold drop. 

Intrinsic random function of order 0: A random field 

2 
V(x> with constant mean where E(tV(x+y>—V(x)3 ) only 

depends on y. 

variogram or semi-variogram: The function 

Y<y) = E<CV(x+y>-v(x)32>/2 

for an intrinsic random function of order 0. 

Sill: If Y<y> has a limiting value as y increases, the 

limit is called the sill and equals var(Vtx)). 

Range: The scale in a variogram for a statistically 

homogeneous process. 
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Unbiasedness: Hf G(V<x.) ... V(x >) is some function 
r _ _ .vl ^.n 

o-f V(x.) ... V<x )) it is an unbiased estimator o-f 
,.1 ^n 

V(xQ) if 

E(B(V(x.) ... V(x )) = E(V(xrt>). 
^1 -v,n „0 

Mean squared errors If GlVlx.) ... V(x )) is an 
~1 ^n 

estimator of V(x_) the mean squared error of B is 

E<CG(V<x«) ... V(x ))-V(x,.)32) . 

It is a measure of how "close/1 the estimator B is to 

the quantity being estimated, Vtx ). 

Estimator, V: For estimators the notation 

V(xrt) = B(V<x,) ... V(x )) is often used. 
-v.0 -*.1 ^ n 

Linear Estimator: An estimator of the form 

V = X, V(x,)+X„ V<x„)+ ... X V<x ) 1 „,1 2 „,2 n ,̂n 

n 
= E X . V<x .)• 

J-l J ~J 

where the X's are constants., 

Kriging: The procedure that finds the best (minimum 

, mean square error) linear unbiased estimator of V<x) 

based upon observations V(x.) ... V(x ). For a 
„,1 „,n 

statistically homogeneous process with covariance 

function R<y), this yields a set of linear equations 

for the "weights" X.; 

E X. R(x.-x.)-ji = R(x.-x), i 
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n 
E X. = 1. 

j=l J 

li is a Lagrange multiplier. For an intrinsic random 

•function of order zero the covariance function R(y) 

can be replaced by — T<y>, the negative o-f the 

variogram, to get the kriging equations. 

Kriging variance: The variance associated with the 
2 

kriging estimator, designated by <r. . This is also 

the minimum mean squared error. For a second-order 

stationary process it is ^ 

~ 2 2 n 

E(CV(x)-V(«) 3 = ff = R(0) - E R(x-x,)+M 
•># «Li •*• ^ i = 1 ~ ** 

For an intrinsic random -function, again R is 

replaced by — y. 

Co-kriging: The extension o-f kriging to the case where 

V<x) is estimated using observations -from two random 

•fields where now the cross-covariance, cov(V(x+y), 

U(x)), also enters in. 

Spectral density -for a statistically homogeneous random 

-field: A Fourier transform of the covariance 

function (k = wave number or frequency), 

R(y) 

f(k) = X ... S exp<-ik-yîdy dy 

~ M <2n)p 

X R<y) exp£-ik-y> dy 
<2n)P 

where p = the dimension of the space. The 
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covariance -function can be recovered from the 

spectral density by an inverse Fourier trans-form. 

Spectral representation theorem -for a statistically 

homogeneous, mean zero, process: This states that 

i-f V<x) is statistically homogeneous random field 

with E(V<x)) = 0, covariance -function R(y), spectral 

density -f (k> then there is a unique (probability 1) 

complex process Z(k> with thev-f oil owing properties 

<i) V<x) = X e * 2 dZ(k) 
-» 

<ii) E(dZ(k)) = 0, E(dZ<k ) dZ*<k )) = 0, 
*\j *•»* n^ ™ ^u^^ 

k l = k 2 ' 

and E(ldZ<k)l2) = -f(k) dk 

(* = complex conjugate.) 

The spectral representation theorem resolves the 

original process into a "uncorrelated" complex 

process which greatly simplifies some calculations. 
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Discussion 
D. Go s e and 
L. Wilding: 

A. Gutj dhr: 

H. ten Berge: 

A. Gutjahr: 

H. ten Berge: 

A. Gutjahr: 

B. Luxmoore and 
B. Sahuhway: 

A. Gutjahr: 

What is meant by a constant mean and what are 
the requirements for a constant mean? 

The constant mean assumption means there is no 
trend within the range of study. It is not as 
crucial to the analysis if (i) the trends can be 
estimated and removed or (ii) one uses generali­
zations of kriging like universal kriging, 
where the trend can be estimated, or intrinsic 
random functions of higher order. 

Is the condition that the variance be constant 
across the field implied in second order 
stationarity and is it a severe condition? 

Yes. It is implied by the definition of second 
order stationarity and it , may be ß serious 
restriction in some applications. In such cases 
one might look at some transformed values (like 
logarithmic transformations) of the data, try 
multiplicative types of corrections or use 
variograms and the intrinsic random function 
approach. 

Is biasedness only a 
sampling procedure? 

characteristic of the 

No. It can also be a characteristic of the 
statistical procedures used in estimation and 
prediction. 

In the case of a linear variogram is there some 
of deciding between a trend in the data and a 
stationary process without a trend in the data? 

One can sometimes detect trends in the data by 
examining the variogram in different directions. 
For example, if there is a linear trend in a 
particular direction, the variogram in that 
direction will have a parabolic behavior and one 
can then remove the trend in that direction (see 
Delhomme, 1978). The question of a trend is 
often a difficult one to decide on the basis of 
the data and may again require higher order 
intrinsic random functions, or using subsidiary 
knowledge of the process to remove that trend. 
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C. Kirda: If a set of data has trends should the trend be 
removed before finding the correlation length 
from an auto-correlation analysis? 

A. Gutjahr: Yes. Often trends can be spotted from the 
covariance functions if they have shoulders or 
tend to remain high as the separation distance 
increases. Correlation lengths calculated from 
the data without the trend removed are then too 
large, and aiso tend to include a deterministic 
component in the random model. 

M. flash : Is there any test for the range or correlation 
distance in correlation functions? 

A. Gut jähr: There are tests for correlation distances 
(using, for example spectral analysis) and in 
the stationary case the tests would be the same 
for the range in the variogram. However these 
procedures often yield estimates with high 
variances and hence are not very precise. 

W. Jury : There have been several instances of an apparent 
correlation between sampling grid density and 
correlation scale on a given field or even on 
the same transect of a field. It has been 
postulated that this would always result from 
non-linear drifts which are difficult to remove. 
How does this affect the measurability of the 
correlation scale? 

A. Gutjahr: Yes, this can affect the measurement of the 
correlation scale. It can also occur that 
within the region of interest there may be 

-several scales. As Lynn feelhar indicated in his 
talk, the scale of the problem and the scale of 
the correlation function are interrelated. The 
region of study should be large enough to 

1 include several correlation scale lengths in 
which case the larger scale variation may be 
treated as a trend. In addition if there are 
significant non-linear trends one might again 
go to an intrinsic higher order function 
approach (using generalized differences) and 
estimate the generalized covariance. 

L. Wilding: How many couples of observation are needed at 
the greatest distance for statistical reliabil­
ity or validity? 

A. Gutjahr: Unfortunately the statistical behavior of the 
variogram is not a simple one and still deserves 
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more study. As a rule of thumb one should have 
about 50 data points to get reasonably reliable 
estimates and then perhaps a good second rule of 
thumb is not to place much reliance on variogram 
estimates beyond 20% of the maximum distance 
(this second rule of thumb is often used in time 
series analyses). Namely if the biggest pair-
wise separation is 100 meters only look at the 
variogram out to 20 meters as having reasonable 
reliability. This should be tempered, of 
course, by looking at the number of data pairs 
in the estimates. 

R. Horton: You have described two tools: correlogram and 
the semi-variogram. The correlogram requires 
second order stationarity in order to be valid 
while the semi-variogram requires less confining 
intrinsic assumption. Should one use the 
semi-variogram instead of the correlogram? 

A. Gutjahr: If non-stationarity is a possibility then I 
would examine the semi-variogram. If a sill is 
shown then I would use a correlation function 
because it is often easier to interpret and also 
treat statistically (especially if the data is 
equally spaced). 

S. Rao and Is there any implicit assumption made about the 
R. Cassel: distribution (e.g. normality) for data used in 

kriging. If not why do some researchers first 
transform the data? 

A. Gutjähr: In both variogram estimation and kriging the 
assumption of normality is not needed - only 
expected values or averages enter in. Transfor­
mation may be used however for a variety of 
reasons like stabilizing the variance, making 
probability statements about kriging estimates 
and for developing procedures for estimating 
variograms (e.g. via maximum likelihood proce­
dures) . However the kriging procedure itself 
doesn't require distributional assumptions. 

P. Nkedi-Kisza 
and 

L. Stroosnyder: 

What are the basic differences between classical 
agricultural statistics and geostatistics? At 
what stage should either be used? Can one use 
both? What about independent assumptions? 
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A. Gutjahr; Generally in classical agricultural statistics 
one is interested in estimating means and also, 
generally, the data are presumed to be indepen­
dent or contain independent random error. Of 
course situations do exist where variables are 
assumed to be related (like analysis of covari-
ance) but the main focus is on controlling for 
variability with appropriate designs and proce­
dures. 

In geostatistics the focus is on the inhomogene-
ities that exist and on the relationship between 
values - correlation occupies center stage. 
Thus if one wants., to estimate the variability 
and continuity that exists, geostatistics is one 
way to do that. 

The two (classical and geostatistical methods) 
can be used together. For example one might use 
geostatistics to estimate underlying variability 
within a fie!l.d and then classical statistics to 
compare treatments in different areas after 
correcting for, inherent variability. 

In addition if measurements are far enough apart 
(as judged by examining the variogram or covari-
ance function) observations become uncorrelated 
and again one might use classical procedures for 
widely separated points. 

R. Bruoe ; 

A. Gutjahr; 

C. Gantzon and 
M. Nash; 

A. Gutjahr; 

Kriging is 'tailed an "exact" interpolator. What 
happens if measurement errors exists? Is 
kriging as a predictor to be applied only within 
the domain of the original study? 

One can extend the kriging procedure to include 
measurement error by modifying the covariance or 
variogram function in which case we no longer 
have an exact interpolator. Kriging is an exact 
interpolator within the field of interest and I 
should not really have referred to it as a 
predictor. 

Can you discuss the difference in efficiency 
between taking samples randomly within the field 
versus ordered regularly spaced sampled? If the 
samples are placed randomly how is the semi-
variogram estimated? 

I don't know what the efficiency would be. I 
would prefer a regular grid or smaller grids 
superimposed on larger grids for estimating 
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variograms if there are many sample points 
because this would allow the use of spectral 
methods if needed. However in general this is 
not an easy question to answer. The estimation 
would proceed as if the samples were non-random 
by using grouping of data points as described in 
the paper. 

E. Bresler: To best estimate the variogram by a least 
squares procedure one needs a sufficient number 
of pairs to cover the whole range of lags from 
zero to the maximum. In cases where the number 
of data points is small (30-50 points) random 
sampling might be preferred over regular sampl­
ing to get estimates at larger lags. 

J. Hendriakx: 

A. Gutjahri 

B. Schuh; 

J. Allen; 

A. Gutjahr; 

C. Wang : 

For estimating variograms and the trend, maximum 
likelihood methods can be useful if the data is 
from a multivariate normal population, 

What is an appropriate method to validate 
kriging results? 

A method often used for this purpose is the 
"leave-out-one data point" or jackknife proce­
dure described in the paper. 

What are the effects of improper selection of 
the variogram in kriging?. 

A. Gutjahr: In the stationary case the important features 
are generally the sill and the scale or range 
One can also try different variogram models and 
see what effects occur on the kriging estimates 
and kriging variances. 

How can a priori patterns of spatial variability 
(like soil forming factors) be incorporated into 
geostatistical methods to account for spatial 
anisotropy? 

Here one might try to use modeling studies to 
account for known factors or try to put in 
features as added constraints. In general there 
is no all encompassing answer and one needs to 
study the specific situation. 

In a kriging study we did with 50 columns of 
soil samples (150 samples within each column) 
the semi-variogram for each column varied 
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greatly in shape. How can this information be 
used to study a similar land form outside the 
study area? 

A. Gutjähr: It is difficult to give an answer to this 
without looking at the data - kriging and 
semi-variogram studies are not always automatic. 
However it may be the case that you have a large 
degree of anisotropy in the region which yields 
widely differing semi-variograms. 

I. Muraka: Could you elaborate^ on the "size of landscape" 
to which geostatistical analysis techniques 
would be limited to? 

A. Gutjähr: Again I would refer to some later comments by 
Lynn Gelhar on problems of scales. There may be 
several scales and we need to take the scale of 
the problem into account when doing this kind of 
study - that often is information obtained not 
within the geostatistical study but from other 
sources. .̂ 

F. Whisler: When will someone write a book with underlying 
theory and detailed examples and with programs 
adaptable to P.CS.? 

A . Gutjahr: - Probably when someone has a lot of time and is 
assured they can make lots of money by doing so! 
Seriously, though, it is a subject still 
evolving - as more researchers use it and 
develop it Ï' suspect texts will be forthcoming 
that meet the desired objectives. I would be 
careful, though, in looking at texts to be sure 
that they emphasize both what can't be done as 
well as what can be done, and that include good 
doses of common sense and thought - the proce­
dures and methods aren't panaceas and can't be 

• applied without thought. They should not be 
considered as "methods looking for a problem." 
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Time series in the soil sciences: is there 
life after Kriging? 

R.H. Shumway, Division of Statistics, University of California, 
Davis, USA 

1. Introduction 

The development of statistical techniques for analyzing data in 
the soil sciences has traditionally followed along the lines laid 
out by early disciples of R.A. Fisher (e.g. , Snedecor and Cochran 
(1967)) who assumed that observations obtained in the field were 
independent and identically distributed. The recent shift away 
from this early methodology, termed "aggie statistics", for 
example, by Nielsen et al. (1983) has been fueled by the 
realization that data collected in agricultural field trials and 
in the soil sciences are inherently spatially correlated. It is 
physically more reasonable to expect that measurements of soil 
parameters such as temperature or electrical conductively should 
be correlated when they are measured at adjacent points in space 
or time. 

The resulting trend in the soil sciences has been to lean more 
heavily on geostatistics by which is meant the smoothing of 
experimental data using Kriging techniques developed by Matheron 
(1963). Such applications to the soil science are well documented 
in papers by Nielsen et al. (1982), (1983), Vieira et al. (1983) 
and Valdin et al. (1983) and by other participants in this 
workshop (see also Ripley (1981) or Journel and Huijbregts 
(1978)). The advantage of Kriging or CoKriging techniques is that 
one can do smoothing with a very sparse collection of observed 
data points whereas conventional time series techniques require 
that one collect relatively equally-spaced data from the random 
field. 

The continued development of remote sensing devices and other 
systems of instrumentation, however, will soon enable research 
workers to bring to bear a number of alternative techniques for 
analyzing multidimensional random fields. Early techniques 
proposed by Whittle (1953), (1954) can be used to develop 
approaches to the problems of modelling and fitting data using 
stochastic partial differential equations. The use of spectral 
methods, suggested by McBratney and Webster (1981), or Nielsen et 
al. (1983) can be extended to embrace old fashioned aggie concepts 
using spectral analysis of variance (cf. Shumway (1970), (1971), 
Brillinger (1979)). The use of lagged regression models (cf. 
Brillinger (1975), Priestley (1981)) can be considered in order to 
develop input-output models relating various measured soil 
parameters. Problems involving non-stationarity and missing data 

35 

1 

L 



in transects can now be approached using the state-space approach 
for smoothing and signal extraction (cf. Parzen (1984)). 

The purpose of the following discussion is to give some examples 
which demonstrate some of the kinds of questions which can be 
answered using the above techniques. The basic thrust of all of 
the methods is to identify models for the underlying processes and 
then to use standard statistical procedures based on maximum 
likelihood to estimate parameters and test hypotheses. In many 
cases, the models express the .original unobserved series as 
solutions to stochastic differential equations driven by white 
noise. This links the statistical approach to realistic physical 
models which have been used to describe the dynamic interactions 
of soil science parameters. The emphasis will be on signal 
extraction as opposed to the best linear unbiased criterion used 
by the Kriging method. ~ 

2. Signal Extraction 

A very versatile model can be developefl when it is suspected that 
some underlying phenomenon of interest satisfies a first or higher 
order differential equation. -The general form of the state-space 
model assumes that some unobserved underlying pxl vector signal of 
interest x(s) = (xj(s) ,... , x ( s » ' can only be observed through 
the qxl observation equation 

£(s) = M(s)x(s) + v(s) (1) 

for s=l,2,...,n where 2(s) = (y_i(s) > • • • »Zg(s)) ' denotes the 
observed vector at the spatial point s, Mfs) is a known qxp 
measurement matrix and v(s) is a qxl zero-mean vector noise 
process with qxq covariance matrix, cov(v(s)) = R. Although the 
signal process jc(s) is unobserved, it is assumed to satisfy the 

first-order difference•(differential) equation 
» 

x(s) = $ x( s _ 1 ) + w(s) (2) 

where « is a pxp transition matrix and w(s) = (w^(s),...,w_(s)) 
has zero-mean and covariance matrix Q. Equation (2) is called the 
state equation and describes the evolution of the state-vector 
3c(s) through space or time. The beginning value x(0) is assumed 
to have mean v_ and initial covariance T. The process x(s) can be 
stationary or non-stationary depending on the specification of the 
parameters $,Q,R,_p and E. 

The model in the above form is partially identified, but there is 
still the problem of estimating the parameters. This is usually 
accomplished using various nonlinear optimization techniques to 
maximize the likelihood function (see papers by Kohn & Ansley, 
Harvey, Jones and Shumway in Parzen volume (1984)). The model 
identification phase generally makes use of the Akaike 
Information Criterion, AIC, defined as (Akaike (1974)) 
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AIC = -2 log(Likelihood) + 2(no. of parameters) (3) 

where one chooses the model for which AIC is a minimum. 

A second important problem is that of extracting the signal x(s) 
from the data for given values of the parameters. The problems of 
developing the state-space model and estimating the state vector 
x(s) were solved in the landmark papers by Kalman (1960) and 
Kalman & Bucy (1961), who gave simple recursive 
solutions for the minimum mean square estimators; the procedure is 
now referred to as Kalman filtering and smoothing. Rather 
complete expositions of the basic principles involved can be found 
in Anderson & Moore (1979) or Jazwinski (1970). The advantage of 
the recursions is purely computational, since the ordinary linear 
minimum mean square estimator for x(s) involves inverting npxnp or 
nqxnq matrices whereas the Kalman filter-smoother procedure 
involves inverting n pxp or qxq matrices. 

Before turning to an example, it is useful to relate the model 
given above to the one used in Kriging. The ordinary Kriging 
model writes the univariate (p=q=l) version of equation (1) 
without the noise term, say as 

y(s) = x(s), 

where _x(s) is assumed to be stationary with constant mean value y 
(Universal Kriging assumes a general mean J3'^(s) where (3 and ̂ (s) 
are qxl vectors) and covariance function cov(x(s^),x(s2)) = 
CX(S]^-S2). The Kriging estimator at S = S Q is the linear unbiased 
estimator for y(sß) which has minimum variance. The form of the 
covariance is specified on a-priori grounds from a reasonable 
class of covariance functions using the variogram. 

Yx(m) = -| E(x(s-hn) - x(s))2 (4) 

= Cx(0) - Cx(m) 

as a guideline. The main differences between Kriging and Kalman 
filtering using the state-space model are as follows: 

1. Computational: Kriging requires inverting the (n+l)x(n+l) 
augmented covariance matrix. For p=q=l, Kalman filtering 
requires no matrix inversions. 

2. Modelling: Kriging chooses from a class of stationary 
covariance functions. The state-space model specifies the 
first order model (2) and may be non-stationary. 

3. Estimation: Kriging uses ad-hoc analysis of the variogram and 
noiseless prediction. The state-space procedure uses maximum 
likelihood estimation of the parameters and signal extraction 
under noise. 
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It should be noted that the signal extraction approach for the 
stationary signal plus noise model 

y.(s) = x(s) + v(s), (5) 

where all vectors are pxl, originated in the work of Kolmogoruv 
(1941) and Wiener (1949) who showed, using the spectral approach, 
that the optimal minimum mean square solution could be reduced to 
inverting pxp spectral matrices. This requires that one know the 
form of the spectra for the noise and signal processes. It would 
seem to be a promising direction in which to move if the series 
are multidimensional, that is, they depend on the vector parameter 
s = (si .So, • • • ,Sj) ' so that the Kalman recursions will not work. 
If the observations are regularly observed over a reasonably large 
grid, the 'spectral approximations are'valid and a considerable 
computational simplification results over direct brute force 
Kriging or CoKriging. We do not give details here but the reader 
is referred, for example, to Priestley (19f?l). An example in the 
one-dimensional case where the signal and noise spectra are 
estimated by maximum likelihood is given in Shumway (1984). 

As an example, of the state-spaee methodology, consider the data 
in Figure 1 taken from the study done by Morkoc et al. (1984) 
giving the mean values (over five transects) of yield and water 
and salt content at intervals of one five transects) of yield and 
water and salt content at intervals of one meter. The sprinkling 
system was arranged to distribute more salt (and more water) along 
the right-hand "side of the transect. Morkoc et al. (1984) 
consider jointly modelling salt and water content using a p=q=2 
dimensional version of (1) and (2). 

In order to illustrate the versatility of the state-space 
approach, we consider a simple smoothing model for a single series 
which is related to spline smoothing (cf. Erh (1972), Kimball 
(1974)), Wecker & Ansley (1983) and has been' proposed in another 
context by Kitagawa (1981) and Kitagawa & Gersch (1984). Assume 
for a single one of the series that we observe, say 

y(s) = x(s) + v(s) (6) 

2 
where v(s) has variance CTV, which can be interpreted as 
observation noise. The signal x(s) is assumed to satisfy a 

second-order difference (differential) equation of the form 

V2x(s) = wj(s) (7) 

where 

Vx(s) = x(s) - x(s-l) (8) 

so that 

V2x(s) = V(Vx(s)) = x(s) - 2x(s-l) + x(s-2) 
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Fig . 1 Average over f ive t r a n s e c t s of y i e l d and a s soc ia ted 
water and s a l t content (1 p t = 1 m). (Morkoc e t a l . (1984)) 

39 



Now, by defining the the state vector as ̂ (s) = (x(s), x(s-l))', 
we may write the above model in the state-space form 

y(s) = (1, 0)(Js
(!j)J + v(S) (9) 

with 

/ x(s) | ,2 -1 wx(s-l) , /Wj(s) , 
lx(s-l) J ll 0^x(s-2) > l 0 ' (10) 

The identification allows us to use the maximum likelihood 

2 2 procedure for estimating the parameters ay and c^ ($ is known in 
this case) and the mean of x(0). 

The EM algorithm of Dempster et al. (1978) as developed in Shumway 
& Stoffer (1982) was used to estimate the parameters and gave the 
results shown in Table 1 below: 

Table i: Signal Extraction Parameters 
for Soy Data 

Yield 

Water 

Salt 

Observation 
2 

a 
v 

.109 

2.550 

.102 

Model 
2 a 
w 

.070 

.079 

.021 

Std. Dev. of 

Predicted Value 

.19 

.62 

, .16 

The values for the water content appear to have the largest 
observation error which leads to a larger standard error for the 
predicted value. 

The smoothed values as computed by the Kalman filtering-smoothing 
recursions (see Jazwinski (1970)) are shown in Figure 2, and they 
seem to do an excellent job of capturing the non-stationary trend 
behavior without smoothing out critical components. 

The special form considered here is obviously not the only model 
which can be treated under the state-space framework. One might 
want to add another component into the measurement equation which 
satisfies a first-order difference equation of the autoregressive 
moving average type (see Box and Jenkins (1970) or Harvey (1981)). 
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Fig . 2 S ignals ex t rac ted from Figure 1 us ing the s t a t e - space 
model in equat ions (9) and (10) with parameters as spec i f ied 
in Table 1. 
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3. Spectral Analysis of Variance, Lagged Regression 

The fact that data are autocorrelated over space does not preclude 
one from using analysis of variance or regression techniques as 
long as a collection of independent spatial series, say, along 
independent transects, can be identified. Then, a collection of 
transects with, say, characteristic A, can be compared with a 
collection of transects with characteristic B, keeping in mind the 
fact that observations made within a given transect are still 
highly autocorrelated. It is, well known that when the spatial 
series are stationary, the notion of variance is expressed in 
terms of the separate kinds of cyclical variation found in the 
series. The variance measured as "a function of spatial 
oscillations called frequencies is called the power spectrum. 
Nielsen et al. (1983) have identified furrows, tractor compaction 
and pre-plant irrigation as possible causes for cyclic variation 
in soil and have predicted the behavior to be expected in the 
power spectrum from such causes. •" 

In order to illustrate the possibilities along these lines, we 
consider some rather ancient and well-worn data on wheat yields 
due to Mercer & Hall (1911). ̂ . 

The data, shown as a rough contour plot in Figure 3, are grain 
yields in lbs. per plot, recorded over an acre which was divided 
into 500(20x25) plots 2.5m wide and 3.3m long (length corresponded 
to the East-West direction). The strongest characteristic of the 
observed yields is an apparent periodicity running down columns. 
The mean row profile averaged over the 25 columns is shown in 
Figure 1 and also exhibits this cyclical behavior. One way to 
analyze this periodic behavior over columns is to calculate the 
two dimensional wavenumber spectrum as in Ripley (1981) or 
McBratney & Webster (1981) who attributed the periodicity to an 
earlier plowing of the area into ridges and furrows. 

t 

We discuss here an approach that seems to be particularly 
appropriate for transect samples or for two-dimensional fields 
where the phenomenon of interest seems to be occurring parallel to 
or orthogonal to rows. Kunsch (1982) has compensated for this 
tendency in the Mercer-Hall data by adjusting all values for the 
column means. To be specific, assume that the s yield in the 
j row or transect satisfies the model 

y j(s) = g(s) +Vj(s) (11) 

j=l,...,N, s=0,...,n-l, where g(s) is an unknown fixed mean signal 
and v^(s) j=l,...,N are autocorrelated but mutually independent 
identically distributed stationary processes. 

The natural test to make in this case (cf. Shumway (1970), (1971)) 
is of the hypothesis that the mean signal g(s) is absent and this 
should be done on a frequency dependent (cycle by cycle) basis. 
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F ig . 3 Two dimensional p l o t of Mercer-Hall (1911) wheat da ta and 
column means. Yield in l b s . over 1 acre d ivided i n t o 20 x 25 = 
500 p l o t s (3.3m x 2.5m). 
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The resulting spectral analysis of variance approach is 
completely analogous to what is done in the ordinary case except 
that the observed series is replaced by the transformed series 

Y (k) = n" 1 / 2 nz y (s) exp{-iAks}, (12) 
J s=0 J 

where \ = 2irkn-1, k=0,1,... ,n-l are the possible periodic 
components in the data. The transformation (12) is the discrete 
version of the usual Fourier transform and can be computed rather 
quickly by various algorithms (cf. Cooley & Tukey (1965), 
Bloomfield (1976)). The advantage is that for stationary process, 
the transformed values are approximately uncorrelated for 
different k for n reasonably large. In addition, the variance of 
the transformed error v^(s) is approximately the power spectrum at 
frequency A^. 

We can illustrate the procedure for the special model given in 
equation (11) by specifying the spectral analysis of variance in a 
form analogous to that usually encountered in conventional 
experiments (see Shumway (1970), (1971), (1984), Brillinger 
(1979), (1983)). The F-test tor detecting the signal g(s) is the 
ratio of two mean square power components and can be plotted as a 
function of frequency. 

The series observed in Figure 3 are somewhat short for the 
asymptotics of the spectral approximations but periodicity is 
strong enough-so that this data has been useful in the past for 
illustrating spectral methods. The spectral power components are 
more easily interpreted if they are plotted as a function of 
frequency and we do this in Figure 4. The frequency scale is in 
columns per cycle, and we note that there is an impressive 
component in the neighborhood of .31 cycles per column, 
corresponding to a period of 1/.31 = 3.2 columns or 8ra. As -
mentioned before, this could be due to an earlier ridge and furrow 
plowing. 

The example given above shows only a very special kind of analysis 
of variance situation. The procedure can be extended to testing 
equality of treatment means under various design configurations. 
A number of possible designs are covered in Brillinger (1979) 
Extensions to the vector and multidimensional cases are discussed 
in Shumway (1982) who also gives an example from seismology 
involving discriminating between waveforms generated by 
earthquakes and nuclear explosions. 

Another question of interest in some soil science applications 
involves investigating possible lagged regressions which assume 
that the output series at transect j, say yj(a), is related to a 
collection of p input series X4j(t),...,XJpXt) through 
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p 
y. (s) = E x (s)*3m(s) + v 1 ( s ) (13) 

m=l 

The notation * denotes the convolution, i.e., 

Im m im m 
-> U—— °° 

and the noise processes are assumed to be stationary processes 
with identical autocorrelations. The problems of interest relate 
to (1) determining which of the inputs are significant 
contributors, and (2) estimating the^form of the 
impulse-response functions, ßm(s). 

For example, Mechergui (1984) investigated the logarithm of 
hydraulic conductivity yj(s) as a function of the silt, sand and 
clay contents x^j(s), x.2(s) and x^Cs) oyer rows. As another 
example, Figure 5 shows three possible environmental series as 
inputs and cardiovascular mortality as, a possible output. The 
series, measured dai-ly for j=l,...,14 winters in London, are taken 
from Shumway et al. (1983). 

The objectives in both of the above applications would be to 
determine what kind of smoothing filters are necessary to connect 
the inputs to the output. The basic regression computations for 
the stationary case can be found in Brillinger (1974) (see also 
Shumway (1970), (1983) for the case where series are repeated). 

In order to identify which inputs are significant contributors to 
the output, series under any given model of the form (13), one can 
look at an analog of multiple correlation defined over frequency. 
The resulting multiple coherence function and a spectral analysis 
of variance procedure was used in Shumway et al. (1982) to arrive 
at a final model which identified the sulfur dioxide (S02) and 
temperature series as the primary contributors to cardiovascular 
mortality; the strongest coherence was at an approximate period of 
ten days. 

The structural relation which is producing a significant coherence 
can sometimes be inferred from the estimated impulse-response 
functions, shown here in Figure 6. In this case, it can be seen 
that pollution acts positively and instantaneously whereas 
mortality has a negative effect at a lag of two days. This means 
that a decrease in temperature produces an additional number of 
cardiovascular deaths two days later. 

The regression approach can also be followed without transforming 
to the frequency or wavenumber domain. This makes the 
computations extremely involved, and one must either assume a form 
for the autocorrelation as in CoKriging or collect spatial series 
from many transects. An alternative which may be acceptable in 
some contexts is to assume that the error terms V J ( S ) are not 
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Fig. 5 Filtered, Detrended Cardiovascular Mortality and Associated 
S02 and Temperature Levels for the Winter of 1962. 
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autocorrelated and use ordinary least squares. 

4. Stochastic Differential Equations 

In Section 2., it was noted that a common way of incorporating 
realistic physical assumptions into the signal extraction 
methodology is to assume that the underlying signal satisfies some 
stochastic differential equation. In that case, the assumption 
served as an alternative to assuming a parametric form for the 
autocorrelation as would be done in Kriging. 

A number of considerations related to using stochastic and 
r deterministic differential equations in the soil sciences were 
ij given in Nielsen et al. (1983). The use of the partial 
Ç differential equation 

! 2 
Sc _. 3 c Sc /,r. 

I !t = DTT-v!s- (15) 

to model solute movement in soils where c(s,t) is the solute 
concentration at time t for vertical depth s (D is the apparent 
diffusion coefficient, v is the pore water velocity) has been 
explored in Amoozegar et al. (1982), Nielsen et al. (1982), and 
Biggar & Nielsen (1976). The modelling of hydraulic conductivity 
as a function of space and time using Boussinesq's equation gives 
a similar second-order differential equation (cf. Gelhar (1974), 
Gutjahr et al. (1978) and Mechergui (1984)). 

The approximation of such equations as (15) with finite difference 
equations has also been suggested by Wierenga et al. (1982) who 
were modelling heat transfer in a one-dimensional isotropic 
medium. This suggestion combined with the theoretical work of 
Gelhar (1974) and Gutjahr (1978) on stochastic differential 
equations sets the stage for models expressed as partial 
difference equations driven by white noise. Larimore (1977) has 
reviewed the early work of Whittle (1953), (1954), (1963) and 
developed computational techniques for modelling and fitting 
stochastic difference equations to data generated by stationary 

; random fields. Applications of fitting techniques for random 
|'; field data can also be found in Besag (1974), Besag & Moran 
;' (1975). Runsch (1982) fits Markovian models to a number of 
I'i agricultural field trial experiments including the Mercer-Hall 
" data considered earlier in this paper. Cliff and Ord (1981) have 
'J given a description of the spatial Markovian model and have 
!, discussed the problem of fitting such models by maximum 
•"I likelihood. A disadvantage of such procedures which do not 

transform to the frequency domain is that, like Kriging, they are 
ij computationally intensive and involve inverting large matrices. 

;; As an example of a random field, Larimore (1977) gives the 
i perspective plot in Figure 7 which is a realization of a random 
;! field generated at spatial coordinates sj and S2 by an equation of 

the form 

L 
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Fig. 7 Realization of the random field generated by Equation (17) 
(from Larimore (1977)). 

x(si,s2) + a1[x(s1+l,s2) + x C s j - l ^ ) ] 

+ a2[x(s1,S2+l) + x(s1,s2-l)] 

+ a3[x(s2+l,s2+l) - x(sj-l,s2+l) - x(s]+l,s2-l) 

+ x(si-l,s2-l)] 

= w(s1,s2) f (16) 

which expresses the process in terms of adjacent values and 

w(si,s2), a white noise process with variance cr . The 
coefficients for this example were aj = .1, o^ = -.1, and â  = 
.0867. A compact notation is needed for equations of the above 
form and it is convenient to define 

D x(s,t) - x(s+r,t) (17) 

and 

D 2 x(s,t) = x(s,t+r) (18) 

so that (17) can be rewritten as 
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[l+o^ (D^D" 1 ) + a2(D2+D2
i) + a3(D1-D1

1)(D2-D~ )] X C S J . S J ) 

= w ( s i , s 2 ) (19) 

This model can be compared, for example, with a white noise model 
of the form 

x(s1(s2) = w(s1,s2) (20) 

or perhaps with an approximately isotropic model of the form 

(21) [1 + O ^ + D ^ - H ^ + D " 1 ) ] x(Sl,s2) = w(Sl,s2) 

One could also consider a simplification of the form 

[1 + ^(Dj+D" 1) + o2(D2+D~1)] x ( S l , s 2 ) = w ( S l , s 2 ) (22) 

which specifies different coefficients for different directions. 
Larimore (1977) considers estimating the parameters in these 
several kinds of models using maximum likelihood in the frequency 
domain and computes the Akaike information criterion AIC (see 
equation (3)) for each of them. A partial listing of his results 
is given in Table 2 below. 

Table 2 - Parametric models for random field in Figure 1 (taken 
from Larimore (1977)). 

Model 
eq. no. 

(20) 

(21) 

(22) 

(19)-True 

Full Model 

Shifts 

D1+D-1+D2+D;1 

VD"1 

v̂ 1 

V»!1 

v̂ 1 

(D1-D-1)(D2-D2
1) 

DJDJ,I,J-O,±I 

Coeff. 
est. 

.00735 

.10253 

-.09342 

.1046 

-.1045 

.0816 

Given in 
Larimore (1977) 

AIC 

12,564 

12,566 

12,486 

12,444 

12,452 
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It is clear, in this case, that the correct non-isotropic model 
would be chosen by AIC and that the coefficient estimators are 
quite close to the true values of aj = .1, 02 = -• 1 and otg = 
.0867. 

Many theoretical developments relating to estimation and testing 
hypotheses for multidimensional autoregressive random fields still 
need to be explored. For example, the estimation and smoothing 
problems cannot be solved easily when the data are irregularly 
observed over the grid since .the Kalman filtering and smoothing 
algorithm used in Section 2 is not available for the 
multidimensional case. Another area under development is the 
specification of hypotheses related to isotropy (see Solo (1984), 
for example). Alternative parameter specifications for the 
dependence structure as a function df distance such as the 
space-time autoregressive moving average STARMA models of Pfeifer 
and Deutsch (1980) may be of interest. 

5. Discussion 

The approach that one may decide to take in analyzing spatially 
correlated data depends mainly on (1) the theoretical models which 
are likely to be of use in describing the physical phenomena being 
studied; and (2) the sampling configurations over which the data 
are observed. 

Theoretical models may be relatively non-specific, for example, 
such as simply requiring that certain components be non-stationary 
or stationary. More often than not it seems that the phenomena of 
interest satisfy certain systems of differential equations and 
these assumptions can be incorporated into parametric models and 
smoothing procedures. The additive 'signal plus noise' approach 
seems to be useful for both stationary and non-stationary data. 
This pertains to the material in Section 2 and the first example 
of Section 3. For stationary series, the'input-output model of 
Section 3 may lead to a procedure for understanding the transfer 
mechanisms between various soil science parameters. By contrast, 
the Kriging procedure uses an assumed autocorrelation structure to 
smooth the data using a noiseless model. 

The sampling procedure also puts restrictions on the kinds of 
methodology which can be applied to any given data set. For 
example, the state-space methodology in Section 2 would be limited 
practically to one-dimensional spatial series sampled along 
transects although there can be data points missing from the 
series. The stationary methods of Section 3 and the partial 
difference equation approach of Section 4 apply to the 
multidimensional case but require that data is equally spaced, 
either along a transect or over a grid. The stationary methods of 
Section 3 also require a reasonably large number of points in all 
directions and hence, are basically large sample techniques. By 
contrast, Kriging can be used when observations are sparse as well 
as irregularly observed in space or time. 
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Discussion 
K. Cassel: 

R. Shwmay : 

N. Safaya : 

J. Hendriakx: 

A. Warriak: 

R. Turner: 

R.H. Shurmuay: 

How do you decide if a data set is stationary or 
non-stationary? What different options exist 
for converting a non-stationary data set into a 
stationary data set? 

A plot of the original data will sometimes 
exhibit non-stationary behavior due to trends or 
changes in the variance of the series. The 
autocorrelation function may decay very slowly 
if there are non-stationary trends. The time-
varying power spetrum (cf. Priestly (1981)) may 
fluctuate if there are more subtle non-
stationarities present. The methods for adjust­
ing non-stationary data are (1) detrending using 
linear or non-linear regression, (2) differenc­
ing, (3) transformation (e.g., log), and (4) 
linear filtering (e.g., high-pass). 

How do you determine the size adequacy of the 
sampling grid or transect? 

What is the best kind of sampling design? 
Possibilities of interest are a grid with 
regular or random assignment of points and a 
grid with locations around it at smaller 
distances. 

With regard to necessary number of samples, 
could you distinguish between the problem of 
sample numbers for estimating a variogram and 
number of values for a given precision, given a 
variogram which is already determined? My own 
opinion is that, the second aspect is more 
easily addressed (cf. recent papers by Webster 
and colleagues) and the former is addressed 
primarily in a pragmatic fashion. 

Soil solutions move through soils at irrigation 
intervals in response to irregular precipitation 
events. Is there a time series technique that 
would allow interpretations of lysimeter 
solution concentrations and flows collected at 
irregular intervals? How does one make inter­
pretations of lysimeter data collected at 
regular intervals (e.g., monthly) when the 
solutions they collected actually were collected 
at irregular intervals? 

An adequate grid should cover a large enough 
area to capture the phenomenon of interest. The 
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size of the mesh should be such that no impor­
tant periodic variations or frequencies in the 
data are distorted or aliased by the sampling 
scheme. Again, it is important to match the 
sampling interval with the characteristic soil 
parameters of interest. Time domain methods 
require at least 30 points along a transect. 
Frequency domain techniques require at least 50 
point spaced uniformly along a transect or on a 
50x50 grid. 

»# 

I am opposed to random sampling of design points 
whether they are "located on a grid or not. For 
example, the•selection of design points deter­
mines the variance of kriging estimators and it 
makes sense to chgose these systematically to 
reduce the mean square error. Of . course, if 
nothing is known about the variability of the 
soil measurements over the region of interest, 
it may make sense «to construct several uniform 
grids or transects at different spacings. 

If one is willing to assume a form for the 
autocovariance or variogram, the configuration 
of observed data completely determines the mean 
square error of the predicted value at each 
point on the surface. The determination of a 
sampling scheme for estimating the variogram 
depends on the "pragmatic" considerations 
mentioned above plus the parametric restrictions 
which one is willing to assume for the variogram 
(e.g., isotropic, exponential decay, etc.). 

Time series methodology generally requires that 
observations be regularly spaced although some 
progress is being made on the irregular case 
using the state-space model (cf. Parzan (1984) 
and Sections 2 and 5 of my paper). 

R. Kaohanoski: Is the state-space model (Kalman filter) a model 
for a non-stationary dynamic series and not a 
stationary series? 

R. Shvmway: The state-space model can be either stationary 
or non-stationary depending on the structure of 
the transition matrix $D in equation (2) of my 
paper. The example in Section 2 is a non-
stationary model. A simple example of a sta­
tionary model would be to choose p=l and |$|<1, 
in (2), in which case the signal process is 
simple first-order autoregression with an 
exponentially decaying autocorrelation function. 



A number of examples of various stationary and 
non-stationary state-space models can be found 
in Harvey (1981). 

W. Jury : Do you see any way in which state-space analysis 
could be used in conjunction with a variogram 
analysis to help determine drift components 
which may be biasing the variogram. 

R. Shwmay: The example in Section (2) has a drift component 
which could be eliminated by using the residuals 
(observed minus predicted) to do the variogram 
analysis. 

C. Topp: 

R. Shwmay: 

A. Gutjahr: 

Noise or observation error and uncertainty arise 
from both the method of measurement and from the 
variability of the signal. What effect does the 
magnitude of measurement error have on the 
application of state-space or time series 
analysis vs. kriging? s 

The state-space model provides separately for 
estimating both the variance of the measurement 
error, R, in Equation (1) and the signal or 
model error, Q, in Equation (2). Values for 
these two components for some soil data are 
given in Table 1 of Section 2. 

Is there an order in 2 or 3 dimensions which 
could allow one to use "submatrices" in the 
Kalman Filter? 

R.H. Shumway: Unfortunately, there are no convenient Kalman 
recursions for more than one dimension. The 
answer in the higher dimensional case probably 
involves sampling over a regular grid and trans­
forming to the frequency domain (see the dis­
cussion below Equation (5) of my paper). 

D. Myers : The support of the samples and the support of 
the region for which an average is determined 
can be incorporated into the kriging equation. 
How are these incorporated into the state-space 
modelling? 

R. Shumuay: This can be done using the "measurement" matrix, 
M(s) , in the observation Equation (1) of my 
paper. For example, in Equation (a), one might 
choose M(s) = (1,1)' if the observation y(s) is 
really an average. 
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G. Holmoren: Does bootstrapping have any possible application 
to reducing the number of samples? 

R. Shwnway: Bootstrapping is a resampling method for estima­
ting the variance of an estimator. Its primary 
purpose would not be for reducing the sample 
size requirements. A discussion of the "boot­
strap" as well as the related "jacknife" and 
"cross validation" techniques is in Diaconis, 
P. and B. Efron (1983), Computer-Intensive 
Methods in Statistics, Scientific American. 
May, 116-130. 

D. Mullai Is there any statistical information that can be 
obtained from the imaginary part of the Fourier 
transform? 

R, Shumuay: The imaginary part of the transform is used to 
determine the phase, which gives information 
about the relative arrival times of different 
frequencies on a single record or about the lag 
relations olf' different frequencies when there 
are' two records. A good discussion of some of 
these questions can be found in Bloomfield 
(1976) or in Priestley (1981). 



Spatial variability of soil properties 

Goro Uehara, B. B. Trangmar and R. S. Yost, Department of Agronomy 
and Soil Science, University of Hawaii, Honolulu, Hawaii, USA. 

Introduction 

One aim of soil science is to establish the cause and effect 
relationship between soil properties and soil behavior so that 
users of soil resources can predict the performance and behavior 
of soils. The prediction is made by matching the requirements of 
a specific use to the characteristics of the soil. To^ectify 
mismatches in spatially variable soils, it is necessary to know 
the number, magnitude, and whereabouts of the mismatches. It is 
the inability to deal with spatial variability that prevents soil 
users from accurately matching soil use requirements to soil 
characteristics and, therefore, from predicting soil performance 
and behavior. 

The purpose of this paper is to illustrate how geostatistics can 
be used to deal with soil spatial variability. 

Sources of data 

Four sets of data were used to illustrate soil spatial 
variability. Information about the data sets is summarized in 
Table 1. The areal extent of the four study areas ranged from 2.6 
million hectares in Rwanda, Africa, to an experimental plot of 
less than one-tenth hectare in area in Sitiung, West Sumatra. The 
closest sampling distance was nearly four kilometers in Rwanda and 
about one meter apart in the experimental plot. Sampling in the 
small experimental plot was designed for geostatistical analysis, 
but in the three other locations sampling was made at a time when 
geostatistics was still unknown to the individuals collecting the 
samples. It is likely that many similar data sets exist today in 
files of soil survey institutes around the world. They represent 
a rich source of information that can be used to study soil 
spatial variability. 

Data analyses 

The four data sets described in Table 1 are analyzed separately to 
illustrate how scale, sampling distance, sampling direction, and 
kinds of soil affect the range, sill, and nugget variance of the 
semi-variogram, and therefore the kriged results. 
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Table 1. Sampling location and characteristics of the data sets 

Sampling 
location 

Rwanda, 
Africa 

Kenana/ 
Sudan 

Sitiung, 
West Sumatra 

Sitiung, 
West Sumatra 

Size of 
study 
area 
(hectares) 

2,633,800 

34,318 

106,650 

0.078 

Closest 
sampling 
distance 
(meters) 

3700 

* 

1000 

400 

1.0 . 

Sampling 
pattern 

random 

grid 

random 

grid 

Number of 
sampling 
sites 

119 

254 

88 

137 

Analysis of Rwanda data set 

Between 1979 and 1980, Peter Vander Zaag, a potato agronomist with 
the International Potato Center stationed in Rwanda, collected 
soil samples from 0-15 cm and 30-45 cm depths at intervals of 
several kilometers along the major highways of the country, as 
shown in Figure 1. His aim was to obtain an overall picture of 
the fertility of the country's soils. Fortunately, the sample 
location was clearly marked on a road map. 

Semi-variograms of soil pH, soil calcium, soluble silicon, and 
extractable ammonia nitrogen are shown in Figures 2-5. What is 
most striking about the semi-variograms is the»long range over 
which the soil properties are related. The results were 
surprising because Campbell (1978), for example, obtained a pure 
nugget effect for soil pH collected 10 m apart. Table 2 
summarizes the main features of the variograms for pH, 
exchangeable calcium (me/100g), effective cation exchange capacity 
(ECEC) (me/100g), extractable silica (ppm), and extractable 
ammonia nitrogen (ppm). The Rwanda data summarized in Table 2 
suggest that soil properties are spatially related over long 
distances. A more detailed account of the Rwanda data set is 
contained in a paper by Vander Zaag et al. (1981). 

Analysis of Kenana, Sudan data set 

When the result of the Rwanda data set was presented at the Fourth 
International Soil Classification Workshop in June 1981 in Kigali, 
Rwanda, a Sudanese soil scientist recommended that soil data 
collected to assess land for sugarcane production in Kenana, 
Sudan, be analyzed geostatistically. The data set consisted of 
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Pig. 1 Location of sampling sites. 
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auger samples collected from the 0-25 cm and 75-100 cm depths at 
254 locations on a one-kilometer by one-kilometer grid (Figure 6). 
At 18 of the 254 sampling locations, a pit was excavated next to 
the auger hole and sampled for complete soil characterization data 
in order to classify the soils. 

As indicated in the Soil Survey Report (Adam, 1976), exchangeable 
sodium percentage (ESP) was judged to be the soil property most 
likely to limit sugarcane performance in the Kenana area. Taking 
this cue, the ESP was examined in two ways. First, we wanted to 
know if there was structure in the variance of ESP, and second, we 
wanted to know if information about the spatial distribution of 
ESP could have been obtained with fewer samples. 

The semi-variogram (Figure 7) indicates structure in the variance 
but also suggests that considerable more information about the 
structure could have been obtained by collecting samples between 
zero and one-kilometer distance. 

In order to obtain an estimate of the nugget variance, the 
semivariance of the 18 pairs of adjacent auger and pit samples was 
calculated. Since the auger and pit samples were collected a few 
meters apart, the semivariance appears as the nugget variance in 
Figure 7. In Table 3, the exchangeable sodium percentages of 
adjacent auger and pit samples are compared to the kriged value 
for the same location. 

As a second exercise, the semi-variogram and kriged map of ESP 
were constructed using 100, 75, 55, and 47 percent of the data 
points. The purpose of this exercise was to ascertain the extent 
to which kriging would compensate for reduced sample size. 

The sample number was first reduced by deleting every third row of 
data points in the grid as shown in Figure 8. The semi-variogram 
constructed from 75 percent of the data is shown in Figure 9. 

The sample size was further reduced to 56 percent of the original 
by deleting every third row and column from the data set except 
those on the borders as shown in Figure 10. The semi-variogram 
for this data set is shown in Figure 11. 

The effect of reducing sampling intensity can be judged by 
comparing the map based on 100 percent of the measured data 
(Figure 12) against the kriged maps constructed from 254 (100 
percent), 192 (75 percent), and 143 (56 percent) of the data as 
shown in Figures 12, 13, 14, and 15. The estimation variance 
resulting from reducing sample size is summarized in Table 4. A 
more complete analysis of the data is presented by Trangmar et al. 
(1982). 

67 



( • • < • 1 1 • »-y 

! • • • • • i I i • \ 

I • • • • • t • • 

\ • • • • • • • • • 

\ • • • • • • • • • 

V %f • • • » 

\ I I • • • • I 

\ l • • • • • I 

/ i l l l i t 

\ I I - • I • I f • 

^S % I I I f t I • I 

j / \ I I I • • ^ I 1 

j * * * * • • f i l l ! 

_ / • I I I • • • • • • • • 

I • • • *r 

• • • • • • • f *_• 

Pig. 6 Location of soil sampling sites, Kenana 
Sugar Project. 
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Fig. 7 Semi-variogram for ESP determined from 100% (254) of 
samples. 
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Table 3. Comparison of exchangeable sodium percentage (0-25 cm 
soil depth) from adjacent pit and auger samples with kriged 
values for the same sites. Pit and auger values derived from 
Table 8, Adam 1976. 

Sample site Pit Auger Kriged 
Estimation 
variance 

KSPA 01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 

19.4 
14 
14.8 

9 
12 
7.2 
6.2 

11.2 
1 
2 
6.4 

14.8 
11.6 
12.8 
9.6 

10.4 
13 
10 

13 
11 
8 

12 
6 
7 
7 
8 

24 
4 
6 
8 

11 
13 
10 

9 
11 
10 

11.0 
10.7 
8.8 
6.9 

11.1 
10.4 
6.1 
9.7 

13.5 
4.3 
8.1 
8.6 
9.9 

10.7 
10.5 
10.6 
10.2 
13.6 

11.4 
16.6 
12.3 
12.1 
13.2 
11.9 
11.8 
11.4 
13.8 
f2.3 
11.4 
12.4 
12.3 
11. 
11. 
11. 
13. 
12.5 

Table 4. Effect of reducing sample size on the semi-variogram 
and mean estimation variance of kriged values. 

Percent of 
samples used 
in analysis 
_(n = 254) 

Semi-variogram 

Intercept Sill 
Mean estimation 
variance 

100 

75 

56 

6.15 

6.15 

6.15 

21.6 

22.1 

24.0 

10.5 

12.2 

13.1 
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Pig. 8 Location of sampling sites for calculations 
based on 75% of data collected. 
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Fig . 9 Semi-variogram for ESP determined from 75% (192) of 
samples. • 
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Fig. 10 Location of sampling sites for calculations 
based on 56% of data collected. 
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Fig. 11 Semi-variogram for ESP determined from 56% (143) of 
samples. 
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Fig . 12 Map of ESP determined from 254 sample va lues , 
Kenana Sugar P ro j ec t . 
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Fig. 13 Map of kriged ESP values determined from 
100% (254) of samples. 



Fig. 14 Map of kriged ESP values determined from 
75% (192) of samples. 

Fig. 15 Map of kriged ESP values determined from 56% 
(143) of samples. 
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Analysis of the Sitiung data set 

Sitiung serves as a settlement area for an Indonesian 
transmigration program. Several thousand transmigrant families 
from Java have settled in a 100,000 hectare area along the 
Batanghari River. The soils of the region range in quality from 
moderately fertile Inceptisols on the subrecent terraces of the 
river to the highly leached and impoverished Oxisols and Ultisols 
of the dissected peneplain to the southwest. Mean annual rainfall 
is 2800 mm and mean annual air temperature is 26 Celcius. 

In preparation for the arrival of th§ ̂ transmigrants, complete soil 
characterization data were collected from 88 locations in the 
100,000 hectare area. A map of the area showing sampling 
locations is shown in Figure 16, and a* summary of statistics of 
soil properties subjected to geostatistical analysis is given in 
Table 5. 

The semi-variograms for sand content and pH illustrate the degree 
to which soil properties in the Sitiung "area are spatially related 
(Figures 17 and 18). In order to display the spatial variability 
of soil properties on a map, each property was kriged for 268 
locations as shown in Figure 19. 

Since soil phosphorus levels were low in this area, the Indonesian 
scientists had measured NaHCC>3 extractable phosphorus in 52 
locations in the area. They had also measured phosphorus 
extracted by hydrochloric acid as a parameter for soil 
classification. In order to assess the spatial distribution of 
phosphorus deficient soils, a map of the NaHC03 extractable 
phosphorus was prepared. An attempt was made to increase the 
accuracy of the map by co-kriging. The cross- and 
auto-semi var iogr am for phosphorus extracted by NaHCC>3 and HCl is 
shown in Figure 20. The'improvement in the map of the NaHCC>3 
extractable phospho.rus is shown in Figure 21 *by displaying the 
reduction in the estimation variance. Co-kriging resulted in the 
greatest reduction in the estimation variance where the sampling 
density of NaHCC>3 extractable phosphorus was lowest. 

This data set also enabled anisotropic kriging to be computed for 
sand content. The semi-variograms for sand computed in four 
directions are shown in Figure 22. Anisotropic kriging resulted 
in marked reduction in the estimation variance as shown in Figure 
23. Details of the co- and anisotropic kriging are presented in a 
dissertation submitted to the Graduate Division of the University 
of Hawaii (Trangmar, 1984). 

Analysis of data from a small experimental plot in Sitiung 

The spatial variability of soil quality in a typical farm in 
Sitiung is marked by differences in plant growth that range from 
bare spots to lush green strips. The bare spots are sterile 
subsoil exposed by the bulldozer, and the green strips correspond 
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Table 5. Mean, 
analy 

range, variance and number of samples for soil properties 
ïed using geostatistics, Sitiung region. 

S o i l p r o p e r t y 

Sand (%) 

S i l t (%) 

C l a y (%) 

PH 

O r g a n i c C (%) 

T o t a l N (%) 

HC1-P (ppm) 

NaHC03-P 
(ppm) 

Exch . c a t i o n s 
(meq /100g) 

Ca 

Mg 

K 

Sum o f ' c a t i o n s 
(meq/100g) 

Exch .A l 
(meq /100g) 

ECEC 
(meq/100g) 

Al s a t n . (%) 

Cu (ppm) 

Zn (ppm) 

Lime r e q . 
( t o n n e s / h a ) 

Depth 
(cm) 

0 -15 
15 -45 

0 -15 
15 -45 

0 -15 
15 -45 

0 -15 
15 -45 

0 -15 
15 -45 

0 -15 
15 -45 

0 -15 
15 -45 

0 -15 
15-45 

0 -15 
15 -45 

0-15-
. 15 -45 

0 -15 
15 -45 

0 -15 
15-45 

0 -15 
15 -45 

0-T5, 
15-56 

0 -15 
15-45 

0 -15 
15 -45 

0 -15 
15 -45 

0 -15 

Mean a 

16 
14 

26 
23 

58 
64 

4 . 5 
4 . 7 

3 . 14 
1 .29 

0 . 2 5 
0 . 13 

Î 07 
67 

' 8 
2 

0 . 6 
0 . 3 

0 . 3 
0 . 2 

0 . 2 
0 .1 

• 1 .3 
0 . 8 

3 . 6 
3 . 3 

5.1 
4 . 3 

73 
78 

3 
3 

5 
5 

4 . 0 

Range 

0 -59 
0 -64 

4 -69 
„ 2 -67 

17 -90 
3 2 - 9 0 -

3 . 7 - 6 . 0 
4 . 0 - 6 . 3 . 

0 . 3 7 - 2 0 . 4 3 " 
0 . 3 7 - 2 1 . 8 9 

0 . 0 7 - 1 . 2 0 
0 . 0 4 - 1 . 2 4 ^ 

4-391 
o 6 -335 

2 -33 
' 0 -8 

0 . 1 - 2 3 . 0 
0 . 1 - 8 . 8 

0 . 1 - 3 . 1 
0 . 1 - 1 . 9 

" 0 . 0 - 1 . 2 
0 . 1 - 0 . 7 

0 . 3 - 2 7 . 4 
0 . 3 - 1 0 . 6 

0 - 9 . 3 
0 - 9 . 9 

0 . 8 - 2 7 . 4 
0 . 6 - 1 1 . 0 

0 -94 
0 -96 

1-8 
1-8 

1-55 
0 -30 

0 - 1 0 . 4 

V a r i a n c e 

2 1 3 . 9 
1 57 . 8 

2 1 3 . 5 
181 .1 

2 01 . 4 
1 49 . 5 

0 . 19 
0 . 1 5 

2 .60 
0 . 39 

0 .01 
0 .01 

8 6 4 5 . 8 
5 018 . 6 

3 4 . 6 
5 . 3 

2 . 16 
0 . 20 

0 . 12 
0 . 03 

0 . 02 
0 .01 

2 . 17 
, 0 . 3 7 

3 . 43 
3 . 3 4 

6 . 5 0 
5 . 08 

5 0 4 . 2 
3 3 2 . 5 

4 . 0 4 
3 . 78 

4 7 . 9 
5 5 . 3 

4 . 3 4 

Number of 
s amp l e s 

108 
109 

109 
109 

109 
109 

109 
109 

109 
109 

107 
107 

107 
107 

52 
44 

109 
108 

109 
108 

109 
108 

109 
108 

99 
99 

99 
98 

99 
98 

56 
54 

56 
54 

99 

Means and variances for organic C, N, HC1-P, NaHC03-P, exch. Ca, Mg, 
sum of cations, ECEC, Cu and Zn were determined on log transformed 
values and re-expressed in terms of the original data using equations 
of Haan (1977). 
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to the ash lines of burnt trees. This variability created during 
the land clearing operation and subsequent burning presents 
serious problems for the farmer and researcher. In farmers' 
fields, the bare spots are most prone to erosion. Bare spots 
produce nothing and therefore are neglected. Erosion feeds on 
neglect and the land is eventually abandoned. The researcher 
needs variability, but wants a field with minimum natural 
variability so that the effects of the treatment variable will be 
clearly expressed. In Sitiung the range of natural soil 
variability is almost always as large as the imposed treatment 
range. The aluminum saturation, for example, ranges from zero to 
90 percent. This is the range a researcher would impose in a 
liming experiment to assess the effect of aluminum toxicity on 
crop performance. 

To assess the short range variability in a small plot, sampling 
was conducted on a 28x28 meter plot in the manner indicated in 
Figure 24. A picture of the visible kinds of variability 
encountered in the plot is shown in Figure 25. ' 

High soil acidity and the resulting release of toxic aluminum 
severely constrains crop performance in Sitiung. Isotropic 
semivariograms for aluminum saturation and soil pH are shown in 
Figure 26. A three dimensional diagram of aluminum saturation for 
the plot is shown in Figure 27. The effect of aluminum toxicity 
is reflected in grain yield of rice as shown in Figure 28. 
Semi-variograms of plant height at 60 days and grain yield (Figure 
29) show that the range of spatial dependence for crop parameters 
are longer than for soil properties that are thought to affect 
crop performance. 

Table 6 summarizes the significance of selected soil properties on 
crop parameters, and Table 7 shows the effect of various terrain 
units on crop performance. These results show that natural soil 
variability can be exploited to answer agronomic questions. 

Summary and conclusion 

Many commonly measured soil properties are spatially related for 
long distances. The same property measured a meter apart or one 
kilometer apart shows structure in the variance but shows 
different ranges of spatial dependence for different scales. It 
is likely that different kinds of heterogeneity are sampled as the 
sampling scale is varied. Different soil forming factors 
operating simultaneously at a point with different degrees of 
intensity over differing scales may be the cause of the 
scale-dependent spatial variability. 

Geostatistics is a useful tool to study soil genesis and can also 
be used to develop special purpose maps for specific soil 
interpretation needs. For example, a map showing the spatial 
distribution of soil aluminum can be converted into a map showing 
the lime requirement of an area. 
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Pig. 27 Three dimensional diagram of Al saturation (%) block 
kriged over lm2 cells, 0-20 cm depth, soil variability trial. 
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Fig. 28 Three dimensional diagram of rice grain yield (g/m2) 
block kriged over lm2 cells, soil variability trial. 
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Table 6. Coefficients of correlation (r)a of soil chemical 
properties with plant height and yield components of upland rice 
soil variability trial. 

Plant height Stover dry Grain dry 
Soil property at 60 days (cm) weight (g/m2) weight (g/m2) 

pH 

Organic C (%) 

Total N (%) 

NaHC03-P (ppm) 

Exch. cations 
(meq/100g) 

Ca 

Mg 

K 

Exch. Al 
(meq/100g) 

Al satn. (%) 

Cu (ppm) 

Zn (ppm) 

0.51 

-0.07ns 

0.09ns 

0.06ns 

0.56 

0.52 , 

0.41 

-0.55 

.-0.56 

0.07ns 

0.42 

0.44 

" -0.02ns 

0.-1 T n s 

0.11ns 

** 

0.55 

0.45 " 

° 0.38 

-0.47 

-0.51 

0.09ns 

0.34 

0.38 

0.02ns 

0.1 4 n s 

0.11ns 

0.49 

0.40 

0.46 

-0.41 

-0.41 

0.1 2 n s 

0.33 

a. All r values significant at P < 0.01 unles^ otherwise 
indicated. 

ns = nonsignificant at P = 0.05. 

Spatial variability of soil properties affect soil performance as 
demonstrated by Warwick and Gardner (1983). A uniform application 
of soil amendment in a spatially variable soil results in over 
application in some parts of the field and under application in 
others. If the range of soil variability is much larger than the 
means employed to apply the amendment, it may be possible to vary 
the rate according to needs. 
Finally, spatial variability in soil properties that restrict soil 
use for dwellings, septic tank adsorption fields, small 
reservoirs, sewage lagoons, and so forth can be mapped so that 
marginal zones in a spatially variable field can be avoided. 
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Table 7. Mean comparisons3 of plant height/ stover and grain 
yield of upland rice among terrain units, soil variability trial. 

Plant height Stover dry Grain dry 
Terrain unit at 60 days (cm) weight (g/m2) weight (g/m2) 

Burn sites 92.5a 328.3a 227.1a 
(n=24) 

Surrounding 78.5b 233.8b 166.5b 
soil (n=74) 

Exposed 71.2b 192.7b 146.0b 
subsoil (n=23) 

Means within a column followed by the same letter are not 
significantly different at p = 0.05 according to Student's 
t test. 
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Discussion 

M. Nash: How did you take the average distance? 

G. Uehara: If by average distances you mean lags, they are 
selected to provide an adequate number of pairs 
of observation to compute a reliable semivari-
ance. Large average distances give large 
numbers of pairs but few lags. Shorter lags 
give fewer pairs. In samples collected in a 
grid, the lag is generally the distance between 
the closest pair. The printout should include 
the number of pairs for each instance so that 
the reliability of each semivariance correspond­
ing to each lag can be judged. 

I. Murarka: For any of four samplings that you described, 
did you make a prediction for a spatial point 
based on your kriging results and then go into 
the field and observe the value? How did the 
predicted (calculated) value compare with the 
measurement(s)? 

G. Uehara: It is probably simpler and cheaper to validate 
your results by jack-knifing. This procedure 

I simply involves deleting an observed value from 
the analysis repeated for each observed value. 

Remember that the kriging variance gives you a 
picture of the reliability of the predicted 
value. 

P. Germann; Have you moved the jack-knifing across the field 
in order to get a "kriging variance"? 

G. Uehara: Jack-knifing generally refers to the procedure 
of deleting one observation at a time. However, 
if one wishes, one can delete rows, columns or 
cluster of points to test the degree to which 
the deleted information can be recovered by 
kriging. 

K. Lang : 

G. Uehara: 

Given several hundred acres of regraded soil 
data collected on a 300 ft. grid basis, we wish 
to justify a reduction in the sampling intensity 
by using the jack-knife method. Should sample 
points be eliminated on a row basis or on an 
alternate sample point basis? 

The rule of thumb is to maintain a uniform 
density of observations over the area and to 
preserve sufficient number of closely spaced 
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observations to construct a useful semivario-
gram. My response to the previous question 
applies here. 

D. Clay : How were the semivariance models fit, and were 
the models evaluated statistically? 

G. Uehara: The selection of a model to fit the semivario­
gram is somewhat subjective. However, the slope 
and intercept of a linear model, for example, 
can be objectively determined by statistical 
means. Remember however, that each point on the 
semivariogram carries^different weights because 
they are calculated from different number of 
pairs. The list of acceptable semivariogram 
models can be obtained £rom the literature. 

B. Luxtnoove : Have the analyses for Rwanda helped potato 
production? 

G. uehara: Not directly. Geostatistics helped the potato 
agronomist obtain a more accurate picture of the 
soil fertility ̂ status of the soils of Rwanda. 
This helped the agronomist make better choices 
in his work and this in turn probably improved 
his capability to help growers increase potato 
production. 

A. Rue I Ian : "The soil has a morphology. If we wish to 
emphasize our effort in terms of fertility, we 
have to take the samples as a function of the 
morphology of soils, and we have to study crop 
production in relation to morphology. 

I think'if we have a good understanding of soil 
morphology we can take less and better samples 
and achieve better statistics. The variability 
of the soil is normal. The problem is to 
understand this variability. 

G. Uehara: It is not our intent to replace soil morphology 
with geostatistics. Class, grade and type of 
soil structure, color, consistency, horizon 
boundaries are important soil characteristics 
that cannot be analyzed geostatistically because 
they are qualities that cannot ,be expressed as 
continuous numerical values. This may be more a 
deficiency of soil morphology than a problem 
with geostatistics. 
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L.P. Wilding: Do you have any ideas or knowledge of how well 
the geostatistical kriged data sets can be 
extrapolated from one area of a given soil to 
the next area of like soil? Geostatistics is an 
interpolative tool but soil surveying is an 
extrapolative process? 

G. Ueh.gra: If we can demonstrate through geostatistics that 
similar kinds of spatial relations exist among 
similar named kinds of soils, regardless of 
where they occur, we will have solved one of the 
major soil science problems facing us today. 
This is a hypothesis that needs to be tested. 
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Stochastic models of fluid flow in 
heterogeneous media 

Leslie Smith, Department of Geological Sciences, University of 
British Columbia, Vancouver, Canada. 

Introduction 

Significant advances have been achieved in the past ten 
years in our understanding of how the spatial variability of 
porous media influences groundwater flow. This work has led to 
the development of stochastic simulation techniques. In this 
approach, input parameters in the groundwater flow equation are 
assumed to be random variables with *-an associated probability 
distribution at each point 'in the flow domain. The spatial 
dependence between neighboring values of the random variable is 
defined in terms of an autocorrelation function, or a related 
measure of the spatial continuity. Solution of the flow 
equation leads to probability distributions on the output 
variables such as hydraulic head that can be interpreted in 
terms of the uncertainty in model prediction. The objectives of 
this paper are to review some basic elements of fluid flow in 
heterogeneous media, and to discuss current research 
directions. 

The concepts discussed in this paper can be outlined by 
considering the cartoon shown in Figure 1. Assume the volume of 
water seeping beneath the embankment is to be estimated. 
Because of the spatial variability in hydraulic conductivity, 
there will be a degree of uncertainty in the discharge 
prediction. Even if considerable data were available, the exact 
patterns of spatial variation could never be uncovered. With a 
conventional deterministic model, calibration and validation 
techniques would be used during model parameterization in an 
attempt to improve the reliability of the discharge estimate. 
Uncertainty in the model output is determined, at best. In a 
subjective manner. The stochastic approach has been introduced 
to quantify that uncertainty. Central issues in this approach 
can be expressed by the following set of questions: 

1. What are the patterns of the spatial variability in 
hydraulic conductivity, how is the spatial variability described 
in probabilistic terms, and what techniques are available to 
estimate model parameters? 
2. What mathematical techniques can be used to form estimates 
of the probability distributions on the seepage volume? 
3. Given a probabilistic model for the heterogeneity in 
hydraulic conductivity, what is the probabilistic structure of 

96 



the hydraulic potential and the fluid discharge? 
4. How does the design of a data measurement network influence 
the magnitude of the uncertainty in a model prediction? 
5. What is the probability that the system fails (ie., 
unacceptably high seepage), and what are the tradeoffs to be 
considered in a measurement program when assessing the 
probability of failure? 
Questions 1, 2 and 3 deal with the mechanics of stochastic 
analyses and the physics of fluid flow in heterogeneous media. 
Considerable progress has been achieved in this area, with the 
theoretical foundations now essentially in place. Less is known 
about the concepts expressed in questions 4 and 5, which 
integrate model analysis with decisions on data worth. These 
latter topics identify an active field of current research. In 
the sections that follow, each of these questions is discussed 
in sequence. 

Spatial Variability of Porous Media 

Stochastic simulations of seepage beneath the embankment 
shown in Figure 1 would require that a number of assumptions be 
made in order to obtain a workable problem. The variations in 
hydraulic conductivity at the site are assumed to represent a 
realization of a stochastic process which is statistically 
homogeneous. Statistical homogeneity requires that hydraulic 
conductivity have the same mean and variance at every point and 
that the autocorrelation between hydraulic conductivities at any 
two points depend only on the vector separating those points and 
not their absolute position. Field data indicate that hydraulic 
conductivity can be represented by a lognormal probability 
distribution. The standard deviation in log hydraulic 
conductivity (base 10) estimated for data sets from a variety of 
geologic media ranges in value from 0.10 in homogeneous systems 
to 1.50 in very heterogeneous media (see an early review by 
Freeze, 1975). The integral scale, defined mathematically as 
the area beneath the autocorrelation function, is commonly used 
as a measure of the average distance over which hydraulic 
conductivity is correlated. Correlation lengths for hydraulic 
conductivity vary with the scale of the analysis. Horizontal 
correlations on the order of 1 to 10 m have been observed in 
samples distributed over distances of tens to a few hundred 
meters. In large-scale regional aquifers, correlation distances 
can be as large as 10 or 20 km (Hoeksema and Kitanidis, 1984). 
Layered heterogeneities on a scale similar to that of the flow 
domain would, if present, be identified as distinct units 
described by their own set of statistical parameters. 

Several research groups are carrying out work to identify 
possible relationships between the nature of a depositional 
environment and the probabilistic models describing the 
resulting spatial variability in hydraulic conductivity. The 
hope here is that correlation structures and length scales can 
be identified which are typical of, for example, channel-fill 
sands, glacial outwash or alluvial fan deposits. As an example. 
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Figure 1. Schematic diagram differentiating between 
deterministic and stochastic solutions in predicting 
the seepage volume (Q_) beneath the embankment. 
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Figure 2. Spatial variations in hydraulic conductivity along 
horizontal and vertical line transects, Quadra Sands 
(from Smith, 1981). 
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consider the data shown in Figure 2. The two plots illustrate 
variations in hydraulic conductivity along two line transects 
from the Quadra Sand where it is exposed in a series of cliffs 
near Vancouver, Canada (Smith, 1981). This unit is a well-
sorted, medium grained, horizontally stratified sand with 
relatively few silt or gravel interbeds. Identifiable 
horizontal beds are up to tens of meters in length and up to a 
meter thick. The Quadra Sand was formed as reworked distal 
outwash ahead of advancing glaciers to the north. The line 
transects consist of 100 samples on a spacing of 0.30 m. One 
line sample is parallel to the bedding, the other is directed up 
the face of the cliff. 

The differing character of the variations within these two 
series is apparent. The heterogeneity is much greater in the 
vertical line sample. This result could be expected in a 
stratified medium whenever the length of the horizontal sample 
is of the same order as the scale of the bedding, while the 
vertical sample crosses the sedimentary sequence. The standard 
deviation is log hydraulic conductivity (base 10) is 0.09 fe(r 
the horizontal line sample, and 0.36 for the vertical line 
sample. 

Sample autocorrelation functions for these line transects 
are plotted in Figure 3. Several points can be noted. First, 
the extent of the autocorrelation between neighboring values is 
a function of the orientation of the line transect in the 
stratigraphie section. Second, the functional form of the 
autocorrelation may also depend upon orientation. Because the 
length of the horizontal transect is of the same order as the 
scale of the layering, the sample autocorrelation function 
reflects the point-to-point correlation within that layer. The 
vertical line sample is directed across the stratification, 
traversing a series of layers. As such, the sample 
autocorrelation function reflects structures within the sequence 
of layers, as well as that within each layer (in the vertical 
direction). The possiblity of anisotropy in the autocorrelation 
must be considering in any measurement program designed to 
estimate the parameters of the statistical model describing the 
heterogeneity. Knowledge of the geologic environment and its 
associated depositional features will be of extreme value in the 
interpretation of the spatial patterns of the hydraulic 
conductivity variations within a porous medium. 

Solution Techniques 

A number of techniques have been used in solving stochastic 
equations of groundwater flow. These approaches differ in their 
mathematical formulation and in the way in which the spatial 
variability in hydraulic conductivity is incorporated in the 
analysis. Summarized below are several of the techniques which 
have been used to model fluid flow in heterogeneous media. 
In the Monte Carlo approach, a deterministic boundary value 
problem is solved repetitively using a discrete representation 
of the flow domain, obtained by dividing that domain into a 
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number of equisized blocks. Single hydraulic conductivity-
values are assigned to each block by generating values from the 
statistical model describing the spatial variability. If 
warranted, values assigned to single blocks can be generated as 
spatial averages with appropriate modification of the 
probability model. Each realization is one member of the 
ensemble of all possible realizations which could be generated. 
Numerical techniques are used to solve for hydraulic head within 
each of the realizations. The output from a large number of 
such trials can be analyzed to obtain estimates of the 
probability distributions on hydraulic head and on other 
measures such as fluid discharge. 

One of several different approaches can be used in 
generating realizations of a heterogeneous porous medium. Smith 
and Freeze (4979) use a stochastic process model to develop a 
set of linear equations linking hydraulic -conductivity values in 
each of the blocks to neighboring values in adjacent blocks. 
Variability is introduced through a perturbation term added to 
each equation. An algorithm which operates on the spectral 
distribution function characterizing the hydraulic conductivity 
variations has been used1 by Mejia and Rodriguez-Iturbe (1974) 
and Freeze (1980). The turning b̂ jads method (Delhomme, 1979; 
Dettinger and Wilson, 1982), which is based on simulating a 
two-or three- dimensional random field as the sum of a series of 
one-dimensional realizations, provides an efficient technique 
for generating hydraulic conductivity variations in domains of 
large extent. These latter two techniques are favored because 
of greater flexibility in representing the form of the 
autocorrelation function. 

An important class of stochastic problems have been solved 
using spectral analysis techniques (Bakr et al., 1978; Gutjähr 
et al., 1978; Mizell et al., 1982). In this approach, the 
parameters of the flow equation are written in terms of a mean 
and a perturbation. After•subtraction of the terms describing 
the mean flow, an equation is developed connecting the 
perturbation in hydraulic head to that in hydraulic 
conductivity. From this equation, an expression is derived 
relating the power spectrum of the hydraulic conductivity 
perturbation to the- resulting power spectrum in hydraulic head. 
A specific solution is developed once the form of the 
autocorrelation function in hydraulic conductivity is assigned. 
This spectral approach has the advantage of yielding a closed 
form solution for the statistical properties of hydraulic head 
and of representing the spatial structure in a continuum form. 
Analytic solutions developed in the space domain have been 
presented by Dagan (1979, 1981). 

An alternative numerical technique to Monte Carlo simula­
tion was presented by Sagar (1978) and extended by Dettinger and 
Wilson (1981) and Townley (1984). Their approach introduces 
variability in the medium properties after the formulation of 
the matrix equations which result from the finite difference or 
finite element approximations to the groundwater flow equation. 
The technique is based on a Taylor series expansion for the 

100 



hydraulic head, from which expressions for the expected value 
and variance of the solution vector can be computed if higher 
order terms are neglected. This approach has been used to 
advantage in investigating transient flow problems. 

An important distinction can be made among the various 
stochastic models between those based on unconditional and 
conditional simulations. In an unconditional simulation, each 
realization is generated using only the parameters of the 
probabilistic model describing hydraulic conductivity, without 
regard to the location of data points. The standard deviation 
in hydraulic conductivity, and the uncertainty in the estimate 
of a hydraulic conductivity value at some point in the flow 
domain, are viewed as equivalent terms. The primary focus of 
studies adopting this representation has been to describe the 
physics of flow in heterogeneous media. In a second approach, 
the input parameters reflect a measure of the information on the 
spatial variation in hydraulic conductivity, with the standard 
deviation interpreted in terms of an estimation error. Emphasis 
here is placed on the use of hydrogeologic models as predictive 
tools. Using the techniques of kriging and conditional 
simulation (Delhomme, 1979), it is possible to preserve field 
data at measurement points in each realization. In this case, 
the ensemble is limited to include only those realizations that 
satisfy the available field data. Because of spatial 
autocorrelation, known values of hydraulic conductivity exert an 
influence not just at the measurement point but over a 
surrounding neighborhood. In solving the stochastic flow 
equation for hydraulic head, the standard deviation in hydraulic 
conductivity is effectively reduced in the neighborhood of each 
measurement point. As a result, the variability in hydraulic 
head may also be reduced in the vicinity of the measurement 
points. 

Conditional simulation can be extended by also 
incorporating hydraulic head measurements in the stochastic 
model (Clifton and Neuman, 1982). Here the stochastic model is 
viewed in the framework of a parameter estimation problem. 
Clifton and Neuman use a statistical inverse simulation, coupled 
with kriging, to refine the estimate of the hydraulic 
conductivity and the standard deviation in that estimate in a 
number of subregions within the flow domain. Examples have been 
presented to show that the variance in the prediction of 
hydraulic head can be reduced markedly if the model is also 
conditioned on a set of hydraulic head measurements. 

Stochastic Output 

To illustrate several features of steady state fluid flow 
in a heterogeneous porous medium, consider the domain shown in 
the inset diagram of Figure 4. The domain is 20 m long and 10 m 
wide. The inflow boundary has a hydraulic head of 1.0, with a 
value of 0.0 on the outflow boundary. The upper and lower 
boundaries are impermeable, leading to a mean hydraulic gradient 
describing one-dimensional flow. The results that follow are 
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Figure 3- Sample autocorrelation functions for hydraulic 
conductivity variations along the line transects, Quadra 
Sands (from Smith', 1981 ) . 
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Figure h. Influence of the standard deviation in hydraulic 
conductivity on the variability in hydraulic head for a case 
with unidirectional mean flow. Curves A, B, and C correspond 
to media with a standard deviation in log hydraulic conductivity 
of 0.21, 0.^3, and 0.91; respectively. See text for details, 
(from Smith and Freeze, 1979) 
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based on unconditional simulations. The first example 
illustrates the influence of the standard deviation in hydraulic 
conductivity on the variability in hydraulic head. The spatial 
continuity of the variations, described by the integral scales 
in the two coordinate directions, are held constant with values 
approximately equal to 1.2 m. Results are shown along a line 
parallel to the x axis, midway between the upper and lower 
impermeable boundaries. In a more heterogeneous medium, the 
standard deviation in hydraulic head is larger. With greater 
hydraulic conductivity contrasts possible in a more 
heterogeneous medium, the deviation of hydraulic head at any 
point from its mean value at that point can increase. The 
parabolic shape of the curves reflects the statistical 
nonhomogeneity in hydraulic head because of the constant head 
values on the boundaries of the flow domain. 

Figure 5 shows the effects of a nonuniform mean hydraulic 
gradient on the variability in hydraulic head. The boundary 
value problem is shown in the upper diagram, together with the 
deterministic solution for hydraulic head assuming the medium is 
homogeneous. The lower two diagrams are contour plots of the 
estimated standard deviation in hydraulic head for media with 
differing degrees of spatial continuity in hydraulic 
conductivity. In plot b, the integral scales are approximately 
1.25 m; in plot c, 2.1 m. In both cases, the standard deviation 
in hydraulic conductivity is 0.43. Several conclusions can be 
formed. First, the standard deviation in hydraulic head is 
greatest in the region of flow domain where the mean hydraulic 
gradients are the highest, yet the region is removed from the 
constant head boundaries where the possible range of head values 
is constrained by the fixed head values there. Second, the 
variability in hydraulic head increases in a medium with a 
greater spatial continuity in hydraulic conductivity. This 
response occurs because if zones with hydraulic conductivities 
either above or below the mean value are likely to be more 
extensive, the hydraulic heads in those regions can deviate 
further from their mean values. Comparison of this example with 
the previous one indicates that the variability in hydraulic 
head depends upon both the heterogeneity in hydraulic 
conductivity and the nature of the flow system. 

Analytic solutions for steady state fluid flow in an 
unbounded domain indicate that the perturbations in hydraulic 
head are more strongly correlated than the input perturbations 
in hydraulic conductivity (Bakr et al., 1978; Mizell et al., 
1982). In addition, hydraulic head perturbations are correlated 
over a greater distance in a direction at right angles to the 
mean hydraulic gradient. Thus, the statistical structure of the 
hydraulic head variations is anisotropic, even though the 
autocorrelation in hydraulic conductivity may be isotropic. 

Massmann (unpublished data, 1984) has carried out several 
simulations that demonstrate the manner in which the variability 
in hydraulic head depends upon the dimension of the flow domain. 
The simulations model unidirectional mean flow through a 
rectangular volume. The domain was divided into 300 square 
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Figure 5. Influence of'the spatial autocorrelation in 
hydraulic conductivity on the variability in hydraulic head, 
nonuniform mean gradient. Plot A is the deterministic solution 
for a homogeneous medium; plots B and C show contours of the 
standard deviation in hydraulic head for media with differing 
degrees of spatial continuity in hydraulic conductivity. See 
text for details, (from Smith and Freeze, 1979) 
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elements (10x6x5), with the long axis parallel to the mean flow 
direction. Realizations of the three-dimensional random field 
were generated using a turnings band technique, with an 
isotropic exponential autocorrelation function. For each 
realization, flow was first modeled in three dimensions, and 
then along the central plane parallel to the long axis of the 
domain, and along the center line of that plane. Such an 
experiment will show that the variability in hydraulic head is 
smaller in a three-dimensional analysis than in either a one or 
two-dimensional simulation. The greatest difference will occur 
between the one and two-dimensional simulations. The 
variability in hydraulic head depends upon the dimension of the 
stochastic model because individual zones of low or high 
hydraulic conductivity are of less importance in perturbing the 
flow field in multidimensional models. Similar effects are 
noted in the analytic solutions of Bakr et al (1978) and Dagan 
(1979). Realistic assessment of the sensitivity of hydraulic 
head or discharge predictions to the unknown patterns of spatial 
variability in hydraulic conductivity must consider the ' 
three-dimensional nature of groundwater flow. 

Network Design and Risk Assessment 

There is considerable potential in adopting stochastic 
techniques in the solution of problems involving fluid flow 
through porous media. The primary advancement to date has been 
the development of better physical models describing fluid flow 
(and transport) in heterogeneous media. This work sets the 
stage for the future use of stochastic models in a design mode 
to optimize the planning and implementation of field sampling 
programs. A central concept here is to consider the location of 
measurement sites in relation to the use of that data in model 
prediction, rather than as a problem in mapping the spatial 
variations in hydraulic conductivity within some region of 
interest. Stochastic models also hold promise as a central 
component in a risk analysis of an engineering design which is 
based, in part, on a hydrogeologic prediction. Here the 
uncertainties in model prediction are evaluated in light of an 
associated probability of system failure and the (remedial) 
costs following a failure. 

Two different concerns arise when discussing data 
requirements for a stochastic simulation. First, there is 
uncertainty in estimating the parameters of the statistical 
model characterizing the spatial variability. The estimation 
error for these parameters will be a function of the number of 
sample points, the geometry of the sample grid, the 
autocorrelation between neighboring hydraulic conductivity 
values, the size of the domain, and the variance of the 
hydraulic conductivity distribution. Second, there is the 
impact of measured values in constraining the unknown patterns 
of spatial variation in hydraulic conductivity. Work by Smith 
and Schwartz (1981) suggests that given a realistic number of 
data points, unknown patterns of spatial variation in hydraulic 
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conductivity are a greater source of uncertainty in model 
prediction than are errors in estimating the mean and standard 
deviation of the hydraulic conductivity distribution. A 
determination has yet to be made of the importance of errors in 
estimating the autocorrelation function. Analytic solutions for 
various flow problems indicate that the output distributions can 
be sensitive to the form of the autocorrelation function. In 
this case, estimation of the autocorrelation function will be an 
important consideration in data collection. 

Conditional simulation provides a mechanism for 
investigating how the design of a data measurement network 
influences the uncertainty in model prediction. Delhomme (1979) 
has shown that the locations of sample points relative to 
boundary locations and the hydraulic conditions on those 
boundaries are important in determining tfte degree of 
uncertainty in hydraulic head predictions. Uncertainties in 
hydraulic conductivity in key regions.of the"flow domain can 
result in large uncertainties in hydraulic head throughout most 
of the flow domain. Conversely, there wi«ll be regions where the 
uncertainty in hydraulic head is insensitive to the variability 
in hydraulic conductivity. Recognition of these 'key regions' 
in the flow domain will ,be an integral part of the efficient 
design of a measurement network that exploits the variable 
sensitivity of hydraulic head to the spatial variability in 
hydraulic conductivity. 

With recent advances in the design of multiple-port 
piezometers, it is now feasible to collect in situ data on the 
spatial variability in hydraulic conductivity in a 
three-dimensional framework. This instrumentation allows many 
independent sampling points to be established in a single 
borehole. Consider the goundwater flow system shown 
schematically in Figure 6. Two statistically homogeneous units 
are present in the system. The upper boundary is the water 
table. The face which is shaded is assigned at constant value of 
hydraulic head. All other boundaries are taken to be 
impermeable. Given the objective of predicting the volume of 
discharge across the constant head boundary, guidelines are 
required on which 'to base decisions on the number of boreholes 
needed, their location, and the depth and number of observation 
points at each location. For example, choices can be made in 
deciding where to site multiple-port piezometers to collect 
detailed vertical information, and where a larger set of 
spatially-distributed, single-port piezometers may be more 
effective. Similarly, the number of observation points in each 
of the two geologic units should be selected is some optimum 
manner. The variable sensitivity of hydraulic head perturba­
tions to the spatial variability in hydraulic conductivity is an 
important factor in addressing these kinds of questions. 

A framework is required to examine tradeoffs in selecting 
among potential sampling sites. Several approaches are 
possible. A sampling strategy may be preferred if it leads to 
smaller estimation errors in model prediction. Sensitivity 
analyses using the estimation error as a measure of the 
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Figure 6. Schematic plot of a sampling network using multiple-
port piezometers. Guidelines are required on which to base 
decisions on the number of boreholes needed, their location, 
and the depth and number of observation points at each location. 

PROBABILITY OF SYSTEM FAILURE 

(RISK ASSESSMENT) 
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Figure 7. Schematic plot of the probability of excessive seepage 
(shaded region) beneath the embankment shown in Figure 1. Plots 
b and c refer to strategies for reducing the probability of 
failure by either collecting more data in key regions of the 
flow domain, or by more conservative design. 
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1 
efficiency of a sample grid can be carried out to establish 
qualitative guidelines for site selection. However, this 
approach neglects an important variable, the cost of data 
acquisition. The use of the terms such as 'effective' and 
'optimal' generally infers the definition of an objective 
function with which to judge the merits of alternative designs. 
Using techniques of decision theory, a sampling strategy can be 
assessed under the goal of minimizing the estimation error in 
model prediction, within the constraint of the total funds 
available for site investigation. 

Integration of stochastic flow analyses with decisions on 
data worth must eventually be considered in light of the purpose 
for which the prediction is developed. The significance and 
impact of uncertainties in model prediction originating from the 
heterogeneous nature of porous media can bé evaluated in terms 
of a probability of system failure. Consider again the cartoon 
shown in Figure 1. A prediction is required of the volume of 
water seeping beneath the embankment. The system is assumed to 
have failed if the discharge exceeds a maximum permissible 
level. By carrying out an unconditional simulation, it is 
possible to estimate the probability that a particular alignment 
of high-permeability elements leads to such a failure (Figure 
7a). The extent to which the standard deviation of this 
distribution can be reduced by collecting more hydraulic 
conductivity data can be determined using conditional simulation 
techniques (Figure 7b). Note that constraining the patterns of 
spatial variation -in hydraulic conductivity beneath the 
embankment will provide a better estimate of the probability of 
failure, but not necessarily a reduction in that probability. 
As an alternative to further sampling, modifications in the 
design of the embankment may be incorporated to decrease the 
expected value of the seepage volume and thereby reduce the 
probability of failure (Figure 7c). Selection among these 
strategies (more data in key regions of the flow domain, more 
conservative design) must also include consideration of the 
remedial costs if the seepage volume exceeds the maximum 
allowable. The determination of an acceptable level of 
uncertainty in model,prediction is tied to the costs of further 
site investigation, the design of measurement networks, and the 
consequences of system failure. Research is ongoing to 
incorporate stochastic groundwater models in such risk 
assessments. 

Summary 

The effects on fluid flow of the spatial variability within 
a porous medium can be evaluated quantitatively using stochastic 
modeling techniques. The primary focus of research to date has 
been on the development of methodologies for the solution of the 
stochastic flow equations and on developing a better 
understanding of the physics of flow in heterogeneous media. 
The potential exists for using stochastic models in the planning 
and evaluation of data measurement networks where the locations 
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of sample sites are considered in relation to the use of that 
data in model prediction. The efficient design of a measurement 
network should exploit the variable sensitivity of hydraulic 
head to the unknown patterns of spatial variation in hydraulic 
conductivity. Stochastic models are likely to also be 
incorporated as an essential element in risk assessments which 
require hydrogeologic predictions. 
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Discussion 

B. Overmas: Have you accounted for anisotropy in your model? 

L. Smith: In heterogeneous media, there is the possibility 
of anisotropy in both the spatial autocorrela­
tion function (statistical anisotropy) and in 
the local mean values of hydraulic conductivity 
(hydraulic anisotropy). It is possible to 
define probability distributions for both the 
horizontal and vertical hydraulic conductivity. 
Presumably these random variables would be 
correlated. Both factors can be included in the 
numerical models in a straightforward manner. 

B. Overmas: Does the 3-dimensional approach indicate that we 
are dealing with too much variation compared 
with a 1-dimensional approach? 

L. Smith: A one-dimensional simulation leads to greater 
variability in the output distributions than 
does a 3-dimensional analysis. Individual zones 
of low or high hydraulic conductivity are of 
less importance in perturbing the flow field in 
multidimensional models. Realistic assessment 
of the sensitivity of the model output to 
spatial variability should account for the 
3-dimensional nature of groundwater flow, even 
in the case where the mean flow is unidirec­
tional. In that sense, a 1-dimensional analysis 
will overestimate the variability in the output 
variables. 

Ill 
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Spatial variability of soil-water properties 
in irrigated soils 

P. J. Wierenga, Department of Crop and Soil Sciences, New Mexico 
State university, Las Cruces, NM 88001, USA. 

Introduation 

A number of reviews have recently been written on spatial varia­
bility of soils (Peck, 1983; Warrick et al., 1985). These 
reviews have presented geostatistical techniques used in the 
analysis of field data and summarized much of the field data on 
spatial variability of soil water properties. As is evident from 
these review articles, the use of geostatistical methods has 
gained increasing support among soil scientists. Techniques that 
appear to have been used most frequently are based on the theory 
of regionalized variables (Matheron, 1965), or on time series 
analysis theory. With either of these techniques, the spatial 
dependence of soil properties is investigated through variograms 
or correllograms. Next the information on spatial dependence is 
used, in conjunction with kriging, to obtain information at 
locations other than where the original date were obtained, as 
for mapping. A sizeable number ofsoil properties were investi­
gated using geostatistical methods. These include soil texture 
(Webster, and Cuanalo, 1975),, saturated hydraulic conductivity 
(Russo and Bresslef, 1981), infiltration rate /Vieira et al., 
1981), water content (Gajem et al., 1981) and electrical conduc­
tivities of saturation extracts (Hajrasuliha et al., 1980). 
These studies have shown that there is spatial dependence of many 
soil properties, invalidating the use of statistics based on 
independent samples. However, there appears to be no clear trend 
in the degree of spatial dependence. The degree of this depen­
dence, or the correlation length, has been found to vary for each 
soil variable and study area and may also be a function of time. 
Por example in the studies mentioned above, correlation distances 
vary from 230 m for soil texture to 5 m for water content. 
Furthermore, the degree of spatial dependence seems to depend on 
the sampling distance, with greater spatial dependence found for 
larger sampling distances (Gajem, 1981; Kies, 1982; Jury, 1984). 

in view of this uncertainty and considering the potential of 
geostatistical techniques for interpreting soils data, it seems 
appropriate to examine additional field data. In particular, we 
want to look at spatial variability of tension, of water content, 
and of the infiltration rate of irrigated soils. Three field 
studies will be discussed in which soil water tension, water 
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content and hydraulic conductivity were measured in considerable 
detail. In the first study tension was measured along a trickle 
irrigated row crop. The purpose of the second study was to 
measure the variability in tension and water content along a 
91 m transect of irrigated bare soil. In the third study the 
hydraulic conductivity was measured over a 100 ha farm and 
compared with hydraulic conductivity values obtained from a 
detailed soil survey. The third study was included to demon­
strate the importance of soil survey information in character­
izing physical properties of field soils and vice versa. 

Variation in soil water tension along a triokle line 

Ninety-nine tensiometers were placed 60 cm apart along a trickle 
irrigated row of chile peppers (Saddiq, et al., 1985). All 
tensiometers were first installed with their tips at 15 cm below 
soil surface and, following a number of readings at this depth, 
pushed down so their tips were at the 30 cm depth. Near the end 
of the growing season, the row with tensiometers was flood irri­
gated from both sides and a set of tensiometer readings was 
taken. All tensiometer readings were made with a handheld pres­
sure transducer (Marthaler et al., 1983). 

Spatial dependence between tension data was calculated with 
equations (1) and (2) as follows: 

,h, ^ cov(T(x) . T(x+h)) 
u ; /var(T(x)) . /var(T(x+h)) VJJ 

Y (h) = h . var(T(x)-T(x+h)) (2) 

where r(h) is the autocorrelation, h the lag or distance between 
tensiometers, T(x) the soil water tension at point x and Y (h) 
the semivariance (Rendu, 1978) . Cumulative frequency distribu­
tions and fractile diagrams (Vieira et al., 1981) were calcu­
lated for the tension data at several times after irrigation or 
rain. 

Results showed that, after flood irrigation or after rain, soil 
water tension data was normally distributed. After trickle 
irrigation there was a much greater spread in the data with more 
high and low values and no clearly defined statistical distribu­
tion. 

In Fig. 1 the semivariance of soil-water tension is plotted 
versus distance for the 30 cm depth 2 and 13 days, respectively, 
after flooding the row with 26 cm water. The data clearly show 
spatial correlation, with a range of dependence of 3 to 5 m, 
similar to what was observed after rainfall. The presence of 
the nugget in the variogram (Fig. IB) , which was. not observed 
for data taken 2, 4 and 6 days after flooding, indicates greater 
variation in soil water tension as the soil dries out. There 
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Fig. 1 Semivariograms for soil-watçr tension at 30 cm taken two 
days (A) and thirteen days (B), respectively, after flooding 
with 26 cm water. 

was little or no spatial structure in the data after trickle 
irrigation, even though the amounts of water added per trickle 
irrigation varied between 1 and 7 cm. Even after 7 cm of water 
was- applied through the'trickle line, the distance of dependence 
was only 1.2 m. In contrast, a rainfall of 2.5 cm resulted in a 
spatial dependence of 5 to 6 m. Thus, it appears that the pres­
ence or absence of spatial dependence in soil water tension is 
closely related to the method of water application. These 
results imply that tests for uniform application of water over a 
field could be designed based on correlation distance of soil 
water tension. Thus, a large correlation length of soil water 
tension right after irrigation would mean uniform water 
application. 

Table 1 summarizes the results of the various experiments. 
These data (Saddiq et al., 1985) show that, as the soil dries 
out and its tension increases, the variance increases. This 
agrees with the results of Yeh et al. (1984) who predicted such 
behavior on the basis of a stochastic analysis of unsaturated 
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Table 1 Mean, variance, coefficient of variation and distance of 
dependence for soil water tension at 30 cm as a function of time 
after flood and trickle irrigation. 

water application Time 
method amount after 

Mean Variance CV 
Distance of 
dependence 

Date 

Flood 
10/05/81 

Trickle 
8/30/81 

(cm) 

26.0 

1.6 

(days) 

2 
4 
6 
9 

11 
13 

1 
2 
3 
4 
5 

mbar 

65 
82 

112 
152 
215 
266 

143 
167 
208 
304 
461 

mbar 

105 
210 
436 

1589 
509 2 
9085 

11290 
25130 
36300 
35240 
39820 

16 
18 
19 
26 
33 
36 

74 
95 
92 
62 
43 

m 

5.4 
4.2 
4.8 
3.6 
5.4 
1.2 

<0.6 
<0.6 
<0.6 
<0.6 

1.2 

Trickle 
1/29/82 

7.0 47 116 23 1.2 

water flow through heterogeneous soil. These data further show 
that the variance and the coefficient of variation of soil water 
tension are generally much higher in trickle irrigated soil than 
in flood irrigated or in rainfed soil (not shown). While CV's 
ranged between 20 and 40% in flood irrigated or rainfed soil, 
they were between 40 and 100% in trickle irrigated soil at 
comparable mean soil water tensions. This compares with CV's of 
between 10 and 30% for water contents of core samples held at 
tensions of 0 to 200 cm (Nielsen et al., 1973, Gajem et al., 
1981; Gumaa, 1978) . No data were found in the literature on 
coefficients of variation of soil water tension in field soils. 
However, it is well known that many researchers have experienced 
problems in using tensiometers for scheduling irrigation. These 
problems are at least partly the result of the considerable 
spatial variability of soil water tension in field soils. 

Variation in tension and water content along a 91 m transect 

Neutron access tubes were installed along the center of a 3 m 
wide by 94 m long field plot of clay loam over sand, located 
adjacent to the trickle irrigated chile plot discussed above 
(Nash, 1984) . A total of 91 access tubes were placed at 1 m 
intervals to a depth of 150 cm. Five tensiometers with their 
tips at 30, 60, 90, 120 and 150 cm below soil surface were 
installed at each neutron access tube along a line perpendicular 
to the transect. The 60 and 120 cm tensiometers were placed 30 
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and 60 cm to the right of each tube and the 30, 90 and 150 cm 
tensiometers at 30, 60 and 90 cm to the left of each tube, A 
total of 455 tensiometers were used. The plot was flooded with 
14.3 cm water and measurements of water content and tension were 
taken at frequent time intervals. 

The complete results of this study are presented elsewhere 
(Nash, 1984). A summary of the results will be presented here. 
Fig. 2 presents the variation in tension along the transect at 
30 cm and at 120 cm, 1 day after flood-irrigation. The data in 
figure 2 show considerable variation in tension with distance 
along the transect. This was true for all measurement periods 
after irrigation. Table 2 summarizes the results for soil water 
tension during the first 44 days after flooding. 

Depth 30 cm 

Distance Along Transect (meters) 

Fig. 2 Soil water tension (cm) at 3 0 and 120 cm as a function 
of distance along transect one day after flooding. 
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The data in table 2 show the change in tension with time after 
flooding for the 30, 60 and 120 cm depths. Note first that it 
takes more than 14 days for the tension at 30 cm to reach a 
value greater than 0.1 bar. In fact, from a plot of tension 
versus time Nash (1984) concluded that it took 25 days for the 
average tension at 30 cm to reach 0.1 bar, while it took 44 days 
for the average tension at 60 cm to reach this value. Thus, if 

Table 2 Mean, variance, coefficient of variation, and distance 
of dependence for soil water tension at 30, 60 and 120 cm as a 
function of time after flooding. 

Depth Time after 
flooding 

Mean Variance cv 
Distance of 
dependence 

days mbar mbar 

0.3 

0.6 

1.2 

1 
2 
4 
8 

14 
44 

1 
2 
4 
8 

14 
44 

1 
2 
4 
8 

14 
44 

39 
54 
62 
78 
92 

118 

38 
45 
55 
65 
77 

106 

72 
69 
62 
66 
68 
77 

241 
234 
454 
624 
518 
700 

771 
800 

1031 
1156 
1083 

792 

387 
307 
260 
303 
115 
238 

40 
28 
35 
32 
25 
22 

72 
62 
59 
53 
43 
26 

25 
25 
26 
26 
16 
20 

15 
— 
— 
— 
22 
27 

17 

— 
— 
— 
19 
13 

15 
— 
— 
— 
12 
— 

field capacity is defined as the water content three days after 
irrigation or a heavy rain, then field capacity in this soil is 
between 0.05 and 0.06 bar, rather than 0.1 bar, as commonly 
assumed in the literature. Note also that the variance in soil 
water tension at 30 cm increases with tension. The same trend 
may be observed for the 60 cm depth. This agrees with Yeh et 
al., 1985, who predicted that the variance of soil water tension 
should increase as the soil dries out. The coefficients of 
variation in tension tend to decrease as the tension increases. 
Apparently, with time there is some redistribution of water in 
both horizontal and vertical directions, so that the variability 
in tension becomes less. However, even after 44 days of redis­
tribution the coefficients of variation are still 20% or higher. 
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Comparing the data in Table 2 with those in Table 1, one 
that the trickle irrigated soil dries out faster, while the 
coefficient of variation of the tension in trickle irrigated 
soil increases rather than decreases with time as for the flood 
irrigated soil. The trickle irrigated soil was not covered with 
plastic, resulting in water loss by surface evaporation. Fur­
thermore, although the tension measurements were taken late in 
the season, there may have been some water uptake by the chile 
plants, which increased variability"in tension in this soil and 
resulted in larger values for the coefficient of variation. The 
last column in table 2 shows the distances- of dependence, which 
varied between 12 and 27 meter (distances of dependence for days 
2, 4, and 8 were not calculated). Thus, even though the varia­
bility in tension is large, especially at the 60 cm depth, there 
is considerable spatial dependence between adjacent tension 
values. „ 

Changes in water content with distance aloncj the transect were 
also large, especially for the subsoil. Fig. 3 shows spatial 

sees m 

>\rv~M\, 

o 
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E 
D 

O 

> 

30 cm 

120 cm 

Distance Along Transect (meter) 

Fig. 
3 3 

3 Water content (cm /cm ) at 30 and 120 cm as a function 
of distance along the transect one day after flooding. 
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variations in water content for the 30 and 120 cm depths one day 
after flood-irrigating the transect with 13.4 cm water. The 
variations in subsoil water content are especially large. This 
large variation at the deeper depths is the result of variations 
in texture. 

Table 3 presents the statistical parameters for the water con­
tent at depths 30, 60 and 120 cm at various times after flood-
irrigation. Note that the water content at 120 cm is much lower 
than the water content at 60 cm or above. This is due to the 
lower clay content at 120 cm. The lower clay content at 120 cm 
also causes the soil at this depth to drain faster as is evident 
from the 7% decrease in water content, over 44 days versus a 
much smaller decrease in water content with time at the upper 
two depths. The greater variation in water content with distance 
along the transect at 120 cm as compared to the variation in 
water content at 30 and 60 cm is also evident from the larger 
CV's at 120 cm. While the coefficients of variation in water 
content at 30 cm are less than 13%, they have values between 4p 
and 50% at the 120 cm depth. 

Table 3 Mean, variance, coefficient of variation and distance of 
dependence for water content at 30, 60 and 120 cm, as a function 
of time after flood-irrigation. 

_ .. Time after „ „ . „, Distance of 
Depth ., , . . . . Mean Variance CV , , 

flood-irrigation dependence 

m days cm /cm (cm /cm ) % m 

0.3 

0.6 

1.2 

1 
2 
4 
8 

14 
44 

1 
2 
4 
8 

14 
44 

1 
2 
4 
8 

14 
44 

.342 

.346 

.356 

.348 

.359 

.358 

.403 

.39 3 

.391 

.369 

.363 

.377 

.200 

.193 

.193 

.151 

.146 

.130 

.0002 

.0001 

.0003 

.0002 

.001 

.002 

.003 

.004 

.006 

.010 

.011 

.011 

.008 

.007 

.008 

.005 

.005 

.004 

4.1 
3.3 
4.5 
3.7 
6.8 

12.8 

13.6 
16.2 
20.0 
27.1 
30.1 
27.8 

44.3 
42.7 
45.1 
45.9 
45.9 
47.3 

-
-
-
-

20.0 
8.0 

21.0 

-
-
-

22.0 
19.5 

12.4 

-
-
-
9.0 

11.0 

il I 
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"I 
The last column in Table 3 shows the distance of dependence for 
water contents. They range between 8 and 22 m when there is 
spatial dependence. Distances of dependence of this magnitude 
are in agreement with distances of dependence found by others 
with closely spaced neutron probe measurements. 

Fig. 4 shows the variation in tension and water content along 
the transect on day 14. This figure is a clear illustration of 
the interdependence of tension and" water content along the 
transect. As the tension goes down at around 28 m, the water 
content increases. The reverse takes placesbetween 70 and 80 m 
along the transect. 
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Fig. 4 Soil-water tension and water content at 60 cm as a func­
tion of distance along the transect, 14 days after flooding. 

Hendrickx et.al., 1985, following Webster, 1978 used the split 
moving window technique, to determine numerically the location 
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of boundaries along transects between soils with different 
texture or soil physical properties. Their analysis, applied to 
water content and texture data for the 30 cm depth along this 
transect, shows excellent agreement between boundaries deter­
mined on the basis of soil texture and boundaries based on soil 
water content. Thus, the split moving window technique is a 
technique that merits further evaluation for determining bound­
ary locations along transects. However, additional work is 
needed to determine the influence of other parameters used in 
evaluating boundaries with this technique. Such parameters 
include vegetation, soil-water content and soil water tension at 
several depths, and soil chemical properties. Other techniques 
that could be used in analyzing data collected at regular space 
intervals include spatial cross correlations and/or co-kriging. 
These techniques provide insight into the range or spatial 
distance over which two variables are correlated. Such analyses 
are useful in predicting one variable based on observations of a 
second variable, taking into account the spatial dependence of 
each of the two variables. A 

Variability of field measured infiltration rates as oompared to 
infiltration rates estimated from soil textural information 

A study was conducted to compare the mean and statistical dis­
tribution of field measured infiltration rates with the mean and 
statistical distribution of infiltration rates estimated from 
soil textural information. Such information is important if one 
wants to utilize existing soil survey information for predicting 
the behavior of water in field soils. The study (Duffy et al., 
1981) was conducted on a 100 ha farm at San Acacia, NM, located 
in the Middle Rio Grande Basin, 23 kilometers north of Socorro, 
NM. A detailed description of the farm layout, cropping pat­
tern, irrigation and drainage system and water management can be 
found in Wierenga and Duffy, 1979. Infiltration rates were 
measured in the field using two methods, the ring infiltrometer 
method and the inverse auger hole method. With the infiltro­
meter method, a steel cylinder (inside diameter, 33 cm) was 
pressed 5 cm into the surface soil. A constant head of about 
10 cm water was maintained inside the cylinder for at least 24 
hours. After this period, the inflow was cut off and the rate 
of fall of the water table measured for a short time. The rate 
of fall measured over this short time was taken as the steady-
state infiltration rate (K ) . The inverse auger hole method was 
performed for the layer just above the water table (100-150 cm), 
following the procedure described by Kessler and Oosterbaan 
(1974). The infiltrometer and inverse auger hole tests were 

made at 20 sites on the farm. The sites were chosen such that 2 
to 4 tests were made for each soil series on the farm. 

A detailed soil survey was conducted by the Soil Conservation 
Service. The soil was sampled at approximately 60 meter inter­
vals and 293 bore holes were examined. A total of 11 soil map­
ping units and 8 soil series were identified (Duffy et al. , 
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1981) . Based on the textural data from the 293 bore holes, 
infiltration rates were estimated for the surface soil and for 
the intermediate soil horizon (100-150 cm). Approximate rela­
tionships between the texture of a given horizon and its infil­
tration rate were obtained from the SCS Soil Series Interpreta­
tion forms (Form 5) . 

Fig. 5 presents cumulative frequency distributions for the field 
measured (K ) and soil survey estimated (K ) surface and subsur-
face infiltration rates. The figure shows nearly linear rela­
tionships for both the measured and estimated infiltration 
rates, indicating that both sets of data may be approximated by 
log-normal distributions. The mean In K values were 1.0 and 
0.65 for K and K , respectively, resulting in a mean measured 
infiltration rate of 2.73 cm/hour and a vaiue of 1.92 cm/hour 
for the mean infiltration rate estimated from the soil survey 
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Fig. 5 Cumulative frequency distributions of the measured and 
texture estimated infiltration rates. 

data. The standard deviations of the log transformed measured 
and estimated infiltration rates were 1.2 and 1.3, respectively. 
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Thus, it appears that for the soil in this study, the variations 
in infiltration rate can be estimated from soil texture data 
with a reasonable degree of accuracy. 

In Fig^ 6A the geometric mean infiltration rate of the surface 
soil (K ) determined for each soil series is plotted versus the 
geometric mean infiltration rate (K ) obtained for each soil 
series from the texture data. Regression of K on ~K resulted 
in: F T 

K = 0.57 K + 0.45 
F T 0.94 

Fig. 6B shows the same for the subsoil infiltration rates_(100-
J.50 cm layer) . For the subsoil, the relationship between K and 
K is: F 

T 
K = 0.42 K + 4.66 
F T 0.86 

The data in Fig. 6 show a fair agreement between measured and 
estimated infiltration rates. Thus, for the soils of this study 

0 10 20 30 _ 40 50 60 
MEAN ESTIMATED KT(cm/hour) 

Fig. 6 Mean surface (A) and subsoil (B) infiltration rates for 
seven soil series (identified by numbers) on a 100 ha farm, 
versus mean infiltration rates estimated from soil texture data. 
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soil survey information may be used to determine field infiltra­
tion rates, provide a calibration is made between measured 
infiltration rates and those obtained from soil survey informa­
tion. The variability in field infiltration rate on the other 
hand may directly be estimated from texture data. 

Summary 

The data presented in this paper have «shown spatial dependence 
of tension and water content in irrigated soils. It appears 
that the degree of dependence is strongly ^influenced by the 
method of water application, time after irrigation or rain, and 
the presence or absence of vegetation. ' For example, spatial 
dependence was less than 1 m when water was 'applied to a crop 
through a trickle line, but was 6 m after rain ""or flooding. In 
bare soil spatial dependence, measured wich tensiometers at a 
1 m spacing, was up to 15 m. Spatial dependence <3f water con­
tent measured with a neutron meter at 1 m intervals along a 
transect, was 20 m or less. The variance in tension was always 
greater than the variance in water content, and increased as the 
soil dried out and the tension increased. By comparing field 
measured infiltration rates with infiltration rates obtained 
from soil survey information, it was shown that soil survey 
information may be used to determine the statistical properties 
of infiltration rate on a field scale. Thus, for the interpre­
tation of data on spatial variability of soil properties, use 
should be made of soil "survey information. 
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Discussion 

D. Elrick: Firstly, a comment on field capacity. Although 
the concept of field capacity is very useful 
agronomically, it has no physical basis in a 
well-drained soil; i.e., equilibrium is never 
reached within the time period of a couple of 
days. 

P. Wierenga: 

The discussion regarding 1/3, 1/10 or 0.06 bar 
can be resolved somewhat.^by remembering that the 
1/3 bar measurement is usually carried out on 
medium to fine textured soils that have been 
air-dried and sieved and then equilibrated on a 
pressure plate. For coarse textured soils, the 
tension is reduced to 0.1 bar. And, at all 
times, the nebuluous concept of "field capacity" 
must be kept in mind. I was amazed to see such 
good agreement between your experimentally 
measured K values and those estimated from 

s 
tables given by thè SCS. I expect this is 
because of'the rather structured nature of the 
soil. Would you expect such good agreement in a 
highly structured clay loam soil for example? 

The reason I brought up field capacity is that 
many agronomists still equate field capacity 
with 1/3 bar, expecting a field soil to drain to 
1/3 bar in 2 or 3 days. As my data, and those 
óf others, show this is clearly not the case. 
Furthermore, in determining available water, 1/3 
bar is often used as the lower limit, without 
taking into consideration how the water content 
at 1/3 bar was determined. This is not correct. 
For most purposes I would recommend to determine 
field capacity in the field, using tensiometers, 
rather than to determine field capacity in the 
laboratory on core samples or sieved samples. 

The agreement between the two methods for 
determing the hydraulic conductivity is indeed 
quite good. One reason is that the survey was 
performed by an experienced soil surveyor from 
the SCS. I don't know if such good agreement 
would be obtained in a highly structured clay 
loam. However, it is certainly worth investi­
gating. 

D. McComack: In the past 30 to 50 years, many decisions have 
been made in the limits of soil map units and 
their range in properties. These decisions have 
been made without kriging. But, using these 
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decisions, soil surveys have been made on more 
than 900 million ha in the U.S. Do you think 
there are feasible ways to use kriging to make 
better or more useful definitions of soil map 
units for soil surveys? 

P. Wierenga: There are undoubtedly better and more useful 
ways to make definitions of soil map units. 
Whether kriging is one of these ways needs to be 
investigated. In my opinion kriging, and other 
approaches discussed at these meetings, need to 
be given serious consideration for use in soil 
survey and soil mapping. 

B. Sisson: Field capacity is a useful and quantitative 
concept. See Wilcox (1959-1960) Canadian 
Journal of Soil Science. 

We need some method for identifying data points 
that have a large influence in the estimation of 
stochastic parameters. 

P. Wierenga: If you mean by this that we need more complete 
sets of field data, I agree with you. 

R. Lai: Are there differences in variability between 
moisture content and moisture potential? For 
some African soils the field capacity occurs as 
low as 0.03 bar. The wilting point also occurs 
at low tension, i.e., 2 bar. The field capacity 
and other physical properties must be measured 
in the field. We find similar variability in 
neutron probe calibration even over short 
distances of 1 to 2 meters. 

P. Wierenga: 

L. Stroosnyder: 

P. Wierenga: 

There appears to be a greater variation in soil 
water tension measured with tensiometers, than 
in water content measured with a neutron probe. 
This may partly be related to the size of soil 
sample measured with these two instruments. I 
agree with your comments on field capacity. 

Does the fact that we have a new tool to measure 
soil water tension justify the additional 
studies recommended by you? 

I have suggested that there is a lot of work to 
do with regard to the variability of soil water 
tensions in the field, and also with regard to 
the relation between soil water tension and 
yield. Up to now, few detailed studies of the 
variability of tension in the field have been 
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done. Data on field variability of tension is 
necessary for a host of applications. The tool 
used in this paper will allow us to do such 
studies. Studies for determining the optimum 
soil water tension for maximum yield are also 
necessary, especially with regard to trickle 
irrigation. The transducer tensiometer is a 
better tool for this. 

B. Clothier: What was the trickle emitter discharge rate? 
Did it cause a significant surface pond of 
free-water to develop? If so, was some of the 
variation recorded by the tensiometers more a 
question of surface topography than of variation 
in soil physical properties? Maybe this would 
help account for the lack of spatial structure. 
Finally, given all this, where do you place a 
tensiometer to schedule irrigation by drip 
emitters? 

P. Wierenga: We used bi-wall ttfb'ing with a low discharge 
rate. The' tubing was buried 10 cm below the 
soil surface. Thus, there was no ponding on the 
soil surface and surface topography had little 
to do with the variation in tension. We placed 
our tensiometers such that the cup was at 30 cm 
below the soil surface and nearly below the drip 
line. For crops other than chile peppers, one 
might want to place them deeper. Optimal 
placement of tensiometers depends on the crop, 
soil type, tension to be maintained in the soil 
and other factors. 

I. Murarka: Moisture distribution measurements are presum­
ably reflecting the effects due to spatial 
variability of physical properties. Do you 
think it would be appropriate to simultaneously 
measure these physical properties and then use 
them as covariables in the analysis of moisture 
data? 

P. Wierenga: Yes, this would be possible, but requires more 
work. 

J. Dane : In one of your graphs you showed a large jump in 
tension along the transect and a corresponding 
jump in water content. Can you use all these 
data to construct semi-variograms or are you 
actually taking observations from 2 different 
populations? 
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P. Wierenga: You are probably right in saying that data were 
taken from different populations. Using the 
split moving window technique, one obtains well 
defined boundaries along the transect. One 
could use this technique to distinguish segments 
with clearly different physical properties and 
then construct semivariograms for each segment. 
Another approach would be to first detrend the 
data and construct one semivariogram for the 
entire transect. 

J. Bonma: You mention that ranking of tensiometer results 
remains often the same upon wetting and drying. 
Is this correlated with differences in texture 
or other soil properties? This could give a 
relation with soil survey?. 

P. Wierenga: I did not say that ranking of tensiometer 
results remains the same. I said that Vachaud 
and Warrick have observed this for water con­
tent. It would be nice if this held true for 
tensions but this needs to be investigated. I 
would expect it would be true and, if so, there 
should be clear correlation with soil survey 
data. 
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Soil variability and soil survey 

J. Bouma, Soil Survey Institute/ P.O. Box 98, 6700 AB Wageningen, 
the Netherlands 

Introduction " ' '. 

Soil survey has been engaged in defining the spatial and temporal 

variability of soils in landscapes since the early part of the 

century by distinguishing different soil types and associated soil 

survey interpretations (e.g., Arnold, 1983) . Delineated areas on 

the soil map are named after well defined soil series which are 

assumed to occupy around 80% of the delineated areas (Soil Survey 

Staff, 1951). This composition of mapping units on the soil map 

has been investigated by many researchers (e.g. Wilding, 1983). 

Application of (geo)statistical techniques in soil survey is and 

remains a crucial activity because €he degree of detail in map 

legends as well as in soil-map interpretations should be restrain­

ed by the spatial variability of soil properties in the field. The 

purpose of this paper, therefore, is to: (i) analyse sources of 

variability and means to reduce them; (ii) compare soil deline­

ations as'made by soil surveyors to those obtained by interpo­

lation of point data and (iii) discuss future developments. The 

discussion will be focused on the use of soil survey data for 

practical applications, emphasizing both land evaluation for actu­

al and for potential conditions to be realized by soil and water 

management. Definition of land potentials for future applications 

appears to be particularly relevant at this time (e.g. Bouma, 

1984). An attempt is made to avoid repetition of reviews present­

ed elsewhere. 
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Sources of variability 

Method selection 

Spatial variability is determined by subjecting experimental or 

observational data to (geo)statistical procedures. Those proce­

dures are discussed in statistical text-books and in other papers 

of this workshop. Attention will therefore be focused here on the 

methods and procedures by which data are obtained. This aspect ap­

pears to have been somewhat neglected so far. When discussing 

methods, emphasis is most frequently placed on technical aspects 

in terms of the type of equipment to be used and associated calcu­

lation procedures. Questions as to whether certain methods can ,be 

universally used or only in a limited number of soils, have re­

ceived relatively little emphasis. The same can be said about 

choosing optimal sample sizes. Operational aspects of the various 

methods receive usually less emphasis than the technical ones. 

Substantial variability can originate from using the wrong method 

at the wrong time, at the wrong place or by applying, for in­

stance , a complicated technical procedure, even though only rela­

tively untrained personnel is available. Some methods use compli­

cated calculation procedures including substantial error even when 

applied professionally (e.g. Vachaud, 1982). Others yield data di­

rectly. A qualitative review of sixteen methods for measurement of 

the hydraulic conductivity of saturated soil (K ) and of eleven 

methods for measurement of K of unsaturated soil (K ) was pre-
unsat 

sented by Bouma (1983), emphasizing aspects such as: (1) time 

needed for preparation, execution and calculations; (2) costs of 

personnel and materials,- (3) complexity and (4) accuracy. 

Seven arbitrarily selected examples will be discussed to illus­

trate the relevance of method selection: 

Example 1: The auger-hole method is widely and successfully used 

to measure K ^ below the water-table in sandy soils. After empty-
sat 

ing an auger hole, the velocity by which water re-enters the hole 
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is measured and K . is calculated with a calculation procedure, 
sat 

based on a sand-flow model. Plow in bi-porous soils, containing 

water conducting macropores and a very slowly permeable matrix, 

cannot be well characterized by this method. For example, Bouma et 

al. (1979) reported an average K of 5 mm day , in a clay soil, 

as measured with the auger-hole method while the real value was 
-1 

500 mm day . K , as measured by the auger-hole method, is gov-
sat 

erned by the degree of interception of water conducting macropores 

by the auger hole. Augering of the hole-induces smearing of its 

walls which explains the low values observed..Smearing may not be 

complete, however, and thus an extra variability factor is intro­

duced as a function of the variable number of intercepted macro-

pores. • 

Example 2: The double-ring infiltrometer is widely used to measure 

infiltration rates. The second ring is applied to avoid lateral 

flow of water from the inner ring. The method works well in sandy 

soils (e.g. FAO, 1979). However, problems occur in bi-porous soils 

with cracks where water runs away laterally. As a result, very 

high infiltration rates are measured in the inner tube. Such rates 

are much higher than rates occurring" in an entirely flooded field. 

The location of the infiltrometer rings is crucial as it deter­

mines how many cracks or other macropores are present in the sur­

face of infiltration. Placement, as such, is therefore a major 

source of variability associated with the method being used and 

not with the physical characteristic being investigated. 

Example S: The double-tube method for measuring K (Bouwer, 
sat 

1962) works well in sandy soils, even though the amount of re­

quired labor is very high. The method is based on lateral movement 

of water from the outer-into the inner tube. This movement can oc­

cur in soils with cracks, but not in soils with well defined 

strictly vertical or horizontal macro-pores. A K of 20 cm day 
sat 

was measured with the double-tube method in a silt loam soil in 
Wisconsin, while sprinkling irrigation with rates of up to 120 cm 

-1 
day did not produce surface ponding of water. Obviously, the 
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K of 20 cm day did not characterize the real flow system. The 
sat 

rapid infiltration rate in the field was possible because of worm 

channels extending into a sandy subsoil. These worm channels did 

not contribute towards flow from the outer to the inner tube. 

Example 4: Sometimes questions have to be answered that cannot be 

solved by applying existing methods because they are unsuitable. 

If, for some reason, existing methods are used, questionable re­

sults are obtained. In our work, we encoutered this problem when 

asked to measure the vertical K . of an indurated spodic horizon. 
sat 

Use of sampling cylinders or infiltrometers would have resulted in 

fracturing of the horizon, making measurement results irrelevant. 

It was decided to carefully chip out an in-situ column and encase 

it in gypsum. Then, the steady infiltration rate in the column was 

measured while pressure heads were registered simultaneously in 

soil above and below the spodic horizon (Dekker et al., 1984). 

Fortunately, there was time available in this particular project 

to develop a new method. Often, this time is not available during 

contract work. 

Example 5: This example does not focus on the use of a particular 

method, but, rather on the occurrence of the phenomenon of "bypass 

flow" (earlier called: "short-circuiting"). This process describes 

vertical movement of "free" water through an unsaturated soil ma­

trix. As such, the process is not discussed in current soil phys­

ics text-books. It is important in many soils and it affects re­

sults of measurements and adds to the observed variability when 

methods are used that assume presence of homogeneous soil. Methods 

have been developed to measure bypass flow (e.g. Bouma et al., 

1981). Recognition of this phenomenon may help to explain what ap­

pear to be erratic, highly variable measurement results at first 

sight. 

Example 6 : Various methods for measuring soil permeability re­

quire in situ measurement of moisture contents and pressure heads. 
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H 
Variability associated with applying the neutron probe was dis­

cussed by Vachaud (1982). An extra variability factor is intro­

duced when this method is applied in bi-porous soils where neu­

trons intercept widely spaced water-conducting pores in an unpre­

dictable manner. Effects of using different sizes of tensiometer-

cups on measured pressure heads were reported by Bouma et al. 

(1982). Large cups intercepted micropores, small cups did not. Ob­

served pressure heads differed accordingly. The suggestion was 

made to excavate tensiometer cups after experiments and to describe 

pore patterns in surrounding soil, possibly by using dyes. Thus, 

sub-populations of data may be distinguished. 

Example 7: Different methods are often available to measure the 

same soil characteristic. In contrast to examples 1, 2 and 3 where 

some methods produced incorrect results, different methods being 

considered in this example produce good results. Still, data are 

different and it is important to define one's purpose in making 

measurements when selecting one of the methods. Besides, a signif­

icant source of variability is created when different methods are 

concurrently applied. An example is taken from the work of 

Dr. P. Stengel (INRA, Avignon, France) who measured soil porosity 

with two different techniques (Fig. 1). Data in Figure 1A were de­

rived from in-situ measurements determining tb̂ e volume of a bal­

loon being filled inside a small soil excavation. Data in Figure 

IB were derived from large, undisturbed cores of approximately one 

. liter'content. The' higher values in Figure 1A were due to irregular 

extensions of the balloon into cavities next to the excavation, 

which did not occur in the rigid cylinder. 

The above examples can be extended to other methods, in demon­

strating that certain physical methods cannot be applied in all 

soils. Soils with macropores, or with strongly contrasting soil ho­

rizons impose, for example, drastic boundary conditions for the 

flow system. In many projects researchers are forced to obtain data 

within a limited period of time, as specified in a contract. From 

a scientific point of view lack of data is preferable to incorrect 
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0.35 0.40 0.45 0.50 
porosity (m3m"3) 

0.35 0.40 0.45 0.50 
porosity (m3nr3) 

Fig. 1 Comparison of soil porosities obtained with two methods. 
Method A used the volume of a balloon being filled inside an exca­
vation. Method B used large, undisturbed cores. F is the frequency 
of measured porosity classes (data courtesy of Dr. P. Stengel, 
INRA, Avignon, France). 

data. Unfortunately, in the real world the opposite appears some­

times to be true. 

Sample location 

Sampling at regular depth intervals is often applied with good re­

sults in relatively homogeneous soils with weakly developed soil 

horizons. When clear soil horizons exist, however, it is prefera­

ble to sample by horizon (e.g. Peterson s Calvin, 1965). A sample 

containing fragments of two adjacent, and as such quite different, 

soil horizons, will yield data that are hard to interpret. How­

ever, it should be realized that pedological horizons as distin­

guished in soil survey, are not always good "carriers" of data 

that are relevant for the particular interpretation being pursued. 

Some pedological distinctions may be irrelevant in this context, 

while relevant aspects may not be reflected in the horizon classi­

fication. For example, when determining hydraulic conductivity 
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curves for subsoil soil horizons in an area of 125 ha in the 

Netherlands, we found three types of significantly different 

curves, while seven different pedological soil horizons had been 

distinguished. Of course, such a finding does not present a prob­

lem here because it is attractive to have fewer types of curves 

to work with (Wösten et al., 1985). A problem would arise when 

quite different types of curves would occur within one type of pe­

dological soil horizon. Then, obviously7 soil survey data on soil 

horizons would be inadequate to serve as a "carrier" of physical 

data. The fact that this particular problem: did not occur in the 

study cited above, does not imply that it could not exist else-

where. 

Sample size 

Many measurement procedures use standard sample sizes, because of 

fixed dimensions of sampling cylinders or of equipment being used. 

For example sampling cylinders with a fixed volume of 100 cm3 have 

been used extensively in different laboratories. Equipment, such 

as the double-tube or air-permeameter, comes in standard sizes. 

There is good justification to vary sample size as a function of 

soil structure, as a means ,to reduce variability among replicate 

measurements (e.g. Bouma, 1983). Soil structure'descriptions can 

be used to tentatively define representative elementary volumes of 

samples (REV's), which are the smallest sample-volumes that can 

represent a given soil horizon by producing a consistant populat­

ion of data. To do so, the elementary units of soil structure 

(ELUS) have to be distinguished. These are individual sand grains 

in sandy soils and natural aggregates ("peds") in aggregated soils. 

Peds can vary in size up to several liters each in. very coarse, 

prismatic subsoil structures. Even though emphasis in soil struc­

ture descriptions is often placed on the solid phase in terms of 

soil grains and peds, real emphasis should be on the nonsolid phase 

where transport processes take place. Of course, by describing 

grains and peds, information is also provided about the pores be­

tween them. In addition, pores that do not result from the packing 
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of grains or peds, should be considered separately. Such pores are, 

for example, root and worm channels with a cylindrical shape. As a 

general rule we have proposed that REV's should contain at least 

20 ELUS but preferably more, or that any sample taken should have 

a representative number of channels per unit surface area. When 

applied literally, samples can become very large (e.g. table 1). 

If so, selective sampling of structural elements or soil fragments 

that contain representative quantities of pores and peds, should 

be considered. In any case, a structural description should be 

made. When worm channels occur in a soil, they may have such a 

large effect on soil hydrology that measurements of infiltration 

rates into individual channels may be a better procedure than 

measurements in a given area (e.g. Bouma et al., 1982). , 

A very tentative classification has been proposed for sample sizes 

in four broad textural classes (Table 1) (Bouma, 1983). 

Table 1. Hypothetical Representative Elementary Volumes (REV's) of 

soil samples as a function of soil texture and structure. Selec­

tive sampling of separate soil structural features must be consid­

ered when samples become very large. 

Class Texture Structure Hypothetical REV 

a sandy 

b loamy 

c clayey 

d clayey 

Defining REV's as a function of field descriptions of soil struc­

ture needs to be further investigated. Data by Anderson S Bouma 

(1973) illustrate the potential of the procedure (Table 2). Un-

realistically high K values were measured in soil cores con-
sat 

taining fewer than twenty ELUS. Values measured with a gypsum-

covered column having a volume of 12 liters, averaged 70 cm day 
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no peds 

small peds 

medium peds 
continuous macropores 

large peds 
continuous macropores 

io2 

io3 

io4 

io5 



The reason for the high K values in the small cores is the high 

and unnatural vertical continuity of cracks between the peds in 

small samples. 

A second example was presented by Bouma et al., 1979. They meas­
ured K of a heavy clay soil in large, gypsum covered, samples 

sat 
of 16 liters. Thus, a population of data was obtained that allowed 

the statistically significant conclusion that K had increased 
sat 

as a result of tile drainage. Use of small cores produced a highly 

variable population of data that did not allow such a conclusion. 

Relationship between REV's and ELUS are currently investigated in 

a joint project between the Netherlands Soil 6urvey Institute and 

the Agronomy Department of Cornell University, USA. 

Table 2. Measured hydraulic conductivity values of saturated soil 

(K ) in soil cores of varying height but with a diameter of 
sat 

7.5 cm, containing different numbers of elementary units of struc­

ture (ELUS). Measurements were made in a silt loam soil with medi­

um sized peds with an average volume of approximately 30 cm3. The 

largest sample was a gypsum-covered column of soil with a diameter 

of 30 cm .(derived from Anderson & Bouma, 1973) . 

Sample 

(cm3) 

230 

330 

460 

780 

12 000 

Volume ELUS 

(no) 

8 

11 

15 

26 

400 

K 
sat 

(cm 

650 

320 

100 

75 

70 

day -1) 

S 

(cm day ) 

350 

320 

80 

30 

20 

The foregoing discussion is summarized in Figure 2 which empha­

sizes the need to use soil survey information, when selecting sites 

and soil profile characteristics, when selecting methods and when 

taking samples. 
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new 

definition of problem 

required data 

site selection 

measurement 

data 

general soil characterization 

a= 

method selection 

sample dimension 
N 

sample 
H 

location 

Fig. 2 Diagram illustrating site selection and measurement of data 
without using soil survey information (old procedure) and a new 
procedure that does consider this information (see text). 

Soil maps as indicators of spatial variability 

Introduction 

So far, the discussion was focused on ways in which data are ob­

tained. Now attention will be focused on use and interpretation of 

data. 

Spatial variability studies in relation to soil mapping have been 

made or reviewed by several authors (e.g. Wilding, 1983; Nielsen 

et al., 1983; Webster & Burgess, 1983; Burrough, 1983). In this 

paper attention is focused on using soil survey for land evalua­

tion and, more specifically, on the following points: 

(1) How do predictions based on a soil-map legend compare with 

interpolations (e.g. kriging) using point data, 
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(2) What could be the future role of (geo) statistics in soil 

survey. 

Determination of the spatial variability of pedological properties 

within delineated areas of the soil map is of interest but partic­

ular emphasis is now increasingly placed on the interpretation of 

soil maps in terms of land evaluation. In this context, character­

istic land qualities are emphasized such as: moisture availabili­

ty, trafficability, aeration-status etc. "(FAO, 1976). 

Van Kuilenburg et al. (1982) studied the spatial variability of a 

calculated soil moisture supply capacity by .comparing estimates 

derived from the soil map with values obtained by applying three 

interpolation techniques to point data. The area studied was 

4 km2 and contained sandy soils. In total, !?30 survey borings 

were made and 661 independant test borings that were used to judge 

soil survey interpretations and results of interpolations. A root 

mean squared error of 32 mm of water was obtained when estimates 

were based on representative soils of the various mapping units, 

while this error was 29 mm when kriging of point data was applied. 

Moisture supply capacity ranged from 50 to 240 mm; indicating a 

relatively high error for both methods. In this particular exam­

ple, application of kriging hardly led to better results than in­

terpretations based on the s.oil map. The basic conclusion was that 

the land quality "moisture supply capacity" was quite variable. 

This aspect should be reflected in the legend of the map. 

Another study was made in which emphasis was placed on the dis­

tinction of major soil horizons in an area of cover-sands, over­

lying boulder-clay. These horizons were first distinguished by the 

usual pedological criteria. Next, hydraulic conductivity (K-h) and 

moisture retention curves (0-h) were measured sixfold. Horizons 

that had statistically identical properties were grouped together, 

reducing the total number of'different horizons that could be 

distinguished (Wösten et al., 1985). This procedure does not focus 

on a land quality, but, rather, on a land characteristic, which is 

a property that can directly be measured (FAO, 1976). The two 

physical properties, being distinguished, are, of course, impor-
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tant for simulation programs for the soil water regime which is, 

in turn, crucial for most land qualities being distinguished for 

land evaluation (e.g. Bouma, 1984). As stated, horizons were de­

fined that had identical K-h and 0-h properties. These were di­

rectly attributed to the delineated areas on the soil map, provid­

ing a means to predict these data for any location in the study 

area by extrapolation. Simultaneously, interpolations with the 

kriging technique were used, based on point data as obtained by 

borings during the soil survey. The comparison of both procedures 

was based on 60 independent borings that were made at random using 

a method to be described by De Gruyter in the next paper. Results, 

reported in detail by Bregt & Bouma (1985) showed that application 

of kriging resulted in less accurate predictions than the ones/ ob­

tained by the interpretation of the soil map. 

Obviously, more of such studies are needed to evaluate the poten­

tial of both traditional soil survey and of modern interpolation 

techniques. Care should be taken to not ignore the potential of 

available procedures by focusing completely on new interpolation 

techniques. In fact, integrating both procedures would appear to 

be most attractive. In contrast to many geological applications, 

differences among soils in a landscape are often associated with 

visible landscape features at the surface and with vegetational 

patterns. These features are reflected on soil maps and should be 

considered when defining spatial variability. Soil maps could 

therefore be used to define clearly different subpopulations of 

soils within an area to be characterized on the basis of land­

scape or other visible features. Use of statistical sampling tech­

niques within each of these subpopulations could function to de­

fine their internal properties in a quantitative manner. 

As is, the application of (geo)statistical techniques in soil 

survey is often a check of the existing map-legend, testing the 

delineated areas on the soil map. A more realistic use would be an 

application before soil mapping because then the proper degree of 

detail of the legend to be chosen for the particular area being 
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considered, can be defined on the basis of the variability being 

observed (see Fig. 3). 

ID-
SOIL CLASSIFICATION 

+ 
MAP LEGEND 

(2)- VARIABILITY STUDIES 
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. L . 
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MAPS 

r \ 
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.1 
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+ 

INTERPRETATIVE 
MAPS 

Fig. 3 Diagram illustrating some actual variability studies which 
focus on existing maps (procedure Di-'J more promising procedure 2 
uses variability studies to'define legends of maps with a known 
variability. 

Soil survey and (geo)statist-ice in future 

The above discussions, which cover the role of soil survey infor­

mation when studying the spatial variability of soil properties, 

relate to future work and can be summarized as follows for discus­

sion purposes: 

(1) Data on soil variability are derived from multiple measure­

ments. Too little emphasis is being placed now on selection of 

methods and sampling locations, using soil survey data. The dia­

gram in Figure 2 illustrates the proposed procedure. However, more 

case-studies are needed to show the usefulness of soil structure 

descriptions for determining optimal sample sizes and of soil maps 

and soil horizon descriptions for determining optimal sample loca­

tions and depths. Geostatistical studies are needed in addition, 

to define the optimal distance between multiple samples. 

(2) Aside from studies that examine the pedolögical purity of map­

ping units in the field, attention should be paid to the variabil-

142 



for land evaluation. Sometimes, pedological distinctions are made 

that are irrelevant for certain interpretations. This offers no 

problems, since the number of distinctions can easily be reduced 

to include only those that are relevant from a functional point of 

view. A problem occurs when a single pedological distinction has 

more than one interpretative meaning. Then, obviously, pedological 

data are less useful as "carriers" of interpretative information. 

So far, we know far too little about this "carrier" function of 

pedological data for various interpretations and its variability. 

(3) Soil maps are made by soil surveyors who use their best judg­

ment in drawing boundaries between mapping units. Those boundaries 

can also be obtained by using modern interpolation techniques be­

tween point data. More studies should be made comparing both pro­

cedures. This can only be done by independant test borings. A mix­

ture of both procedures could perhaps be interesting for future 

work. Certain landscape features are so clearly evident that (geo) 

statistical techniques are not needed to distinguish them. Hence, 

these features can be used to define subpopulations in terms of 

areas which can be characterized by considering point data within 

these areas. 

(4) Sometimes, soil survey appears to be particularly focused on 

map legends and soil classification schemes, which are, of course, 

only intended to be a means towards a purpose and not a purpose in 

itself. The key function of variability studies in future could be 

the definition of optimal map legends, as illustrated in Figure 3. 

Completion of country-wide surveys reduces the need for continued 

use of a unified legend. Legends should be composed for any par­

ticular area and possible application. Availability of soil infor­

mation systems which allow flexible handling of basic data, is nec­

essary for this type of approach. 

143 



References 

Anderson, J.L. S J. Bouma, 1973. Relationships between hydraulic 

conductivity and morphometric data of an argillic horizon. Soil 

Sei. Soc. Amer. Proc. 37: 408-413. 

Arnold, R.W., 1983. Concepts of soils «nd pedology. In: Pedogene­

sis and Soil Taxonomy. L.P. Wilding, N.E. Schmeck and G.F. Hall 

(eds.): Developments in Soil Science IIA. Elsevier, Amsterdam: 

1-21. 

Bouma, J., 1983. Use of soil survey data to select measurement 

techniques for hydraulic conductivity. Agric. Water Managern. 6 

(2/3): 177-190. 

Bouma, J., 1984. Estimating moisture related land qualities for 

land evaluation. In: Land Use Planning Techniques and Policies. 

SSSA Special Publication no. 12. Am. Soc. of Agronomy, Madison, 

Wise. , USA: 61-76. 

Bouma, J., L.W. Dekker & J.CF.M. Haans, 1979. Drainability of 

some Dutch clay soils : a case study of soil survey interpreta­

tion. Geoderma 22 (3): 193-203. 

Bouma, J., L.W. Dekker s C.J. Muilwijk, 1981. A field method for 

measuring short-circuiting in clay soils. J. Hydrol. 52 (3/4): 

347-354.' 

Bouma, J., C.F.M. Belmans" & L.W. Dekker, 1982. Water infiltration 

and redistribution in a silt loam subsoil with vertical worm 

channels. Soil Sei. Soc. Am. J. 46 (5): 917-921. 

Bouwer, H., 1962. Field determination of hydraulic conductivity 

above a water-table with the double-tube method. Soil Sei. Soc. 

Am. Proc. 26: 330-335. 

Bregt, A. S J. Bouma, 1985. Spatial patterns of soil physical 

characteristics as derived from soil survey and from kriging of 

point data. Soil Sei. Soc. Am. J. (in press). 

Burrough, P.A., 1983. Problems of superimposed effects in the sta­

tistical study of the spatial variation of soil. Agr. Water 

Managern. 6: 123-145. 

Dekker, L.W. , J.H.M. Wösten S J. Bouma, 1984. Characterizing the 

soil moisture regime of a Typic Haplohumod. Geoderma 34: 37-42. 

144 



FAO, 1976. A framework for land evaluation. FAO Soils Bulletin 32. 

Rome, Italy. 

FAO, 1979. Soil survey investigations for irrigation. FAO Soils 

Bulletin 42. Rome, Italy. 

Nielsen, D.R., P.M. Tillotson S S.R. Vieira, 1983. Analyzing field 

measured soil-water properties. Agr. Water Managern. 6: 93-111. 

Petersen, R.G. S L.D. Calvin, 1965. Sampling. Chapter 5 in: 

Methods of Soil Analysis. Part 1. C.A. Black (ed.) Am. Soc. of 

Agronomy. Agronomy Series no. 9: 54-73. 

Soil Survey Staff, 1951. Soil Survey Manual. Us. Dept. Agriculture 

Handbook no. 18. U.S. Dept. Agr., Washington. 

Vachaud, G., 1982. Soil physics research and water management. 

Whither Soil Research. Proc. ISSS Congress, India: 32-59. / 

Van Kuilenburg, J., J.J. de Gruijter, B.A. Marsman S J. Bouma, 

1982. Accuracy of spatial interpolation between point data on 

soil moisture supply capacity, compared with estimates from map­

ping units. Geoderma 27 (4): 311-325. 

Webster, R. & T.M. Burgess, 1983. Spatial variation in soil and 

the role of kriging. Agr. Water Managern. 6: 111-123. 

Wilding, L.P. & L.R. Drees, 1983. Spatial variability and pedology. 

In: Pedogenesis and Soil Taxonomy. L.P. Wilding, N.E. Schmeck 

and G.F. Hall (eds.): Developments in Soil Science IIA. Elsevier, 

Amsterdam: 83-113. 

Wösten, J.H.M., J. Bouma & G.H. Stoffelsen, 1985. The use of soil 

survey data for regional soil water simulation models. Soil Sei. 

Soc. Am. J. (in press). 

145 



r i 
Discussion 
M. Nash : 

J. Bowna : 

K. Flaah: 

L. Stroosnyder: 

D. Nofziger: 

J. Bowna : 

B. Clothier: 

What is the size of the delineated areas on the 
soil map once the soil variability has been 
determined for different soil properties by 
geostatistical techniques? 

From a purely cartographic point of view, the 
minimum size of delineated areas is a function 
of map scale: very small areas cannot be 
observed. More important is the observation 
that different soil properties (e.g. % clay; pH; 
% org. matter) may have different ranges. So 

.which one is to be used? Lt.is suggested to use 
the spatial characteristics of the land quality 
that is considered to be most relevant for the 
study concerned. In my.paper it was the land 
quality: moisture supply capacity, which was 
characterized by different land characteristics. 

The minimum size of ,t,he mapping unit depends on 
the purpose of the soil survey. Map scales must 
be adjusted accordingly, and they should never 
determine minimum size. 

The quantification of soil surveys and their 
interpretations is indeed necessary and quite 
useful, but we should not forget that to do so 
requires many data that are usually not avail­
able in most developing countries. More quali­
tative surveys are "still very valuable in that 
context. 

What operational problems are »involved when 
measuring modeling parameters that have vastly 
different representative elementary volumes 
(REV's)? 

Studies on REV's using morphological soil-
structure data have so far centered on measure­
ment of the hydraulic conductivity. It is 
conceivable but not likely that other physical 
parameters would have different REV's. We don't 
know yet. Of course, a sample can never be too 
big. So it may be advisable to aim'for uniform 
large sample sizes for a given soil horizon, 
even though this could represent a certain 
"overkill" for some parameters. 

The difference between the 5 mm/hr auger-hole K 
and the K of the gypsum-coated column of 50 
cm/hr is physically important. One is dominated 
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by the matrix properties and the other by 
maçropores. Consequently the conductivity 
appropriate to pre- or non-ponding infiltration 
is 5 mm/hr. Free water infiltration will be 
typified by 50 cm/hr. Saturated (or near-
saturated) conductivity is not a unitary 
property, but needs to be measured appropriately 
for the purpose required. 

J. Bovma : 

Further, the difference between the two values 
may be more important than their absolute 
values. The former (matrix) property is soil-
texture dominated. The latter (macropore) is 
controlled by management. 

I do not completely agree with your assessment. 
The K of 5 mm/day is found because water-

sat 
conducting macropores are partly closed by 
puddling of the walls of the borehole. Watej? 
movement still occurs along the macropores, as 
the matrix has a very low conductivity. The 
auger-hole method is used to assess drainability 
of soils. The measured value would lead to the 
(incorrect) conclusion that tile-drainage would 
not be feasible. However, it is widely and 
successfully applied, based on the real K of 
50 cm/day. When considering pre- or non-ponding 
conditions we need hydraulic conductivities of 
unsaturated soil, which can be measured with the 
crust test. 

C. Wang : We used the auger-hole method to measure K ^ of 
sat 

clay soils after scratching the walls or the 
borehole. Thus, the puddling problem is over­
come. We do have serious problems in soils with 
very fine sandy textures, where the borehole 
caves in. 

J. Bovma: I wonder about your reference level for K 
— — — — — j sat 

Usually, the only way to remove the adverse 
effects of puddling is by drying and cracking. 
Also, augering the hole under dry conditions and 
coming back later for the measurement, may work. 
I stress that it is not my intention to discuss 
the merits of the method as such, but to use the 
example to illustrate the effect of method 
selection on variability observed. My paper 
gives several other examples. 

H. ten Berge : Especially in soil physics and hydrology the 
problems of spatial variability and ERV are 
introduced by wanting to measure site-specific 
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properties like K . I believe that the 
connection between soil physics on the one hand 
and regional soil surveys, management practices 
etc. on the other hand should be established 
through (inverse) modelling. In most surveys, 
hydraulic soil properties are determined to be 
applied in deterministic models, not to develop 
these models. 

J. Bouma: We apply indeed our measurements in determin­
istic models. Basic data ĥ ave to be representa­
tive so as to allow generation of realistic 
output data from the models. We certainly don't 
want to build "black-box" models. A representa­
tive K value for a soi.1, obtained by a 

sat correct method in an adequate sampling volume, 
is, of course, considered to bë input data for 
the model. 

C. Topp: There is a' need to better define soil morphology 
data in relation ta> the determination of soil 
physical characteristics. A problem when using 
soil morphology data is its qualitative 
character. 

J. Bouma : Standard soil structure descriptions, as made in 
the" field, are indeed qualitative in nature. 
Quantification has particularly been developed 
in micromorphology using thin sections. Stain­
ing tests and drawing of ped faces and macro-
pores on transparent sheets, will allow more 
quantitative assessments of macrostructure. 
More work is' needed here. 

C. Topp: A major challenge for this gathering is how to 
bridge the gap in communication between those, 
such as pedologists, who of necessity operate in 
a qualitative domain and those, such as phys­
icists, who require or desire more quantitative 
information. J. Bouma has suggested transfer 
functions as one mechanism. The calibration or 
definition of these transfer functions is very 
labor intensive and I ask are there other 
mechanisms which require less labor? I suggest 
that one other mechanism is for physicists to 
operate with pedologists to calibrate and 
quantify the pedologists well-developed obser­
vation capabilities. 

J. Bouma: I doubt whether transfer functions always 
require so much labor. Specific measurements 
must always be made. In your studies, for 
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example, you used the air-permeameter to measure 
K . The idea of the transfer functions is to 
correlate them in some way with data obtained in 
soil survey. For example, correlations with 
texture are attractive in this context. But 
such simple correlations often don't work. In 
my paper I used an example in which pedological 
soil horizons and soil series were used as 
"carriers" of physical information. I believe 
you have done the same in your studies. This 
seems to be a good example of using observations 
by pedologists to estimate physical data. We 
need much more work in this area. 
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Transect sampling for reliable information 
on mapping units 

J.J. de Gruijter, Institute TNO for Mathematics, Information Pro­
cessing and Statistics, P.O. Box 100, 6700 AC Wageningen, 
B.A. Marsman, Netherlands Soil Survey Institute, P.O. Box 98, 
6700 AB Wageningen, The Netherlands. 

Introduction 

In soil survey there is a need for using efficient sampling meth­
ods to gather reliable information on soil conditions in mapping 
units. The reasons for this are discussed by e.g. Wilding (this is­
sue) and Bouma (this issue). Wilding & Drees (1983) give a general 
review of sampling methods i» the context of spatial variability 
and soil survey. We started a search for a sampling method which 
meets the following conditions. 
1. The method must lead to unbiased estimates of the average of 
soil properties within mapping units. 
2. The efficiency should be as high as possible, i.e. with fixed 
costs the accuracy of the results is maximized, or with fixed ac­
curacy the costs are minimized. Time spent on fieldwork forms a 
major component of costs involved. 
3. It should be possible to quantify the accuracy of the results 
in an objective way. 
4. Field work and statistical calculations should be as simple as 
possible, for practical operational reasons. 

Only samples of medium size (say n between 10 and 100) can be af­
forded in practice. With Chat size it would hardly fee possible to 
properly verify the assumptions underlying regionalized variable 
theory. Estimation of variograms would often be problematic too. 
So sampling and statistical inference based on this theory would 
generally violate the third condition mentioned above. We confine 
ourselves therefore to classical sampling theory (see e.g. Cochran, 
1977). Units are then selected by a procedure with some random com­
ponent, so that the observations are mutually independent and accu­
racy can be quantified without resort to unproven assumptions. For 
the selection of an efficient sampling design it is imperative to 
use the surveyors knowledge of the spatial variation and logistics 
of field work in the area to be sampled. Input of the 'field survey­
or is crucial. 

Random sampling by point transects seems promising, partly because 
of its operational advantages. Transect sampling has been applied 
in soil science rather frequently during the last decennia. See 
e.g. Powell S Springer (1965), Steers S Hajek (1979), Wang (1982) 
and Bigler & Liudahl (1984). 
It is not always possible to judge the methods used for sampling 
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and statistical analysis because no sufficient details are given. 
Where this is possible, however, it must in some instances be con­
cluded that the published results are biased to an unknown degree. 
The main reasons for this are that starting points of transects 
were chosen at a fixed distance from the boundary of delineations, 
that observation points initially falling in 'non-soil' area were 
shifted, and that in calculating averages the values were not 
weighted according to the sampling design used. 
We developed a new sampling method by which unbiased estimates are 
obtained. In this article we give some reasons why we expext this 
method to be efficient in terms of costs and accuracy. In a future 
article we hope to quantify its efficiency and to compare this with 
alternatives. 
It should be noted that we concentrated on easily accessible ter­
rains, like most rural landscapes in The Netherlands. 

A method of sampling by random transects 

General description of the method 

Conceptually the soil universe of the mapping unit is divided into 
a very large number of small square cells, forming a finite popu­
lation of discrete elements. Observation points are located in the 
centres of these cells. 

As a form of two-stage cluster sampling, two mutually perpendicular 
transects with equidistant observation points are randomly se­
lected from each of a number of randomly selected delineations of 
a mapping unit. 
In the first stage the delineations act as sampling units. They 
are selected with replacement and with probabilities proportional 
to size, i.e. number of cells or area. 
In the second stage the sampling units are clusters of cells in a 
linear configuation. Any of these clusters can be conceived as 
constructed by taking cells from a given row or column, going 
through a delineation while constantly skipping a fixed number of 
cells. (The skipped cells belong to similar clusters which may be 
selected from the same row or column). So each cluster corresponds 
to a possible transect with equidistant observation points. From 
each of the delineations selected in the first stage two mutually 
perpendicular transects are selected at random. 

Generally these transects will cross and could then have an obser­
vation point in common. However the transects, being sampling units, 
have to be disjoint. Therefore we introduced an extra restriction 
on the way the transects are formed: the cells of a given delineat­
ion are divided into two strata, like the black and white fields of 
a checkboard. Now all transects along rows are composed of cells 
from one stratum only, while the other stratum produces the tran­
sects along columns. From each of these strata one transect is se­
lected at random with probabilities proportional to size, viz. num­
ber of observation points. If a delineation has been selected more 
than once in the first stage, one pair of transects has to be se­
lected for each time that this delineation is selected. 
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Hydromorphic podzol soils slightly loamy fine sand 

|':':-:-:-:-:| groundwater class VI 

groundwater class IV 

Fig. 1. Location of transects in the delineations of two mapping 
units on the soil map of Lievelde, scale 1 : 10 000. 
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A technical difficulty is that delineations may contain 'non-soil' 
area, e.g. buildings, farmyards, roads and ditches. In general 
such areas do not belong to the population to be investigated. 
Some of them may be recognizable on the map, others only in the 
field. Shifting of points falling in these areas according to some 
rule is not a good solution as this leads to a systematical over-
sampling of their neighbourhoods. The selection procedure de­
scribed below proved to be practical while strictly satisfying the 
above conditions on selection probabilities. 

The procedure is illustrated by Figure 1, which shows the location 
of transects in two mapping units of a 1 : 10 000 soil map. Figure 
2 shows a detail of this map, with transects and observation 
points in two delineations. 

Preparation of sampling frames 

A rectangle is drawn around each of the delineations, with an 
orientation that may be chosen at random or on purpose, and with 
dimensions as small as possible. The lower and left sides of the 
rectangles function as X and Y axes respectively, with a length-
unit of, say, 1 mm. 
Thus each rectangle forms a local coordinate system, to be used as 
a sampling frame for the enclosed delineation. Overlapping of 
frames presents no problem. The frames are numbered and listed 
with their cumulative areas. (Note that the areas of the delinea­
tions need not be measured.) 

First stage: selection of delineations 

Step 1 : Read from a table with random numbers a number which does 
not exceed the total area of the frames. Compare this number with 
the listed cumulative areas. Select the frame with the smallest 
cumulative area that is still larger than the random number. 

Step 2: Read from a table with random numbers a pair of X and Y 
coordinates within the frame selected by Step 1. Both coordinates 
must be either even or odd. If the point in question falls in the 
delineation and not in 'non-soil' area recognizable on the map, 
select this delineation and mark the point on the map. Otherwise, 
drop this frame and repeat Step 1. 

Repeat Step 1 and 2 until sufficient selections have been made. 
Recall that any delineation may be selected more than once. The 
number of selections will strongly influence the accuracy of re­
sults as well as sampling costs. 

Second stage: selection of transects 

Step 3: Ose each of the random points resulting from Step 2 as the 
starting point in a transect parallel to the X'ax. Mark the other 
observation points of the transects, going in both directions from 
the starting point to the boundary of the delineation. The dis­
tance between adjacent points must be an even number of millime-
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ters and must be constant within delineations. (Recall the check-
board device: the number must be even to stay on the same color, 
i.e. in cells of the same structure.) Skip any point which falls, 
in 'non-soil' area recognizable on the map. 

Step 4: For each transect resulting from Step 3, select at random 
another transect from the same delineation so that they form a mu­
tual perdendicular pair. To this end, read a pair of X and Y coor­
dinates from a table with random numbers, now under the restric­
tion that one is even and the other odd. If the point falls in the 
delineation, and not in 'non-soil' area recognizable on the map, 
accept it as a starting point and mark, it on the map. Otherwise, 
try another pair of random coordinates and continue if necessary, 
until a starting point is obtained. Mark the other observation 
points of"the transects as in Step 3,'but now parallel to the Y ax. 

Field check on starting points 

In order to maintain the specified selection probabilities, real­
izing that some 'non-soil' areas may be only recognizable in the 
field, special attention should be given to the starting points 
during fieldwork. ° 
At the beginning of th'e fieldwork in a given delineation it should 
be checked whether the random point by which it was selected (also 
the starting point for the transect parallel to the X ax) lies in 
'non-soil' area. If so, the delineation is dropped as yet, includ­
ing its pair of transects. It is substituted by a reserve from an 
extra sequence"of pairs selected beforehand by Step 1 to 4. If not 
so, the delineation and its first transect is actually included in 
the sample and observations along the transect are made. 
Then the second transect, parallel to the Y ax, is checked. If its 
starting point appears to lie in 'non-soil' area, it is dropped 
and substituted by a reserve in the same delineation. Such re­
serves are to be selected beforehand by Step 4. If other than 
starting points lie in 'non-soil' area, thes*e are just skipped. 

Fitting to loeal circumstances 

Several possibilities can be used, single or in combination, to 
fit our sampling method to local circumstances, i.e. the spatial 
variation expected and the objects of sampling. The major possi­
bilities are briefly discussed below. Using them has no conse­
quences for the way the sample data are to be analysed statisti­
cally, except for stratification (see: Statistical analysis of 
sample data). 

Lay-out of transects 

The directions of the transects are determined by the orientation 
of the sampling frames around the delineations. This may be chosen 
at random or on purpose, and is allowed to vary between deline­
ations. These choices may affect the accuracy of the results, but 
not their unbiasedness. (Recall that the orientation of the frames 
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•* random observation point (starting-point of transect} 

>—• observation points, mutual distance 25 m 

Fig. 2. Detail of soil map Lievelde with transects in two deline­
ations. 

only determines how the delineations are divided into cells and 
how these cells are divided into two strata). 
It would be most efficient in terms of costs and accuracy to 
sample the delineations by transects along a trend if that existed. 
If the direction of a trend were known before sampling, this could 
be done by orientating the sample frame accordingly and selecting 
a pair of parallel instead of perpendicular transects. This can 
also be done by the above procedure, if one leaves out the re­
strictions related to the checkboard device. 

However, the directions of possible trends common to the soil pro­
perties in question will usually not be known beforehand. In that 
case the directions of the transects cannot be optimized with res­
pect to accuracy. They may still be chosen on purpose. 
For instance, specific directions may have operational advantages 
in the field, and minimizing frame areas will speed up Step 2 and 
4 of the selection procedure. The directions may also be chosen in 
such a way that genetic hypotheses related to trends can be tested. 

Similar to the directions of transects, the distances between ad­
jacent points must be constant within but may vary between deline­
ations. (So far we kept them constant in our own applications for 
simplicity). Smaller distances lead to more observation points per 
transect, which increases accuracy as well as sample costs. A com­
promise must be found between both effects. This will depend on 
the specific autocorrelation structure: the closer the correlation 
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between observations in a transect, the less information is gained. 
We are preparing a publication dealing with optimization of this 
choice (De Gruijter and Marsman, in prep.). Our experience up till 
now is limited to 1 : 10 000 soil maps of coversand areas. We have 
the impression that a distance of 20 to 30 m is a reasonable 
choice for such maps. 

Sampling large delineations by transects with relatively close ob­
servation points could lead to only few transects, with many 
points in each. This would be inefficient if variations between 
delineations are not very small compared to those within. To avoid 
this, the transects can be delimited by-splitting large deline­
ations into two or more sections. This is to be done between Step 
1 and 2 of the selection procedure. The entire delineations still 
function then as primary sampling units, but expansion of tran­
sects from their starting points is limited to the sections in 
which they fall. 

Stratification in the first stage 

To increase the efficiency of the sampling design one may stratify 
in the first stage. To that end, t"tie set of all delineations is 
first divided into a number of strata, e.g. according to size or 
location. The more homogeneous strata are formed, the more gain 
in efficiency is achieved. 

Then the selection procedure is applied to each of the strata se­
parately. To enable a straight-forward assessment of the accuracy, 
at least two delineations should be selected from each stratum. 
The results on the individual strata may also be interesting by 
themselves. 

Other types of populations 

Our sampling method may also be used in cases where the population 
to be sampled is a single area rather than a mapping unit, e.g. a 
parcel or some mapped area as a whole. The area should then be di­
vided into sections to be used as primary sampling units. Rectan­
gular or square sections have, of course, the advantage that their 
sides can directly bè used as sampling frames. See Bregt and Bouma 
(in prep.) for an application in which the purity of a map as a 

whole is estimated. 

Why this method? 

Two-stage and cluster sampling are the two major features of our 
method. In sampling technique in general both devices are applied 
to reduce the costs of visiting sample units. This advantage will 
be achieved in the present context too. Experience showed that lo­
cating a single point in the field in a sufficiently accurate way 
is one of the major components in sampling costs. Transect sampling 
reduces this drastically because once the starting point has been 
located, the other points follow easily by pacing, at least if 
they are not too far apart. As long as the points are not too 
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close, we expect the mentioned advantage to outweigh the negative 
effects on the accuracy due to autocorrelation between observa­
tions at points near by. 

Two-stage sampling makes it possible to concentrate the sampling 
effort on a limited number of delineations. This reduces the time 
needed for travelling between transects, and it opens the possi­
bility to produce results on individual delineations with suffi­
cient accuracy to be useful. We expect that two mutually perpendi­
cular transects will make this accuracy fairly independent from the 
direction of a possible unknown trend. 
Using map delineations as sampling units in a two-stage design 
seems natural; see e.g. Ragg S Henderson (1980) and Wang (1982) for 
earlier applications. 

Selection with probabilities proportional to size, as applied in 
both stages, has two advantages. Firstly, the results will usually 
be more accurate than by selection with equal probabilities 
(Cochran, 1977). Secondly, the resulting samples are 'self-weight­
ing' in the sense that no weight-factors are needed in the statist­
ical formulas. As shown in the next paragraph, the main calcula­
tions are therefore simple. 

Statistical analysis of sample data 

The statistical analysis of data obtained via the present sampling 
method is in essence given by Cochran (1977; par. 11.9). We use 
another notation to simplify the typography. 

The formulas below are applicable to quantitative as well as qual­
itative soil properties. The latter have to be represented by 'in­
dicator ' variables with 0 and 1 indicating respectively absence 
and presence of an attribute. For instance, if purity is to be 
estimated, 1 is recorded if the observed profile belongs to the 
taxon predicted by the map and 0 otherwise. The fraction of pro­
files in the right classes is then obtained by calculating the 
mean of the corresponding indicator variable. 

First stage without stratification 

If the set of delineations has not been stratified, an unbiased 

estimator of the population mean M(y) of a property y is simply: 

n(y> = ly^i/n, (1) 

where n denotes the number of pairs of transects in the sample and 

y. denotes the mean of the ithe pair, calculated as the arithmatic 

mean of the two transect means. (Note that the cells of each de­

lineation were divided into two strata of practically equal size 

and that the transect means are unbiased estimators of the respec­

tive stratum means.) 
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An unbiased estimator of the variance of m(y) is: 

v(m(y)) = \{y^ - m(y)} /{n(n-l)} (2) 

Its estimated standard error, s(m(y)), is calculated as the square 

root of v(m(y)). Confidence limits for the population mean can be 

calculated according to: 

m(y) +ts(m(y)), u (3) 

with t read from a table of Student's distribution with n-1 de­

grees of freedom. If the distribution of the y . is not too skewed, 

and n is not too small, this will give a reasonable approximation. 

An unbiased estimator of the variance among cells is (cf. Cochran, 

1977, par. 5A.11): 
2 2 * 

v(y) = m(y ) - m(y) + v(m(y)), (4) 
2 » 

where mly ) is an unbiased estimator of the population mean of the 

squared values per cell. This term, is to be calculated in the same 

way as m(y), after squaring the values of the individual observa­

tion points. 

It is indicated above how statistical estimates can be made about 

soil conditions in a mapping unit as a whole. However, estimates 

are often also required for some part of the population, referred 

to as domain in the following. For instance, separate estimates of 

properties may be required for different taxa within a mapping 

unit.,Other domains just.arise from the fact that some properties 

are only defined for. a subset of the population. For instance, a 

property like 'humus content of the B horizon' is only defined for 

profiles having a B. Such properties have to be considered within 

their domains of definition. 

As a preliminary to estimation within domains, an auxiliary vari­

able x is introduced for each domain, with value 1 if the profile 

belongs to the domain, and 0 otherwise. Furthermore, a variable y ' 

is introduced with the same values as y within the domain, but 0 

elsewhere. The mean of y within the domain, M(y\x), is then esti­

mated by the ratio (Cochran, 1977, par. 1 1 . 1 2 ) : 

m(y\x) = m(y' )/m(x) , (5) 

where m(y') and m(x) denote the estimated means of y'and x respec­

tively, calculated in the same way as m(y) in Eq. 1. 
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The variance of m(y \x) is estimated by: 

v(m(y\x)) = \{y'.'- m(y\x)x.} /{mix) n(n-D) (6) 

An estimate of the standard error of m(y\x) can be calculated by 

taking the square root of this variance. 

The variance among cells within the domain can be estimated with 

the same procedure as in Eq. 4: 

v(y\x) = m(y \x) - m(y\x) + v(m(y\x)), (7) 

where 

m(y \x) = m(y' )/m(x), (8) 

and m(y' ) denotes the estimated mean of the squared values of y' 

per cell, calculated in the same way as m(y) in Eq. 1. 

First stage with stratification 

In this case an unbiased estimate of the mean is obtained as a 

weighted average of estimated stratum means : 

m(y) = lWhm(yh), (9) 

where W, denotes the weight of the ?lth stratum, i.e. the area of 

the delineations in this stratum divided by the total area of the 

mapping unit. The mean of the hth stratum is estimated as before: 
mrv = ihi/nh' (10) 

where y-,. denotes the mean of the ith pair of transects in the 

hth stratum (again calculated as the arithmatic mean of both tran­

sect means), and n, denotes the number of pairs in this stratum. 

The variance of m(y) is estimated similarly: 

v(m(y)) = ltfv(m(yh))t (11) 

where the v(m(y,)) are calculated according to: 

v(m(yh)) = lQhi - m(yh)}
2/{nh(nh-l)} (12) 

An unbiased estimate of the variance among cells can be calculated 
2 

with Eq. 4. (The estimator m(y ) in this equation should of course 

be calculated in the same way as m(y) in Eq. 9). 

For estimations within domains the same auxiliary variable x and 

transformation of y to y'i.s used as before. First the means of x 

and y'are estimated, in the same way as m(y) in Eq. 9. Then the 

mean within the domain is estimated with Eq. 5. 
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The variance of m(y\x) can be estimated by: 

v(m(y\x)) = lW^v(m(yh\x)), (13) 

where 

v(m(yh\x)) = 

Lliy'hi-m(y\x)xhi} -nh{m(yy-m(y\x)m(xh)} ] / {mix) riyin^-l)} (14) 

The variance among cells within the domain can be estimated with 
2 

Eq. 7 en 8. (The estimator rn(y' ) in Éq. 8 should of course be 

calculated in the same way as m(y) in Eq. 9\. 

Applications ' • .... 

Since we developed the sampling method it has been applied in four 
projects of the Netherlands Soil Survey Institute7 to investigate: 
- soil conditions in two related mapping units on the 1 : 10 000 

soil map of Lievelde (province of Gelderland") ; 
- soil conditions in three single mapping units and two groups of 

physically similar mapping units on^the 1 : 10 000 soil map of 
Sleen (province of Drenthe); 

- soil conditions in a parcel, to assist one of our experts in 
quantifying possible damage from reclamation activities; 

- purity of two soil maps of the Hupselse Beek area (Gelderland), 
produced by different methods (Bregt S Bouma, in prep.). 

An application to major mapping units on a sheet of the 1 : 50 000 
soil map of The Netherlands is being planned. 

In the following some results from the Lievelde project are pre­
sented as an example. One of the mapping units studied in this 
project is defined as 'veldpodzolen' (De Bakker S Schelling, 1966) 
or Typic Haplaquods in slightly loamy medium fine sand, with a 
mean highest water-table between 40 and 80 cm, and a mean lowest 
level deeper than 120 cm-(Van der Sluijs S De Gruijter, in press). 
Seven delineations of this unit were selected: three from a stra­
tum with small delineations (i.e. < + 2 ha), and four from the 
larger ones. From each,of these delineations a pair of transects 
was selected, with one transect in E-W direction and the other N-S. 
Using a lag of 25 m this resulted in 61 observation points. By pre­
vious division of the largest delineations, the transects were de­
limited to a maximum length of 300 m. See Figure 1 and 2 for the 
location of transects and observation points. 

At each observation point a profile description was made by auger-
ing to 2 m depth. Field estimates of humus content, loam-content 
and median of sand were calibrated against laboratory analyses to 
remove systematic errors. 

Results for some important properties are presented in Table 1, 
with the estimate of the mean, its 90% confidence limits, and the 
standard deviation of the properties (i.e. square root of the es­
timated variance among cells). 
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Only a part of the observed profiles had a B horizon or a heavy 
subsoil as defined in this project. So the properties of these 
layers had to be estimated within their domains, i.e. the part of 
the mapping unit where they occur. It appears from Table 1 that 
the areas of these domains were estimated only approximately, but 
this is a usual feature of samples of this magnitude. 
The estimates of the means of the properties themselves are suffi­
ciently accurate. It is clear from the standard deviation of avail­
able moisture in the root zone, depth to heavy subsoil, and mean 
highest and lowest water-table, that there is rather a large varia­
tion of soil physical conditions in this mapping unit. In view of 
this internal variation it is questionable whether units like this 
should be treated as distinct entities in soil physical simulation 
studies. These and other results are discussed in detail by Mars-
man & De Gruijter (in prep.). 

Sampling efficiency 

With an average of 0.10 day per point, 6.2 days of fieldwork were 
needed for the 61 points of the Lievelde project. This includes' 
travelling, finding the location of observation points, augering 

Table 1. Mean with approximate 90% confidence limits and standard 
deviation of some soil properties in a mapping unit of Typic Hapla-
quods (Hn53-VI) on the 1 : 10 000 soil map of Lievelde. 

Soil property 

Al horizon: 
thickness (cm 
humus content (%) 
loam content (%) 
median of sand (urn) 

B horizon: 
domain area (%) 
thickness (cm) 
humus content (%) 
loam content (%) 
median of sand (urn) 

Heavy subsoil : 
domain area (%) 
upper boundary (cm) 
loam content 
median of sand (urn) 

Root zone : 
thickness (cm) 
available moisture (mm) 

Mean highest water-table (cm) 
Mean lowest water-table (cm) 

Mean 
conf. 

26.2 
5.7 

14.5 
157.5 

65 
22.3 

2.3 
10.0 

156.0 

56 
160.6 
20.3 

122.4 

41.0 
75.1 
50.8 

134.7 

and 90% 
limits 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 

3.4 
0.9 
2.3 
2.2 

19 
1.9 
0.8 
1.5 
2.9 

35 
13.8 
0.4 
0.9 

3.7 
13.4 

5.6 
15.5 

Standard 
deviation 

7.2 
1.4 
3.9 
6.5 

11.8 
1.3 
3.4 
7.5 

25.5 
1.4 
2.0 

7.4 
23.4 
14.2 
24.4 
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and description. We regard both this and the accuracy of the re­
sults as acceptable. 
This does not mean that our sampling design is more efficient than 
any other. It probably isn't. Neither the number of small and large 
delineations, nor the distance between points have been optimized. 

Comparing different sampling designs in terms of efficiency is in­
complete as long as only their relative precisions are considered. 
Also costs have to be taken into acccwant when making a rational 
choice of a sampling design. Average costs per observation point 
may vary with a factor two or more between.^methods, due to differ­
ences in time needed for travelling and finding the observation 
points. An early example of balancing both factors is given by 
Wilding et al. (1965). De Gruijter s Marsmatî (in prep.) hope to 
give a quantitative analysis of the efficiency of the present and 
related sampling designs. 
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n" 
Discussion 
J. Culling: 

J. de Gruijter: 

E. Runge : 

P. Greminger: 

J. de Gruijter: 

My concern relates to the problem of soil 
characteristics that are highly variable in both 
space and time. Your water-table data are an 
excellent example. It seems to me that an 
adequate analysis requires both spatial and 
temporal considerations. In this context, 
climatic factors nee3 to be involved. 

Your point is very well" taken. We should be 
careful to not . overemphasize spatial 

. variability, because temp.oral variability is 
often more pronounced. We find that simulation 
models are particularly useful to express 
temporal varability, because data gathering at 
one site during a period of several years is 
often prohibitive in terms of cost. 

We are in an interdisciplinary phase of soil 
science. You don't primarily use your own 
discipline but communicate it to others. We 
must recognize the inherent conflict of 
"knowledge base" versus "problem base" research. 
We must be tolerant of the difference and 
recognize each others strengths, so as to 
maximize knowledge being generated. We want to 
get a year smarter as well as a year older. We 
must continue this good start of a dialogue 
between Commissions' SI and S5. 

Do you think there is a possibility to build a 
transfer function to get an ^dea about the 
impact "of acid rainfall on the pH of the soil 
profile as a function of time as well as of 
space? 

The impact of acid rainfall on soil pH as a 
function of time is governed by many 
interrelated factors, such as type of 
vegetation, parent material, climatic conditions 
and soil profile development. Attempts are 
being made at several research institutes to 
develop complex deterministic simulation models 
to describe and possibly predict the rate of 
acidification processes. The term transfer 
function would, in my opinion, not really apply 
to such models. I would suggest to use there 
term only to relate relatively simple land 
characteristics (e.g., texture, etc.) to more 
complex land characteristics (e.g., CEC, 
P-adsorption) as mentioned in my paper. 
Variability in space adds yet another aspect to 
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the above. However, well defined transfer 
functions allow a better evaluation of the 
spatial (and temporal) variability aspect 
because of the larger amount of available data 
when using relatively simple land 
characteristics. 
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Spatial variability: its documentation, 
accommodation and implication to soil surveys 

L. P. Wilding, Soil & Crop Sciences Department, Texas A&M Univer­
sity, College Station, TX 77843 

Introduction ~ 

Spatial variability of soil is not an academic question. It is a 
real landscape attribute; our unwillingness or inability to 
identify it in no way decreases its magnitude» or existence. It 
is no stranger to the pedologists for it is the very essence of 
their profession. As scientists we must document the magnitude 
and form of soil variability; accommodate its existence in models 
of soils; and transmit accurately the expected pattern and 
implication of spatial changes to users of soil resources. Soils 
are not material specific; many soil properties are not single 
valued, many are transient, and many are not randomly distributed 
but rather systematically time and spacially dependent. The 
dilemma is that soils are not isotropic media but rather they are 
strongly anisotropic laterally and vertically (Wilding and Drees, 
1983). 

Soil Surveys - Saienae with a Little Art 

Spatial variability within landscape bodies is a cpntinuum. The 
purpose of soil surveys "is to partition this continuum into 
natural or artificial classes that have greater homogeneity for 
selected soil properties than the continuum as a whole. Soils 
with similar properties and environments are expected to behave 
similarily. Limiting the range of soil variables permits more 
accurate predictions of expected responses to alternative soil 
management imputs and land use. By this means, soil surveys 
represent a powerful vehicle for technology transfer. 

The methodology in conducting soil surveys, the accuracy of the 
soil map, and the specificity of its application are.often 
misunderstood. Hence, the following discussion outlines the 
scientific basis, data aquisition, and kinds of soil variability 
observed in making soil surveys in the U. S. (West et al., 1984). 
The scientific basis of a soil survey is that soils and their 
location on the landscape are predictable to an experienced soil 
scientist who has a knowledge of the geology, vegetation, 
climate, and landform patterns of the area. The soil scientist 
is not able to observe or sample the soil at every point on the 
landscape. Only enough observations are made during mapping to 
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determine soil/landscape relationships and to confirm predictions 
of soil models established from these relationships. Thus, map 
unit delineations are derived, to a great extent, from inferences 
gained from a small sampling of the landscape. This is possible 
because soil properties change systematically with landscape 
position. Visible changes in slope, vegetation, surface color, 
and drainage pattern enable a soil scientist to locally 
extrapolate soil/landscape relationships previously established. 
Thus, a soil map unit is a landscape (cartographic) unit that 
reflects the dominant soil conditions of a landscape element or 
segment (Fig. 1 ) . 

Figure 1. Schematic illustration of soils (A through F) 
occurring on different landscape segments (stability) and derived 
from different parent materials (Revised from Fig. 2.5 Grossman, 
1983). 

Most map units are named for the dominant soil series occurring 
in the delineated landscape body. Unfortunately, one of the 
common properties of soils as natural landscape bodies is 
variability. In addition to the systematic variation observed 
above, variability also occurs in an undefined (random) manner. 
Soil scientists are aware of this random variability and make 
every attempt to design map units and to map soils that restrict 
property variability to limits that permit meaningful 
interpretations of soil use, management, and behavior. However, 
soil properties are not homogenous within mapped areas. They 
often have ranges that exceed the limits imposed by the 
definition of the soil series naming the map unit. Thus, map 
units may consist of a number of soils either similar or 
dissimilar to the named series. 

The goal of the soil scientist is to design the map units and 
delineate them in a manner that limits the number of inclusions. 
However, inclusions are almost always present both as similar 
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soils with properties just outside the series range and as areas 
of dissimilar soils too small to delineate at the scale of 
mapping. Serious errors, from a user's stand point, may occur 
when a soil map is used to greater detail than the accuracy of 
mapping warrants. Detailed inspection is needed if minor soil 
variation is important to the intended use. The map unit 
descriptions should alert the user to expected variations. 

In summary, making a soil survey is a modeling exercise involving 
both the scientific method and an element of art. A soil model 
is developed by correlative studies with landform conditions; 
hypotheses are formulated, tested by ground truthing and 
verified; the model is revised and new- hypotheses are formulated 
for testing when the model fails. The soil/landscape portrait 
thus evolved is an artwork of the soil scientist much like a 
painter who transfers his mental image of a subject to the 
canvas; the greater the familiarity the painterMias with the 
subject, the more accurately expressed the mental construct will 
be. » 

Spatial Variability - A Continuum 

Spatial variability in soils is a continuum from megascopic to 
microscopic levels of resolution. It is dependent on the 
property of interest, area or volume observed or intergrated, and 
methods of determination (Fig. 2 ) . An inverse relationship 
exists between the field of view and level of resolution (Fig. 
2 ) . To generalize information gained at high levels of 
resoltuion will require a telescoping series of observations from 
visual to subvisual levels. Further, a soil survey of the 
experimental area with appropriate -placement of soils into a 
classification system, such as Soil Taxonomy, will foster 
technology transfer and generalization of the research results at 
all levels of resolution. , 

Pedologists have long been cognizant of long-range systematic 
changes, especially those correlative with surficial features, in 
soils, but only of recent have they focused on the magnitude of 
short-range spatial changes. Spatial variability in soils rarely 
increases linearly with distance; more commonly it is an 
expoential function and strongly dependent on the pedogenesis of 
soils under given environments (Fig. 3 ) . Spatial variability 
which generates the greatest problems in soil survey work are 
those changes in soils that occur subsurfically with no 
expression at the surface. This may be a consequence of parent 
material stratification, differential pedogenic processes, 
biological activity, or temporal changes in soil properties. 
Generally soil surveys made in areas of of low relief and/or of 
soils developed from fluviatile or tectonic parent materials 
yield map delineations of least reliability and accuracy. 

Systematic variability occurs in soils at microscopic and 
submicroscopic levels. Particle orientation, zonation of organic 
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sc SCALE OF OBSERVATION 

VISUAL 
MICROSCOPY 

SUBMCROSCOPY 

Figure 2. Schematic i l lus t ra t ion of the relationship between 
increasing levels of resolution and the area of the field under 
view (Fig. 1, Wilding, L. P. and K. W. Flach. 1985). 

INCREASING SCALE FACTOR 

Figure 3 . Schematic spatial var iabi l i ty reflecting increasing 
scale factor (Fig. 4, Wilding and Drees, 1978). 
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and inorganic components and pore size distribution patterns are 
frequently not random. Skeletal grains, ped structural surfaces 
and walls of other voids commonly serve as loci for 
concentrations of colloids and solutes and/or the reorientation 
of clay particles. Frequently, the sample volumes analyzed are 
sufficiently large to integrate the systematic variability 
resulting from loci specific reactions and fluxes. Soil surveys 
should aid the scientist in determining those soil properties 
which have systematic organization at given levels of resolution 
versus those soil conditions that are more likely random. They 
should also serve to indicate the scale at which soil volumes are 
likely to integrate both systematic and ratidom variability. 

Statistical Considerations and Sampling Schemes 

A pedologist should have a much better concept of soil property 
relationships, covariance and soil distribution patterns than a 
statistican without soils experience. With such prior knowledge 
care must be exercised not to knowingly confound systematic and 
random variability in a sampling scheme. For example, if soils 
systematically change as a function of,relief, then the most 
efficient, non-biased sampling scheme is one that tranverses 
normal to drainage systems. Likewise, sampling a soil, either 
laterally or vertically, should not be at random. No useful 
purpose is served in compositing soil materials from two separate 
populations of known morphological, physical, chemical and 
biological difference. Random sampling is suitable only when 
soil differences are not evident. 

Classical statistics has not advanced our knowledge of the causal 
factors responsible for soil property' variation within a 
landscape (Wilding and Drees, 1983). Often the soil factor is 
masked by removing it as blocking or replication error. Soils 
often exhibit non-orthogonal variability spatially-j-variance is 
not isotropic laterally o'r vertically. 

Soil observations are not necessarily spatially independent and 
frequency functions are usually not normal but skewed log normal 
or gamma distributions. How do we overcome all of these 
constraints that are assumptions basic to most classical 
statistics? 

The question of sampling scheme, statistical analyses to be 
employed and observational interval continue to plague most 
pedologists. These answers really depend on objectives of work, 
nature of classes being sampled and precision of the results 
expected at a given confidence level. 

Sampling Schemes 

Sampling schemes briefly considered include: random, transect, 
grid, and systematic radial transects or some combination of 
these. On a given delineation, the first three schemes are 
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illustrated in Fig. 4. and the latter in Fig. 5 
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Figure 4. Sampling schemes to determine composition of mapping 
unit delineations. Observations located at random (A), along 
parallel point transects (B), along random point transects (C), 
and at intersection of grid lines (D) , Same number of 
observations in each scheme (Fig. 4.6, Wilding and Drees, 1983). 

The random «sapling scheme is unbiased and statistically sound. 
It is commonly preferred among statisticians but may cluster data 
spatially unless a large number of observations are taken. It 
may also confound systematic and random error. The 
point-transect sampling scheme always involves the question 
of random vs. systematic orientation. Stratified random point 
transects may be aligned normal to an anticipated soil gradient 
(Wang, 1982). Point transects may take advantage of trenches, 
powerlines, highways, etc., that may not be aligned with a soil 
bias. They are useful in remote areas where vegetation or 
topography obscure cultural features. They may be oriented 
parallel to each other to form a grid if desired. The grid 
•sapling sehen« provides equally spaced observations. It is 
better adapted to geomorphic-pedogenic studies. With elevation 
control it can be used to simulate 3-D computer-generated surface 
nets of limiting or diagnostic soil properties. It is the best 
design for geostatistics and semi-variance analyses. For the 
systematic rsdial transect scheme, a series of radial transects 
at 60 of each other are laid out from a central point with 
multiplicity of observations increasing with distance from the 
center (Fig. 5 ) . This results in telescoping series of 
observations with increasing area that may be coupled with the 
grid scheme to yield short-range to long-range variability across 
a large sampling area. 
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Figure 5. Grid and systematic radial sampling scheme used to 
sample undisturbed and disturbed soils (Bearden, 1984). 

Number of Observations or Transects 

The number of observations or transects needed to characterize 
soil properties in a certain sampling unit is determined by the 
population variance of the property, the confidence level chosen, 
and the probable error tolerance about the mean that is 
acceptable (Fig. 6 ) . While the variability of a property in a 
landscape may be fixed, one way to decrease the population 
variance is to stratify the sampling^.units so that the total 
variation can be partioned as much as possible to differences 
among strata (Steel and Torrie, 1960). Wang (1982) discuss means 
to accomplish this with sampling of natural soil units. 

The confidence level is an expression of probability that a 
statement is correct- and is reflected by the "t" value selected. 
The higher the t-value the more samples or transects will be 
needed. While a confidence level of 99% or 95% is common in many 
fields, in soils a confidence level of 70 to 80% is probably more 
realistic in terras of time and money imputs that are practical to 
a sampling scheme. 

The confidence interval or deviation allowed from» the mean 
(probable mean error) is an estimated range of the population 
mean that is likely to occur within a given soil unit sampled. 
If the variance of the property observed is high, (CV's above 25 
to 35%) our precision'of estimate of the true mean at a given 
confidence level may need to be decreased to accommodate a 
practical number of samples (Fig. 6 ) . 

Frequently we must accept either a lower confidence level 
(probability) or higher confidence interval (probable mean error) 
to maintain a sampling scheme within reason. Under some 
circumstances, perhaps many, limits within 20% or even 50% of 
the mean with a probability level of 80% or lower may permit 
sufficiently accurate mean estimates. This would depend on the 
property in question, the magnitude of the mean, the critical 
confidence limits for interpretations, and the risk one is 
willing to take in making an error in judgement. 
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Figure 6. Coefficient of variability (CV) versus number of 
observations necessary to estimate the population mean within 
specified limits (Fig. 4.4, Wilding and Drees, 1983). 

Table 1 gives relative ranking of soil property variability in a 
landscape. It is based on the work of this author and extensive 
compilation of data in the literature. This table is intended to 
be utilized as a guideline when on-site data are not available; 
it is not to be interpreted rigidly. Quite often of greater 
importance than the absolute CV's or probable mean errors of a 
given property is the class range of a property or set of 
properties which can accommodate similar behavior or response 
interpretations. Under such circumstances the CV's might be 
quite large but because most of the values fall within an 
acceptable class range, the spatially property variability would 
not adversely affect interpretations. This is the important 
consideration. 

Observational Interval 

No definitive st 
interval because 
site and scale 
a predetermined 
statistically by 
latter have been 
later discussion 
knowledge of soi 
on the character 
realistic number 

atement can be made about the observational 
it is a function of soil conditions at a given 

of mapping. It can be determined arbitrarily by 
ground distance on a photobase map or 

semi-variance or autocorrelation methods. The 
used relatively little by soil surveyors (see 

) . More commonly the intervals are based on 
1 complexity gathered during the mapping phase, 
of the parent material variability, and on a 
of samples that can be taken within an available 
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Table 1. Relative ranking of variability of soil properties that 
occur in landscape units of a few hectares or less in 
size. These values represent lateral variability for 
equivalent horizons or depths as appropriate for given 
properties (Modified from Table 4.2, Wilding and Drees, 
1983). 

Variability of 
Property 

Number of profiles Property 
needed* » 

Least (CV's <15%) < 10 Soil color (hue and 
val ue ) 

Soil pH 
Thickness of A-horizon 
Total silt content 
Plasticity limit 

Moderate 
(CV's 15 to 35%) 

>10 to 25 

Most 
(CV's >35%) 

< 25 

Total sand content 
Total clay content 
Cation exchange 

capacity 
Base saturation 
Soil structure (grade 
and class) 

Liquid limit 
Depth in minimum pH 
Calcium carbonate 

equivalent 

B2 horizon and solum 
thickness 

Soil color (chroma) 
Depth to* mottling 
Depth of leaching 

(carbonates) 
Exchangeable hydrogen, 
calcium, magnesium 
and potassium 

Fine clay content 
Organic matter content 
Plasticity index 
Soluble salt content 
Hydraulic conductivity 
Water content 

* Employing 95% confidence interval and limit of accuracy 10% 
of mean. 
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time frame. Wang (1982) suggests observational intervals be: (1) 
either 1/10 or 1/20 length of transects with no fewer than 10 to 
20 observations per transect; or (ii) 1/2 length of shortest 
transect. He prefers (i) because it gives every transect the 
same number of degrees of freedom and makes statistical 
computation easier. If one is attempting to quantify the soil 
composition in a landscape unit, ground distances between 
observations of 20 to 200 m are common, while for pedon 
considerations, distances of 0.25 to 0.5 m are in order (Wilding 
and Drees, 1983) . 

Generalized Aspects of Spatial Vartabtlizy 

Following are a few generalities that should be kept in mind in 
considering spatial variability in soil surveys. 

. Reliability in accurately predicting many soil properties 
decreases with depth. Fewer observations are made at greater 
depths (ie >2m) in the soil than near the soil surface; thifs 
there is less ground truth control at depth. 

. Spatial variability in soils is closely allied with the 
nature of the parent material from which soils are formed. 
Parent materials from least to most variable include: loess, 
till, fluviatile deposits, tectonic rocks, and drastically 
disturbed soil materials. 

. Static soil properties are less variable than dynamic ones 
(i.e. OM, texture, mineralogy, solum depth, soil color v£ 
hydraulic conductivity, soil moisture content, salt content, 
microorganisms, exchangeable cations and redox conditions. 
Soil Taxonomy is strongly biased towards static properties in 
subsoil horizons. 

. Properties which can be closely calibrated to a standard (or 
quantified in the field) are less variable than those which 
are qualitative (i.e. texture, color, pH vs structure, 
consistence, porosity, root abundance, etc.). 

. Properties which are differentiating or accessory to 
differentiating properties used in mapping and classifying 
soils will be less variable than those of an accidental 
nature. Not all properties are considered in making a soil 
surveys; only those that are considered most important to the 
objectives of the survey or classification scheme. 

Geo statt stras and Soil Survey 

The use of geostatistics in establishing map unit concepts and in 
the mapping process is yet mostly untested (Wilding and Drees, 
1983). Few pedologists are familiar with this statistical 
approach. Frequently the mathematical and statistical foundation 
is beyond their comprehension — they are afraid to use a tool 
they do not understand either in terms of principles or 
limitations. One of the likely applications of geostatistics to 
soil survey is to determine the sampling interval that assures 
spatial independence, but the question remains how to generalize 
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this information. It may also play an important role in 
developing soil property/landform correlations and to aid in 
designing map unit concepts. For high intensity soil surveys 
(i.e. experimental research plots) it should be a valuable tool 
to kring the area so mean and variance estimates could be 
predicted for soil properties at all plot loci. 

Questions being raised about this tool for soil survey 
application are as follows: « 

. How can geostatistics be used without- collecting an 
inordinate number of samples? Many observations are needed 
to determine how few could have been collected to obtain the 
same information base. 

. How can geostatistics be used as an extrapolative tool? Soil 
surveys are mostly an extrapolation of knowledge gained from 
one landform and extended to the next. 

. How might it be used for pedon and microscale variability? 

. If one finds that the observations are spatially dependent 
over the area investigated, how can classical statistics be 
applied to the data set? *-' 

Verification and Accommodation of Spatial Variability 

Because of the limited number of observations collected in the 
conduct of soil surveys, there is a required verification phase 
of the mapping units and the soil characteristics represented by 
these delineations. These two phases will be discussed under the 
topics mapping verification and pedon (sampling unit) 
verification. 

Mapping Verification 

Transects ~ Perhaps the most common means to verify mapping unit 
composition (spatial variability of soils within mapping units) 
is to employ stratified random point transects (Steers and Hajek, 
1979). This procedure has been employed as a means to sharpen 
the correlation process at the end of the survey. It has also 
been used as a routine mapping tool during the survey in areas of 
low relief, high vegetative density or where there is little 
surficial predictive capability of the landscape (Wang, 1982). 
Results from this work have been incorporated into soil surveys 
as probability statements of the map accuracy in terms of given 
soil conditions and/or interpretations inferred from observed 
soil properties. Arnold's (1979) graphical bioriomial confidence 
limit method has been used for this purpose (Fig. 7 ) . Results 
with elevation control have also been plotted as two-dimensional 
crossections illustrating distributions of soils as a function of 
topography, parent materials, limiting horizons, etc. (Fig. 8 and 
9 ) . 
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Figure 7 . Arnold 's (1979) Binomial Confidence Limit Graphs: (A) 
0 to 50 and (B) 50 to 350 samples (Taken from Wang, 1982). 
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Figure 8. Cross section along a topographic microhigh of the 
Addicks soil in Harris County, Texas (Fig. 5, Sobecki and 
Wilding, 1982). 
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Figure 9. Elevation of soil surface and underlying laterite 
along three transects in a soil survey area of Niger, Africa 
(Taken from Fig. 2, West, et al., 1984). 
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Grids- The grid sampling scheme has been utilized with elevation 
control to simulate 3-D surface nets of surface relief, A/Bt 
contact, and differential thickness of parent materials (Fig. 10) 
in the "Sand Sheet" land resource region of southern Texas and 
the distribution of soils on a landscape in the Coast Prairie 
land resource area of Texas. (Fig. 11). 

Such a display permits one to readily visualize the configuration 
of horizons governing solute and water movement over short 
distances and, thus, probable genesis of such soils. It also 
permits one to more accurately place soils on the landform. 
However the cost and time required for such sampling efforts may 
limit their application to research emphasis rather than routine 
mapping methods. 

Grid sampling schemes have also been used to accurately determine 
the composition of soils within previously mapped areas of 
natural or disturbed soils. This approach has been used in 
attempts to determine the accuracy of older soil surveys when 
compared to the same areas which have been remapped under mo'dern 
soil survey standards (Rehage, et al., 1982). Comparisons were 
based on interpretations of the grid points for alternative land 
uses in view of former versus current map unit delineations. If 
much of the variability is at short-range and many of the 
inclusions in the mapping unit have similar restrictive 
interpretations as the dominant soil, remapping of older soil 
surveys may not greatly improve the mapping and interpretation 
accuracy even though the size of the delineations may be smaller 
(Rehage et al., 1982). Similar approaches have been used to 
compare the mapping variability of surface mine disturbed lands 
with adjacent undisturbed soils (Bearden , 1984). 

Ground Penetrating Radar ~ Ground-penetrating radar (GPR) 
systems, specifically designed for soil reconnaissance, can 
provide continuous profiles charting the depth and extent of 
diagnostic subsurface horizons. Unlike most other radar systems, 
GPR transmits repetitive, short duration pulses of 
electromagnetic energy into the soil, rather than into the air. 
When these pulses strike an interface separating layers of 
contrasting electrical properties a portion of the signal is 
reflected back to the radar. The depth to the interface is 
determined by the time delay of the echo. By towing the radar 
across the surface, a continuous profile of subsurface conditions 
can be developed (Personal Communication, Mr. Jim Doolittle, SCS 
Soil Scientist, Florida). 

Present GPR systems do not work equally well in all soils. The 
radar signal is dissipated and the probing depth restricted by 
high contents of moisture, clay, or salts in solution. Though 
the effectiveness of the GPR is extremely site specific, probing 
depths of 1 to 2 feet in clays and as great as 40 feet in sands 
can be expected. 
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Figure 10. 3-dimensional surface plots of soils in the Sand 
Sheet region of southern Texas (unpublished data by author). 

TA Typic Argiaquolls 

T G Typic Glossaqualfs 

V O Vertic Ochraqualfs 

Viewing Angle * 60° 

Vertical Exaggeration • 40x 

Figure 11 . Soil- topography r e l a t i on sh i p s in the Coast P r a i r i e 
region of Galveston County, Texas (F ig . 6, Sobecki and Wilding,1982). 
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During the past three years, USDA's Soil Conservation Service has 
tested GPR on a wide variety of soils in diverse geographic 
locations, principally to assess the variability within map units 
delineated by traditional survey procedures. The GPR has also 
been used successfully to measure subsidence in the Florida 
Everglades, and sedimentation in lakes; to characterize 
geomorphic contacts and features; to document the fractures, 
voids, and solution cavities in rock; to locate buried artifacts, 
bodies, utility lines, and cables; and to determine the presence 
and distribution of buried waste materials (Figs. 12 and 13). 

Pedon Verification 

Except under cyclic conditions a sampling unit for Soil Taxonomy 
is equivalent to a lm area over the depth of the soil. Even 
under cyclic conditions, such as gilgai in Vertisols, there is 
good basis for restricting the sampling unit to an area of about 
lm which corresponds to microhigh and microlow topographic 
relief forms (Wilding, 1982). Within such a sampling volume tr 

soils can express considerable lateral variability especially in 
more labile properties such as water content, salt content,, 
exchangeable cations, clay content, organic matter, free iron 
oxides, etc. After one has established the magnitude of lateral 
variability for given soil properties by horizon, one can use 
this information to determine the number of samples that need to 
be collected to estimate the mean of most soil properties of 
interest within given tolerance limits, at a specified 
probability level. Figures 14 to 17 give examples of such 
variability for selected properties within pedons sampled by the 
authors (Wilding and Drees, 1983). 

The problem is that few data of this nature are available because 
of the time and expense of such sampling. How does one attain 
horizon pedon variability of this nature for major soils within a 
survey area? How far can one generalize this information base? 
With only 3 or 4 horizons sampled for lateral variability within 
a pedon, how can this information be used to determine 
significant differences among horizons not sampled laterally in 
the same pedon especially if different variances exist for 
different properties at several depths. 

Under the above constraints, a composite sampling scheme is 
proposed for sampling pedons. By employing a sampling scheme 
where the same subhorizon is multiple-sampled in a lateral vector 
and then composited to represent a single horizon sample, the 
mean conditions can be estimated with greater accuracy. Figure 
18 illustrates several schemes which have been employed for this 
purpose. It is important that only morphologically' similar 
subsamples are composited. Multiple subsampling four times 
instead of once will decrease the probable sampling error in 
half. Using determined subsample error terms for pedon 
properties, Fig. 19 illustrates absolute class boundary probable 
errors for several Soil Taxonomy class limits. 
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Figure 12. GPR profile of Immokalee fine sand mapping unit 
(sandy, siliceous, hyperthermic Arenic Haplaquods). Multiple 
horizons are often clearly expressed on graphic profiles. For 
example, the GPR profiled a water table, multiple spodic horizons 
(Bh), and an argillic horizon (Bt) (courtesy of Mr. Jim 
Doolittle, USDA-SCS .Soil Scientist, Florida). 
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Figure 13. GPR profile of an area of Candler 
(hyperthermic, uncoated Typic Quartzipssamment) and Apopka 
(loamy, siliceous, hyperthermic Grossarenic Paleudults) fine 
sands, 5 to 12% mapping unit complex in Florida. The deep sands 
of the Candler without an argillic horizon within 2 m is shown 
on the left with the Apopka soil and its argillic horizon (Bt) on 
the right (courtesy of Mr. Jim Doolittle, USDA-SCS Soil 
Scientist, Florida). 
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Figure 14. Variability of total sand, silt, and clay contents 
and bulk density due to combined sampling and analytical errors 
for five morphologically uniform pedons of about 1 m area 
(from fig. 5, Smeck and Wilding, 1980). 
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Figure 15. Variability of elemental Ti, Zr, Fe, and K and Ca in 
sand and silt fractions due to combined sampling and analytical 
errors for five morphologically uniform pedons of amout 1 m 
(from fig. 6, Smeck and Wilding, 1980). 
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Figure 16. Observed lateral variability among selected chemical 
properties within horizons of similar morphology for a pedon 
sampling unit of about 1%m area (reprinted from Fig. 5, 
Wilding and Drees, 1978). , 
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Figure 17. Observed lateral variability of saturation extract 
parameters within horizons of similar morphology for a pedon 
sampling unit in Vertisols (about 1 m area of micro-low gilgai 
element, from fig. 4.14, Wilding and Drees, 1983). 
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PEDON SAMPLING SCHEMES 
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Figure 18. Mul t ip le sub-sampling schemes for pedon sampling 
u n i t s , (from F ig . 6 Wilding and Drees, 1978). ' 
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Figure 19. Absolute c l a s s boundary e r ro r s for severa l 
d i f f e r en t i a e used at var ious c a t ego r i c a l l eve l s in Soi l Taxonomy. 
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Soil Taxonomy class limits. 

For example, the base saturation boundary probable error is 5% 
at 50% base saturation, sand content is 3% at the 15% limit, 
ESP is 2.1% at the 15% limit, etc. By using lateral subsamples 
these values could be halfed or brought very close to the 
laboratory errors of determination. Application of pedon data to 
Soil Taxonomy, the Canadian Soil Classification System or any 
other classification systems with jrigid class boundary limits 
must consider such pedon and laboratory errors in classifying the 
pedon. Pedons having properties that fall within the boundary 
error ranges can be placed equally well"into either adjoining 
classes . 

Another means of pedon verification is to éollect satellite 
samples about a pedon sampled for complete characterization 
(Mausbach, et al., 1980 and West et al., 1984>. Satellite 
samples ranging from 2 to 5 in number might include only 2 or 3 
horizons of specific interest and only thoee determinations of 
properties critical to the classification or interpretation of 
the soil. This provides à cost ançi time effective means to 
evalute the spatial variability of soils considered to be within 
the limits of a given series. 

SUMMART 

Pedologists have long been aware of spatial variability and in 
the future we can expect to see further advances to unscramble 
the complexities of soil-landscape relationships. Geomorphology, 
multivariant analyses, and greater awareness of short-range 
changes in soils will gain greater emphasis. Specifically, the 
knowledge of soil variability is necessary to: 

.Establish significant vertical and lateral differences 
among soil properties 

. To obtain central tendency and variance statistics 

. To design more accurate sampling schemes 

. To establish soil property-landform relationships 

. To design soil survey mapping unit legends with greater 

accuracy 
. To determine composition of soils representing of mapping 

units in soil surveys 
. To determine validity of class definitions and class 

differentiae 
. To apply pedon data to soil classification systems 
. To quantify pedogenic processes 
. To verify soil properties and spatial variability for more 

accurate interpretations of soil behavior and management 

A knowledge of spatial variability gained from soil surveys 
should provide the following kinds of information pertinent to 
understanding spatial variability in landscape setting: 
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Terrain configuration and slope gradient 
Origin and spatial distribution of parent materials 
Soil drainage characteristics 
Physical and chemical restrictive layers 
Soil thickness and leaching potential 
Distribution of structural units and cracking patterns 
Small-scale ped and pore-wall physical and chemical 

zonation of materials 
Sampling volumes necessary to achieve integraded sampling 

units 
Nature of physical, chemical and biochemical boundary 

gradients 
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Discussion 

R. Hammer: Since soil chemical and physical properties 
covary with differing rates and levels according 
to the soil forming factors and their inter­
actions, why is more attention not given to the 
use of multivariate statistics (factor analysis 
and discriminate analysis) in quantifying and 
analyzing soil variability? 

L. Wilding: Most of the multivariantv statistical approaches 
to soils has been applied in attempts at numer­
ical classification of soils by simple ordina­
tion methods of affinity-.- or similarity among 
soil classes or by using" cluster analysis to 
reduce the number of selected properties for 
classification to a few. Some of the disadvan­
tages or problems in this approach is that: (1) 
a single measure of similarity involves enormous 
loss of information; (2) selection, measurement, 
and coding of multiple characters are highly 
subjective; and (3) many different kinds of 
characters must enter into taxonomie classifica­
tion. Some of these are not sufficiently 
quantified to be written into a computer 
program. 

It has also been observed that cluster analysis 
is effective with small numbers of distinct soil 
groups or with §mall areas but in large areas 
with a number of different soils, clusters 
either do not exist or are extremely diffuse. 

Although this tool is in its 'infancy in pedo-
logical studies, the current availability of 
high speed computers and increased focus on 
quantification of soil parameters makes this an 
area of potential future study. The possibility 
of coupling multivariant analysis with kriging 
may overcome some of the concerns that kriging 
does not permit delineating soil areas with 
multiple property differentiate. This whole 
area is open to further development. 

J. Bourna: Spatial variability observations' are commonly 
made in soils at the initiation of a soil survey 
in the U.S. This is necessary to design mapping 
units appropriate for the scale of spatial 
variability found in the survey area. For 
example, if small-scale variation occurs among 
soils with contrasting properties such that 
individual delineations of each soil cannot be 
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delineated at the scale of mapping, then either 
complex or undifferentiated mapping units would 
be designed for this situation. Considerations 
of spatial variability must precede the field 
mapping phases of the soil survey program to 
adequately determine which soil conditions 
dominate in a given landscape and what the scale 
of repetitive patterns may be. The transect 
samples collected during the survey or at the 
end of it are provided to quantify the relative 
percentages of soil conditions within a given 
map unit. 

The purpose of this comment was to be sure we 
did not leave the impression that spatial 
variability in soil surveys was examined only 
at the end of the survey. 

L. Wilding: I agree with your comment and appreciate your 
making this point. 

M. Collins'. The number of observations per mapping unit, I 
feel, very rarely exceeds 50 and never 350! Did 
I understand Arnold's figure on the graphical 
solution to binomial confidence limits 
correctly? 

L. Wilding: The figure is just an example of this approach 
to rapid determination of confidence intervals. 
In the paper by Wang cited in the text, he has 
illustrated such graphs for observations ranging 
from 0 to 50 and 50 to 350. For any given 
mapping unit delineation, the graph for 0 to 50 
observations could be used but in sampling 
several delineations of the same mapping unit 
the graph for 50 to 350 observations may be 
appropriate. 

P. Gremingev: If we have some information about spatial 
variability, on what basis do we decide which 
sampling scheme to choose? 

L. Wilding: Perhaps the major decision regarding the sampl­
ing scheme to be utilized revolves about the 
kinds of questions to be answered, the objec­
tives of the work and the nature of the classes 
being sampled. I personally prefer transect or 
grid sampling schemes with equal point intervals 
and elevation control, if possible. These 
schemes work well in geostatistical analysis and 
determining soil composition within mapping 
units. It might be preferable to couple short-
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range and long-range sampling to observe spatial 
variability of differing scales such as in the 
grid-systematical radial transect scheme illus­
trated. Finally, the sampling scheme will 
eventually depend upon the labor and financial 
inputs that can be allocated to accomplish the 
given objectives. The text of this paper covers 
the various pros and cons of sampling schemes. 

A. Warrick: My own experience is that water content dis­
tributions tend to be- ̂ somewhat less variable 
than you indicated.. I believe it should be 
grouped in a lower variability class, say a CV 
of 10-15%. 

L. Wilding: 

J. Hendriokx: 

L. Wilding: 

The concept of bulking or composite sampling can 
be handled nicely by block kriging. This was 
done for determining the variance of the mean 
for a finite area by Webster and associates in 
the J. of Soil Sei. This is believe relevant 
particularly to ""* "additive" property concen­
trations and for textural classes. 

I appreciate your comment on water content. 
Values given in this report were based primarily 
an fine-textured soils with significant cracking 
character. I suspect in these soils water 
content is spatially more variable than in 
coarser-textured soils. 

I am aware of Webster's work on block kriging 
and appreciate your mentioning this point. 
However, in routine soil survey operations in 
the'U.S., we do not sample sufficient pedons of 
a given soil for laboratory characterization to 
permit such kriging methods to be employed. 
Numbers for kriging application seem to be the 
major constraint. 

Could the CV you presented not be more an 
expression of sample procedures than of varia­
bility of soil properties under consideration? 

I don't think so. These values were taken both 
from our own studies as well as those from the 
literature where sample sizes for given parame­
ters were quite variable. It is well recog­
nized, however, that sample size is very impor­
tant in defining spatial variability. For 
example, the CV for a given property may be 
25-50% across a landscape unit of 5 to 10 ha or 
more, 5-10% for the area of sampling unit (1m ) 
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and <5% for the sampling errors associated with 
laboratory determination. In that sense CV's 
are covariable with size of the units sampled. 
This is even more critical in sampling a dis­
turbed soil material (mixed overburden from 
mining activities) where the CV's will be 
directly correlated with sample volume. 
However, for the data presented as relative soil 
property variability, the CV's are for natural 
soil bodies of a given mapping unit representing 
areas of several ha. The observations were for 
equivalent soil horizons and of sufficient 
volume qr area to express a sampling unit of 
about lm . 

K. Flach: Pedologists have been occupied with the system­
atic depth variation in soils or soil horizons; 
lateral variation can be equally systematic and 
can be used to characterize kinds of soils. 
Lateral variation needs to be studied more and 
included in the characterization and classifica­
tion of soils. 

L. Wilding: Both lateral and vertical variation in soils are 
important to soil use, management, classifica­
tion and characterization. Pedologists have 
long focused on both aspects as a basis to 
partition soils into landscape and taxonomie 
classes. I assume, however, that your comment 
is for soils with similar horizonation but 
markedly different rates of lateral change. 
This would influence the areal extent and 
pattern of a given soil and its border neigh­
bors. Similar soils but with different land­
scape associates might be classified dif­
ferently. Patterns of soils and their complex­
ity are important for soil management and use. 
Draining a poorly-drained soil, for example, 
often depends on whether it is in a large, 
nearly level, contiguous unit or as many small, 
isolated tracts scattered among better-drained 
sloping analogues. There is good justification 
for greater efforts to study the lateral vari­
ability in soils and potential impacts on use, 
management and classification. 

P. Grerninger: Now knowing something about the spatial depen­
dence of the soil water characteristics and some 
other soil properties, how do you apply this new 
information to your sampling for the soil 
survey.' And what other information is still 
needed for an efficient soil survey? 
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L. Wilding: Firstly, we still are at our infancy in under­
standing spatial dependence of soil water and 
other characteristics in soil landscapes. In 
fact, there is very little information on the 
spatial dependency of many of the soil prop­
erties used as differentiae for soil surveys and 
soil classification. Given that information, 
however, the ways it would be used to enhance 
the quality of a soil survey are given in the 
summary section "of this paper. In short, it 
would permit us to more accurately convey the 
mode and magnitude af"" spatial variability to 
users of soil resources. It would also foster 
development of soil surveys with greater quanti­
fication of vertical and .lateral spatial change. 

One area where considerable future effort is 
needed is the development of class ranges 
(limits) for given soil, properties which are 
most meaningful for interpretations of soil 
response, and behavior. Properties may be highly 
variable, but if absolute ranges of spatial 
difference do not exceed critical class limits, 
then our interpretations do not suffer from 
spatial variability Another area for great need 
is to develop transfer functions for soil 
properties, such as those discussed in 
Dr. Bouma's paper, to integrate qualitative and 
quantitative property evaluations. 
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The analysis of water quality variations in 
stream-aquifer systems: nonpoint sources 

C. J. Duffy, Utah Water Research Laboratory. UMC 82, Utah State 
University, Logan, Utah 84322, USA. 

Introduction 

The persistent problem of nonpoint source pollution, although it 
received considerable attention by the research community during 
the 1970's, still ranks as a major factor in the environmental 
degradation of groundwater and streams in the U.S. Historically, 
the analysis of diffuse sources of groundwater contamination, such 
as infiltrating urban runoff, septic tanks, fertilizers, pesti­
cides, and salinity in arid regions, has been greatly complicated 
by two factors. There has been a lack of conceptual understanding 
of the subsurface flow and solute transport processes involved, as 
well as a serious lack of measured data for nonpoint source con­
taminants. In recent years significant advances in our under­
standing of transport processes and modeling of soil and ground­
water systems have taken place, while industry and government have 
continued (to some degree) to address the problem of long term 
monitoring. With regard to transport processes and models, scien­
tific advances have largely been the result of controlled tracer 
tests in the laboratory and the field, where the input or source 
has been regulated (i.e. a pulse or step). Regulated inputs 
facilitate the application of simplified forms of the convective-
dispersive transport model. The analysis of the evolution of 
environmental residuals (i.e. isotopes, pollution and geochemical 
observations) in natural systems has received much less attention. 
This may be due in part to the large degree of spatial and tempo­
ral variability associated with nonpoint source pollution, and the 
attendant difficulty in "modeling" these processes. Since tracer 
tests for nonpoint sources of contamination are not generally 
feasible, the direct analysis of environmental chemicals seems to 
be the only alternative for studying these systems. 

In the present paper the goal is to review and illustrate a sim­
plified linear reservoir approach to nonpoint source contamination 
in a stream-aquifer setting. The study will include a heuristic 
argument as to the physical basis for the lumped model, and a 
demonstration of the effect of spatial and temporal variablility 
of a nonpoint source on subsurface out flow concentration. An 
attempt is made to demonstrate that simplified input/output models 
are useful for describing the dynamic behavior of nonpoint source 
contamination of streams or agricultural drains, and that solute 
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dispersion and spatial variability have little impact on the con­
centration of groundwater discharge to streams or drains. 

The linear reservoir 

A practical approach to nonpoint sources of groundwater contamina­
tion makes use of the "complete mixing" assumption of the linear 
reservoir model (Duffy, 1982; Raats, 1981; and Gelhar and Wilson, 
1974). This assumption of complete «mixing requires that the input 
to the reservoir be adequately described by its spatial average 
over the surface of the reservoir, and ttjat the output be charac­
terized by the reservoir average or well mixed concentration in 
the groundwater system. 

I ' I •' J 

7777777777777777777777777777777777777777777777777777; 

Fig. 1 A l i n ea r r e se rvo i r r ep re sen t a t i on for a nonpoint source 
contaminant ci 

Gelhar and Wilson (1974) have shown t h a t a mass balance for a 
so lu te óf concen t ra t ion c ( t ) ' in the stream aquifer s e t t i ng of F ig . 
1 i s g iven by: . ' 

dM/dt = m^ - m0 +_ ms 

where 

(1) 

M = nhc = average mass of solute c per unit aquifer area 
mi = 1ici = input mass flux of concentration c^ per unit area 
m 0 = qc = outflow mass flux of concentration c per unit area 
m s = other sources or sinks per unit surface area 
n = porosity 
h = s p a t i a l average hydraul ic head 

For the case of s t e ady - s t a t e groundwater flow (q = q^) (1) i s 
given by 

dc /d t + c /T c = C j /T c + r ' (2) 

where r' indicates sources or sinks [m/L3/T], and T c = nh/q is the 
average residence time of the system, which can also be written 
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V fluid volume of the reservoir . 
c Q flow through the reservoir 

In simple terms T c describes the average time to replace one pore 
volume of the reservoir by deep percolation or recharge. A gen­
eral solution to the linear reservoir is given by the convolution 
integral 

c(t) = cIe~t / T° + ƒ h(t - T) Ci(T)dT, h(t) = (e"t / T c)/Tc (3) 
o 

where h{t) is the impulse response function, cj is the reservoir 
concentration at t = o, and r' = o. From (3) one can construct 
other solutions for c(t) by assigning the form of cjjt). For 
example the solution for a step input (CJ = c0) is given by 

c(t) = c 0 (1-e" t / T c ), C l = 0 (4) 

For situations of nonpoint source contamination under uncontrolled 
or natural state conditions Cjjt) is likely an arbitrary function 
of time. In this case a discrete version of equation (3) is 
useful 

i 
c(i) = X l^ 2 (- (i - k + 1) AT/TC) . ct(k) • AT (5) 

k=1 Tr 

where AT is the time interval and k is the time index (k = 1, 2, 
3 ... i ) . 

Physical justification for well-mixed systems 

A number of authors have applied reservoir theory to hydrologie 
problems of flow and solute transport. Among them are Kraijenhoff 
van de Leur (1958) who examined the problem of nonsteady flow to 
drains, and Eldor and Dagan (1972) who related the exponential 
outflow behavior of a uniform contaminant source to convective 
transport effects. This study also demonstrated that the effect 
of dispersion would be relatively small at the point of outflow 
(at the stream or drain) where solutes from all stream tubes are 

mixed. Gelhar and Wilson (1974), and McClin (1981) have also 
demonstrated that an exponential solute outflow is characteristic 
of convective transport for a uniformly distributed, nonpoint 
source. Raats (1981) provides a discussion of "apparently well-
mixed" systems based on travel time distributions in a convec­
tive flow field. 

The concept of an "apparently well mixed" sybtem can be demon­
strated with a simple numerical example. Consider the introduc­
tion of a steady, uniformly distributed source of contaminant c 0 

in the homogeneous and isotropic aquifer illustrated in the inset 
diagram of Fig. 2. The flow is assumed to be steady and governed 
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by the Laplace equation (Kirkham and Powers, 1972). The governing 
equation for two dimensional solute transport of a conservative 
species in a vertical plane is given by 

dc 
at + u„ 

_3_c 

ax 
+ u. 

3c 
y ,3y 

a_ 
ax Dxx ax 

°XX 
(a* ay) u x 2 

a_ 
ay 

(eu 
"yy, 

D ^ 
Dyy ay 

g y ) u y
2 

(6) 

+ Ctyl U| 

where a x and a „ are the longitudinal and t t a n s v e r s e d i s p e r s i v i -
t i e s , and u x ( x , y ) and Uy(x,y) are the h o r i z o n t a l and vertical 
c o m p o n e n t s of the v e l o c i t y field determined from the solution to 
the Laplace equation (Kirkham and Powers, T972, p. 118). The 
position of the free surface was estimated by specifying the 
recharge rate (q^ = .25 cm/day) and the hydraulic conductivity 
(K = 150 cm/day). Equation (6) was solved using" a two-dimensional 
finite element code called Seftran (Huyakorn et al., 1984), with 
c0q^ uniformly specified along the free surface, and no-flux 
boundaries specified elsewnere. 

Figure 2 illustrates the normalized outflow concentration c/c0 

at the stream versus dimensionless time t/Tc, for various values 
of the longitudinal dispersivlty ax. The longitudinal to trans­
verse dispersivity ratio ax/a„ was taken to be 10 in all cases, 
while the residence time was calculated to be T c = nho/q = 3.28 
years. Comparison of the linear reservoir model with the con­
vection-dispersion results suggests that dispersion has very 
little impact on the aquifer outflow concentration, and that the 
exponential outflow behavior of thet,linear reservoir model pro­
vides a reasonably good analogue for describing outflow from 
uniformly distributed nonpoint sources. 

8 
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a „ - 5 m 
o , - I0 m 
a t - 25 tm 

I0 
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' 

' \ 
n = 0.3 
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10m |_ 

Fig. 2 A comparison of the outflow concentration for the convec­
tion dispersion model and the linear reservoir 
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Spatial and temporal variability of nonpoint sources 

It is reasonable to conclude from the previous numerical experi­
ment that spatially and temporally uniform, nonpoint sources in 
stream-aquifer systems demonstrate a behavior not unlike a "well 
mixed" linear reservoir. However, as was pointed out in the 
introduction, inputs to natural systems are subject to highly 
nonuniform conditions in both space and time. In this section we 
will relax the uniformity condition and examine the performance of 
a groundwater reservoir subject to spatial and temporal variations 
in the source strength. Ideally this analysis should allow c 0 

to be treated as a concurrent space-time stochastic process. How­
ever, the preliminary analysis to be presented here deals with 
spatial and temporal variations separately. Future work will 
explore this coupling. 

Spatial variability 

We first assume that spatial variations in the nonpoint source 
cQ(x,t) are described as a stationary stochastic process, and 
thus can be characterized by its mean, variance and correlation 
structure (correlation scale) . We will also make the physically 
unrealistic assumption that c 0 is uniform in time. The approach 
is to generate various stochastic realizations of c0(x) , input 
this data to the convection dispersion model described earlier 
(eq. 6) and examine the outflow concentration from this model . 
The theoretical spatial correlation structure was assumed to be 
exponential 

p(k) = exp(-k/X) (7) 

where \ is the spatial correlation scale, k is lag distance, and 
p(k) is the autocorrelation function. Using a lag-one autoregres­
sive algorithm (Salas et. al., 1980), several space series were 
generated, and these are presented in Fig. 3 for X = 1 and 10 
meters and a coefficient of variation for c 0 of, o/u =0.1 and 
0.5. Figure 4 illustrates the normalized outflow concentration 
c(x,t)/c0 versus t/Tc for the convection-dispersion model, and 
the linear reservoir. The most striking characteristic is the 
very regular behavior of the outflow, demonstrating the large 
degree of averaging which occurs for areally distributed sources, 
since none of the spatial fluctuations evident in the field data 
are observed in the output. It is clear that there are signi­
ficant differences between outflow from the convection-dispersion 
model and the well-mixed linear reservoir during early time 
(t/Tc < 0.3). However at latter time (t/Tc > 0.3) outflow 
concentrations are again apparently "well mixed." During this 
early time period, notice that the simulation with the largest 
variance and the largest correlation scale also shows the greatest 
difference with the linear reservoir result, while the simulation 
with the large variance and the small correlation scale provides 
the result closest to the linear reservoir. Most of this early 
time difference is likely due to variations in the simulated 
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Fig. 3 Realizations of a spatially,, variable nonpoint source c0(x) 
generated from an exponential autocovariance (c0 = 1000 
mg/1) 

Fig. 4 Normalized output concentration c/c0 versus t/Tc from the 
numerical solution to the 2-d convection-dispersion model 
(Eq. 6) for the spatially variable input processes c0(x) 
of Fig. 3. The dashed line is the simple linear reservoir 
result Eq. 4. 
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source strength very near to the drain. It seems likely that most 
of this difference would disappear if the source strength was 
realistically simulated as a two-dimensional field, and the 
groundwater system treated as a three-dimensional one. 

Although this preliminary effort remains somewhat inconclusive, it 
does suggest that complex spatial variations of the input process 
for nonpoint source contamination do not dramatically affect the 
concentration of groundwater entering the stream. However, addi­
tional research is necessary to better understand what are the 
limiting conditions where the "well-mixed" assumption may apply 
to nonpoint source problems subject to spatial and temporal 
variability. 

Temporal variability 

If we accept the concept that spatial averaging produces an 
apparently "well-mixed" system, then the interpretation of tempo­
ral variations of nonpoint sources can be examined within the / 

theoretical framework of linear filter theory for stationary 
stochastic processes (Koopmans, 1974). A linear filter, as 
illustrated in Pig. 5, simply converts a stationary input time 
series into stationary output, while the (groundwater) system 
performs as a filter. The filter can be defined either in the 
time or frequency domain. For stochastic processes this is most 
conveniently done in the frequency domain. The approach makes use 

TIME DOMAIN 

SIGNAL 

x(t) 
FILTER 

RESPONSE 

y(t) 

FREQUENCY DOMAIN 

0 i r / 2 
FREQUENCY 

0 w/Z 
FREQUENCY 

Fig . 5 A l i n e a r f i l t e r in the time and frequency domain 
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of the frequency response function from linear systems theory, and 
the mathematical technique of spectral analysis of time series. 
Jenkins and Watts (1968) provides a good summary of the theory as 
well as several examples. 

Treating the linear reservoir model (eq. 2) as a stochastic dif­
ferential equation, Duffy (1982) provides a solution in two parts. 
The first part, or transfer function, is a measure of amplitude 
attenuation (actually amplitude squared) between input and output 
versus frequency, and is presented in terms of the output/input 
spectral density ratio <f>cc/<)>c.c . • The spectral density <j> (u) , 
or simply the spectrum, describes the variance distribution of a 
time series as a function of frequency to. The second part of the 
frequency domain- solution to the linear reservoir is the phase 
spectrum 0(oi), which is a measure of the lag ëime between input 
and output for each frequency in the record. Figure 6 summarizes 
the theoretical transfer function and phase spectrum versus 
dimensionless frequency for the linear reservoir model, along with 
the output/input variance ratio versus Tc/A . 'In this case A is 
the temporal input correlation scale for c^, assuming an exponen­
tial autocorrelation in time, similar^.to eq. 7, with lag k now 
having units of time. Details of the theory can be found in Duffy 
(1982). 

The frequency domain solution of the linear reservoir model of 
Fig. 6 can be readily applied to field problems such as parameter 
estimation (Tc) where the input/output spectra are known, or for 
characterizing the input time series itself, given Tc and the 
output time series. 

Qualitatively the filtering characteristics of a linear reservoir 
are quite simple. The transfer function suggests that high 
frequency variations in the input are attenuated over a broad 
range (1 <̂  coTc _< 30). The negative phase spectrum »increases with 
frequency up to a maximum of TT/2. The output/input variance ratio 
suggests that contaminant fluctuations in the input will be 
attenuated to near zero when the residence time is large and/or 
the correlation scale 'is small (A -> 0) . This suggests that 
uncorrelated input time series are more effectively filtered 
than correlated inputs. Duffy (1982) has demonstrated that the 
frequency domain approach is useful for characterizing the re­
sponse and estimating parameters of nonpoint source salinity in an 
irrigated agricultural setting. 

Multiple reservoirs 

A potentially useful extension of reservoir theory to nonpoint 
source problems is the area of multiple reservoir systems. 
Eriksson (1971) provides a general theory for multiple reservoir 
modeling of composite natural systems, while Duffy et al. (1984) 
treat an agricultural drainage system as a multiple reservoir 
system. Figure 7 illustrates two simple arrangements for the 
linear reservoir, serial and parallel. Also shown is the impulse 
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Pig. 6 From top to bottom, the transfer function, phase spectrum 
and output/input variance ratio for the linear reservoir 
model. 
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response function for each system of reservoirs, where x(t) is 
taken to be an impulse input. 

As an example of the multiple reservoir approach, van der Molen 
(1973) has examined the process of leaching saline soils with 
fresh water using serial reservoirs. In this case each reservoir 
corresponds to a different soil layer, with outflow from the 
overlying layer producing inflow to the next. Comparison of the 
serial reservoir solution of van der"Molen (1973) for leaching 
with the convection dispersion model indicated a close agreement 
between outflow concentrations for as few^as four reservoirs. For 
a situation of solute displacement in a layered aquifer with 
different hydraulic conductivities, Simonett (1981) has used a 
combined serial-parallel arrangement of groundwater reservoirs to 
describe chloride transport to drains. In general the flexibility 
of using systems of reservoirs in series and/or parallel would 
seem to provide a useful tool for analysis of nonpoint source 
systems. 

Summary 

The basic goal of this paper has been to emphasize the utility of 
simplified models of nonpoint source contamination, and their 
relation to problems of spatial and temporal variability of the 
contaminant source. There has been no attempt here to incorporate 

x(t) 

y(t) 

J(t) 
n 
I 

1=1 

i -t/Tc. 
|T— e 1 , i - 1,n , h(t) = (Tcr(n))" 1e-tA C(t/Tc) n-1 

Fig. 7 a) Parallel linear reservoirs with unequal residence times 
Tc., and the corresponding impulse response function, b) 
serial reservoirs and the impulse response function for 
constant T c (Nash, 1957), T(n) = gamma function 
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the effects of spatial and temporal variations in the hydraulic 
properties of this system (hydraulic head, hydraulic conductivity 
and porosity), or in incorporating the important effects of the 
unsaturated zone, and thus the results are incomplete. However, it 
does seem reasonable to conclude that simplified lumped parameter 
models, given an appropriate conceptual framework can be very 
useful for studying the integrated, input-output effects of 
stream-aquifer or agricultural drainage systems. In addition it 
was found that magnitude of dispersion, and stationary spatial 
variations of the nonpoint source, have relatively little impact 
on the outflow concentration to streams or drains. 
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Discussion 
B. Shumway: You have nicely modeled input-output relations 

in time in terms of a lumped parameter system 
which is strictly "causal", i.e., the ouptut is 
strictly dependent on the past values of the 
input. In space, there is no clearly defined 
past. How would you handle this case? 

C. Duffy : It is true that this study concentrates on 
input-output behavior, however, we are modeling 
the system as a two-dimensional vertical flow 
and transport problem, with recharge rate and 
concentration a function of space (q. (x) and 
Co(x)). 

If you follow a particle along a given 
streamline from its origin on the water table 
surface to its point of outflow at the stçeam, 
then each particle does have a clearly defined 
history with respect to space. That is, 
particles that originate at a point on the water 
table some distance from the stream have a 
longer travel time than those that originate 
close to the stream. The point of the spatial 
correlation structure, has a relatively minor 
effect on the outflow concentration, or in other 
words, the outflow depends primarily on the 
spatial mean input concentration C . This is 
due to the mixing effect of all streamlines at 
the point of outflow. In this case spatial 
variability of nonpoint sources has only a 
secondary effect on groundwater outflow at the 
stream due to the natural mixing processes in 
the aquifer. 

It is true, however, that the AR1 model which I 
use to generate the spatially variable input 
process is not really appropriate, since it only 
allows correlation in one direction (i.e. a 
causal system only depends on (X-l) values of 
the spatial process). An improved generation 
technique would use both (X + 1) and X - l ) 
terms to generate the input process. 

A. Warrick: Could some of the differences attributed to 
correlation length and variances be also 
dependent on the particular value of the source 
chosen near the outlet? These might dominate 
the early breakthough and disappear at longer 
times. 
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C. Duffy: I believe that this is exactly the case. That 
is, early breakthrough of the source of 
contamination near the stream is the cause of 
the deviations from the lumped parameter result. 
The problem with this experiment is that we only 
consider the input process, or nonpoint source, 
to be one dimensional C (x) . Effectively the 
problem we are solving amounts to a single slice 
in a much larger, watershed or drainage 
situation. If we simulated the more realistic 
three-dimensional groundwater system with a 
two-dimensional, a really"distributed source, I 
expect that these early time deviations would 

-disappear by averaging and. the "well mixed" 
outflow assumption would sti.14 be apparent. 
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I Measurement and interpretation of spatially 
variable leaching processes 

R. J. Wagenet, Department of Agronomy, Ithaca NY 14853, USA 

The variability of leaching processes in the unsaturated 
zone has received much attention in the last decade of soil 
science research. Measurements of the movement of water and 
solutes under field conditions have demonstrated that accurate 
estimation of fluxes must consider spatial variations in the 
soil physical, chemical and biological processes that affect 
water and solute distribution. A number of statisticalAand 
mathematical approaches have demonstrated with relatively few 
field measurements that variation in hydraulic conductivity, 
water flux, pore water velocity, and dispersion produce substan­
tial variation in water and solute distribution in the soil 
profile. In the course of producing these sometimes elegant 
descriptions, there has been little development of similarly 
advanced sampling technology or the investigation of variability 
as it relates to management of water and chemical applications. 
These issues impact both the amount of spatial variability that 
we estimate exists in the landscape and our subsequent interpre­
tation of it. Before designing further field investigations and 
developing new mathematical and statistical interpretive tech­
niques, it is important that we momentarily pause and consider 
several rather fundamental questions which have strong implica­
tions with respect to measurement and interpretation of spatial­
ly and temporally variable leaching processes. These questions 
are: 

1. What is the influence of the physical size of a measurement 
or of a particular measurement technique upon the degree of 
estimated variability? 

2. How much variability in water and solute movement is due to 
inherent (intrinsic) soil variability (arising from soil 
forming factors) and how much is due to imposed (extrinsic) 
variability (non-uniform or geometrically patterned appli­
cations of water and solute or the influence of vegetation 
patterns)? 

3. Is there a temporal stability to the spatial structure of 
variability? 

4. What is the influence upon spatially variable water and 
solute fluxes of spatial and temporal variations in the 
physical, chemical and biological processes that affect 
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leaching (e.g. adsorption/desorption, precipitation/disso­
lution, crop uptake, degradation, mineralization)? 

5. If models are to be used to describe the displacement of 
water and solutes in spatially variable systems, what is 
the appropriate model form to be used for research versus 
management purposes? 

These questions have been only infrequently addressed in 
the soil science literature by those scientists interested in 
leaching processes, with the result that little consensus exists 
concerning appropriate measurement, interpretation or simulation 
procedures. A perusal of the soils literature for the last 
several years suggests that issues related to data analysis and 
interpretation are receiving much attention'through application 
of autoregressive, geostatistical, spectral and related tech­
niques. Similarly, the development of modeling approaches that 
consider stochastic versus deterministic' relationships is also 
an attractive topic for many scientists. Yet, the fundamental 
first step of making reliable measurements that are representa­
tive of the natural system has not always been appreciated. We 
must be careful in our enthusiasm Vo study spatially variable 
soils that we do not generate substantial data sets of rela­
tively worthless information because of lack of appreciation of 
basic principles of measurement and interpretation. This issue 
seems particularly relevant to scientists interested in the 
variability of leaching processes. The objective of this paper 
is to review several studies that have indicated the types of 
problems encountered in field sampling and data interpretation. 

Sample size and representative elementary volumes 

One of the first questions to be answered in any field study of 
variability is the measurement method to be used. Often the 
choice of a method is- based upon previous experience of the 
investigator and the cost and logistics of collecting an ade­
quate number of samples. There is usually very little concern 
for the implications posed by use of a particular technique with 
respect to the degree of spatial variability that will be 
measured. For example, if the technique involves use of a 
calibrated device, such as a neutron moisture meter to measure 
soil water content, the statistics of the calibration curve can 
(and often are) considered when water content at a particular 
location is calculated. However, if the estimation of water 
content is by gravimetric sampling, there is usually little 
consideration of whether a 2-inch or 4-inch bucket auger used at 
50 locations in the field will provide sample populations of 
similar mean and variance for soil water content. The relation­
ship between the volume or size of a sample and the variability 
of a number of samples is widely appreciated (Fig. 1) with 
methods developed to treat it. Despite several examples in the 
soil science literature that indicate its importance, sample 
size has seldom been considered as a fundamental issue to be 
resolved before initiating a sampling program. 
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Fig. 1 Relationship between 
sample volume and possible 
measurement values 

Fig. 2 The representative 
elementary volume defined^ by 
continuum theory 

In soil leaching processes, as in other disciplines that 
consider flow phenomena, a continuum approach is commonly 
employed (Bear, 1979) . This conceptualizes the flow system as 
heterogeneous at the microscopic level, with solid space and 
pore space distributed throughout the domain occupied by the 
soil. This microscopic system is difficult to describe mecha­
nistically, and we therefore do not consider processes at the 
microscopic level of pore-pore interactions. Rather, we con­
sider a representative elementary volume (REV) of the soil (or 
porous media), which can be defined on a macroscopic level, and 
which is continuous through space (Fig. 2) . The property of 
interest within the system is defined to be some average value 
of its microscopic variation within the REV. When we discuss 
spatial variability two issues must be considered. First, what 
is the correct value of the REV for the soil and property of 
interest, and second, what is the spatial relationship of 
successive REVs in a spatial domain? Geostatistical analysis 
treats the latter issue through techniques described elsewhere 
in this symposium. The former issue of a correct REV quickly 
becomes an issue of sample size related to our assessment of 
spatial variability. It is useful to review a few studies that 
illustrate the need for determining the REV and that are drawn 
from cases that have implications for soil leaching processes. 

Case 1. The volume-variance relationship in core samples. 

A continuous core sample separated into finite depth increments 
is often used as a means of measuring solute or water distribu-
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tion with depth in, the soil profile. Data generated in a core 
with enough depth increments can be treated by several tech­
niques (e.g. Gelhar et al. 1983) as a step in analyzing the 
spatial variability of water and solute movement. However, a 
fundamental assumption in geostatistics is that the regionalized 
variable (in this case solute content) is measured at a point in 
the system which has an infinitely small volume or geometric 
support associated with it. In a core, as the length of a depth 
increment increases, this assumption" is less valid, with the 
result that the analysis of spatial relationships is no longer 
comparing two points separated by a distance but two average 
values over a core length separated by the distance between 
their midpoints. The size of the core increments influences the 
estimated degree of spatial variability, eus demonstrated in 
Figures 3-6. Consider two hypothetical profiles (Fig. 3 and 4) 
of measured chloride (mg/kg soil) resulting from, application of 
salty water, as would be determined by taking samples at incre­
ments of 5, 10, or 15 cm. Case 1 presents a smoothly varying 

MASS OF CHLORIDE (mg/kg soil) 

0 20 40 60 80 

MASS OF CHLORIDE (mg/kg soil) 

0 40 80 120 16 

Figs 3 and 4 Hypothetical distributions of chloride in smoothly 
varying (Case I) and irregularly varying (Case II) cases. 
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Figs 5 and 6 Semi-variograms of chloride content developed for 
different sampling depths from data of Cases I (Fig. 3) and II 
(Fig. 4) . 

profile, and Case II a more irregular chloride distribution. 
Calculated semi-variograms for Case 1 (Fig. 5) demonstrate very 
little difference in the estimate of spatial structure whether 
the 5, 10 or 15 cm core size is used. However, the data of Case 
II lead to different shaped semi-variograms as the core size 
changes (Fig. 6 ) , due in great measure to the irregular chloride 
distribution. If functions were fitted to each Case II semi-
variogram they would be different, as presumably would be the 
results of any next step taken. Interpretation of the spatial 
variation of leaching processes from such data, whether by 
correlation, spectral or other analysis can be expected to 
suffer from such considerations until we better determine, for 
example, the REV for chloride leaching in different soils. As 
further stochastic or mixed stochastic-deterministic descrip­
tions of leaching processes are derived, the use of core data to 
test the models can be expected to increase, and although there 
are statistical methods available to treat the volume-variance 
relationship (such as regularization), no soil leaching studies 
have so far considered this issue. 

Case 2. Soil moisture sampling 

The physical size of the sample collected has been shown to 
influence the degree of measured variability of field soil water 
content. As an example, Hawley, et al. (1982) ccJ-lected eight 
different sized cores from ten locations in a 2m area. Core 
length was a standard 100 mm, with core diameters ranging from 
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Table 1. Variability of water content measured with different 
core sizes on three dates (Hawley et al. 1982). 

Core Size 
diameter 

(,cm) 

10.2 
7.6 
5.1 
3.8 
2.5 
1.9 
1.3 
0.95 

Mean 
Aug 

9.755 
9.804 
9.699 
9.709 
9.029 " 
9.067 
8.964 
8.494 

Measured 
Variance 

14 

0.408 
0.387 
0.251 
0.489 
0.391 
0.803 
0.935 
3.482* 

Soil Water Content 
Mean 

Sept 

10.539 
10.650 
10.781 
10.834 
11.024 
11.227 
11.750 
13.025 

Variance 
18 

0.068 
0.296, 
0.180 
0.113 
0.298- .... 

0.266 -

1.937* 
1.262* 

(%) 
Mean 

Sept. 

15.346 
14.747 
14.936 
14.916 
14.411 
14.700 
14.830 
15.013 

Variance 
26 

0.434 
0.464 
0.094 
0.355 
0.917* 
0.924* 
0.949* 
1.905* 

*indicates variances significantly higher 
variances on that date. ' 

! <* = 0.01) than other 

10.2 cm (4 in) to 0.95 cm (0.375 inj . This produced sample 
volumes ranging from 824 cm to 7 cm . Sample collection was 
accomplished on three different dates with the results dependent 
upon the date (Table 1) . The variability of the soil water 
content was found to be a function, of the time elapsed between 
the sampling date and the last previous rainfall. The wettest 
sampling date, September 26, followed two days in which the 
total ra'infall was more than' 15 mm; the driest, August 14, had 
been preceded by two days without rain. The four smallest core 
samples all exhibited variances greater than the large samples 
on the wettest date, but on the driest date only the variance of 
the 0.95 cm diameter core was significantly greater. The 
intermediate date, September 18, was also intermediate in 
wetness, with only the two smallest cores more variable than the 
other sizes. These results demonstrate not only that smaller 
sample volumes are more variable than large ones, but also that 
there is a relationship between mean soil moisture and the 
minimum desirable sample volume. The results also indicate that 
the local soil moisture variability decreases as the average 
soil water content decreases, which is itself a function of the 
time since the previous rainfall or irrigation event. This 
implies that the REV for water content will have to be large 
enough to accommodate the effects of transient soil water 
conditions and will probably lead to different REVs for differ­
ent soil types. 

214 



Case 3. Variability of soil solute content 

A similar study to Case 2 investigated the relationship between 
measured chloride distribution with depth and sample volume 
(Hassan et al. 1983). Two core samplers were used, a 7.9 cm 
diameter auger and a 2.1 cm diameter sampling tube. A series of 
soil samples were collected from plots to which had been applied 
a known quantity of chloride. These samples were then dried, 
extracted and analyzed for chloride. There was higher total 
recovery as well as higher variation among values from the 
smaller sampler. The coefficient of variation (CU) for the 
total recovery was 8% for the large sampler and 14% for the 
small sampler. The implications of these results for leaching 
studies is more obvious when the estimated distribution of 
chloride with depth is considered (Fig. 7 ) , as values generated 
from the small samples indicated the chloride content to be more 
variable in the profile than did values from the large samples. 
The conclusion from such a study is that if measured concentra­
tions are to be used to develop estimates of the variability of 
solute fluxes in a field or are to be used to develop or test 
models, it is obviously important to take as large a sample as 

CHLORIDE CONCENTRATION IN SOIL WATER (C/Co) 
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Fig. 7 Chloride concentration measured in the field with two 
different sized samples (from Hassan et al. 1983). 
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possible to insure that a REV is being sampled. Additionally, 
Hassan et al. (1983) noticed a possible effect from contamina­
tion of deeper samples by surface material when using the larger 
auger, and exclusion of soil from the small sampling tube due to 
friction and compaction. These very practical concerns obvious­
ly influence results and should be identified as components of 
sampling programs when spatial variability is the issue to be 
treated. 

A final point before leaving the issue of measuring soil 
solute variability concerns the use of parous ceramic cups as 
extraction devices to measure soil solution concentrations. The 
volume of soil sampled is a function "of the negative pressure 
applied to the* cup, and the soil water tontent. The sample 
collected reflects the contributions of tho"se pores that will 
empty in response to the applied suction. It is almost certain 
that in many soils this sample will not constitute a REV, yet it 
is a methodology that is widely used. A very practical point, 
often the determining factor, is that the parous ceramic cup is 
the only available means to repeatedly and directly sample the 
same point in the profile. Howeve*, it appears that ceramic 
extractors do not always provide reliable estimates of the true 
soil solution as they do not sample all water in a localized 
volume, and in many cases do not collect sample from a REV of 
soil. Their use should be carefully considered in future 
studies of solute spatial variability. 

Case 4. Variability of hydraulic conductivity measured on 
extracted core samples 

It is a common practice to collect cores in the field in as 
undisturbed a condition as possible, transport them to a labo­
ratory and there subject them to a series of standard tests to 
determine hydraulic conductivity (K) . The influence that the 
size of the core has upon the estimate of K is often neglected, 
but the effect can be substantial. Anderson and Bouma (1973) 
collected ten undisturbed cores of 7.5 cm diameter for each of 
four core lengths: 5,' 7.5, 10 and 17 cm. The study focused on 
an argillic horizon of a silt loam soil with abundant root 
channels and subangular blocky peds. The value of the saturated 
hydraulic conductivity, K , was measured using standard 
laboratory techniques for core samples. Mean values of K 
were found to decrease as the core was lengthened (Fig. 8 ) . The 
variance of the ten samples also decreased when K was 
measured in longer cores. These results were interpreted by 
considering the relationships between soil-water flow, soil 
structure, and a finite-sized core sample. It was concluded 
that larger pores tend to become discontinuous throughout longer 
cores (much as they would in the field), which would result in a 
considerable drop in hydraulic conductivity. Shorter cores 
would more often be characterized by the presence of continuous 
pores through the length of the core, thereby producing gen­
erally higher K values. The longer cores produced more 
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Fig. 8 Saturated hydraulic conductivity measured in different 
size undisturbed core samples (from Anderson and Bouma, 19731. 

consistent K values for the same reason, as attenuation of a 
large pore at any point in the core above the outflow would 
produce a similar reduction in K in replicate cores. The 
values of the 17 cm high core were closest to those measured 
in-situ by a double tube method although the mean of the former 
was still greater than the mean double tube value by about a 
factor of two (Fig. 8) . It is obvious that use of a core of 
insufficient size can provide inaccurate estimation of the 
spatial variability of K , even if many replicates of the core 
are used. Not only does \.he core size influence the mean and 
variance of a sample population, the relationship of the values 
determined on any core to a "real", in-situ determined K is 

. , sat 
not clear. 

Case 5. Variability of hydraulic conductivity measured in-situ 

Recognition of the influence of soil structure upon the value of 
K measurements from different sized cores leads to an addi­
tional question. What influence does the physical size of an 
in-situ sampled area have upon estimation of K ? That is, if 
soil structure has an influence in the vertical dimension then 
does it also play a role in the horizontal through the number of 
peds included in an in-situ, attached soil column? This ques­
tion has recently been addressed in a field study (Lauren, 1984) 
that measured K 

. sat 
in-situ using five different sized soil 

columns carved from a textural B horizon but with the bottom of 
each column left attached to the' soil profile. The procedure 
used on the three largest-sized columns (160x75 cm, 120x50 cm, 
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50x50 cm) was adapted from the column method of Bouma (1977) , 
and consisted of encasing in gypsum the four exposed vertical 
sides of the excavated column leaving the top surface exposed 
for infiltration of water. Each column was 20 cm in height. 
Steady state infiltration of water into the column was used as 
the measure of K . The two smaller-sized columns were formed 
by inserting into the 50x50 cm square two circular sections of 
pipe, one 20 cm in diameter and the other 7.6 cm diameter. K 
was also determined on these columns, in the attached condition, 
by an infiltration measurement. Tne experiment was organized 
such that each set of five measurements was made at 
approximately the same x-y spatial coordinate location. This 
was achieved by locating, for the three largest column sizes, 
each successively smaller measurement within the confines of the 
previous column. The only deviation from tijis design was that 
the two circular columns were taken adjacent to each other from 
within the 50x50 cm square. The experiment wa~s, repeated at 40 
locations separated by 10 m on a 400 m transect. The results 
(Table 2) demonstrate that the sampled populations of K from 
all column sizes were strongly log-normal. The mean, mode, 
median and variance of these populations depend greatly upon the 
size area sampled. Excluding the largest sample size, an 
increase in surface area of the column produced a general 
decrease in the mean and variance of measured K . This trend 
was not consistent at the largest size for unexplained reasons. 
However, the coefficients of variation (CV) for the three 
largest sizes were essentially identical. The CVs for the two 
smaller sizes were also identical although greater in value than 
for the larger samples. This behavior of smaller sampling areas 
can be explained -by considering the probability of any small 

Table 2. Saturated hydraulic conductivity measured in-situ on 
five different sized volumes (Lauren, 1984) 

Column , 
Size 
(cm) 

160 x 75 

120 x 50 

50 x 50 

20 (dia. 

7.6 (dia 

Column 
Area 
(cm2) 

12000 

6000 

2500 

314 

) 45 

Saturated Hydraulic 
Mode 

8.6 

5.5 

5.4 

6.9 

4.9 

Median 
(cm/day) 

17.6 

10.9 

11.3 

20.3 

16.0 

Mean 

25.0 

15.4 

16.3 

34.9 

28.9 

Conductivty 
Variance 

(cm2/day2) 

647 

233 

290 

2391 

1897 

CV 
(%) 

101 

99 

104 

140 

150 

Nu 
of 

mber 
Obs. 

40 

39 

40 

37 

38 
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sample containing within it a representative cross-sectional 

area of soil, complete with the cracks, channels or preferred 

pathways that determine K . The smaller the sample, the 

greater the probability that the flow regime will occasionally 

be dominated by a single crack or channel. This will result in 

both a larger mean and variance of the sampled population, as 

the occasionally extreme value of K will increase both these 

statistical moments. It remains to quantify the relationship 

between these values and soil structural units, such as the ped 

size, degree of cracking or presence of large pores. 

Geostatistical analysis of the five transects measured in 

this study produced different estimates of spatial structure 

depending upon the column size used (Fig. 9 ) . The semi-
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Fig. 9 Semi-variograms of saturated hydraulic conductivity 
measured in-situ over different sized areas (from Lauren, 1985), 
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variogram of K values from the largest and two smallest 
columns showed no spatial structure, while a spherical or linear 
model could perhaps be fitted to the semi-variograms calculated 
using the data from the two intermediate column sizes. This is 
not an unexpected result, particularly if the results from the 
small columns are misleading due to the size area sampled not 
being representative of the average cross-sectional properties 
of the soil (i.e. the REV for K is greater than 314 cm by 20 
cm deep for this soil) . There xs aLso, apparently, an effect 
upon estimated spatial structure produced by using too large a 
sample size (12,000 cm ) indicating perhaps ̂ an error in experi­
mental methodology when trying to apply the column method to so 
large a block. The further analysis and interpretation of this 
data is in progress. •* . 

These results have obvious implications for in situ studies 
of hydraulic conductivity. The same degree of Variability is 
not measured by the column method in different soils, as a CV of 
only 10% was measured by Baker and Bouma (1976) using 25 cm 
diameter columns in silt loam soils. The proper size column to 
be used (the, REV) for measurement of-.1 K is obviously influ­
enced by soil structure. Criteria have been presented (Bouma 
1983) based upon soil structure for separating soils into 
classes of REV appropriate for measurement of K . These 
hypothesized classes are relatively untested, but represent a 
logical approach to deciding how large a sample constitutes a 
REV in different soils. It is clear that until we resolve the 
relationship between soil structure, sampling size and the 
degree of estimated spatial variability, the extrapolation of 
results from one field study to another situation will be a 
tenuous proposition. A number of studies (e.g. King and 
Franzmeier 1981; Nowland, 1981; McKeague et al., 1982) have had 
mixed success in predicting K' from soil pedological measure­
ments , perhaps due to lack of information on the REV for K in 
different soils. However, when appropriate measurement tech­
niques are used, and spatial structure is measured in hydraulic 
properties, calculation of integral scales and estimation of 
field sizes and sample numbers are possible (Russo and Bresler 
1982) . These techniques offer promise for extrapolating the 
results of a study at one site to other geographic locations. 
However, without reliable measurements based upon knowledge of 
the REV, use of such equations will be only an academic exer­
cise. Increased attention must be paid to the relationships 
between soil structure, hydraulic properties and the REV, 
particularly if a long-range objective is to relate measured 
spatial variability to common and widely used soil data bases, 
such as the soil survey. 

Temporal stability of spatial variability 

A basic premise of studies that measure spatial variability 
of leaching processes is that the spatial structure of variabil­
ity (if any) is preserved over time. Not much research atten-
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tion has been paid this issue, although intuitively it seems a 
reasonable assumption. As spatial variability in water and 
solute movement is dictated by variations in the geometric 
arrangement of particles in the soil matrix, it can be presumed 
that in most soils these arrangements are relatively stable over 
time. This is visually apparent from observation of wet and dry 
spots in the field, indicating localized positions of relatively 
rapid or slow water movement. The lack of research attention 
paid to temporal stability of spatial variability is understand­
able, particularly with respect to soil parameters such as 
hydraulic conductivity that are used to predict water and solute 
movement. Most techniques used to measure these parameters are 
tedious and labor-intensive. This often makes multiple observa­
tions on one field at one point in time a logistical nightmare, 
let alone repeated sets of multiple observations, as would be 
needed to study temporal variability. 

Vachaud et al. (1984) have recently presented a straight­
forward method of assessing, and then using for further sampling 
programs, the temporal stability of the structure of spatial 
variability. In their study, a neutron moisture meter was used 
to measure soil water content every 10 cm to a depth of 100 cm 
at 17 sites in a 2000 m grass field. Data were collected 24 
times over a 2.5 year period at irregular intervals. Soil water 
storage in the first meter was calculated for each access tube 
at each sampling date. Geostatistical analysis of the data 
showed that water storage values were spatially independent, but 
classical statistics showed that at each sampling time the water 
storage values were normally distributed. As an example, Fig. 
10 (Vachaud et al. 1984) presents the cumulative probability 
density function for the two extreme situations: the wettest 
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Fig. 10 Temporal relationships of spatial variability of soil 
water storage (from Vachaud et al., 1984). 
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(Sept. 7, 1982) and the driest (Aug. 17, 1983). The important 
characteristic of these plots is the relative position in the 
cumulative probability of each individual access tube, here 
denoted by the number located to the right of the plotted point. 
Note that although the total amount of water in the profile at 
each access tube changed over time, the mean soil water storage 
for the field could have been determined by sampling only at 
position 10, and the 95% probability limits on the water storage 
determined using locations 1 and 4. This is potentially quite a 
useful result, as it indicates that positions in the field can 
be identified with one soil sampling at'"£ime zero and used 
thereafter for repeated sampling to estimate, e.g. the mean and 
variance of water- storage. This infers that, simple gravimetric 
sampling and analysis at the first stage of a .field study could 
identify statistically important field locations at which could 
then be located more detailed and intensively monitored sampling 
devices. Only a few such sites, intensively monitored, could 
then be used as measures of the limits of field variability. 

Extrinsic and Intrinsic Variability 

The spatial variability of soil properties has long been 
recognized by pedologists. The relationships between parent 
material, topography, elevation, vegetation, time and the 
resultant soil's physical-chemical properties has led to appre­
ciation of the variable nature of soils in the landscape. This 
variation arising from natural processes can be termed intrinsic 
soil variability, as it is a component of the essential nature 
of the soil and has arisen at least partially from within the 
soil body by weathering and leaching "phenomenon. This intrinsic 
variability is manifested in such forms as the gradation of 
particle sizes in alluvial putwash soils, the development of 
distinguishable differences with depth (the soil profile), and 
the presence of macropofes, structural cracks, and root chan­
nels. Such variability should be distinguished from the imposed 
variability of water and solute within the soil profile that 
results from the distinct application geometries used in many 
soil-water-chemical management programs. The imposed, or 
extrinsic, variability can result from patterned irrigation 
application (furrow or sprinkler) and patterned fertilizer or 
pesticide applications in bands or rows behind sprayers. This 
patterned variability will often persist over time, depending 
greatly upon the dynamics of the flow regime, which is itself 
variable according to the intrinsic variability. These issues 
should be recognized, particularly as soil sampling programs are 
designed that will be incorporated into other studies of chemi­
cal redistribution within the soil profile and in which extrin­
sic variability is to be imposed upon the intrinsic. For 
example, Hornsby et al. (1983) , in a field study in which 
aldicarb was applied in bands, investigated the proper location 
of soil sampling efforts on successive dates to monitor the 
variability of aldicarb leaching. They found that the pattern 
of leaching variability in their very sandy soil was almost 
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completely determined by the uniformity and separation distance 
between band applications. That is, the extrinsic variability 
defined the limits of subsequent solute leaching variability. 
Whether this result would be transferable to other soil types is 
not resolved. It is clear, though, that these two types of 
variability must be separately considered, particularly as 
results from a soil series in one location are extrapolated to 
the same series in another location that is not subject to the 
same management (different extrinsic variability). 

Such issues have been recognized in studies of the spatial 
variability of pesticide applications, and the results demon­
strate the degree of effect that can be imposed. Taylor et al. 
(1971) collected a total of 108 cores in a 0.13 ha field plot 
soon after its treatment with dieldrin. A 50-fold variation in 
dieldrin was measured (overall CV of 80%) , with much of the 
observed variability attributed to application using a boom 
sprayer followed by a discing operation. Similar extrinsic 
variability has been reported in a number of other studies 
(Fryer and Kirkland 1970; Harris et al. 1949: Wauchope et al. 
1977) , including one (Walker and Brown 1983) which demonstrated 
that careful application methods could reduce measured CVs 
compared to those observed under more conventional procedures. 

Leaching variability in non-cropped and cropped situations 

The studies of Nielsen et al. (1973) and Biggar and Nielsen 
(1976) that demonstrated the spatial variability of the steady-
state infiltration rate, K(9) relationship, apparent diffusion 
coefficient (D) , and pore water velocity (v) stimulated much 
subsequent theoretical and experimental activity (e.g. Van De 
Pol et al. 1977; Carvallo et al. 1976; Luxmoore 1982; Hornsby et 
al. 1983; Vauclin et al. 1983). These studies have confirmed 
that water flow and solute transport are quite spatially vari­
able. Generally, it can be stated that field measured sample 
populations of rate parameters related to leaching, such as 
infiltration rate, K(9), D and v are characterized by skewed 
distributions, often log-normal. Sample populations of capacity 
parameters, such as bulk density, saturated water content and 
cation exchange capacity have been shown to be less skewed in 
their distribution, and often are normally distributed about 
their mean. The raw data from these and similar studies has 
been used in a number of conceptual exercises to (1) simulate 
water flux during steady drainage (Warrick et al. 1977) , (2) 
assess the relative impact of D and V on variability of solute 
leaching (7Amoozegar-Ford et al. 1982) , (3) develop stochastic 
models that represent the relationships between sample popula­
tions of spatially variable transport properties and the calcu­
lated water and solute movement in the field (Dagan and Bresler 
1979; Bresler and Dagan 1979, 1978; Jury 1982), and (4) develop 
field sampling programs that consider the spatial distribution 
of sampling points as a necessary first step in measuring 
leaching variability (Warrick and Nielsen 1980). 
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All these studies had as a basic objective the determina­
tion of the intrinsic variation in soil properties related to 
water and solute movement. However, the implications of these 
studies may differ depending upon whether the soil is cropped or 
uncropped, and in the cropped case, may depend upon the leaching 
fraction as well. Intuitively, it seems obvious that root zone 
processes of water and solute extraction have an influence upon 
the variability of water and chemical fluxes within that region 
of the profile. The old adage that '!Q plant root takes water 
from where it is most available" recognizes not only variability 
of water in the soil, but also the interaction between the 
variability and water extraction. A field study that attempted 
to simulate water content and solute "concentration in both 
cropped (corn) and non-cropped soil profiles (Dudley et al. 
1981) provided indication that plant root extraction homogenizes 
leaching processes within that region. Tensiometers and neutron 
probe data were used to develop in-situ soil hydraulic proper­
ties, and soil solution extractors were used to sample the soil 
profile within and below the root zone in several treatments 
that differed in water and salt management. A numerical model 
of water and salt movement (including' description of chemical 
reactions) provided much mora accurate simulation of total salt 
in cropped than in non-cropped cases. A single measured, 
spatially averaged relationship between K-G-matric potential was 
used in simulating all situations. It was hypothesized that 
this relationship produced simulations that more closely matched 
observed data in the cropped case due to a uniformity of water 
and solute fluxes within the root zone produced by plant extrac­
tion process. The removal of water more readily from pores 
where the matric potential was closest to zero, which are also 
pores that would be physically larger and more conducive to 
rapid water and solute movement (the extremes of leaching 
variability), reduced the influence these large pores could have 
upon the leaching process. The use of an average K-0-matric 
potential relationship to describe a cropped area characterized 
by such processes was approximately correct, and reasonable 
simulations were thereby produced for cropped cases. Solute 
concentrations in the non-cropped profiles, closely resembling 
the experimental design used previously by e.g. Biggar and 
Nielsen (1976) or Van De Pol et al. (1977) , were not well-
described by the predictions of the numerical model. This is 
consistent with the previous work that indicates K-9-matric 
potential relationships to be extremely variable soil proper­
ties. It is to be expected that variable solute concentrations 
produced by such spatially variable water flow conditions could 
not be predicted using a deterministic numerical model. It 
should also be recognized that the leaching fraction used in 
this study was rather low (less than 10%) , and therefore the 
influence of the root zone in integrating and homogenizing water 
and solute fluxes was probably maximized. It can be expected 
that as the leaching fraction increases the influence of the 
root zone will decrease, and the variability of water and solute 
leaching will approach that measured in non-cropped cases. This 
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will be particularly true if increased leaching fractions are 
produced by intermittent, excessive applications of water 
resulting in large volumes of drainage during relatively short 
times. 

Similar influence of the root-zone upon variability of 
water and solute movement has been demonstrated by Bresler et 
al. (1979) and Wagenet and Rao (1982) . It is clear that al­
though soil hydraulic properties may be spatially variable by 
orders of magnitude, this does not always translate into orders 
of magnitude in variability of water and solute movement in 
cropped situations. Transient upward and downward movement of 
water and solute within the root zone accompanied by plant 
extraction produces much more homogeneous water and solute 
profiles than would be expected by considering only the natural 
soil variability of hydraulic properties. This is true so long 
as leaching fractions are minimal. It also appears that deter­
ministic, numerical models of water and salt movement can 
represent this variability and provide reasonable simulations of 
water movement and solute leaching, so long as other mediating 
processes (e.g. biological conversion, chemical reactions) are 
well-understood. 

Spatial variability of mediating processes 

Whether we consider the transport, transformation and plant 
uptake of nitrogen and organic chemicals or the simultaneous 
movement, precipitation, dissolution, and adsorption/desorption 
of inorganic ions, it is clear that a number of processes other 
than convection and dispersion can influence solute leaching. 
All these processes are potentially spatially variable as each 
depends upon conditions of water content, substrate concentra­
tion, temperature, and soil structure that are also spatially 
variable. Information on spatially variable leaching process 
has to date been developed through the study of non-interactive 
ions, such as chloride or bromide, and at times considerable 
success in simulating such ions has been achieved (Smith et al. 
1984). However, almost all cases of environmental or agricul­
tural interest focus on interacting chemicals that can be 
degraded or transformed during leaching. The experiences gained 
from studies using non-interactive ions have enlightened us 
greatly on the variability of soil physical processes related to 
flow, but the implications of these studies with respect to the 
movement of pesticides, heavy metals, toxic organics, and 
inorganic salts remains to be determined. The recognition that 
spatial variability of leaching processes exists does not mean 
that this variability is the controlling factor in producing 
spatially variable water or solute fluxes. It could eventually 
be shown that spatial and/or temporal variability in, for 
example, a biological or chemical transformation process actual­
ly overwhelms variability of hydraulic properties in determining 
the distribution of a solute within the soil profile. 
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An example of such results has been provided with respect 
to measuring and modeling nitrogen transport and transformation 
in a field cropped with corn (Wagenet and Rao 1982) . Extensive 
measurement was made of nitrate concentrations and water con­
tents under several water and nitrogen application regimes. The 
spatial variability of the K(9) relationship was studied in 100 
locations at 7 depths (700 total estimates; Jones and Wagenet 
1984), and was condensed and summarized using scaling methods 
(Warrick et al. 1977). A numerical model of nitrogen transport 
and transformation which represented nitrogen transformation by 
first-order kinetics, was used with this^information in an 
attempt to simulate measured nitrate concentrations. It was 
found that predicted nitrate concentrations were relatively 
insensitive to "the variable K(9) relationship. The model 
correctly predicted the soil depth at which pe'ak nitrate values 
would exist, yet grossly overpredicted the nitrate concentra­
tion. Lack of understanding of the rate of biological conver­
sion was hypothesized as the limiting information to successful 
simulation of the nitrate distribution. In this case, spatial 
variability of the K(9) relationship was treated well, but the 
influence of variable biological conversion processes was not 
well enough understood. As more field observations are made of 
spatially variable biologically active - solutes, it will become 
increasingly important to understand the variability of trans­
formation or retention processes. Only in this way can solute 
leaching be understood on a field scale, and managed within the 
context of the entire"soil system. 

Summary 

Although we now appreciate that leaching processes are 
spatially variable, we have not yet developed a suitable tech­
nology for accurately measuring that variability, for interpret­
ing data from spatially yariable field sampling programs, or for 
predicting the distribution of water and solutes in spatially 
variable soil profiles. However, we are closer to accomplishing 
these tasks than we were ten years ago. Our ability to progress 
to further understanding and improved management will depend 
upon how well we have learned our lessons from past efforts. 
For example, we now recognize that the manner in which we 
collect samples can influence the degree of variability that we 
think are measuring. This should motivate us to determine 
appropriate sampling methodologies that focus upon the REV of a 
property and the sample size necessary to accurately measure 
variability. We also recognize that statistical' techniques 
which consider the spatial dependence of field samples can often 
be helpful in quantifying variability, although we do not yet 
include such techniques in routine assessment of water and 
chemical movement. In fact, routine sampling of field soils 
employs very little of the rapidly growing literature on soil 
sampling in spatially variable soils, due to a combination of 
logistics, poor communication, and lack of generalizable design. 
In response, we must redouble our efforts to design sampling 
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programs that maximize the scientific return from every field 
study. We also do not yet appreciate the full significance of a 
growing crop's effect on the variability of the quantity and 
quality of water exiting the root zone and how this variability 
is related to water and amendment application schemes. Finally, 
when the objective is prediction, we can formulate stochastic 
and deterministic models that describe the movement of non-
interacting ions in spatially variable field soils, but we are 
not yet capable of treating interacting or transforming solutes 
that are subject to the effect of multiple, mediating spatially 
variable processes. 

The summary effect of these facts is that although we are 
closer than ever before to understanding and managing spatially 
variable soils, we are still far from devising a comprehensive 
strategy for doing so. The need for such a strategy is obvious, 
particularly if we consider important environmental problems 
that focus on the movement of water and solutes. One example of 
such an issue is groundwater quality. In the next decade, 
groundwater degradation from the leaching of pesticides, fertil­
izers and toxic wastes will become an increasingly sensitive 
public issue, and it will be important to manage the soil system 
to reduce chemical leaching. This management must be based not 
upon the mean values of solute concentration within the profile, 
but with concern for the occasional extreme values that evolve 
from spatially variable soil processes and properties. It is 
these statistical outlyers that in many instances result in 
unacceptable groundwater contamination. Understanding spatial 
variability of solute and water movement is a fundamental first 
step in devising a strategy for the proper management of such 
systems. 
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Discussion 
L. Wilding: The question of intrinsic vs. extrinsic 

variability. We must not forget that the 
biochemical system of soils, which is an intrin­
sic property, controls many of the physical-
chemical reactions in soils such as biodégrada­
tion of pesticides, redox potential, dentriflca-
tion, rhizosphere effects on phosphorus and 
symbiotic microorganism impacts. 

R. Wagenet: I agree. My purpose in distinguishing between 
extrinsic and intrinsic variability is to 
recognize that we impose certain variations in 
soil distribution of water and solutes by our 
human activities (extrinsic variation), and 
there is another variation (intrinsic) that is 
produced quite naturally by biological, physical 
and chemical processes. 

W. Schuh : When speaking of elementary sample volumes - how 
much can we expect the definition of our popula­
tion to affect the required volume? Does this 
point to a need for examination of optimal 
classification units - not necessary but pos­
sibly spatial - for the desired parameter? 

R. Wagenet: There are many possible scales of observation 
that can be used to characterize variability, 
from the smallest local volume to field scale 
and on to watershed or larger scales. It does 
not seem logical to me to ever use a smaller 
scale than one which incorporates in an average 
macroscopic manner all the possible microscopic 
variations. This is my concept of a representa­
tive elementary volume (REV). The population 
defined by it consists of measurements on soil 
volumes that vary by the property being 
measured. I believe it will be useful on any 
scale and will vary according to the measurement 
techniques and purpose. However, we should be 
careful that the density of variation of the 
factors that affect the property is the same in 
both the sample volume and the landscape. The 
minimum sample volume that meets this criteria 
is then both "representative", and "elementary". 

L. Wilding: Doesn't the representative elementary volume 
depend on the property under concern (i.e. the 
adsorbed versus non-adsorbed elements)? For 
example, do we wish to look at the soil as the 
plant root sees it? If so we may be examining 
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too large a volume of soil rather than too small 
(consider Eh for example). On the other hand, 
in hydrological work perhaps our sampling volume 
is too small. 

R. Vagenet: The point is well taken, and the answer is yes, 
the REV depends on the measurement being made. 
My answer here is similar to that given to 
Mr. Schuh, and can be quickly restated as "The 
REV, to be both representative and elementary, 
must contain variation in the factors affecting 
the property at the sarnê  density as is present 
in the natural system under study." In this way 
the REV will vary according to the property 

'being measured. 

J. Parker: We should be wary of attempts to define a single 
unique REV. The size of' an "REV" is contingent 
on the scale of the continuum we seek to model. 
We may describe flow at Che pore scale (in 
concept) by solution of the Navier Stokes 
equation given detailed knowledge of the pore 
structure and a big enough computer! Or as Lynn 
Gebhar's work elegantly shows we may be able to 
define a REV on the order of many meters or 
kilometers when, for example, an asymptotic 
microdispersion tensor may be obtained. Of 
course, as the REV size increase the variance 
between samples diminished while more variabil­
ity is incorporated within the REV. 

R. Vagenet: I agree. My reply to Mr. Schuh and Mr. Wilding 
amplifies on my agreement. 

K. Flach: Many measurements pedologists maKe routinely go 
back to a list prepared by Richard Bradfield in 
1935. Feedback from modelers is needed to 
update the list of measurements that are being 
made and to improve the methods of sampling and 
measurement. 

R. Vagenet: I hope the types of studies underway, in which 
we would like to relate hydraulic properties to 
soil morphology, will motivate the pedologists 
interested in soil structure to develop a 
quantitative expression of soil' structure. 
Descriptive, somewhat qualitative terms like 
"blocky" and "prismatic" do not help us much as 
we move the more quantitative statistical and 
mathematical treatments of soil variability and 
leaching. This is my first "feedback" to my 
fellow pedologists. 
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C. Topp: The classically defined soil structure concepts 
have not been defined for interpretations of 
flow and transport properties such as K 
Therefore it is not surprising that present 
concepts of soil morphology do not yield direct 
information on K . The soil morphologist has 
a highly refined concept of observation which 
can be "calibrated" and will result in a revised 
approach to describing and quantifying soil 
morphology. Our experience of using soil 
morphology to predict K indicates that a 
revised approach can be developed to give 
reliable and quantified K . This requires 
that a measurement technique must be used t 
"calibrate" the morphological analysis. The 
first evidence of this is available from 
McKeague et al. (1982) in SSSAJ. 

R. Wagenet: I am aware of that work, and while it is focused 
on the general direction that I suggest, ~k would 
hope that we can eventually go even further 
toward defining relationships between morphology 
and flow properties in both quantitative and 
mechanistic terms. 

J. Starr-, Others are also concerned about the effect(s) of 
sample volume on variance, etc., in that at 
least two papers were presented earlier this 
week by myself and my colleagues on this 
subject. 

Did you imply that an REV can be identified for 
a given parameter by its resulting in a spatial 
structure when smaller samples do not. 

R. Wagenet'. It appears from our studies that using sampling 
volumes less than REV precludes the measurement 
of any spatial dependent in hydraulic conduc­
tivity, while using samples of at least the size 
of a REV allows us to calculate spatial depen­
dency in the samples. However, we define the 
REV using elementary units of soil structure, 
not in terms of the volume required for estima­
tion of spatial structure. If a relationship 
can be established between the REV based on soil 
structure and the ability to determine spatial 
dependence it will help tremendously. As yet, I 
do think this relationship has been established. 

M. Nash: If you find a different range for each variable, 
how can you design the soil boundary for all the 
variables? 
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If you found through principal component analy­
sis that the first principal component held the 
highest variation, can you use that in kriging 
for mapping design? 

R. Wagenet: If each soil property is separately analyzed by 
geostatistical methods, it is probable that a 
different range of spatial dependence will be 
found for each property. Condensing these into 
one collective region by defining a soil 
boundary that includes at oace all ranges is of 
course not possible. However, we should con­
sider developing separate maps of each property 
father than seeking condensation of several 
properties. After all, the soil survey already 
accomplishes the collective description of soil 
variability. There is no • reason" to retreat to 
that position once we have taken the time to 
study the variability of each property. 

I am not familiar with,- the details of principal 
component analysis, but those knowledgeable on 
the subject indicate that it could be used in 
conjunction with kiriging. 

E. Hill: How would you suggest determining a relative 
elementary volume of an experimental unit and 
determining the field location of that experi­
mental unit so that the effects of a treatment 
on'physical properties may be evaluated? 

R. Wagenet: If working on the scale of an experimental field 
plot or relatively small agricultural field, I 
would proceed much as described ' in my paper 
relative to in-situ measurement of hydraulic 
conductivity. If you are examining treatment 
effects on physical properties (e.g., the effect 
of additions of organic matter upon hydraulic 
conductivity), I would first determine the REV 
for hydraulic conductivity, and would then 
initiate a second study that imposed organic 
matter treatments in a serial manner over space, 
with measurement of K( ) made using the right 
REV. This assumes that the size of the REV is 
not affected by the treatment, and 'unless the 
treatment is quite extreme relative to the 
microscopic variability, this seems a reasonable 
assumption. 

F. Morkoe: In order to determine the REV in your infiltra­
tion study, you have done extensive sampling. 
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Would you speculate on how you can determine it 

R. Wagenet: We are hoping to relate the REV to soil mor­
phology so that we can use the soil survey as a 
guide to appropriate measurement volumes. 
However, it may also be true that the REV is a 
function of measurement method. I hope it is 
not. We need a few more studies on such issues. 

E. Flaig: My comment considers the topic of extrinsic and 
intrinsic soil variability. Our evidence from 
steady rate irrigation with fertilization of 
nitrate illustrates that the spatial pattern of 
nitrate in soil solution at 0.5 m depth was not 
found to reflect the spatial pattern of the 
depth of irrigation water or applied nitrate at 
the surface. However, the pattern of nitrate 
leaching was influenced by the location of a 
localized traffic pan. 

R. Wagenet: It is interesting that the presence of the 
traffic pan apparently overwhelms much of the 
other dynamics of the system. Certainly such 
dominating physical features will affect our 
assessment of variability, both in intrinsic and 
extrinsic cases. 
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