

Energy research Centre of the Netherlands

Eddy covariance observations of CH₄ and N₂O Towards more accurate emission estimates

P. Kroon^{1,2}, A. Hensen¹, H. Jonker², A. Schrier-Uijl³, M. Tummers and F. Bosveld⁴

1. ECN, the Netherlands; 2. TU Delft, the Netherlands; 3. WU, the Netherlands; 4. KNMI, the Netherlands

Outline

- Background
- Eddy covariance flux technique
 - Description
 - Systematic errors
 - Uncertainties
- Annual field emission
- Conclusions

Background: GHG emissions from a managed fen meadow

Background: Lack of accurate annual sums

Due to spatial variation

Top view Reeuwijk site in the Netherlands

Based on Schrier-Uijl et al., BGD, 2008

Background: Lack of accurate annual sums

Due to temporal variation

Managed site in Reeuwijk in the Netherlands

Kroon et al., Nutr. Cycl. AgroEcosyst., 2008

Uncertainty in N_2O annual estimates derived by chamber may be as high as 50%. (Flechard et al., Agric. Ecos. Environ., 2007)

Background: Measurement techniques

Chamber

Eddy Covariance

$$F_{wc} = \frac{1}{T_a} \int w'(t) C'(t) dt$$

Background: Measurement techniques

Chamber

Eddy Covariance

Can EC flux measurements contribute to a decrease of the uncertainty in annual estimates of CH₄ and N₂O?

Eddy covariance flux technique: Description

Tracer conservation equation

- Horizontal homogeneity
- Flat terrain
- Negligible mean vertical wind speed

$$F_{wc} = \int_{0}^{h} \frac{\partial \overline{c}}{\partial t} dz + \underbrace{\overline{w'c'}|_{z=h}}_{EC_{wc}}$$

Sonic anemometer

Wind measurements

Tube connected to QCL

CH₄ measurements

N₂O measurements

$$EC_{wc}^{\text{meas}} = \overline{w'c'}\Big|_{z=h}$$

$$EC_{wc} = \overline{w'c'}\Big|_{z=h}$$

Kroon et al., BG, 2007

- Alignment sonic anemometer
- Low frequency response losses
- High frequency response losses
- Density fluctuations

Kroon et al., AFM, accepted

Rotation algorithm on u, v and w

$$EC_{wc} = \chi_{cal}\chi_{low}\chi_{high}EC_{wc}^{meas} + \chi_{cal}\chi_{Webb}$$

High frequency response correction:

$$\chi_{\text{high}} = \frac{\int_{0}^{\infty} E_{wc}(f) df}{\int_{0}^{\infty} T_{\text{high}}(f) E_{wc}(f) df}$$

Kroon et al., AFM, accepted

- Alignment sonic anemometer
- Low frequency response losses
- High frequency response losses
- Density fluctuations

Kroon et al., AFM, accepted

Rotation algorithm on u, v and w

$$EC_{wc} = \chi_{cal} \chi_{low} \chi_{high} EC_{wc}^{meas} + \chi_{cal} \chi_{Webb}$$

After applying corrections 30 min fluxes can increase by even more than 100%!

Eddy covariance flux technique: Uncertainties

Kroon et al., AFM, accepted

Random uncertainty in correction algorithms

Other random uncertainties:

- Drift and precision in instruments
- One-point sampling

Kroon et al., AFM, accepted

90% of 30 min EC flux uncertainty is caused by one-point uncertainty!

$$u_{\text{op}} = \sqrt{\frac{2}{M}} \sigma_{w'c'} = \sqrt{\frac{20z}{TU}} \sqrt{\overline{(w'c')^2} - \overline{(w'c')^2}}$$
$$= aEC_{wc}^{\text{meas}}$$

Eddy covariance flux technique: Uncertainties

Kroon et al., AFM, accepted

Kroon et al., AFM, accepted

Random uncertainty in correction algorithms

Other random uncertainties:

- Drift and precision in instruments
- One-point sampling

90% of 30 min EC flux uncertainty is caused by one-point uncertainty!

$$u_{\text{op}} = \sqrt{\frac{2}{M}} \sigma_{w'c'} = \sqrt{\frac{20z}{TU}} \sqrt{\overline{(w'c')^2} - \overline{(w'c')^2}}$$
$$= aEC_{wc}^{\text{meas}}$$

Uncertainty in a 30 min flux can be much larger than 100%; however it decreases with $1/\sqrt{N}$.

Annual field emission: CH₄ and N₂O emissions

Average annual emissions over 2006 – 2008

	Static chamber	Eddy covariance
CH ₄ [kg CH ₄ ha ⁻¹ yr ⁻¹]	170 (±32%)	165 (±13%)
N ₂ O [kg N ₂ O ha ⁻¹ yr ⁻¹]	NA	20 (±34%)

Kroon et al., Eur. J. Soil Sci., submitted; Schrier-Uijl et al., Plant and Soil, accepted

Thus, EC flux measurements can contribute to more accurate annual estimates of CH_4 and $N_2O!$

Annual field emission: Total GHG field balance

Kroon et al., Eur. J. Soil Sci, submitted; Veenendaal et al., BG, 2007

Conclusions

- The annual field emission estimates of CH₄ and N₂O are very uncertain.
- Corrections should be applied for the systematic errors in EC flux measurements.
- There are many uncertainties in EC flux measurements.
- The uncertainty in a 30 min EC flux measurement can be even larger than 100%.
- Assuming 100% data coverage, the uncertainty of a monthly EC flux average can be smaller than 10%.
- The total field emission is estimated at 15 Mg ha⁻¹ yr⁻¹ CO_2 -equivalents (41% due to N_2O); however the emission will increase by more than 250% when biomass removal and farm based emissions are included.

Thanks to ...

Reeuwijk-team

BSIK-team

Cabauw-team

LDA-team

- Arjan Hensen (ECN)
- Hans van 't Veen (ECN)
- Alex Vermeulen (ECN)
- Pim van den Bulk (ECN)
- Piet Jongejan (ECN)
- Rob Rodink (ECN/TU)
- Harm Jonker (TU)
- Erwin de Beus (TU)
- Adriaan Schuitmaker (TU)
- Huug Ouwersloot (TU)
- Mark Tummers (TU)
- Fred Bosveld (KNMI)
- Arina Schrier (WUR)
- Elmar Veenendaal (WUR)
- Dimmie Hendriks (VU)
- Mark Zahniser (Aerodyne)
-

Energy research Centre of the Netherlands

Eddy covariance observations of CH₄ and N₂O Towards more accurate emission estimates

P. Kroon^{1,2}, A. Hensen¹, H. Jonker², A. Schrier-Uijl³, M. Tummers and F. Bosveld⁴

1. ECN, the Netherlands; 2. TU Delft, the Netherlands; 3. WU, the Netherlands; 4. KNMI, the Netherlands

