

Eddy covariance observations of CH_4 and N_2O

Towards more accurate emission estimates

P. Kroon^{1,2}, A. Hensen¹, H. Jonker², A. Schrier-Uijl³, M. Tummers and F. Bosveld⁴

1. ECN, the Netherlands ; 2. TU Delft, the Netherlands; 3. WU, the Netherlands; 4. KNMI, the Netherlands

Outline

- Background
- Eddy covariance flux technique
 - Description
 - Systematic errors
 - Uncertainties
- Annual field emission
- Conclusions

Background: GHG emissions from a managed fen meadow

Background: Lack of accurate annual sums

Due to spatial variation

Top view Reeuwijk site in the Netherlands

Based on Schrier-Uijl et al., BGD, 2008

Background: Lack of accurate annual sums

Due to temporal variation

Managed site in Reeuwijk in the Netherlands

Kroon et al., Nutr. Cycl. AgroEcosyst., 2008

Uncertainty in N_2O annual estimates derived by chamber may be as high as 50%.
(Flechard et al., Agric. Ecos. Environ., 2007)

Background: Measurement techniques

Chamber

$$F_{wc} = h \frac{dC}{dt} \Big|_{t=0}$$

Eddy
Covariance

$$F_{wc} = \frac{1}{T_a} \int w'(t) C'(t) dt$$

Background: Measurement techniques

Chamber

Eddy
Covariance

Can EC flux measurements contribute to a decrease of the uncertainty in annual estimates of CH_4 and N_2O ?

Eddy covariance flux technique: Description

Tracer conservation equation

$$\frac{\partial \bar{c}}{\partial t} + \underbrace{u \frac{\partial \bar{c}}{\partial x} + v \frac{\partial \bar{c}}{\partial y}}_{\text{II}} + \underbrace{w \frac{\partial \bar{c}}{\partial z}}_{\text{III}} + \underbrace{\frac{\partial \bar{u'c'}}{\partial x} + \frac{\partial \bar{v'c'}}{\partial y}}_{\text{IV}} + \underbrace{\frac{\partial \bar{w'c'}}{\partial z}}_{\text{V}} = S_{\text{VI}}$$

After Reynolds decomposition, integrating over the height and assuming:

- Horizontal homogeneity
- Flat terrain
- Negligible mean vertical wind speed

$$F_{wc} = \underbrace{\int_0^h \frac{\partial \bar{c}}{\partial t} dz}_{St_{wc}} + \boxed{\underbrace{\bar{w'c'}}_{\text{EC}_{wc}} \big|_{z=h}}$$

Eddy covariance flux technique: Systematic errors

Sonic anemometer

Wind measurements

Tube connected to QCL

CH₄ measurements

N₂O measurements

$$\text{EC}_{wc}^{\text{meas}} = \overline{w'c'} \Big|_{z=h}$$

= ?

$$\text{EC}_{wc} = \overline{w'c'} \Big|_{z=h}$$

Eddy covariance flux technique: Systematic errors

Kroon et al., BG, 2007

Kroon et al., AFM, accepted

- Calibrations
- Alignment sonic anemometer
- Low frequency response losses
- High frequency response losses
- Density fluctuations

Rotation algorithm on u , v and w

$$\text{EC}_{wc} = \chi_{\text{cal}} \chi_{\text{low}} \chi_{\text{high}} \text{EC}_{wc}^{\text{meas}} + \chi_{\text{cal}} \chi_{\text{Webb}}$$

Eddy covariance flux technique: Systematic errors

High frequency response correction:

$$\chi_{\text{high}} = \frac{\int_0^{\infty} E_{wc}(f) df}{\int_0^{\infty} T_{\text{high}}(f) E_{wc}(f) df}$$

Kroon et al., AFM, accepted

Eddy covariance flux technique: Systematic errors

Kroon et al., BG, 2007

Kroon et al., AFM, accepted

- Calibrations
- Alignment sonic anemometer
- Low frequency response losses
- High frequency response losses
- Density fluctuations

Rotation algorithm on u , v and w

$$EC_{wc} = \chi_{cal} \chi_{low} \chi_{high} EC_{wc}^{\text{meas}} + \chi_{cal} \chi_{Webb}$$

After applying corrections 30 min fluxes can increase by even more than 100%!

Eddy covariance flux technique: Uncertainties

Kroon et al., AFM, accepted

Kroon et al., AFM, accepted

Random uncertainty in correction algorithms

Other random uncertainties:

- Drift and precision in instruments
- One-point sampling

90% of 30 min EC flux uncertainty is caused by one-point uncertainty!

$$u_{op} = \sqrt{\frac{2}{M}} \sigma_{w'c'} = \sqrt{\frac{20z}{TU}} \sqrt{(w'c')^2 - (\overline{w'c'})^2}$$
$$= aEC_{wc}^{\text{meas}}$$

Eddy covariance flux technique: Uncertainties

Kroon et al., AFM, accepted

Kroon et al., AFM, accepted

Random uncertainty in correction algorithms

Other random uncertainties:

- Drift and precision in instruments
- One-point sampling

90% of 30 min EC flux uncertainty is caused by one-point uncertainty!

$$u_{op} = \sqrt{\frac{2}{M}} \sigma_{w'c'} = \sqrt{\frac{20z}{TU}} \sqrt{(w'c')^2 - (\overline{w'c'})^2} \\ = aEC_{wc}^{\text{meas}}$$

Uncertainty in a 30 min flux can be much larger than 100%; however it decreases with $1/\sqrt{N}$.

Annual field emission: CH_4 and N_2O emissions

Average annual emissions over 2006 – 2008

	Static chamber	Eddy covariance
CH_4 [kg $\text{CH}_4 \text{ ha}^{-1} \text{ yr}^{-1}$]	170 ($\pm 32\%$)	165 ($\pm 13\%$)
N_2O [kg $\text{N}_2\text{O} \text{ ha}^{-1} \text{ yr}^{-1}$]	NA	20 ($\pm 34\%$)

Kroon et al., Eur. J. Soil Sci., submitted; Schrier-Uijl et al., Plant and Soil, accepted

Thus, EC flux measurements can contribute to more accurate annual estimates of CH_4 and N_2O !

Annual field emission: Total GHG field balance

Kroon et al., Eur. J. Soil Sci, submitted; Veenendaal et al., BG, 2007

Conclusions

- The annual field emission estimates of CH_4 and N_2O are very uncertain.
- Corrections should be applied for the systematic errors in EC flux measurements.
- There are many uncertainties in EC flux measurements.
- The uncertainty in a 30 min EC flux measurement can be even larger than 100%.
- Assuming 100% data coverage, the uncertainty of a monthly EC flux average can be smaller than 10%.
- The total field emission is estimated at $15 \text{ Mg ha}^{-1} \text{ yr}^{-1}$ CO_2 -equivalents (41% due to N_2O); however the emission will increase by more than 250% when biomass removal and farm based emissions are included.

Thanks to ...

Reeuwijk-team

BSIK-team

Cabauw-team

LDA-team

- Arjan Hensen (ECN)
- Hans van 't Veen (ECN)
- Alex Vermeulen (ECN)
- Pim van den Bulk (ECN)
- Piet Jongejan (ECN)
- Rob Rodink (ECN/TU)
- Harm Jonker (TU)
- Erwin de Beus (TU)
- Adriaan Schuitmaker (TU)
- Huug Ouwersloot (TU)
- Mark Tummers (TU)
- Fred Bosveld (KNMI)
- Arina Schrier (WUR)
- Elmar Veenendaal (WUR)
- Dimmie Hendriks (VU)
- Mark Zahniser (Aerodyne)
-

Eddy covariance observations of CH_4 and N_2O

Towards more accurate emission estimates

P. Kroon^{1,2}, A. Hensen¹, H. Jonker², A. Schrier-Uijl³, M. Tummers and F. Bosveld⁴

1. ECN, the Netherlands ; 2. TU Delft, the Netherlands; 3. WU, the Netherlands; 4. KNMI, the Netherlands

