

Kvk Projectendag – 7 April 2011

WindVisions

Photo courtesy of airliners.net

1

O.K. Hartogensis,
D. van Dinther

Contents

- Project Information:

Problem-definition – Objective – People – Hardware –
Project-organization – Deliverables

- Current work (the science):

New algorithms to determine cross-wind with scintillometers

2

Project Information

The Problem

- The operations at Mainport Schiphol are highly sensitive to a number of critical weather parameters, most notably precipitation, the local wind field and visibility.
- For safe and efficient airport operation now and in the future, under the condition of a changing climate, routinely monitoring and prediction of these critical weather parameters is essential.

Objective

Develop a Wind and Visibility Monitoring System (WindVisions) at Mainport Schiphol:

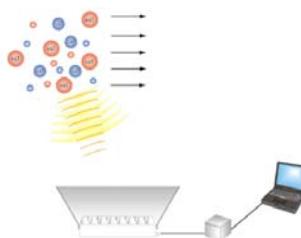
➤ WindVisions will consist of:

- a cross-wind scintillometer:
→ *horizontal*/long range wind and visibility sensor
- a SODAR (Sound Detecting And Ranging):
→ *vertical*/scanning wind sensor

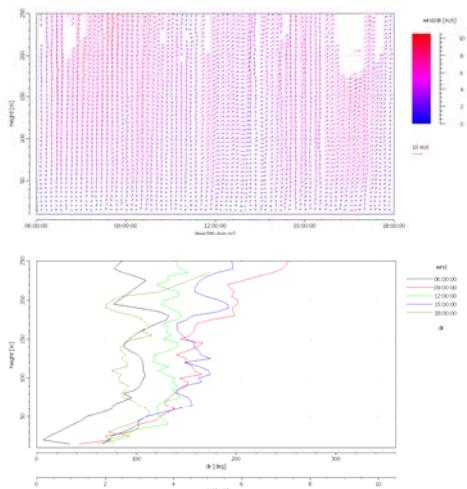
➤ The area of interest to monitor is the landing and take-off course of air-planes ranging from the surface to about 300m height along a runway.

People

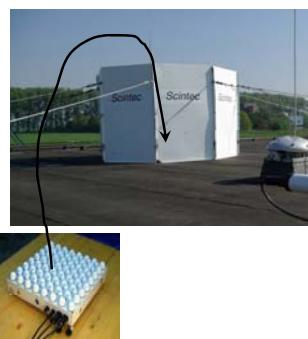
Prof. Dr. AAM Holtslag – Chair of WUR-MAQ


Dr. Ir. OK Hartogensis – Daily Supervisor and Project Leader

Ir. D Van Dinther – Project PhD student


Drs. P. van den Brink; Ing. J.O. Haanstra; Ing. R. ten Hove (Schiphol Group)
Ir. L.E.M. Smit (LVNL)

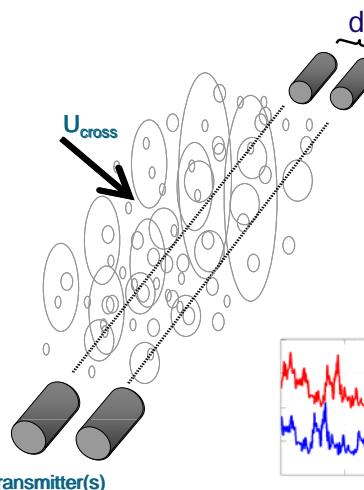
Hardware - SODAR


- A SODAR emits short acoustic pulses into the atmosphere.
- A SODAR receives reflected (backscattered) acoustic pulses from temperature inhomogeneities (turbulent eddies) in the air
- Doppler frequency shift → wind speed and direction @ many heights
- Amplitude → turbulence intensity @ many heights

Hardware - SODAR

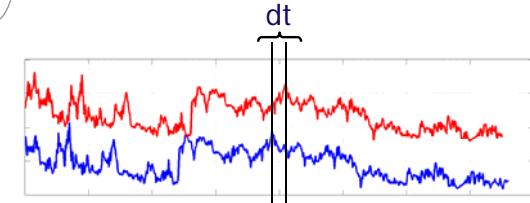
Hardware - SODAR

Now:

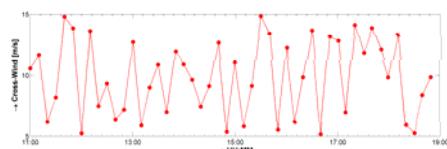


Working on:

Hardware - Scintillometer



Hardware - Scintillometer



Scintec BLS-series

$$U_{\text{cross}} = \frac{dx}{dt}$$

Hardware - Scintillometer

- Intensity fluctuations → line-averaged cross wind speed @ one height
- Intensity mean → line-averaged visibility @ one height

Hardware - Scintillometer

Transmitter

Processing Unit

Receiver

Organization of the Project

- **Phase 1:** Hotspot MainPort Schiphol – HSMS01
 - Technology Development
 - Location: Mainly Wageningen + Cabauw
 - Time: Feb 2010 – Feb 2012
- **Phase 2:** Theme 6 - Climate Projections – WP1.3
 - Deployment WindVisions
 - Location: Mainly Schiphol
 - Time: Feb 2012 – Feb 2014

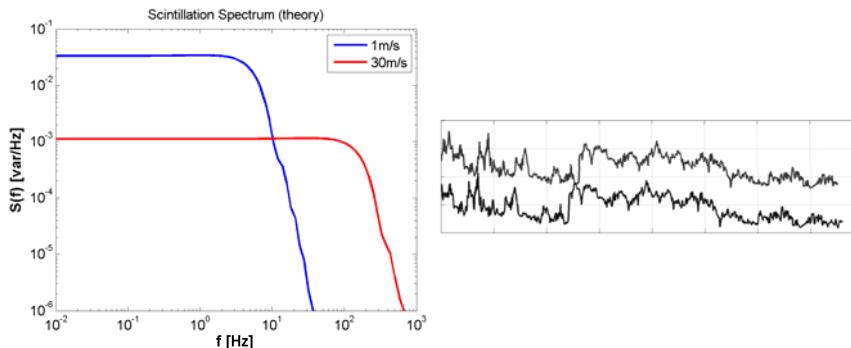
Deliverables Phase 1

- Development WindVisions
- Testing and development at Haarweg and Cabauw

Deliverables Phase 1

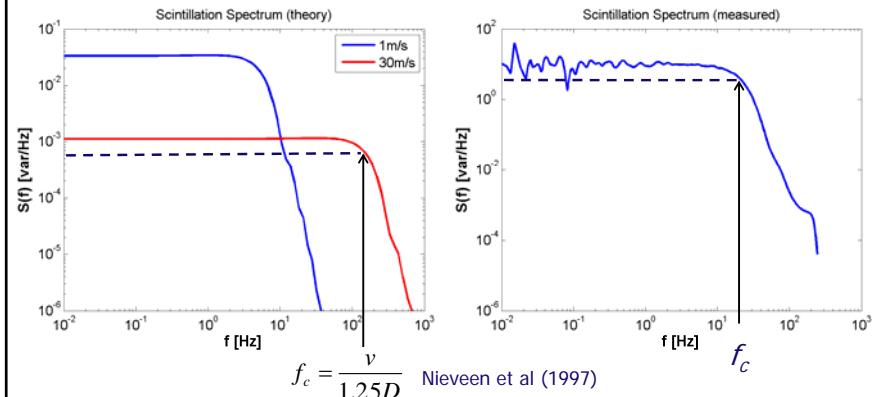
- Development WindVisions
- Testing and development at Haarweg and Cabauw
- Novel instrument development on cross-wind scintillometry:
 - Improved algorithm for the double-receiver cross-wind scintillometer.
 - New algorithms for single aperture cross-wind scintillometer.
 - Horizontal as well as vertical wind measurements (down-drafts)
 - Scintillometers fitted with adjustable diaphragms.
 - Visibility algorithm for the scintillometer

Deliverables Phase 2


- Towards Operational WindVisions at Schiphol airport
- Synergy/Embedment with Modeling approaches:
 - Harmonie (IMPACT)
 - WRF
- PhD thesis!

Single Aperture cross-wind techniques

Scintillometer Spectrum: $S(f) = 4\pi^2 K^2 \int_0^L \int_{2\pi f/v}^{\infty} k \phi_n \sin^2 \left(\frac{k^2 x(L-x)}{2KL} \right) \left[(kv)^2 - (2\pi f)^2 \right]^{-1/2} dk dx$

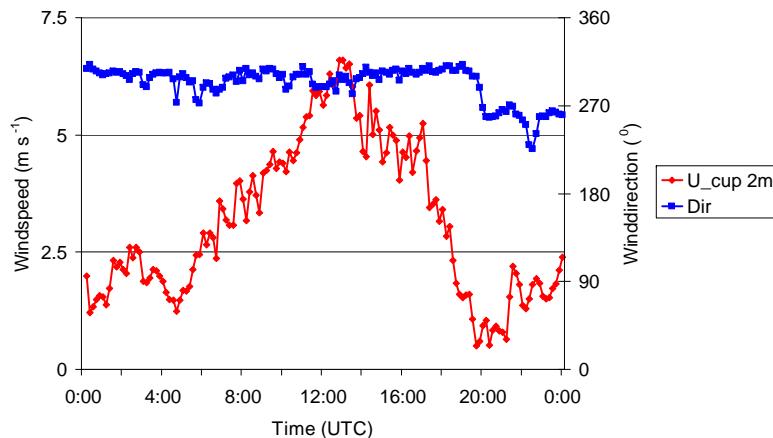

Clifford (1971)

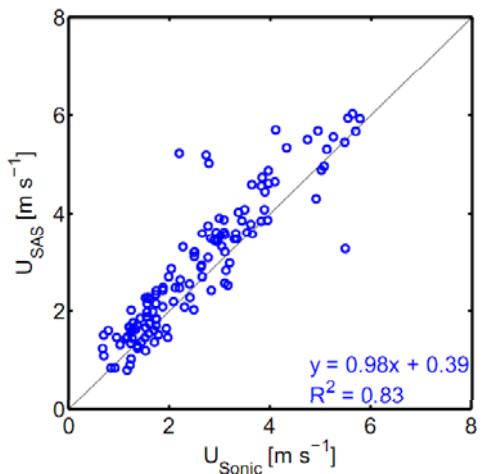
Single Aperture cross-wind techniques

Scintillometer Spectrum: $S(f) = 4\pi^2 K^2 \int_0^L \int_{2\pi f/v}^{\infty} k \phi_n \sin^2 \left(\frac{k^2 x(L-x)}{2KL} \right) \left[(kv)^2 - (2\pi f)^2 \right]^{-1/2} dk dx$

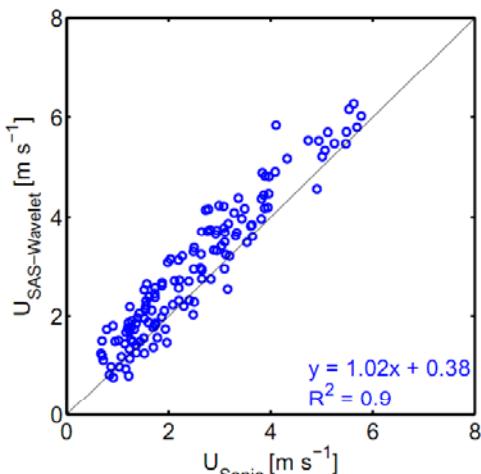
Clifford (1971)

Single Aperture cross-wind techniques


10 Hz sonic

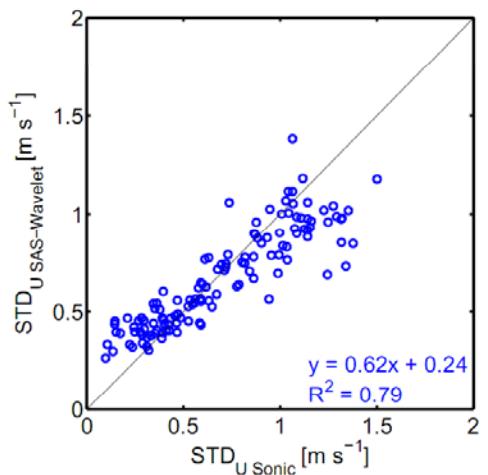

500 Hz DAS

Single Aperture cross-wind techniques


Single Aperture cross-wind techniques

MAIN RESULT

10-minute variables plotted:
• U_{Sonic} : Crosswind of scintillometer path derived from Sonic Anemometer
• U_{SAS} : BLS operated as a SAS – Crosswind based on **10min FFTs**


Single Aperture cross-wind techniques

Special Case: spectra based on wavelets

10-minute variables plotted:
• U_{Sonic} : Crosswind of scintillometer path derived from Sonic Anemometer
• $U_{SAS-wavelet}$: BLS operated as a SAS – Crosswind based on **1 s wavelet**

Single Aperture cross-wind techniques

Special Case: Fluctuations in cross-wind

10-minute variables plotted:

- $STD_{U \text{ Sonic}}$: Standard deviation of crosswind of scintillometer path derived from Sonic Anemometer
- $STD_{U \text{ SAS-Wavelet}}$: BLS operated as a SAS – Standard deviation of crosswind based on **1 s wavelets**

Single Aperture cross-wind techniques

Conclusions:

- Method works!
- Wavelet approach able to obtain crosswind for 'short' averaging times (1 s.)
- Less $std(U_{\text{cross}})$ SAS due to path averaging
- SAS better results than DAS

The END

WAGENINGEN UR
METEOROLOGY AND AIR QUALITY