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Foreword

D, R. Nielsen, Chairman Working Group on Spatial and Temporal
Variability of Field Soils, Internaticnal Society of Soil Science

J. Bouma, Secretary Working Group on Spatial and Temporal Variabil-
ity of Pield Soils, International Society of Secil Science

These proceedings refer to the first meeting of the Working Group
on Spatial and Temporal Variability on Field Soils on behalf of
Commissions I (Soil Physics) and V {Soil Genesis, Classification
and Cartography), of the International Society of Scil Science.
The meeting entitled "Workshop on Scil Spatial Variability", was
sponsorad by the Internaticnal Society of Soil Science, The Soil
Science Society of America and the U.S. Department ¢f Xgriculture.
The objectives of the Workshop were to explore and discuss alter-
native statistical concepts and procedures of (1) enhancing the
understanding and development of pedology, and (2) improving
technology of soll survey, soil science and hydrology applied to
present-dayv management of field soils. During the past decade,
several national and international symposia have fococuzed on the
collection and analysis of scil and related environmental data as
regards their spatial and temporal wvariations. Amongst these
symposia, we consider the intellectual framework of this Workshop
to be unique because it attempted to relate current efforts on
statistical and mathematical interpretation of wvariability to
contemporary soll classification programs with a viewpoint to
future research.

The Workshop consisted of invited papers and extended discussions
in four general areas. The resulting one-half day sessicns focused
on general statistical concepts of quantifying variability and
upon applications to hydrolegy, scil survey, and miscible displace-
ment and leaching. In each session two or three invited speakers
presented 30 - 45 minute lectures designed as reviews of conceptual
models, statistical approaches and experimental methods useful in
studies of spatial variation. Each speaker's presentation was
followed by an open discussion during which participants presented
comments based upon their own experiences or questions directed
towards the speaker or the audience, The ccontents of this hock

are the unabridged presentaticns of Workshop participants, Each
gave a full measure of his knowledge and experience to contribute
toward the obijectives cof the Workshop.

On behalf of all participants, we wish to express our gratitude for
the support of the three sponsoring organizations, and especially
the effort of David M. Kral and his staff of the Headoffice of the
Soil Science Society of America for providing the logistics



necessary for the Workshop, We alsoc wish to express, on behalf of
the participants, our sincere appreciation tc each of the invited
speakers - every cne of whom was articulate and erudite - for
focusing our attention con the underlying principles of the Workshop.

and, finally, the twe of us are especially mindful and thankful

for the participation of the more than 200 perscns who attended

and made the Workshop a successful event, We lock forward to them
and future readers of this bock to continue to develop our under-—
standing of soil variability and 1t application to scil management.

an




The role of geostatistice in the design and
analysis of field experiments with reference
to the effect of gscil properties on crop yield

Alex B, McBratney, CSIRO Division of Soils, Cunningham Laboratory,
3t. Lucia, Queensland 4067, Australia

"Soil isn't Important for crop yleld, it doesn't give a
significant effect,”

A statement such as this or some close version of it has been
heard by the author at various agronomic centers arcund the world.
We, as soll scientists, find these expressions frustrating., My
aim here is to discuss briefly why such statements are made and to
suggest how geostatistical methods can lead to improved methods of
field experimental design and analysis.

The Effects of Fisherian Design

There are two maln reasons for statements of the kind made
above, The first is Fisher's field experimental design and
analysis. Fisher's great agronomic achievement in the 'twenties
wag to find a technological solution te the problem of soil varia-
ticen in field experiments. Through randomisation and blocking he
removed, without estimating, the effect of soll and other uncon-
trolled environmmental variables, His approach was outstandingly
successful and the methodology has largely stood the test of time.
From this point of view, the statement above is an artifact of the
method, Probably also as a result of the success of the method,
the number of vniformity trials and studies of soil and crop yield
covariation diminished markedly after the 1920's (cf Vieira
et al.,, 1983). The second reason for the statement ig that soil
scientists, over a period of 60 years, have evidently not
explained with sufficient clarity to statisticians and agromomists
the importance of soil in crop growth and how it could be taken
into account.

Recent Developments in Field Experimental Design

Recently, there have been some new ideas on field experi-
mental design and analysis which at least try to account for the
gpatial wvariation of the crop (Greer et al., 1984; Wilkinscn
et al., 1983; Patterson and Hunter, 1984; and Williams and
Patterson, in press)}. The first two methods assume a smooth trend
plus independent errors model, which seems unrealistic. The
method of Patterson and Hunter assumes an isotropic expomential
semi-variogram and that of Williams and Patterson an isotropilc
linear semi-variogram, These latter two methods do not appear to

3




s

be sufficiently general; my studies of uniformity trials, two of
which are deplcted in Fig. 1, show that the form of variation of
crop ylelds may be non-stationary or periodiec or anisotropic, or
some combination thereof. Clearly, a method 1s required which
allows the form of the semi-variogram to be estimated from the
experiment, such & method is outlined below.

The Role of Geostatistical Methods

Briefly, geostatistics has a *part to play in field experi-
mental design because of its ability to describe quantitatively
s0il and crop variation and covariaticn.and to perform block pre~
dictions and co-predictions. I see the use of geostatistics in
three, proceedingly more invelved, applications. ’

1. The use of soil property semi—variogrﬁms to design plot and
block size and shape. .

Assuming that there are a few soil properties controlling the
spatial yield variation of the crop and there is some proportional
relation between these variances, then the anisotropy of the semi-
variogram will suggest plot (and ¥lock) shape. The smaller plot
dimension should be in the direction of maximum variation and the
larger dimension perpendicular with the ratio of the sides equal
to the geometric anisctropy ratio. The size of the plots and
blocks will depend on the form of the variation and variances for
them can be calculated using integrals of the semi-variogram.
Qualitatively, if transitive behaviour is observed blocking will
not be required if plots with dimensions similar to the range can
be used, TIf the range is wvery large compared to the available
experimental region then blocking will proably be regquired. (It
appears that classical experimental designers assume a linear
semi-variogram!)

2, Co-gpatial soil and crop surveys

If one does not wish to assume the form of the relationship
betweeny the variances of soll and crop attributes then a co-~
spatisl soil and crop survey should be carried ocut. This is a
combination of a pgeostatistical soil survey and a uniformity
trial. For this to be fruitful, the size of yleld plets and soil
grids should be less than the range of spatial dependence. This
should allow the calculation of cross semi-variograms of the soll
and crop attributes as well as the regression of yield on so0il
attributes (allowance should be made for spatial dependence and a
method such as that described by Cook and Pocock (1983) should be
used)}.

3. Embedded field experimental designs

In an attempt to account for spatial soil and crop variation
in field experiments, it is possible to perform a co-spatial soil



Fig, 1 Spatial analysis of twe uniformity trials. 4
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The navel orange uniformity trial of Batchelor and
Reed (1918). Surface showing the yield of oranges
on 20 by 50 trees on a 22 ft. grid.

Two dimensional autocerrelation surface to lag 10
in both directions., The ridge from center back to
center front of this surface 1s in the same
direction as the yield surface from back to front,
Note the slight anisotropy.

Two dimensional spectral density surface smoothed
with a2 two dimensional Barlett window to lag 10.
Directions are the same as the autocorrelation
surface. There is no significant periocdic
behavior; all the power is at low frequencies.

The IR8 rice uniformity trial of Gomez and Gomez
(1976). Surface showing the yield of rice on 18
by 36, 1 meter square plots. Note the non
stationarity from left to right.

Two dimensional autocorrelation surface to lag 10
in both directions. The ridge from center back to
center front of this surface is in the same direc-
tion as the yield surface from back to front.
Note the stromg anisotropy probably caused by the
non stationarity.

Two dimensional spectral density surface smoothed
with a two dimensional Barlett window to lag 10.
Directions are the same as the autocorrelation
surface. There is mno significant periodic
behavior; almost all the power is at Llow
frequencies.

For further discussion of the methods used to compute these

diagrams,

and for an example of periodic variation in a

uniformity trial, see McBratney and Webster (1981).
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Fig. 2 Embedded field experimental designs
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N.B.

First order nearest neighbor (4 neighbors)
embedded Latin square design with 2 replicates on
a square grid.

First. order nearest neighbot embedded Latin
square design on an equilateral triangular grid.
Second order nearest mneighbor (8 neighbors)
embedded Latin square design on a square grid.
Second order mnearest neighbor embedded 2 cubed
factorial design with 4 replicates on a square
grid,

The grey plots need not mecessarily be as large as
the main treatment plots.
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and crop survey as described above and follow it up in the next
growing season with a classical field experiment on the same area.
If spatial patterns vary from season to season then perhaps a
better approach is to combine the co-spatial scil and crep survey
ané classical experimental deslgns -~ such a combination may be
called an embedded design. Such schemes based on square and tri-
angular grids are shown in Fig. 2. These diagrams are diagram-
matlc and are primarily intended to show the spatial nature of the
designs. For example, in Fig, 2, it is questionable whether
blocking of the replicates is required bkecause of the local con-
trol afiforded by these designs. The grey plots in each diagram
are control plots and the named white plot is a treatment plot.
The control plots can be measured for soil attributes and crop
yield and a regression model obtained. These values can then be
used to krige (or co-krige) the environmental yield on the treat-
ment plots. Further soll analyses on the treatment plots will
allow detection of any deviation between predicted soll effects
and those observed, suggesting some interactlon between treatments
and goil properties.

Statisticians will eschew these embedded designs because
relative to classical desligns they will be regarded as ineffi-
cient. Presumably this inefficiency 1s wmeasured by equating
information gained with increased effort and area of the experi-
ment. 1t may not be a simple matter to estimate the information
gained from an experiment and the formulation of an economic or
sclentific loss function seems difficult. Statisticians have been
extremely parsimonious in their expetrimental designs, however this
has not led to complete satisfaction with the users of such
schemes. Inefficiency is refuted on the grounds that these
designs allow realistic spatial models to be fitted explicitly.
To the experimenter there is no real substitute for this.

Conclusions

(1) At present there is a lack of quantitative co-spatial soil
and crop data.

(2) The design, execution and analysis of spatially integrated
soil and crop surveys and field experiments should become a
jolnt research topic for agronomists, so0il scientists and
statisticians.
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Spatial variability: geostatistical methods

Allan Gutjahr, Department of Math and Statistical Research Center
New Mexicc Institute of Mining and Technoclogy, Socorro, NM 87801,Us8a

Introduction

Recent research in the soil sciences (Byers and
Stephens, 1983; Bresler and Dagan, 1983) and hydrology
{(Delhomme, 1978, 1979y Bakr et.al. 1978; GBGutjiahr
et.. al., 19783 Gutjiahr and Gelhar, 1981) emphasize the
concepts of spatial variability in the study of soil
propertiezs and flow problems. The papers cited
emphasize the statistical and stochastic nature of the
phenomenaa. : 4

In this paper I will present some of the basic
concepts of spatial variability and illustrate their
meaning. I will alsc discuss the assumptions involved,
the type of data needed, and the advantages and
limitations of these procedures.

Problems of variation in soil properties have
certainly been recognized for many vyears. In +Ffact
much of the statistical work on design of experiments
and analysis of variance originated in agricultural
research. The main concern, however, was with
differences between mean values and variation was often
viewed as a nuisance to be controlled for in some
manner.

By contrast, the geostatistical study of spatial
variability deals with data and problems that involve
uncontrollable variation that still has some kind of
structure. Thus the data in space f{or time) is
presumed to have some connectedness or continuity
embedded within the randommess. The objectives of such
a study vary and include attempts to explain variation,
to buiid predictive models, to interpolate ar
extrapolate values, to design sampling plans and to
interrelate variations of different properties (e.g. to
relate the variability of conductivity and head in a
hydrologic context). Thus this approach views
variation as part of an overall praoblem which can
convey vital information about the phenomena studied.

Random Fields

The starting point in the geostatistical study of
spatial variability is the notion of a random field or

9
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random function in space (3 will designate a vector in
1, 2, or .3, space. The Glossory contains a more
complete definition of terms). Simply, put a random
field, WV(x) or spatial stochastic process is a random
variable +For any Ffixed value of x. Vix} might
represent guantities like hyraulic conductivity, grain
size or head at location y.

A rcomplete description of V{x) would require the
Jnlnt probability distribution at any set of locations,

=1 ... n. In *practice this amount of
iﬂfurmatinn is virtually impossible to obtain and
instead only descriptions of moments are used. These
include the mean, Vixg) = EW(x})), the variance,

Var(Vi(x}}! and, mpst importantly, a measure of the

statistical relationship between ¥ix,) and V(xz) known

as the covariance coviVix ), Vix ¥,

We start by examining the Concept of statistical
homogeneity or second-order 'statiunary. Vig) is
statistically homogeneous (second-order stationary) if
Vix) has constant mean and if CoviVix,), WV(x._)} only
depends upon the vector difference x1 - xz aamely if

)

(i} E(V{x)) ='m, a constant
and (ii) Cnv(V{zl), V(ﬁz)) = R(ﬁlﬁgz), ar
CoviViz+y), Vix)) = Riy}.

Riy) is the covariance function evaluated at lag vy.

The covariance condition states the statistical or
probabilistic dependence is only related +o the
separation between the points. The - constant mean
condition is not a controlling factor if mix) = EWMV(x))
is known. Note also that Var(V(N)) = R(O) for the
statistically homogeneous case. n’some applxcat1uns
the homogeneity assumption is further specialized by
assuming R{y) only depends wpon y =-tyl, the length of
the separation vector in which case we say the process
is statistically isotropic.

How can Ry} be estimated? In the general
statistically isctropic case we tould +Ffirst estimate
the mean, V. based upon obsarvations ¥(x,) ... Vix )}
and then estimate R{y}) by grouping points. Thus if 'a
is some fixed value, we could group those points ({x._,
x into the set Aly) where y-a % Ix. ¥, 1 § vy+a add
tﬁen estimate Riy) as followss ]

Riy) = E [Vex ) -VIIV(x, ) -VI/# pts in Aly)
. ~j ~K
pts in Aly)

Some examples of possible one—dimensional or
isotropic covariance functions are shown in Figure 1.

10



R(y)

v N —

Fig. 1 Isotropic covariances

Benerally, we expect covariances to decrease as vy
ipcreases ~ i.e. the "influence” of V(yx) dies out as we
move further away from that point., An average distance
over which significant correlation (R(x)fﬂ(g) = the
correlation function) is called a scale. A common
procedure is tp take the scale ) to be that value where
R{NI/RIO) = e (e—fold drop).

There are cases where, at least within the area
studied, V(&) does not appear to be statistically
homogeneous. To study these situations the French
geostatistics school {(Matheron, 12713 19731 has
introduced the notion of intrinsic random functions
where the increments or changes are assumed to be
statistically homogeneous.

A intrinisic random function of order zero is a
random field V(x) with

(i} EVx)) =m

(i) vy = ECOVOehy) -Vix) 19172
= L vartvix+y) Vi 1
5 VariVix+y %,

11



¥iy)

Fig., 2 Isotropic varicgrams

The function ¥(y} only depends on the lag and is
called the zeai-—variogram or just variogram. Typical
variograms are shown in Figure 2 for 1-dimension. If
V(x) is also statistically homogeneous,; +¥{y) = R(Q) -
R(g) and -as y increases, Ti{y} approaches = Var(Viy))
which is also called the sill. Correspondingly, the
scale h is sometimes called the rangerof the variogram.

If Vig) is not statistically homogeneous y{y) will
not approacrh a sill value (e.g. Figure 2-bh). Figure
Z-c¢ shows a variagram with a jump at O - called a
nugget effect.’ Such an effect isn’'t really possible if
Vix) is continuous but it may be observed in estimates
because fine—-scale estimates aren’t available; it
can 2lso be used to model measurement error.

Using the same set A(y) introduced for estimating
R(y) an isotropic variogram can be estimated by

-~

yi{y) = Z [V(i{.)—\}(ﬁk)]
pts in A J

2702, #pts in Atly)]

In some cases nhon—isotropy can be detected by
calculating v(y}) in different directions and possibly
correcting for trends in the mean {(see Figure 3}

12




y(y)

Fig. 3 Non-igotroplc variograms

Riy) and 1(x) are thus used to characterize the
variability that can exist for a random field. What
else can be done with these functions?

Kriging

If Vix.), Vix} ... Vix ) are measurements at n
locations wé may want to use Phem to interpclate aor
predict V at some other location x. How can this be
done using either R(x) or 1{3)? Kriging is the
procedure commonly used to do this.

In kriging, linear estimators,

s

n
Vi) = I ». Vix.),
j=1 3 3
are used for the unknown value V(i)' The 'kj's are

chosen so that

(1) the estimator is unbiased:

~

E{Vix)) = E{V{xn))
A~ ~t

13



el
and (2) The mean squared error ECIVOO-V(x) 123 is
minimum.

In both the statistically homogeneous and the
intrinsic random function case minimizing the mean
sgquare error while using linear unbiased estimators
will lead to n+1l linear equations in n+l unknowns:
ANy e A and 4 a Langrange multiplier. Note that the
X.s and u depend upon the location x so that at esach
location we get different weights. Usually this
dependence on x is not explicitly shown.

The kriging variance, or ‘minimum mean squared
error is also usually obtained

..
-~ N

2

Tk

= varlVig)-vix)l = EEV{E)lvgﬁ)]z.
The kriging equations and krigibg variances for the two
cases discussed are given below. |

.

a. GEBtatistically humugeneq&s case

n
E Xx. R(ﬁiwg.)-u = R{g—gi); i=1...n

=1 3 3
n
E ». =1
j=1 .
.2 3
' = R(O)= L X, Rix _—x)+u.
K o 4 ~ER

’

b. Intrinsic Random Function of order O

n
— -+ = s s f .ew
Rz kj 1ix, 5i} no=ylgex.dy 1= 1 n

i=1
n
T x.=1
=1 1
2 n
L =j§1 kj 7(5j75)+u

14




The squations in (b) can be obtained formally from
those in (a) by taking R(Q) = 0, v(y) = -Riy).

The kriging estimators or interpolators have
several other interesting properties in addition to
unbiasedness and minimum mean square error.

~ Fas

(1) WVi(x) is an exact interpolator: Vix.) = V(é.)
at the observation points 3 3

(2 The weights A, and p depend on the caovariance
function or ariogram and the locations, but
not on the actual values observed

(3 m, the mean, is not needed to calculate the
estimate Vix)

(4 o 2 yields a measure of the precision and
again only depends on the A's, apn, and the
covariance function or variogram.

In a kriging study the above points are used in a
variety of ways. For example, to validate a kriging
model, an estimate is made at 5j sy an ohservation

o

point, by 1leaving out that point and using the
remaining n—1 points to develop the kriging eguations.
Thizs procedure is repeated with sucessively diff&ren§
‘points are excluded. The values [V  (x. Y-Vix. »17/s

30 ~Jo *JO k
are calculated and averaged where the subscript 3j
indicates the omitted point. This average value shuulg
be cloze to 1 if the model assumptions are true and the
correct covariance function {(variogram) are used.

The fact that kriging variances only depend uwpon
location and not actual V values can be used to see
what effects added sampling €an have on the estimates.
Thus a fictitious point can be placed and the kriging
weights and variances calculated for the changed
situation. By moving the point one can decide on an
"optimal" location for an added sample.

Figure 4 shows schematically what kriging
estimates would look like. The kriged path is smoother
than the actual path, as one might suspect. In Figure
S the effect on & of an added point is illustrated:
note ¢, = 0 at observations since values are exact at
those points.

Extensions and Modifications

The kriging procedure can be extended to cases

15
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where mix) = E(V{yx)) depends on x but the covariance or
variogram assumptions still apply.

One procedure is to approximate mix) by
K
£ a, Pktz) where the P’'s are a set of "basis*
k=1
functions e.g polynomials). The unbiasedness conditions
lead to K constraints and K Lagrange multipliers. The
resulting kriging equations are called the universal
kriging eguations (Matheron, 1971:.

An alternative is to look at higher—order
differences and assume some kind of stationarity or
homogeneity for these differences. This leads to

higher—-order intrinsic random functions and generalized
covariances (Matheron, 1?73). Again kriging equations
can be developed for this case.

Another extension covers cases where we have nore
than one random field. This iz an especially
interesting case because one can speak, of the
"transfer" of information from one field to the other.
In this case, for statistically homogeneous random
fields Ulx), Vix), the cross—covariance Ruv(z) =
cnv(U(§+x), Vixllr is used as well as the auto-
covariance functions. The kriging gquestion now becomes
the following: Given U(x,,} ..., U§§1n) and V(z ) I
Vix_ ) find the prediction of Vix). The unhiasedness
conditions can become more complicated. The use of
this co-kriging procedure along with physical models
that interlink the two fields is especially intriging
because it can tell us something about the worth of
different pieces of data.

} In Figures & and 7 I show same plots of kriging
variance +For a head/transmissivity model where the two
gquantities are related by a flow equation. The cross—
covariances needed are found by using the flow equation
and a spectral approach I will touch wpon briefly and
that I'm sure Lynn Gelhar will refer to in his talk.
In the Figures kriging variance contours are shown for
2 networks of observations in each case. The
cbservations are taken at points s=separated by one aor
two correlation lengths of the T random function
where 0's denote transmissivity (T) measurements and
crosses indicate head measurements. In Figure & the
dashed contours correspond to the network with five
head measurements {(each one correlation scale apart)
and 2 transmissivity measurements (2 correlation scales
apart}, while in Figure 7 the contours are for
" measurements on observations 2 - correlation  scales
apart. The contours are only shown for the first
quadrant and the networks are presumed to have their
centers at the origin. This model contains within it
the seeds for a kind of inverse procedure and a method

17
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for evaluating worth of different types of data.

Kriging has also been used to study methods for
creating what might be called possible realities or
realizations of random fields. Recall the kriged paths
{e.g. Figure 4) are smoother than the real paths. In
some studies we want to re—create paths through the
sampled data points (as a kriging estimator does)
that exhibit the kinds of variation and correlation
seen in reality.

Thus we want a conditional random field V(x),
given observations V(x,) ... Vi(x ). Delhomme (1978,
197%9) gives examples n* such conditional simulations
which use the kriging procedure. One need not use
kriging to do this but it does lead tn a rapid method
for generating these realizations.

The conditional simulation approach first finds
the kriging weights for the given covariance function
and data locations. Then an uvwnconditional random field
s (%) iz generated with the desired covariance
behaviour. Finally +this field is kriged, using the
previous weights to get su(x) and then the conditioned
field,

s et
g () = Viu) + s (x) — 5 (x)1
will have the desired properties. Conditional
simulations are useful for studving input-output

relationgships in cases where two fields are related to
each other.

Kriging — uses, abuses, advantages and disadvantages

The ready availability of computer codes makes
kriging and its relatives good candidates for use and
abuse in a variety of applications. In carrying out
kriging studies there are things to be aware of and in
this section some uses, warnings about misuses and
problems that may be encountered will be discussed.

First let me discuss advantages of kriging some of
which 1 have already mentioned.

{1 The X’'s depend on X Riy) {or ¥{(y)) and the
% . locations but not on the V(x. 7 's. This
makes sample design studies pﬂsaible and
studies of where points should be placed to
minimize variances.

-~

(2) Wy) is an exact interpalator. If the
Vix.)'s contain measurement error that can
als be incaorporated inta the kriging
equation.
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(3}

(4}

(3)

What

out for?

(1)

e

The mean m is not needed to get VIx).

The kriging variance vyields a useful measure
of accuracy.

The procedure is general and flexible if the
assumption are valid.

are some disadvantages and things to watch

The covariance (variogram) must be known.
Very often the estimates of the

. covariance (variogram), behave poorly and are

(2)

(3)

(4)

difficult to interpret.. In addition the same
points used to estimate the
covariance {(variogram) are often used in the
kriging procedure. To minimize the effects
of correlation and bias, standard
functions are fit by aye to the
experimentally wubserved functions. The
effects on the kriging wvariance of using
the same data for both the
covariance {(variogram} estimates and for
abtaining the weights still needs
exploration.

The mean must be constant or have a known
form. ne can get around some of the
problems by using intrinsic random function
theory and generalized differences or by

uging uwniversal kriging. However both of

these options are considerably harder to
apply and interpret. In addition these
procedures are not as readily implemented.
An alternative is to fit a mean eguation or
trend and remove that mean from the data.
This may, however, have an undesirable effect
on the covariance (variogram) estimates.

The statistics of covariance (variogram?
estimates are difficult to study and not well
known.

In theory, kriging can handle anisotropic
covariance functiens or wvariograms but again
in practice that is hard to do. Virtually
all standard kriging packages don't include
options for anisotropy.

Kriging is not an automatic procedure. In carrying it
out one should validate the model as much as possible
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and be aware of the limitations. Used in that way,
with thought, it can be a useful technique for studying
spatial variability in space and time and its
consequences.

Spectral Methods and Representations

Kriging is a kind of oarthogonal prajection
procedure involving projection onto the data. It is
similar in that respect to regression and other
multivariate techniques. In carrying out analytical
calculations that involve equations connecting
statistically homageneous random fields we often use
yet another "orthogonalization" procedure. This is

generally referred to as the spectral representation
theorem (Lumley and Panofsky, 175843 Koopmans, 19743
Rosenblatt, 1973). I will state it and then discuss
what is says and why it is so imsportant.

The Spectral Representation Theorem p

If Vix) is a statistically homogeneous random
field with mean O and Ri{y) = coviVig+yl, Vi)
contipuous at @, then there is a unique (with
probability 1) complex process Z{k) and a positive non-
decreasing function F(b) with the following properties:

L]

(i) Rty) =1 expiik-y}dFiy)
~ o
()

(ii} Wiy} = f explik-x3dZk)
-0

(ii1i) EWI(k)) = 0, E(dI(k}dZ#{k’)) = 0, k ¥ k'

EC1dZk) 19y = dF (g

In the above - the integrals are 1-2 or 3
dimensional depending on the region, aF (k) = f(kidk if
a spectral density f(k) exists; F(k) is the spectral
distribution and * designates complex conjugate.

Now what does this formidable expression mean?

We can take the original process which involves
correlation and inter-relationship and write it as an
integral of a {(complex) process that has uncorrelated
components. It dinvolves a disentargling of the V(x)
process into "independent” pieces in the Z(k) process.
For many problems the spectral representation will
allow us to study terms in isolation because they don't
mix or interact.
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This procedure is analoguous to decompositions of
sums of squares encountered in analysis of variance.
There one tries to split the sources of wvariability
into different parts and assign them to different
cCauses. Mamely, (ss = sum of sqguares)

55 total = ss between groups + ss5 within groups
is a basic identity in pne-way analysis of variance.
The same kind of decomposition occurs in the spectral
representation above. In fact,

-

var(Vix)) = § fik)dk

Fll, YAk + Fik Jak + ...
With F(k.)ak = variance assoclated with frequency k.,
the decnﬂpnsitinn of wvariance.is like that in tﬂa
analysis variance. <

The study of spatial variability by  using
stochastic methods is still being developed. It can
yield insights into the variation that exists in  the
field, the continuity of the fidld and the uncertainty
one can expect. ~ With proper care the methods should
help in interpretation of data and in developing
fundamental understanding of physical models.
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A GLOSSARY OF TERMS AND SYMBOLS IN SPATIAL VARIABILITY

Random field or spatial stochastic process Yix)i: This

“

means for each fixed x (e.g. a location in space)

Vix) is a random variable.

~

Frobability density of V(;)= The function giv: x) such
N N 'l

that the Probahility V(%) is between a and b,

denoted by FP{a < V(x) = b), is given by
" .

5

b . N
Pfa < Vix) € b) = f giv: xddv.
LY a M et
Expected value or mean of Vix): The expected value or
b7

mean (denoted by E(M(x)) or Vix)) is the

probability—weighted average,

L]
E{Vi{x)) = v gilv: x)dv.
- T -0 i N
Covariance Ffunction for a random field: This is

designated by cnv(V(xl), Vix,)) and is defined as
* L™ e

2

tDV(Y(il)’ V(iz)) =

E[(V(ii)—V(il))(V(iz)_V(£2))}
It measures statistical relationship between field
values at two different locations.

Statistical homogeneity or second—-order stationarity:

The random field V(x} is statistically hemogenegus

or second—order stationary if
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(i} E(Vix)) = m, a constant.
and (ii) covi(Vix,}, Vi )} = Ri{x_—%,) only depends
upon the separation vector X Ky

y = ¥,-%, is called the lag vector.

Covariance function Ffor statistically homogeneous

processes: Riy) = cov{Vix+y), V{x)), the covariance

L")

function as a function of the lag vy.
o

Statistically isotropic processs A statistically

homogenous process whaere Riy) = R{lyl) = R{y}) only
depends on the separation distance, vy = lyl.
A
Correlation function: ply) = Ri{y}/R{O).
N "N "N

Scale: An average distance over which points are

significantliy correlated. For an isatrupic;
covariance function this is smometimes taken as that
value h whers e—l = pih), an e—fold drop.

Intrinsic random function of order 0O: A random field

Vix) with constant mean where El[le+y)—Vix)]2) only
~r e W "y
depends on vy.

Variogram or semi—variogram: The function

vly) = E€IV(x+y) -V (x) 12372
M N A “
for an intrinsic random function of order 0.

5ill: If ¥{(y) has a limiting value as vy increases, the

limit is called the sill and equals var{Vix)}.

LY

Range: The scale in a variogram for a statistically

homogeneous process.
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Unbiasednecs: 1f G(V(xl) - U(xn)) is some function
e e Y

of V(xl} - V(xn)) it is an unbiased estimator of

n

V‘io’ if
E(BI{VIx,) o Vix 3) = E(VIx ).
Mean squared error: If E(V(xl) . vtxn)) is an
.o " EW
estimator of V(MO! the mean sguared error of G is
A ™

E{LG{VIx_ ) o.. Vix 2I-Vix 112).
~1 an 20

It i; a measure of haow “cla;é? the estimator 8 is tao

the quantity being estimated, Vtxo).
o
o~ L)
Estimator, V: For estimators the notation
- : an

Vix )
¢

1]

sivcxia .va Vix 1)) is often used.

e

Linear Estimator: An estimator of the form

By

V-

hl V(i1)+h2 V(i2J+ - kn V(in)

5]
A, Vi, )

PR ~3

j=1
where the \'s are constants.,
Kriging: The procedure that finds the best (minimum
, mean square error) linear unbiased sstimator of Vix)
hased uvpon observations Vix,? ... Wix ). Far a
-1 AR
statistically homogeneous process with covariance

function R{y), this yvields a set of linear equations
or

for the “weights” Aj;

n
j£1 xj R(i'—ii)—u = R(ii-i), i=1.,..n
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u is a Lagrange multiplier. For an intrinsic random

function of order zero the covariance function R(y)

can be replaced by —v(y), the negative of the
LY

1 variogram, to get the kriging equations.

1 Kriging variance: The variance associated with the

kriging estimator, designated by skz. This is also

the minimum mean squared error. For a second-order

stationary process it is

-

ECIVGO VG012 = 6,2 = R(O) - I Rix—x d+n
~ LY 4 a j=1 o ned
For an intrinsic random function, again R is

repiaced by — ¥.
Co—~kriging: The extension aof kriging to the case where

Vi(x) is estimated using abservations from two random

e

fields where now the cross-covariance, coviVix+y),

" o

Uix)}, alsoc enters in.

Spectral density for a statistically homogeneous random

field: A Fourier trancform of the covariance

function (k = wave number or frequency),

~

Riy}
[ © n
k) = f i.. f expi-ik:-y3idy, ... dy
~ — bt} ™o 1 P
zmP
1 L]
2 ———— | Ry} exp{-ik-y} dy
where p = the dimension of the space. The
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covariance function can be recovered from the
spectral density by an inverse Fourier transform.

Spectral representation thearem for a statistically

homogeneous, mean zero, process:  This states that

if WVi{x}) is statistically homogeneous random field

with E(V(x)) = 0, covariance function R({y}, spectral
b o

density f{(k) then there is a unique (probability 1)

cnmpfax process Z{k) with tﬁe;+n110wing properties

"

® ik ~
(i) V) =§ e tET¥ gz
T -0 s

tiiy» EWMZIK)) = @, E{DZk
et b

1, l) dZ*(Ez}) = 0,
ky = ko»

and E(IdZ(k)lz) = f{k) dk
o~ -~ a

(¥ = complex conjugate.)
The spectral representation theorem resolves the
uriginél process into a “uncorrelated” complex

‘prncess which greatly simplifies some calculations.

’

28




Discussion

D. Goss and
L. Wtiazng:

A, Gutjahr:

., ten Berge:

A, Gutjahr:

H. ten Berge:

A. Gutjahr:

B, Luamoore and

B. Senuhway :

A. Gutjahr:

What is meant by a constant mean and what are
the requirements for a censtant mean?

The constant mean assumption means there is no
trend within the range of study. It is not as
crucial to the analysis 1f (i) the trends can be
egtimated and removed or (ii) one uses generali-
zations of kriging 1like universal kriging,
where the trend can be estimated, or intrinsic
random functions of higher crder.

Is the condition that the variance be constant
acress the field dimplied 4in second order
stationarity and is it a severe condition?

Yes. It is implied by the definition of second
order stationarity and it. may be a sericus
restriction in some applications. In such cases
one might lock at some transformed values (like
logarithmic transformations} of the data, try
multiplicative types of corrections ot use
variograms and the intrinsic random function
approach,

Is blasedness only a characteristic o¢of the
sampling procedure?

Ne. It can also be a characteristic of the
statistical procedures used in estimation and
prediction.

In the case of a linear variogram is there some
of deciding between a trend in the data and a
stationary process without & trend in the data?

One can sometimes detect trends in the data by
exanining the variogram in different directions.
For example, if there is a linear trend in a
particular direction, the variogram in that
direction will have a parabolic behavior and one
can then remove the trend in that direction (see
Delhomme, 1978). The question of a trend 1is
often a difficult one to decide on the basis of
the data and may again require higher order
intrinsic randem functions, or using subsidiary
knowledge of the process to remove that trend,
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C. Kirda:

A. Gutjahr:

M. Nash:

A. Gutjahr:

W. Jury:

A. Gutjahr:

L. Wilding:

A. Gutjahr:
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If a set of data has trends should the trend be
removed before finding the correlation Iength
from an auto-correlation analysis?

Yes. Often trends can be spotted frem the
covariance functions if they have shoulders or
tend to remain high as the separation distance
increases. Correlation lengths calculated from
the data without the trend removed are them too
large, and atso tend to include a deterministic
component in the random model.
N

Is there any test for the range or correlation
distance in correlation functions?
There are tests for correlation distances
(using, for example spectral, analysis) and in
the stationary case the tests would be the same
for the range in the variogram. However these
prqcedures often yleld estimates with thigh
variances and hence are not very precige.

o
Thete have been several instances of an apparent
correlation beétween sampling grid density and
correlation scale on a glven field or even on
the same transect of a field. It has been
postulated that this would always result from
non-linear drifts which are difficult to remove.
How doesg this affect the measurability of the
correlation scale?
Yes, this can affect the measurement of the
correlation scale. It can also occur that
within the region of interest there may be

.several scales. As Lynn Gelhar indicated in his

talk, the scale of the problem and the scale of
the correlation function are interrelated. The
region of study should be large enough to

" include several correlation scale lengths in

which case the larger scale variation may be
treated as a trend., In addition 1f there are
significant non~linear trends one might again
go to an intrinsie Thigher order function
approach (using generalized differences) and
estimate the generalized covariance.

How many couples of observation are needed at
the greatest distance for statistical reliabil-
ity or validity?

Unfortunately the statistical behavior of the
variogram is not a simple one and still deserves



k. Horion:

A. Gutjahr:
S. Rao and
K. Casse

A, Gutjahr:

P. Bkedi-Kizza
an

L. Stroosnyder:

more study. As a rule of thumb one should have
about 50 data points to get reasonably reliable
estimates and then perhaps a good secend rule of
thumb is not to place much reliance on variogram
estimates beyond 20% of the maximum distance
(this second rule of thumb is often used in time
series analyses). Namely if the biggest pair-
wlse separation is 100 meters only look at the
variogram out to 20 meters as having reasonable
reliability. This should be tempered, of
course, by looking at the number of data pairs
in the estimates.

You have described two tools: correlogram and
the semi-variogram. The correlogram requires
second order staticnarity in order te be valid
while the semi-variogram requires less confining
intrinsic assumption. Should one wuse the
semi-variogram instead of the correlog;am?

If non-stationarity is a possibility then I
would examine the semi-variogram. If a sill is
shown then I would use a correlation function
because it is often easier to interpret and also
treat statistically (especially if the data is
equally spaced}.

Is there any implicit assumption made about the
distribution (e.g. normality) for data used in
kriging. If not why do some researchers first
transform the data?

In both variogram estimation and kriging the
assumption of normality is not needed - only
expected values or averages enter in. Transfor-
mation may be used however for a wvariety of
reasons like stablilizing the variance, making
probability statements about kriging estimates
and for developing procedures for estimating
variograms f{(e.g. vla maximum likelihood proce-
dures). However the kriging procedure itself
doesn't require distributional assumptions.

What are the basic differences between classical
agricultural statistlcs and geostatistics? At
what stage should either be used? <Can ome use
bath? What about independent assumptions?
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A, Gutjahr.

R, Bruce:

A, Gutjahr:

C. Gantzon and
. Hlgsn;

4, Gutjahr;
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Generally in classical agricultural statistics
one is interested in estimating means and also,
generally, the data are presumed to be indepen—
dent or contain independent random error. Of
course situvations do exlst where variazbles are
assumed to be related (like analysis of covari-
ance} but the main focus is on controlling for
varlability with appropriate designs and proce-
dures. .

In geostatistics the focus is on the inhomogene-
ities that exist and on the relationship between
values - cotrelation occupies center stage.
Thug if one wants, to estimate the variability
and continuity that exists, geostatistics is one
way te do that.

The two {(classical and geostatistical methods)
can be used together, For example cne might use
geostatistics to estimate underlying variability
within a field and then classical statistics to
compare treatments in different areas after
correcting for inherent variability.

In addition if measurements are far enough apart
(as judged by examining the varicgram or covari-
ance function) observations become uncorrelated
and again one might use classical procedures for
widely separated points.

Kriging 1is ‘talled an "exact" interpolator. What
happens if measurement errors exists? Is
kriging as a predictor to be applied only within

the domain of the original study?

One can extend the kriging procedure to include
measurement error by modifying the covariance or

.- variogram fuaction 1In which case we no longer

have an exact interpolator. Kriging is an exact
interpolator within the field of interest and I
should not really have referved to 1t as a
predictor.

Can you discuss the difference in efficiency
between taking samples randemly within the field
versus ordered regularly spaced sampled? If the
samples are placed randomly how is the semi-
variogram estimated?

I don't know what the efficiency would be, I
would prefer a regular grid or smaller grids
superimposed omn larger grids for estimating




E. Bresler:

J. Hendricke;

A. Gutjahr:

B. Sehuh:

A, Gutjahr:

J. Allen:

A. Gutjahr:

C. Wang:

variograms if there are many sample points
because this would allow the use of spectral
methods if needed. However in general this is
not an easy question to answer. The estimation
would proceed as if the samples were non-random
by using grouping of data points as described in
the paper.

To best estimate the wvariogram by a least
squares procedure one needs a sufficient number
of pairs to cover the whole range ¢f lags from
zero to the maximum. In cases where the number
of data points is small (30-50 points) random
sampling might be preferred over regular sampl-~
ing teo get estimates at larger lags.

For estimating variograms and the trend, maximum
likelihood methods can be useful if the data is
from a multivariate normal population,

What is an appropriate method to validate
kriging results?

A wethod often used for this purpose 1is the
Yleave-out-one data point" or jackknife proce-
dure described in the paper.

What are the effects of improper selection of
the variogram in kriging?,

In the statlonary case the important features
are generally the sill and the scale or range
One can also try different variogram models and
see what effects occur on the kriging estimates
and kriging variances.

How can a priori patterns of spatial variabillty
{(like soil forming factors) be incorporated into
geostatistical methods to account for spatial
anisotropy?

Here one might try to use modeling studies te
account for known facters or try to put in
features as added constraints. In general there
iz no all encompassing answer and one needs to
study the specific situation.

In a kriging study we did with 50 columns of

gsoll samples (150 samples within each column)
the semi-variogram for each column varied
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. Gutjahr:

. Muraka:

. Gutjahr:

. Whigler:

. Gutjahr:

greatly in shape. How can this information be
used te study a similar land form outside the
study area?

It is difficult to give an answer to this
wilthout looking at the data - kriging and
semi-variogram studies are not always automatic,
However it may be the case that you have a large
degree of anisotropy in the region which yields
widely differjng semi-variograms.

Gould you elaborate on the "size of landscape"
to which geostatistical analysis techniques
would be limited to? :
Again I would refer %o some later comments by
Lynn Gelhar on problems of scales. There may be
several scales and we nead to take the scale of
the problem into account when doing this kind of
study - that often is information obtained not
within the geostatistical study but from other
sources. -

When will someone write a beok with underlying
theory and detailed examples and with programs
adaptable to P,C,S.°%

Probably when someone has a lot of time and is
assured they can make lots of momey by doing so!
Sericusly, though, 1t 1is a subject still
evolving - as more researchers wuse it and
develop it I’ suspect texts will be fortheoming
that meet the desired objectives. I would be
careful, though, in looking at texts to be sure
that they emphasize both what can't be done as
well as what can be done, and that include good
doses of common sense and thought - the proce-
dures and methods aren't panaceas and can't be

- applied without thought. They should not be

considered as "methods looking for a problem."
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Time series in the soil sciences: is there
life after Kriging?

R.H. Shumway, Division of Statistics, University of California,
pavis, USa

1, Introduction

The development of statistical techniques for analyzing data in
the soil sciences has traditionally followed along the linea laid
out by early disciples of R.A. Fisher (e.g., Snedecor and Cochran
(1967)) who assumed that observations obtained in the field were
independent and identically distributed., The recent shift away
from this early methodology, termed "aggle statisties™, for
example, by Nielsen et al. (1983) has been fueled by the
realization that data collected in agricultural field vtials and
in the soil sciences are inherently spatially correlated. It 1s
physically more reasonable to expect that measurements of soil
parameters such as temperature or electrical conductively should
be correlated when they are measured at adjacent points in space
or time.

The resulting trend in the soll sciences has been to lean more
heavily on geostatistics by which is meant the smoothing of
experimental data using Xriging techniques developed by Matheron
(1963). Such applications to the soil science are well documented
in papers by Nielsen et al. (1982), (1983), Vielra et al. (1983)
and Valdin et al., (1983) and by other participants in this
workshop (see also Ripley (1981) or Journel and Huljbregts
(1978)). The advantage of Kriging or CoKriging techniques is that
one can do smoothing with a very sparse collection of observed
data points whereas conventional time series techniques require
that one collect relatively equally-spaced data from the random
field.

The continued development of remote sensing devices and other
aystems of Instrumentation, however, will soon enable research
workers to bring to bear a number of alternative techniques for
analyzing multidimensional random fields., Early techniques
proposed by Whittle (1953), (1954) can be used to develop
approaches to the problems of modelling and fitting data using
stochastic partial differential equations. The use of gpectral
methods, suggested by McBratney and Webster (1981), or Nielsen et
al. (1983) can be extended to embrace old fashioned aggie concepts
using spectral analysis of wvariance (cf. Shumway (1970), (1971},
Brillinger (1979)). The use of lagped regression models (cf.
Brillinger (1975), Priestley (1981;; can be considered in order to
develop input-output models relating various measured soil
parameters. Problems Involving non-stationarity and missing data
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in transects can now be approached using the state—space approach
for smoothing and signal extraction (cf. Parzen {1984}).

The purpose of the following discussion is to give some examples
which demonstrate gsome of the kinds of questicns which can be
answered using the above techniques. The basic thrust of all of
the methods is to identlfy models for the underlying processes and
then to use standard statistical procedures based on maximum
likelihood to estimate parameters and test hypotheses. In maony
cases, the models expresa the griginal unobserved series as
solutions to stochastic differential equations driven by white
nolse. This links the statistical approach to realistic physical
models which have been used to deseribe the dynamic interactions
of soil science parameters. The emphasis will be on signal
extraction as opposed to the best linear unbiased criterion used
by the Kriging method, a

2, Signal Extraction . ."

A very versatile model can be developefl when it is suspected that
some underlying phendmenon of interest satisfies a first or higher
order differential equation, Fhe general form of the state-space
model assumes that some unohserved underlying pxl vector signal of
interest x(s) = le(s),...,x (s))' can only be observed through
the gqxl obaervation equation

y(s) = M(a)x(s) + v(s) (1)

for 8=1,2,...,n where y(8} = (y1(8),...,7,(s))' denotes the
observed vector at the spatial point s, M(s) is a known qxp
measurement matrix and lr_(s) is a gxl zero—mean vector moise
process with qxq covariance matrix, cov(v(s}) = R. Although the
signal process x(s) is uncbserved, it is assumed to satisfy the
first-order difference (differential} equation

!

x(s} = ¢ x(s-1) + w(s) (2)

where & {8 a pxp transition matrix and w(s) = (w;(8),...,w,(5})
has zero—mean and covariance matrix Q. FEquation (2) 1s called the
state equation and describes the evolution of the state-vector
x(s) through space or time. The beginning value x{0) is assumed
to have mean i and initial covarlance I. The process x(s) can be
stationary or non-stationary depending on the specification of the
parameters ¢,0,R,: and E,

The model in the above form is partially identified, but there is
gtill the problem of estimating the parameters. This 13 usually
accomplished using various nonlinear optimization techniques to
maximize the likelihood function {see papers by ¥ohn & Ansley,
Harvey, Jones and Shumway in Parzen volume (1984))}, The model
identification phase generally makes use of the Akaike
Information Criterion, AIC, defined as (Akatke (19754))
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AIC = =2 log{Likelihood) + 2(no. of parameters) (3
whare one. chooses the model for which AIC is a minimum,

A second important problem is that of extracting the signal x(s)
from the data for given values of the parameters. The problems of
developing the state-space model and estimating the state vector
%«{s) were solved in the landmark papers by Kalman (1960) and
Kalman & Bucy (1961), who gave simple recursive

solutions for the minimum mean square estimators; the procedure is
now referred to as Kalman filtering and smoothing. Rather
complete expositions of the basic principles involved can be found
in Anderson & Moore (1979) or Jazwinski (1970). The advantage of
the recursions is purely computational, since the ordinary linear
minlmum mean square estimator for x(s) involves inverting npxnp or
nqxng matrices whereas the Kalman filter-smoother procedure
involves inverting n pxp or gxq matrices,

Before turning to an example, it is useful to relate the model
given above to the one used in Kriging. The ordinary Kriging
model writes the univariate {p=q=1) version of equation (1)
without the noise term, say as

v(s) = x(s),

where x(s) is assumed to be stationary with constant mean value
(Universal Kriging assumes a general mean R'z(s) where £ and z(s)
are qxl vectors) and covariance funetion cov{x(sy),x(s5)) =
Cx(s1=83). The Kriging estimator at s=s; is the linear unbiased
estimator for y(sp) which has minimum variance. The form of the
covariance is specified on a-priori grounds from a reasonable
class of covariance functions using the variogram,

Yk(m) = é—E(x(s+m) - x(s))2 (4)

= x(0) = Cy(m)

as a guideline. The maln differences between Kriging and Xalman
filtering using the state-space model are as follows:

l. Computational: Kriging requires inverting the (ntl)x(n+l)
augmented covariance matrix. For p=q=1, Kalman filtering
requires no matrix inversions.

2, Modelling: Kriging chooses from a class of stationary
covariance functions. The state—-space mcdel specifies the
first order model (2) and may be non—stationary.,

3. Estimation: Kriging uses ad-hoc analysis of the varfogram and
noiseless prediction. The state-space procedure uses maximum
likelihood estimation of the parameters and signal extraction
under noise.
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It should be noted that the signal extraction approach for the
stationary signal plus noise model

¥(8) = x(s) + v(=), (5)

where all vectors are pxl, originated in the work of Kolmogoruv
(1941) and Wiener (1949) who showed, using the spectral approach,
that the optimal minimum mean square solution could be reduced to
inverting pxp spectral matrices. - This requires that one know the
form of the spectra for the noiee and signal processes. It would
seem to be a promising direction in which to move if the series
are multidimensional, that is, they depend on the vector parameter
8 = (sl,sz,...,sd)' go that the Kalman recursions will not work,
If the observations are regularly ohserved over a reasonably large
grid, the "spectral approximations are”valid and a comsiderable
computational simplification results ovér direct brute force
Kriging or CoXrilging, We do not give detalls here but the reader
is referred, for example, to Priestley (1981). An example in the
one—-dimensional case where the signal and noise spectra are
estimated by maximum likelihood is giveh in Shumway (1984).

As an example, of the state—space methodology, consider the data
in Figure 1 taken from the study done by Morkoc et al., (1984)
giving the mean values (over five transects) of yield and water
and salt content at intervals of one five transects) of yield and
water and salt content at intervals of one meter. The sprinkling
system was arranged to distribute more salt {(and more water) along
the right—hand ‘side of the transect. Morkoc et al, (1984)
congider jolntly modelling salt and water content using a p=q=2
dimensional version of (1) and (2).

In order to illustrate the versatility of the state—space
approach, wie consider a simple smoothing model for a single series
which is related to spline smoothing (cf. Erh (1972), Kimball
{1974)), Wecker & Ansley (1983) and has beed proposed in another
context by Kitagawa (1981) and Kitagawa & Gersch (1984). Assume
for a single one of the serlies that we observe, say

y(s) = x(8) + v{s} (6)

where v(s) has variance c%, which can be interpreted as
observation nolse. The signal x(s) is assumed to satisfy a
second-order difference (differential) equation of the form

Vx(s) = wi(s) o (7N
where
w(s) = x(s) - x(s-1) (8)
s0 that
Vix(s) = W(¥(s)) = x(s) = 2x(s-1) + x(a~2)
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Now, by defining the the state vector as x(s) = (x{(=), x(s-1})',
we may write the above model in the state—space form

y(e) = (1, 0 (320 )+ ves) 9
with
2 -1 -1
(o= ¢ I ) (1) (109

The identification allows us to use the maximum likelihood

procedure for estimating the parameters 0% and qwz(a is known in
this case) and the mean of x(0). .

The EM algorithm of Dempster et al. (1978) as developed in Shumway
& Stoffer (1982) was used to estimate the parameters and gave the
results shown in Table 1 below:
Table F: Signal Extraction Parameters
for Soi]l Data

Observation Model Std. Dev. of
02 02 Predicted Value
\i’ w
Yield | .109 070 .19
Water 2.550 .079 .62
Salt 102 .021 , L6

The values for the water content appear to have the largest
observation error which leads to a larger standard error for the
predicted value,.

The smoothed values as computed by the Kalman filtering—smoothing
recursions (see Jazwinski (1970)) are shown in Flgure 2, and they
seem to do an excellent job of capturing the non—stationary trend
behavior without smoothing out critical components,

The special form considered here is obviously not the only model
which can be treated under the state-space framework. One might
want to add another component into the measurement egquation which
satisfies a first-order difference equation of the autoregressive
moving average type (see Box and Jenkins (1970) or Harvey {1981))},

40




MAX= 6.89421 WIN= 844722

i T e,

- H”-'-—_—"'q_‘x
.’. - '\_\'
.
i ( ! i i I I Ly
3 P15
SMOOTHED MEAN YIELD
RAX= 17.5956 MIN= 4.13561
M,,---*"'”“ —“""-"“«-\h p
- —‘“\,__‘
.’J,f'l By
F"’-Ff“ i
- I i 1 I I I 1 1 1
3 P15
SMOOTHED MEAN WATER CONTENT
NAX= 5.5648 MIN= {7130
»..-"""JFH—__-\
.J"f_(—h h
.d"ﬁ-‘" \\\
,.-n"""f ",
“d_.._--—““‘—-—«........-’“. 1’\_‘

5 915
SMOOTHED MEAN SALLT CONTENT(EC 15-38CHM)

Fig, 2 Signals extracted from Figure 1 using the state-space
model in equaticns (9) and (10) with parameters as specified
in Table 1.

41



b

3. Spectral Analysis of Variance, Lagged Regression

¥

The fact that data are autocorrelated over space does not preclude
one from using analysis of variance or regression techniques as
long as a collection of independent spatial series, say, along
independent transects, can be identified, Then, a collection of
transects with, say, characteristic A, can be compared with a
collection of transects with characteristic B, keeping in mind the
fact that observations made within a2 given transect are still
highly autacorrelated, It ig well known that when the spatial
geries are stationary, the notion of variance is expressed in
terms of the separate kinds of cyclfcal variatlon found in the
gseries, The variance measured as a function of spatial
oscillations called frequencles is called the power spectrum.’
Nielsen-et al. (1983) have identified furrows, tractor compaction
and pre-plant irrigation as possible fauses for cyclic variation
in soil and have predicted the behavior to be expected In the
power spectrum from such causes.

In order to fllustrate the possibilities along these lines, we
consider some rathet ancient and well-worn data on wheat yields
due to Mercer & Hall (1911).
The data, shown as a rough contour plot in Flgure 3, are grain
yields in 1bs. per plot, recorded over an acre which was divided
into 500(20x25) plots 2,5m wide and 3.3m long (length corresponded
to the East-West direction). The strongest characteristic of the
observed yields 1s an apvarent periodicity running down columns.
The mean row profile averaged over the 25 columns is shown in
Figure ! and also exhihits this cyclical behavior. One way to
analyze this periodic behavior over columns is to calculate the
two dimensional wavenumber Spectrum as 1in Ripley (1981) or
McBratney- & Webster (1981) who attributed the periodicity to an
earlier plowing of the area into ridges and furrows.

’
We discuss here am approach that seems te be particularly
appropriate for transect samples or for two-dimensional fields
where the phenomencn of interest seems to be occurring parallel to
oY orthogonal te rows, Kunsch (1982) has compensated for this
tendency in the Mercer-Hall data by adjusting all values for the
column means. To be specific, assume that the st yield in the
jt row or transect satisfies the model

yj(s) = g(s) +vj(s) (11}

3%l,40s,N, 8=0,...,n-1, where g(s) 18 an unkrhown fixed mean signal
and vi(ﬂ) j=1,4..,N are autocorrelated but mutually independent

identically distributed stationary processes.
The matural teet to make in this case (cf. Shumway (1970), (1971))

is of the hypothesis that the mean signal g(s) is absent and this
should be done on a frequency dependent (cycle by cycle) basis.
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The resulting spectral analysls of variance approach 1s

completely analogous to what 1s done In the ordinary case except
that the observed series 1s replaced by the transformed series

n-1
1/2 . yj
5=

where X = 27kn~ L, k=0,1,...,n—1 are the possible periodic
components in the data. The transformation (12) is the discrete
version of the usual Fourier transform and can be computed rather
quickly by various algorithms (cf. Cooley & Tukey (1965),
Bloomfield (1976)). The advantage is that for stationary process,
the transformed values are approxiﬁaaely uncorrelated for
different k for n reasonably large. In addition, the variance of
the transformed error Vi(s) is approximately the power spectrum at

frequency M. =

T (k) = n (s) exp{-iis}, (12)

We can illustrate the procedure for the special wodel given in
equation (11) by specifying the spectral analysis of variance in a
form analogous to that usually encountered in conventional
experiments {(see Shumway (1970), (1971), (1984), Brillinger
(1979), (1983)). The F-test for detecting the signal g(s)} is the
ratlo of two mean square power components and can be plotted as a
funetion of frequency.

The series observed in Figure 3 are somewhat sheort for the
asymptotics of the spectral approximations but periodicity is
strong enough-so that this data has been useful in the past for
illustrating spectral methods. The spectral power components are
more easily Interpreted If they are plotted as a function of
frequency and we do this in Figure 4. The frequency scale is in
columns per cycle, and we note that there is an impressive
component in the neighborhood of .31 cycles per column,
corresponding to a period of 1/.31 = 3.2 columns or 8m. As -
mentioned before, this could be due to an earlier ridge and furrow
plowing. .

The example given above shows only a very special kind of analysis
of .variance situation. The procedure can be extended to testing
equality of treatment means under various design configurations.

A number of possible designs are covered in Brillinger (1979)
Extengsions to the vector and multidimensional cases are discussed
in Shumway (1982) who also gives an example from seismology
involving discriminating between waveforms generated by
earthquakes and nuclear explosions.

Another question of interest in some soil science applications
involves investigating possible lagged regressions which assume
that the output series at transect j, aay y;(2), is related to a
collection of p input series le(t)....,xjpit) through
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p
Yj(S) = I xim(S)*ﬁn(S) + vj(s) (13)

m=I -

The notation * denotes the convolution, i.e.,

xjm(s)*ﬁm(S) = 020 x

W jm(u)%m(s—u) {14)

and the nolse processes are assumed to be stationary processes
with {dentical autccorrelatiords. The problems of interest relate
to (1) determining which of the inputs are significant
contributors, and (2) estimating the~form of the
lmpulse-response functions, B (s).

For example, Mechergui (1984) investigated the logarithm of
hydraulie conductivity y;(s) as a function of the silt, sand and
clay contents xg;{s), %;5(8) and x;4(s) oyer rows. As another
example, Figure™ 5 shows™ three possible environmental series as
inputs and cardiovascular mortality ag a possible output. The
series, measured daily for j=1,...,14 winters in London, are taken
from Shumway et al, (1983).

The objectives in both of the above applications would be to
determine what kind of smoothing filters are necessary to connect
the inputs to the output. The basic regression computations feor
the stationary case can be found in Brillinger (1974) (see also
Shumway (1970), (1983) for the case where series are repeated),

In order to ldentify which inputs are significant contributors to
the output. series under any given model of the form (13), one can
look at an analog of multiple correlation defined over frequency.
The resulting multiple coherence function and a spectral analysis
of variance procedure was used In Shumway et al. (1982) to arrive
at a final model which identified the sulfyr diexide (802) and
temperature series as the primary contributors to cardiovascular
mortality; the strongest coherence was at an approximate period of
ten days.

The structural relatfon which is producing a significant coherence
can sometimes be inferred from the estimated impulse-response
functions, shown here in Figure 6. 1In this case, it can be seen
that pollution acts positively and imstantaneously whereas
mortality has a negative effect at a lag of two days. This means
that a decrease in temperature produces an additional number of
cardiovascular deaths two days later.

The regression approach can also be followed without transforming
to the frequency or wavenumber domain. This makes the
computations extremely involved, and one must either assume a form
for the autocorrelation as in CoKriging or collect spatial series
from many transects, An alternative which may be acceptable in
some contexts 1s to assume that the error terms Vj(s) are not
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autocorrelated and use ordinary least squares,

4. Stochastic Differential Equations
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In Section 2., it was noted that a common way of Incorporating
realistic physical assumptions into the signal extraction
methodology 1s to assume that the underlying signal satisfies some
stochastic differential equation. TIn that case, the assumption
served as an alternative to assuming a parametric form for the
autocorrelation as would be done in Kriging.

A number of considerations related to using stochastic and
deterministic differential equations in the soil sclences were
given in Nielsen et al. (1983). The use of the partial
differential equation

3
-§E“:=n-"}_§-v-§—;i (15)
as

to model solute movement in soils where c{s,t) is the solute
concentration at time t for vertical depth s (D is the apparent
diffusion coefficient, v is the pore water velocity) has been
explored in Amoozegar et al, (1982), Nielsen et al. (1982), and
Biggar & Nielsen (1976). The modelling of hydraulic conductivity
as a function of sgpace and time uging Boussinesq's equation gives
& gimilar second~order differential equation (cf, Gelhar (1974),
Gutiahr et al, (1978) and Mechergul (1984)).

The approximation of such equations as (15) with finite difference
equations has also been suggested by Wierenga et al. (1982) who
were modelling heat transfer 1n a one-dimensional isotropilc
medfum. This suggestion combined with the theoretical work of
Gelhar (1974) and Gutjahr (1978) on stochastic differential
equations sets the stage for models expressed as partial
difference equations driven by white noise. Larimore (1977) has
reviewed the early work of Whittle (1953), (1954), (1%963) and -
developed computational techniques for modelling and fitting
stochastic difference equations to data generated by stationary
random fields. Applications of fitting techniques for random
field data can also be found in Besag (1974), Besag & Moran
(1975). Kunsch (1982) fits Markovian models to a number of
agricultural fileld trial experiments including the Mercer—Hall
data considered earlier in this paper, Cl1ff and Ord (1981) have
given a description of the spatial Markovian model and have
discussed the problem of fitting such models by maximum
likelihood. A disadvantage of such procedures which do not
transform to the frequency domain 1s that, like Kriging, they are
computationally intensive and involve ifnverting large matrices.

As an example of a random field, Larimore (1977) gives the
perspective plot in Figure 7 which is a realization of a random

field generated at spatial coordinates s; and 85 by an equation of
the form
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Fig. 7 Realization of the randdh field generated by Equation (17)
{(frem Larimore (1977)).
x(81,82) + oy[x(s1+1,89) + x(5;~1,89)]
e oplx{s],89t1) + x(8y,89-1}]
+ oaglx(s+1, 52+1) - x(8)-1,85+1) - x(s;+1,89-1)
+ x(s1-1l,8y~ 1)]
= w(sq,89) , (16)

which expresses the process in terms of adjacent values and

w(sl,sz), a white nolse process with varlance q% . The
codfficients for.this example were o) = .1, & = =.1, and @y =
.0867. A compact notation is needed for equations of the above
form and it is convenient to define

D; x(s,t) = x{(s+r,t) (17

and
n; x(s,t) = x(s,t+r) (18)

so that (17) can be rewritten as
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[1+o;1(D1+D]1) + az(nza-ngl) + ua(Dl-DIIJ(DZ—D_z'l)] x(s | ,8,)
= w(sp.89) (19)

This model can be compared, for example, with a white noise model
of the form

x(sl,Bz) = W(SI,SZ) (20)
or perhaps with an approximately isotropic model of the form

1

[1+ a (0] +D2+D;1)] x(s,,8,) = w(s,,s,) (21}

One could also consider a2 simplification of the form

1+ oi(Dl+D11) + GQ(D2+D21)] x(sl,sz) = w(sl,sz) (22)
. Is

which specifies different coefficients for different directions,
Larimore {(1977) considers estimating the parameters in these
several kinds of models using maximum likelihood in the frequency
domain and computes the Akaike information criterion AIC (see
equation (3)) for each of them. A partial listing of his results
1s given in Table 2 below.

Table 2 - Parametric models for random field in Figure 1 (taken
from Larimore (1977)).

Model Coeff,
eq. no, Shifts est, AIC
(20) ————— 12,564
-1 -1
{21} DI+D1 +D2+D2 00735 12,566
(22 n1+nzl .10253 12,486
-1
D,+D, -.09342
(19)-True D1+DIl .1046 12, 444
-1
D,+D, -.1045
-1 -1
(Dl-Dl )(n2 D, ) 0816
Full Model D}Dg,i,j-o,:l Given in
Larimore (1977) 12,452
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It is clear, in this case, that the correct non—isotropic model
would be chosen by AIC and that the coefficient estimators are
quite close to the true values of a = .1, 0y = —.1 and oy =
0867,

Many theoretical developments relating to estimation and testing
hypotheses for multidimensional autoregressive random fields still
need to be explored. For example, the estimation and smoothing
problems cannot be solved easily when the data are irregularly
observed over the grid since the Kalman filtering and smoothing
algorithm used in Section 2 is not available for the
multidimensional case. Another area under development is the
specification of hypotheses related to isotropy (see Solo (1984),
for example). Alternative parameter specifications for the
dependence structure as a function dfjdistance such as the
space—time autoregressive moving averdge STARMA models of Pfeifer
and Deutsch {1980) may be of Interest.

~

5, Digcussgion

The approach that ohe may decide to take In analyzing spatially
correlated data depends mainls on (1) the theoretical models which
are likely to be of wmse in describing the physical phenomena being
studled; and (2) the sampling configurations over which the data
are observed.

Theoretical models may be relatively non-apecific, for example,
such as simply requiring that certain components be non-stationary
or stationary. More often than not it seems that the phenomena of
interest satisfy certain systems of differential equations and
these assumptions can be lucorporated into parametric models and
smoothing procedures. The additive 'signal plus noise' approach
seems to be useful for both stationary and non—-stationary data.
This pertains to the material in Section 2 and the first example
of Section 3., For stationary series, the’input-output model of
Section 3 may lead to a procedure for understanding the transfer
mechanisms between varlous soil science parameters. By contrast,
the Kriging procedure uses an assumed aatocorrelation structure to
smooth the data using a noiseless model.

The sampling procedure alsc puts restrictions on the kinds of
methodology which can be applied to any given data set., TFor
example, the state-space methodology In Section 2 would bhe limited
practically to one—dimensional spatial series sampled along
transects although there can be data points missing from the
series. The stationary methods of Section 3 and the partial
difference equation approach of Section 4 apply to the
multidimensional case but require that data 1s equally spaced,
either along a transect or aver a grid. The stationary methods of’
Section 3 also require a reasonably large number of points in all
directions and hence, are baslcally large sample techniques. By
contrast, Kriging can be used when observations are sparse as well
as irregularly observed in space or time.
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Discussion

K. Cassel:
R, Shumacy :

N. Safaya:

J. Hendricka:

A. Warrick:

R, Turmer:

£.H. Shumoay :

How do you decide if a data set 1s stationary or
non-stationary? What different options exist
for converting a non-stationary data set into a
stationary data set?

A plot of the original data will sometimes
exhibit nom-statlonary behavior due to trends or
changes in the wvariance of the series. The
autocorrelation functlon may decay very slowly
if there are non-gtationary trends, The time-
varying power spetrum (cf. Priestly (1981)) may
fluctuate if there are more subtle non-
stationarities present. The methods for adjust-
ing non-stationary data are (1) detrending using
linear or non-linear regression, (2) differenc-
ing, (3) transformation (e.g., log), and (4)
linear fiitering (e.g., high-pass).

How do you determine the size adequé&y of the
sampling grid or transect?

What 1is the best kind of sampling design?
Poggibilities of interest are a grid with
regular or random assignment of points and a
grid with loecations around it at smaller
distances,

With vregard to necessary number of samples,
could you distinguish between the problem of
sample numbers for estimating a variogram and
number of values for a given precision, given a
variogram which is already determined? My own
opinion is that, the second aspect 1s more
easily addressed {(cf. recent papers by Webster
and colleagues) and the former is addressed
primarily in a pragmatic fashion.

Soil solutions move through soils at irrigation
intervals in response to 1lrregular precipitation
events, [s there a time series technique that
would allow interpretatiens of lysimeter
sclutlon concentrations and flows collected at
irregular intervals? How does one make inter=-
pretations of lysimeter data collected at
regular intervals (e.g., monthly) when the
solutions they collected actwally were collected
at irregular intervals?

An adequate grid should cover a large enocugh
area to capture the phenomenon of interest. The
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size of the mesh should be such that ne impor-
tant perlodic varlations or frequencies in the
data are distorted or aliased by the sampling
scheme. Again, it is important to watch the
gampling interval with the characteristic soil
parameters of interest. Time domain methods
require at least 30 points along a transect,
Frequency domain techniques require at least 50
point spaced uniformly along a transect or on a
50x50 grid,

I am opposed to random sampiing of design points
whether they aré located on a grid or net., For
example, the-selection of design points deter-
mines the variance cf kriging estimators and it
makes sense te choose these systematically to
reduce the mean square error, Of course, if
nothing is known aboUt the variability of the
s0il measurements over the region of interest,
it may make sense .to construct several uniform
grids or transects at different spacings.

If one is willing to assume a form for the
autocovariance or variogram, the configuration
of observed data completely determines the mean
square error of the predicted value at each
point on the surface. The determination of a
sampling scheme for estimating the variogram
depends on the ''pragmatic" considerations
mentioned above plus the parametric restrictions
which one 1s willing to assume for the variogram
(e.g., isdtropic, exponential decay, etc.).

Time series methodology generally requires that
observations be regulaply spaced although some
progress 1is being made on the irregular case
using the state-space model (cf. Parzan (1984)
and Sections 2 and 5 of my paper).

Is the state-space model (Kalman filter) a model
for a non-stationary dynamlc series and not a
stationary series?

The state-space model can be either stationary
or non-stationary depending on the structure of
the transition matrix ®D .in equation (2) of my
paper. The example i1in Section 2 is a non-
stationary model. A gsimple example of a sta-
tionary model would he tc choose p=1 and |2]<1.
in (2), in which case the signal process is
simple first-~order autoregression with an
exponentially decaying autocorrelation function.



C. Topp:

R. Shumway :

A. Gutjahr:

F.H. Shumsay :

D, ars;

R. Shwmeay:

A pumber of examples of various stationary and
non-stationary state-space models can be found
in Harvey (1981).

Do you see any way in which state-space analysis
could be used in conjunction with a variogram
analysis to help determine drift components
which may be biasing the wvariogram.

The example in Section {2) has a drift component
which could be eliminated by using the residuals
(observed minus predicted) to do the variogram
analysis,

Noise or observaticn error and uncertainty arise
from both the method of measurement and from the
variability of the signal. What effect does the
magnitude of measurement error have on the
application of state-space or time series
analysis vs. kriging? . y

The state-space model provides separately for
estimating both the variance of the measurement
error, R, in Equation (1) and the signal or
model error, Q, in Equation {(2). Values for
these two components for some soll data are
given in Table 1 of Sectien 2,

Is there an order in 2 or 3 dimensions which
could allow one to use "suybmatrices™ in the
Kalman Filter?

Unfortunately, there are no convenlent Kalman
recursions for more than one dimension. The
answer in the higher dimensional case probably
inveolves sampling over a regular grid and trans-
forming to the frequency domain (see the dis-
cussion below Equation (5) of my paper).

The support of the samples and the support of
the reglon for which an average is determined
can be incorporated into the kriging equation.
How are these incorporated into the state-space
modelling?

This can be done using the “"measurement" matrix,
M{s), 1in the observation Equation (1) of my
paper. For example, in Equation (&), one might
choose M{s) = (1,1)' if the observation y(s) is
really an average.
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Does bootstrapping have any possible application
to reducing the number of samples?

Bootstrapping is a resampling method for estima-
ting the variance of an estimater, Its primary
purpose would not be for reducing the sample
size regquirements. A discussion of the "boot-
strap" as well as the related "jacknife" and
"eross validation" techniques 1s in Diaconis,
P. and B, Efron {1983), Computer-Intensive
Methods in Statistics, Scientific American.
May, 116-130. -

Is there any statistical information that can be
obtained from the imgginary part of the Fourier
transform?

The imaginary part of the transform is used to
determine the phase, which gives information
about the relative arrival times of different
frequencies on a single record or about the lag
relations of different frequencies when there
are two records. A good discussion of some of
these questions can be found in Bloomfield
(1976) or in Priestley (1981).
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Spatial variability of soil properties

-

Goro Uehara, B. B. Trangmar and R. S. Yost, Department of Agronomy
and Soil Science, University of Hawaii, Honcolulu, Hawaii, USA,

Introduction

One aim of soil science i1s to establish the cause and effect
relationship between soil properties and soil behavior so that
ugers of soil resources can predict the performance and behavior
of s0ils. The prediction is made by matching the requirements of
a specific use to the characteristics of the soil. To’rectify
mismatches in spatially variable soils, it is necessary to know
the number, magnitude, and whereabouts of the mismatches. It is
the inability tc deal with spatlal variakility that prevents socil
users from accurately matching soil use regquirements to soil
characteristics and, therefore, from predicting soil performance
and behavier,

The purpose of this paper is to illustrate how geostatistics can
be used to deal with soil spatial variability.

Sources of data

Four sets of data were used to illustrate soil spatial
variability. Information about the data sets is summarized in
Table 1. The areal extent of the four study areas ranged from 2.6
million hectares in Rwanda, Africa, tc an experimental plot of
less than one-tenth hectare in area in Sitiung, West Sumatra. The
closeat sampling distance was nearly four kilometers in Rwanda and
about one meter apart in the experimental plot. Sampling in the
small experimental plot was designed for geostatistical analysis,
but in the three other locations sampling was made at a time when
geostatistics was still unknown to the individuals collecting the
samples. It is likely that many similar data sets exist today in
files of soil survey institutes around the world. They represent
a rich source of information that can be used to study soil
spatial variability.

Data analyses

The four data sets described in Table 1 are analyzed separately to
illustrate how scale, sampling distance, sampling direction, and
kinds of soil affect the range, sill, and nugget variance of the
semi-variogram, and therefore the kriged results.
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Table 1. Sampling location and characteristics of the data sets

Size of Closest

study sampling Number of
Sampling area distance Sampling sampling
location {hectares) (meters) pattern sites
Rwanda,
Africa 2,633,800 37G0 random 119
Kenana, i
Sudan 34,318 1000 N grid 254
Sitiung, -
West Sumatra 106,650 400 . . Trandom a8
Sitiung,
West Sumatra 0.078 1.0 . grid 137

LW

Analysis of Rwanda data get

Between 1979 and 1980, Peter Vander Zaag, a potatc agronomist with
the International Potato Center stationed in Rwanda, collected
goil samples from 0-15 ¢m and 30-45 cm depths at intervals of
several kilometers along the major highways of the country, as
shown in Figure 1., His aim was to obtain an overall picture of
the fertility of the country's soils, Fortunately, the sample
location was c<learly marked on a road map.

Semi-variograms of soil pH, soil calcium, soluble silicon, and
extragtable ammonia nitregen are shown in Figures 2-5. What is
most striking about the semi-variograms is ther long range owver
which the s0il propetties are related. 'The results were
surprising because Campbell (1978}, for example, obtained a pure
nugget effect for soil pH collected 1¢ m apart. Tabkle 2
_summarizes the main features of the varicgrams for pH,
exchangeable calcium (me/100g)}, effective cation exchange capacity
(ECEC) (me/100g), extractable silica {ppm), and extractable
ammonia nitrogen (ppm). The Rwanda data summarized in TPable 2
suggest that soil properties are spatially related over long
distances. A more detailed account of the Rwanda data set is
contained in a paper by Vander Zaag et al. (198l).

analysis of Kenana, Sudan data set

When the result of the Rwanda data set was presented at the Fourth
International Soil Classification Workshop in June 198l in Kigali,
Rwanda, a Sudanese soil scientist recommended that soil data
collected to assess land for sugarcane production in Kenana,
Sudan, be analyzed geostatistically. The data set consisted of
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auger samples collected from the 0-25 cm and 75~100 cm depthe at
254 locations on a one-kilometer by one-kilometer grid (Figure 6).
At 18 of the 254 sampling leocations, a pit was excavated next to
the auger hole and sampled for complete scil characterization data
in order to clasgify the soils.

As indicated in the Scil Survey Report (Adam, 1976}, exchangeahle
sodium percentage (ESP) was judged to be the soil property most
likely to limit sugarcane performance in the Kenana area. Taking
this cue, the ESP was examined in two ways. First, we wanted to
know if there was structure in the variance of ESP, and second, we
wanted to know if information about the spatial distribution of
ESP could have been cbtained with fewer samples.

The semi-variogram (Figure 7) indicates structure in the variance
but also suggests that considervable more information about the
structure could have been obtained by collecting samples between
zero and one-kilometer distance.

In order to obtain an estimate of the nugget variance, the’
semivariance of the 18 pairs of adjacent auger and pit samples was
calculated, Since the auger and pit samples were collected a few
meters apart, the semivariance appears as the nugget variance in
Figure 7. In Table 3; the exchangeable sodium percentages of
adjacent auger and pit samples are compared to the kriged value
for the same location.

As a second exercise, the semi-varicgram and kriged map of ESP
were constructed using 100, 7%, 55, and 47 percent of the data
points. The purpose of this exercise was to ascertain the extent
to which kriging would compensate for reduced sample size.

The sample number was first reduced by deleting every third row of
data points in the grid as shown in Figure 8, The semi-variogram
constructed from 75 percent of the data is shown in Figure 9.

The sample size was further reduced to 56 percent of the original
by deleting every third row and column from the data set except
those on the borders as shown in Figure 10. The semi-variogram
for this data set is shown in Figure 11.

The effect of reducing sampling intensity can be judged by
comparing the map based on 100 percent of the measured data
(Figure 12) against the kriged maps constructed from 254 (100
percent), 192 (75 percent), and 143 (56 percent) of the data as
shown in Figures 12, 13, 14, and 15. The estimation variance
resulting from reducing sample size is summarized in Table 4. A
more complete analysis of the data is presented by Trangmar et al.
{l1982),
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Fig., 6 Location of scil sampling sites, Kenana
Sugar Project.
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Fig. 7 Semi-variogram for ESP determined from 100% (254) of
samples. .
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Table 3. Comparison of exchangeable sodium percentage (0-25 cm
soil depth) from adjacent pit and auger samples with kriged

values for the same sites.
Table 8, Adam 1976.

Pit and auger values derived from

Estimation
Sample site Pit Auger Kriged variance
KSPA 01 19.4 13 11.0 11,4
02 14 11 10.7 16,6
03 14.8 8 8.8 12,3
04 9 12 6.9 12.1
05 12 6 11,1 13.2
06 7.2 7 10.4 11.9
07 6.2 7 61 11,8
08 1.2 8 9.7 11.4
09 1 24 13.5 13.8
10 2 4 4.3 2.3
11 6.4 3 8,1 11.4
12 14.8 8 8.6 12.4
13 11.6 11 9,9 12.3
14 12,8 13 10.7 11,4
15 9.6 10 10.5 11.4
16 10.4 9 10.6 11.5
17 13 " 10.2 3.0
18 10 10 13.6 12.5

Table 4. Effect of reducing sample size on the semi-~variogram
and mean estimation variance of kriged values.

Percent of

samples used - Semi-variogram
in analysis Mean estimation
{n = 254) Intercept Sill variance
100 6.15 21.6 10.5
75 .15 22.1 12.2
56 6.15 24,0 13.1
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Fig. 8 ILocation of sampling sites for calculations
based on 75% of data collected.
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Fig. 9 Semi-variogram for ESP determined from 75% (192) of
samples. .

70




Fig. 10 Location of sampling sites for caliculations
based on 56% of data collected.
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Fig. 11 Semi-variogram for ESP determined from 56% (143) of
samples.
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Fig. 12 Map of ESP determined from 254 sample values,
Kenana Sugar Project.

Figs 13 Map of kriged ESP values determined from
100% {254) of samples.




Fig. 14 Map of kriged ESP wvalues determine rom

Fig. 15 Map of kriged ESP values

{143) of samples.
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Analysis of the Sitiung data set

Sitiung serves as a settlement area for an Indonesian
transmigration program. Several thousand transmigrant families
from Java hawve settled in a 100,000 hectare area along the
Batanghari River, The solls of the region range in guality from
moderately fertile Inceptisols on the subrecent terraces of the
river to the highly leached and impoverished Oxisols and Ultisols
of the dissected peneplain to the southwest. Mean annual rainfall
is 2800 mm and mean annual air #emperature is 26 Celcius.

In preparation for the arrival of the <4ransmigrants, complete soil
characterization data were coliected from 88 locaticng in the
100,000 hectare area, A map of the area showing sampling
lecations is shown in Figure 16, and & summary of statistics of
soil properties subjected te geostatistical analysis is given in
Table 5. .
The semi-variograms for sand content and pH illustrate the degree
to which soil properties in the Sitiung ‘area are spatially related
(Figures 17 and 18). 'In order tc display the spatial variability
of soil properties on a map, eash property was kriged for 268
locations as shown in Figure 19.

Since goil phosphorus levels were low in this area, the Indonesian
scientists had measured NaHCO3 extractable phosphorus in 52
locations in the area., They had also measured phosphorus
extracted by hydrochloric acid as a parameter for soil
classification. In order to assess the spatial distribution of
phosphorus deficient scils, a map of the NaHCO3 extractable
phosphorus was prepared. An attempt was made to increase the
accuracy of the map by ¢o-kriging. The cross- and
auto-semivariogram for phosphorus extracted by NaHCO3 and HC1 is
ghown in Figure 20, The improvement in the map of the NaHCO;
extractable phosphorus is shown in Figure 21 by displaying the
reduction in the estimation variance. Co-kriging resulted in the
greatest reduction in the estimation variance where the sampling
density of NaHCO3‘extractable phosphorus was lowest.

Thig data set also enabled anisotropic kriging to be computed for
gand content. The semi-variograms for sand computed in four
directions are shown in Figure 22, Anisotropic kriging resulted
in marked reduction in the estimation variance as shown in Figure
23, Details of the co- and anisotropic kriging are presented in a
dissertation submitted to the Graduate Pivision of the University
of Hawaii (Trangmar, 1984).

Analysis of data from a small experimental plot in Sitiung
The gpatial variability of goil quality in a typical farm in
Sitiung is marked by differences in plant growth that range from

bare spots to lush green strips. The bare spots are sterile
subsoil exposed by the bulldozer, and the qreen strips correspond
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Table 5. Mean, range, variance and number of samples for soil properties
analysed using geostatistics, Sitiung region.
Depth Number of
Soil property {cm) Mean® Range Variance samples
Sand {%} 0-15 16 0~59 213.9 108
15-45 14 0-64 157.8 109
silt (%) 0-15 26 4-69 213.5 109
15-45 23 . 2-67 181.1 109
Clay (%) 0-15 58 17-90 2C01.4 109
15-45 64 32-90~ 149.5 109
pPH 0-15 4.5 3.7-6.0 0.19 109
15~45 4,7 4,0~6.3 0.15 109
Organic € (%) 0-15 3.14 0.37-20,43 2.60 109
15-45 1.29 0.37-21,89 G.39 109
Total ¥ (%) 0-15 0,25 0.07-1.20 0.01 107
15-45 0.13 0.04-1.24, 0.01 107
HC1l~P (ppm) 0-15 107 4-391 8645.8 107
15=-45 a7 W 0=335 5018.6 107
NaHCO3-P 0=-15 ‘8 2=33 34.6 52
(ppm) 15=-45 2 * 0=8 5.3 44
Exch. cations
(meg/100g)
Ca 0-15 0.6 0.1-23.0 2.16 109
15-45 C.3 0.1-8.8 0.20 108
Mg 0-15 0.3 0.1-3.1 0.12 109
- 15=43 0.2 0.1-1.9 0,03 108
X 0-15 0.2 Ca0-1.2 0.02 109
15-45 0.1 0.1-0.7 0.01 108
Sum of “catlions 0-15 1.3 0.3-27.4 2.17 109
(meg,/100g) 15-45 0.8 G.3-10G.6 , 0.37 108
Exch.Al 0=15 3.6 0-9.3 3.43 929
{meg,/100g) 15-45 3.3 0-9.9 3.34 99
-ECEC 0-15, 5.1 0.8-27.4 6.50 99
{meq/100g) 15-56 4.3 0.6-11.0 5.08 98
Rl satn. (%) 0-15 73 0-94 504.2 99
15-45 78 G-96 332.5 98
Cu (ppm} 0-15 3 1-8 4.04 56
 15-45 3 1-8 3.78 54
Zn {ppm) 0~15 5 1-55 47.9 56
1545 5 0-30 55.3 54
Lime red.
{tonnesa/ha} 0=15 4.0 0-10.4 4434 99

a. Means and variances for organie C, N, HCl-P, NaHCO3-P, exch., Ca, Mg,
sum of cations, ECEC, Cu and Zn were determined on log transformed
values and re-expressed in terms of the original data using equations
of Haan (1977).
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to the ash lines of burnt trees. This variability created during
the land clearing operation and subsequent burning presents
serious problems for the farmer and researcher. 1In farmers'
fields, the bare spots are most prone to erosion. Bare spots
produce nothing and therefore are neglected. Erosion feeds on
neglect and the land is eventually abandoned. The researcher
needs variability, but wants a field with minimum natural
variability so that the effects of the treatment variable will be
clearly expressed. In Sitiung the range of natural socil
variability is almost always as large as the imposed treatment
range. The aluminum saturation, for example, ranges from zero to
90 percent. This is the range a researcher would impose in a
liming experiment to assess the effect of aluminum toxicity on
creop performance,

To assess the short range variability in a small plot, sampling
was conducted on a 28x28 meter plot in the manner indicated in
Fiqure 24, A picture of the visible kinds of variability
encountered in the plot is shown in Figure 25. 4

High soil acidity and the resulting release of toxic aluminum
severely constrains crop performance in Sitiung. Isotropic
semivariograms for aluminum saturation and seoil pH are shown in
Figure 26, A three dimensional diagram of aluminum saturation for
the plot is shown in Figure 27. The effect of aluminum toxicity
is reflected in grain yield of rice as shown in Figure 28.
Semi~variograms of plant height at 60 days and grain yield (Figure
29) show that the range of spatial dependence for crop parameters
are longer than for soil properties that are thought to affect
crop performance.

Table 6 summarizes the significance of selected soil properties on
crop parameters, and Table 7 shows the effect of various terrain
units on crop performance. These results show that natural soil
variability can be exploited to answer agronomic questions.

Summary and conclusion

Many commonly measured soil properties are spatially related for
long distances. The same property measured a meter apart or one
kilometer apart shows structure in the variance but shows
different ranges of spatial dependence for different scales. It
ig likely that different kinds of heterogeneity are sampled as the
sampling scale is varied., Different soil forming factors
operating simultaneously at a point with different degrees of
intensity over differing scales may be the cause of the
scale—dependent spatial variability.

Geostatistics is a useful tool to study soil genesis and can also
be used to develop special purpose maps for specific soil
interpretation needs. For example, a map showing the spatial
digtribution of soil aluminum can be converted into a map showing
the lime requirement of an area.
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Table 6. Coefficients of correlation (r)a of geil chemical
properties with plant height and yield componente of upland rice
soil wvariability trial.

Plant height Stover dry Grain dry
Soil property at 60 days {(cm) weight (a/m?) weight (g/m?%)
pH 0.51 G.44 0.38
Organic C (%) -0, 07M8 ¥ -(.0208 0.0208
Total N (%) 0. 09n& G118 0.1408
NaHCO3-P (ppm) 0. 0608 0.1178 0.1108
Exch. cations
(meq/100g) ) N

Ca 0.56 0.55 0.49

Mg 0452 . 0.45 0.40

K 0,41 ~ 0.38 0.46
Exch. Al
{meqg/100g} -0.55 -0.47 -0.41
Al satn. (%} ~0.56 -0.51 -0.41
Cu (ppm) 0. 0708 0.09ns 0.1208
Zn {ppm) ' 0.42 «  D.34 0.33

a. All r values significant at P < 0.01 unlesg otherwise
indicated. :

ns = nonsignificant at P = 0.05.

Spatial variability of soil properties affect soil performance as
demonstrated by Warwick and Gardner (1983), A uniform application
of soil amendment in a spatially variable soil regults in over
application in some parts of the field and under application in
others. If the range of soll variability is much larger than the
means employed to apply the amendment, it may be possible to vary
the rate according to needs.

Finally, spatial wvariability in soil properties that restrict soil
use for dwellings, septic tank adsorption fields, small
regservoirs, sewage lagoons, and so forth can be mapped so that
marginal zones in a spatially variable field can be avoided.
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Table 7. Mean comparisons® of plant height, stover and grain
yield of upland rice among terrain units, soil variability trial.

Plant height Stover dry Grain dry
qerrain unit at 60 days (cm) welght (g{mz) welght (gjmzl
Burn sites 92,5a 328,.3a 227.1a
(n=24)
surrounding 78.5b 233.8b 166.5b
goil (n=74)

Exposed 71.2b 192.7h 146,0b

subseoil (n=23)

a. Means within a column followed by the same letter are not
significantly different at F = 0.05 according to Student's

t test.
v
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Discussion

M. Nash:

G, Uehara:

I. Murarka:

G, Uehara:

P, Germann;

G. Uehara:

G, Uehara:

How did you take the average distance?

If by average distances you mean lags, they are
selected to provide an adequate number of pairs
of observation to compute a reliable semivari-
ance. Large average distances give large
numbers of pairs but few lags. Shorter lags
give fewer pairs. In samples collected in a
grid, the lag is generally the distance between
the closest pair. The printout should include
the number of pairs for each instance so that
the reliability of each semivariance correspond-
ing to each lag can be judged.

For any of four samplings that you described,
did you make a prediction for a spatial peint
based on your kriging results and then go into
the field and observe the valuve? How did the
predicted (calculated)} value compare with the
measurement (s)?

It is probably simpler and cheaper to validate
your results by Jjack-knifing. This procedure
simply involves deleting an observed value from
the analysis repeated for each observed value.

Remenber that the kriging variance gives you a
picture of the reliability of the predicted
value,

Have you moved the jack-knifing across the field
in order to get a "kriging variance"?

Jack-knifing generally refers to the. procedure
of deleting one observation at a time. However,
if one wishes, one can delete rows, columns or
cluster of polnts to test the degree to which
the deleted information can be recovered by
kriging.

Given several hundred acres of regraded soil
data collected on a 300 ft. grid basis, we wish
to justify a reduction in the sampling intensity
by wusing the jack-knife method. Should sample
points be eliminated on a row basls or on an
alternate sample point basis?

The rule of thumk 1is to maintain a uniform

density of observations over the area and to
preserve sufficient number of c¢losely apaced
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observations to construct a useful semivario-

gram. My vresponse to the previous question
applies here.

2. Clay: How were the semivariance models fit, and were
the models evaluated statistically?

G. Uehara: The selection of a model to fit the semivarioc-
gram is somewhat subjective. However, the slope
and intercept of a linear model, for example,
can be objectfvely determined by statistical
means. Remember however, that each point on the

I semlvariogram carries™~different weights because
they are calculated from different number of
pairs. The 1list of acceptable semivariogram
models can be obtained from the literature.

| B. Luxmoore: Have the analyses for Ryanda helped potato
‘ production? ’
k 7. Ushara: Not directly. Geostatistics helped the potato

i agronomist obtain a more accurate picture of the
| soil fertility “Status of the soils of Rwanda.
‘ This hélped the agronomist make better choices
\ in his work and this in turn probably Improved
his capability to help growers increase potato
production.

A. Ruellan: "The soil has a merphology. If we wish to
emphasize our effort in terms of fertility, we
have to take the samples as a function of the
morphology of soils, and we have to study crop
production in relation to morphelogy.

I think if we have a good understanding of soil
morphology we can take less and better samples
and achieve better statistics. The variability
of the so0ll is normal. The problem 1s te
understand this variability.

G. Uehara: It is not our intent to replace scil morphology

r with geostatistics. Class, grade and type of

spil structure, color, consistency, horizon

. boundariles are dimportant soil chatracteristics

that cannot be analyzed geostatistically because

1 they are qualities that cannot be expressed as

continuous numerical values. This may be more a

deficiency of soil moerphology than a problem
with geostatistics.
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L.P, Wilding: Do you have any ideas or knowledge of how well
the geostatistical kriged data sets can be
extrapolated from one area of a given soll to
the next area of like seil? Geostatistics is an
interpolative tocol but soil surveying is an
extrapolative process?

4. Usghara: 1f we can demonstrate through geostatistics that
similar kinds of spatial relations exist among
similay named kinds of soils, regardless of
wliere they occur, we will have solved one of the
major soil science problemsg facing us today.
This is & hypothesis that needs to be tested.
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| Stochastic models of fluid flow in
‘ heterogeneous media

Leslie Smith, Department of Geological Sciences, University of
British Columbia, Vancouver, Canada.

Introduction -

Significant advances have been achieved in the past ten
years in our understanding of how the spatial variability of
porous media influences groundwater flow. This work has led to
the development of stochastic simulation tecﬁniques. In thisg
approach, input parameters in the groundwater flow equation are
asgsumed to be random variables with“dn associated probability
distribution at each point ‘in the flow domain. The spatial
dependence between neighboring values of the random variable is
defined in terms of an autocorrelation function, or a related
measure of the gpatial continuity. Solution of the flow
equation leads to probability distributions on the output
variables such as hydraulic head that can be interpreted in
terms of the uncertainty in model prediction. The objectives of
this paper are to review gsome basic elements of fluid flow in
heterogeneous media, and to discugs current research
directions.

The concepts discussed in this paper can be outlined by
considering the cartoon shown in Figure 1, Assume the volume of
water seeping beneath the embankment is to be estfimated.

Because of the gpatial variability in hydraulic conductivity,
there will be a degree of uncertainty in the discharge
prediction. Even if considerable data were available, the exact
patterns of spatial variation could never he uncovered. With a
conventional deterministic model, calibration and validation
techniques would be uged during model parameterization in an
attempt to improve the reliabkility of the discharge estimate.
Uncertainty in the model output is determined, at best, in a
subjective manner. The stochastic approach has been introduced
to gquantify that uncertainty. Central issues in this approach
can be expressed by the following set of questions:

1. What are the patterns of the spatial variability in
hydraulic conductivity, how is the spatial variability described
in probabilistic terms, and what techniques are available to
estimate model parameters?

2., What mathematical techniques can be used to form estimates
of the probability distributions on the seepage volume?

3. Given a probabilistic model for the heterogeneity in
hydraulic conductivity, what is the probabilistic structure of
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the hydraulic potential and the fluid discharge?

4. How does the design of a data measurement network influence
the magnitude of the uncertainty in & model prediction?

5. What is the probability that the system fails (ie.,
unacceptably high seepage), and what are the tradeoffs to be
considered in a measurement program when assessing the
probability of failure?

Questicons 1, 2 and 3 deal with the mechanics of gtochastic
analyses and the physiecs of fluid flow in heterogeneous media.
Considerable progress has been achieved in this area, with the
theoretical foundations now essentially in place. ILess is known
about the concepts expressed in questions 4 and 5, which
integrate model analysis with decisions on data worth. These
latter topics identify an active field of current research. In
the sections that follow, each of these guestions is diacussed
in gsequence.

Spatial Variability of Porous Media i
- I
Stochastic simulations of seepage beneath the embankment
shown in Figure 1 would require that a number of assumptions be
made in order to obtain a workable problem. The variations in
hydraulic conductivity at the site are assumed to reprasent a
realization of a stochastic process which is statistically
homogeneous. Statistical homogeneity requires that hydraulic
conductivity have the same mean and variance at every point and
that the autocorrelation between hydraulic conductivities at any
two points depend only on the vector separating those points and
not their absolute position. Field data indicate that hydraulic
conductivity can be represented by a lognormal probability
distribution. The standard deviation in log hydraulic
conductivity (base 10) estimated for data sets from a variety of
geologic media ranges in value from 0.10 in homogeneous systema
to 1.50 in very heterogenecus media (see an early review by
Freeze, 1975)}. The integral scale, defined mathematically as
the area beneath the autocorrelation function, is commonly used
as a measure of the average distance over which hydraulic ‘
conductivity is correlated. Correlation lengths for hydraulic i
c¢onductivity vary with the scale of the analysis. Horizontal :
correlations on the order of 1 to 10 m have been observed in }
samples distributed over distances of tens to a few hundred l

meters. In large-scale regional aguifers, correlation distances |
can be as large as 10 or 20 km (Hoeksema and Kitanidis, 1984). i
Layered heterogeneities on a scale similar to that of the flow J
domain would, if present, be identified as distinct units
described by their own set of statistical parameters.

Several research groups are carrying out work to identify
possible relationships between the nature of a depositional
environment and the probabilistiec models describing the
resulting spatial variability in hydraulic conductivity. The
hope here is that correlation structures and length scales can
be identified which are typical of, for example, channel-fill
sandg, glacial outwash or alluvial fan deposits. BAs an example,
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congider the data shown 1n Figure 2. The two plots illustrate
variations in hydraulic conductivity along two line transects
from the Quadra Sand where it is exposed in a series of cliffs
near Vancouver, Canada (Smith, 1981). This unit is a well-
sorted, medium grained, horizontally stratified sand with
relatively few silt or gravel interbeds. Identifiable
horizontal beds are up tec tens of meters in length and up to a
meter thick. The Quadra Sand was formed as reworked distal
outwash ahead of advancing glaciers to the north. The line
transects consist of 100 samples on a spacing of 0.30 m. One
line sample is parallel to the bedding, the other is directed up
the face of the cliff.

The differing character of the variations within these two
serles 1s apparent. The heterogeneity is much greater in the
vertical line sample. This result could be expected in a
stratified medium whenever the length of the horizontal sample
is of the same order as the scale of the bedding, while the
vertical sample crosses the sedimentary seguence. The standard
deviation is log hydraulic conductivity (base 10)'is 0.09 for
the horizontal line sample, and 0.36 for the vertical line
sample.

Sample autocorrelation functions for these line transects
are plotted in Figure 3. Several points can be noted. First,
the extent of the autocorrelation between neighboring values is
a function of the orientation of the line transect in the
stratigraphic section. Second, the functional form of the
autocorrelation may also depend upon orientation., Because the
length of the horizontal transect is of the same order as the
scale of the layering, the sample autocorrelation function
reflacts the point-to-point correlation within that layer. The
vertical line sample is directed across the stratification,
traversing a series of layers. As such, the sample
autoecorrelation function reflectg structures within the sequence
of layers, as well as that within each layer (in the vertical
direction). The possiblity of anisotropy in the autocorrelation
must be considering in any measurement program designed to
estimate the parameters of the statistical model describing the
heterogeneity. Xnowledge of the geologic environment and its
asgociated depositional features will be of extreme value in the
interpretation of the apatial patterns of the hydraulic
conductivity variations within a porous medium.

Solution Technigues

A number of techniques have been used in solving stochastic
equations of groundwater flow. These approaches differ in their
mathematical formulation and in the way in which the spatial
variability in hydraulic conductivity is incorporated in the
analysis. Summarized below are several of the technigues which
have been used to model fluid flow in heterogeneous media.

In the Monte Carlo appreoach, a deterministic boundary value
problem is sclved repetitively using a discrete representation
of the flow domain, obtained by dividing that domain into a
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number of equisized blocks. Single hydraulic conductivity
values are assigned to each block by generating values from the
statistical model describing the spatial variability. If
warranted, values assigned to single blocks can be generated as
spatial averages with appropriate modification of the
probability model. Fach realization is one member of the
ensemble of all possible realizations which could be generated.
Numerical techniques are used to solve for hydraulic head within
each of the realizations. The output from a large number of
such trials can be analyzed to obtain eatimates of the
probability distributions on hydraulic head and on othexr
measures such as fluid discharge.

oOne of several different approaches can be used in
generating realizations of a heterogeneous porous medium. Smith
and Freeze (1979) use a stochasgtic process model to develop a
get of linear equations linking hydraulic Tonductivity values in
each of the blocks to neighboring values in adjacent blocks.
Variability is introduced through a perturbatlon term added to
each equation. An algorithm which operates on the spectral
distribution function characterizing the hydraulic conductivity
variationg has heen used by Mejia and Rodriguez-Iturbe (1974)
and Freeze (1980). The turning bands method (Delhomme, 1979;
Dettinger and Wilson, 1982), which ie based on simulating a
two~or three- dimensional random field as the sum of a series of
one~dimensional realizations, provides an efficient technique
for generating hydraulic conductivity variations in domains of
large extent. These latter two technigues are favored because
of greater flexibility in representing the form of the
autocorrelation function.

An important class of stochastic problemg have been solved
using spectral-analysis techniques (Bakr et al., 1978; Gutjahr
et al., 1978; Mizell et al., 1982). In this approach, the
parameters of the flow equation are written in terms of a mean
and a perturbation. After-subtraction of the terms describing
the mean flow, an equation is developed connectting the
perturbation in hydraulic head to that in hydraulic
conductivity. From this equation, an expression is derived
relating the power spectrum of the hydraulic conductivity
perturbation to the resulting power spectrum in hydraulic head.
A specific molution is developed once the form of the
autocorrelation function in hydraulic conductivity is assigned.
This spectral approach has the advantage of yielding a closed
form solution for the statistical properties of hydraulic head
and of representing the spatial gtructure in a contineum form.
Analytic solutions developed in the space domain have been
presented by Dagan (1979, 1981).

An alternative numerical technigue to Monte Carlo simula-
tion was presented by Sagar (1978) and extended by Dettinger and
Wilson (1981) and Townley (1984). Thelr approach introduces
variability in the medium properties after the formulation of
the matrix equations which result from the finite difference or
finite element approximations to the groundwater flow ecquation.
The technique is based on a Taylor series expansion for the
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hydraulic head, from which expressions for the expected value
and variance of the solution vector can be computed if higher
order terms are neglected. This approach has been used to
advantage in investigating transient flow problems.

An important distinction can be made among the various
stochasgtic models between those based on unconditional and
conditional simulationg. In an unconditional simulation, each
realization is generated using only the parameters of the
probabilistic model describing hydraulic conductivity, without
regard to the location of data points. The standard deviation
in hydrauliec conductivity, and the uncertainty in the estimate
of a hydraulic conductivity value at some point in the flow
domain, are viewed as equivalent terms. The primary focus of
studies adopting this representation has been to describe the
physics of flow in heterogeneous media. In a second approvach,
the input parameters reflect a measure of the information on the
gpatial wvariation in hydraulic conductivity, with the atandard
deviation interpreted in terms of an estimation error. Emphasisg
here is placed on the use of hydrogeologle medels as predicgive
tools. TUsing the techniques of kriging and conditional
simulation {Delhomme, 1979), it is possible to preserve field
data at measurement points in each realization. In this case,
the ensemble is limited to include only those realizations that
satisfy the available field data. Because of sgpatial
autocorrelation, known values of hydraulic conductivity exert an
influence not just at the measurement point but over a
surrounding neighborhocd. In solving the stochastic flow
equation for hydraulic head, the standard deviation in hydraulic
conductivity is effectively reduced in the neighborhood of each
measurement. point. As a result, the variability in hydraulic
head may also be reduced in the vicinity of the measurement |
points, ;'

Conditional simulation can be extended by also }
incorporating hydraulic head measurements in the stochastic )
model (Clifton and Neuman, 1982). Here the agtochastic model is
viewed in the framework of a parameter estimation problem.

Clifton and Neuman use a statistical inverse simulation, coupled .
with kriging, to refine the estimate of the hydraulic ;
conductivity and the standard deviation in that estimate in a

number of subregions within the flow domajn. Examples have been I
presented to show that the variance in the prediction of
hydraulic head can be reduced markedly if the model is also
conditioned on a set of hydraulic head measurements.

Stochagtic Output

To illustrate several features of steady state fluid flow
in a hetercgeneous porcous medium, congider the domain shown in i
the inset diagram of Figure 4., The domain iz 20 m long and 10 m i
wide. The inflow boundary has a hydraulic head of 1.0, with a i
value of 0.0 on the outflow boundary. The upper and lower '
boundaries are impermeable, leading to a mean hydraulic gradient i
describing one-dimensicnal flow. The results that follow are

i
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Figure 4. Influence of the standard deviation in hydraulic
conductivity on the variability in hydraulic head for a case
with unidirectional mean flow. Curves A, B, and C correspond

to media with a standard deviation in log hydraulic conductivity
of 0.21, 0.43, and 0.91; respectively. See text for details.
(from Smith and Freeze, 1979)
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based on unconditional simulaticns. The first example
illustrates the influence of the standard deviation in hydrauliec
conductivity on the variability in hydraulic head. The spatial
continuity of the variations, described by the integral scales
in the two coordinate directions, are held constant with values
approximately equal to 1.2 m. Results are shown along a line
parallel to the x axis, midway between the upper and lower
impermeable boundaries. 1In a more heterogeneous medium, the
standard deviation in hydraulic head is larger. With greater
hydraulic conductivity contrasts pogsible in a more
heterogeneous medium, the deviation of hydraulic head at any
point from its mean value at that point can increase. The
parabolic shape of the curves reflects the statistical
nonhomogeneity in hydraulic head because of the constant head
values on the boundaries of the flow domain.

Figure 5 shows the effects of a nonuniform mean hydraulic
gradient on the variability in hydraulic head. The boundary
value problem is shown in the upper diagram, together with the
deterministic solution for hydraulic head assuming the medium is
homogeneous. The lower two diagrams are contour plots of the
estimated standard deviation in hydraulic head for media with
differing degrees of spatial centinuity in hydraulic
conductivity. In plot b, the integral scales are approximately
1.25 m; in plot ¢, 2.1 m. 1In both cases, the standard deviation
in hydraulic conductivity is 0.43. Several conclusions can be
formed. Pirst, the standard deviatien in hydraulic head is
greatest in the region of flow domain where the mean hydraulic
gradients are the highest, yet the region is removed from the
constant head boundaries where the possible range of head values
is constrained by the fixed head values there. Second, the
variability in hydraulic head increases in a medium with a
greater spatial continuity in hydraulic conductivity. This
response occurs because if zones with hydraulic conductivities
either above or below the mean value are likely to be more
extensive, the hydraulic heads in thoge regions can deviate
further from their mean values. Comparison of this example with
the previous one indicates that the variability in hydrauvlic
head depends upon both the heterogeneity in hydraulic
conductivity and the nature of the flow system.

Analytic solutions for steady state fluid flow in an
unbounded domain indicate that the perturbations in hydraulic
head are more strongly correlated than the input perturbations
in hydraulic conductivity (Bakr et al., 1978; Mizell et al.,
1¢82). In addition, hydraulic head perturbations are correlated
over a greater distance in a direction at right angles to the
mean hydraulic gradient. Thus, the statistical structure of the
hydraulic head variationsg is anisotropic, even though the
autocorrelation in hydraulic conductivity may be isotropic.

Massmann (unpublished data, 1984) has carrled out several
simulations that demonstrate the manner in which the varlability
in hydraulic head depends upon the dimension of the flow domain.
The simulations model unidirectional mean flow through a
rectangqular volume. The domain was divided into 300 sguare
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Figure 5. Influence of the spatial autocarrelation in
hydraulic conductivity on the variability in hydraulic head,
nonuniform mean gradient. Plot A is the deterministic solution
for a homogensous medium; plots B and C show contours of the
standard deviation in hydraulic head for media with differing
degrees of spatial continuity in hydraulic conductivity. See
text for details, {from Smith and Freeze, 1979}
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elements (10x6x5), with the long axis parallel to the mean flow
direction. Realizations of the three-dimensional randem field
were generated using a turnings band technique, with an
isotropic exponential autecorrelation function. For each
realization, flow was first modeled in three dimensiong, and
then along the central plane parallel to the long axis of the
domain, and along the center line of that plane. Such an
experiment will show that the variability in hydraulic head is
smaller in a three-dimensional analysis than in either a cne or
two-dimensional simulation. The greatest difference will occur
between the one and two-dimensional simulations. The
variability in hydraulic head depends upon the dimension of the
stochastic model because individual zones of low or high
hydraulic conductivity are of less importance in perturbing the
flow field in multidimensional models. Similar effects are
noted in the analytic solutions of Bakr et al (1978) and Dagan
(1979)., Realistic assessment of the sensitivity of hydraulic
head or discharge predictions to the unknown patterns of spatial
variability in hydraulic conductivity must consider -the 4
three-dimengional nature of groundwater flow.

Network Design and Risk Assessment

There is considerable potential in adopting stochastic
techniques in the solution of problems involving fluid flow
through porous media. The primary advancement to date has been
the development of better physical models describing fluid flow
(and transport) in heterogeneous media. This work sets the
stage for the future use of stochastic models in a design mode
to optimize the planning and implementation of field sampling
programg. A central concept here is to consider the location of
measurement sites in relation to the use of that data in model
prediction, rather than as a problem in mapping the spatial
variations in hydraulic conductivity within some region of
interest. Stochastic models also hold promise as a central
component in a risk analysis of an engineering design which is
based, in part, on a hydrogeologic prediction. Here the
uncertainties in model prediction are evaluated in light of an
associated probability of system failure and the (remedial)
costs following a failure.

™wo different concerns arise when discussing data
requirements for a stochastic simulation. First, there is
uncertainty in estimating the parameters of the statistical
model characterizing the spatial variability. The estimation
error for these parameters will be a function of the number of
sample points, the geometry of the sample grid, the
autocorrelation between neighboring hydraulic conductivity
values, the size of the domain, and the variance of the
hydranlic conductivity distribution. Second, there is the
impact of measured values in constraining the unknown patterns
of spatial variation in hydraulic conductivity. Work by Smith
and Schwartz (1981) suggests that given a realistic number of
data points, unknown patterns of spatial variation in hydraulic
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conductivity are a greater source of uncertainty in model
prediction than are errors in estimating the mean and standard
deviation of the hydraulic conductivity distribution. A
determination has yet to be made of the importance of errorg in
estimating the autocorrelation function. Analytic solutions for
various flow problems indicate that the output distributicns can
be sensitive to the form of the autocorrelation function. 1In
this case, estimation of the autocorrelation function will be an
important congideration in data c¢pllection.

Conditional simulation prdvides a mechanism for
investigating how the design of a data measurement network
influences the uncertainty in model prediction. Delhomme (1279)
has shown that the locations of sample points relative to
boundary locations and the hydraulic canditions on these
boundaries are important in determining the degree of
uncertainty in hydraulic head predictions. KUncertainties in
hydraulic conductivity in key regions.of theflow domain can
result in large uncertainties in hydraulic head throughout most
of the flow domain. Conversely, there widl be regions where the
uncertainty in hydraulit head is insensitive to the variability
in hydraulic conductivity. Recogpitlon of these 'key regions'
in the flow domain will be an integral part of the efficient
design of a measurement network that exploits the variable
sengitivity of hydraulic head to the spatial variability in
hydrauvlic conductivity.

With recent advances in the design of multiple-port
plezometers, it is now feasible to collect in situ data on the
spatial wvariability in hydraulic conductivity in a
three-dimensional framework. This instrumentation allows many
independent sampling points to be established in a single
borehole. Consider the goundwater flow system shown
gschematically in Figure 6. Two statistically homogeneous units
are present in the system. The upper boundary is the water
table. The face which is shaded is assigned # constant value of
hydraulic head. All other boundaries are taken to be
impermeable. Given the cbjective of predicting the volume of
discharge across the constant head boundary, guidelines are
. required on which to base decisions on the number of boreholes
needed, their location, and the depth and number of observation
points at each location. For example, choices can be made in
deciding where to site multiple-port piezometers to collect
detailed vertical information, and where a larger set of
spatially-distributed, single~port piezometers may be more
effective. Similarly, the number of observation points in each
of the two geologic units should be selected is some optimum
mannar. The variable sensitivity of hydraulic head perturba-—
tions to the spatial variability in hydraulic conductivity is an
important factor in addressing these kinds of questions.

A framework is required to examine tradeoffs in selecting
among potential sampling sites. Several approaches are
possible. A sampling strategy may be preferred if it leads to
smaller estimation errors in model prediction. Sensitivity
analyses using the estimation error as a measure of the
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Figure 6. Schematic plot of a sampling network using multiple- g
port plezometers., Guidelines are required on which to base
decisions on the number ¢f boreholes needed, their location,
and the depth and number of observation points at each location.

PROBABILITY OF SYSTEM FAILURE *
(RISK ASSESSMENT) h

measurement design

R{Q) PlQ)

a | O

Figure 7. Schematic plot of the prebability of excessive seepage
{shaded region) beneath the embankment shown in Figure 1, Plots
b and ¢ refer to strategies for reducing the probability of
failure by either collecting more data in key regions of the
flow domaln, or by more conservative design.
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efficiency of a sample grid can be carried out to establish
qualitative guidelines for site selection. However, this
approach neglects an important variable, the cost of data
acguisition. The use of the terms such as 'effective' and
‘optimal' generally infers the definition of an objective
function with which to judge the merits of alternative designs.
Using techniques of decision theory, a sampling strategy can be
assessed under the goal of minimizing the egtimation error in
model prediction, within the constraint of the total funds
available for site investigation.

Integration of stochastic flow analyses with decisions on
data worth must eventually be considered in light of the purpose
for which the prediction is developed. The significance and
impact of uncertainties in model prediction originating from the
heterogeneous nature of porous media can bé evaluated in terws
of a probability of gystem failure. Consider again the cartoon
ghown in Figure 1. A prediction is required of the volume of
water seeping beneath the embankment. The system is assumed to
have failed if the discharge exceeds a maximum permissible
level., By carrying out an unconditional asimulation, it is
possible to estimate the probability that a particular alignment
of high-permeability elements leads to such a failure (Figure
7a). The extent to which the standard deviation of this
digtribution can be reduced by collecting more hydraulic
conductivity data can be determined using conditional simulation
techniques (Figure 7b). Hote that censtraining the patterns of
spatial variation -in hydraulic conductivity beneath the
embankment will provide a better estimate of the probability of
failure, but not necessarily a reduction in that probability.
A8 an alternative to further sampling, modifications in the
design of the embankment may be incorporated to decrease the
expected value. of the seepage volume and thereby reduce the
probability of failure (Figure 7c). Selection among these
strategies (more data in key regions of the flow domain, more
conservative design) ist also include consideration of the
remedial costs 1f the seepage wolume exceeds the maximum
allowable. The determination of an acceptable level of
uncertainty in model  prediction is tied to the costs of further
gite investigation, the design of measurement networks, and the
congequences of system failure. Research is ongoing to
incorporate stochastic groundwater models in such rigk
assessments.

Summary

The effects on fluid flow of the spatial variability within
a porous medium can be evaluated quantitatively using stochastic
modeling techniques. The primary focus of research to date has
been on the development of methodelogies for the solution of the
stochastic flow egquations and on developing a better
understanding of the physics of flow in heterogeneous media.
The potential exists for using stochastic models in the planning
and evaluation of data measurement networks where the locations
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of sample sites are considered in relation to the use of that
data in model prediction. The efficient design of a measurement
network should exploit the variable sensitivity of hydraulic

head to the unknown patterns of spatial variation in hydraulic

conductivity. Stochastic models are likely to also be
incorporated as an essential element in risk assessments which

require hydrogeologlc predictions.
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piscussion
B. Overmasg:

L, Smith:

B, Overmas:

L, Smith:

Have you accounted for anisctropy in your model?

In heterogeneous media, there is the possibility
of anisotrepy in both the spatial autocorrela-
tion function (statistical anisotropy) and in
the local mean values of hydraulic conductivity
(hydraulic anisotropy). It 1is possible to
define probability ddistributions for both the
horizontal and vertical hydraulic cenductivity.
Presumably these vrandom variables would be
correlated. Both factors can be included in the
numerical models in a straightforward wmanner.

Does the 3-dimensional approach indicate that we
are dealing with too much variation compared
with a l-dimensional approach?
e

A one-dimensional simulation leads to greater
variability din the output distributions than
does a 3-dimensional analysis. Individual zoues
of low or high hydraulic conductivity are of
less importance in perturbing the flow fleld in
multidimensional models. Realistic assessment
of the sensitivity of the model output to
spatial variability should account for the
3~dimensional nature of groundwater flow, even
in the case where the mean flow is unidirec-
tional. 1In that sense, a l-dimensional analysis
will overestimate the variability in the output
variables,




Spatial variability of soil-water properties
in irrigated soils

P. J. Wierenga, Department of Crop and Soil Sciences, New Mexica
State University, Las Cruces, NM 88001, USA.

Introduction A

A number of reviews have recently been written'on spatial varia-
bility of soils (Peck, 1983; Warrick et al., 1985). These
reviews have presented geostatistical techniques used in the
ahalysis of field data and summarized much of the field data on
spatial variability of solil water preperties. As is evident from
these review articles, the use of geostatistical methods has
gained increasing support among scil scientists. Techniques that
appear to have been used most frequently are based on the theory
of regionalized variables (Matheron, 1965}, or on time series
analysis theory., With either of these techniques, the spatial
dependence of scil properties is investigated through variograms
or correllograms. Next the information on spatial dependence is
used, in conjunction with kriging, to obtain information at
locations other than where the original date were cobtained, as
for mapping. & sizeable number of“soil properties were investi-
gated using geostatistical methods. These include soll texture
(Webster, and Cuanalo, 1975), saturated hydraulic conductivity
{(Russo and Bresslet, 1981), infiltration rate [Vieira et al.,
1981), water content (Gajem et al., 1981) and electrical conduc-—
tivities of saturation extracts (Hajrasuliha et al., 1980).
These studies have shown that there is spatial dependence of many
soil properties, invalidating the use of statistics based on
independent samples, However, there appears to be no clear trend
in the degree of spatial dependence. The degree of this depen-~
dence, or the correlation length, has been found to vary for each
soil variable and study area and may also be a function of time,
For example in the studies menticned above, correlation distances
vary from 230 m for soil texture to 5 m for water content.
Furthermore, the degree of spatial dependence seems to depend on
the sampling distance, with greater spatial dependence found for
larger sampling distances (Gajem, 1981; Kies, 1982; Jury, 1984).

In view of this uncertainty and considering the potential of
geostatistical - techniques for interpreting soils data, it seems
appropriate to examine additional field data. 1In particular, we
want to look at spatial variability of tension, of water content,
and of the. infiltration rate of irrigated soils, Thyee field
studies will be discussed in which soil water tension, water
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content and hydraulic conductivity were measured in considerable
detail. 1In the first study tension was measured along a trickle
irrigated row crop. The purpose of the gecond study was to
measure the variability in tension and water content along a
91 m transect of irrigated bkare soil. 1In the third study the
hydraulic conductivity was measured over a 100 ha farm and
compared with hydraulic conductivity wvalues obtained from a
detailed scil survey. The third study was included to demon-
strate the importance of soil survey information in character-
izing physical properties of field soils and vice versa.

Variation in soil water temsion along a trickle line

Ninety-nine tensiometers were placed 60 cm apart along a trickle
irrigated row of c¢hile peppers (Saddiq, et al., 1985). All
tensiometers were first installed with their tips at 15 cm below
soil surface and, following a number of readings at this depth,
pushed down so their tips were at the 30 cm depth. Near the end
of the growing season, the row with tensiometers was .flood irri-
gated from both sides and a set of tensiometer readings was
taken. All tensiometer readings were made with a handheld pres-
sure transducer (Marthaler et al,, 1983).

Spatial dependence between tension data was c¢alculated with
equations (1) and (2} as follows:

- cov{T(X) . T{(xth}} (n
Yvar{T(x)) . vvar(T(x+h}}

r{h)

v(hy =% , var(T(x)-T{x+h)) (2)

where r(h) is the autocorrelation, h the lag or distance between
tengiometers, T{x) the soil water tension at point x and Y ({h}
the semivariance (Renduw, 1978). Cumulative frequency distribu-~
tions and fractile diagrams (Vieira et al., 1981) were calcu-
lated for the tension data at several times after irrigation or
rain.

Results showed that, after flood irrigation or after rain, soil
water tension data was normally distributed. After trickle
irrigation there was a much greater spread in the data with more
high and low values and no clearly defined statistical distribu-
tion.

In Fig. 1 the semivariance of soil-water tension is plotted
versus distance for the 30 cm depth 2 and 13 days, respectively,
after flooding the row with 26 cm water. The data clearly show
spatial correlation, with a range of dependence of 3 to 5 m,
similar to what was observed after rainfall. The presence of
the nugget in the variogram {(Fig. 1B), which was not observed
for data taken 2, 4 and 6 days after flooding, indicates greater
variation in soil water tension as the soil dries out. There
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Fig. 1 BSemivaricgrams for soil-water tension at 30 cm taken two
days (a) and thirteen days (B), respectively, after flooding
with 26 cm water.

»

was little or no spatial structure in the data after trickle
irrigation, even though the amounts of water added per trickle
irrigation varied between 1 and 7 cm. Even after 7 c¢m of water
was appliéd through the trickle line, the distance of dependence
was only 1.2 m, In contrast, a rainfall of 2.5 ¢m resulted in a
spatial dependence of 5 to 6 m. Thus, it appears that the pres-
ence or absence of spatial dependence in soil water tension is
closely related to the method of water application. These
results imply that tests for uniform application of water over a
field could be designed based on correlation distance of soil
water tension. Thus, a large correlation length of soil water
tension right after irrigation would mean uniform water
application,

Table 1 summarizes the results of the wvarious experiments.
These data (Saddig et al., 1985) show that, as the soil dries
out and its tension increases, the variance increases. This
agrees with the results of Yeh et al. (1984) who predicted such
behavior on the basis of a stochastic analysis of unsaturated
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Table 1 Mean, variance, coefficient of wvariation and distance of
dependence for soil water tension at 30 om as a function of time
after flood and trickle irrigation.

water application Time . Distance of
method amount after Mean Variance & dependence
Date {cm} (days) mbar mbar2 % m
Flood 26.0 2 65 105 16 5.4
10/05/81 4 82 210 18 4.2
6 112 436 19 4.8
9 152 1589 26 3.6
11 215 5092 33 5.4
13 266 2085 36 1.2
Trickle 1.6 1 143 11250 74 <0.6
8/30/81 2 167 25130 95 <0.6
3 208 36300 92 <0.6 ,
4 304 35240 62 <0.6
5 461 39820 43 1.2
Trickle 7.0 1 47 116 23 1.2
1/29/82

water flow through heterogeneous soil. These data further show
that the variance and the coefficient of variation of soll water
tension are generally much higher in trickle irrigated soil than
in floed irrigated or in rainfed soil (not shown). While CV's
ranged between 20 and 40% in flood irrigated or rainfed soil,
they were betwegen 40 and 100% in trickle irrigated scoil at
comparable mean soil water tensions. This compares with CV's of
between 10 and 30% for water contents of core samples held at
tensions of 0 to 200 cm (Nielsen et al., 1973, Gajem et al.,
1981; Gumaa, 1978)., ©No data were found in the literature on
coefficients of variation of soil water tension in field soils.
However, it is well known that many researchers have experienced
problems in using tensiometers for scheduling irrigation. These
problems are at least partly the result of the considerable
spatial wvariability of socil water tension in field soils.

Variation in tensticn and water content along a 91 m transect

Neutron access tubes were installed along the center of a 3 m
wide by 94 m long field plot of clay leoam over sand, located
adjacent to the trickle irrigated chile plot discussed above
(Nash, 1984). A total of 91 access tubes were placed at 1n
intervals tc a depth of 150 cm. Five tensiometers with their
tips at 30, 60, 90, 120 and 150 cm below scil surface were
installed at each neutron access tube along a line perpendicular
to the transect. The 60 and 120 cm tensiometers were placed 30
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and 60 ¢m to the right of each tube and the 30, 90 and 150 cm
tensiometers at 30, 60 and 90 ¢m to the left of each tube. 2a
total of 455 tensiowmeters were used. The plot was flooded with
14.3 cm water and measurements of water content and tension were
taken at frequent time intervals.

The complete results of this study are presented elsewhere
{Nash, 1984). A summary of the results will be presented here,
Fig. 2 presents the variation in tegsion along the transect at
30 cm and at 120 c¢m, 1 day after flood~irrigation. The data in
figure 2 show considerable variation in tension with distance
along the transect. 7This was true for all measurement periods
after irrigation. Table 2 summarizes the results for soil water
tension during the first 44 days after flooding.
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Fig. 2 Soil water tension (cm) at 30 and 120 cm as a function
of distance along transect one day after flooding.
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The data in table 2 show the change in tension with time after
flooding for the 30, 60 and 120 cm depths. Note first that it
takes more than 14 days for the tension at 30 ¢m to reach a
value greater than 0.1 bkar. In fact, from a plot of tension
yversus time Nash (1984) concluded that it took 25 days for the

average tension at 30 cm to reach 0.1 bar, while it took 44 days
for the average tension at 60 cm to reach this wvalue. Thus, if

Table 2 Mean, variance, coefficient of variation, and distance
of dependence for soil water tension at 30, 60 and 120 ¢m as a
function of time after flooding. ‘

Time after \ Distance of
Depth flooding Mean variance w dependence
m days whar mbar2 % m
0.3 1 39 241 40 15
2 54 234 28 - ’
4 62 454 35 -
8 78 624 32 -
14 92 518 25 22
44 115 700 22 27
0.6 1 38 771 72 17
2 45 8GO0 62 -
4 55 1031 59 -
8 65 1156 53 —
14 17 1083 43 19
44 106 792 26 12
1.2 1 72 387 25 15
2 62 307 25 -—
4 62 260 26 -
8 66 303 26 -
14 68 115 16 12
44 77 238 20 -

field capacity is defined as the water content three days after
irrigation or a heavy rain, then field capacity in this seil is
between 0,05 and (.06 Yar, rather than 0.1 bar, as commonly
assumed in the literature. Note also that the variance in soil
water tension at 30 cm increases with tension. The same trend
may be observed for the 60 c¢m depth. This agrees with Yeh et
al., 1985, who predicted that the variance of scil water tension
should increase as the soil dries out. The coefficlents of
variation in tension tend to decreagse as the tension increages.
Apparently, with time there is some redistribution of water in
both heorizontal and vertical directions, so that the variability
in tension becomes less. However, even after 44 days of redis-
tribution the coefficients of variation are still 20% or higher.
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Comparing the data in Table 2 with those in Table 1, one sees
that the trickle irrigated socil dries out faster, while the
coefficient of wvariation of the tension in trickle irrigated
soil increases rather than decreases with time as for the floog
irrigated soil. The trickle irrigated soil was not covered with
plastic, resulting in water loss by surface evaporation. Fur-
thermore, although the tension measurements were taken late in
the season, there may have been some water uptake by the chile
plants, which increased variability*in tension in this soil and
resulted in larger values for the coefficient of variation. The
last column in table 2 shows the distances of dependence, which
varied between 12 and 27 meter {distances of dependence for days
2, 4, and 8 were not calculated). Thus, even though the varia-
pbility in tension is large, especially at the 60 om depth, there
is considerable spatial dependence bhetween adjacent tension
values. u
Changes in water content with distance along the transect were
also large, especially for the subsoil, Fig., 3 shows spatial
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Fig. 3 Water content (cma/cms) at 3¢ and 120 ¢m as a function
of distance along the transect one day after flooding.
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variations in water content for the 30 and 120 cm depths one day
after flood-irrigating the transect with 13.4 cm water. The
variations in subseil water content are especially large. This
large variation at the deeper depths is the result of variations
in texture.

Table 3 presents the sgtatistical parameters for the water con-
tent at depths 30, 60 and 120 c¢m at various times after flood-
irrigation. Note that the water content at 120 cm is much lower
than the water content at 60 ¢m or above. This is due to the
lower clay content at 120 ¢m. The lower clay content at 120 cm
also causes the soil at this depth to drain faster as is evident
from the 7% decrease in water content, over 44 days versus a
much smaller decrease in water content with time at the upper
two depths. The greater variation in water content with distance
along the transect at 120 cm as compared te the variation in
water content at 30 and &0 cm is also evident from the larger
CV's at 120 em. While the coefficients of wvariation in water
content at 30 cm are less than 13%, they have wvalues between 40
and 50% at the 120 cm depth.

Table 3 Mean, variance, coefficient of variation and distance of
dependence for water content at 30, 60 and 120 cm, as a function
of time after flood-irrigation.

Time after Distance of
Depth flood~irrigation Mean Variance « dependence
m days cm3/cm3 (cms/cma}2 % m
0.3 1 .342 .Qon2 4,1 -
2 .346 .C001 3.3 -
4 .356 L0003 4.5 -
3 .348 .Qo02 3.7 -
14 . 359 .001 6.8 20.0
44 .358 .002 iz2.8 8.0
0.6 1 .403 .003 13.6 21.0
2 .393 .004 16.2 -
4 391 .006 20.0 -
8 .369 .010 27.1 -
14 .363 .011 30.1 22.0
44 .377 .011 27.8 19.5
1.2 1 .200 .008 44.3 12.4
2 .193 .007 42.7 -
4 L193 .008 45.1 -
8 .151 .005 45.9 -
14 .146 005 45.9 9.0
44 .130 .004 47.3 11.0
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The last column in Table 3 shows the distance of dependence for
water contents. They range between 8 and 22 m when there ig
gpatial dependence. Distances of dependence of this magnitude
are in agreement with distances of dependence found by others
with closely spaced neutron probe measurements,

Fig. 4 shows the variation in tension and water content alcng
the transect on day 14. This figure is a clear illustration of
the interdependence of tension and* water content along the
transect. As the tension goes down at around 28 m, the water
content increases. The reverse takes place~between 70 and 80 m
along the transect.
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Fig. 4 Soil-water tensicon and water content at 60 cm as a func-
tion of distance along the transect, 14 days after flooding.

Hendrickx et al., 1985, following Webster, 1978 used the split
moving window technigque, to determine numerically the location
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of boundaries along transects between soils with different
texture or soil physical properties. Their analysis, applied to
water content and texture data for the 30 ¢m depth along this
transect, shows excellent agreement between boundaries deter-
mined on the basis of soil texture and boundaries based on soil
water content. Thus, the split moving window technique is a
technique that merits further evaluation for determining bound-
ary locations along transects. However, additional work is
needed to determine the influence of other parameters used in
evaluating boundaries with this technique. Such parameters
include vegetation, soil~-water content and scil water tension at
several depths, and soil chemical properties. Other techniques
that could be used in analyzing data collected at reqular space
intervals include spatial cross correlations and/or co-kriging,
These technigues provide insight into the range or spatial
distance over which two variables are correlated. Such analyses
are useful in predicting one variable based on observations of a
gecond variable, taking into account the spatial dependence of
each of the two variables. .

Vartability of field measured infiltration rates as compared to
infiltration rates estimated from soil textural information

A study was conducted to compare the mean and statistical dis-
tribution of field measured infiltration rates with the mean and
statistical distribution of infiltration rates estimated from
soil textural information. Such information is important if one
wants to utilize existing soil survey information for predicting
the behavior of water in field soils. The study (Duffy et al.,
1281) was conducted on a 100 ha farm at San Acacia, NM, located
in the Middle Ric Grande Basin, 23 kilometers north of Socorro,
NM. A detailed description of the farm layout, cropping pat~
tern, irrigation and drainage system and water management can be
found in Wierenga and Duffy, 1979. Infiltration rates were
measured in the field using two methods, the ring infiltrometer
method and the inverse auger hole method. With the infiltro-
meter method, a steel cylinder (inside diameter, 33 cm) was
pressed 5 cm into the surface scil. A constant head of about
10 cm water was maintained inside the cylinder for at least 24
hours. After this period, the inflow was cut off and the rate
of fall of the water table measured for a short time, The rate
of fall measured over this short time was taken as the steady-
state infiltration rate (K ). The inverse auger hole method was
performed for the layer just above the water table (100-150 cm),
following the procedure described by Kessler and Oosterbaan
{1974) . The infiltrometer and inverse auger hole tests were
made at 20 sites on the farm. The sites were chosen such that 2
to 4 tests were made for each soil series on the farm.

A detailed soil survey was conducted by the Soil Conservation
Service. The soil was sampled at approximately 60 meter inter—
vals and 293 bore holes were examined. A total of 11 scil map-
ping units and 8 soil series were identified (Duffy et al.,
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1981}y, Based on the textural data from the 293 bore holes,
infiltration rates were estimated for the surface soil and for
the intermediate scil horizon {100-150 cm). Approximate rela-
tionships between the texture of a given horizon and its infil-
tration rate were obtained from the SCS Soil Series Interpreta-
tion forms (Form 5}.

Fig., 5 presents cumulative frequency distributions for the field
measured (K ) and soil survey estimgted (K ) surface and subsur-
face infiltration rates. fThe figure shows nearly linear rela-
tionships for both the measured and estimated infiltration
rates, indicating that both sets of datd may be approximated by
log-normal distributions. The mean 1n K values were 1.0 and
0.65 for K and K, respectively, resulting in a mean measured
infiltratién rate Tof 2.73 em/hour and a value of 1.92 cm/hour
for the mean infiltration rate estimated from the socil survey
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data. The standard deviations of the log transformed measured
and estimated infiltration rates were 1.2 and 1.3, respectively.
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Thus, it appears that for the soil in this study, the variations
in infiltration rate can be estimated from soil texture data
with a reasonable degree of accuracy.

In Fig. 6A the geometric mean infiltration rate of the surface
goil (K ) determined for each soil series is plotted versus the
geometric mean infiltration rate (K ) obtained for each soil
series from the texture data. Regression of ?f on ?& resulted
in:

— - 2
R_ = 0.57 K_ + 0.45 R = 0.94
F T

Fig. 6B shows the same for the subsoil infiltration rates (100~
150 em layer). For the subsoil, the relationship between KF and
K_ is: ¥
T b
— — 2 .
= (.42 + 4,66 R = 0.86 e

KF KT ‘

rs
The data in Fig. 6 show a fair agreement between measured and
estimated infiltration rates. Thus, for the soils of this study
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#0il survey information may be used to determine field infiltra-
tion rates, provide a calibration is made between measured
infiltration rates and those obtained from soil survey informa-
tion. The variability in field infiltration rate on the other
hand may directly be estimated from texture data.

Summary

The data presented in this paper have shown spatial dependence
of tension and water content in irrigated soils. It appears
that the degree of dependence is strongly .influenced by the
method of water application, time after irrigation or rain, and
the presence or absence of vegetation. ' For example, spatial
dependence was less than 1 m when water was-applied to a crop
through a trickle line, but was 6 m after rairn or flooding. In
hare soil spatial dependence, measured wich tengiometers at a
1 m spacing, was up to 15 m. Spatial dependence 3f water con-
tent measured with a neutron meter at 1 m intervals along a
transect, was 20 m or less. The variance in ténsion was always
greater than the variance in water content, and increased as the
soil dried out and the tension increased. By comparing field
measured infiltration rates with infiltration rates obtained
from scil survey information, it was shown that soil survey
information may be used to determine the statistical properties
of infiltration rate on a field scale. Thus, for the interpre-
tation of data on spatial variability of soil properties, use
should be made of soil survey information.
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Discussion

D. Elvick:

P, Wierenga:

D, MeComack:

126

Firstly, a comment on field capacity. Although
the concept of field capacity is very useful
agronomically, it has no physical basis in a
well-draired soily i.e., equilibrium is never
reached within the time period of a couple of
days.

The discussion regarding 1/3, 1/10 or 0.06 bar
can be resolved somewhat.by remembering that the
1/3 bar measurement is usually carried out on
medium to fine textured scills that have heen
air-dried and sieved and fhgn equilibrated on a
pressure plate. For coarse textured solls, the
tension 1is reduced to 0.1 bar. And, at all
times, the nebulvous concept of “field capacity"
must be kept In mind. I was amazed to see such
good agreement between your experimentally
meagsured K_ values and those estimated from
tables givgn by the 8C3. 1 expect this 1is
because of ‘the rather structured nature of the
s0il. Would you expect such good agreement in a
highly structured clay loam soil for example?

The reason 1 brought up field capacity is that
many agronomists still equate field capacity
with 1/3 bar, expecting a field scil to drain to
1/3 bar in 2 or 3 days. As my data, and those
6f others, show this is clearly not the case.
Furthermore, in determining available water, 1/3
bar is often used as the lower limit, without
taking into' ¢onsideraticn how the water content
at 1/3 bar was determined. This is not correct.
For most purposes I would recommend to determine
field capacity in the field, using tensiometetrs,
rather than to determine field capacity in the
laboratory on core samples or sieved samples,

The agreement between the two methods for
determing the hydraulic conductivity i1s indeed
quite good. One reason 1s that the survey was
performed by an experienced scil surveyor from
the S5CS. 1 don't know if such good agreement
would be obtained in & highly structured clay
loam. However, it 1s certainly worth investi-
gating.

In the past 30 to 50 years, many decisions have
been made in the limits of soil map units and
their range in properties. These decisions have
been made without kriging. But, using thesge




P, Wierenga:

B, Siescont

P. Wierenga:

R. Lal:

P, Wierenga:

P, Wieremga:

L. Stroosnyder:

decisions, soil surveys have been made on more

~than 900 million he in the U.§. Do you think

there are feasible ways to use kriging to make
better or more useful definitions of soil map
units for seil surveys?

There are undoubtedly better and more useful
ways to make definitions of soil map units.
Whether kriging is one of these ways needs to be
investigated. 1n my opinion kriging, and other
approaches discussed at these meetings, need to
be given serious consideration for use 1in soil
survey and soil mapping.

Field capacity 1s a wuseful and quantitative
concept. See Wilcox  {1959-1960) Canadian
Journal of Soil Science,

We need some method for identifying data peoints
that have a large influence in the estimation of
gtochastic parameters.

If you mean by this that we need more complete
sets of field data, I agree with you.

Are there differences in variability between
molsture content and moisture potential? TFor
some African soils the field capacity occurs as
low as 0,03 bar. The wilting point also occurs
at low tension, i.e., 2 bar, The field capacity
and other physical properties must be measured
in the field. We find similar wvariability in
neutron probe calibration even over short
distances of 1 to 2 meterxs.

There appears to be a greater variation in scil
water tension weasured with tenslometers, than
in water content measured with & neutron probe.
This may partly be related to the size of so0il
sample measured with these two Iinstruments. 1
agree with your comments on field capacity.

Does the fact that we have a new tocl to measure
soll water tension Justify the additional
studies recommended by you?

I have suggested that there is a lot of work to
do with regard to the variability of secil water
tensions in the fileld, and also with regard to
the relation between so0il water tension and
yield. Up to now, few detailed studies of the
variability of tension in the field have been
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done. Data on field wvariability of tension is
necessary for a host of applications. The tool
used in this paper will allow ue to do such
studies. Studies for determining the optimum
soil water tension for maximum yield are alse
necessary, especially with regard to trickle
irrigation. The transducer tensiometer is a
better tool for this,

What was the trickle emitter discharge rate?
Did it cause a significant surface pond of
free-water to develop? If so, was some of the
variation recorded by the tensiometers more a

“question of surface topogrdphy than of varilation

in soll physical properties? Maybe this would
help account for the lack of spatial structure,
Finally, given all this, where do you place a
tensiometer to schedule irrigation by drip
emitters? )

We used bi-wall tubing with a low discharge
rate. The' tubing was buried 10 cm below the
soll surface, Thus, there was no ponding on the
soll surface and surface topography had little
to do with the variation in tension. We placed
our tenslometers such that the cup was at 30 cm
below the soil surface and nearly below the drip
line. For crops other than chile peppers, cne
might want to place them deeper. Optimal
ﬁlacement of tenslipmeters depends on the crop,
soll type, tension to be maintained in the soil
and other factors.

Moisture distribution measurements are presum-
ably reflecting the effects due to spatial
variability of physical properties. Do you
think it would be appropriate to simultaneously
measure these physical properties and then use
them as covariables in the analysis of moisture
data?

Yes, this would be possible, but requires more
work.

In one of your graphs you showed a iarge Jump in
tension along the transect and a corresponding
jump in water content. Can you use all these
data to construct gemi-variograme or are you
actually taking observations from 2 different
populations?




r'

P. Wierenga:

4. Bouma:

P. Wierenga:

You are probably right in saying that data were
taken from different populations, Using the
split moving window technique, one obtains well
defined boundaries along the transect. One
could use this technique to distinguish segments
with clearly different physical properties and
then construct semivariocgrams for each segment.
Ancther approach would be to first detrend the
data and construct one semivariogram for the
entire transect.

You mention that vanking of tensiometer results
remains often the same upon wetting and drying.
Is this correlated with differences in texture
or other soil properties? This could give a
relation with soil survey?.

1 did mnot say that ranking of tensiometer
results remains the same. 1 said that Vachaud
and Warrick have observed this for water con-
tent. It would be nice if this held true for
tensions but this needs to be investigated., I
would expect it would be true and, 1f so, there
should be clear correlation with soil survey
data.
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Soil variability and soil survey

J, Bouma, Soil Survey Institute, P.0. Box 98, 6700 AB Wageningen,
the Netherlands

Introduction

o

Soil survey has been engaged in defining the spa€1a1 and temporal
variability of soils in landscapes since the early part of the
century by distinguishing dlfferent soil types and asscociated soil
survey interpretations (e.g., Arnold,‘EQBB). Delineated areas on
the scil map are named after well defined soil series which are
assumed to occupy around 80% of the delineated areas (Soil Survey
Staff, 1951). This cqmposition of mapping units on the soil map
has been investigated by many researchers (e.g. Wilding, 19%83).
Application of (ggo)statistical techniques in soil survey is and
remains a crucial activity because the degree of detail in map
legends as well as in soil-map interpretations should be restrain-
ed by the’spatial variabilit§‘of s0il properties in the field. The
purpose of this paper, therefore, is to: (i) analyse sources of
variability and means to reduce them; {ii) compare soil deline-
ations as made by soil surveyors to those cbtained by interpo-
lation of point data and (iii) discuss future developments. The
discussion will be focused on the use of soil survey data for
practical applications, emphasizing both land evaluation for actu-
al and for potential conditions to be realized by soil and water
management. Definition of land potentials for future applications
appears to be particularly relevant at this time (e.g. Bouma,
1984). An attempt is made to avoid repetition of reviews present-

ed elsewhere,
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Sources of vardabllity
Method selecticn

spatial variability is determined by subjecting experimental or
observational data to (geo)statistical procedures, Those proce-
dures are discussed in statistical text-bocks and in other papers
of this workshop. Attention will therefore be focused here on the
methods and procedures by which data are obtained. This aspect ap-
pears to have been somewhat neglected so far, When discussing
methods, emphasis is most frequently placed on technical aspects
in terms of the type of equipment to be used and associated calcu-
lation procedures. Questions as to whether certain methods can pe
universally used or only in a limited number of soils, have re-
ceived relatively little emphasis. The same can be said about
choosing optimal sample sizes. Operational aspects of the various

methods receive usually less emphasis than the technical ones.

Substantial variability can originate from using the wrong method
at the wrong time, at the wrong place or by applying, for in-
atance, a complicated technical procedure, even though only rela-
tively untrained personnel is available. Some methods use compli-
cated calculation procedures inciluding substantial error even when
applied professionally {e.g. Vachaud, 1982), Others yield data di-
rectly. A qualitative review of sixtsen methods for measurement of
the hydraulic conductivity of saturated soil (Ksat) and of eleven

methods for measurement of XK of unsaturated scil (K } was pre-

sented by Bouma (1983), emphasizing aspects such as?n?§; time
needed for preparation, execution and calculations; (2) costs of
perscnnel and materials; (3) complexity and (4) accuracy.

Seven arbitrarily selected examples will be discussed to illus-

trate the relevance of method selection:

Frgmple 1: The auger-hole method is widely and successfully used
to measure Ksat below the water-table in sandy soils. After empty-
ing an auger hole, the velocity by which water re-enters the hole
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is measured and Ksa is calculated with a calculation procedure,

based on a sand-fioi model. Flow in bi-porous soils, containing
water conducting macropores and a very slowly permeable matrix,
cannot be well characterized by this method. For example, Bouma et
al. {1979} reported an average KSat of 5 mm day_l, in a ¢lay soil,
as measured with the auger-hole method while the real value was
500 mm daynl. Ksat' as measured by tﬁé auger-hole method, is gov-
erned by the degree of interception of water conducting macropores
by the auger hole. Augering of the hole- induces smearing of its
walls which explains the low values observed;;Smearing may not be
complete, however, and thus an extra variabilitx factor is intre-
duced as a function of the variable number of ingercepted MACTO-
péres. v

Example 2: The double-ring ipfiltromééer is widely used to measure
infiltration rates. The second ring is applied to avoid lateral
flow of water from the inner ring. The method works well in sandy
soils {e.g., FAO, 1979). However, problems cccur in pi-porous soils
with cracks where water runs away laterally. As a result, very
high infiltration rates are measured in the inner tube. Such rates
are much higher than rates occurring’ in an entirely flooded field.
The location of the infiltrometer rings is crucial as it deter-
mines how'many cracks or othéf macropores are present in the sur-
face of infiltration. Pl;cement, as such, is therefore a major
source of variability asscociated with the method being used and

not-with the physical characteristic beinyg investigated.

Example 3: The double-tube method for measuring LS {Bouwer,
1962) works well in sandy soils, even though the amount of re-
quired labor is very high. The method is based on lateral movement
of water from the outer-into the inner tube. This movement can cc-
cur in soils with cracks, but not in soils with well defined

. -1
strictly vertical or horizeontal macro-pores. A K of 20 om day

sat
was measured with the double-tube metheod in a silt loam secil in
Wisconsin, while sprinkling irrigation with rates of up to 120 cm

day-l did not produce surface ponding of water. Obviously, the
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LS of 20 cm das\y-'1 did not characterize the real flow system. The
rapid infiltraticn rate in the field was possible because of worm
channels extending into a sandy subsoil. These worm channels did

not contribute towards flow from the outer to the inner tube.

Example 4: Sometimes questions have to be answered that cannot be
solved by applying existing methods because they are unsuitable.
i1f, for some reason, existing methods are used, questionable re—
sults are obtained. In our work, we encoutered this problem when
asked to measure the vertical Ksat of an indurated spodic horizon.
Use of sampling cylinders or infiltrometers would have resulted in
fracturing of the horizon, making measurement results irrelevant.
It was decided to carefully chip out arn in-situ column and encasg
it in gypsum. Then, the steady infiltration rate in the column was
measured while pressure heads were registered simultaneously in
soil above and below the spodic horizon (Dekker et al., 1984),
Fortunately, there was time available in this particular project
to develop a new method. Often, this time is not available during

contract work.

Erample 5: This example does not focus on the use of a particular
method, but, rather on the occurrence of the phenomenon of "bypass
flow® (earlier called: "short-circuiting”). This process describes
vertical movement of "free" water through an unsaturated goil ma-
trix. As such, the process is not discussed in current soil phys-
ics text-books. It is important in many soils and it affects re-
sults of measurements and adds to the cbserved variability when
methods are used that assume presence of homogenecus soil. Methods
have been developed to measure bypass flow {e.g. Bouma et al.,
1981; . Recognition of this phenomenon may help to explain what ap-
pear to be erratic, highly variable measurement results at first

sight,

Brxample 6 : Various methods for measuring soil permeability re-

quire in situ measurement of moisture contents and pressure heads.
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Variability associated with applying the neutron probe was dis-
cussed by Vachaud (1982). An extra variability factor is intro-
duced when this method is applied in bi-porous soils where neu-
trons intercept widely spaced water-conducting pores in an unpre-
dictable manner. Effects of using different sizes of tensiometer-
cups on measured pressure heads were reported by Bouma et al,
(1982) . Large cups intercepted micropores, small cups did not. Ch-~
served pressure heads differed accordingly. The suggestion was
made to excavate tensiometer cups after experiments and te describe
pore patterns in surrounding seil, possibly by using dyes. Thus,
sub-populations of data may be distinguighed.

Example 7: Different methods are cften available to measure the
same seil characteriatfc, In contrast to examples 1, 2 and 3 where
some methods produced incorrect fésults, different methods being
considered in this example produce good results. Still, data are
different and it is important to define one's purpose in making
measurements when selecting one of the methods. Besides, a signif-
icant source of ﬁariability is created when different methods are
concurrently applied. An example is taken from the work of

Dr. P, Stengei (INRA, Avignon, Prance) who measured soil porosity
with two different techniques (Fig. 1}. Data in Figure 1A were de-
rived from in-situ measurements determining the volume of a bal-
loon being filled inside a small soil excavation, Data in Figure

1B were derived from large, undisturbed cores of approximately one

. liter-content. The higher values in Figure 1A were due to irregular

extensions of the balloon into cavities next to the excavation,

which did not occur in the rigid cylinder.

The above examples can be extended to other methgds, in demon-
strating that certain physical methods cannot be applied in all
50ils. Soils with macropeores. or with strongly contrasting soil ho-
rizons impose, for example, drastic boundary conditions for the
flow system. In many projects researchers are forced to obtain data
within a limited period of time, as specified in a contract. From

a scientific point of view Zack of data is preferable to Zneorreot
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Fig. 1 Comparison of soil porosities obtained with two methods,
Method A used the volume of a balloon being filled inside an exca-
vation. Method B used large, undisturbed cores. F is the fregquency
of measured porosity classes (data courtesy of Dr. P. Stengel,
INRA, Avignon, France),

data. Unfortunately, in the real world the opposite appears some-

times tc be true.

Sample locaticn

Sampling at regular depth intervals is often applied with good re-
sults in relatively homogeneous soils with weakly developed soil
horizons. When clear soil horizons exist, however, it 1s prefera-
ble to sample by horizon (e.g. Peterson & Calvin, 1965). A sample
containing fragments of two adjacent, and as such quite different,
scoil horizons, will yield data that are hard toc intexrpret. How-
ever, it should be realized that pedological horizons as distin-
guished in soil survey, are not always gcod "carriers" of data
that are relevant for the particular interpretation being pursued.
Some pedological distinctions may be irrelevant in this context,
while relevant aspects may not be reflected in the horizon classi-

fication. For example, when determining hydraulic conductivity
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curves for subsoil seil horizons in an area of 125 ha in the
Netherlands, we found three types of significantly different
curves, while seven different pedological soil horizons had been
distinguished. Of course, such a finding does not present a prob-
lem here because it isg attractive to have fewer types of curves
to work with (Wosten et al,, 1985); A problem would arise when
quite different types of curves would occuxr within one type of pe-
dological soil horizon. Then, obviously;, S0il survey data on soil
horizons would be inadequate to serve as a "carrier" of physical
data. The fact that this particulax problem did not occur in the
study cited above, does not imply that it coulii not exist else-~

where,

Sample size

w

Many measurement procedures use stanaard sample sizes, because of
fixed dimensions of sampling cylinders cor of equipment being used.
For example sampling cylinders with a fixed volume of 100 cm3® have
been used extensively in different laboratories. Equipment, such
as the double-tube or alr-permeameter, comes in standard sizes.
There is good justification teo vary sample size as a function of
soil structure, as a means to reduce variability among replicate
measurements (e.g. Boyma, 1983). So0il structure’descriptions can
be used to tentatively define representative elementary volumes of
samples (REV's), wh;ch are the smallest sample-volumes that can
fepreseht a given s0il horizon by producing a consistant populat-
ion of data. To do so, the elementary units of soil structure
(ELUS} have to be distinguished. These are individual sand grains
in sandy soils and natural aggregates ("peds") in aggregated soils.
Peds can vary in size up to several liters each in very coarse,
prismatic subseil structures. Even though emphasis in soil struc-
ture descriptions is often placed on the solid phase in terms of
soil grains and peds, real emphasis should be on the nonsolid phase
where transport processes take place. Of course, by describing
grains and peds, information is also provided about the pores be-

tween them. In addition, pores that do not result from the packing
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of grains or peds, should be considered separately. Such pores are,

for example, root and worm channels with a cylindrical shape. As a

general rule we have proposed that REV's should contain at least

20 ELUS but preferably more, or that any sample taken should have

a representative number of channels per unit surface area. When

applied literally, samples can become very large {e.g. table 1).
If s0, selective sampling of structural elements or soil fragments :H
that contain representative guantities of pores and peds, should i

be considered. In any case, a structural description should be

made. When worm channels cccur in a scil, they may have such a

large effect on s0il hydrology that measurements of infiltration

rates into individual channels may be a better prccedure than

measurements in a given area (e.g. Bouma et al., 1982). .

A very tentative classification has been proposed for sample sizes

in four broad textural classes (Table 1) (Bouma, 1983).

Table 1. Hypothetical Representative Elementary Volumes (REV's) of

soil samples as a function of soil texture and structure. Selec- i
tive sampling of separate soil structural features must be consid- i

ered when samples become very large. il
i

Class Texture Structure Hypothetical REV I

{cm3}) |

a sandy no peds 10° U-%
3 .

b loamy small peds 1¢ | j

4 M

c clayey medium peds 10 ' !

continuous macropores i.;

d clayey large peds 10° :F ;

[

i

continuous macropores

Defining REV's as a function of field descriptions of soil struc-

ture needs to be further investigated. Data by Anderson & Bouma

(1973) illustrate the potential of the procedure {(Table 2). Un-

realistically high Ksat values were measured in soil cores con=- /!

taining fewer than twenty ELUS. Values measured with a gypsum-

X . -1
covered column having a volume of 12 liters, averaged 7C cm day .
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The reason for the high K values in the small cores is the high

sat
and unnatural vertical continuity of cracks between the peds in

small samples.

A gecond example was presented by Bouma et al., 1979. They meas-

ured Ks of a heavy clay scil in large, gypsum covered, samples

at A
of 16 liters. Thus, a population cf data was obtained that allowed
the statistically significant conclusion that Ksat had increased

as a result of tile drainage. Use of small cores produced a highly

variable population of data that did not alidy such a conclusion.

Relationship between REV's and ELUS are cﬁrrentl§ investigated in

a joint project between the Netherlands Scil Survey Institute and

the Agronomy Department of éornell University, USA,.

-

Table 2. Measured hydraulic conductivity values of saturated soil
{Ksat) in soil cores of varying height but with a diameter of

7.5 cm, containing different numbers of elementary units of struc-
‘ture (ELUS). Measurements were made in a silt loam soil with medi-
um sized peds with an average volumglof approximately 30 cm3®. The

largest sample was a gypsum—covered column cf soil with a diameter

of 30 cm f{derived from Andersen & Bouma, 1973}.

Sample Volume ELUS K s
sat -1
(cm3) (no) {em day ) {cm day )
230 8 650 350
330 11 320 320
460 15 100 30
780 26 75 ) 30
12 000 400 70 20

The foregeing discussion is summarized in Figure 2 which empha-
sizes the need to use scil survey information, when selecting sites
and soil profile characteristics, when selecting metheds and when

taking samples.
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soil characterization ]

method  selection J

sample  dimension l

sampte location |

Fig. 2 Diagram illustrating site selection and measurement of data
without using seoil survey information (cld procedure) and a new
procedure that does congider this information (see text).

Soil maps as indicators of spatiql variability
Introduction

S0 far, the discussion was focused on ways in which data are cb-
tained. Now attention will bhe focused on use and interpretation of
data.

Spatial variability studies in relation to soil mapping have been
made or reviewed by several authors (e.g. Wilding, 1983; Nielsen
et zl., 1983; Webster & Burgess, 1983; Burrcugh, 1983). In this
paper attention is focused on using so0il survey for land evalua-
tion and, more specifically, on the following points:

(1) How do predictions based on a scil-map legend compare with

interpolations (e.g. kriging) using point data,
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(2) What could be the future role of (geo) statistics in seil
survey.

Determination of the spatial variability of pedological properties
within delineated areas of the soil map is of interest but partic-
ular emphasis is now increasingly placed on the interpretation of
s0il maps in terms of lang evaluatiqp. In this context, character-
istic land qualities are emphasized such as: moisture availabili-
ty, trafficability, aeration-status etc. ~(FRO, 1976).

Van Kuilenburgget al. (1982) studied the spatial wvariability of a
calculated soil meisture supply capacity b;‘éomparing estimates
derived from the soil map with values obtained\?y applying three
interpolation techniques to peint data. The area studied was

4 km? and contained sandy scils. In total, 530 survey borings

were made and 661 independant test herings that were used to judge
soll survey interpretationg and results of interpolations. A root
mean squared error of 32 mm of water Qas obtained when estimates
were based on representative soils of the various mapping units,
while this error was 29 mm when kriging of point data was applied.
Moisture supply capacity ranged from 50 to 240 mm; indicating a
relatively high error for both methods. In this particular exam-
ple, application of kriging hardlyvled to better results than in-
terpretations b&sed on the spil map. The basic conclusion was that
the land quality "moisture supply capacity" was duite variable.

This aspect should be reflected in the legend of the map.

Another study was made in which emphasis was placed on the dis-
tincticn of major soil horizons in an area of cover-sands, over=
lying boulder-clay. These horizons were first distinguished by the
usual pedological criteria. Next, hydraulic conductivity (K-h) and
moisture retention curves {G-~h) were measured sixfold. Horizons
that had statistically identical properties were grouped together,
reducing the total number of -different heorizons that could be
distinguished (Wésten et al., 19%85). This procedure does not focus
cn a land quality, but, rather, on a land c¢haracteristic, which is
a property that can directly be measured (FAC, 1976). The two

physical properties, being distinguished, are, of course, impor-
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tant for simulation programs for the scil water regime which is,
in turn, crucial for most land gualities being distinguished for
land evaluation (e.g. Bouma, 1984). As stated, horizons were de-~
fined that had identical X~h and 0-h properties. These were di-
rectly attributed to the delineated areas on the soil map, provid-
ing a means to predict these data for any location in the study
area by extrapolation. Simultaneously, interpolations with the
kriging technique were used, based on point data as obtained by
borings during the soil survey. The compariscn of both procedures
was based on 60 independent borings that were made at random using
a method to be described by De Gruyter in the next paper. Results,
reported in detail by Bregt & Bouma (1985) showed that application
of kriging resulted in less accurate predictions than the ones, ob-

tained by the interpretation of the scil map.

Cbviously, more of such studies are needed to evaluate the poten~
tial of both traditional soil survey and of medern interpolation
techniques. Care should be taken to not ignore the potential of
available procedures by focusing completely on new interpolation
techniques. In fact, integrating both procedures would appear to
be most attractive. In contrast to many geological applications,
differences among soils in a landscape are often associated with
visible landscape features at the surface and with vegetational
patterns. These features are reflected on scil maps and should be
considered when defining spatial variability. Soil maps could
therefore be used to define clearly different subpopulations of
scils within an area tc be characterized on the basis of land-
scape or other visible features. Use of statistical sampling tech~
niques within each of these subpopulations could function to de-

fine their internal properties in a guantitative manner.

Ag iz, the application of (geo)statistical technigues in scil
survey is often a check of the existing map-legend, testing the
delineated areas on the goil map. A more realistic use would be an
application before soil mapping because then the proper degree of

detail of the legend to be chosen for the particular area being
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considered, can be defined on the basis of the variability being

ocbserved [(see Fig. 3).

SOIL CLASSIFICATION
M L ‘INTEHPRETATIVE
MAP LEGEND MAPS
[} ]
A 1
[P
II VARIABILITY STUDIES :

_________ ——————--f

‘ CLASSIFICATION | & SOIL MAP
(2)—-[VAR|AB|L|TY STUDIEEI- + INTERPRETATIVE P
MAP LEGEND . MAPS

Fig, 3 Diagram illustratiné scme actual variability studies which
focus on existing maps {(procedure 1} A more promising procedure 2
uses variability studies to'define legends of maps with a known
variability. '

Soil survey and { geo)statistics in future

The above discussions, which cover the role of soil survey infor-
mation when studying the spatial variability of soil properties,
relate tc future work and cdﬂ be summarized as follows for discus-
sion purposes: )

(1) Data on soil variability are derived from multiple measure-
ments. Too little emphasis is being placed now on selection of
methods and sampling locations, using soil survey data. The dia-
gram in Figure 2 illustrates the proposed procedure. However, more
case-studies are needed to show the usefulness of soil structure
descriptions for determining optimal sample sizes and of soil maps
and soil horizon descriptions for determining optimél sample loca-
tions and depths. Geostatistical studies are needed in addition,

to define the optimal distance between multiple samples,

(2) Aside from studies that examine the pedological purity of map-

ping units in the field, attention should be paid tc the variabil-
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for land evaluation, Sometimes, pedological distincticns are made
that are irrelevant for certain interpretations. This offers no
problems, since the number of distinctions can easily be reduced
to include only those that are relevant from a functional pcint of
view. A problem occurs when a single pedological distinction has
more than one interpretative meaning. Then, obviously, pedological
data are less useful as "carriers" of interpretative information.
So far, we know far too little about this "carrier" function of

pedological data for various interpretations and its variability.

{3) Secil maps are made by soil surveyors who use their begt judg-
ment in drawing boundaries between mapping units. Those boundaries
can also be obtained by using modern interpolation techniques 9e~
tween point data. More studies should be made comparing both pro-
cedures. This can only be done by independant test borings. A mix-
ture of both procedures could perhaps be interesting for future
work. Certain landscape features are so clearly evident that (geo)
statistical technigues are not needed to distinguish them. Hence,
these features can be used to define subpopulations in terms of
areas which can be characterized by considering point data within

these areas.

{4} Sometimes, soil survey appears to be particularly focused on
map legends and soil classification schemes, which are, of course,
cnly intended to be a means towards a purpose and not a purpose in
itself. The key function of variability studies in future could be
the definition of optimal map legends, as illustrated in Figure 3.
Completion of country-wide surveys reduces the need for continued
use of a unified legend, Legends should be composed for any par-
ticular area and possible application. Availability of soil infor-
mation systems which allow flexible handling of basic data, is nec~-

essary for this type of approach.
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M, Nagh: What 1s the size ¢f the delineated areas on the
soil map once the s=soil wvariability has been
determined for different soil properties by
geostatistical techniques?

Discussion

J. Bouma: From a purely cartographic point of view, the
minimum size of dellneated areas is a function
of map scale: very small areas cannot be
observed., More important 1is the observation
that different soll propefties (e.g. % clay; pH;
% org. matter) may have different ranges. So

_-which one 1s to be used? It is suggested to use
the spatial characteristics #f the land quality
that is considered to be most relevant for the
study concerned, In my . paper it was the land
quality: moisture supply capacity, which was
characterized by diffevent land characteristics.

K. Flach: The minimum 'size of the mapping unit depends on
the purpose of the soll survey. Map scales must
be adjusted accordingly, and they should never
deteyrmine minimum size.

L, Strocgnyder: The quantification of soill surveys and their
interpretations is iIndeed necessary and quite
useful, but we should not forget that to do so
requires many data that are usually not avail-
able in most developing countries, More quali~
tative surveys are 'still very wvaluable in that
context.

D. Nofaiger: What operational problema are snvolved when
measuring modeling parameters that have vastly
different representative elementary volumes
(REV'g}?

J. Bowna: Studies on REV's using morphological soil-
structure data have so far centered on wmeasure-
ment of the hydraulic conductivity. It 1is
conceivable but not likely that other physical
parameters would have different REV's. We don't
know yet, Of course, a sample can never be too
big. So it may be advisable tc aim for uniform
large sample sizes for a2 given soil horizoen,
even though this could represent a certain
"overkill" for some parameters.

B. Clothier: The difference between the 35 mm/hr auger-hole K

and the K_ of the gypsum-coated column of 5
cm/hr is pﬁysically important, One is dominated
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J. Boumas

C., Wang 3

J. Bouwma:

H. ten Berge:

by the matrix properties and the other by

macropores. Consequently the conductivity
appropriate to pre- or mnon-ponding infiitration
is 5 mm/hr. Free water infiltration will be

typlfied by 50 cm/hr. Saturated (or near-
saturated) conductivity is mnot a unitary
property, but needs to be measured appropriately
for the purpose required.

Further, the difference between the two values
may be more dimportant than thelr absolute
values, The former {(matrix) property is soil-
texture dominated. The latter (macropore) is
contrelled by management.

I do not completely agree with your assessment.
The K of 5 mm/day is found because water-
condué??ig macropores are partly closed by
puddling of the walls of the borehole, Water
movement still occurs along the macropores, as
the matrix has a very low conductivity. The
auger-hole method is used to assess dralnability
of soils. The measured value would lead to the
{incorrect) conclusion that tile~drainage would
not be feasible, However, it is widely and
successfully applied, based on the real K of
50 cm/day. When considering pre- or non—pggaing
conditions we need hydrauvliic conductivities of
unsaturated soil, which can be measured with the
crust test.

We used the auger-hole method to measure K of
clay soils after scratching the walls ¥ the
borehole. Thus, the puddling problem is over-
come, We do have serious problems in soils with
very fine sandy textures, where the borehole
caves in.

I wonder about your reference level for Ksat'
Usually, the only way to remove the adverse
effects of puddling is by drying and cracking,
Also, augering the hole under dry conditions and
coming back later for the measurement, may work.
I stress that it is not my intention to discuss
the merits of the method as such, but to use the
example to d1llustrate the effect of method
selection on variabllity observed. My paper
gives several other examples.

Especially in so0il physics and hydrology the

problems of spatial wvariability and ERV are
introduced by wanting to measure site-specific
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properties like K I believe that the
connection between sofl physics on the one hand
and regional soil surveys, management practices
ete, on the other hand should be established
through {inverse) modelling., In most surveys,
hydraulic soil properties are determined to be
applied in deterministic models, not to develop
these models.

We apply indeed our measurements in determin-
istle models. Basic data have to be representa-
tive so as to allow generatlon of realistic
output data from the models. We certainly don't

“ want to build "black-box" models. A representa-

tive K value for a so0il, obtained by a
correct®Hethod in an adequate sampling volume,
is, of course, comsidered to ba input data for
the model.

There is a' need to better define soll morphclogy
data in relation taq. the determination of soil
physical characteristics. A problem when using
soil morphelogy data dis 1its qualitative
character.

Standard soil structure descriptions, as made in
the- field, are indeed qualitative in nature.
Quantification has particularly been developed
in micromorphology using thin sections, Stain-
ing tests and drawing of ped faces and macro-
pores on transparent sheets, will allow more
quantitative assessments of macrostructure.
More work is needed here.
’

A mafor challenge for this gathering is how to
bridge the gap in communication bhetween those,
such as pedologists, who of necessity operate in
a qualitative domain and those, such as phys-
icists, who require or desire more quantitative
information. J. Bouma has suggested transfer
functions as one mechanism. The calibration or
definition of these transfer functions is wvery
labor dintensive and I ask are there other
mechanisms which require less labor? I suggest
that one other mechanism is for physicists to
operate with pedologists to «calibrate and
quantify the pedologists well-developed obser-—
vation capabilities,

1 doubt whether transfer functions always
require so much labor. Specific measurements
must always be made. In your studies, for



exanple, you used the air-permeameter to measure
Ksat' The idea of the transfer functions is to
corfelate them in some way with data obtained in
spil survey. For example, correlations with
texture are attractive in this context. But
such simple correlations often den't work. In
my paper I used an example in which pedological
g0oil horizons and soil series were used as
"carriers" of physical information. I believe
you have done the same in your studies. This
seems to be a good example of using chservations
by pedologists to estimate physical data., We
need much more work in this area.
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Transect sampling for reliabkle information
on mapping units

J.J. de Gruijter, Institute TNO for Mathematics, Informaticn Pro-
cessing and Statistics, P.O. Box 100, 6700 AC Wageningen,

B.A, Marsman, Netherlands Soil Survey Institute, P.O. Bocx 98,
6700 AB Wageningen, The MNetherlands,

Introduction

.

In socil survey there is a need for using efficient sampling meth-
ods to gather reliable information on soil conditions in mapping
units. The reasons for this are discussed by e.g. Wilding (this is-
sue) and Bouma (this issue). Wilding & Drees (1983) give a general
review of sampling methods im the context of spatial variability
and soil survey. We started a search for a sampling method which
meets the following conditions.

1. The method must lead to unbiased estimates of the average of
s0il properties within mapping units.

2, The efficiency should be as high as possible, i.e. with fixed
costs the accuracy of the results is maximized, or with fixed ac-
curacy the costs are minimized, Time spent on fieldwork forms a
major component of costs involved.

3. It should be possikle to guantify the accuracy of the results
in an objective way.

4, Pield work and statistical caleulations should be as simple as
possible, for practical operational reasons.

Only samples of medium size (say n between 10 and 100) can be af-
forded in practice., With that size it would hardly Be possible to
properly verify the assumptions underlying regionalized variable
theory. Estimation of varicgrams would often be problematic too.

So sampling and statistical inference based on this theory would
generally violate the third condition mentioned above. We confine
ourselves therefore to classical sampling theory (see e.g. Cochran,
1977). Units are then selected by & procedure with some random com-
ponent, so that the observations are mutually independent and accu-
racy can be guantified without resort to unproven assumpticns. For
the selection of an efficient sampling design it is imperative to
use the surveyors knowledge of the spatial variation and logistics
of field work in the area to be sampled. Input of the field survey-
or is crucial.

Random sampling by point transects seems promising, partly because
of its operational advantages. Transect sampling has been applied
in s0il science rather frequently during the last decennia. See
e.g. Powell & Springer (1965), Steers & Hajek (1979), Wang (1982}
and Bigler & Liudahl (2984).

It is not always possible to judge the methods used for sampling
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and statistical analysis because no sufficient details are given.
where this is possible, however, it must in some instances be con-
cluded that the published results are biased to an unknown degree.
The main reasons for this are that starting points of transects
were chousen at a fixed distance from the boundary of delineatiens,
that observation points initially falling in 'non-goil' area were
shifted, and that in calculating averages the values were not
weighted according to the sampling design used.

We developed a new sampling method by which unbiased estimates are
cbtained. In this article we give some reasons why we expext this

method to be efficient in terms of costs and accuracy. In a future
article we hope to quantify its efficiency and to compare this with ‘
alternatives.

It should be noted that we concentrated on easily accessible ter~
rains, like most rural landscapes in The Netherlands. !

A method of sampling by wandom transects SR

General description of the method . |

Conceptually the scil universe of the mapping unit is divided into |
a very large number of small square cells, forming a finite popu-
lation of discrete elements. Observation peoints are located in the
centres of these cells.

As a form of two-stage cluster sampling, two mutually perpendicular
transects with equidistant chservation points are randomly se-
lected from each of a number of randomly selected delineations of

i mapping unit. :
In the first stage the delineations act as sampling units. They b
are selected with replacement and with probabilities proportional ;
to size, i.e. number of cells or area.

In the second stage the sampling units are clusters of cells in a
linear configuation. Any of these clusters can be conceived as
constructed by taking cells from a given row cr column, going
through a delineation while constantly skipping a fixed number of
cells. (The skipped cells belong tc similar clusters which may he ;
selected from the same row or column). So each clusier corresponds i
to a possible transect with eguidistant observation peints., From

each of the delineations selected in the first stage two mutually

perpendicular transects are gselected at random.

(A

e

Generally these transects will cross and could then have an obser-
vation poirt in common, However the transects, being sampling units,
have toc be disjoint. Therefore we introduced an extra restriction
on the way the transects are formed: the cells of &z given delineat-
ion are divided intoc two strata, like the black and white fields of
a checkboard. Now all transects along rows are composed of cells
from cone stratum only, while the other stratum produces the tran-
sects along columns. From each of these strata one transect is se-~
lected at random with probabilities proportional teo size, viz. num-
ber of chservation peints. If a delineaticn has been selected more
than once in the first stage, one pair of transects has to be se-
lected for each time that this delineation is selected.
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Fig, 1. Location of transects in the delineations cof two mapping
units on the soil map of Lievelde, scale 1 : 10 000,
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2 technical difficulty is that delinsations may contain ’'non-soil’
area, e.g. buildings, farmyards, roads and ditches. In general
such areas do not belong te¢ the population to be investigated.
some of them may be recognizakle on the map, others only in the
field. Shifting of pecints falling in these areas according to some
rule is not a good solution as this leads to a systematical over-
sampling of their neighbourhoods. The selection procedure de-
scribed below proved to be practical while strictly satisfying the
above conditions on selection probabilities.

The procedure is illustrated by Figure 1, which shows the location
of transects in two mapping units of a 1 : 10 000 soil map. Figure
2 shows a detail of this wap, with transects and cbservation
points in two delineaticns.

Preparation of sampling frames

A rectangle is drawn around each of the delineations, with an
orientation that may be chosen at random cr on purpose, and with
dimensions as small as possible. The lower and left sides of the
rectangles function as X and Y axes respectively, with a length-
unit of, say, 1 mm.

Thus each rectangle forms a local coordinate system, to be used as
a sampling frame for the enclosed delineation, Cverlapping of
frames presents nc problem. The frames are numbered and listed
with their cumulative areas. (Note that the areas of the delinea-
tions need not be measured.)

First stage: selection of delineations

Step 1: Read from a table with random numbers a number which does
not exceed the total area of the frames. Compare this number with
the listed cumulative areas. Select the frame with the smallest
cumulative area that is still larger than the random number.

Step 2: Read from a table with random numbers a pair of X and Y
coordinates within the frame selected by Step 1. Both coordinates
muet be either even or odd. If the point in question falls in the
delineation and not in 'non-soil' area recognizable on the wap,
select this delineation and mark the point on the map. Otherwise,
drop this frame and repeat Step 1.

Repeat Step 1 and 2 until sufficient selections have been made.
Recall that any delineation may be selected more than once. The
number of selections will strongly influence the accuracy of re-
sults as well as sampling costs.

Second stage: selection of transects

Step 3: Use each of the random points resulting from Step 2 as the
starting peoint in a transect parallel tc the X-ax, Mark the other
observation points of the transects, going in both directicns from
the starting peoint to the boundary of the delineation. The dis-
tance between adjacent points must be an even number of millime-
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ters and must be constant within delineations. (Recall the check-
board device: the number must be even to stay on the same color,
i.e. in cells of the same structure.) Skip any point which falls
in 'non-scil' area recognizable cn the map.

Step 4: For each transect resulting from Step 3, select at random
another transect from the same delineation sc that they form a mu-
tual perdendicular pair. To this end, read a pair of X and Y coor-
dinates from a table with random numbers, now under the restric-
tion that one is even and the other odd. If the point falls in the
delineation, and not in *non-soil' area recognizable on the map,
accept it as a starting point and mark it on the map. Otherwise,
try another pair of random coordinates and continue if necessary,
until a starting point is obtained. Mark the other observation
points of ‘the transects as in Step 3, but now parallel to the ¥ ax.

Field check on starting points .

In crder to maintain the specified selection probabilities, real-
izing that some 'non-goil' arcas may be only recognizable in the
field, special attention should be given to the starting points
during fieldwork. ~*

At the beginning of the fieldwork in a given delineation it should
be checked whether the random point by which it was selected (also
the starting point for the transect parallel to the X ax) lies in
'non-soil' area. If so, the delineation is dropped as yet, includ-
ing its pair of transects. It is substituted by a reserve from an
extra sequence of pairs selected beforehand by Step 1 to 4. If not
50, the delineation and its first transect is actually included in
the sample and observations along the transect are made.

Then the second transect, parallel to the ¥ ax, is checked. If its
starting point appears tec lie in 'non-goil' area, it is dropped
and substitlited by a reserve in the same delineation. Such re-
sexves are to be selectéd beforehand by Step 4. If other than
starting points lie in 'non-scil' area, thede are just skipped.

Fitting to local circumstances

Sevéral possibilities can be used, single or in combination, to
fit our sampling method to local circumstances, i.e. the spatial
variaticn expected and the objects of sampling. The major possi-
bilities are briefly discussed below. Using them has no conse-
guences for the way the sample data are to be analysed statisti-
cally, except for stratification (see: Statistical analysis of
sample data).

Lay-out of transects

The directions of the transects are determined by the orientation
of the sampling frames around the delineations. This may be chosen
at random or on purpose, and is allowed to vary between deline-
ations. These choices may affect the accuracy of the results, but
not their unbiasedness. ({(Recazll that the orientation of the frames
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Fig. 2. Detail of soil map Lievelde with transects in two deline-
ations,

cnly determines how the delinsations are divided into cells and
how these cells are divided into two strata).

It would be most efficient in terms of costs and accuracy to
sample the delineations by transects alohg a trend if that existed.
If the direction of a trend were known before sampling, this could
be done by orientating the sample frame accordingly and selecting
a pair of parallel instead of perpendicular transects. This can
also be done by the above procedure, if one leaves out the re-
stricticns related to the checkboard device.

Howevexr, the directions of possible trends ccmmon to the soil pro-
perties in gquestion will usually not be known beforehand. In that
case the directions of the transects cannot be optimized with res-
pect to accuracy. They may still be chosen on purpose,

For instance, specific directicns may have operational advantages
in the field, and minimizing frame areas will speed up S$tep 2 and

4 of the selection procedure. The directions may also ke chosen in
such a way that genetic hypotheses related to trends can be tested,

Similar to the directions of transects, the distances between ad-
Jacent points must be constant within but may vary between deline-—
ationg. (8o far we kept them constant in our own applications for
simplicity). Smaller distances lead to more observation points per
transect, which increases accuracy as well as sample costs. A com-—
promise must be found between both effscts. This will depend on

the specific autocorrelation structure: the closer the correlation
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between ohservations in a transect, the less information is gained.
We are preparing a publication dealing with optimization of this
choice (De Gruijter and Marsman, in prep.). Our experience up till
now is limited to 1 : 10 000 soil maps of coversand areas. We have
the impression that a distance of 20 tc 30 m is a reasonable
choice for such maps.

Sampling large delineations by transects with relatively close ob-
servation points could lead to only few transects, with many
points in each. This would be inefficient if variations between
delineations are not very small compared to those within. To aveoid
this, the transects can be delimited by- splitting large deline-
ations into two or more sections. This is to be done between Step
1 and 2 cf the selection procedure. The entire delineations still
function then as primary sampling units,"bgt expansion of tran-
sects from their starting points is limited to the sections in
which they fall.

-

' Stratification in the first stage

+

To increase the efficiency of the sampling design one may stratify
in the first stage. To that end, tHe set of all delineations is
first divided into a number of strata, e.g. according to size or
location. The more homogenecus strata are formed, the more gain
in efficiency is achieved.

Then the selection procedure is applied to each of the strata se-
parately. To enable a straight-forward assessment of the accuracy,
at least two delineations should be selected from each stratum.
The results on the individual strata may also be interesting by
themselves.

Other types of populations

Our sampling method may alsc be used in cases where the population

to be sampled is a single area rather than a mapping unit, e.g. a

parcel or some mapped area as a whole., The area should then be di-

vided into sections to be used as primary sampling units. Rectan-

gular or square sections have, of course, the advantage that their
: sides can directly be used as sampling frames. See Bregt and Bouma
(in prep.)} for an applicatien in which the purity of a map as a
whole is estimated.

Why this method?

i Two-stage and cluster sampling are the two major features of ocur

: method. In sampling technique in general beoth devices are applied
- to reduce the costs of visiting sample units. This advantage will
li be achieved in the present context too. Experience showed that lo-
cating a single point in the field in a sufficiently accurate way
is one of the major componhents in sampling costs. Transect sampling
reduces this drastically because once the starting point has been
located, the other points follow easily by pacing, at least if
} ¢ they are not toc far apart. As long as the points are not toc
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close, we expect the mentioned advantage to outweigh the negative
effects on the accuracy due to autocorrelation between chserva-
tions at pcints near by.

Two-stage sampling makes it possible to cencentrate the sampling
effort on a limited numher of delineaticns. This reduces the time
needed for travelling between transects, and it opens the possi-
bility to produce results on individual delineations with suffi-
cient accuracy to be useful. We expect that two mutually perpendi-
cular transects will make this accuracy fairly independent from the
direction of a possible unknown trend.

Using map delineations as sampling units in a two-stage design
seems natural; see &.g. Ragg & Herderson {1980} and Wang (1982) for
earlier applications.

Selection with probkabilities proporticnal te size, as applied in
both stages, has two advantages. Firstly, the results will usually
be more accurate than by selecticn with equal probabilities
(Cochran, 1977). Secondly, the resulting samples are 'self-weight-
ing' in the sense that no weight-factors are needed in the statist-
ical formulas. As shown in the next paragraph, the main calcula-
tions are therefore simple.

Statietical analysis of sample data

The statistical analysis of data cbtained via the present sampling
method is in essence given by Cochran (1977; par, 11.%). We use
another notation to simplify the typography.

The formulas below are applicable toc guanhtitative as well as qual-
itative soil properties. The latter have to be represented by 'in-
dicator' variables with 0 and 1 indicating respectively absence
and presence of an attribute. Por instance, if purity is tc be
estimated, 1 is recorded if the observed profile belongs to the
taxon predicted by the map and 0 otherwise. The fraction of pro-
files in the right classes is then obtained by calculating the
mean of the ceorresponding indicator variable.

First stage without stratification

If the set of delineations has not been stratified, an unbiased
estimator of the population mean M{y) of a property y is simply:
m(y) = Ly /n, (1)
where 7 denctes the number of pairs of transects in the sample and
Qi denotes the mean of the Zthe pair, calculated as the arithmatic
mean of the two transect means. {Note that the cells of each de-
lineation were divided into two strata of practically equal size
and that the transect means are unbiased estimators of the respec-

tive stratum means.)
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An unbiased estimator of the variance of m{y) is:

vlnly)) = (G, - my) ¥ Hnin-1)) (2
Its estimated standard error, 3(m(y)), is calculated as the square
root of wim(y}). Confidence limits for the population mean can be
calculated acccrding to:

m(y) +telmiyl), . (3)
with ¢ read from a table cf Student's distribution with #-1 de-
greas of freedem. If the distribution af the gi is not too skewed,
and n is not too small, this will give % reasonable approximation.
An unbiased estimator of the variance aﬁoﬁg cells is (ecf. Cochran,
1977, par. 5A.11}:

uly) = miy?) - m(y)® + vimiy)), ‘ (4)
where m(yz) is an unbiaged estimator of the population mean of the
squared values per cell. 'This term is to be calculated in the same
way as m(y), after squaring the values of the individual observa-
tion points. .

It is indicated above how statistical estimates can be made about
s0il conditions in a mapping unit as a whole. However, estimates
are often also required for some part of the population, referred
to as domain in the following. For instance, separate estimates of
properties may be reguired for d&fferent taxa within a mapping
unit..Other démains just, arise from the fact that some properties
are only defined for.a subset of the populatich. For instance, a
property like 'humus content of the B horizon' is only defined for

profiles having a B. Such properties have to be considered within

their domains of definition.

As a preliminary to estimation within domains, an auxiliary vari-
able ¥ is introduced for each domain, with value 1 if the profile
belongs to the domain, and 0 otherwise. Furthermore, a variable ¥y~
is introduced with the same values as ¥ within the domain, but ¢
elgewhere. The mean of ¥ within the domain, M(ytx), is then esti-
mated by the ratio (Cochran, 1977, par. 11.12}:

mlylz) = mly~)/mix), (5)
where m(y~) and m{x) denote the estimated me;hs of y“and & respec-

tively, calculated in the same way as m{y) in Eg. 1.
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The variance of miy|x) is estimated by:

oimtyle)) = J15] - miyl|a)i )2 intxr*nin-1)) ()
An estimate of the standard error of m(y|®) can be calculated by
taking the square root of this variance.

The variance amcng cells within the domain can be estimated with

the same procedure as in Eg. 4:

viyla) = miy? |zl - miylw® + vimiy|e)), M
where
m(yzlm) = m(y'z)/m(w), (8]

and m(y‘zJ denotes the estimated mean of the squared values of ¥~

per cell, calculated in the same way as mfy) in Eg. 1.
First stage with stratification

In this case an unbiased estimate of the mean is obtained as a
weighted average of estimated stratum means:

miy) = ZWﬁm(yh), (9)
where Wﬁ denctes the weight of the Ath stratum, i.e. the area of
the delineations in this stratum divided by the total area of the
mapping unit. The mean of the #th stratum is estimated as before:
m(yh) = Zéki/nk' {10}
where Yt denotes the mean of the “th pair of transects in the
fith stratum (again calculated as the arithmatic mean of both tran-
sect means), and nh denctes the number of pairs in this stratum.

The variance of m{y) is estimated similarly:

vimiy)) = Zhﬁv(m(yh)), {11)
where the v(m(yk}) are calculated according to:
vinly)) = [y ~ iy )Y rin, (ny=11) (12)

An unbilased estimate of the variance among cells can be calculated

- with Eg. 4. (The estimator m(yz) in this equation should of course

be calculated in the same way as M(y/) in Eg. 9).

For estimations within domains the same auxiliary variable x and

transformation of ¥ to ¥ is used as before, First the means of &

and y-are sstimated, in the same way as m(y/ in Eg. 9. Then the _53

mean within the domain is estimated with Eg. 5. :
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The variance of m(y|®) can be estimated by:

vinlyle)) = Wvinly, |2, (13)
where
vimly, |e)) =

- - 2 . 2 2
iy hi—m(ylz)xhi} -nk{m(yh)-m(y|m)m(mh)} 17 Amle)®ny (n,-1)} (14)
The variance among cells within the domain can be estimated with
Eg. 7 en B. (The estimator m(y'z) in Eg. & should of course be

calculated in the same way as m(y/) in Bq. 9).

Applications - -

-

Since we developed the sampling method it has been applied in four

projects of the Netherlands Soill Survey Institute; to investigate:

- 50il conditicns in twe related mapping units on the 1 : 10 000
s0il map of Lievelde (province of Gelderland);

- s0il conditions in three s&ngle mapping units and two groups of
physically similar mapping units onvkhe 1 : 10 000 soil map of
Sleen {province of Drenthe};

- soil conditions in a parcel, to assist one of our experts in
quantifying possible damage from reclamation activities;

- purity of two soil maps of the Hupselse Beek area (Gelderland),
produced by different methods (Bregt & Bouma, in prep.).

An application to major mapping units on a sheet of the 1 : 50 000

so0il map of The Netherlands is being planned.

In the following some results from the Lievelde project are pre-
sented as an example. Cne of the mapping units studied in this
project is defined as 'veldpodzolen' (De Bakker & Schelling, 1966)
or Typic Haplaguods in slightly loamy medium fine sand, with a
mean highest water-table between 40 and 80 cm, anﬁ,a mean lowest
level deeper than 120 cm*(Van der Sluijs & De Gruijter, in press},
Seven delineations of this unit were selected: three from a stra-
tum with small delineations (i.e. < + 2 ha), and four from the
larger cnes, From each.of these delineations a pair of transects
was selected, with one transect in E-W direction and the other N-3.
Using a lag of 25 m this resulted in 61 cbservation points. By pre-
vious division of the largest delineations, the transects were de-
limited to a maximum length of 300 m. See Figure 1 and 2 for the
location of transects and observation points.

At each observation point a profile description was made by auger-
ing te 2 m depth. Field estimates of humus content, loam content
and median of sand were calibrated against laboratory analyses to
remove systematic errors.

Results for scme important properties are presented in Table 1,
with the estimate of the mean, its 90% confidence limits, and the
7 standard deviation of the properties (i.e. square rcot of the aes-
é! timated variance among cells).
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Only a part of the observed profiles had a B horizon or a heavy
subsoil as defined in this project. So the properties of these
layers had to be estimated within their domains, i.e. the part of
the mapping unit where they occur. It appears from Table 1 that

the areas of these domains were estimated only approximately, but
this is a usual feature of samples of this magnitude.

The estimates of the means of the properties themselves are suffi-
ciently accurate. It is clear from the standard deviation of avail-
able moisture in the root zone, depth to heavy subscil, and mean
highest and lowest water~table, that there is rather a large varia-
tion of soil physical conditions in this mapping unit. In view of
this internal variation it is guesticnable whether units like this
should be treated as distinect entities in soil physical simulation
studies. These and other results are discussed in detail by Mars-
man & De Gruijter (in prep.).

Sampling efficiency

With an average of 0.10 day per point, 6.2 days of fieldwork were
needed for the 61 points of the Lievelde project. This includes
travelling, finding the locaticn of cbservation points, augering

Table 1. Mean with approximate %0% confidence limits and standard
deviation of some so0il properties in a mapping unit of Typic Hapla-
quods (Hn53-VI) on the 1 : 10 000 soil map of Lievelde.

S0il property Mean and 90% Standard
conf., limits deviation

Al herizon:

thicknegs (em 26.2 + 3.4 7.2

humus content (%) 5.7 + 0.9 1.4

loam content (%) 14.5 ¥ 2.3 3.9

median of sand (um) 157.5 + 2.2 6.5
B horizon: -

domain area (%) 65 + 19

thickness (cm) 22.3 + 1.9 11.8

humus content (%) 2,3+ 0.8 1.3

loam content (%) 10.0 + 1.5 3.4

median of sand (um) 156.0 + 2.9 7.5
Heavy subsoil:

domain area (%) 56 + 35

upper boundary (cm) 160.6 + 13,8 25.5

loam content 20.3 ¥ 0.4 1.4

median of sand {um) 122.4 + 0.9 2.0
Root zone: -

thickness {(cm) 41.0 + 23,7 7.4

available moisture (mm) 75.1 % 13.4 23.4
Mean highest water-table (cm} 50.8 + 5.6 14.2
Mean lowest water-—table {(cm) 134.7 + 15.5 24.4
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and description. We regard both this and the accuracy of the re~
sults as acceptable.

This does not mean that our sampling design is more efficient than
any other. It prchably isn't. Neither the number of small and large
delineations, nor the distance between points have been optimized.

Comparing different sampling designs in terms of efficiency is in-
complete as long as only their relative precisions are considered.
Also costs have to be taken intc account when making & rational
choice of a sampling design. Average costs per observation point
may vary with a factor two or more between methods, due to differ-
ances in time needed for travelling and finding the cbhservation
points. An early example of balancing both factors is given by
Wilding et al. (1965). De Gruijter & Marsmat! {in prep.) hope to
give a quantitative analysis of the efficiency of the present and
related sampling designs. .
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Discussion

J. Culling:

J. de Gruijter:

E. Runge:

P. Greminger:

J. de Gruijter:

l64

|

My concern relates to the problem of soil
characteristics that are highly variable in both
space and time. Your water-table data are an
excellent example, It seems to me that an
adequate analysis requires both spatial and
temporal considerations. In this context,
c¢limatic factors need to be involved.

Your point is very well- taken. We should be
careful to not . overemphasize spatial
variability, because temporal wvariability is
often more pronounced, We find that simulation
models are particularly useful to express
temporal varability, because data gathering at
one site during a period of several years is
often prohibitive in terms of cost,

We are i1in -an integgiSCiplinary phase of so0il
gcience. You don't primarily use your own
digscipline but communicate i1t to others. We
must Trecognize the inherent conflict of
"knowledge base" versus "problem base” research.
We must be tolerant of the difference and
recognize each others strengths, so as to
waximize knowledge being generated. We want to
get a year smarter as well as a year older. We
must continue this good start of a dialogue
between Commissionsg S1 and §5.

Do you think there 1s a possibility to build a
transfer function to get an jdea about the
impact "of acid rainfall on the pH of the seil
profile as a function of time as well as of
space?

The impact of acid rainfall on soil pH as a
function of time d1s governed by many
interrelated factors, such as type of
vegetation, parent material, climatic conditlomns
and so0il prefile development.  Attempts are
being made at several research institutes to
develop complex deterministic simylation medels
to describe and posslbly predict the rate of
acidification processes. The term transfer
function would, in my opinion, not really apply
to such models. I would suggest to use there
term only to relate relatively simple land
characteristics (e.g., texture, etc.} to more
complex land characteristics {(e.g., CEC,
P-adsorption) as mentioned 1in my paper.
Variability in space adds yet another aspect to




the above. However, well defined transfer
functions allew a better evaluation of the
spatial {and temporal) variability aspect
because of the larger amount of available data
when using relatively simple land
characteristics.
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Spatial variability: its documentation,
accommodation and implication to soil surveys

L. P. Wilding, Soil & Crop Sciences Department, Texas A&M Univer-
sity, College Station, TX 77843

Ineroduction s

Spatial variability of soil is not an academic question. It is a
real landscape attribute; our unwillingness or inability teo
identify it in no way decreases its magnitude.or existence. It
is no stranger to the pedologists for it is the very essence of
their profession. As scientists we myst document the magnitude
and form of soil variability; accowmwmodate ite existence in wodels
of soils; and transmit accurately the expected pattera and
implication of spatial changes to users of soil resources. Soils
are not material specific; many soil properties are not single
valued, many are transient, and many are not randomly distributed
but rather systematicelly time and spacially dependent, The
dilemma is that soils are not isotropic media but rather they are
strongly anisotropic laterally and vertically (Wilding and Drees,
1983).

Soil Surveys - Science with a Little Avt

Spatial variability within landscape bodies is a cpntinuum. The
purposa of soil surveys is to partition this continuum into
natural or artificial classes that have greater homogeneity for
selected soil properties than the continuum as a whole. Soils
with similar properties and environments are expected to behave
similarily, Limiting the range of soil variables permits more
accurate predictions of expected responses to alternative soil
management imputs and land use. By this means, soil surveys
represent a powerful wehicle for technology transfer.

The methodology in conducting soil surveys, the accuracy of the
soil map, and the specificity of its application are.often
misunderstood. Hence, the following discussion outlines the
scientific basis, data aquisition, and kinds of soil variability
observed in making soil surveys in the U. S. (West ef al., 1984),
The scientific basis of a soil survay is that soils and their
location on the ltandscape are predictable to an experienced soil
scientist who has a knowledge of the geology, vegetation,
climate, and landform patterns of the area., The soil scientist
ig not able to observe or sample the soil at every point on the
landscape. Only enough observations are made during mapping to
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determine soil/landscape relationships and to confirm predictions
of soil models established from these relationships. Thus, map
uit delineations are derived, to a great extent, from inferences
gained from a small sampling of the landscape. This is possible
because soil properties change systematically with landscape
position, Visible changes in slope, ‘vegetation, surface color,
and drainage pattern enable a soil scientist to locally
extrapolate soil/landscape relationships previously estabilished.
Thus, a soil map unit is a landscape (cartographic) unit that
reflects the dominaat soil couditions of a landscape element or
segment (Fig. 1),

Figure 1. Schematic illustration of soils (A through F)
occurring an different landscape segments {stability) and derived
from different parent materials (Revised from Fig. 2.5 Grossman,
1983},

Most map units are named for the dominant soil series occurring
in the delineated landscape body. Unfortunately, one of the
common properties of scils as natural landscape bodies is
variabilicy., In addition to the systematic variation obsarved
above, variability also occurs in an undefined {random) manner.
Soil scientists are aware of this random variability and make
every attempt to design map units and to map soils that restrict
property varisbility to limits that permit meaningful
interpretations of scil use, management, and behavior. However,
soil properties are mot homogenous within mapped areas. They
often have ranges that exceed the limits imposed by the
definition of the soil series naming the map unit. Thus, map
units may consist of a number of soils either similar or
dissimilar to the named series.

The goal of the soil scientist is to design the map units and
delineate them in a manner that limits the number of inclusions.
However, inclusions are almost always present both as similar
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soils with propecties just cutside the series range and as areas
of dissimilar soils too small to delineate at the scale of
mapping. Serious errors, from a user's stand point, may occur
when a soil map is used to greater detail than the accuracy of
mapping warrants. Detailed inspection is needed if minor soil
variation is important to the intended use. The map unit
descriptions should alert the user to expected variations.

In summary, waking a s0il survey is a modeling exercise iavolvinag
both the scientific method and an element of art, A soil model
is developed by correlative studies with landform conditions;
hypotheses are formulated, tested by ground truthing and
verified; the model is revised and new. hypotheses are formulated
for testing when the model fails. The soil/landscape portrait
thus evolved is an artwork of the soil scienfist much like a
painter who transfers his mental image of a subject to the
canvas; the greater the familiarity the painter<has with the
subject, the more accurately expressed the mental conmstruct will
be . .

Spatial Variability - A Conbinuum |
Spatial variebility in soils is a continuum from megascopic to
microscopic levela of resolution, It is dependent on the
property of interest, area or volume observed or intergrated, and
methods of determination (Fig. 2)}. An inverse relationship
exists between the field of view and level of resolution (Fig.
2). Ta generalize information gained at high levels of
resoltuion will require a telescoping series of observations from

: visual to subvisual levels, Further, a soil survey of the

[ experimental area with appropriate ‘placement of soils into a

classification system, such as Soil Taxonomy, will foster

technology transfer and generalization of the research results at

all levels of resolution. ,

Pedologists have iong been cognizant of long-range systematic
changes, especially those correlative with surficial features, in
soils, but only of recent have they focused on the magnitude of
short-range spatial changes. Spatial varisbility in soils rarely
increases linearly with distance; more commonly it is an
axpoential function and strongly dependent on the pedogenesis of
s0ils under given envirommente (Fig. 3). Spatial variability
which generates the greatest prablems in soil survey work are

: those changes in soils that occur subsurfically with no

i expression at the surface. This may be a consequence of parent

v material stratification, differential pedogenic processas,

P biological activity, or temporal changes in soil properties.

| Generally soil surveys made in areas of of low relief and/or of

k - soils developed from fluviatile or tectonic parent materials

; yield map delineations of least reliability and accuracy.

: Systematic variability occurs in soils at microscopic and
! submicroscopic levels. Particle orientation, zonation of organic
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Figure 2. Schematic illustration of the relationship between
increasing levels of resolution and the area of the field under
view (Fig. 1, Wilding, L., P, and K. W. Flach., 1985).

SPATIAL VARIABILITY

-
_,_"'

PEDON SERIES MAPPING SURVEY
€ UNIT AREA

INCREASING SCALE FACTOR

Figure 3. Schenmatic spatial variability reflectinﬁ increasing
scale factor (Fig. 4, Wilding and Dress, 1978).
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and inorganic components and pore size distribution patterns are
frequently not random. Skeletal grains, ped structural surfaces
and walls of other voids commonly serve as loci for
concentrations of colleids and solutes and/or the reorientetion
of ¢lay particles. Frequently, the sample volumes analyzed are
sufficiently large to integrate the systematic variability
resulting from loci specific reactions and fluxes. S8oil surveys
should aid the scientist in determining those soil properties
which have systematlc organization at given levels of resolution
versus those soil conditions that ate more likely random. They
should also serve to indicate the scale at which soil volumes are
likely to integrate both systematic and raddom variability.

Statistical Considerations and Sampling Schemes

A pedologist should have 2 much better concept of soil property
relationships, covariance and soil distribution patterns than a
statistican without soils experience. With such prior knowledge
care must be exercised not to knowingly confound systematic and
random variability in a sampling scheme. For example, if soils
systematically change as a function of, relief, then the most
efficient, non-biased sampling scheme is one that tranverses
normal to drainage systems, Likewise, sampling a soil, either
laterally or vertically, should not be at random. No useful
purpose is served in compositing soil materials from two separate
populations of known morphological, physical, chemical and
biological difference. Random sampling is suitable only when
soil differences are not evident.

Classical statistics has not advanced our krowledge of the causal
factors responsible for soil property variation within a
landacape (Wilding and Dreea, 1983)., Oftenm the soil factor is
masked by removing it as blocking or replication error, Soils
often exhibit non-orthogonal variability spatially~-variance is
not isotropic laterally dr vertically.

Soil observations are not necessarily spatially independent and
frequency functions are usually not normal but skewed log normal
or gamma distributions. How do we overcome all of these
constraints that are assumptions basic to most classical
statistica?

The question of sampling scheme, statistical analyses to be
| employed and observational interval continue to plague most
[ pedologists. These angwers really depend on cbjectives of work,
nature of classes being sampled and precision of the results
expected at a given confidence level.

‘F .
.
I

Sampling Schemes
Sampling schemes briefly considered include: random, transect,

grid, and systematic radial transects or some combination of
these. On a given delineation, the first three schemes are
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illustrated in Fig. 4. and the latter in Fig. 5

¢ Numbered Grid
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Figure 4. Sampling schemes to determine composition of mapping
unit delineations. Observations located at random (A}, along
parallel point transects (B), along random point traunsects (C),
and at intersection of grid lines (D), Same number of
cbservations in each scheme {Fig. 4.6, Wilding and Drees, 1983).

The random sampling scheme is unbiased and statistically sound.
It is commonly preferred among statisticians but may cluster data
spatially unless a large number of observations are takem. It
may alao confound systematic and random error., The.
point-transact sampling scheme -always involves the question

of random va. systematic orientation., Stratified random point
transects may ba aligned normal to an anticipated soil gradient
(Wang, 1982). Point transects may take advantage of trenches,
powerlines, highways, etc., that may not be aligned with a soil
bias. They are useful in remote areas where vegetation or
topography obscure cultural features. They may be oriented
parallel to each other to form a grid if desired., The grid
sampling scheme provides equally spaced observations. It is
better adapted to geomorphic-pedogenic studies. With elevation
control it can be used to simulate 3~D computer-generatad surface
nets of limiting or diagnostic soil properties, It is the best
design for geostatistics and semi-variance analyses. For the
systemgtic radial transect: scheme, a series of radial transects
at 60° of each other are laid out from a central point with
multipliecity of observations increasing with distance from the
center (Fig. 5). This results in telescoping series of
observations with increasing area that may be coupled with the
grid scheme to yield short-range to long-range variability across
a large sampling area,
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Figure 5. Grid and systematic radial sampling scheme used to
sample undisturbed and disturbed soils (gggyden, 1284).,

Number of Observations or Transects

The number of observations or transects needeéd to characterize
sail properties in a certain sampling unit is determined by the
population variance of the property, the confidence level chosen,
and the probable error tolerance about the mean that is
ascceptable (Fig., 6). While the variability ef a property in &
landscape may be fixed, ond way to decrease the population
variaace is to stratify the sampling.units so that the total
variation can be partioned as much as possible to differences
among strata (Steel and Torrie, 1960}. Wang (1982) discuss means
to accomplish this with sampling of natural soil umits.

The confidence level is an expression of probability that a
statemant is cortect- and is reflected by the "t" value selected.
The higher the t-value the more samples or transects will be
needed, While a confidence level of 99% or 95% is common ia many
fields, in soils-a confidence level of 70 to 80% is probably mare
realistic in terms of time and money imputs that are practical ta
a sampling scheme.

The confidence interval or deviation allowed fromws the mean
(probable mean error) is an estimated range of the population
meau that is likely to occur within a given soil unit sampled.
If the variance of the property observed is high, (CV's above 25
to. 35%) our precision' of estimate of the true mean at a given
confidence level may need to be decreased to accommodate a
practical number of samples (Fig. 6).

Frequently we must accept either a lower confidence level
{probability) or higher coufidence interval (probable mean error)
to maintain a sampling scheme within reason. Under some
circumstances, perhaps many, limits within  20% or-even  50% of
the mean with a probability level of 80% or lower may permit
sufficiently accurate mean estimates. This would depend on the
property in question, the magnitude of the mean, the critical
confidence limits for interpretations, and the risk one is
willing to take in making an ertror in judgement.
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Figure 6. Coefficient of variability (CV) versus number of
observations necessary to estimate the population mean within
specified limits (Fig. 4.4, Wilding and Drees, 1983).

e

Table ‘1 gives relative ranking of soil property variability in a
landscape. It is bzsed on the work of this author and extensive
compilation of data in the literature. This table is intended to
be utilized as a guideline when on-site data are not available;
it is not to be interpreted rigidly. Quite often of greater
impoartance than the absolute CV's or probable mean errors of a
given property is the class range of a property or set of
properties which caw accommodate similar behavior or response
interpretations. Under such circumstances the CV's might be
quite large but because most of the values fall within an
acceptable class range, the spatially property variability would
not adversely affect interpretations. This is the importaat
consideration.

Observational Interval

No definitive statement can be made about the observational
interval because it is a function of soil coanditions at a given
site and scale of mapping. ¥t can be determined arbitrarily by
a predetermined ground distance oun a photobase map or
stagtistically by semi-variance or autocorrelation methods. The
latter have been used relatively little by asoil surveyors (see
later discussion).  More cowmonly the intervals are based on
koowledge of s0il complexity gathered during the mapping phase,
on the character of the parent material variability, and on a
realistic number of samplaes that can be taken within an available
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Table 1. Relative ranking of variability of soil properties that
occur in landscape units of a few hectares or less in
size. These values represeant lateral variability for
equivalent horizons or depths as appropriate for given
properties (Modified from Table 4.2, Wilding and Drees,

1983).
Variability of Number of profiles Property
Property neaded¥ .
Least (CV'as <15%) <10 "S0il cotor (hue and
value)
- 561l pH
Thi¢kness of A-horizon
Total silt content
‘Plasticity limit
Moderate >10 to 25 Total sand conteat

(CV's 15 to 35%)

Most <25
(cv's >35%)

Tatal clay coatent

Cation exchange
capacity

Base saturation

Soil structure {grade
and class)

Liquid limit

Depth in minimum pH

Calcium carbonate
equivalent

B2 horizon and solum
thickness
S0il color (chroma)
Depth to mottling
Depth of leaching
(carbonates)
Exchangeable hydrogen,
caleium, magnesium
and potassium
Fine clay content
Organic matter countent
Plasticity index
Soluble salt content
Hydrautic conductivity
Water conteéent

% Employing 95% confideunce  interval and limit of accuracy 10%

of mean.
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time frame. Wang (1982) suggests observatiomal intervals be: (1) ,-'
either 1/10 or 1/20 length of transects with no fewer than 10 to
20 observations per transect; or {ii) 1/2 length of shortest !
transect. He prefers (i) because it gives every transect the
same number of degrees of freedom and makes statistical
computation easier. If one is attempting to quantify the soil
composition in a landscape unit, ground distances between
observations of 20 to 200 m are common, while for pedon
cousiderations, distances of 0.25 to 0.5 m are in order (Wilding
and Drees, 19831).

Generalized Aspects of Spatial Variabilizy

Following are a few generalities that should be kept in mind in
considering spatial variability in soil surveys.

. Reliability in accurately predicting many soil properties
decreases with depth. Fewer observations are made at greater
depths (ie >2m) in the soil than near the soil surface; thus
there is less ground truth control at depth. |

+ Spatial variability in soils is closely allied with the ‘
nature of the parent material from which soils are formed. !
Parent materials from least to most variable include: loess,
till, fluviatile deposits, tectounic rocks, and drastically
disturbed soil materials.

. Static soil properties are less variable than dynamic ones
(i.e. OM, texture, mineralogy, solum depth, soil color vs
hydraulic conductivity, soil moisture content, salt conteunt,
microorganisms, exchangeable cations and redox conditions,

So0il Taxonomy is strongly biased towards static properties in
subsoil horizoms.

+ Proparties which can be closely calibrated to a standard (ar
gquantified in the field) are less variable than those which
are qualitative (i.e. texture, color, pH vs structure,
consistence, porosity, root abundance, etc.).

« Properties which are differentiating or accessory to
differentiating properties used in mapping and classifying
soils will be less variable than those of an accidental
nature. Not all properties are considered in msking a soil
surveys; only those that are counsidered most important to the o
objectives of the survey or classification scheme.

Geostatisbics and Soil Survey

The use of geostatistics in establishing map unit concepts and in _
the mapping process is yet mostly untested (Wilding and Drees, (-
1983). Few pedologists are familiar with this statistical
approach. Frequently the mathematical and statistical foundation I
ie beyond their comprehension -- they are afraid to use a tool L
they do not understand either in terms of principles or

limitations. One of the likely applications of geostatistics to :
soil survey is to determine the sampling interval that assures '
spatial independence, but the question remains how to generalize
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this information. It may also play an important role in
developing soil property/landform correlations and to aid in
designing map unit concepts. For high intensity soil surveys
(i.e. experimental tesearch plots) it should be a valuable tool
to kring the area so mean and variance estimates could be
predicted for soil properties at all plot loci.

Questions being raised about this tool for soil survey
application are as follows: v

+ How can geostatistics be used without collecting an
inordinate number of samples? Many observations are needed
to determine how few could have been collected to obtain the
same information base. *

. How can geostatistics be used as an extrapolatlve tool? Seoil
surveys are moatly an extrapolation of knowledge gained from
one landform and extended to the neéxt. ?

» How might it be used for pedon and microscale variability?

. If one finds that the observations are’ spatially depeandent
over the area investigated, how can classical statistics be
applied to the data set? ~

Verification and Aecommedation of Spatial Variability

Because of the limited number of observations collected in the
conduct of soil surveys, there is a required verification phase
of the mapping units and the spil characteristics represented by
these delineations. These two phases will be discussed under the
topics mapping verification and pedon (sampling unit)
verification, N

Mapping Verification

Trgnecats — Perhaps the most common means to vérify mapping unit
composition (spatial variability of soils within mapping units)
is to employ stratified random point transects {Steera and Hajek,
1979). This procedure has been employed ae a means to sharpen

‘the correlation process at the end of the survey. It has also

been used as a routine mapping tool during the survey in areas of
low relief, high vegetative density or where there is little
surficial predictive capability of the landscape (Wang, 1982),
Results from this work have been incorporated into soil surveys
as probability statements of the map accuracy in terms of given
s0il conditions and/or interpretations inferred from observed
soil properties. Arnold's (1979) graphical bionomial confidence
limit method has been used for this purpose (Fig. 7). Results
with elevation control have also been plotted as two~dimensional
crossections illustrating distributions of scils as a function of
topography, parent materials, limiting horizoms, etc. (Fig. 8 and

-
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Figure 7. Arnold’'s (1979) Binomial Confidence Limit Graphs:

0 to 50 and (B} 50 to 350 samples {Taken from Wang, 1982),
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Addicks soil in Harris County, Texas (Fig. 5, Sobecki and
Wilding, 1982). -
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Figure 9, Elevation of soil surface and underlying laterite
along three transects in a s0il survey area of Niger, Africa
(Taken from Fig. 2, West, et al., 1984).
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Grids— The grid sampling scheme has been utilized with elevation
control to simulate 3-D surface nets of surface relief, A/Bt
contact, and differential thickness of parent materials (Fig. 10)
in the "Sand Sheet" land resource region of southern Texas and
the distribution of soils on a landscape in the Ceoast Prairie
land resource area of Texas, (Fig. 11),

Such a display permits one tao readily visualize the configuratiom
of horizons governing solute and water movement over short
distances and, thus, probable genesis of such soils. It also
petmits one to more accurately place soils on the landform.
Howaver the cost and time required for such sampling efforts may
limit their application to research emphasis rather than routine
mapping methods.

Grid sampling schemes have also been used to accurately determine
the composition of secils within previously mapped areas of
natural or disturbed soils. This approach has been used in
attempts to determine the accuracy of older soil surveys when
compared to the same areas which have been remapped under modern
soil survey standards (Rehage, et al., 1982)., Comparisons were
based on interpretations of the grid points for alternative land
uses in view of former versus current map unit delineationa, If
much of the variability is at short-range and many of the
inclusions in the mapping unit have similar restrictive
interpretations as the dominant soil, remapping of older soil
surveys may not greatly improve the mapping and interpretation
accuracy even though the size of the delineations may be smaller
(Rehage et al,, 1982). Similar approaches have been used to
compare the mapping variability of surface mine disturbed lands
with adjacent uwandisturbed soils (Bearden , 1984).

Ground Penstrating Radar = Ground-penetrating radar (GPR)
systems, specifically designed for soil reconnaissance, can
provide countinuous profiles charting the depth and extent of
diagnostic subsurface horizoms. Unlike most otrher radar systems,
GPR transmits repetitive, short duration pulses of
electromagnetic energy into the soil, rather than into the air.
When these pulses strike an interface separating layers of
contrasting electrical properties a portion of the signal is
reflected back to the radar, The depth to the interface is
determined by the time delay of the echo. By towing the radar
across the surface, a continuous profile of subsurface conditions
can be ‘developed (Personal Cosmunication, Mr. Jim Doolittle, S5CS
Soil Scientist, Florida).

Present GPR systems do not work equally well in all soils. The
rvadar signal is dissipated and the probing depth restricted by
high contents of moisture, clay, or salts in solution. Though
the effectiveness of the GPR is extremely site specific, probing
depths of 1 to 2 feet in clays and as great as 40 feet in sands
can be expected.

179




Prasent

Land Surface

A/t

Contact

[

i#{i“ﬁ\ iy
TR
oo TR
N -
Thicknetu ‘3':-"‘ \\‘

Figure 10. 3-dimensional surface plots of soils in the Sand
Sheet region of southera Texas (unpublished data by author).
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Figure 11. Soil-topography relationships in the Coast Prairie
region of Galveston County, Texas (Fig. 6, Sobecki and Wilding,1982).
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During the past three years, USDA's Soil Conservation Service has
tested GPR on a wide variety of soils in diverse geagraphic
locations, principally to assasa the variability within map units
delineated by traditional survey procedures. The GPR has also
been used successfully to measure subsidence in the Florida
Everglades, and sedimentation in lakes; to characterize
geomorphic contacte and features; to document the fractures,
voids, and solution cavities in rock; to locate buried artifacts,
bodies, utility lines, and cables; and to determine the presence
and distribution of buried waste materials (Figs. 12 and 13).

Pedon Verification

Except under cyclic cqnditions a sampling wvnit for Seil Taxonomy
is equivalent to a lm  area over the depth of the soil. Even
under cyclic conditions, such as gilgai in Vertisols, there is
goid bagis for restricting the sampling unit to an area of about
lm~ which corresponds to wmicrohigh and microlow topographic
relief forms (Wilding, 1982). Within such a sampling volume,,
soils can express considerable lateral variability especially in
more labile properties such as water content, salt content,.
exchangeable cations, clay content, organic matter, free iromn
oxides, etc. After one has established the magnitude of lateral
variability for given soil propaerties by horizon, one can use
this information to determine the number of samples that need to
be collected to estimate the mean of most soil properties of
interest within given tolerance limits, at g specified
probability level. Figures 14 to 17 give examples of such
variability for selected properties within pedons sampled by the
authors (Wilding and Drees, 1983).

The problem is that few data of this nature are available because
of the time and expense of such sampling., How does one attain
horizon pedon variability of this nature for major scils within a
survey area? How far can one generalize this information base?
With only 3 or 4 horizons sampled for lateral variability within
a pedon, how can this information be used to determine
significant differences among horizons not sampled laterally in
the same pedon especially if different variances exist for
different properties at several depths.

Under the above constraints, a composite sampling scheme is
propesed for sampling pedons. By employing a sampling scheme
where the same subhorizon is multiple-sampled in a lateral vector
and then composited to represent a single horizom sample, the
mean conditiona ¢an be estimated with greater accuracy. Figure
18 illustrates several schemes which have been employed for this
purpese. It is important that ounly morphologically: similar
subssmples are- compeosited. -Multiple subsampling four times
instead of once will decrease the probable sampling error in
half. Using determined subsample error terms for pedon
properties, Fig. 19 illustrates absolute class boundary probable
errors for several Soil Taxonomy class limits.
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Figure 12, GPR profile of }mmokaleé‘fine sand mapping unit
(sandy, siliceous, hyperthermic Arenic Haplaquods). Multiple
horizons are often clearly expressed on graphic profiles. For
example, the GPR profiled a water table, multiple spodic horizons
(Bh), and an argillic horizon {Bt) (courtesy of Mr. Jim
Doolittle, USDA-SCS Soil Scientist, Florida).

omy

Figute 13. GPR profile of an area of Candlar

(hyperthermic, uncoated Typie¢ Quartzipssamment) sad Apopka

(loamy, siliceous, hyperthermic Grossarenic Paleudults) fine
sands, 5 to 12X mapping unit complex in Florida. The deep sands
of the Candler without an argillic horizom within 2 m is shown )
on the left with the Apopka soil and its argillic horizon (Bt) on
the right {(courtesy of Mr. Jim Doolittle, USDA-SCS Soil

Scientist, Florida).
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Figure 14, Variability of total sand, silt, and clay contents
and bulk density due to combined sampling and analytical errors
for five morphologically uniform pedons of about 1 m~ area
(from fig. 5, Smeck and Wilding, 1980).

PEDON YARIABILITY

Figure 15. Variability of elemental Ti, Zr, Fe, and K and Ca in
sand and silt fractions due to combined sampling and analytieal
errors for five morphologically uniform pedons of amout 1 m
(from fig., 6, Smeck and Wilding, 1980).
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Figure 16, Observed lateral variability among selected chemical
properties within horizons, of similar morphology for a pedon
sampling unit of about 1 m” area (reprinted from Fig. 5,
Wilding and Drees, 1978).
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h Figure 17. Observed lateral variability of saturation extract
parameters withia horizons of similar morphology for a pedon
sampling unit in Vertisols {about 1 m” area of micro-low gilgai
element, from fig. 4.14, Wilding and Drees, 1983).

184

|



PEDON SAMPLING SCHEMES
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Soil Taxonomy class limits.

For example, the base saturation boundary prabable error is 5%
at 50% base saturation, sand content is 3% at the 15% limit,
ESP is  2.1% at the 15% limit, etc. By using lateral subsamples
these values could be halfed or brought very close to the
laboratory errors of determination. Application of pedon data to
Soil Taxonomy, the Canadian Soil Classification System or any

; other classification systems with yigid class boundary limits

| must consider such pedon and laboratory errors in classifying the
pedon. Pedons having properties that fall within the boundary
errar ranges can be placed equally well into either adjoining
classes. :

Another means of pedon verification is to gollect satellite
samples about a pedon sampled for complete characterization
{Mausbach, et al., 1980 and West at al., 1984}. Satellite
samples ranging from 2 to 5 in number might include only 2 or 3
horizons of specific interest and only those determinatiomns of
properties critical to the classification or interpretation of
the soil. This provides a cost and time affective means to
evalute the spatial variability of soils considered to be within
the limits of a given series. .

- SUMMARY

Pedologists have long been aware of spatial variability and in
the future we can expect to see further advances to unscramble
the complexities of soil-landscape relationships. Geomorphology,
multivariant analyses, and greater awareness of short-range
changes in soils will gain greatér emphasis. Specifically, the
knowledge of spil variability is necessary to:

. Establigh significant vertical and latera} differances
among soil properties

+» To obtain central tendency and variance statistics

. To design more sccurate sampling schemes

. To establish s0il property-landform relationships

+ To design soil survey mapping unit legends with greater
accuracy

+ To determine composition of soils representing of mapping
units in soil surveys

» To determine validity of class dafinitions and class
differentiae

. To apply pedon data to soil classification systems

. To quantify pedogenic processes

. To verify soil properties and spatial variability for more
accurate interpretations of soil behavior and management

Hi- A knowledge of spatial variability gained from soil surveys
should provide the following kinds of information pertiment to
vaderstanding spatial variability in landsé¢ape setting:
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Terrain configuration and slope gradient

Origin and spatial distribution of parent materials

Soil drainage charactevistics

Physical and chemical restrictive layers

Soil thickness and leaching potential

Distribution of structural units and cracking patterns

Small~scale ped and pore-wall physical and chemical
zonation of materials

Sampling volumes necessary to achieve integraded sampling
units

Nature of physical, chemical and biochemical boundary
gradients
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Discussion

K. Hammer:

L. Wilding:

Since s30il chemical and physical properties
covary with differing rates and levels according
to the soll forming factors and thelr inter-
actions, why is more attention not given to the
use of multivariate statistics (factor analysis
and discriminate analysis) in quantifying and
analyzing soil vamdability?

Most of the multivariant~ statistical approaches
to soils has been applied 1n attempts at numer-
ical classification of scils by simple ordina-
tion methods of affinify .or similarity among
soil classes or by using cluster analysis to
reduce the number of selected properties for
clagsification to a few. Somé of the disadvan-
tages or problems in this approach is that: (1)
a single measure of gimilatity involves enormous
loss of information; (2) selectlon, measurement,
and coding of muitiple characters are highly
subjective; and (3) many different kinds of
characters must enter into taxonomlc classiflca-
tion. Some of these are not sufficiently
quantified to be written into a computer
program.

It has also been observed that cluster analysis
is effective with small numbers of distinct soil

" groups or with small areas but in large areas

J. Bouma:
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with a number of different solls, clusters
either do not exist or are extremely diffuse,

Although this tool is in its ’infancy in pedo-
logical studies, the current availability of
high speed computers and increased focus on
quantification of soil parameters wmakes this an
area of potential future study. The possibility
of coupling multivarilent analysis with kriging
may overcome some of the concerna that kriging
does mnot permit delineating soil areas with
multiple property differentiate. This whole
area is open to further development.

Spatial wvariability observations are commonly
made in soils at the initiation of a soil survey
in the U,8. This is necessary te design mapping
units appropriate for the scale of spatial
variability found in the survey area. For
example, if small-scale variation occurs among
soils with contrasting properties such that
individual delineations of each seil cannet be




L. Wilding:

M, Collins:

L. Wilding:

P. Greminger:

L. Wilding:

delineated at the scale of mapping, then either

‘complex or undifferentiated mapping units would

be designed for this situation, Considerations
of spatial variability must precede the field
mapping phases of the soil survey program to
adequately determine which seil conditions
dominate in a given landscape and what the scale
of repetitive patterns may be. The transect
samples collected during the survey or at the
end of it are provided to quantify the relative
percentages of so0il conditions within a given
map unit.

The purpose of this comment was to be sure we
did mnot leave the impression that spatial
variability in soil surveys was examined only
at the end of the survey.

I agree with your comment and appreciate Your
making this point.

The number of cbservations per mapping unit, I
feel, very rarely exceeds 50 and never 350! Did
T understand Arnold's figure omn the graphical
solution to binomial confidence limits
corractly?

The figure is just an example of this approach
to rapid determination of confidence intervals.
In the paper by Wang cited in the text, he has
illustrated such graphs for observations ranging
from 0 to 50 and 50 te 350, For any given
mapping unit delineation, the graph for 0 to 50
observations could be used but in sampling
several delineations of the same mapping unit
the graph for 50 to 350 observations may be
appropriate.

If we have some I1nformation about spatial
variability, on what basis do we decide which
sampling scheme to choose?

Perhaps the major decision regarding the sampl-
ing scheme to be utilized revolves about the
kinds of questions to be answered, the objec-
tives of the work and the nature of the classes
being sampled. I personally prefer transect or
grid sampling schemes with equal point intervals
and elevation coantrol, if pessible. These
schemes work well in geostatistical analysis and
determining soill compositicon within mapping
units., It might be preferable to couple short-
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A, Warvick:

L. Wilding:

J. Hendrickx:

L, Wilding:
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-range and long-range sampling to observe spatial

variability of differing scales such as in the
grid-systematical radial transect scheme illus-
trated, Finally, the sampling scheme will
eventually depend upon the labor and financial
inputs that can be alloccated to accomplish the
given objectives. The text of this paper covers
the various pros and cons of sampling schemes,

My own experience is that water content dis-
tributicns tend to be “somewhat less wvariable
than you indicated. I believe it should be
grouped in a lower variabillty class, say a CV
of 10-15%. 5
The concept of bulking or composite sampling can
be handled nicely by block kriging. This was
done for determining the variance of the mean
for a finite area by Webster and associates in
the J, of Scil Sci. This is believe relevant
particularly to “"additive" property concen-
trations and for textural classes.

I appreciate your comment on water content.
Values given in this report were based primarily
an fine-textured soils with significant cracking
character, I suspect in these so0ils water
content 1s sapatially more variable than in
coarser—textured soils.

I am aware of Webster's work onm block kriging
and appreciate your mentloning this point.

However, in routine soil survey operations in
the *U.5., we do not sample sufficient pedons of
a given soil for laboratory characterization to
permit such kriging methods to be employed.
Numbers for kriging application seem to be the
major constraint.

Could the CV you presented not be more an
expression of sample procedures than of varila-
bility of soil properties under consideration?

I don't think so. These values were taken both
from our own studies as well as those from the
literature where sample sizes for given parame-
ters were quite variable. It is well recog-
nized, however, that sample size {is very impor-
tant in defining spatial wvariability. For
example, the CV for a given property may be
25-50% across a landscape-unit of 5 to 10 ha

more, 5-10% for the area of sampling unit {(im”)




K. Flach:

L. Wilding:

P. Greminger:

and <5% for the sampling errors associated with

. laboratory determination, In that sense CV's

are covariable with size of the units sampled.
This is even more eritical in sampling a dis-
turbed soil material (mixed overburden from
mining activities) where the CV's will be
directly correlated with sample  volume,
However, for the data presented as relative soil
property variability, the CV's are for natural
soil bodies of a given mapping unit representing
areas of several ha. The observations were for
equivalent soll horizons and of sufficient
volume Qf area to express a sampling unit of
about lm".

Pedologists have been occupied with the system-
atic depth variation in soils or soil horizons;
lateral variation can be equally systematic and
can be wused to characterize kinds of spils.
Lateral variation needs to be studied more and
included in the characterization and classifica-
tion of soils.

Both lateral and vertical variation in soils are
important to soil use, management, classifica-
tion and characterization. Pedologists have
long focused on both aspects as a basls to
partition soils into landscape and taxonomic
classes. [ assume, however, that your comment
is for secils with similar horizonaticn but
markedly different rates of lateral change.
This would influence the areal extent and
pattern of a given soil and its border neigh-
bors. Similar soils but with different land-
scape associates might be classified dif-
ferently. Patterns of solls and their complex-
ity are important for soil management and use.
Draining a poorly-drained =s¢il, for example,
often depends on whether it is 1in a large,
nearly level, contiguous unit or as many small,
isolated tracts scattered among better-drained
sloping analogues. There 1s goed justification
for greater efforts to study the lateral vari-
abllity in soils and potential impacts on use,
management and classification.

Now knowing something about the spatial depen-—
dence of the soil water characteristice and some
other soil properties, how do you apply thia new
information to your sampling for the soil
survey? And what other information is still
needed for an efficlient seoll survey?
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Firstly, we still are at our infancy in under-
standing spatial dependence of soll water and
other characteristics in soil landscapes. In
fact, there is very little information on the
spatial dependency of many of the soil prop-
erties used as differentiae for soil surveys and
s0il classification. Given that informationm,
however, the ways it would be used to enhance
the quality of a soll survey are given in the
summary section “of thls paper. In sghort, it
would permit us to more accurately convey the
mode and magnitude of" spatlal wvariability to
ugsers of soll resources. It would alse foster .
development of soil suryeys with greater quanti-
fication of vertical and lateral spatial change.

One area where considerable future effort 1is

needed 1s the development of class ranges.
(limits) for given soil, properties which are

most meaningful for intervpretations of soil

response. and behavior. Properties may be highly

variable, but {Y¥ absolute ranges of spatial

difference do not exceed critical class limits,

then our interpretations do not suffer from
spatial variability Another area for great need

is to develop transfer functions for soil

properties, such as those discussed in
Dr. Bouma's paper, to integrate qualitative and

quantitative property evaluations.
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The analysis of water guality variations in
stream-aquifer systems: nonpoint sources

C. J. Duffy, Utah Water Research Laboratory., UMC 82, Utah State
University. Logan, Utah 84322, USA.

Introduction

The persistent problem of nonpoint source pollution, although it
received considerable attention by the research community during
the 1970's, still ranks as a major factor in the environmental
degradation of groundwater and streams in the U.S. Historigally,
the analysis of diffuse sources of groundwater contamination, such
as infiltrating urban runoff. septic tanks, fertilizers, pesti-
cides, and salinity in arid regions, has been greatly complicated
by two factors. There has been a lack of conceptual understanding
of the subsurface flow and sclute transport processes involved, as
well as a sericus lack of measured data for nonpeint source con-
taminants. In recent years significant advances in our under-
standing of transport processes and modeling of soil and ground-
water systems have taken place. while industry and government have
continued (to some degree) to address the problem of long term
monitoring. With regard to transport processes and models, scien-
tific advances have largely been the result of controlled tracer
tests in the laboratory and the field, where the input or source
has been regulated (i.e. a pulse or step). Regulated inputs
facilitate the application of simplified forms of the convective-
dispersive transport model. The analysis of the evolution of
envirommental residuals {i.e. iegotopes, pollution and geochemical
observations) in natural systems has received much less attention.
This may be due in part to the large degree of spatial and tempo-
ral variability associated with nonpeint source pollution, and the
attendant difficulty in "modeling" these processes. 8Since tracer
tests for nonpoint sources of contamination are not generally
feasible, the direct analysis of environmental chemicals seems to
be the only alternative for studying these systems.

In the pregent paper the goal ig to review and illustrate a sim-
plified linear regervoir approach to nonpoint source contamination
in a stream-aquifer setting. The study will include a heuristic
argument as to the physical basis for the lumped model, and a
demonstration of the effect of spatial and temporal variablility
of a nonpeoint source on subsurface out flow concentration. An
attempt is made to demonstrate that simplified input/output models
are useful for describing the dynamic behavior of nonpoint source
contamination of streams or agricultural drains, and that solute
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dispersion and spatial variability have little impact on the con-
centration of groundwater discharge to streams or drains.

The linear reservoir

A practical approach to nonpoint sources of groundwater contamina-
tion makes use of the "complete mixing" assumption of the linear
reservoir model (Duffy, 1982: Raats, 1981; and Gelhar and Wilson,
1974). This assumption of complete mixing reguires that the input
to the reservoir be adequately described by its spatial average
over the surface of the reservoir, and that the ocutput be charac-
terized by the reservoir average or well mixed concentration in
the groundwater system. )

ho 4C 41—

LT T T 77T 777 T 77777777/ 777 77 72 772777777727

Fig. 1 A linear reservoir representation for a nonpoint source
contaminant cj

.

Gelhar and Wilson (1974) have shown that a mass balance for a
solute of concentration c{t)' in the stream aquifer setting of Fig.
1 is given by: . 4

dM/dt = my - Mg + Mg (1)
wiere

M = nhc = average mass of solute ¢ per unit aquifer area

m§y = gycj = input mass flux of concentration ¢j per unit area
My = gc = outflow mass flux of concentration ¢ per unit area
mg = other sources or sinks per unit surface area

= porosity

spatial average hydraulic head

jox e ]
n

For the case of steady-state groundwater flow {q = gi) (1) is
given by

de/dt + /Ty = ¢§/Tg + 1! (2}

vhere r' indicates sources or sinks [m/L3/T], and Ta = nﬁ/q is the
average residence time of the system, which can also be written
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o= ¥ o fluid volume of the reservoir .
c o) flow through the reservoir

In simple terms T, describes the average time to replace one pore
volume of the reservoir by deep percolation or recharge. A gen-
eral solution to the linear reservoir is given by the convelution
integral

t
c(t) = cpe T 4 f Bt = 1) eq(ad, kt) = (e Ty m, (3)
0

vhere k(t) is the impulse response function, cp is the reservoir
concentration at £t = 0, and r' = 0. From (3) cne can construct
other solutions for c(t) by assigning the form of cj(t}. For
example the solution for a step input (cj = ¢g) is given‘by

o(t) = cptt-e /Ty, or = 0 (4
I

For situations of nonpoint source contamination undex unceontrolled

or natural state conditions cj(t) is likely an arbitrary function

of time. 1In this case a discrete version of equation (3) is

useful

1
efi) = I =% (- (1 -k + 1) AT/Tg) . oj(k) « AT (5)

where AT is the time interval and k ig the time index (k =1, 2,
3 ... 1)

Physical justification for well-mixed systems

A number of authors have applied reservoir theory to hydreologic
problems of flow and solute transport. 2Among them are Kralienhoff
van de Leur (1958) who examined the problem of nonsteady flow to
drains, and Eldor and Dagan {1972) who related the exponential
outflow bhehavior of a uniform contaminant source to convective
transport effects. This study also demonstrated that the effect
of dispersion would be relatively small at the point of ocutflow
{at the stream or drain) where solutes from all stream tubes are
mixed. Gelhar and Wilson (1974), and McClin (1981} have also
demonstrated that an exponential solute outflow is characteristic
of convective transport for a uniformly distributed, nonpoint
source. Raats {1981) provides a discussion of "apparently well-
mixed" systems based on travel time distributions in a convec-
tive flow field.

The concept of an "apparently well mixed” system can be demon-

strated with a simple numerical example. Consider the introduc-
tion of a steady, uniformly distributed source of contaminant c,
in the homogeneous and isotropic aguifer illustrated in the inset
diagram of Fig. 2. The flow iz assumed to be steady and governed
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by the Laplace equation (Kirkham and Powers, 1972). The governing
equation for two dimensional solute transport of a conservative
species in a vertical plane is given by

ac ac 3c _ 3 8c 3 3c
at T Uk gt Yy 3y T Bx (Dxx % ) + dY (DYY ay) ’ (6}

{ay = ay) Ug2 (ax = ay) uy2
Dyx = "—T,;T—— + aylui r Dyy & rlj!-_r + C"yiul

where o, and 4y are the longitudinal and transverse dispersivi-~
ties, and uy{x,y) and uy,(x,y) are the horizontal and vertical
components of the velocity field determined from the solution to
the Laplace equation {Kirkham and Powers, 71972, p. 118). The
pogition of the free surface was estimated by specifying the
recharge rate {g; = .25 cm/day) and the hydraulic conductivity

(K = 150 cm/day}. Equation (6) was solved using a two-dimensional
finlte element code called Seftran (Huyakorn et al., 1984), with
Codi uniformly specified along the free sur face, and no—flux
boundaries specified elsewhere.

-
Figure 2 illustrates the normalized outflow concentration c/cg
at the stream versus dimensionless time t/T,, for various values
of the longitudinal dispersivity ay. The longitudinal te trans-
vergse dispersivity ratio ux/ay was taken te be 10 in all cases,
while the residence time was calculated to be T, = nhg/q = 3.28
years. Comparison of the linear reservoir model with the con-
vection-dispersion results guggests that dispersion has very
little impact on the aquifer outflow concentration, and that the
exponential cutflow behavior of the linear resgservoir model pro-
vides a reasonably gocd analogue for describing outflow fram
uniformly distributed nonpoint sources.
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Fig. 2 A comparison of the outflow concentration for the convec-
tion dispersion model and the linear reservoir
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Spatial and temporal variability of nonpoint sources

It is reasonable to conclude from the previous numerical experi-
ment that spatially and temporally uniform, nonpoint sources in
stream-aquifer systems demonstrate a behavior not unlike a "well
mixed" linear reservoir. However, as was pointed out in the
introduction, inputs to natural systems are subject to highly
nonuniform conditions in both space and time. 1In this section we
will relax the uniformity condition and examine the performance of
a groundwater reservoir subject to spatial and temporal variations
in the source strength. Ideally this analysis should allow cg

to be treated as a concurrent space-time stochastic process. How-
ever, the preliminary analysis to be presented here deals with
spatial and temporal variaticons separately., Future work will
explore this coupling.

Spatial variability

We first assume that spatial variations in the nonpoint souree
Co(x,t) are described as a stationary stochastic process, and
thus can be characterized by its mean, variance and correlation
structure (correlation scale). We will also make the physically
unrealistic assumption that c, is uniferm in time. The approach
is to generate various stochastic realizations of cg{x}, input
this data to the convection dispersion model described earlier
(eg. 6) and examine the outflow concentration from this model .
The theoretical spatial correlation structure was assumed to be
exponential

p(K) = exp{-k/\) (7

where X is the spatial correlation scale, k is lag distance, and
p{k) is the autocorrelation function. Using a lag-one autoregres-
sive algorithm {Salas et. al., 1980), several space serles were
generated, and these are presented in Fig. 3 for A = 1 and 10
meters and a coefficient of variation for ¢4 of, o/n = 0.1 and
0.5. Pigure 4 illustrates the normalized outflow concentration
c{x,t})/C, versus t/T, for the convection-dispersion model, and
the linear reservoir. The most striking characteristic is the
very regular behavior of the outflow, demonstrating the large
degree of averaging which occurs for areally distributed sources,
gince none of the spatial fluctuations evident in the field data
are observed in the output. It is clear that there are signi-
ficant differences between ocutflow from the convectiocn-dispersion
model and the well-mixed linear reservoir during early time

(t/To < 0.3). However at latter time (t/T. > 0.3) outflow
concentrations are again apparently "well mixed." During this
early time period, notice that the simulation with the largest
variance and the largest correlation scale also shows the greatest
difference with the linear reservoir result, while the simulation
with the large variance and the small correlation scale provides
the result closest to the linear reservoir. Most of this early
time difference is likely due to variations in the simulated
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source strength very near to the drain. It seems likely that most
of this difference would disappear if the source strength was
realistically simulated as a two—dimensional field, and the
groundwater system treated as a three-dimensional cne.

Although this preliminary effort remains somewhat inconclusive, it
does suggest that complex spatial variations of the input process
for nonpoint source contamination do not dramatically affect the
concentration of groundwater entering the stream. However, addi-
tional research is necessary to better understand what are the
limiting conditions where the "well~mixed" assumption may apply

to nonpoint source problems subject to spatial and temporal
variability.

Temporal variability

If we accept the concept that spatial averaging produces an
apparently "well-mixed" system, then the interpretation of tempo-
ral variations of nonpoint sources can be examined within the ,
theoretical framework of linear filter theory for stationary
stochastic processes (Koopmans, 1974). A linear filter, as
illustrated in Fig. 5, simply converts a staticnatry input time
series into stationary output, while the (groundwater) system
performs as a filter. The filter can be defined either in the
time or frequency domain. For stochastic processes this is most
cvonveniently done in the frequency dcmain. The approach makees use
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Fig. 5 A linear filter in the time and frequency domain
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of the frequency response function from linear systems theory, and
the mathematical technique of spectral ahalysis of time series,
Jenking and Watts (1968} provides a good summary of the theory as
well as several examples.

Treating the linear reservoir model {eq. 2) as a stochastic dif-
ferential equation, Duffy (1982) provides a sclution in two parts.
The first part, or transfer function, is a measure of amplitude
attenuation (actually amplitude sguargd) between input and output
versus frequency., and is presented in terms of the output/input
spectral density ratio ¢,0/¢o;0,- The spectral density ¢ (w).

or simply the spectrum, describés the variince distribution of a
time series as a function of frequency w. The second part of the
frequency domain sclution to the linear reservoir is the phase
spectrum O (w), which is a measure of the lag ¥ime between input
and output for each frequency in the record. Figure 6 summarizes
the theoretical transfer function and phase spectrum versus
dimensionless frequency for the linear reservoir model, aleong with
the output/input variance ratio versus Ty/A. «In this case X is
the temporal input correlatlon scale for ¢j., assuming an exponen-
tial autocorrelation in time, similar.to eg. 7, with lag k now
having units of time. Details of the theory can be found in Duffy
{1982). .

The frequency domain solution of the linear reservoir model of
Fig. 6 can be readily applied to field problems such as parameter
estimation (Tg) where the input/output spectra are known, or for
characterizing the input time series itself, given T, and the
output time series.

Qualitatively the filtering characteristics of a linear reservoir
are quite simple, The transfer function suggests that high
frequency variations in the input are attenuated over a broad
range (1 < oTq £ 30). The negative phase spectrum rincreases with
frequency up to a maximum of r/2. The output/input variance ratio
suggests that contaminant fluctuations in the input will be
attenuated to near zero when the residence time is large and/or
the correlation scale 'is small {x + 0). This suggests that
uncorzelated lnput time series are more effectively filtered

than correlated inputs. Duffy (1982) has demonstrated that the
frequency domain approach is useful for characterizing the re-
sponse and estimating parameters of nonpoint source salinity in an
irrigated agricultural setting.

Multiple reservoirs

A potentially useful extension of reservoir theory to nonpoint
source problems is the area of multiple reservoir systems.
Eriksson (1971) provides a general theory for multiple reservoir
modeling of composite natural systems, while Duffy et al. (1984)
treat an agricultural drainage system as a multiple reservolr
system. Pigure 7 illustrates two simple arrangements for the
linear reservoir, serial and parallel. Also shown is the impulse
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response function for each system of reservoirs, where x(t) is
taken to be an impulse input.

As an example of the multiple reservoir approach, van der Molen
(1973} has examined the process of leaching saline soils with
fresh water using serial reservoirs. 1In this case each reservoir
corresponds to a different soil layer, with outflow from the
overlying layer producing inflow to the next. Comparison of the
serial reservoir solution of van der*Molen (1973) for leaching
with the ceonvection dispersion model indicated a close agreement
between outflow concentrations for as few.as four reservoirs. For
a situvation of solute displacement in a layered aquifer with
different hydraulic conductivities, Simonett (1981) has used a
combined serial-parallel arrangement of grdﬁﬂ;water reservoirs to
deacribe chloride transport to drains. In general the flexibility
of using systems of reservoirs in series and/or-parallel would
seem to provide a useful toocl for analysis of nonpoint source
systems,

Summary

-
The basic goal of this papet has been to emphasize the utility of
simplified models of nonpoint source contamination, and their
relation to problems of spatial and temporal variability of the
contaminant source. There has been no attempt here to incorporate
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Fig. 7 a) Parallel linear regervoirs with unequal residence times
Tg, ¢ and the corresponding impulse response function. b)
serial reservoirs and the impulse response function for
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the effects of spatial and temporal wvariations in the hydraulic
properties of this system (hydraulic head, hydraulic conductivity
and porosity}, or in incorperating the important effects of the
unsaturated zone. and thus the results are incomplete. However, it
does seem reasonable to conclude that simplified lumped parameter
models, given an appropriate conceptual framework can be very
useful for studying the integrated, input-output effects of
stream-agquifer or agricultural drainage systems. In addition it
was found that magnitude of dispersion, and stationary spatial
variations of the nonpoint source, have relatively little impack
on the outflow concentration to streams or drains.
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Discussion

B. Shumay :

A.

Warrick:

You have nicely modeled input-output relations

in time in terms of a lumped parameter system
which 1s strictly '"causal", i.e., the ouptut is
strictly dependent on the past values of the
input. In space, there is no clearly defined
past. How would you handle this case?

It is true that this study concentrates on
input-output behavior, however, we are modeling
the system as a two-dimensional vertical flow
and transport problem, with recharge rate and
concentration a function of space (qi(x) and

C,(x)).

If you follow a particle aleng a given
streamline from its origin on the water table
surface to its point of outflow at the stream,
then each particle does have a clearly defined
history with respect to space. That is,
particles that originate at s point on the water
table some distance from the stream have a
longer travel time than those that originate
close to the stream. The polnt of the spatial
correlation structure, has a relatively uminor
effect on the cutflow concentration, or in other
words, the outflow depends primarily on the
spatial mean input concentration C . This is
due to the mixing effect of all stfeamlines at
the point of outflow. In this case spatial
variability of nonpoint sources has only a
secondary effect on groundwater ocutflow at the
stream due to the natural mixing processes in
the aquifer,

It is true, however, that the ARl model which I
use to generate the spatially wvariable input
process is not really approprilate, since it only
allows correlation in one direction (i.e. a
causal system only depends on (X-1) values of
the spatial process). An improved generation
technique would use bhoth (X + 1) and X - 1)
terms to generate the input process.

Could some of the differences attributed to
correlation length and variances be alsco
dependent on the particular value of the source
chosen near the outlet? These might dominate
the early breakthough and disappear at longexr
times.
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C.

D

I believe that this is exactly the case, That
is, early ©breakthrough of the source of
contamination near the stream is the cause of
the deviations from the lumped parameter result.
The prcblem with this experiment is that we only
consider the input process, or noapoint source,
to be one diwmensional C (x). Effectively the
problem we are solving amBunts to a single slice
in a much larger, watershed or drainage
sltuation. If we simulated the more realistic
three-dimensional groundwater system with a
two-dimensional, a really distributed source, I
expect that these early time deviations would

-disappear by averaging and the "well mixed"

outflow assumption would stild be apparent.

~
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Measurement and interpretation of spatially
variable leaching processes

R. J. Wagenet, Department of Agronomy, Ithaca NY 14853, Usa

The wvariability of lesaching processes in the unsaturated
zone has received much attention in the last decade of soil
science research. Measurements of the movement of water and
solutes under £ield conditions have demonstrated that accurate
estimation of fluxes must consider spatial wvariations in the
s0il physical, chemical and biclogical preoccesses that affect
water and solute distribution. A number of statistical” and
mathematical approaches have demonstrated with relatively few
tield measurements that wvariation in hydraulic conductivity,
water flux, pore water velocity, and dispersion produce substan-
tial wariation in water and solute distribution in the soil
profile. In the course of producing these sometimes elegant
descriptions, there has been 1little development of sgimilarly
advanced sampling technology or the investigation of variability
as it relates to management of water and chemical applications.
These issues impact both the amcunt of spatial wvariability that
we estimate exists in the landscape and our subsequent interpre-
tation of it. Before designing further field investigations and
developing new mathematical and statistical interpretive tech-
nigues, it i1s important that we momentarily pause and consider
several rather fundamental questions which have strong implica-
tions with respect to measurement and interpretation of spatial-
ly and temporally variable leaching processes. These guestions
are:

1. What is the influence of the physical size of a measurement
or of a particular measurement technigue upon the degree of
estimated variability?

2. How much variability in water and solute movement is due to
inherent (intrinsic) soil variability (arising from soil
forming factors) and how much is due to imposed (extrinsic)
variability (non-uniform or geometrically patterned appli-
cations of water and sclute or the influence of vegetation
patterns)?

3. Is there a temporal stability tc the spatial structure of
© variability?
4, What 1is the influence upcn spatially variable water and

sclute fluxes of spatial and +temporal wvariations in the
physical, chemical and biological processes that affect
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leaching {e.g. adsorption/descrption, precipitatiocn/disso-
lution, crop uptake, degradation, mineralization)?

5. If models are to be used to describe the displacement of
water and solutes in spatially variable systems, what is
the appropriate model form te be used for research versus
management purposes?

These gquestions have been conly infregquently addressed in
the soil science literature by those scisntists interested in
leaching processes, with the result that little consensus exists
concerning appropriate measurement, interpretation or simulation
procedures. A perusal of the soils literature for the Ilast
several years suggests that issues related te data analysis and
interpretation are receiving much attentioh -through application
of autoregressive, geostatistical, spectralh and related tech-
niques., Similarly, the development of modeling‘approaches that
consider stochastic versus deterministic relationships is also
an attractive topic for many scientists. Yet, the fundamental
first step of making reliaple measursments that are representa-
tive of the natural system has not always been appreciated. Ws
must be careful in our enthusiasm Yo study spatially wvariable
soils that we do not genetate substantial data sets of rela-
tively worthless information because of lack of appreciation of
basic principles of measurement and interpretation. This issue
seems particularly relevant to scientists interested in the
variability of leaching processes. The cbjective of this paper
is to review several studies that have indicated the types of
problems encountered in field sampling and data interpretation.

Sample size and representative elementary volumes

One of the first guestions to be answered in any field study of
variability is the measurement method to be used. Often the
choice of a method is. based upon previous exp%rience of the
investigator and the cost and leglstics of collecting an ade-
quate number of samples. There is usually very little concern
for the implications posed by use of a particular technigue with
respect to the degreé of sgpatial variability that will be
measured. For example, i1f the technigue Iinvolves use of a
calibrated device, such as a neutron molsture meter to measure
soil water content, the statistics of the calibration curve can
(and often are) considered when water content at a particular
locaticn is calculated. However, if the estimation ocf water
content is by gravimetric sampling, there is usually little
consideration of whether a 2-inch or 4-inch bucket auger used at
50 lccations  in the fileld will provide sample populations of
similar mean and variance for scil water content, The relaticn-
ship between the volume or size of a sample and the variability
of a number of sgsamples 1is widely appreciated (Fig. 1) with
methods developed to treat it. Despite several examples in the
soil science literature that indicate its importance, sample
size has seldom been considered as a fundamental issue to be
resolved before initiating a sampling program.
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In soil leaching processes, as in other disciplines that
consider flow phenomena, a continuum approach is commonly
employed {(Bear, 1979). This conceptualizes the flow system as
heterogeneous at the microscopic level, with solid space and
pore space distributed throughout the domain occupied by the
s50il. This microscopic system is difficult tc describe mecha-
nistically, and we therefore do not consider processes at the
microscopic level of pore-pore interacticns. Rather, we con-
sider a representative elementary volume (REV) of the soil (or
porous media}, which can be defined on a macroscopic level, and
which is continuous through space {(Fig. 2}. The property of
interest within the system 1is defined to be some average value
of its microscoplc variation within the REV. When we discuss
spatial variability two issues must be considered, First, what
is the correct value of the REV for the scil and property of
interest, and second, what is the spatial relaticenship of
successive REVs in a spatial domain? Geostatistical analysis
treats the latter issue through techniques described elsewhere
in this symposium., The former issue of a correct REV quickly
becomes an issue of sample size related to our assessment of
spatial variability. It is useful to review a few studies that
illustrate the need for determining the REV and that are drawn
from cases that have implications for scil lsaching processes.

Case 1. The volume-variance relationship in core samples.

A continuous core sample separated inte finite depth increments
is often used as a means of measuring solute or water distribu-
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tion with depth in the scil profile. Data generated in a core
with enough depth increments can be treated by several tech-
nigues (e.g., Gelhar et al. 1983) as a step in analyzing the
spatial variability of water and solute movement., However, a
fundamental assumption in geostatistics is that the regionalized
variable {in this case sclute content) is measured at a point in
the system which has an infinitely small wvolume or geometric
support associated with it, In a ccre, as the length cf a depth
increment increases, this assumption’ is less valid, with the
result that the analysis of spatial relationships is no lcngexr
comparing twoe points separated by a distdhce but two average
values over a core length separated by the distance between
their midpoints. The size of the core increments influences the
estimated degree of spatial variability, &s demonstrated in
Figures 3-6. Consider two hypothetical profiles (Fig. 3 and 4)
: of measured chloride [(mg/kg soil} resulting from, applicaticn of
B salty water, as would be determined by taking samples at incre-
ments of 5, 10, or 15 em. Case 1 presents a gmoothly varying'
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Figs 5 and 6 Semi-variograms of chloride content developed for
different sampling depths from data of Cases I (Fig, 3) and II
{Fig., 4).

profile, and Case II a more irregular chloride distribution.
Calculated semi-variograms for Case 1 (Fig. 5) demonstrate very
little difference in the estimate of gpatial structure whether
the 5, 10 or 15 om core size is used. However, the data of Case
II lead to different shaped semi-varicgrams as the core size
changes (Fig. 6), due Iin great measure to the irregular chloride
distribution. If functions were fitted to each Case II semi-
variogram they would be different, as presumably would be the
results of any next step taken., Interpretation of the spatial
variation of leaching processes from such data, whether by
correlation, spectral or other analysis can be expected to
suffer from such considerations until we better dJetermine, for
example, the REV for chloride leaching in different soils. B&As
further stochastic or mixed stochastic-deterministic descrip-
tions of leaching processes are deriwved, the use of core data to
test the models can be expected to increase, and although there
are statistical methods available to treat the wvolume-variance
relaticnship (such as regularization), nc soil leaching studies
have so far considered this issue.

Case 2. Soil moisture sampling

The physical size of the sample collected has been shown to
influence the degree of measured variability of field soil water
content. As an example, Hawley, et al. (1982) cogllecteﬂ eight
different sized cores from ten locations in a 2m area. Core
length was a standard 100 mm, with core diameters ranging from
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Table 1. Variability of water content measured with different
core sizes on three dates (Bawley et al, 1982},

Core Size Measured Scil Water Content (%)
diameter Mean Variance Mean Variance Mean Variance
{om) Aug. 14 Sept. 18 Sept. 26
10.2 9,755 0.408 10.539 0.068 15.346 0.434
7.6 9.804 0.387 10.650 0.296, 14.747 0.464
5.1 9.695 0,251 10.781 0,180 14.936 0.094
3.8 9.709 0.482 10.834 0.3113 14.9186 0.35%
2.5 9.029%9 ° 0.391 11.024 0.298 . 14,4131 0.917*
1.9 9,067 0.803 11.227 0.266 ¥ 14.700 0.924%
1.3 8.964 0.935 11..750 1.937* 214,830 0.9249*
0.95 8.4%4 3.482%* 13.025 1.262* 15.013 1.905%

*indicates variances Significantly higher (<= 0.0l1) than cther
variances on that date. '

10.2 em (4 in) to 0,95 cn13(0.375 in). This produced sample
volumes ranging from 824 cm” to 7 cm . Sample collecticn was
accomplished on three different dates with the results dependent
upon the date (Table 1). The wvariability of the soil water
content was found to be a function of the time elapsed between
the sawmpling date and the last previous rainfall. The wettest
sampling dJdate, BSeptember 26, followed two days in which the
total rainfall was more than 15 mm; the driest, August 14, had
been preceded by two days without rain., The fouk smallest core
gamples all exhibited variances greater than the large samples
on the wettest date, but on the driest date only the variance of
the 0.95 com diameter c¢ore was significantly greater. The
intermediate date, September 18, was also intermediate in
wetness, with only the twc smallest coras more variable than the
other sizes. These results demonstrate not only that smallexr
gample volumes are more variable than large ones, but also that
there is a relationship between mean s0il moisture and the
minimun desirable sample volume. The results also indicate that
the local scil meisture variability decreases as the average
s0il water content decreases, which is itself a fuhction of the
time since the previous rainfall or irrigation event. This
implies that the REV for water content will have to be large
enough to accommodate +the effects of transient scil water
conditions and will probably lead to different REVs for differ-
ent soil types.
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Case 3, Variability of scil solute content

A similar study to Case 2 investigated the relationship between
measured chloride distribution with depth and sample veolume
(hassan et al. 1983). Two core samplers were used, a 7.9 om
diameter auger and a2 2.1 om diameter sampling tube. A series of
20il samples were collected from plots to which had been applied
a known quantity of chloride. These samples were then dried,
extracted and analyzed for chloride. There was higher total
recovery as well as higher wvariation among values from the
smallar sampler, The coefficient of wvariation (CU) for the
total reccovery was 8% for the large sampler and 14% for the
small sampler. The implications of these results for leaching
studies is more obvious when the estimated distribution of
chloride with depth is considered (Fig. 7), as values generated
from the small samples indicated the chloride content to be more
variable in the profile than did values from the large samples.
The conclusion from such a study is that if measured concentra-
tions are to be used tc develop estimates of the variability of
solute fluxes in a field or are to be used to develop or tést
‘models, it is obviously important tc take as large a sample as

CHLORIDE CONCENTRATION IN SOIL WATER (G/Co)
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Fig. 7 Chloride concentration measured in the field with two
different sized samples (from Hassan et al, 1983).
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possible to insure that a REV is being sampled. Additionally,
Hassan et al. (1983) noticed a possible effect from contamina-
tion of deeper samples by surface material when using the larger
auger, and exclusion of scil from the small sampling tube due to
friction and compaction. These very practical concerns obvious-
1y influence results and should be identified as components of
sampling programs when spatial variability is the issue to be
treated.

A final point before leaving the issue of measuring soil
solute variability concerns the use of porous ceramic cups as
extracticn devices to measure soil soluticn concentrations., The
volume of scil sampled is a function of the negative pressure
applied tc the’ cup, and the soil water -tentent. The sample
collected reflects the contributions of thdse pores that will
empty in response to the applied suction, It is almost certain
that in many soils this gample will not constitute a REV, yet it
is a methecdelogy that is widely used. A very practical point,
often the determining factor, is that the pdrous ceramic cup is
the conly available means to repeatedly and directly sample the
same point in the profile. Howevew, it appears that ceramic
extractors do not always provide reliahle estimates of the true
soil sclution as they do not sample all water in a localized
volume, and in many cases do not collect sample from a REV of
scil. Their use shcould be carefully considered in future
studies of solute spatial variability.

Case 4. Variability of hydraulic conductivity measured on
extracted core samples

It is a common practice to collect cores in the field in as
undisturbed a condition as possible, transport them to a labo-
ratory and there subject them tc a series of standard tests to
determine hydraulic copductivity (K). The inflence that the
size of the core has upon the estimate of K is often neglected,
but. the effect can be gsubstantial, Anderscn and Bouma (1973)
collected ten undisturbed cores of 7.5 cm diameter for each of
four coré lengths: 5,-7.5, 10 and 17 cm. The study focused on
an argillic horizon of a silt loam scil with abundant root
channels and subangular blocky peds. The value of the saturated
hydraulic conductivity, K r was measurad using standard
laboratory techniques for c¢ore samples. Mean values of K

were found to decrease as the core was lengthened (Fig. 8). fﬁé
variance cof the ten samples also decreased when K was
measured in longer cores. These results were iﬁterpfgﬂéd by
considering the relationships between soil-water £flow, scil
structure, and a finite-sized core sample. It was cencluded
that larger pores tend to become discontinuous throughout longer
cores (much as they would in the field), which would result in a
considerable drop in hydraulic conductivity, Shorter cores
would more often be characterized by the presence of continucus
pores through the length of the core, thereby producing gen-

erally higher Ksat values. The longer cores produced more
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Fig. 8 saturated hydraulic conductivity measured in different
size undisturbed core samples (from Anderscn and Bouma, 19737.

consistent K values for the same reason, as attenuation of a
large pore at any point in the core above the outfleow would
produce a sgimilar reduction in K in replicate cores. The

values of the 17 cm high core were closest to those measured
in-situ by a double tube method although the mean of the former
was still greater than the mean double tube value by about a
factor of two (Fig. 8). It is obvious that use of a core of
ingufficient size can provide inaccurate estimation of the
spatial variability of KSa , even if many replicates of the core
are used. Not only does Ehe core size influence the mean and
variance of a sample population, the relationship of the wvalues
determined on any core to a "real", in-situ determined K is
not clear. sat

Case 5. Variability of hydraulic conductivity measured in-situ

Recognition of the influence of soil structure upon the value of
Ksat measurements from different sized cores leads to an addi-
tional question. What influence dces the physical size of an
in-situ sampled area have upon estimation of K ? That is, if
scil structure has an influence in the verticil dimension then
does it also play a role in the horizontal through the number of
peds included in an in-situ, attached scil coclumn? This ques-
tion has recently been addressed in a field study {Lauren, 1984)
that measured K in-gsitu using five different sized scil
columns carved ffom a textural B horizon but with the bottom of
each column Jeft attached to the  soil profile., The procedure
used on the three largest-sized columns (160x75 cm, 120%50 om,
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50x50 cm) was adapted from the column method of Beouma {1977),
and consisted of -encasing in gypsum the four exposed vertical
sides of the excavated column leaving the top surface exposed
for infiltration of water. Each column was 20 cm in height.
Steady state infiltration of water inte the column was used as
the measure of K . The two smaller-sized columns were formed
by inserting intgaihe 50x50 c¢m square twe circular sections of
pipe, one 20 c¢m in diemeter and the other 7.6 cm diameter. K a

was also determined on these columns, in the attached ceondition,
by an infiltration measurement, -TRe experiment was organized
such that each set of five measurements was made at
approximately the same x-y spatial coordihate location. This
was achieved by locating, for the three largest column sizes,
each successively smaller measurement within the confines of the
previous column, The only deviation from this design was that
the two circular columns were taken adjacent tc each other from
within the 50x50 cm square. The experiment wasg repeated at 40
locations separated by 10 m on a 400 m transect. The results
{Table 2) demonstrate that the sampled populations of K £ from

all column sizes were strongly log-normal. The mean, wode,
median and variance of these populat&pns depend greatly upon the
size area sampled. Excluding the largest sample size, an

increase in surface area of the column produced a general
decrease in the mean and variance of measured K . This trend
was not consistent at the largest size for unexgigined redasons.
However, the coefficients of wvarijation (CV) feor the three
largest sizes were essentially identical. The CVs for the two
smaller sizes were also identical zlthough greater in value than
for the larger samples. This behavior of smaller sampling areas
can be axplained .by considering the probability of any small

o

Table 2. Saturated hydrauiic conductivity measyred in-situ on
five different sized volumes {Lauren, 1984)

Column . Column Saturated Hydraulic Conductivty
Size Area Mode Median Mean Variance CV Number
(cm) (cm2) -—-- {cm/day) ----- {cm2/3ay?) (%) of Obs.
160 = 75 12000 8.6 17.6 25.0 647 101 40
120 x 50 6000 5.5 10.¢ 15.4 233 , 99 3
50 x 50 2500 5.4 11.3 16.3 290 104 40
20 (dia.) 314 6,9 20.3 34.9 2391 140 37
7.6 (dia.} 45 4.9 16,0 28.9 1897 150 38
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sample containing within it a representative cross-secticnal
area of soil, complete with the cracks, channels cor preferred
pathways that ‘determine X The smaller the sample, the
greater the probability thé% the flow regime will occasionally
be dominated by a single crack or channel. This will result in
both a larger mean and wvariance of the sampled population, as
the occasionally extreme value of K will increase both these
statistical moments, It remains to guantify the relationship
between these values and soil structural units, such as the ped
size, degree of cracking cor presence cf large pores.

Geostatistical analysis of the five transects measured in
this study produced different estimates of spatial structure
depending upon the column size used (Fig. 9). The semi=-

12,000 em? 6600 em?
0.75F 0.60f
-~
g 204 p
- _S =0.474
o 0851 0-501 (534
£
Kl
3 0.551~ 82=U 50 0.40F
z {847)
<
o
< 0.45) V v o.aof
T
2
w 0.35¢ 0.20p
0.25 sl L 0101 v L L
20 60 100 140 20 60 100 140
DISTANCE {m) DISTANCE (m)
Q
2600 cm2 ® 314 cm? e
0.75} 1.80Fo0 45 om2 5o
-~ n
¥ s2=1a00 A 4]
1] ]
= o.esf rept188TIT L iy
o ! ' [T
£ 2 of? f SR b1
] 59=0.544 b B AR S
 0.55F (2903 “ 1.40——— E gt 1
z AN Voo
= TR N S
Z o.45F 1.20} ‘-‘l.* i ‘.”.' &7
L ‘J: i )
2 1522115
w L L =1.
W 035 1.00 L 230 1)
0.25—¢ L L 1 o0.80l—1 L L
20 80 100 140 20 60 100 140
DISTANCE (m} DISTANCE {m)

Fig. 2 Semi-variograms of saturated hydraulic conductivity
measured in-situ over different zized areas (from Lauren, 1285),
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variogram of K values from the largest and two smallest
columns showed RO spatial structure, while a spherical or linear
model could perhaps be fitted tc the semi-variograms calculated
using the data from the two intermediate column sizes. This is
not an unexpected result, particularly if the results from the
emall columns are misleading due te the size area sampled nct
being representative of the average cross-sectional progerties
of the soil (i.e. the REV for Ksa is greater than 314 cm™ by 20
cm deep for this soil). Theré 1s alsc, apparantly, an effect
upon estimated spatial,structure preduced by using too large a
sample size (12,000 cm'} indicating perhaps .an error in experi-
mental methodology when trying to apply the column method to so
large a bleck. The further analysis and interpretation of this
data is in progréss. .

These results have obvious implications for in situ studies
of hydraulic conductivity. The same degree of Variability is
nct measured by the column method in different soils, as a CV of
only 10% was measured by Baker and Bouma (1976) using 25 cm
diameter columns in silt loém scils. The proper size column to
be used (the REV) for measurement ofe K is obkvicusly influ-
enced by soil structure. OCriteria havgageen presented (Bouma
1983) based upon soil structure for separating soils into
classes of REV appropriate for measurement of Ksa . These
hyvpothesized c¢lasses are relatively untested, but Yeébresent a
logical approach to deciding how large a sample constitutes a
REV in different soils. It is clear that until we resclve the
relationship between scil structure, sampling gize and the
degree of estimated spatial variability, the extrapclation of
results from one field study to apother situation will be a
tenucus proposition. A number of studlies (e.g. King and
Franzmeier 19%81; Nowland, 1981; McKeague et al., 1982) have had
mixed success in predicting X' from soil pedological measure-
ments, perhaps due to lack of “fiformation on the REV for K in
different scils. However, when appropriate measurementsggch—
nigues are used, and spatial structure is measured in hydraulic
properties, calculation of integral scales and estimation of
field sizes and samplé=numbers are possible ({(Russc and Bresler
1982). These techniques offer promise for extrapolating the
results of a study at one site to other geographic locations.
However, without reliable measurements based upon knowledge of
the REV, use of such eguations will be only an academic exer-
cise, Increased attention must be paid to the relationships
between soil structure, hydraulic properties and +the REV,
particularly if a long-range objective is to relate measured
spatial variability to common and widely used soil data bases,
such as the soil survey,.

Temporal stability of spatial variability
A basic premise of studies that measure spatial variability

of leaching processes is that the spatial structure of variabil-
ity {if any) is preserved over time. Not much research atten-—
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tion has been paid this issue, although intuitively it seems a
reasonable assumpticon. As spatial variability in water and
solute movement is dictated by variations in the geometric
arrangement of particles in the scil matrix, it can be presumed
that in most scils these arrangements are relatively stable over
time. This is visually apparent from cbservaticn cf wet and dry
spets in the field, indicating lecalized positions of relatively
rapid or slow water mevement. The lack of research attention
paid to temporal stability of spatial variability is understand-
able, particularly with zrespect to soll parameters such as
hydraulic cenductivity that are used teo predict water and solute
movement. Most technigues used to measure these parameters are
tedious and labor-intensive., This cften makes multiple observa-
tions on one field at one point in time a logistical nightmare,
let alone repeated sets of multiple observations, as would be
needed to study temporal variability.

Vachaud et al. (1984) have recently presented a straight-
forward method of assessing, and then using for further sampling
programs, the tempcral stability of the structure of spatial
variability. In their study, a neutron moisture meter was used
to measure soil water coEtent every 10 cm to a depth of 100 cm
at 17 sites in a 2000 m grass field. Data were collected 24
times over a 2.5 year pericd at irregular intervals. Soil water
storage in the first meter was calculated for each access tube
at each sampling date. Geostatistical analysis of the data
showed that water storage values were spatially independent, but
classical statistics showed that at each sampling time the water
storage values were normally distributed. As an example, Fig.
10 (Vachaud et al. 198B4) presents the cumulative probability
density function for the two extreme situations: the wattest
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Fig. 10 Temporal relaticnships of spatial variability of soil
water storage (from Vachaud et al., 1984),
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{Sept. 7, 1982) and the driest (Aug. 17, 1983). The important
characteristic of these plots is the relative position in the
cumulative probability of each individual access tube, here
dencted by the number located to the right of the plotted point.
Note that althcugh the total amount of water in the profile at
each access tube changed over time, the mean soil water storage
for the field could have been determined by sampling only at
position 10, and the 95% prcbability limits on the water storage
determined using lecations 1 and 4. This is potentially quite a
useful result, as it indicates that positions in the field can
be identified with one soil sampling at™tfime zero and used
thereafter for repeated sampling to estimate, e.g. the mean and
variance of water storage. This infers that, simple gravimetric
sampling and analysis at the first stage of a field study could
identify statistically important field leocations at which could
then be located more detailed and intensively monitored sampiing
devices., Only a few such sites, intensively monitored, could
then be used as measures of the limits of field wvariability.

-

Extrinsic and Intrinsic Variability

The spatial wvariability of soil precperties has long been
recognized by pedologists. The relationships between parent
material, topography, elevation, vegetation, time and the
resultant scil's physical-chemical properties has led to appre-
ciation of the variabie nature of scils in the landscape. This
variation arising freom natural processes can be termed intrinsic
s0il wariability, as it is a component of the essential nature
of the so0il and has arisen at least partially from within the
soil body by weathering and leaching ‘phencmenon, This intrinsic
variability is manifested in such forms as the gradation of
particle sizes in alluvial outwash soils, the development of
distinguishable differences with depth (the soil profile), and
the presence of macropores, structural cracks, and root chan-
nels., Such variability ghould be distinguished from the imposed
variability of water and solute within the soil profile that
results from the distinct application geometries used in many
goil-water-chemical management programs., The imposed, or
extrinsic, variability can result from patterned irrigation
application (furrow or gprinkler} and patterned fertilizer or
pesticide applications in bands cor rows behind spravers. This
patterned wvariability will often persist over time, depending
greatly upon the dynamics of the flow regime, which is itself
variable according to the intrinsic variability. These issues
should be recognized, particularly as seil sampling programs are
designed that will be incorporated into other studies of chemi-
cal redistribution within the =scil profile and in which extrin-
sic wvariability is to be imposed upon the intrinsic. For
example, Hornsby et al. (1983), in a {field study in which
aldicarb was applied in bands, investigated the proper location
of scil sampling efforts on successive dates to monitor the
variability of aldicarb leaching. They found that the pattern
of leaching wvariability in their very sandy soil was almost
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completely determined by the uniformity and separation distance
between band applications. That is, the extrinsic variability
defined the limits of subsequent solute leaching variability.
Whether this result would be transferable to other soil types is
not resolved. It is c¢lear, though, that these two types of
variability must be separately considered, particularly as
results from a soil series in one location are extrapolated to
the same series in another location that is not subject to the
same management (different extrinsic variability).

Such issues have been recognized in studies of the spatial
variability of pesticide applications, and the results demon-
strate the degree of effect that can be imposed. Taylor et al.
(1971) collected a total of 108 cores in a 0.13 ha field plot
goon after its treatment with dieldrin. A 50-fold variation in
dieldrin was measured {overall CV of 80%), with much of the
cbserved variability attributed to application using a boom
sprayer followed by a discing operation. Similar extr;nsic
variability has been reported in a number of other studies
{Fryer and Kirkland 1970; Harris st 2l. 1942: Wauchcpe et al.
1977), including one (Walker and Brown 1983) which demonstrated
that careful application methods could reduce measured CVs
compared to these cbserved under more conventional procedures.

Leaching variagbility in non~cropped and cropped situations

The studies of Nielsen et al. (1973} and Biggar and Nielsen
(1976) that demonstrated the spatial wvariability cf the steady-
state infiltration rate, XK(8) relaticnship, apparent diffusion
coefficient (D), and pore water velocity (v} stimulated much
gubsequent theoretical and experimental activity {(e.g. Van De
Pol et al. 1977; Carvallo et al. 1976; Luxmoore 1982; Hornsby et
al. 1983; Vauclin et al. 1983). These studies have confirmed
that water flow and solute transport are quite spatially vari-
able. Generally, it can be stated that field measured sample
populations of rate parameters related to leaching, such as
infiltration rate, K(8), D and v are characterized hy skewed
distributions, often log-ncrmal. Sample populations of capacity
parameters, such as bulk density, saturated water content and
cation exchange capacity have been shown to be less skewed in
their distribution, and often are normally distributed about
their mean. The raw data from these and similar studies has
been used in a number of conceptual exercises to (1} simulate
water flux during steady drainage (Warrick et al. 1977), (2}
assess the relative impact of D and V on variability of solute
leaching (Amoozegar-Ford et al. 1982), (3) develop stochastic
models that represent the reigtionships between sample popula-
tiong of spatially variable transport properties and the calcu-
lated water and solute movement in the field (Dagan and Bresler
1979; Bresler and Dagan 12979, 1978; Jury 1982), and (4) develop
field sampling programs that consider the spatial distribution
of sampling points as a necessary first step in measuring
leaching variability (Warrick and Nielsen 1980).
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All these studies had as a basic objective the determina-
tion of the intrinsic wvariation in s0il properties related to
water and scolute movement, However, the implications of these
gtudies may differ depending upon whether the scil is cropped or
uncropped, and in the cropped case, may depend upon the leaching
fraction as well, Intuitively, it seems obvious that root zone
processes of water and solute extraction have an influence upon
the variability of water and chemical fluxes within that region
of the profile. The old adage that "a plant roct takes water
frem where it is most available" recognizes not only variability
of water in the soil, but also the intgraction between the
variabhility and water extraction. A field study that attempted
to simulate water content and solute concentration in both
cropped {corn) and non-cropped soil profiles. (Dudley et al,
1981) provided indication that plant root extractxon homogenlzes
leaching processes within that region. Tensiometers and neutron
probe data were used to develop in-situ soil hydfaulic proper-
ties, and soil solution extractors were used to sample the soil
profile within and below the root zone in sbtveral treatments
that differed in water and salt management. A numerical model
of water and salt movement [(including description of chemical
reactions) provided much more¢ accurate simulation of total salt
in cropped than in non-cropped cases. A single measured,
spatially averaged relationship between K-B-matric potential was
used in simulating all situations. It was hypothesized that
this relationship produced simulations that more closely matched
cbserved data in the cropped case due tc a uniformity of water
and solute fluxes within the root zone produced by plant extrac-
ticn process. The removal of water more readily from pores
where the matric potential was closest to zerc, which are also
pores that would be physically larger and meore conducive to
rapid water and ‘solute movement {the extremes of 1leaching
variability), reduced the influence these large pores could have
upon the leaching process., The use of an averade K-B-matric
petential relationship to describe a cropped area characterized
by such processes was approximately correct, and reasonable
51mulat10ns were thereby produced for cropped cases. Solute
concentrations in the non—cropped profiles, closely resembling
the experimental design used previously by e.g. Biggar and
Nielsen (1976) or Van De Pol et al. (1977}, were not well-
described by the predictions of " the numerical model. This is
consistent with the previons work that indicates K-f-matric
potential relationships tc be extremely variable sgoil proper-
ties. It is to be expected that variable solute concentrations
produced by such spatially variable water flow conditions could
not be predicted using a deterministic numerical model. It
should also be recognized that the leaching fraction used in
this study was rather low (less than 10%), and therefore the
influence of the root zone in integrating and homogenizing water
and sclute fluxes was probably maximized. It can be expected
that as the leaching fraction increases the influence of the
root zone will decrease, and the variability of water and sclute
leaching will approach that measured in non-cropped cases. This

224




will be particularly true if increased leaching fractions are
produced by intermittent, excessive applications of water
resulting in large volumes of drainage during relatively short
times.

Similar influence of the root-zone upon variability of
water and scolute movement has been demonstrated by Bresler et
al. (1979) and Wagenet and Rao (1882}. It is clear that al-
though so0il hydraulic properties may be spatially wvariable by
orders of magnitude, this does not always translate into orders
of magnitude in variability of water and solute movement in
cropped situations. Transient upward and downward movement of
water and solute within the roct =zone accompanied by plant
extraction produces much more homogeneous water &and sclute
profiles than would be expected by considering only the natural
s0il variability of hydraulic properties. This 1s true so long
as leaching fractions are minimal. It also appears that deter-
ministic, numerical models cof water and salt movement can
repregent this variability and provide reascnable simulatioms of
water movement and solute leaching, sc long as other mediating
processes (e.g. bilological conversion, chemical reactions) are
well-understood.

Spatial variability of mediating processes

Whether we consider the transport, transformation and plant
uptake of nitrogen and orxganic chemicals or the simultaneous
movement, precipitation, disgolution, and adsorption/desorpticn
of inorganic ions, it is c¢lear that a number of processes other
than convection and dispersion can influence sclute leaching.
All these processes are potentially spatially wvariable as each
depends upon conditions of water content, substrate concentra-
tion, temperature, and soil structure that are alsc spatially
variable. Information on spatially variable leaching process
has to date been developed through the study of non-interactive
ions, such as chloride or bromide, and at times considerable
success in simulating guch ions has been achieved (Smith et al.
1984). However, almcst all cases of environmental or agricul-
tural interest focus on interacting chemicals that can be
degraded or transformed during leaching. The experiences gained
from studies using non-interactive ions have enlightened us
greatly on the variability of soil physical processes related to
flow, but the implications of these studies with respect to the
movement of pesticides, heavy metals, toxic organics, and
inorganic salts remains toc be determined. The recognition that
spatial variability of leaching processes exists does not mean
that this variability is the controlling factor in producing
spatially variable water or solute fluxes. It could eventually
be shown that spatial and/or temporal variability in, for
example, a biological or chemical transformation process actual-
ly overwhelms variability of hydraulic properties in determining
the distribution of a solute within the soil profile.
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An example of such results has besn provided with respect
to measuring and modeling nitrogen transport and transformation
in a field cropped with corn (Wagenet and Rac 1982). Extensive
measurement was made of nitrate concentrations and water con-
tents under several water and nitrogen applicaticen regimes. The
spatial variability of the K(©) relationship was studied in 100
locaticns at 7 depths (700 total estimates; Jones and Wagenet
1984), and was condensed and summarized using scaling methods
(Warrick et al. 1977). A numerical mpdel of nitrogen transport
and transformation which represented nitrogen transformation by
first-crder kinetics, was used with this_ information in an
attempt to simulate measured nitrate concentrations. It was
found that predicted nitrate concentrations were relatively
insensitive +to "the wvariable K(8) relatienghip. The model
correctly predicted the soil depth at which péak nitrate values
would exist, yet grossly overpredicted the nitrate concentra-
tion. ©Lack of understanding of the rate .of biolbgical conver-
sion was hypothesized as the limiting information to successful
simulaticn of the nitrate distributicen. In this case, spatial
variability of the K(8) relationship was treated well, but the
influence of wvariable biological conwersion processes was hot
well enough understood. As mcre field cbservations are made of
spatially variable biologically active 'solutes, it will become
increasingly important to understand the variability of trans-
formation or retention processes. Only in this way can solute
leaching be understood cn a field scale, and managed within the
context of the entire” soil system.

Summary

Although we now appreciate that leaching processes are
spatially variable, we have not vet developed a suitable tech-
nology for accurately measuring that varisbility, for interpret-
ing data from spatially variable field sampling pregrams, or for
predicting the distribution of water and solutes in spatially
variable soil profiles. However, we are closer to accomplishing
these tasks than we were ten years ago. Our ability to progress
te further understanding and improved management will depend
upon how well we have learned cur lessons from past efforts.
For example, we now recognize that the manner in which we
collect gamples can influence the degree of variability that we
think are measuring. This should motivate us to determine
appropriate sampling methodelogies that focus upcen the REV of a
property and the sample size necessary to accurately measure
variability. We also recognize that statistical‘® techniques
which consider the spatial dependence of field samples can cften
be helpful in quantifyirng variability, although we do not vyet
include such techniques in routine assessment of water and
chemical movement. In fact, zroutine sampling of field soils
employs very little of the rapidly growing literature on soil
sampling in spatially variable scils, due ©o a combination of
logistics, poor communication, and lack of generalizable design.
In response, we must redouble our efforts to design sampling
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programs that maximize the scientific return from every field
study. We also do not yet appreciate the full significance cf a
growing crop's effect on the wvariability of the quantity and
quality of water exiting the root zcne and how this variability
is related to water and amendment application schemes. Finally,
when the cbjective 1is prediction, we can formulate stochastic
and deterministic models that describe the movement ocf non-
interacting jons in spatially wvariable field soils, but we are
not yet capable of treating interacting or transforming solutes
that are subject to the effect of multiple, mediating spatially
variable processes.

The summary effect of these facts is that although we are
closer than ever before to understanding and managing gpatially
variable soils, we are still far from devising a comprehensive
strategy for doing so. The need for such a strategy is cbvious,
particularly if we consider important envirconmental problems
that focus on the movement cf water and solutes. One example of
such an issue 1s groundwater gquality. In the next degade,
groundwater degradation from the leaching of pesticides, fertil-
izers and toxic wastes will become an increasingly sensitive
public issue, and it will be important to manage the soil system
to reduce chemical leaching., This management must be based not
upon the mean values of solute concentration within the profile,
but with concern for the ccecasiconal extreme values that evolve
from spatially variable soil processes and properties. It is
these statistical outlyers that in many instances result in
unacceptable groundwater contamination. Understanding spatial
variability of solute and water movement is a fundamental first
step in devising & strategy for the proper management of such
systems.
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Discussion

L. Wilding:

R, Wagenetl:

W. Schuh:

R, Wagenet:

L. Wilding:

The question of Intrinsie wvs. extrinsic
variability. We must not forget that the
blochemical system of soils, which is an intrin-
sic property, contrels many of the physical-
chemical reactions in solls such as biodegrada-
tion of pesticides, redox potential, dentrifica-
tion, rhizosphere effects on phosphorus and
symbiotic microorganism impacts.

I agree. My purpose in distinguishing between
extrinsiec and intrinsic warlability 1is to
recognize that we impose certain variations in
soil distribution of water and sclutes by our
human activities (extrinsie wvariation), and
there is another variation (intrinsic) that is
produced quite naturally by biological, physical
and chemical processes.
Ve

When speaking of elementary sample volumes - how
much can we expect the definition of our popula-
tion to affect the required wvolume? Does this
point te a need for examination of optimal
classification units - not necessary but pos-
sibly spatial - for the desired parameter?

There are many possible scales of observation
that can be used to characterize varlability,
from the smallest local volume to field scale
and on to watershed or larger scales. It does
not seem logical to me to ever use a smaller
gcale than one which incorporates in an average
macroscople manmer all the possible microscopic
variations. This is my concept of a representa-
tive elementary volume (REV). The population
defined by it consists of measurements on sgoil
volumes that vary by the property being
measured. I believe it will be useful on any
scale and will vary according to the measurement
techniques and purpose. However, we should be
careful that the density of wvariation of the
factors that affect the property 1s the same in
both the sample volume and the landscape., The
minimum sample volume that meets this criteria
is then both "representative", and "elementary".

Doesn't the representative elementary volume
depend on the property under concern (i.e. the
adsorbed versus non-adsorbed elementsg)? For
example, do we wish to look at the soil as the
plant root sees it? If 8o we may be examining
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R. Wagenet:

J. Parker:

R. Wagenet:

K. Flach:

R. Wagenet:
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too large a volume of soil rather than too small
(consider Eb for example). On the other hand,
in hydrological work perhaps our sampling volume
is too small.

The point is well taken, and the answer is yes,
the REV depends on the measurement being made.
My answer here is similar to that given to
Mr. Schuh, and can be quickly restated as '"The
REV, to be both representative and elementary,
must contain variation in the factors affecting
the property at the same density as is present
in the natural system under study." In this way
the REV will vary accordlng to the property

" being measured,

We should be wary of attempts to define a single
unique REV. The size of an “REV" is contingent
on the scale of the continuum we seek to medel,
We may describe flow at the pore scale (in
concept) by solution of the MNavier Stokes
equation given detadled knowledge of the pore
structure and a big enough computer! Or as Lynn
Gebhar's work elegantly shows we may be able to
define a REV on the order of many meters or
kilometers when, for example, an asymptotic
micredispersion tensor may be obtained. Of
course, as the REV size increase the wvatiance
between samples diminished while more variabil-
ity is incorporated within the REV.

I agree. My reply.Eo Mr. Schuh and Mr., Wilding
amplifies on my agreement.

Many measurements pedologists make routimely go
back to a list prepared by Richard Bradfield in
1935, Feedback from modelers is needed to
update the list of measurements that are being
made and to improve the methods of sampling and
measurement.

I hope the types of studies underway, in which
we would like to relate hydraulic properties to
soil morphclogy, will motivate the pedologists
interested in soil structure to develop a
quantitative expression of =soil structure.
Descriptive, somewhat qualitative terms Llike
"blocky" and "prismatic' do not help us much as
we move the more quantitative statistical and
mathematical treatments of soil variability and
leaching, This is my first "feedback” to my
fellow pedologists.



C. Topp:

k. Waaenet:

J. Starr:

K. Wagenet:

M. Nash:

The classically defined soil structure concepts
have not been defined for interpretations of
flow and transport properties such as K .
Therefore 1t is not surprising that preggﬁt
concepts of s0il morphology do not yield direct
information on K . The so0il morpholeogist has
a highly refinefaconcept of observation which
can be "ecalibrated" and will result in a revised
approach to degcribing and quantifying soil
morpholegy. Our experience of wusing soil
morphelogy to predict K indicates that a
revised approach can b&? developed to give
reliable and quantified KSa . This requires
that a measurement technique must be wused t
"calibrate" the morphological analysis. The
first evidence of this is available from
McKeague et al, (1982) in S8S5SAJ.

1 am aware of that work, and while it is focused
on the general direction that I suggest, I would
hope that we can eventually pgo even further
toward defining relationships between morphology
and flow properties in both quantitative and
mechanistic terms.

Others are also concerned about the effect(s) of
sample volume on variance, etec., in that at
least two papers were presented earlier this
week by myself and my colleagues on this
subject,

Did you imply that an REV can be identified for
a given parameter by its resulting in a spatial
structure when smaller samples do not,

it appears frow our studies that using sampling
volumes less than REV precludes the measurement
of any spatial dependent in hydraulic conduc~
tivity, while using samples of at least the size
of a REV allows us to calculate spatial depen-
dency in the samples. However, we define the
REV using elementary units of soil structure,
not in terms of the volume required for estima-
tion of spatial structure. If a relatiounship
can be established between the REV based on soil
structure and the ability to determine spatial
dependence it will help tremendously. As yet, I
do think this relationship has been established,

If you find a different range for each variable,

how can you design the soil boundary for all the
variables?
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R. Wagenet:

R, H{LL:

B, Wagenet:

F. Morkoe:
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If you found through principal cowponent analy-
sis that the first principal component held the
highest variation, can you use that in kriging
for mapping design?

If each soil property is separately analyzed by
geostatistical methods, it is probable that a
different range o©f spatial dependence will be
found for each propersy. Condensing these into
oune collective vreglon by defining a soil
boundary that includes at once all ranges is of
course tot possible. However, we should con-
sider developing separate maps of each property
rather than seeking condefnsation of several
properties. After all, the sdil survey already
accomplishes the collective description of soil
variability, There 1s no-reason"tce retreat to
that position once we have taken the time to
study the vaFiability of each property.

T am not familiar with: the details of principal
component analysis, but those knowledgeable on
the subject indicate that it could be used in
conjunction with kiriging.

How would you suggest determining a relative
elementary volume of an experimental unit and
determining the field location of that experi-
mental wnit so that the effects of a treatment
on’ physical properties may be evaluated?

If working on the scale of an experimental field
plot or relatively small agricultural field, I
would proceed much as described ’in my paper
relative to in-situ measurement of hydraulic
conductivity. If you are examining treatment
effects on physical properties (e.g., the effect
of additions of organic matter upom hydraulic
conductivity), I would first determine the REV
for hydraulic conductivity, and would then
initiate a second study that imposed organic
matter treatments in a serial manner over space,
with measurement of K( )} made using the right
REV, This assumes that the size of the REV is
not affected by the treatment, and 'unless the
treatment is quite extreme relative to the
microscopic variability, this seems a reasonable
assumption,

In order to determine the REV in your infiltra-
tion study, you have done extensive sampling.




B, Wagenet:

E. Flaig:

R. Wagenet:

Would you speculate on how you can determine it
easier?

We are hoping to relate the REV to soil mor-
rhology so that we can use the soil survey as a
guide to  appropriate weasurement volumes.
However, it may also be true that the REV is a
function of measurement method. I hope it is
not., We need a few more studies oun such issues.

My coument considers the topic of extrinsic and
intrinsic soil variability, Our evidence from
steady rate dirrvigation with fertilization of
nitrate dillustrates that the spatial pattern of
nitrate in goil soluticn at 0.5 m depth was not
found to reflect the spatial pattern of the
depth of drrigation water or applied nitrate at
the surface. However, the pattern of nitrate
leaching was influenced by the location of a
localized traffic pan.

It i1is interesting that the presence of the
traffic pan apparently overwhelms much of the
other dynamics of the system. Certalnly such
dominating physical features will affect our
assessment of variability, both in Intrinsic and
extrinsic cases.
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