A. Types: Complex with upper left mainly crumb and granular; lower right mainly spongy, weakly to moderately developed subangular blocky and platy.

B. Peds: Four types with intergrades -

(a) Crumbs; moderately developed on average (weakly to strongly); 15% of area; mainly 0.2 to 2mm; generally rough surfaces; random distribution (occur as individuals and fused crumbs).

(b) Granules; moderately developed (range from weakly to strongly) 15% of area; 0.2 to 2mm; mainly rough, some smooth; random distribution.

(c) Subangular blocks; weakly to moderately developed; 10% of area; usually 2-5mm (narrow dimension); undulating to rugose; long dimension tends to be horizontal.

(d) Platy; moderately developed; 7% of area; 0.5 to 1mm wide by 12-15mm; undulating sutfaces; moderately accommodated; parallel, to 20% inclined to surface.

C. Voids: Total porosity <30µm approx, 50%.

I. Inter-aggregate Voids

(a) Compound packing voids between crumbs, granules and plant fragments; wide range of sizes from 20 to 500, um; irregular shapes; 25% of area; mainly rough walls; random arrangement.

(b) Planar voids separating and partly separating platy and subangular blocky peds; 0.1 to 0.3mm wide and up to 20mm long; 5% of area; undulating walls; mainly horizontal to inclined but all orientations occur.

(c) Channels; definite channels, some with intact roots, others partly filled with debris; round to elongated; 0.3 to 4mm; 2% of area; walls undulating to rough; random distribution and prientation. (A large area near the top of the section was probably a channel; it was loosely occupied by plant debris and aggregates, and voids were considered as packing voids).

(d) Vughs; irregular shaped, more-or-less equant; 0.1 to 0.5mm; 8% of area; rough walls; random; interconnected (channel-vugh distinction is not obvious). II. Intra-aggregate Voids

Packing voids between partially fused aggregates within peds and between grains in peds; irregular shapes; range of sizes up to 0.1mm; 10% of area.

2. Basic mineral components

Coarse/fine limit at 10µm; ratio of 75:25.

A. Coarse fraction

(a) Single mineral grains - all are randomly distributed; Guartz, approx. 80%; wide range of sizes 10-800µm; poorly sorted; mainly < 200µm; inclusions common; mainly angular and subangular; Feldspars, approx. 10%; mainly plagioclases; similar sizes and shapes to quartz; fresh to weakly altered. A wide range of other mineral grains occur: green and brown hornblende, pyroxene (some grains with weathering tim), mica (largely muscovite) together with garnet, chlorite and some opaques; these grains are similar in size range and shape to quartz; mainly fresh to weakly weathered.

(b) **Compound grains** - these account for approximately 10% of the coarse fraction; they range in size from <1 to 8mm; the rock fragments include weakly to moderately metamorphosed granitic fragments and more basic metamorphosed fragments; major minerals in the former are quartz, K feldspat (moderately sericitized), some mica; in the more basic fragments are quartz, feldspar, chlorite, hornblende, pyroxenes, biotite; the ferro-magnesian grains are fresh to moderately altered; feldspars in rock fragments are more strongly altered than individual feldspar

grains.

B. Fine fraction

Most of the fine silt and clay is speckled brown in plain light due presumably to impregnation with organic-rich material. The fine material is isotropic.

3. Basic organic components Coarse/fine limit at 10 µm.

A. Coarse fraction - occupies 5% of area.

Plant residues (no animal, etc. seen): root sections ranging from < 0.5 to 6mm diameter; some are living root sections with all cells visible, others have only dark brown to black cell walls remaining; leaf tissue fragments (no highly resistant cell wall); brown material, some birefringent, some isotropic, with cells at various stages of disintegration; sizes of fragments range widely, < 0.1mm to >1cm long; common black mycorrhizal mantles with fungal hyphae, with a range of sizes; sclerotia and fragments thereof, relatively common (fungal debris is common); rare black fragments (charcoal?) up to 0.3mm.

8. Fine material

Occurs mainly as a component of micromass which it impregnates; small areas of fine organic segregations are described under Pedofeatures; fine material is yellowbrown to reddish-brown and isotropic; fragments of hyphae occur commonly.

4. Groundmass

c/f limit at 10µm; ratio of 75:25.
Undifferentiated b-fabric.
Fine material occurs as:
(a) partial to complete coats on grains, mainly within porous aggregates of a range of sizes and shapes.
(b) bridges between grains in aggregates.

(c) aggregates in intergranular space.

Complex c/f related distribution patterns of chitonicgefuric with minor enaulic and single spaced porphyric.

5. Pedofeatures

Textural – Silt and clay (minor very fine sand) coatings on rock fragments and some sand grains; the coating is usually on only one or two sides but some grains are completely coated; no particular side is preferentially coated; coatings are single spaced porphyric with very low porosity and speckled b-fabric; thickness ranges from 0.7mm to < 0.1mm; colour is greyer than micromass generally; these coatings occupy < 1% of the area of the section.

Amorphous - Brown, speckled, randomly distributed isotropic nodules (organic rich) occupy approx. 1% of area; sizes range from 10-200µm; shapes are rounded to irregular; also rarer black, presumably organic, nodules.

Fabric - upper parts of a few plates and blocky peds have closer packed fabric than the ped generally; the thickness of this feature is 0.1 to 0.2mm.

Described by: J.A. McKeague,

Land Resource Research Institute, Ottawa, Canada.

Aeric Ochraqualf

GENERAL:

Code Number: 74252 Location: Heumen II, East Netherlands. Horizon: Btg.

Depth: 50-65cm

Reference: Miedema R., van Engelen, E. and Pape, Th., 1978. Micromorphology of a toposequence of Late Pleistocene fluviatile soils in the eastern part of the Netherlands. In: M. Delgado (Ed), Micromorfologia de Suelos, Universidad de Granads, Spain, pp. 107-113. THIN SECTION DESCRIPTION (See Figure 4c).

1. Microstructure

Weakly developed medium (sub) angular blocky with undulating irregular ped faces partially accommodated with incompletely separated planar voids; size range of peds is considerable (500µm - 5mm); some parts show a vughy, channel or chamber microstructure, others a massive microstructure.

Interaggregate pores consist of few smooth planar voids and common irregular vughy to planar voids; their width is generally about 200 µm with some up to 2mm; intra-aggregate pores consist of channels as dominant mesovoids; some partially infilled large transaggregate channels up to some mm. occur; all voids occur randomly distributed, the smaller ones have smooth regular walls whereas the larger ones have irregularly shaped walls. Total estimated porosity: 10-15%.

2. Basic Mineral Components

c/f limit at 5µm; c/f ratio 60:40.

Coarse mineral components (>5 um): Dominantly rounded to angular, poorly sorted single mineral grains with variable sphericity; composition dominated by quartz with commonly occurring, generally weakly weathered, feldspars (orthoclase and plagioclase) and acicular micas; heavy minerals are rare.

Compound mineral grains and rock fragments are few; they include medium- and coarse-sand sized chert fragments, polycrystalline quartz and quartz-rich metamorphic rocks, and seldomly volcanic fragments.

Fine mineral material (<5 um): This consists of strongly speckled and dotted clay with fine, often micaceous, silt and iron oxides with a strongly variable degree of impregnation giving colours ranging from grey to brownish red.

3. Basic Organic Components

These form a very minor part of the thin section. Organic coarse material (>10um): Very few intact plant root residues, part of which are impregnated with iron oxides, some epidermis remnants of plant roots and some dark coloured cell lumina.

Organic fine material (<10 um): in the bottom part of the thin section organic fine material is found in relatively unsorted textural pedofestures as punctuations and organic pigment; apart from this occurrence the ground mass has no organic fine material.

4. Groundmass

The thin section shows a complex well developed striated b-fabric with grano-, mono-, random- and porostriated partial fabrics which are medium and thick continuous and 30-300 µm long; locally strial partial b-fabrics occur whilst other parts show an undifferentiated partial b-fabric.

The ground mass shows a very clear single and double spaced porphyric c/f related distribution.

5. Pedofeatures

Textural pedofeatures: (a) About 4-7% undifferentiated, sometimes microlaminated, limpid and speckled clay coatings and derived intrapedal clay concentrations (quasi-coatings, infillings and fragments of coatings); the thickness and sizes of these features range from 50-200 µm.

(b) About 1-2% of impute clay and silty clay coatings thickness ranging from 100-500 μm_{\star}

(c) About 1-4% grey coloured, usually laminated, coatings or infillings of clay and silt and fine sand with a thickness of $500-1000\mu$ m occurring in large channels and vughs; some contain some organic fine material as pale brownish pigmenting agent.

Depletion pedofeatures: About 5-10% grey hypocoatings, 200-2000 µm thick, and mottles of variable size depleted of iron oxides; these features are normally associated with planar voids and channels; boundaries with adjacent ground mass are normally very sharp and with prominent contrast; depletion of iron oxides is also present in textural pedofeatures.

6. Cryptocrystalline and amorphous pedofeatures

Mottles of iron and iron-manganese oxhydrates occur in many forms normally as impregnative features; the most commonly occurring types are hypo-, quasicoatings and nodules; the boundaries are very sharp to diffuse with prominent to weak contrast; units of ground mass with clearly different iron oxide impregnation create a (strongly) mottled appearance.

Excrement pedofeatures

In some channels smooth brown orthic mineral excrements about 200µm in size are found; densely packed aggregated excrements of about 500µm size observed in an infilled worm channel.

Described by: R. Miedema, Agricultural University, Wageningen, The Netherlands.

Dystrochreptic Fraguidalf

GENERAL:

Code Name: I.N.A.P-G 1983; Location: Normandy, France; Horizon: A3/b Cambic;

Depth: 35-55cm.

Reference: Chauvet E. (1984). Contribution a l'étude de la dégradation des sols: caracterisation et évolution, sans l'influence de contraintes hydriques, de la structure microagrégée d'un sol acide. Thèse de Docteur-Ingenieur, I.N.A.P.G.

THIN SECTION DESCRIPTION (See Figure 4d).

1. Microstructure

Type: crumb - granulat; spongy aspect.

Aggregates are (a) granules; strongly to moderately developed; 50–150,µm, ultra fine; 60%; undulating to rough; unaccommodated; random to clustered; unreferred in channels.

(b) crumbs; moderately (ultrafine) to weakly (fine) developed; 40%; 250- 2000,µm, ultrafine to fine; undulating to rough; unaccommodated; random, unreferred.

Voids are (a) loose compound packing voids; 50– 100µm; 30%; moderately serrate; unoriented; random; unreferred.

(b) interconnected vughs; very irregular; 200µm-2mm; 45%; moderately serrate; unoriented; random; unreferred.

(c) channels; round to elongated; regular; 200µm-2mm; 20%; smooth to moderately serrate; unoriented; random; unreferred.

(d) intrapedal vughs; polyconvex; 10-20µm; 5%; moderately serrate; unoriented; random; unreferred.

Total void space: 30%.

2. Basic mineral components

c/f limit at 10µm; ratio of 75:25.

Coarse fraction (a) quartz: 10-150,µm; average 50-100,µm; moderately sorted; subangular to elongate; sometimes subrounded; 80%; often undulating extinction; unweathered; sometimes inclusions of mica.

(b) feldspars: orthoclases and plagioclases; 10-100µm; poorly sorted; subrounded with often rough surfaces; 10%; weakly altered; dotted.

(c) Hornblendes/pyroxenes: 2%; quasi-unweathered.
 (d) Mica: 10-75µm; platy; moderately weathered, pellicular: vellow birefringence.

(e) Opaques: 0.5%.

Fine fraction: Clay to fine silt; light yellow (transmitted light) to reddish yellow (oblique incident light): speckled b-fabric.