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Introduction

In~1 The concept soil structure

In characterizing a soil, one of the most frequently used concepts is that of
s0il structure. The frequent use in the realm of applied soil science has led to
a gradual weakening and increased vagueness of the meaning of this concept. Hence
on the one hand, the hazard exists of further erosion of the practically mana-
geabls meaning, and, on the other hand, new interpretations may arise which are
insufficiently supported by the original definition. The actual definition of
soil structure has often been the object of discussion in soil science litera-
ture. As examples reference can be made to Richards, Russell, and in this coun-
try to van Schuylenborgh, Peerlkamp and Jongerius, who report many definitioms
selected also by other research workers 1in scil science, and who compare these
definitions, sometimes adding deviating interpretations. Often, their considera-

tions result in concepts with some common ground.

Some attention should be paid to the causes of the existing confusion. The prac-

tical difficulties are of diverse nature:

a. Firstly some comments made by the various authors are methodological.

They deal with the formulation of the concept in general, and more particular-
ly with its practical significance. An investigation of the rank order of
sciences should be made first; at this moment this subject will not bhe pur-
sued any further here,

b. The problems of defining soil structure arise partiaily from a rather
vague applicability te agricultural practice. The distinetions and clagsi-
fications are associated often indistinctly with interpretations of quali-
tative concepts that are sometimes borrowed from other disciplines, e.g.
loose structure.

c. In some instances, the present confusion is caused by the way methods of
approach are grouped. The methods of measurement frequently come from phys-
ics or chemistry and the concepts used there were adopted with or without
amendments, e.g. permeable structure, flocecular structure.

d. When attempting to define soil structure a difficult problem is any change

in the composition of the soil over a period of time. The cause of this



change can be complex, and the rate at which it occurs can vary widely. This
is the reason why authors attempting to formulate a generally acceptable con-—

cept will face many ohstacles and will nrobably never succeed.

The problem of defiming soil structure is therefore difficult. As a start, one
has to depart from & more general or even better, the most common method of con-
sideration or apprecach. Foremost 1t can be stated that it makes little sense to
express soil structure in one unit of measurement or cone figure. A provisional
linitation that is generally accepted, is that the spatial arrangement cof the
material is an essential element of the definition. It should be stressed that
the material may contain components in one or more phases.

The most justifiable procedure is then an inductive one. In other words one at-
tempts to derive certain stamdards or principles allowing further determination
of configurations as they occur or could occur naturally. Thus a series of re-
quirements can he established for the measurement of structure. These require-
ments can be adapted, if necessary, to the use to be made of the definition.
Sometimes there will be one or more processes tc be studied in the soil; at oth-
er times the results of the measurements must correlate with the growth of plants

cultivated in and above the soil.

From the foregoing considerations a number of requirements can be deduced in or-

der to reach numerical results. The following statements can be made

a. The results should bear a direct relationship with the spatial configuration
of the material, This means that the series of data obtained should be re-
lated to the arrangement of the system in a simple or at least a direct man-
ner so that differences found are unambighous. This requirement can be for-
mulated more precisely:

The more or less ideal model chosen to interpret the data should not always
»e needing further refinement, but should nevertheless possess sufficient
specificity to describe the investigated configurations usefully. Soil sci-
entists are not primarily interested in the arrangement of the basic fabrie,
but in the actual structural pattern which has arisen.

b. The measurements should yield results in a different direction when the con-
Ziguration is anisotropic. Features such as stratification should also be as-
sessable. That method which detects small differences in the arrangement of
surface layers should be preferred.

¢. The measurement itself ought te be non—destructive, i.e. have a negligible

influence on the sample. This enables repetition of the measurement on the



same sample shortly after the first measurement or at a later date. Changes
in structure with time can then be analysed and described in particular prob-
lems concerning the influences of climate, plant growth and tillage in the
development of structure.

d. There should be an acceptable basis to examine existing structures in full.
In other words, it should be possible to make z significant approach to the
structural unit (Bolt, Schuffelen and Janse, 19538). If the soil surface cracks
every !5 cm there is little value in examining a sample with 5 em diameter.

e. At least ir principle it should be possible to take measurements in the field.

For various reasons, such as study of the microclimate the complete ecological
horizon must be identified. Tn this examination of the ecological horizon the
pore system is of much importance.

Among the many workers, that have measured the distribution and behaviour of gas-
es in the soil, are Lundeggrdh, Free and Canncn. The physical aspects of gas ex-
change appear to be of particularly great importance. It was established that

9 should

be present in the soil for normal crop production. It was rightly stated that a

002 percentages higher than 17 are often deleterious, and that 12 - 152 0

study of transport processes is also of fundamental importance. The partly theo-
retical studies of Penman and later those of van Bavel helped especially to clari-
fy how widely the magnitude and effect of the (mechanical) diffusion constant

can vary and, for deep rooting plants in particular how much this constant can

be affected by the structure of the soil profile.

The biological and microbiological activities, such as nitrification, are also
influenced by the availability of 02. TFurthermore in an insufficiently aerated

soll compounds of Fe and Mn can be locally reduced.

A separate problem which is difficult to analyse is answering the question of

the required sensitivity and reproducibility of the measurements. Although this

point will be discussed later in more detail, it can be stated here that:

a. the sensitivity and the required .reproducibility in general is determined by
the purpose for which the measurement is made. When studying for instance dif-
fusion processes in rhe soil, the required level of sensitivity will usually
be lower than that for investigations of heat transfer in soil.

b. the reproducibility will often vary widely in practice. A more or less homo-
geneous so0il will show less scattering of data thar a strongly inhomogeneous
soil. Samples taken from different sections of a field will show a certain

spread. The argument that the reproducibility of the experimental equipment



need not exceed that of the sampling may well be spurious in certain in-
stances, e.g. if the progress of some process is being followed and the vari-
ation of some quantity under observation is of greater interest than its

absolute value,

In-2 Total pore space

Soil is a three-phase system; the volume ratios of a multiphase system can easi-
1y be determined by drying and weighing after determination of the densities of
the various components. Since the latter in the solid phase of the soil often
show little variation, use can be made of an average density. The calculated air
volume is usually given as a quantity without dimension; it varies linearly with
moisture content. Separate weighings are necessary; from these the geometry of
pore system cannot be evaluated.

Of more recent date are investigations on the occurrence of pore space based on
the intrinsic properties of the material in which the air voids have been formed
by tillage and fertilizer application etc. In this manner significant corre-
lationships have been found with the clay fractions (Hooghoudt, 1948), with
texture {(Fraser, 1935)and with the nature of adsorbed ions (Avlmore, 1966).

A method more immediztely directed to measure pore space is one based on con-
necting a sample with unknown pore space and known total volume with a sealed
vassel of known volume, attached to z manometer.

This "gas expansion method" has been studied extensively in various countries.
The "porosimeters", also called air pycnometers have been constructed in many
forms and tested by Bourrier {1951), Loebell (1956}, Misono (1961), Alten and
Locfman (1962), and others. Comparable apparatus was constructed and used for
routine measurements at our laboratory. In dry samples, the influence of the
pressure range appears to be small. In moist samples, serious problems are
caused by the releage of adsorbed and dissolved gases. Changes in vapour
pressure and slow attaioment of equilibrium conditions are difficult to correct

for in measurements and calculaticns.

In-3 The characterization of pore space

The study of the structure of porous materials is a fascinating one as is evi-
dent from the extensive literature. Many authors in the field of ceramics, filter-

ing technology, geophyeics and soil science are in fact interested in the charac-
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terization or pore geometry. There are some handhooks in the almost endless
array of publications as for instance those ef Mc Dalla Valle (1943), Muskat
(1948), carman {1956), Scheidegger (1957), and Lykow (1938). Their approaches
are predominantly directed towards selections of parameters which can represent
the fluid flow resistance of the material.

The main object is often the reduction cf the number of characteristic parame-
ters or concepts determining the flow resistance. In this context, a homoge-
neous and isotropic configuration is often assumed. The introduction of but one
parameter is much favoured and 1t is remarkable in this respect that so few

publications deal with the effect of two or more parameters.

In 3.1 The Static specific. flow resistance

Porous materials may be investigated by static or dynamic methods of measurement.
For a static method, the variables,excess pressure and particle veloclityy do not
vary in time or vary so slowly that they can be considered constant. For a dy-
namic method the variables are functiens of time and if these functions are peri-
odic, the method is a steady state one. Static methods fall into the steady

state class too as the limiting case of infinitely long period.

Swelling and often low mechanical stability of the soil samples still offer
insurmountable difficulties for correct measurements of permeability, i.e. the
reciprocal value of specific flow resistance for water. It is therefore not
advigable to calculate intrinsic resistances for the solils and loosely packed
materials from measurements with water.

Many simple devices zre available for measuring air resistance. The value, ob-
tained from the volume rate of flow at a certain induced, usually constant,
pressure gradient. The volume rate of flow is measured for various pressure drops
over the sample; the proportionality constant between the two quantities is a
measure for the static flow resistance. In the flow resistance meter (see
figure), used to measure the resistances of most of the samples investigated
here, use is wade of a sample holder encased in O-rings and connected with a
pressure line in the laboratory. The pressure difference between the pressure
gaskets is read from a Micro-Fuess manometer. The pressure difference across the
sample can usually be limited to 0.04 cm water pressure. A calibrated Fisher and
Porter microflowrator (type 130-13) is inserted into the cireuit. The volume
rates of flow are also kept low and lie between 0.1 and 0.3 cm3/sec. The re-—
laticnship between the volume velocity and the pressure drop usually proved to

be linear, the slope varied slightly. The specific acoustic flow resistance was
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Figure

Apparatus for measuring air resistance of cylindrical

scil samples. Description in the text.



obtained as the extrapolated value for vanishing pressure gradients. The concept
of specific air flow resistance assumes a laminar flow. One of the reasons for
measuring with low rates of flow is the avoidance of turbulence.

For measurements of air flow resistance, sample holders of various diameters were
used. Wide holders were used primarily for ccarse materials. It can easily calcu-
lated that oniy through use of the wide holders the effects due to the irregu-
larities in the arrangements of the particles or aggregates near the walls of

the sample-holder could be kept within experimental error.

Small pressure differences are to be preferred with moist samples, where moisture
is easily displaced and where, at low moisture tensions, rupture of the menisci
cap occur,

It is remarkable that so little literature exists on experiments measuring both
air resistance and water permeability of a porous material. Covey (1963) gives

a brief summary and an interesting graph for the relative permeability for air
and water in a soil sample,

The literature yields many references on the relationship between specific flow
resistance and specific surface area of a sample material. An attempt was made

to verify this relationship. For fine grained materials no linear relation

exists between the total frictional area and flow resistance. For increasing
fineness of the material the deviations from linearity became more important.

The relationship between packing density and flow resistance was not linear. The
results will be discussed in another publication,

Conversely the specific air flow resistance is no unambiguous measure for the
frictional area per unit volume and as it fails to yield even this limited infor-

mation this subject, will not be further pursued.

Tn 3.2 The acoustical approach

Soil as a porous system often with an extremely complicated structure cannot

easily be described in simple terms. Two further remarks are necessary on this

point.

1. Only part of the air is in free communication with the atmosphere contributing
to the exchange of pases, such as COZ’ H20 and 02. This fraction of the total
pore space fluctuates enormously with variations in meisture content.

Measurements of total pore space or of mean pore diameter (whatever this may
be) are therefore bound to be inadequate.

2. For various diverse reasons, the packing density of soil particles varies

widely and usually increases withk depth. This excludes the possibility to

14



obtain a true impression of the nature of spatial arrangements in a soil
from flow resistances.

The question arises whether other methods cam be used to supply information on

this spatial arrangement. The problem parallels that confronting an acoustician,

developing a sound absorbing material, even if the aims differ. Whereas the
acoustician is interested principally in inecreasing sound absorption in the

audible frequency range, here the sound-absorbing properties of a material, i.e.

2 soil sample, may be determined in order to gain insight into the spatial ar-

rangement.

An advantage of this procedure is that the analytical and experimental methods,

devised by acousticians for the investigation of sound-absorbing materials, may

be employed.

The interesting question is therefore whether and, if so, to what extent a soil

surface will absorb sound and whether this property can yield information on the

spatial (in agriculture often "structural) arrangement of scil particles.

A comparison between porous materials developed for sound absorption and soil

samples shows that it is certainly so. A practical tool for measuring the a-

coustical properties of soil samples seems to be the interferometer {arrange-

ment), sometimes called the standing wave tube. The instrument will be dis-
cussed in detail in the following sectilons.

Acoustical investigation of soil samples presents several attractive features.

1. Sound pressures are so low (typically less than lO_5 atmosphere) that the
sample is not disturbed; the method is non-destructive.

2. The effects of temperature and composition (e.g. humidity) of the gaseous
medium in the pores of the material on its acoustical properties are slight;
the results are thus governed principally by the spatial arrangement of the
material.

3. Only those pores in open communication with the atmosphere contribute to a-
coustical behaviour.

4, Acoustical measurements yield more information on these pores than any other
method, small pores especially having a relatively large effect on acoustical
performance.

When a plane sound wave of a certain frequency impinges on the soil part of the

incident energy will be reflected. The ratio of reflected to incident energy,

the "energy reflection coefficient™, can be measured. As a rule there is a phase



Jump ‘¢| between the reflected and the incident wave ar the surface of the
sample. This phase jump can be determined too. Energy reflection coefficient
and phase jump can be studied in a large frequency range, so that a large num-

ber of quantities can be measured.



1 Plane waves and interferometry

1.1 Introduction

The interfevometer consists of a rigid cylindrical tube, fitted with a loud-
speaker at one end and the sample {(with its surface normal to the direction of
the tube) at the other (see figure la). The loudspeaker generates harmonic plane
waves in the tube. In the present context, plane waves are characterized by con-
stant sound pressure in planes normal te the direction of the tube (an exceptioen
must be made for a slight perturbation near the wallis of the tube). Thus only
one gpatial co-ordinate, to be designated %, directed along the tube, will be of
predominant importance. The following conventions will apply: the positive x
direction is from the loudspeaker towards the sample and the sample surface is
situated at x = 0 (¥ thus takes on negative values inside the tube).

The sound field in the tube may be considered as the superposition of two waves,
the incident wave, travelling from the loudspeaker towards the sample and im-
pinging on the sample surface at normal incidence (nl in figure la) and the re-
flected wave returning from the sample (p2 in figure la). These waves set up an
interference pattern, determined by the acoustical properties of the sample, in
the tube. This pattern may be explored with the aid of a movable microphone.
More detailed consideration requires the introduction of a number of physical
concepts and quantities. As far as possible, nomenclature, symbols and units
have been chosen in accordance with the recommendations given in "Ontwerp voor
akoestische begrippen en grootheden (V 1029)" and in the draft "Electroakoestiek
(¥ 1077)" and are conform to the recommendations given in the "ISONORM 31", A
sumnary of general vibration theory, given in Appendix A, forms the basis for the
definition of the concepts involved. Next, a discussion will be given of the
method of employing the standing wave tube in the determination of acoustical
quantities. Attention will also be paid in this first chapter to the manner in

which the results obtained may be presented.



microphone probe x=0

i
—h
- sample
Pa
7
i
speaker = +X

Figure la The interferometer tube

Figure 1b An infinitesimal slice of air



1. 2 The wave equation

The wave equation will be derived and sclved for plane waves. The scund field in

the interferometer is characterized by two dependent variables (both of which

are assumed to be constant over a normal cross-—-section of the tube):

1. The sound pressure p, i.e. the excess pressure over the barometric or static
pressure p_; the total pressure is thus given by P, + p.

2. The particle velocity u, the drift velocity of the molecules of the medium
caused by the sound; fof plane waves the direction of the veleocity vector
colncides with that of propagation. The magnitude of the velocity, as that of

the sound pressure, may assume both positive and negative values.

There are but two independent variables in the present case: the time t and the

spacial co-ordinate x.

Consider an infinitesimal slice of the acoustic medium (see figure 1b), having

a thickness dx, The resultant force exerted on this slice is due to p's depend-
ing on x; denoting the cross—sectional area of the tube by 8, the resultant force
in the + x direction is found to be: - S+(3p/9x)+dx. The mass of the slice is
oot dx, where o is the (static) density of the medium. The particle velocity
in the + x direction is u and therefore the equation of motion takes on the

following form (in striking a factor Ssdx from both members):

i 3
__12,09_31 ) (1-1)
9x it

The infinitesimal slice will be compressed or expanded., On introducing the parti-
c¢le displacement, E(u = BE[Bt, £ = £(t,x) ), the absolute increase in volume may
be given ast S+(3£/3x)+dx and the relative increase follows as: 3f/3x. Owing to
this expansion, the total pressure has dropped below the static value, the vari-
ation being the sound pressure p. In view of the fact that all variations are
small, p is proporticnal to the relative expansion:

P~ - Ke(35/2x), (1-2a)
where the proportionality factor K is usually referred to as the compression
modulus, Differentiating the latter equation with respect to time and using the
fact that the differential operators 3/3t and 3/3 X commute, Bzf(axat) =
azj(atax), it follows that:



Bu_ 1. (1-2b)

Eq.{1-2b) is a sneclalized form of the “equation nf continuitv", A value for X
may be derived on introducing certain assumptions. They are:

1. The medium is an ideal gas.

2. Its changrs of state are adiabatic. Especially this latter assumption needs
some justification. Heat exchange within the medium may be shown teo introduce
only negligible effects in air in the gudible freduency range. Heat exchange
batwecen the medium and the walls of the tube does, however, affect wave propa-
gation. This point will be discussed in a future section: for the moment it will

be disregarded as being of secondary importance.

For an ideal gas and an adiabatic change of state:

(ps + p)(Vs + cSV)'< = constant = pS'VSK , (1-3)

where P and V5 are the barometric (static) pressure and the volume of the gas

under consideration at pressure Pgs respectively, p and §V the sound pressure

and the change in V due to p, respectively, and x is the ratio of the specific
s

heats at constant pressure (cp) and at constant volume (cv):

K = cp/cv . . (1-4)

(N.B.: In the following Cp and e, should be conceived as specific heats per

unit mass .}

In first order approximation, eq.(1-3) vields:
P = —KpS'GV/VS N

and thus, from the definition of K,eq.{1-22),it follows that:

K =«p, . (1-5)
Kinetic pas theory predicts values for « for ideal gases, Let hk represent the
number of degrees of freedom of & molecule, then:

Kk =1+ 2/hk s

where, for diatomic molecules, hk = 5 and for triatomic molecules hk = 6. For

air, a value of k slightly below 1.4 would be expected; the experimental value
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proved to be 1.403, in adequate agreement with theory.

Differentiating eq.(1-1) for x and eq.(1-2) for t and elimirating Bzu/(axat)

(remembering that 3/3x and 3/3t commute), the wave equation for p is as follows

2 2
3p_1 3p (1<6)

(=]
[§-3
[+

-

whare

¢ = /(wpsfos) . (1-7}

The meaning of the comstant ¢ will emerge later. If p is eliminated from eqs
(1~1) and (1-2) instead of u, the wave equation for u results. This equaticn
turns out to be identical with eq.{i-6) on replacing p by u.

Eq.(l-6) is a linear, homopgeneous, partial differential equation of the second
order and possesses as such a general solution composed of twe independent
functions, each incorporating two ilntegration constants. The gemeral solution
may be represented in various ways, the following form being appropriate to

harmonic waves:
P ﬁl cos(wt - kx + ¢l) + 52 cos{wt + kx + ¢2) ’ (1-8)

where

v = the angular frequency (= 27 times frequency),

k = the wave number, k = w/c,

ﬁl’ ﬁ2 are integration constants having the character of peak values of sound
pressures,

¢T’ ¢2 are intepration constants having the character of phase angles.

Congider the first term on the right-hand side of eq.(1-8). For an observer
moving with velocity dx/dt = ¢ in the + x direction, the argument of the cosine
will remain constant, t - x/c being constant. Thus the conclusion may be drawn
that this term represents a wave travelling in the + x direction with a phase
velocity ¢; in future ¢ will be referred to as the velocity of sound. A similar
consideration shows that the second term on the right-hand side of eq.(1-8)
represents a wave travelling in the - x direction with the same velocity.

Using eq.(1-1), it follows that
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B B
u = -+ cos(wt — kx + ¢]) -2 cosf{wt + kx + 4.) . {1-9)

T2
o c p_c
s s

A comparison of egs (1-8) and (1-9) shows that, for waves travelling in the + x

direction ,

pfu = 5,8,

and for waves, travelling in the - x direction,

plu = - £ O

The ratio p/u is thus independent of time,position and, but for the chamge in

sign, direction of travel.

The quantity 0.¢, which is characteristic for the medium, is known as the spe-
o . s . . . . . -3

cific acoustic wave impedance of the medium, its dimension being N s m ~ or,

kg s_l mdz.

1.3 Complex representation

The complex representation of the dependent variables, customary in acoustics

when harmonic phenomena are considered , is founded on de Moivre's theorem,

exp(ib) = cos(¥) + i sin(y) , (1-10)

where j = v¥-1 and ¢ is an angle expressed in radians, The representation is
introduced by an example; that of a plane, harmonic wave travelling in the + x
direction., According to eg.{l-8), the sound pressure due to such a wave is

represented by:
P = B cos(ut - kx + ¢), (1-11)

where p is the peak value of the sound pressure and ¢ is the phase angle.

On referring to eq.(1-10), the following equation,

p = Re[f exp(jut - jkx ™+ jo)], (1-12)
is seen to be identical with eq.(l1-11) since the symbol Re before a functicn
indicates that the real part of that function should be taken, For the future,

the symbol Im is introduced. This symbol implies that the imaginary part of the

function must be taken. In this book, the convention will apply that the factor j
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in the imaginary part of the function is stated explicitly, thus, for any
function f,

f = Re(£) + j Im(f),

and Im(f) itself is real.

The complex pressure amplitude, B, cf the wave is introduced with the aid of
the defining equation

1

=— b exp{i¢), (1-13)
V2

g

and eq.(1-12) thus reduces to
p = /2 Re[p exp(jut - jkx)] . (1-14)

Eg.{1-14) still represents the real sound pressure dependent on time and place
and is identical with eq.(i—]]). The complex representation, indicated by p, is
chtained by performing the following operations:

1. omit the factor exp{juwt),

2., omit the operator Re s

3. omit the factor v2 .

The result of these operations is:

P = p exp(~ikx) . {(1-15)

The first two of the above operations may be considered as short cuts: the real
representation of p is obtained simply by re~instating exp{jwt) and Re. The
last of the operations has further implications. Thus l;l corresponds to the

R M S value rather than to the peak value of p; the function of the modulus
bars may be clarified by the following equation: |a + jb| = \/(a2 + b2). The
introduction of the complex R M § quantity B is a concession made to the wide-
spread custom of giving R M § values for alternating quantities and of cali-
brating instruments in such values. A consequence is, for instance that sound
powers, which are proportional to %ﬁz in the real representation, are pro-—
portional to l;lz in the complex representation. The problem of R M 5§ against
peak value is, however, of little importance for this text, since interest is
centred on ratios of altermating quantities.

The derivation of the instantanecus, real value p from the complex represen—

tation E, c.f. eq.(1-15), may be illustrated by a vector diagram in the complex
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Figure 2 Vectors in the complex plane.

plane (see figure 2).

The complex quantity E is entered with the appropriate phase angle (vector a in
the figure). This vector is rotated aover the angle wt (vector b). The real part
is obtained by projection onto the real axis (vector ¢) and the .instantaneous
value is found by multiplication by a factor V2 (vector E), the length of this
latter vector corresponding to the value sought and receiving a negative sign
if the vector lies along the - 1 axis.

The main advantage of the complex representation lies in brevity. E.g. differ-
entiation with respect to x is equivalent to multiplication by a factor - jk
according to eq.{1-19): for waves traveliing in the — x direction the factor is
+ jk. p is formally independent of time: to differentiate with respect to time
the factor exp jut is temporarily re—instated and the differentiation is szeen to
correspond to multiplication by a factor jw. That these procedures lead to
correct results is easily verified by inspection. Thus, in the complex repre-

sentation:

3p _ . .

il juwp exp(-ikx).

at

Eeversing the steps taken while introducing the complex representation, the real

representation follows as:

2p
at

V2 Re [jup exp(iut - jkx)]

Re [jwﬁ exp(jut - jkx + j4)]

- wp sinfwt - kx + $ ,
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precisely the same result as found when differentiating eq.{l-11) with respect
to time.

Tt is no cause for surprise that intepration with respect to place and time
corresponds te multiplication by factors - 1/ik, 1/ik and 1/juw, respectively,

in the complex representation.

Ratios in the complex representation require interpretation. Consider, for

instance, a sound pressure p and an associated particle velocity u, given by

cos(wt + 4), (1-16)

=}

p =

cos{wt + ) , (1-17)

[=4]

u =

in the real representation. Eqs(1-16} and (1-17) imply that p is advanced in
tim= by a phase angle ¢ — ¥ with respect to u. The ratio of the peak values of

p and u is $/G. Now, in the complex representation:

P B, (1-18)

o=, (1-19)
v ] - . v | . . . .

where p = — exp(i¢); u = — i exp(jy). In this representation

V2
p/a = B/Y = (§/8exp(ie - J0) .
One notes from the above equation that 1;/&] equals p/d and that the phase
angle of 3/3, ¢ - ¥, corresponds tc the positive phase shift of p in relation

£EQ u.

A weak point in the complex representation is that products of quantities in
this representation are meaningless. To obtain significant results, artifices
have to be introduced, which detract from the elegance of the representation.

This problem is illustrated by the concept of sound intensity.

In 2 plane wave, including the case of two waves travelling in opposite di-
rections, the instantaneous value of the power transmitted in the selected
positive direction per unit of cross-sectional area may be seen to be peu, in
the real representation. As a rule, the sound intensity I, the time average of
the sound power transmitted per unit area, is the quantity of major interest.
For harmonic waves p and u may be introduced from eqs(1-16) and (1-!7) and the

time average is readily obtained:
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T
Lim 1 f Pl cos{wt + ¢)cos(wt + 1)dt
T2 T O

L |
U

Lim ul [T cos(s - ¥) + Lo sinQur + 4+ 0 |g]
T sz 2w

b 5G coslod - ¥). (1-20)

The validity of eq.(1-20) is confined to plane harmenic waves. In travelling
waves, p and u are in phase and have a conmstant ratio for their peak values,
as was discussed in section 1.2, c.f., egs(1-8) and (I-9). Thus, for a wave

travelling in the + x direction , the intensity is given by:

A2
1, =4 p,/(e ), (1-21a)
and for one travelling in the - x direction by
I, =~} 52/ c) (1-21b)
2 2 IS .

the negative sign in eq.(1-21b) indicating that power is transmitted in the

-~ % direction. The net power for two waves travelling in opposite directions,
transmitted per unit area, the net intensity, is given by

I= I] + I2 ,

the sum of the intemsities of the two constituent travelling waves. That in-
tensities may thus be added follows when p and u are introduced from eqs{1~8)
and (1-9) and the time average of the product is determined. It should be noted
however, that the summation of intensities leads to incorrect results for waves

travelling in the same direction.

The hope that the quantity ;'3 {c.f£. eqs(1-18) and (1-19})might be significant
in determining the (net) intensity I is not realized.

The correct equatieon turns out to be either

1= Re(p*a) , (1-22a)
or I = Re(pu*) , (1-22b)

both of these equations proving te be identical with eq.{(1-20) on introducing

3 and U from eqs(1-18) and (1-19) agd taking inte account that 3‘ and 3? are
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the complex conjugates of ; and ﬁ, respectively, having the signs of their im=
aginary parts reversed. The introduction of the operator Re and the complex
conjugate of one of the dependent variables in eqs(1-22a), (1-22b) are the arti-

fices referred to earlier.

The concept of and the equatiouns for sound intensity, discussed above, are
limited to plane harmonic waves. Extension of the concept to other sound fields
ig beyond the scope of this book.

In future complex representation will be used almost exclusively. Departures
from this representation will become clear from the context. Under these
circumstances, the retention of the vector bars indicating complex represen-—
tation of the dependent variables, as in p and u, is unnecessary and these bars

will thus be omitted.

1.4 Interferometry

The interferometer was intreduced briefly in section 1.1. The present section
will be devoted to the formal description of the sound field in the tube in its
telation to the acoustical properties of the sample surface. Essentially, the
scund field 15 represented by eqs{1-8} and (1-9). The notation will be altered
slightly here, the incident wave being designated by 1. (travelling towards the
sample) and the reflected wave by p,- Moreover complex notation will be used.
There are complicatioms, however. In deriving the wave equation (c.f. section
1.2), perturbations in the sound field due to the proximity of the tube walls
were alluded ro. The primcipal effects are heat exchange between the medium and
the tube walls and viscous friction of the medium along those walls. These
effects are confined to the thermal and viscous boundary layers respectively
and in a well designed interferometer the thicknesses of these layers are small
in relation to the transverse dimensions of the tube. The influence on wave
propagation is thus slight but, unfortunately not entirely negligible.

Sound power is dissipated in the boundary layers and this results in attenu-
ation of travelling waves. In section 3.8 and 3.10 this attenuation is ipvesti-
gated in detail. For the present purpose it may be accounted for by the ad-
dition of an attenuation factor exp(- aox} for waves travelling in the +x-
direction and a factor exp(+a0x) for waves travelling in the reverse direction.
The "attenuation constant", %4, may be derived theoretically, assuming a smooth
tube. In practice, tubes are not perfectly smooth and &y must be determined
experimentally. The values thus obtained exceed the theoretical ones by factors

typically of the order 1.5 to 2.
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Following the same procedure as in the discussion of eqs(1-8) and (1-9), the

sound field in the tube is considered ro be composed of two travelling waves,

an Incident and a reflected wave, described by:

the sound pressure of the incident wave,

Y
B =P,

L i exp(- e jkx) ,

and its accompanying particle wvelocity,

= v (_ 'k
u, =u. exp(-ox -] x),

their interrelation being given by:

the sound pressure of the reflected wave,

_"\:
_pr

P exp(+ agx + jlx),

r

and its accompanying particle velocity,

- .
u, = u exp (+ GpX + jkx),

their interrelation being given by:

(1-23a)

(1-23b)

{(1-23¢)

(1~24a)

(1-24b)

(1-24¢)

{1-25a)

(1-25b)

(1-25¢)



Properly speaking, these equations no longer satisfy eqs(1-1), f1-2)} and (1-6).
The quantities Py and K, intreoduced in these latter equations for free waves,
caanot be retained for plane waves constricted by tubes, a point discussed
extensively in chapter 3. The error introduced by the retention of k in eqs
{1-23a), (1-23b), (1-24a) and (1-24b) is quite megligible. The error in the
factor p _c, appearing in eqs(1-23c), {1-24c) is somewhat larger, but still in-

significant when compared to the other errors to which interferometry is hetir.

For an arbitrary (normal) cross-section of the interferometer tube, three ad-

dirional quantities are defined. The first is the pressure reflection coef~

ficient t:
r = pr/pi, (1-26)

t is often referred to, briefly but ambiguously, as the reflection coefficient,
and is essentially a complex quantity. Next, the spacific acoustic impedance is

defined as:
Z = pfu, (1-273

and finally the normalized specific acoustic impedance [ is defined as:

L =&+ jn= Z/osc = p/pscu, (1-28)

where £ and n are the real and imaginary parts or the resistive and reactive
parts of [ respectively.

Referring to eqs(1-25a), (1-25¢c}, it fcllows from eq.(i-28) that:

g = {p; + P/ (psp.)s

and thus that:

r = (1+1)/(1-1), (1-29a)
and conversely that

r = {g-1)/{c+1). (1-29b)

Unless specifically stated otherwise, r, [ and Z will in future apply to the
plane x = 0, the sample surface. These quantities are interrelated and charac-

teristic for the acoustical properties of the sample. Specifically, £ is to be



considered as the most representative of these quantities and its determination

is the aim of interferometry.

The sample surface imposes a boundary condition on the sound field in the tube

at x = (. A practical form for this condition is:
" _ ."L _ i i (_ ) an
P, = te, = ir{ exp(i®) p,, (1-30)

where {r] and ¢ are the modulus and the phase angle of the reflection coef-
ficient respectively . From eqs{1-23a), {1-25a) and (1-30) it now follows that

12 = 13i12 (exp(~uox)cos(kx)+Iriexp(mox)cos(kx+¢)

- exp(-aox)sin(kx)+jlrIeXP(aox)sin(kx+¢)l2
= i;ilz [exp(—Zuox)+lr|2 exp(Zuox)+2Ir]cos(ka+¢)]. (1-31)

Eq. (1-31) constitutes the foundation on which interferometry rests, as it opens
the possibility of obtaining irl and ¢ from sound pressure measurements, and
thus of determining the normalized specific accustic impedance of the sample
surface, using eg.(1-29a),

The first two terms of the right hand side of eq.{1-31) vary slowly and
slightly with x, whereas the last term varies more rapldly between -Z[ri and
+2]r]., It follows from this relationship between }pl and x that there must he
positions where the pressure amplitude lpl will be minimum and maximum, re-
spectively. Only the last term can become negative, Because the assumption
]u0x|<< 1 is justified under practical conditions, exp(i Zaox) equals unity

in zero-order approximation and 1 + 2e.x in first-order approximation. The
position of the minima is derived from the zero-order approximation, the
co~ordinate X oin following from

2k x . +p=a+2n7 {n=0,+1,+2, ...} (1-32)

Using eq.(i~32) ¢ follows from the positions of the minima but for am arbitrary
angle of Znr radians. The fact that ¢ is multi-valued is ivsignificant, as
exp j¢ is not. The ambiguity in ¢ may thus be removed without loss of gener-

ality by requiring:
-m €& W . (1-33)
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¢ i3 determined from the measured position of the minima, in preference to
those of the maxima, as the minima are the sharper of the two (see figure 3a).
The movable microphone used in the measurement is one of the type having an
acoustic centre or pressure-sensitive point, i.e. the output e.m.f. is pro-
portional to the sound pressure at one point. The position of the acoustic
centre in relation to the microphone often depends on frequency and must be
determined by acoustic measurement. This calibration of the microphone is

incorporated in the procedure described below.

Microphone position is measured on a scale having an increasing reading for
displacement away from the sample towards the loudspeaker. Note that this is
the - x direction. The reading for the first minimum, i.e. the minimum nearest
th 1 is . d thus

e sample, Loiny 80d t

-1

. + 1 ,
mint cor

% . =
minl

where X is the value of x for the first minimum and lcor is an unknown,

n}i
possibly frequency-dependent, length incorporating such effects as dis-

placement of the scale zero in relation to the sample surface and shift of the

acoustic centre,

The sample is now replaced by a rigid plate, and the position of the first
1]

nt’
for x for the first minimum is thus known from eq.(1-32):

minimum is read from the scale: 1 Now for such a plate ¢ = 0 and the value

1 -0
*minl ’
2k
Mow 1 may be found:
cor

=1t r

1cor = lninl zk’

and using this value it follows that

¢ = 4T . -

L} -
minl = Lming? /s (1-34)

where ) is the wavelength and the range for ¢ is in accordance with requirement
(1-33).

Although consideration of the first minimum suffices in principle, further
minima have often to be evaluated as the sound field may be distorted near the
sample surface through the inhomogeneity of the sample.

For the sound pressures in the minima and the maxima, respectively, it now

follows from eq.(1-31) that
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W r
|plmin = |pi" I_exP("'O'-OXmin} - ]r‘exP(*'Qoxmin)j’
and
ol = |Si|- lexp(-ax )+ |tlexpGax ] (1-35)

-2kx 100 50 10 0 X

Figure 3a The 'distribution” pattern of the sound pressure in an interferometer

tube

a W0
20 1 s — 5 -
S+%+2

401

20

Sl

10
—= S and S/10 resp,

Figure 3b Relationship between standing wave ratio and absorption coefficient
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Siace in‘ first-order approximation anx}<< 1, it can now be written that

Y 1
'p'min - ’pi!.[l-(r]«(l+’rl)a0xmin]
and
ol .. = fB’i .[1+|:i—(1-fr|).aoxmax]. (1-36)

In figure 3a, [p] is shown schematically as a function of x. Consider Ip}min

gs & linear functiom of x (c.f. eq.(1-36). o, may be eliminated by extrapolating
. "\

‘p‘min to x = 0, the extrapolated value equalling (I—]rl).|pi|, ]leax depenis

on x to a lesser degree; extrapolation is unnecessary, and |plmax = (1+|f1)‘PiE

with sufficient accuracy.

The standing wave ratio s (dimensionless) is defined as the ratio of the maximuxn
sound pressure and that of the minimum sound pressure. In a loss free tube, s is
a fixed quantity. For a tube with attenuation, where the minima differ measur-
gbly in magnitude, one defines, unless specifically stated otherwise, the

the standing-wave ratio as the ratio of the maximum pressure and the minimum

pressure, both extrapolated to the sample surface:

{p! 1+{r}
« |——Dax = (1~37)
I":'lmin x=0 I-Erl
50 that
|ef =&, (1-37a)
s+l

The absorption coefficient a of the sample surface (dimensionless) is defined
as the ratio of the absorbed sound power tc the incident power.
According to eqs(1-21a) and (1-21b} the incident and reflected powers are pro-

Y
portional to lpil2 en |$r|2, respectively. The absorbed power is thus pro-

portional to |§i|2 - |;r]2 and, using eq.(l-26) it follows that (see also V

1020-26)

a=1-lr|? = 4 (1-38)
s+1/s+2
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The number of maxima and minima that can be detected depends on the length of
the interferometer tube. In an interfercmeter of a length of 1.5 meter, e.g.,
only one minimum is found below about 200 Hz. Extrapolation of Ep!min to the
site x = 0 is then no longer possible, Nevertheless Fr! at x = 0 can be deter-
mined in the following way. Instead of extrapolating s to x = 0 and converting
s there into |r| with eq.(1-37) one can convert s at the minimum into |r| at
the minimum with eq.(l1-37) and extrapolate |r] te x = 0 with the equation:

ir} = Ir| exp{2a

min x=0 Oxmin)' (1-39)
One needs then to know, however, a9+ Since this i{s not the case one has to carry
out an extra experiment, viz. after replacing the sample by a rigid, massive
non-absorhing plate. In this case ir[x=0 = i, so that

le] . = exp(Zanx' . ). (1-40)

v X .
min 0" min

|f‘|and x' are measured and uy can be calculated.

At very low frequencies, no maximum is available within the finite length of
the tube. However, in that case and for the sample used, sound pressure at the
sample surface is practically maximum. Thus an approximate value for the
standing-wave ratio may be found by introducing the sound pressure at the

sample surface as the maximum value.

Under these cenditions, - only one minimum available - the wavelength cannot be
measured and accurate determination of the phase angle is impossible. A value
for this latter quantity is then estimated by extrapoiation from measurements
at higher frequencies.

Summarizing one may state that the amalysis of the standing wave pattern
consists of determining the positions of the minima and the magnitudes of the

sound pressures at waxima and minima.

Under these conditions — only one minimum available - the wavelength camnot be

surface (which is usually the obvious plane of reference) as a function of
frequency. From this function conclusions may be drawn about the acoustical

properties of the sample waterial.
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1.5 The velocity of sound in a mixture of ideal gases

Before a discussion of the velocity of sound in porous materials, some remarks
will be made on the veloecity of sound in air. In particular, attenticn will be
paid to possible changes in velocity through changes in experimental conditions.
The velocity can be calculated from the kinetic gas theory. Hardy, Telfair and
Pielemeier (1941) made extensive investipations on the veleocity of sound in
gases of various composition and under various pressures. Starting from eqg.{1-7)
for the velocity of sound the question stated above can be formulated as follows.
“What are the values for « and N for a mixture of gases with known partial

pressures? To answer this question the following quantities are introduced

fk = the mass fraction of component k -
-2
Py = the partial pressure of component k Nm
0.-1 -
R = the gas constant per kmol JK “kmol
-1
M = the molar mass of component k kg kmol
s 0
T = the absolute temperature (identical for all compouents) K
. 3, -1
V = the total volume of 1 kg of the pas mixture m kg
(identical for all components)
0,-1 -
Cyx = the molar specific heat of component k at JK kmel
constant volume
. O imo1 ™!
cpk = the molar specific heat of compeonent k at g ™o
constant pressure
0,-1
Sk = the entropy of component k JK kg
' . -2
p, = the total pressure of the gas mixture Nnt
) . 0,-1. -1
$ = the total entropy of | kg of the gas mixture JK kg

Assuming Dalton's law to hold the equation of state for component k in 1 kg of
the mixture is:

£
:v-—ﬁmr. (1-41)

My

Py

For component k in ) kg of the gas mixture the first law of thermodynamics

yields
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f
-k -
TdS, = " ey dT + pydv . (1=642)
Since
P, = Ekpk and § = Eksk s
i
TdS = dTZ — ¢, + pdV . (1-43)

Assuming isentropic change of state TdS is zero. Summation of eq.(l-41) over k

and differentiation of the result obtained, yields
p dV + Vdp = RdTZk(fk/N.k)- (1-44)

Eliminating dT between {1-43) and (1-44) results in

N a4

0.
Pg kach/Mk v
Integration of this equation gives pSVK = constant or
RLE, /M,
K = | + —————
R L
RIp Rp
=1+ LS
Zchpk ECVkPk

When the number of degrees of freedom of a molecule of the component k is equal

to hk it foléows from the kinetic gas theory that S~ i hkR' and so

K=14——— (1-45)
zhkpk/ps
Since I fk = | and 1. Ogs summation of eq.(1-~27) gives:
v
1
p.=—1Ip (1-486)
gt kMk
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Introduction of K and oy from egqs(!-45) and (1-46) into the equation for the

velocity of sound gives

2 2 |

R | —_— (1-47)
T hy P /P [ I Mp, /P

Sore conclusions can be drawm from this equation. It appears that velocity is
independent of barometric pressure, and that it varies with the square root of
absolute temperature. The relevant physical constants for a number of pases are
listed in table 1. To the quantities introduced previously, two new ones have
been added: the dynamic coefficient of viscosity n and the thermal conductivity
X of the gases. It should be noted however that no allowance was made for either
thermal or viscous losses in deriving eq.(1-47). The values given are valid for

a pressure of 1 atmosphere.

Table |. Some physical constants of a number of gases.

quantity unit 0, N, H,0 co, dry air
eq¢.mass kg kmol_] 32 28 18 b4 28.8

oy kg Oy~ 661 740 - 639 715

e, sxg! %! 913 1038 2018¢100°¢) 833 1004 (15°C)
e oy - 1,401 1.404 - 1.304 1.403

c ms ! 316 334 401 259 331(0%)
10107 N s 2.00  1.76 0.9 1,42 1.80

) wm | Okl 0.0233  0.0228 - 0.0137  0.023

oy kg m > 1.43 1.25 0.81 1.98 1.29(0°C)

The most important practical conclusions to be drawn is that at wide variations
in air composition, the velocity of sound hardly varies. Proof of this will be
given in a calculation of the ratic of the velocity in dry air (= cd) to that in
moist air (= ch). The partial pressures of the three pases are represented as

poz, pN2 and PHZO; the molecular weights as MOZ, MN2 and MHZO, and the degrees

of freedom as hoz, th and hHZO, respectively.
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Intreducing hy, =hN2 =h, pog/pNg =g and pHQO /ps =r, and using eq.(1-47)

2
one finds:
c.,2 1+ ( /h-I).r (1+g)
iz - 120 ho-a - S0 ).r (1-48a)
et 1 # (hH20 -~ h}.r/(2+h) My, + gM02

As r is a small quantity at room temperature, eq.(l~48a) may be approximated as

c (l+g) 2.¢ -h)
2 - g1 - M0 2o } (1-48b)
Cy MN2 + gMO2 h. (2+h)

For air, at a relative humidity of 1007, a temperature of 20°C and a pressure of
76 cm Hg,

szofps = 0,023 ,

Substitutin = 1/4, =h, =5, h = 6, ) =28, M. = 32 and =18
58 th 0, ~ 77 MHp0 M‘Nz 0 M100

2
into eq.(1-48b) yields : cd/ch = 0.9963.

Hence, the conclusiocn can be drawn that the velocity of sound is barely af-
fected by the pressure of water vapour in air. This conclusion will also apply
for changes in 002 pressure of the same order as those in pressure of water
vapour. Furthermore, one may infer from eq.(1-47) that a 2° increase in tempera-
ture at room temperature affects the velocity of sound to the same extent as
does saturating dry air with water vapour. The effect of variations in the
composition of the gas on sound velocity is slightly greater than the effect of
variations in the temperature of the gas under practical circumstances. However
both have little influence. Thus, for the present purpose, conversions to normal
pressure and/or temperature are unnecessary. It can also be inferred from the
data of table 1 that the product oge does depend on gas pressure and it might be
argued that a correction for this effect should be introduced. This effect may
cause variations of the order of 1Z, As shown in Chapter 2 the accuracy of the
measurements is of the same order so neither corrections will be made for vari-

ations in barometric pressure.
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1.6 Intensity, decibel, damping in air

"he concept of sound intensity was introduced in section 1-3, Intensities are

often expressed on a logarithmic scale; the intensity level L, is then defined

I
by
= 1-49
L; = 10 log (I/Io), ( }
where IO ig the reference intensity, standardized at 10'12 w/mz.

Lo is given in decibels, abbreviated to dB, and the reference quantity should
always be given, e.g. in parenthesis, behind this umitj L
a8(107'2 wim?).

One of the advantages of the introduction of the decibel scale is that the

T is thus given in

numerically wide range of intensities encountered in acoustical practice, e.g.

from IO_IZW/m2 to lemz, is considerably reduced on the intensity level scale,
- 212

from 0 dB(107 ' 2W/m?) to 120 dB(10™ “wW/m®).

The difference in intensity level 4 L. for two intensities, I, and I,, now

I
follows as

AL, =10 log(1,/1,), (1-50)

where ALI is expressed in dB, the reference quantity being omitted as heing
arbitrary for level differences.

For sound pressures too, a logarithmic scale has been defined, the sound
pressure level L_, For a sound pressure having an RMS value Py

Lp = 20 10g(pe/po),

5 2

where Py is the reference pressure, standardized at 2:40"° W/m". Lp is ex—
. - 2
pressed in dB(2-10 3 N/m ). P, has been so selected, that for a plane wave

travelling in air, L. = Lp with an accuracy that is usually adequate. To gain

I
some insight into the magnitudes of the quantities introduced it is noteworthy
that the threshold of hearing at 1000 Hz is roughly 0 dB(Z-]O—S N/mz) and that

3 N/mz) is experienced as painful. That

a sound pressure level of 130 dB (2°10°
sound pressures are relatively small may be concluded from the fact that

p, & 2'10—]0 atmosphere. In section 1.5, it was shown that in air the veloecity
of sound is hardly affected by the composition of the gas mixture. Besides
damping in the interferometer tube through losses along the walls, a slight
damping occurs in the air itself. This damping can be ascribed to several
causes:

1. A viscous damping of the free wave exists due to diffusion of impulse.
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7. Thermal losses occur in the free wave due to diffusion of kinetic energy.
3. Over and above these above mentioned causes, which constitute portions of
the "classical damping”, a molecular damping occurs through the "long'" relax-
ation time of a rotatiomal level of the oxygen molecules.

This relaxation time is strongly dependent on the content of water vapour.
Reference is made to the work of Kneser (1%31) and Harris (1963).

It appears from this investigation that for the present purpose this damping

will be unimportant. No further attention will therefore be paid to it.

1.7 Velocities in air

To avoid possible confusion, the varicus velocities obtaining in gases will be
commented on briefly. Air, considered as an ideal diatomic gas having a molecu-
lar mass M = 29, will serve as illustration, the approximation involved being
acceptable for the present purpose,

The following velocities are distinguished.

1. The thermal wvelocity of the molecules, represented by its RMS value Ve. The
average required may be taken in time for one molecule or over an ensemble of
molecules, the results being identical as the system is ergodic.

2. The particle welocity u of the molecules. This is the drift velocity due to
a sound field, the average velocity vector of the molecules in a domain that
contains a large number of molecules, but is small in relation to wavelength.
For such a domain the average thermal velocity vector approaches zero.

3. The velocity of propagation of a sound wave or the velocity of sound, c.

The kinetic theory of gases states that the average energy per degree of
freedom and per molecule equals ikBT, where kB is Boltzmann's constant and T

is the absolute temperature. The kinetic energy of translation of a molecule

is thus given by-% kBT' as 1t corresponds to three degrees of freedom. This
energy is also given by iM-u-Vez, where M is the molecular mass of the molecule
and 1 is the unit of atomic mass (roughly that of a hydrogen atom). Thus

v, = Y3k T/M). {1-51)

e

-23 1

Introduction of the numerical values kB = 1.38 - 10 °x , T =293 OK,

-2 . . . .
M = 29, u = 1.66 - 10 7 kg, into eq.(1-51) vields the numerical value for air
at room temperature of Ve = 502 m s_]. The particle velocity due to a sound

field is essentially much smaller. For a plane wave having a sound pressure level
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5 2

of 70 dB(2+10 " N m_z), i.e. having an RMS sound pressure of 6.3-10—2 Nm “, the

RMS particle velocity is found, making use of the numerical value of the specific

acoustic wave impedance (see section 1.2), v = 420 Vs m_3; 13| = 1.5 - 10—&

m S--I -

The velocity of scund is closely related to the thermal velocity of the mole-
cules, Appealing to simple kinetic gas theory once again and using eq.(1-7), it
follows that

o= Vevf(K,’S) .

[ntroduction of Ve = 502 m/s and « = 1.4 yields approximately c = 340 m/s, in.

agreement with experiment.

1.8 The heat generated

It is reasonable to think that hea:t dissipation as a result of absorption of
sound energy will give rise to a measurable inecrease in temperature.

To take an example, a sound pressure level for the incident wave in the inter-
ferometer of 70 dB (2-107°
area will be less than 10—5 W

N/mzj, thermal power developed in the sample per unit
m_2-
For comparison, the radiation energy reaching the earth from the sun is approxi-~
mately 1000 W m_z. The resulting rise in temperature will be at the most a few
tenths of degrees., Thus it will be clear that the heat developed in an ab-
sorbing material by a sound wave will not give rise to a measurable temperature
increase. For this reason no evaporation or temperature gradient will occur in
the sample when sound absorption is measured. Hence, water will not be displaced

by convective currents.

1.9 Sound waves in porous media

For a free wave, the pressure gradient in the gasecous medium is governed by the
inertia of that medium. In a porous material, however, consisting of intercon—
nected, gas—filled pores enclosed in a rigid solid frame, sound waves propa-—
garing in the pores will encounter higher forces of inertia as the gas is ac-
celerated through narrow vents and viscous friction will have to be overcome.
Considered in time the viscous drag will give rise to a component in the
pressure gradient in phase with the particle velocity while the forces of
inertia correspond to a component at right angles to that gradient (this latter

coriponent performs no work on the medium). Thus the resultant complex pressure
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gradient is no longer at right angles to the particle velocity, which may be

accounted fer by restating eq.{1-1) for harmonic waves:

. (1-52)
m
Ix

where p is the actual sound pressure in the pores but u is the volume velocity
of the gas per unit area (the actual particle velocity in the pores will be
higher). The complex, frequency-dependent factor Zm will be calzid the specific
acoustic series impedance per unit length; its dimension is Nsm .

The compressibility of the gas inm the pores differs from that for a free wave,
part of the available space being ocecupied by the solid frame and heat exchange
taking place between the gas and the frame. As the exchange of thermal energy
takes time, the relative compression of the medium and the sound pressure are
no longer in phase. Indeed a small ellipse is traversed in the pV diagram. This
results in a change in the difference of the phase between the complex velocity
gradient and the complex sound pressure, now being less than w/2. In free air
this last value will he found. The change may be accounted for by restating eq.

(1-2) for harmonic waves

Sy g, (1-53)
m
3%

where the complex, frequencyedependent factor Yo is called the specific acoustic

parallel admittance per unit length ; its dimension is N_ls_lmz.

Acoustically the material is characterized completely by the complex frequency-

dependent factors Zm and Ym. The central problem of this text are the experi-
mental determination of these factors and their relationship to the structure
of the material, which will be discussed in detail in chapter 3.

For the time being, Zm and Ym are introduced formally and, as in section 1.2, u
is here eliminated from eqs(1-52} and (!-53) yielding

2P.y

3 2 m‘Ym P»
b4

an equation of the Helmholtz type, as explicit differentiation to time is ab-
sent.
Travelling waves in porous materials will undergo attenuation. Following a

course suggested by eqs(1-23a) ... {1-25¢c), derived for waves, attenuated in
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interferometers, a complex propagation constant is intreduced,

- =0 + j
"n m JBm’

gnd a solution of the form
u 4t}
p=p; exp(- v x) +p_ exply x),

is essayed, It satisfies the Helmholtz equarion if

m J(Zm'Ym)' {1-54)

Using eqs(1-52) and {1-54), the sclution for u follows

n a
P, P

= exp(~ Ym#) - = exp(VmX);
W W
m m

where the specific acoustic wave impedance of the material, Wm, is given by
T, == -
A J(zm/Ym) . (1-55)

It will be clear from eqs{1-54) and (1-55) rhat the material is also specified

acoustically by the pair of complex quantities Yo and W

Now consider a sample of porous material fitted to the emnd of an interferometer
tube in 2 sample holder. The interface between the air column in the tube and
the sample material is at x = 0. Note that the quantities p and u in the ma-
terial have been so defined that they are continuous with the quantities p and
u in the tube at the interface.

Supposing the sample to have a rigid backing at x = 1, in practice a thick metal
plate (see section 2.5), the boundary condition there is u = 0 and thus

Br/gi = exp(-Zle). Introduction of this quantity and of x = 0 into the e-
quations for p and u yields the values for these latter two at the sample

surface

N
P =D [l +exp (-Zle)]

=3, I:l-—exp(—2ym1):| o
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The specific acoustic impedance at the sample surface now follows from its

definition, eq:(1-27) as
Z= Wm coth(le), {1-56)

the fundamental relationship between the measurable quantity Z and the material
constants Wm and Ym'

In principle, this type of derivations may be extended to stratified samples,
consisting of layers of porous materials with various acoustical properties
{(Rosten, 1953).

Before going into the problems raised by the transcendental nature of eq.{(1-56),
the derivation of 2, or rather of the closely related quantity &, c.f. eq.{1-28),
from the quantities which follow more directly from measurement, as Ir[ and ¢,

and forms of graphical representation for ¢ will be discussed.

1.10 Presentation of the normalized specific acoustic impedance

The measurements in the interferometer tube lead directly to numerical values
for 1min and ¢ from which by simple computation ¢ and |r| can be derived with
the aid of eq.(1-32) and eq.(1-38) respectively. ¢ and |r| determine the complex
reflection coefficient r, from which the normalized specific acoustic impedance

of the sample can be found by using the eguation

Sl Ze i(sz“';*‘i“ (I (1-29a)
1-x s+ 1= (s =1)cos ¢

This computation of ¢ via s and ¢ is time consuming. To avoid this difficulty
some handy tools have been developed. One can transform the complex r plane

into a complex 7 plane or vice versa, which enables one to read the complex
value ¢ for a given complex value of r or in the reverse sense if desired. This
transformation from r to { is a conformal transformation. In such a transfor-
mation a circle in one plane corresponds to a circle in the transformed plane;
angles between lines in both planes remain unchanged. Two of these types of

transformations, that are in practical use will bhe considered now.

A The impedance diagram
This diagram is the transformation of the complex r-plane into the complex -

plane (see figure 4). Any point in this diagram represents a value of the
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Figure 4 The impedance diagram.
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complex quantity ¢ = £ + jn.

The real part is the distance to the vertical (imaginary) axis; the imaginary
part, the distance to the horizontal (real) axis. From eq.(1-29a) it follows
that for each peint in the f-plane, a corresponding value of r = |r| exp(j¢) can
be obtained. Therefore lines of constant ]ri and of constant ¢ can be drawn in
this plane. Since a = /(]—Erlz) lines of constant |r| are also lines of constant
absorption coefficient,

From

¢ = LtlrlexpGo) (1-57)

!-]r]exp(j¢),

it fellows that

1l [?
E 3 » (l"sa)
1+[r| - 2[r|cos¢
and
2]rlsind (1-59)

l+|r]2 - 2|r{cos¢-

The $ is eliminated from eqs{1-58) and (1-59) and ir| is retained as a parame-
ter. Thus a family of curves for comstant |r| is generated in the [ plane, a

member of the family heing giwven by
2
[a - (l+|r12)f(1—|r|2)] +nf = [zlrl/(l—lrlz)]z. (1-60)

The curves prove to be circles, having their centres at
£ = (+lxiDra-1e1%, n =0,

and radii given by

R = 2|e}/C1-]r] %),

Similarly, |r|may be eliminated and ¢ retained as parameter. A family of circles
for constant ¢ is thus generated, which proves to intersect the ones for

constant!r|at right angles. A member cf the family is given by

[r - cor(®]? + &% = [1Jsin<¢)]2, (1-61)
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these circles having their centres at

£ =20, n=cct($),

and their radii are given by

R = 1/sin(é).

In figure 4, a number of circles from these families of circles is drawn. As
wae argued in section 1-4, an unambiguous value for § may be cbtained by im-
posing condition (1-33). Eq.(1-59) shows that, for 0<¢<n>n>0 znd conversely
that, for -m<$p<0-—-n<0.

Thus the circles for constant ¢ are given positive values above the real axis
anc negative values below this axis.

When, for instance, ]rl and ¢ are known from measurements, values of £ and n

car. be read from the diagram. As an example, the position of one point A has
been indicated in figure &,

Frcm the diagram it can be read that ir! ~ 0.86 and ¢ ::500, £E=0.5 and n =
- 2.0,

B The Smith diagram
This diagram presents the reflection coefficient r = |r|exp(j¢)} = u + jv in the
complex plane. In this case lines of constant £ and n are circles. The loci of

corstant £ and n can be calculated from the eq.(1-29B}

u + jv - —(_E:.j.ll:l_ (]—62)
(£+in)+1

When £ is constant, n can be eliminated. This yields

(w-—=32 4 %2 (2, (1-63)
£+1 E+l

and, concomitantly, when n is constant, it follows that
1.2 1,2

w2+ v-H% = DA (1-64)
n n

Some circle segments of these families of circles are shown.
When the position |r|, ¢ in polar co-ordianates is known from measurements, it

can be plotted in the Smith diagram. The values of the corresponding £ and n

can now be read from the loeci.
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Figure 5 The Smith diagram.
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In figure 5 one point A is the transformation of the point denoted by the same
symbols in fipure 4.

An advantage of the Smith diagram is that all values lie within one circle,
wheread the impedance diagram is a semi-infinite plane and a finite part of it
cannot show values for £ and n beyond its limits,

The impedance diagram is not accurate for small values of £. In the Smith dia-
;ram, which is often used in electronics, the large values of £, which occur
frequently in acoustics, cannot be read with any accuracy, which constitutes a
najor disadvantage for its adoption here. In the following chapters, the im-

pedance diagram will be used exclusively.

1.11 The behaviour of the function Z = W coth (yl) in the impedance

plane

To gain at least a qualitative insight into the locus in the complex plane of

the specific acoustic impedance at the sample surface, see eq.(1-56}, the function
Z = W coth (y1) will be discussed, partly after Zwikker and Kosten (1949).

W and y are complex comstants of the sample material. They will depend upon the
structure and the frequency. According to eqs(1-54) and {1-55) they are connected
with Zm and Ym as follows: Yy = J(ZmYm) and wm = /(Zm/Ym), where Zm and Ym are
defined with the fundamental differential equations (1-52) and (1-53) resp-
ectively. Zm and Y are also complex. In free air they are equal to juwo and

jufK respectively, so that in air Y, < jw/(p/K) = jw/c and Wm = /{Kp) = pc
respectively. In free air, therefore, Yo is proportional to frequency; Wm is

independent of frequency.

In loose soil samples, therefore, W will probably vary slowly and slightly with
frequency, where as vy will probably vary rather rapidly with frequency,
increasing approximately proportionally with frequency. Introducing Yo = um+jﬁm,
B will probably be approximately proportional to frequensy, but T the
attenuation coefficient of travelling waves in the material - will, again, be a
weak function of frequency.

The denser the material is, the larger will be the difference from the behaviour
of free air, but anyhow it seems reasonable to expect Wm "rather' comnstant and
T "more or less' proportional to frequency. The results of measurements
corroborate these expectations.

Based on this consideration the behaviour of the function Z = W coth(yl}can be

studied in the complex plane.
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Assuming W = | one fiunds:

. Sinh(Zel) - j sin{281}
cosh{2al) - cos(2p1)

(1~65)

For very small values of 2al and 281, a first-order approximation of eq.(1-65) is

Assuming w being constant and 1 being variable, Z will vary with the argument
of the hyperbolic tangent. In this case the locus for 2 becomes a straight line
in the lower right-hand corner of the impedance diagram, having a negative
inclination to the real axis.

In the case, where the angular frequence w varies and the sample thickness 1
rests constant, the locus of Z will be a straight only if the ratio afR is
independent of frequency.

The locus for Z in the complex plane approaches a logarithmic spiral for suf-
firciently large values of 1, the condition ol®l being adequate for all practi-
cal purposes. If so, Z = 1 + 2 exp(-2uljrexp(~2jB1).

The modulus M of the spiral is given bv M = 2 exp(-2al), and the argument ¥ is

defined by ¥ = -281. The apex of the spiral is + 1, see figure 6a.

Now M = 2 exp{o¥/8) and this implies that the shape of the spiral is com-
pletely determined by the ratio a/8, the slope of the spiral being given by

arc coth(a/B), see figure 6a.

These conclusions for the form of the locus can be retained for case 1 (variable
w, constant 1), provided the ratio a/P is independent of frequencv. Note that,
whereas ¥ i1s proportional to 1, its dependence on w will generally be more com~

plicated.

For materials having high damping, corresponding to comparativelv large values
of ofB, the spiral converges rapidlv to the apex as in figure 6b. Conversely,

for weakly dissipative materials, convergence 1s slow as in figure 6c.

In the generazl case, W equals Beexp(j0}; so being unequal to unity and a function
of w. For constant w and variable 1 the apex of the spiral for Z is the complex
vector W. Then the locus for Z mav be cbtained from that for W = 1 by magnifying
that curve uniformly from the origin by a factor B and then rotating it around

the origin over an angle © in anti-clockwise direction.
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If w varies and 1 rests constant the locus of 7 is complicated by the shift of
the spiral's apex with frequency as the spiral is traversed. No general de-
scription of the resultant form of the locus can be given; an extreme example is

illustrated by figure 6d,

Both these cases are amenable to experiment when soil samples are being examined
acoustically. There are further possibilities for the investigation of porous
materials, e.g. the consideratipn of the locus for Z for constant w and | but
variable backing impedance of the sample. Such methods for soil samples have

insuperable experimental difficulties and will thus be ignored.

For weakly dissipative materlals, W is zlmost real and the points of intersection
of the Z locus for variable frequency and the real axis supply information on the
propagation constant of the material. For real W these intersections occur when
1 is a multiple of /2, see eq.(1-65). For 81 = nm7, n =1, 2, 3, ..., the pre-
vailing condition will be termed resomance, for Bl = n/2 +nn, n =0, 1, 2, ...,
anti-resonance. In resonance, |Zlis larger than in anti-resonance. For strongly
dissipative materials, W will always show appreciable phase angles and the points

of intersection provide but little information.
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2 The experimental equipment and its accuracy

2.1 Introduction

The customary type of acoustic interferometer, together with its auxiliary e-
lectronic equipment, consists of an oscillator which generates a harmonic e-
lectrical signal, and a loudspeaker which converts this signal into an acousti-
cal one and feeds it into an interfercmeter tube. This tube ends with the

sample 1o its holder. The sound field in the tuhe 1s explored with a movable
microphone; the microphone signal is measured with a selective voltmeter.

Some practical considertions for the construction of an interferometer are the
following

a. The tube should be rigid, i.e. it should not show mechanical vibrations in
the instrument's frequency range. This is usually achieved by selecting a thick-
walled tube.

b. The microphone should not perturh the sound field. If the microphone is
placed in the sound field, i.e. within the tube, the microphone's cress—-section-—
al area should not exceed 17 of that of the tube (Lippert, 1953). Another possi-
bility is to place the microphone outside the tube and to connect the microphone
with a kind of catheter, usually called a probe~tube, to the point where the
sound pressure is to be measured. As a2 rule the probe-tube is placed along the
axic of the interferometer or parallel to it, in which case the above mentioned
IZ requirement should be applied to the cross—sectiomal area of the probe—tube
and the interferometer tube, respectively,

¢. Microphone position should be easily read from an accurate scale.

d. An air-tight seal is required between the sample holder and the tube. A leak
tends to radiate sound power and might thus lead to incorreect raesults for the
sound power absorbed by the sample.

e. The transmission of structure-borne sound from the loudspeaker to the micro-
phone should be prevented. A common precaution is resilient mounting of the
loudspeaker.

f. The major requirement for the electronic equipment is stability. Fluctu-
ations should not exceed 0.1% in signal frequency or 1% in signal amplitude or

voltmeter sensitivity. This accuracy is attainable.
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A complication is the voughness of soil surfaces that is to say deviations of
one or mote millimetres from a reference plane occur. Although very coarse
structures were not examined during the present experiments, a large cross-
section for the interfercmeter tube is desirable to average out the roughness
and inhomogeneity of the soil surface.

However, there is a limit to tube size for a given signal frequency; that is,
there is a limiting frequency, the cut-off frequency, for a given tube. The
cut-off constitutes an upper frequency limit, beyond which higher—order modes,
corresponding to oblique incidence on the sample, will propagate in the tube.
The quantity sought, however, is the specific acoustic impedance of the sample.
surface at normal incidence.

For tubes of circular creoss—section the cut-off frequency may be determined
from ch = 1.84, where kc is the cut-off wave number and R is the tube radius.
Wavelength is then 1.7 tube diameters (Rayleigh, 1910). It is inadvisable to
measure at or even just below the cut-off freguency, as considerable distortion
of the sound field may then occur, especially near the sample.

In the present case, three interferometer tubes of circular cross-section,
distributed over two interferometers, were used, the larger for the lower
frequencies and the smaller for the higher ones. Besides the large sample area,
another advantage of using the large tubes at the lower frequencies is the

smaller attenuation along the tube.
2.2 The interferometers

The larger interferometer has a flame-pipe of 155 cm length and inner- and outer
diametets of 162 and 171 mm respectively. It is mounted vertically on the wall
of the rocom. A loudspeaker 12 cm from the top is suspended elastically from three
supports to prevent transmission of structure-borne sound from the loudspeaker

to the tube (and the sample). The sample-holder canm be attached to the lower end
of the tube (figure 7a). The bottom plate of the sample-holder is a piston, that
hermetically seals in the holder by means of an O-ring. In its lowest position
samples with a layer thickness up to |16 cm can be studied (figure 7b).

The Ronette microphone, model MC 65, is approximately cylindrical and has a
height of 12 mm and a diameter of 29 mm. With its axis normal to that of the
tube, the microphone has a cross-sectional area of less than 0.5%7 of the tube.

It is of the piezo-electric type and has a sensitivity of [.7 mV/ubar ar 1000 Hz,
Frequency response is practically flat from 30 Hz to 1 kHz and then rises slowly.
At 10 kHz the rise is 8 dB.
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The microphone is attached te an endless belt running inside the tube 4 mm from
the inner wall. Outside the tube the helt has been provided with a gauge. The
digplacement of the microphone can easily be read in fifths of a millimeter.

The Philips loudspeaker, model 9744, has a cone diameter of 130 mm, a volce coil
impedance of 50 at 1 kilz and a nominal power-handling capacity of 3 W.

The frequency range of the interferometer ranges from 50 - 1100 Hz.

For the measurement of the porosity of the sample a special 1id that fits te the
upper end of the sample-holder has been constructed. By a thick-walled plastic
tube attached to an opening in this 1id, the sample-holder can be connected with
4 porosimeter.

The porosimeter is founded on Boyle's law: p+V = constant. The porous material
under test i1s enclosed in a container of known value. The actual volume avail-
able to the gas, however, is that of the coutainer diminished by that of the
$0lid matter in the sample.

The porosity of the material is easily calculated if the actual gas volume has
been determined and this is done by introducing a known change in volume,
measuring pressure both before and after the change. The initial value of the
actual volume is now the only unknown and Boyle's law may be solved for it. As
will have become apparent from the selection of a gas law, changes of state are
assumed to be so slow that they are iscthermal.

Porosimeters have been described, e.g. Loebell (1935), Bourrier (1951), Alten

and Loofmann (1956), The instrument is satisfactory for samples composed of
gases and impervious solid matter. But where liquids may evaporate during ex-
pansion or adsorbed gases may be freed, results will be unreliable. And as such
conditions commonly prevail in soils, cother methods must be sought for de-

ternining their porosity.

In principle measurements of resistance tec air flow can also be made on the
sample. With a reinforced "sieve plate' at the upper end of the sample-holder,

the sample can be turned upside down. Next, the bottom plate can be removed.

In this position, the sample-holder can be attached to the lower end of a pas com—
tainer. In many cases the samples do not permit such a treatment without a dis-
turtance of their geometrical arrangement. Therefore the required additional
measurements were performed on separate samples in most instances. Measurements

of sir-flow resistance can alsc be made on samples contained in wide vessels.

If so, the standing-wave tube is extended by a cylinder of the correct inner
diameter, having a gasket at the top, sealing it to the main tube, and a cutting

edge at the bottom. The cutting edge is driven into the sample.
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Figure 7a The sample-holder of the larpe interferometer; left the connecting

tube to the porosimeter

The attenuation of travelling waves in the tube was measured and the proper
functioning of the interferometer checked with a calibration plate 12 mm thick
and 2.2 kg mass. This plate and the extension sectiou menticned in the previous

paragraph can be sealed to the main tube with a gasket.

For measurements at higher frequencies, the Briiel and Kjaer interferometer,
type 4002, is used. It contains measuring tubes with diameters of 9.9 cm and
2.9 ctm, respectively, and a length of 100 cm and 26 cm, respectively, which
make the instrument suited for measurements at frequencies ranging from 90 to
1800 Hz, and from 800 to 6500 Hz, respectively. The mobile microphone is of the
probe type, the probe tube entering the measuring section through a simple wave
trap, which pierces the loudspeaker axially.

This commercially available interferometer was built for horizontal use. For
use with soil samples, it is necessary to place the measuring tube vertical.

The tube was therefore fitted to a steel frame, under an angle of 59 from verti-
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cal. The steel frame was suspended from the wall. The microphone carriage was
equipped with a counterweight, suspended by a steel tape. An engraved strip of
perspex of | metre long was attached rigidly to the microphone housing by a bar.
This arrangement permits rapid parallax-free reading of the microphone position.
The interferometer is used with two sample-holders with fixed hottom plates and
one sample holder with a movable, pistontype bottom plate. These plates are 16
mn thick.

In constructing the interferometer care has been taken to avolid transmission of

gtriacture—-horne sound.

E L $162 cm N
| L
(| | :
X i ]
: - - J:rE bayonet lock
| |
= | gasket
sample
x

sintered plate

o-ring

bottom plate

hollow spindle

tube to suction
apparatus

= reading scales

Figure 7b Cross section of the sample holder of the large interferometer
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2.3 The electronic eguipment

The selection of the electronic equipment was governed by the requirement that
the apparatus have a wide range of applicability. The construction of equipment
for use in the field was considered but will not be discussed here. The input
impedance of the varicus appliances was alwawvs so high that loading effects on
preceding circuits were negligible. The experimental system is illustrated in
figure 8 and 9.

The signal source is an RC-type audio-oscillator, make Peeckel, model 22A. After
warming up, short-term frequency stability is of the order ef 10_4. Amplitude
stability is given as 2%, but short-term stakility iIs considerably better; the
stability of the signal is more than sufficient for interferometry. Signal
frequency may be read from the tuning dial with an accuracy of 1,5%, which is
inadequate for the present purpose.

A power amplifier, make Philips, model HF-10, was interposed between the audio-
oscillator and the loudspeaker. Oscillator loading i1s thus diminished and per-
formance improved. The feedback loop of the amplifier, which was designed for
use with record-players was modified to obtain a flat response. The nominal
output is 10 W into a load of 7 9; the frequency range is from 10 Hz to 13 kEz
and distortion and noise are low.

Loudspeaker current is monitored with an ammeter, calibrated in RMS values and
having three ranges: 100, 200 and 300 mA f(ull) s(cale) d(eflection). The
circuit diagram is given in figure 10. During the actual measurements the
ammeteyr was always short-circuited,

The microphone sipgnal is measured with a (selective voltmeter) frequency
analyser to suppress spurious components such as: harmonics (of the signal
frequency) generated in the audio-oscillator, the power—amplifier and, above
all, the loudspeaker, hum and noise. The instrument used here, made by Briiel &
Kjaer, model 2105, has a selective element consisting of an RC double-T network,
introduced into the feedback loop of an amplifier stage. Selectivity is ad-
justable and was usually set for a 39 dB reduction in sensitivity at 1 octave
from the signal frequency. Although selectivity is not very high, spurious-
signal suppression meets the requirements for practical interferometry. The
instrument has a pseudologarithmic scale permitting voltage measurement with an
accuracy of 1%. The signal frequency may be read from the tuning dial with an
accuracy of 1%, provided the instrument has beenr calibrated by tuning to the

mains frequency and its harmonics, The signal fed to the meter is also available
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Figure 8 The measuring set-up

at the cutput terminals. Provisicn has been made for continuous adjustment of
sensitivity if absolute calibration is not required.

The output signals from the audio oscillator and the selective volimeter are
mornitored with the aid of an oscilloscope, make Philips, model GM 3156. To
present both signals simultaneously, the oscilloscope is preceded by an e~
lectronic switch, make Heathkit, model S-3, having a switching rate adjustable

to 153G, 500, 1000 and 1500 Hz,
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2.4 The measurement

Tor rapid and complete tabulation the experimental data are entered on data
sheets (see example). A sheet consists of a heading, giving general information,
ané. a number of sections, each of which is devoted to a particular measuring
frequency.

The. heading gives the following information: type of material (Momster), grain
size or texture, in mm (Monstermat.), sample thickness in the interferometer in
cm (Laagdikte)}, porosity in % as derived for the dry sample from the amount of
so0lid matter (Por. volume), moisture content in percentage weight of dry ma-
terial (Vochtgehalte), total mass in g (Gewicht)}, deasity in kg/m3. ]0-‘3 (8.g.),
specific acoustic static air flow resistance (o)}, special remarks (Opm.), po-
sition of the sample surface in cm (meetniveau), sample number (No.), sample
series (Serie), date of measurement {(Datum), time of day (Tijd), ambient temper-
ature in °C (Temp.).

Each of the sections has been divided into six columns. The upper half of the
first column lists values for frequency in Bz, as read. from the audio-oscil-~
lator (T), as read from the selective voltmeter (V) and as determined from
wavelength, c.f. column 3, (G).

The upper figure in the second column is the position of the first minimum
diminished by a quarter wavelength, in cm. The following figures are the
readings for positions of the minima, in cm. In the third column, the upper
figure is the averaze for the quarter wavelength, the following figures are
values for the half wavelength in cm as derived from the second column and the
average for the half wavelength is entered at the bottom of the column.

The second half of the first column gives the displacement of the first minimum
ir em, in relation to that minimum with a hard termination at the sample surface.
This requires the introduction of corrections for the positicon of the sample
surface and the properties of the microphone (see section 2.5, point B 5) ( ),
the wavelength in cm as obtained from the third columm (X) and the phase angle
of the reflection coefficient in radians (§).

The first figure of the fourth column is the value of the minimum sound pressure,
extrapolated to the sample surface and ic arbitrary units (voltmeter readings),
entered under —. The following figures give the values for the various minima {(in
the same units). The same i1s done for the maxima in the fifth colummn, the extra-
polated value being entered under +.

The sixth column gives the standing wave ratio at the sample surface (r), some
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auiliary gquantities (sub a) and the absorption coefficient in 7 (%}, Usually
the absorption coefficient, read directly from the selective voltmeter and thus
jgnoring tube attenuation, was entered at the bottom of the column. Its value
can serve e.g. as a control during the measurements. Without any further calcu-
lation one can conclude at the end of a series of readings at different frequen-
cies and after checking the readings at a few of those frequencies, that the
sample was not disturbed during measurement. Noteworthy points are as follows.
The loudspeaker in the interferometer dcoes not constitute an ideal pisten even
at low frequencies. The sound field near the loudspeaker may thus be distorted
and no measurements should be taken close to it.

The measuring system has it own acoustical and mechanical resonance frequencies.
The acoustical resonance frequencies can be heard easily; the detection of me-~
chanical resonances in the measurirng system is more difficult. They may origi-
nate from different sources and can sometimes not be traced. When these
frequencies are suspected, measurements are made after a small shift in
frequency. In the beginning the frequencies at which readings are made ave
chosen quite arhitrarily. All series of readings have been read for at least
twelve frequencies. More readings were necessary with samples of high air re-
sistance. The criterion chosen was determined by the accuracy with which the
impedance curl could be drawm.

Through the imperfect homogeneity of the sample surface the readings of the
sound pressure at some frequencies at the first minimum, nearest to the sample,
were unreliable. If so the minima were extrapolated afrer starting from the
following minimum. Then the value of the phase shift was derived from the
readings of three-quarters of a wavelength, neglecting the pesition of the
proba at the first minimum.

The value for the sound pressure at the maxima often do not show substantial

variation for one frequency,eq.(1-36). Extrapolation is then not necessary.

2.5 Accuracy of the measurements

The specific acoustic impedance of 2 sample is determined in the standing wave
tube in some reference plare and the worker is free in his cheice of this plane
as long as the impedance itself is the only quantity of interest.

But a different situation arises if material constants of the sample are to be
derived from the specific acoustic impedance. If so, the interface between the
air column and the sample material is selected as refereace plane and the as-
sumption is introduced that the properties of the medium change abruptly from

those of air to those of the sample in this plane.
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The concept of a plane of discontipuity is realistic enough for fine-grained
materials, but for coarse-grained omes a transition may well exist where the
properties of the medium change almost continuously. At present there appears
to be no feasible procedure for incorporating thc effect of such a tramsition
into the caleculations, e.g. for finding an optimum position for the reference
plane somewhere in the range. Therefore the simple procedure of laying the
reference plane through the highest peaks of the sample surface has been
followed and no account was taken of any errors thus introduced. Thin layers
are most severely affected by these errors.

Another problem presented by coarse-grained materials is that a specific sample
may well be far from representative for the bulk of the material, the number of
grains in the sample being limited. Here toc the answer to the problem is far
from obvicus and was not further pursued. The problem was discussed in more
detail for perforated panels by Mawardi (1956).

The following is confined to the errors inherent in the determination of the
specific acoustic impedance, commencing with those in the medulus lr{ and the
phase angle ¢ of the sample's pressure reflection coefficient r.

Now |r| follows immediately from the standing wave ratios, c.f. eq.(1-38).

Assuming an error 8lr| in |r| and 6s in s, one can derive from eq.(1-37) that

sle] » =22 8o B (2-1)
(s+1) 5 s

Thus the absolute value of the error in |r| is always less than half the absolute
value of the relative error in s, vanishing for vanishing sample absorption.
The relative error § a/a in the absorption coefficient a is also of interest,

especially if sample absorption is low. From eqs(1-38) and {(2-1) one concludes

that
Sa =- 2Frl rSIr|=- |r] (l-!r[z) S8
]
or
_6—- = —.§-—‘_ Eé {2_2)
a s+1 s

The absolute value of the relative error in a is always smaller than in s,

approaching this latter value for vanishing sample absorptiom.
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Eqs (2-1) and (2-~2) show that the errors in Er] or a follow immediately from
those in s, which will therefore be scrutinized.

In considering the errors in the determination of 4, errors ipn position are
converted into errors in angle - expressed in radians - by multiplying the
error in position by the wave number k.

One can now compile a list of sources of error, adding a short discussion and

an estimate for the probable value of each error.

Table 3

Sources of error

A. In the determination of s: B. In the determination of ¢:

1) The reading error of the wave 1} The reading error in probe
analyzer microphone position

2) The error in probe position when 2) The error in probe position when
adjusting for pressure minimum adjusting for pressure minimum

3) The error in extrapolation of the 3) The error in the wave number
minima 4) The error in the position of the

4) The error due to interfering sample surface
signals. 53) The error in the correction for

the probe's pressure-sensitive
position.
Ad A4 1. A relative error in the wave-analyser reading in an extreme will give
rise to an equal relative error in s, when absolute values are considered. The
wave -analyser having an approximately logarithmic scale, the relative reading
error is approximately constant. The prcbable value, which represents the

instrument's accuracy, may be 1Z.

Ad A 2. The customary procedure for finding a minimum is the following. The
probe microphone is swung to and fro past the minimum with reducing amplitude
and keeping the wave-analyser readings at opposite ends of the swing equal.
Finally the probe is brought to rest at the estimated midway position for the
smallest swing, always coming from the same direction and it is then assumed
to be at the minimum.

As a change in wave-analyser reading of 17 1s clearly visible, the limiting
process described above will presumably yield a relative error of less than
0.5%7 for the value of the minimum. Smaller errors will obtain for the maxima
and also for the minima for highly absorbant samples because of the slow change
in reading of the wave-analyser with probe position. However errors in minima

will be rather large for samples with very low absorption.
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Ad A 3. Assuming the attenuation constant 2y in the standing wave tube to he

minutely small and approximating the righthand side of eq.{1-31) one finds

2
| %-] = exp(MZaox) + Ir]2 exp(Zaox) + 2|1l cos(2kx + ¢) =

Pi

™1 - Zuox + jriz (1 + 2uox) + 21| cos{2kx + 4) =

=1+ le]2 4 2]e| cos(@hx + ) - (1 - Iri?

The positions of the pressure minima are piven by

) 2a0x.

eq.(1-32). Let the sound

pressure equal P, and x =- 1min for the first minimum. Zq.(1-31) now yields

2
Ip, |
L R S T WL A09
~ 2 o min i
lPiI luirl

On introducing the extrapolated sound pressure in

i
Pse = 1511 = IeD)

).

A
= |p1|//(! * 2008 1.

An errer Sa_ in o will result in an error Sp .
o o min
Eq.(2-4) gives

» nY:
in © lPi](l—lrI) = pl/(1+230 1, 8)?,

P min

m

- _1l¥ -3/2
) I bl + 2ags 1. ) L 251 sag,

or

Sp_. a_ sl . da
min _ _ "o " min

P_. 1+20 s 1_, a
min o min o

Note that the absolute value of the relative error
half that for o_. As a rule the error in p . will
[ min

that in o~ o 1 being a small guantity - that

o o min

(2~3)
the minima

(2-4)
in Phin®

(2-5)

in p_._1s always less than
min
be so small in relation to

it may be neglected.

However, should a8 lmin approach or even exceed unity, the relative errors in

Pain
and if so
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_J4r _os+] + (s-1) cos¢ + j{s-1)sing (2-6)

*

l-r s+l — (s-1) cos¢ - j{s-1)sins

~ 2/s + 3 sin ¢ (2-7)
I-cos ¢ + (l+cos ¢)f52

r is thus yather insensitive to errors in s, unless ¢ approaches zero, when 7
approaches s,

Fartunately the combination of factors which make for large extrapolation errors
is rare and mostly the probable relative error in s due to faulty extrapolation
will remain below 0.57%

The errors due to interference have been discussed. Flectrical cross-talk betrays
itself by a regular fluctuation in the magnitudes of the minima and an inade-
quate signal-to~noise ratio may uswvally be avoided by a slight shift in
frequency.

Taking the sources of error in s together, the probable value for the relative
error in |r| will usually remain below 2%, bringing the probable value of the

relative error dovm to less than 1%,

Ad B 1, The reading error §x for the probe microphone position is of the order
of 0.5 mm. On converting this error to radlamns by multiplication with k one
finds an error that is proportiomal tc frequency. For the highest frequency

used, = 2000 Hz, k|éx| =0.02 radians.

Ad B 2. It was assumed in A 2 that the probe microphone was not adjusted cor-

rectly to the minimum, thus introducing a difference 6p between the ratio p/pmin

and dp as compared to unity.

N R (2-8)

Pnin

The probe position deviates by §x from the correct position for a minimum. Thus,

on referring to eq.(1-32), probe position is given hy
2kx = W - ¢ + 2kéx. (2-9)

On neglecting attenuation by introducing a, =o inte eq.(1-31), it follows that

/1% = 1+ |ei? + 2lxcos(2ix + 4). (2-10)
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Flimination of 2kx from eq.(2-13) by means of eq.{2-%), and assuming kx is much

less than unity, yields

973,17 = G=leh? s+ Jxl(aren?, (2-11)
a¥]

and, on considering that {p . /p.| = 1-]r|,

min’ ¥i

comparison of eqs(1-8) and (!-11) yields
x[sxl = C1-]e]) J(;epl]rl)- (2-12)

To elucidate the magnitude of the error from faulty probe position in the minima,
a short table is composed, introducing probable values for 6p in accordance with

A 2.
Table 4

Error due to faulty probe position

]r[ GP.IO3 k|8x| in radians
0.9 5 0,005

0.5 5 0.035

0.25 5 0.075

0.1 2.5 0.1

For values of |r| as low as 0.1 the present approach is inappropriate, The rari-
ty of such values justifies their exclusion from further diseussion here.

Ad B 3. The wave number is derived from the measurement of the distance between
two adjacent minima and, as such, is subject to the ervors mentioned under B 1
and B 2. These errors are sbsolute errors, however, and as a rule there are a
number of minima available over which the distance may be averaged. This reduces
the relative error in k to such an extent that it may be omitted from further
consideration, except for the lowest frequencies where errors of the order given

under B 2 may prevail.

Ad B 4. The position of the sample surface is determined with a flat plate,
fitted with a vertical bar tomsisting of plexipglass on which a calibrated scale
has been engraved. The sample is introduced into its holder and the plate is
placed on the smoothed surface. The scale is then sighted along the rim of the
sample holder. The errors inherent in this procedure are so small compared to
othars that they may be neglected.

The sample-holder was usually filled completely, the material being levelled off
to the rim of the holder.
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Ad B 5. In interferometry, sound pressure 15 measured along the axis of the
interferometer tube and the ideal instrument for this purpose would be an infi-
nitely small microphone. Although the micronhones used in interferometry are
alwzys small in relation to the wavelength, their dimensions are unfortunately
finite and the e.m.f. at the electrical output terminals will be proportional
to a weighted average of the wvarious sound pressures prevailing at the micro-
rhone's surface. The e.m.f. is thus no longer a measure for the sound pressure
at a given peint,

Fortunately however there are microphones with "pressure-sensitive peints'.

For such a microphone at a given frequency, the output e.m.f. is proportional
to the sound pressure at the (pressure) sensitive point which is characterized
by an invariant position in relation to the microphone, i.e. the proportionality
factor referred to above is independent of the nature of the sound field in
which the microphone is placed (thus for the interferometer, in a pressure
maximum,in a minimum or between,for high or low standing wave ratio). The
proportionality factor between the e.m.f. and the sound pressure in the sensi-
tive peint and the pesition of that point may vary with frequency. The position
of the sensitive point should be determined experimentally as consideration of
microphone construction may lead the unwary worker to fallacious conclusions,
e,g. for the probe—tube microphone with a simple open—ended probe tube (a type
popular in interferometry), the sensitive point might be imagined to lie in the
centre of the orifice at the end of the tube. In fact it lies a fraction of a
tube diameter ahead of that end.

In saction 1-4 the procedure was described for eliminating the unknown position
of the sensitive point experimentally, using a hard termination for the inter-
ferometer, a rigid plate to be referred to as the calibration plate. In the
present context, the position of the sensitive point is being considered as a
possible source of error and the question of the accuracy of determining its
position thus arises.

In an interferometer terminated by a calibration plate the standing-wave ratio
is high so wavelength may be determined with great accuracy and the first
pressure minimum lies & quarter wavelength in front of the calibration plate.
By adjusting the microphone to this minimum, the position of the sensitive point
in relation to the microphone may be determined. Various authors, such as Scott
{1946) and Lippert {1953) have investigated the positions of the sensitive
points for various types of microphones. Figure 12 gives the distance between
the sensitive point and the end of the probe tube as a function of frequency,

for microphones with simple open—ended probe tubes. Lippert's (15953) values for
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Figure 12 The deviation of the semsitive Tocation from the end of the probe

a probe tube with inner and outer diameters of 2.8 and 4.7 mm, respectively,
have been entered as curve A. The present author, using a probe tube with inner
and outer diameters of 3.3 and 6.0 mm, respectively, found curve B. In order to
show the accuracy attained, a number of the experimental points were entered
inte the graph. These points were specially selected as showing the largest
deviations from the average curve, B.

Below 500 Hz, the accuracy of measurement is low. However, in view of the large
wavelengths in this frequency range, comparatively large absolute errors in the
position of the sensitive point can be tolerated. Thus, below 500 Hz, a uniform
distance of 4 mm between the sensitive point and the tube end was assumed.
Above that frequency, curve B was applied,

In the foregoing, the calibration plate was assumed to be rigid, i.e. immobile.
Thick metal plates may be expected to meet this requirement, whether or not
they are stiffness-controlled or mass—controlled (whether forces of elastice
deformation or forces of imertia preponderate in the immobilisation of a plate).
Signal departures from immobility are to be expected if a plate passes through
mechanical resonance. Morse (1948) gives equations for the resonance frequen—

cles of circular plates, clamped at their edges. One of his results may be
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brought into the following form (his eq.(21.6))

- = 2 -
25, =0.467 b cpl/a R (2-17)

vhere f ig the lowest resonance frequency, h is the thickness of the plate

0.1
and a its radius and cpl is the velocity of propagation of longitudinal waves in
the plate.

The following numerical values for the steel calibration plate used with the

large interferometer are introduced into egq.(2-13}

h =12 mm, a =81 mm, c =5.3"103 m/s,

pl

resulting in

£ =4.5 kHz,

0.1
This value for the lowest resonance frequency is probably rather higher than the
value which would be found experimentally as the clamping of the plate at its
edges is probably not completely rigid but somewhat compliant. Wen so, the
lowest resonance frequency is well beyond the operational frequency range of the
interferometer and the calibration plate is thus stiffness—contrelled in that
range. Owing to its greater thickness, the resonance freguency of the piston
under the sample is even higher and it is thus stiffness-controlled against
deformation. As its weight is considerable, its position is mass—controlled.

The conclusion is, that the error B3 in establishing the microphone's sensitive
point may be of the same order as the other errors in the position of the first
minimum.

In summary the probable error in k&x should not exceed (.02 to 0.04 radians,

. Eq.{1-32) shows. that the error in ¢ will be double these values.

The probable errors for ]r' (or a) and ¢ estimated abcve may be represented by
error ellipses in the ¢ plane. Size and shape of these ellipses vary considera-
bly with their position in the plane, being smallest in the neighbourhood of + I
(see figure 13). But the error ellipses prove to be of little practical im-
portance.

In practice two samples prepared in an identical manner, as far as possible,
show disparities in results far beyond the margins of error predicted by the
2llipses. This lsads to the usual conclusion for standing wave tube measurements,
that the method of measurement is accurate enough, the main source of spread in

the results being the lack of reproducibility in the preparation of the samples.
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A point of some significance may be read from the formulation of egs(1-52) and
{1-53). Zm describes the flow of the gas through the pores and Ym is determined
by the compressibility of the gas in the pores. Both Zm and Ym are affected by
the pore geometry and thus knowledge of Zmras a function of frequency yields
information on the configuration of the pores through which the gas flows; Y
does the same thing for the pores in which the gas is compressed. The information
thus obtained is too limited to permit anything approaching a comprehensive de-
scription of pore geometry. However, some characteristics ¢f that geometry can
be obtained and here acoustical methods do supply more information than static
ones.

In section 1.9 the simple suggestion was introduced that two effects contribute
to Z : the forces of inertia and those of viscous friction working on the gas,
the corresponding quantities for Y being the compressibility cf the gas, taking
the presence of the frame into account, and heat—exchange between the gas and
the frame. This simple picture is untenable for a numher of porous materials, a
case in point being materials containing side holes. A configuratiorn of this

kind is illustrated in figure l4: a side hole is connected tco a channel by an

Figure 14 A side hole

orifice. The presence of the hole hardly affects the flow of the gas through the
channel, but the presence of the extra volume of the hole does increase the
acoustic compressibility of the gas in the channel, as long as frequency is not
too high. For sufficiently high frequencies, the viscous resistance of the
orifice will impede the gas exchange between the side hole and the channel and
the acoustic compressibility will decrease to the value for the channel alone
for very high frequencies. In this example, a viscous effect contributes toc the
frequency—dependence of Ym.

Eq.(1-56) is the fundamental equation for deriving the properties of the sample
material from the experimental values of the specific accustic impedance of the

sample surface Z. One measurement for one sample thickness and for a given
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frequency yields only one complex quantity and if Ym and Zm are to be determined
separately at least one further measurement at the same frequency is essential.
Obvious solutions to this problem are: a change in sample thickness or the re-
placement of the rigid back-plate of the sample by another, known backing im-
pedance (in the latter case, a modified version of eq.{1-36) must be used).

The method of variable sample thickness was followed in some cases but was in-
applicable in others. Many materials, especially those of granular composition,
are extremely sensitive in geometrical configuration and any mechanical inter-
ference with the sample tends to alter the acoustical properties of the material.
For such materials, ancther solution must be scught.

The solution adopted here assumes a pore geometry, characterized by a limited
number of parameters, not departing too far from reality but still simple enough
to be amenable to calculation., Such a geometric arrangement can be ccnceived as
a mathematical model and will yield a locus for Z in the complex impedance plane
for variable frequency and constant sample thickness. By variation of the pa-
rameters a family of such loci may be penerated. Measurements on the sample are
also carried out for variable frequency and constant sample thickness and the
resulting experimental locus for Z is compared to the family of theoretical omes.
The numerical values of the parameters pertaining to the theoretical locus giving
the best fit are accorded the status of characteristic quantities eof the sample
material,

As an example, a very simple model for pore geometry is considered, consisting
of identical circularly cylindrical tubes drilled into the frame material in

the direction of propagation of the acoustic waves. This model has only two
parameters : the tube radius and the number of tubes per unit area. A more
sophisticated version is obtained by drilling all the tubes at the same angle

to the direction of propagation, thus introducing a third parameter. In fact,

an infinite variety of arrangements may be postulated with any number of pa-~
rameters. As will become clear in chapter 4 however, the introduction of more
parameters beyond a fairly low limit does not increase information about the
sample material,

A serious defect of the procedure considered is that Zm and Ym canmot be de-
termined separately and thus that differentiation between effects due to gas
flow and effects due to gas compression is impossible.

The principal aim of this chapter is the consideration of tha variocus pro-
cedures for obtaining characteristic material constants from interferometric
measurements. In this context, the following subjects will be discussed in more

detail.
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.. The method of Ferrero & Sacerdete (1960), which is founded on the use of
very thin samples, permitting amalytical approximation of the transcendental

function appearing in eq.{!-56).

2. A method based on the use of two or more sample thicknesses, incorporating a
graphical ald for the solution of eq.{1-56).

3. A simple mathematical model by Zwikker & Kosten (1941}, which employs three
narameters and does not require specification of the pore geometry.

4. The applicability of rules of proportionality for porous materials.

5. The formulation of two wvariants of the channel-type geometrical model, the
channels consisting of circular cylindrical tubes in one case and of fissures in
the other. The channels are inclined a2t a constant angle to the direction of
propagation and have variable cross-sections. Besides the restrictions mentioned
before (rigid frame, no ligquid flow) a further assumption is added: the frame
possesses sufficient thermal inertia to ensure that its temperature may be
considered constant.

6. The formulation of a geometrical model for prismatic structures. These cccur
in heavy clay and slaked soils when dehydrated. This model allows for side holes.
7. The possibility of composing an analogous electrical circuit of the trams-—
mission-line type for the porous material. Essentially such a circuit would mot
contribute new information but might help in the understanding of wave propa-

gation in porous materials.

3.2 Numerical examples of calculating Zm and Ym from measurements at
laver thicknesses
Various authors have introduced different representations for Zm and Ym' Follow-
ing Ferrero & Sacerdote (1960), modifying their notatiom slightly, the two

quantities can be presented in the following general form:

z = o, *+ Jue, (3-1)
Y =G + jwC (3-2)

where the values of the real material constants Spr O Gm and Cm may be
frequency dependent. The material ccnstants are the specific flow resistance of
the material, the effective density, the conductance and the reciprocal of the
effective compression modulus, respectively.

At low frequencies, air movement in the material will be hampered particularly
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by viscous forces criginating from friction along the walls of the capillary
tubes in the porous material. In these cases a velocity distribution, as assumed
in the Poiseuille flow, can be adopted and then 9 stands for the static spe-
cific flow-resistance in the material. At higher frequencies, the air will oscil-
late more like a plug. Although it is customary to refer to high frequencies
when the linear dimensions of the pore system under consideration are large in
relation to wavelength, a modified criterion is intended here: the frequency is
considered high when the linear dimensions are large relative to boundary-layer
thickness. The viscous boundary layer thickness is given, for example, by
Crandall (1927} and appears in this book as eq.(B-3).

In a cylindrical tube, e decreases with frequency, as the boundary layer
thickness decreases, and so does Ppe 8 air flow is less restricted to the
centre of the tube.

In eq.(3-2), Cm represents the compliance of the gas in the pores, taking into
account the reduction of the available space owing to the finite volume of the
solid or liquid matter. If for example the porosity is 107, the value of Cm
becomes 10% of its value in free air. Sections 1-9 and 3-2 described dissipative
mechanisms associated with compression; the results of such losses is repre-—
sented by the term Gm, As far as the thermal losses are concerned, the situation
is partly analogous to that of viscous losses. Provided that freguency is high,
in the sense discussed abecve (see eq.B-14), the changes in state of the gas are
nearly adiabatic.

For low frequencies those changes in state are nearly isothermal and in this
case thermal losses are low. For such frequencies wviscous losses are however
high. Thermal effects are discussed by Kirchheff (1927) and Zwikker & Kosten
(1948).

Making use of egs(1-54) and (1-53), egs(3-1) and (3-2) may be written as:

% + Jupy = mem (3-3)

G+ juC_ = ym/Wm (3-4)

Egs(3-3) and (3-4) show that the four characteristic quantities, Cos O Gm and
Cm may be calculated from experimentally derived values of the complex quanti-
ties Yo and Wm. These latter quantities require at least two measurements for a
given frequency, as one measurement on one sample yields only two values.

The technique developed by Ferrero & Sacerdote (1960) attempts to eircumvent

this problem by performing measurements on very thin samples. One of the princi-
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ral mathematical problems in reducing the experimental data is the transcen=
der.tal function appearing in eq.{i-56),but for thin samples, the argument of the

function is small and the latter may be developed into a series:
: (3-5)
coth(z) = (1 + z°/3 + ...}/ =.

Introducing & and n from eq.([-28), using eq.(3~5) and assuming slight damping

(o _<<wp 3 G <<wC. ), eqs(3-3) and (3-4) may be reduced:
m m' “m m 1

G 3
- .
pefm—g—x+—ol, (3-8)
5 wzlc 2 3
m
p_CrR— 1L wlp . (3-7)
8 mlCm 3 m

It can be seen from the right sides of eqs(3-6) and (3-7) that the first two

terms differ considerably in their frequency-dependence from the second two.

Now, provided the characteristic quantities are slow functions of fregquency, sepa-
ration of the terms might be feasible, thus permitting the calculation of all

four quantities. The equations

d(o enfw) fdu = 2/ (1€ ),

d(e_cE) Jdwm- 26/ (u°1€_2)
osng w.re AYACUELESD

yield Gm and Cm. A change of sample thickness 1 opens similar possibilities.
This technique offers little possibilities in practice. In thin samples with a
rigid backing there is only little gas flow and quantities such as % and O
which represent the forces of viscous resistance and inertia, cannat be expected
to affect the surface impedance substantially. The second terms in the right
sides of eqs(3-6) and (3-7) are quite small in relatiom to the first. Owing to
the accuracy of acoustic measurements, the separation of tha terms cannot be
achieved; a feasible approach is to neglect these small second terms, thus con-

fining the use of eqs{3-6)} and (3-7) to the calculation of G and C .

The accuracy of the results for the material constants for two different systems
of interferometric measurement will be demonstrated with a numerical example. A
fictitious porous material is considered having representative values for the
characteristic material constants. For a given frequency, the standing wave

ratio and the phase angle in the interferometer tuhe are calculated for various
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thicknesses of the sample. The standing wave vatios and phase angles thus found
are then approximated in accordance with the finite accuracy of interferometry
(see section 2-6). The material constants are then calculated from these rough
values, vsing the two systems, both of which require measurements at two sample

thicknesses. Finally, the results for the constants are compared with initial

values.

The fictitious porous material is acoustically determined by:

4

Ns./m!i

1.50107° m2/ns.

3 .
o 10 kg/m G

310828 5 ¢
m

It

) 3«10

C
m

The measuring frequency is 250 Hz, the sampie holder has a rigid back plate (see
section 1-9 and 2-2)}, 7 sample thicknesses 1, from 0.0l to 0.5 m, are considered

and the air column in the interferometer is characterized by:
3
osc = 410 Ns/m~.

Table 3-1 gives the numerical results. The specific acoustic impedance at the

sample surface Z] and its normalized version r, were calculated with the aid of

egqs(1~56), (3-3) and (3-4). The modulus }rll a;d the angle ¢] of the reflection
coefficient were obtained from eq.(!1-37). The standing wave ratio Sy and the
absorption coefficient a, follow from eqs(1-37) and (1-38), respectively. The
rough values for 5, and Py Sy and $9s respectively, are presented in table
3-2. This table also lists the normalized specific acoustic impedance at the

sample surface, Zas the modulus |r2| of the reflection coefficient and the

Table 3-1

Standing wave ratlc and phase angle, calculated from material constants

1 Zy £ 7| g 4 §1

(m (10% . Nsm ™) ) (+) (#)  (radiams) (¥)
0.01 6.225 - 19.22 i 15.18 - 46.88 ] 0.9874 0.026 0.0386 157.7
0.025 2.703 - 7.576 j 6.591 - 18.48 j 0,9665 0.0659 0.0966 58.70
0.05 1.701 - 1.647 § 4.148 = §.896 j 0.9181 0.1571 0.1845  23.42
0.10 1.673 - 1.516 j 4.080 - 3.697 j 0.7658 0.4135 0.2472  7.540
0.15 2,033 - 0.9018 §  4.957 - 2.200 i 0.7130 0.4917 0.1485  5.968
0.25 2,467 - 0.9283 § 6.068 - 2.264 ; 0.7466 0.4426 0.1117  6.893
0.50  2.420 - 0.995 5 5.903 - 2.427 ; 0.7477 0.4410 0.1217  6.927

80



absorption coefficient a,, as obtained from Sy and ¢2 by the reverse process of

zaleulation.

Tahle 3-2
Tmpedance calculated from standing wave ratic and phase shift, read in the im-

pedance diagram

1 Sy I, | ¢y ) 3y Lo

() (+ (9 (radians)  (+) (+)
2.01 157 0.987 - 2 - 0.0349 0.026 19. - 50 ]
0.025 59 0.966 - 5.5 - G.0960 0.067 6.7 - 18.5 j
.05 23.4 0.918 - 10.5 - 0.1833 0.157 4.2 - 9.0 j3
J.10 7.5 0.785 - 14 - 0.2443 0.415 4,1 - 3.7 3
0.15 6.0 0.714 - 8.5 - 0.1484 0.49 5.0 - 2.18 ]
0.25 6.9 0.747 - 6.5 - 0.1135 0.44 6.0 - 2.29 3
0.50 6.9 0.747 - 7 - 0.1222 0,44 5.9 -~ 2.43 j

The first system of deriving the material constants from the supposedly measured
resalts in table 3-2 uses the fact thar for iafinitely thick samples, the spe-
cific acoustic impedance at the sample surface equals the wave impedance of the

sample material: Z = Wm. Consider the transcendental factor in eq.{1-56);
coth I:(am + JBm)l:! = [1 + exp(-2¢ 1 - 236m1}]f|:1 - exp(—2am1 - QJBml)]- (3-8)

For large values of uml, exp(—Zaml) is small and eq.(3-8) may be approximated
to:

coth[(am + Jﬂm)l] =] o+ 2-exp(—20tm1)-exp(—2j Bml). . (3-8a)

For variable 1 this function is a logarithmic spiral in the complex plane with

its apex at +!. In the present sense, aml is large at numerically moderate

values, Thus, for am1>2.l, the spiral is within an absolute distance of 0.03

from its apex, and in this range the sample behaves as though infinitely thick. In
the present instance the difference in results for 1 = 0.25 m and 1 = 0.50 m is

so small that no great error will results if the value found for 1 = 0.50 m is
agsumed to hold for an infinitely thick sample.

Replacing §2 by (CZ)m and selecting a second measurement for a sample thickness

1, vielding (52)1, the derivation leads to
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(Ty)y/ {2y, = coth[(am2 + jsmz)l]. (3-9)

Selecting 1 = 0.05 m for the finite value of 1 and assuming the value of 2 for
1 =0.5m to be an adequate approximation of that for 1 = =, eq.(3-9) and table

3-2 yield the following numerical results:

W, = (2.62 - 1,00 )+10° Ns/m,

coth[:(am2 + jﬁm2)1]= 1.1535 - 1,054 j, 1 = 0.05 m.
The solution of the equation:

tanh(x + jy) = a + jh,

derived from the nomograms in Rybners book (1947, p.27) prove to be rather in-

accurate; the exact solutioms are to be prefered:

tanh(x) = [}2 b2 41 ~/((a + b2 - 2(a? - b + 1i]2a, (3-10)

tan (v) = [a2 + b2 = 1 - /(a2 + b2 - 2¢a? - bD) + li]Zb, (3-11)

x and y following to the desired degree of accuracy from the relevant tables.

The numerical result in the present case is:
. A
o ¥ JBm2 = (8.1 + 9.9 {dm ",

The numerical values for the material constants now follow eqs(3-3) and (3-4):

3 _ e 4
Ppn = 9.9 kg/m 3 O = 2.9+10" Ns/m
_ . -6 2 s _ . -3 2

c“12 =2.9.10 nm“/N sz = 1.43+10 " m /Ns.

Agreement with the initial values is quite good, apparently the approximations
introduced have had only a slight adverse effect. The method has disadvantages
when applied to the measurements in this book, not only because of the dis-
turbance of the sample when altering its thickness but also because soil samples
are rarely homogeneous over the necessary thickness. The further disadvantage of
the amount of material required for a sample which can be considered infinitely
thick may be avoided by extrapolation from finite thicknesses. An appropriate
graphical method will be described in section 3-4.

The second method to be investigated follows Ferrero & Sacerdote (1960). Two
thin samples are considered, having 1 = 0.01 m and 1 = 0.025 m. Eq3{3-6) and
(3-7) are used, neglecting the second terms in the right sides. The results for
Cm and Gm are given under Cm3 and-Gm3 in Table 3-3. This table also lists the

quantity pscifl, which should be inversely proportional to 12 if all the approxi-
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Table 3-3

It.e material constants calculated according the method of Ferrere & Sacerdote

! Cm3 Dscg/l Gm3

{n) (N_lmz) (Nsm-a) (N_lshlmz)
0.01 2.1 - 107% 7.8.10° 2.0 1073
0.025 3.4 +10°% 1.1.10° 1.8 . 1077

mations introduced were justifiable. Thus the ratio of the two values appearing
in Table 3-3 should be 6,25:1, in fact this ratio is practically 7:1.

The mean valuas taken from Table 3-3 are:

. -6 2 . _ -3 2
Coy = 3.25¢10 " m°/N Gy = 1.9+10 7 m"/Ns.

They agree poorly with the initial values. The approximations are unsatisfactory
In particular the assumption of slight damping, which means neglecting sz
relative to mcmz. is questionable. The method seems to need higher precision
than is practically attainable. One of the principal limitations is the large

error in measuring the very small phase angles for thin samples.

3.3 The logarithmic impedance plane as a tool for the numerical evaluation

of W and vy
m m

The complex In{z) plane may be of assistance if the normalized specific acoustie
impadance 7 of the sample surface has been determined from measurement at a
fixed frequency and for variable sample thickness 1 and the aim is the determi- .
nation of the material constants, e.g. the complex constants wm and Yo From
eqa(1-28) and (1-56) it follows that:

inz = ln(Wm/psc) + 1n coth(yml). (3-12)
The first term on the right side of eq.(3-12) is independent of 13 the second
term determines the form of the locus in the Inf = x + jy plane for variable 1,
and 1n(Wm!osc) determines its pesition.

The quantities

A= amfsm and q = 28m1 (3-12a)
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are introduced and the locus of the function:
F =1ln coth(yml) = In coth[i(a + j)q], {3-13)

in the complex x',vy' plane is investigated for variable q and with A as parame-
ter. As q approaches infinity, the argument of the natural logarithm in eg.(3-13)
approaches unity and F approaches zero, the origin of the x',y' plane. A family
of curves for T for a series of wvalues of A now be constructed and plotted on
transparent paper. The curves prove to have the form of a spiral (figure 15a).
The experimental values for 1nz have been entered in the x,y plane. The x',y’
plane, carrying the loci for F, is now placed on the x,y plane and shifted umtil
the locus for F best fits the experimental points, keeping the x and x' axes

(or y and y' axes, respectively) parallel. Under these conditions, the position
of the origin of the x',y’ plane lies at the point 1n(Wmf0gc) in the %,y plane;
the use of the In Z plane is essentially the extrapolation of the spiral for 1n [
to its apex, the point for infinite layer thickness, which is determined by the
specific acoustic wave impedance of the material, Wm. Once Wm is known, various
paths are open for the determinaton of Yo =0 F ij. The best fitting spiral
for F yields some informaticon on the value of am/Bm, if the associated value for
A is knewn.

Let the apex of the spiral for In 7 be determined by ¢ = EO + jno, EO and o
being the quantities yielding the real and imaginary parts of Wm, after multi=-
plication by P C {see eq.(3-12)). A rapid estimate for £, and n_ is facilitated

if the loci £ = constant and n = constant are entered in the x,y plane. From
x + jy = In(E + jn), (3-14)
it follows that

2 2
x =3 1In(§” + ") ; y = arctan (n/%). (3-15)
In eq.(3-15), vy has more than one value. Tt is the phase angle of the wave im-
pedance of the sample. As passive samples only are considered, £3 0, and the
imposition of the condition:

- nf2gyer/2, (3-16)

does not entail a loss of generality. Tt way now be seen from eq.(3-13) that ¥y
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and n must be accorded the same sipn.

Solving eq.(3-14) for & and n yields

exp(x) = cos(y) z, (3-17)

exp(x) + sin(y) (3-18)

i
=

Eqs(3-17) and (3-!8) are useful for the calculation of the loci. Then these

equations may be brought intc the form:
exp[x - 1n 5]- cos(y) = 1,
exp[g - 1n1n|] « fsin(y)| =1,

and from this formulation it will be seen that a change in one of the parameters,
either £ or lni, corresponds to a parallel shift of the locus in the x direction.
1t is thus sufficient to calculate the locus, for example, for constant E se-
lecting a simple value for & (as such £ = 1 springs to mind) and to obtain the
other loci by shifting the curve along the x axis. The loci thus calculated may
be applied to the construction of those for comstant n by substituting

y = 2 + 1/2, allowing that negative values of y correspond to negative values of
n. The family of curves for constant £ and that fotr constant n intersect or-

thogonally, eq.(3-14) representing a conformal transformation (see figure [5b),

The construction of a family of curves for F in the x',y' plane (see eq.(3-13))

presents more difficulties. Reduction of equations given by Rybner (1947, p.25%)

vialds
%' =} 1n f&osh Aeq + COs @ , (3-19)
cosh(A*q) - cos g
y' = - arctan 510 . {3-20)
sinh(A=q)

These equations give the spirals in parametric form. As mentioned previously,
the asymptotic point for large values of q is x' = v' = 0; for small values of g
the spiral approaches an asymptote given by:

¥

y' = - arccot(A).

With a Fortran programme, the co-ordinatas x',y' for spirals corresponding to 14

values of A were generated.
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The 1n £ plane was used to determine the normalized specific acoustic wave im-—
pedance of the sample material in a number of cases. As an example, a number of
measured points for various sample thicknesses at one frequency have been entered
in Figure 15k. In this cas., the best fit is obtained for a spiral having an esti-

mated parameter A = 0.25, and the result for the wave impedance is estimated at
Wmfosc = 3.40 - 0.56 ]

A Portran programme was devised to calculate the other material constants.

The 1In £ plane, congsidered as a tool for estimating the wave impedance of the
samplie material, has several drawbacks. There are areas where the accuracy in
reading £ and n is small, especielly near the asvmptotes. This disadvantage can
be avoided only by dropping the conformality of the transformation, eq.(3-14),

and stretching the plane uniformly in the y direction.
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3.4 The simple model of Zwikker & Kosten

As was discussed in Section 3.1, methods of interferometry requiring wvariation
of the sample thickness are not feasible for soil samples, and so an alternative
procedure will be followed here, based on variation of frequency and involving
the introduction of a mathematically accessible model for the sample material.
The first of such models to be considered is a simple model from Zwikker & Kosten
(1941), which can be considered as a base for the other models. Subsequent ex-
tension of the simple model will be ignored here.

The principal task of the models is to predict the frequency-dependence of the
material constants, and in the present context the specific acoustic series im-
pedance per unit. length 2 and the specific parallel admittance per unit

length Y (see Section 1-9, eqs{1-52) and (i{-53)) are selected as such. The
models are introduced to limit the number of parazmeters.

The first model allows for the fact that only a part h (the porosity) of the
total volume is available for compression and expansion of the gas, but that the

chanpes in state are adiabatic. These considerations yield
Y = juh/xp - (3-21)

The viscous losses are accounted for in Z by the introduction of the specific
flow-resistance o The forces of intertia are also incorporated in Zm. The fact
that the average particle velocitv in the vores is a factor 1/h hisher than the
volume velocity per unit area of the material, suggests the introduction of that
factor in the term corresponding to the effects of inertia. There are, however,
further effects which tend to increase this term, one of the principal ones

being the irregularity of the pores. These effects are accounted for by the intro-
duction of the structure factor ko in the term jwpm. The above considerations
vield

Z,~og* jwpskm/h. (3-22)

To start with, S is considered frequency-dependent. In the simple model it is

equated with its static value 9 which 1s defined by

- 3p/ox = c_u, where p and u are time-independent.,

Comparison of the present notation with that introduced in Section 3,2, eqs
(3-3) and (3-4), shows:
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1=
]

kmoS/h 7 0 =g (3-23a,23b)
cC_ = h/KpS ; G =0, (3-24a,24b)

To familiarize the reader with the concept of structure factor, two special
cases will be discussed.
l. The porous mzterial consists of uniform tubes, all at an angle 8 to the

direction of propagation. The particle velocity in the tubes can be presented

as u/h cos 8, the pregsure gradient along the tubes as - Py %? u/h cos 9, and
the pressure gradient in the direction of propagaticn (the x direction) iIn the
equation:?
3p _ ! 3 u

= - T T
9% cos 8 9t h cos B

so that now km = ljcosze.
2. The porous material comnsists of tubes parallel to the direction of propa-
gation but with cross-sections S = S(x) according to location. The average cross-—
section is pgiven by
) 1
§ =-= S(x) dx.
a
1“0
It is assumed that, for sufficiently large values of 1, Sa apprraches a limit,
which is the same for all tubes.

The function f is defined by
£(x) = 5(x)/5_- (3-25)

With N tubes per unit surface area, the porosity follows as

h=N Sa'
agnd the particle velocity in a tube, g, follows from
u u !
ay = ==
N Sa f(x) h £f{x)

The pressure gradient can be presented as

3 3 u
) L, o, — ——,
ax 3t hE(x)
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and its average value is

. 9 1
Jp, _ls Bu 1f L ax,
3y h ot 1Jo f£{x)

so that, in this case

ot
K, - -f dx, (3-26)
1Yo £(x) .

where 1 must be so large that 1ts value no longer affects km' vet still small

relative to wavelength (and in which f(x} must be in agreement with eg.(3-25)).
The right side of eq.(3-26) is stationary for f{x) = | and has reached a minimum
value. Thus km is larger than unity in the general case. This is made clear in

the following derivation.

Substitute f(x) = 1 + §(x), where [&|<<l and where, in acccrdance with egq.
(3-25)

1t

- 8{x)dx = 0.

170

Developing the integrand in eq.(3-26) yield

o 2 3 VL2 3
k = —-f |:1~5(x)+6 (x) -~ §7(x) ....|dx = 1+-—f [6 (x)-6"(x) ....[dx
L RS 1% 0

In the limiting case |3]+(, the first term of the integral, which is positive,
is dominant. Hence: km>l.

The literature (Xosten, 1941; Bies, 1964) shows that for many acoustical
materials km is considerably larger than unity; values from 3 to 10 occur.
Since similar combinations of parameters may correspond with very different
arrangements, the experimental determination of the three independent quantities
characteristie for the present model supplies only limited information on the
pore distribution of the material.

In figure 16 cross-sections of porous materials are given. For every cross-
secrion an estimate is made of the values for porosity, flow-resistance and
structure factor. This drawing gives an idea of the complexity of the ar-—
rangement in the pore system.

The prediction of km from pore geometry is possible only for simple spatial ar-
rangements. Soil samples do not belong to this class and give rise tc a further
complication as a change in moisture content of the sample introduces sub-

stantial changes in acoustical properties: not only the structure factor but
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Figure 16 Influence o¢f the geometry of the pore system on the value of h, %

and km, respectively
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Figure 17 Calculated values of the absorntion coefficient of trigid porous
materials with rigid backing and presented as a function of laver
thicknesses, flow resistance and structure factor; the poresity in

all cases equals 0.80.

porosity and flow resistance are also affected. In the present context, the
intreduction of a separate factor for structure k was unavoidable. The
tortuosity factor suggested by Carman (1956) or the ramification factor, intro-
duced by some authors for flow-resistance (Visser, 1963), prove te be useless

in acoustics. The specific flow-resistance T should be considered as a separate
material constant and to equate it with a, is rarely justifiable. Experiments
show that % tends to exceed o This is due to the dependence of flow profiles
in the pores on frequency, an effect demonstrated in one of its simpler forms in
a circular cylindrical tube of radius r. Following Crandall's (1927) consider-

ations on the viscous boundary layer, a {(dimensionless) characteristic number,
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wo= 1 {uo_/n), (3-27)

is introduced, where n is the dynamic coefficient of viscosity.
The magnitude of this number determines the nature of the flow profile in the
tube, Thus, for u<l, Poiseuille flow Ls approached, with a parabolic distri-

bution of particle velocity across the tube, and o approaches o where
2
o = 8n/r". (3-28)

For u>10, plug flow ocecurs! particle velocity is practically constant across
the tube except for a sharp drop to zero at the tube walls. Now Helmholtz's

approxlimation applies and
" . -
o (2mnnslr) (3-29)

On determining the ratioc of O and o from eqs{3-28) and (3-29) it follows that
for u»10

Gm/cs = u/4v2, (3-30)

and so 9. tends to exceed o, as frequency increases, sae eq.(3-27).

In the transitional range, l<u<l0, the flow nrofile is more complicated, and
formal expressions may be found in appendix B. Note that eq.{3~30} does not
hold in this range. Although the effect is not considered for the present
simple model, it should be realized that the changes of state of the gas in the
tube vary from isothermal to adiabatic in the same transitional range as de-
fined for the flow profile in the tube, at least if the limits of the range are
conceived as crude indications rather than as exact figures.

This apparent coincidence is due to the nearly equal thicknesses of the vis-
cous and thermal boundary layers.

Using eqs{i-54), (1-55), {1-56), (3~21) and (3-22), it follows that

2 = (p_e/n)V(k (I+he fiwn Kk Y)eoth jkl/(k, (1+ha /jun k), (3-31)

which equation may be abbreviated by the intreduction of the normalized speci-

fic acoustic impedance and of
L = ho_Jwo_, (3-32)
™ s

94



thus reducing it to

ho= V(1] ; -z . 3-3

ho= V(e (1-i5/k )deoth [ik1V(k (1-5z/k )] (3-33)
For the discussion, eq.(3-33) is brought into the form

tho= V0 (135/% ))coth Ssiklik [¢(|+Y2/k2 serl B L [/(1+22!k2 -1}, (3-33a)
-’ m J m 72 m ’ o 7§k m m

Eq.{3-33a) iIs taken to represent the locus of £ in the complex plane for a given
frequency and variable sample thicknesses 1, the locus having the general form
of a spiral, converging to an apex for large values of 1 {see section 1.11). For
a given value of E/km, an increase in km has the following results (excluding a
limiting case, to be discussed later):

1. The velocity of propagation is reduced, being inversely proportional to /km.
2. The modulus of the apex 18 increased by a factor /km.

3. The spiral converges more swiftly to the apex (see the discussion on eq.(3-8a).
For a pgiven value of km, an increase in T results in a shift of the apex, the
reactive part becoming more negative and the resistive part increasing, although
the latter effect is always the smaller. The swiftness of conversion of the
spiral on the apex is iIncreased (see eg.(3-3a)).

The apex corresponds to the normalized acoustic wave impedance of the sample
material; thermal and equivalent losses increase the reactive component of this
impedance but viscous losses decrease it, as may seen from eqs(3-3) and (3-4),

which yield
W= e, - do_fwi(C, - jcm/m)}i.

Now in samples consisting of porous solid frames the viscous losses preponderate,
driving the apex of the impedance curl btelow the real axis.

An increase in h, keeping I and km constant, results in a reduction in size of
the spiral towards the origin, but does not affect its shape.

The effects of variations of k_ in the range I<k <10 and of g in the range
104<Um<1o7 Ns m ™ are well illustrated (slthough for the absorption coefficient
a enly) by Kosten (Richardson, 1953, Vol.I, chapter 4) (see figure 17).

In figures 18 and 19 a number of loci for h are presented in the complex plane.
They were derived from eq.{3-33), but now for constant sample thickness and

variable frequency, corditions corresponding to those under which most of the

measurements were performed. These figures demonstrate the effects of vari-
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ations in km and o, on the loci. The following values were selected:

for km: 2 and 8,

for T 103, IOA and 105 Ns m_b,

for 1: 0.04C and 0.072 m.

The frequency scale is indicated by points on the loci, corresponding to multi-
ples of 200 Hz. The points for 0.4, 1 and 1.6 kHz are marked by the numbers 4,

10 and 16, respectively.

In the limiting case of low damping is

E/km << 1,

a condition consistent with p>10, as discussed previously. If so eq.(3-33) may

be approached by
gh:(l—jz/zkm)/(km)coch[k1z/2J(km)+jk1J(km)_. (3-33b)

The locus for ¢ in the complex plane, for constant frequency and variable sample
thickness is now-a wide spiral, converging slowly on an apex just below the real
axis. In the present case, information may be ohtained from the anti-resonances
and resonances of £, where ¢ is real (see Section I-11). But, as Kosten (1947)
has pointed out, preference should be accorded to the selection of minimum and

maximum values for |z|. Thus |7| achieves its minimum for

klfkm = nf2, (3-34)
and, in the prevailing order of approximation, this yields:

ch = %ni//km. _ (3-35)

Values for km and for I/h = cm/mos may now be derived from eqs{3-34) and (3-35).
These two equations hardly differ from those of the first anti-resonance (see
section 1.11), especially if damping is very low. No great error will ensue in
applying eqs(3-34) and (3-35) to the first anti-resonance.

Tr the general case of low damping, eqs(3-34) and {3-35) do not apply if sample
thickness is kept constant and frequencv varies, because h, I and km should then
be considered as functions of frequency. In many cases, however, these quanti-
ties vary very slowly with frequency and the equations will yield approﬁimations
for km and O

The present considerations were not extended to anti-resonances of higher crder
or to resonances, as these occurred onlv sporadically in the frequency range

and for the samples investigated in this book,
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3.5 The choice of a model

For a better agreement between the structure of a geometric model and the soil
structure, a number of supplementary assumptions should be made.

In the literature on porous media, Carman (1956), Scheidegger (1957) and
Dallavalle (1943) particularly commented on many views and hypotheses in this
field. Also, in the literature on soil physics pertaining directly to the ori-
entation of pores, many models can be found (de Vries, 1952; van Bavel, 1952).
Some points of consideration are listed here. Research on diffusion of pases was
said to show that except for the effect of path lempgth (Pemman, 1940; Call, 1947),
only the total pore space is of importance. The verv short free path lengths of
the diffusing molecules as a result of mutual collisions cause this effect. The
contributions of large and small pores are in proportion. The arrangement of
pore spaces is therefore of no importance. Variation, for instance, in the
density of packing does not cause systematic rearrangement of pores.

Total porosity should be estimated by the expansion method (see section 4-2}.
Starting from data on weight and specific weight of the sample material erroneous
results will be found because isolated pores are included.

Many measurements and considerations are partially based directly on mass flow
of gases or liquids through porous media {Poiseuille). The largest pores and
capillary tubes contribute most, leading to a small sensitivity for the detection
of pores of small diameter. Even less information was available on the occurrence
of pores in a certain fluctuating regularity and to the effect of a changing pore
diameter. This lack of information is partly due to the fact that often only two

independent variables, namely pressure gradient and flow, can be correlated.

The simple model introduced by Zwikker & Kosten (1941) (see section 3-5), had
the advantage that no assumptions are introduced a priori about pore peometry;
the major disadvantage is that the frequency-dependent effects due to viscous
and thermal boundary layers are ignored.

The introduction of a mean radius or any related quantity, as found in litera-
ture on flow, turns out to be inadequate, as can be seen from eq.(3-27), which
suggests that any averaging process will require some type of weighting factor.
Therefore it seems logical to start with a model, based on channels with a
variable cross-section. Soils can be very often considered as a packing of soil
aggregates. Each aggregate consists of soil particles cemented together. The
volume-weight corresponds roughly to a value equal to that of a dense packing of

spheres.



The investigation of a model incorporating such a spatial arranpement thus
appears to be attractive; the objections will be clarified in a later paragraph.
Nonetheless a channel type model may be brought more or less into line with
closely packed spheres by according the cross-section of the channels the same
distribution function as the cross-seccions of the interstices between the
spheres.

S0 the basic model consists of channels of variable cross-section enclosed in
the solid material of the frame. The channels are inelined at a constant angle
to the direction of propagation. In one of the variations, each channel consists
of a cylindrical tube of varying radius. It is called the capillary model. In
the other variation the channels consist of fissures between parallel planes,
varying in spacing. It will be referred to as the fissure model. Figure 20
represents a section of either material, the channels may be taken to represent
the fissures or capillaries as the case may be. A fundamental limitation of this
approach is that the distribution of .the channel cross-section is the same for
the flow and for the compression of the gas. Numerous examples may be adduced
where this limitation is not justifiable, (c.f. the discussion on figure 14 in

section 3-2} but simplification was allowed te override such consideratiomns.

N per unit area

Figure 20 Model of a channel with different cross-sections
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Zwikker & Kosten {1949, p.25) did consider the effects of boundary layer
thickness, in later papers departing from the case of the homegeneous, clrcular
cylindrical pere. In this case homogeneonus means having constant cross-sectien.
For the purpose of this book, their work was extended te inhomogeneous channels.
An alternative approach was followed by Korringa, Kronig and Smit (1945). They
selected a model with a cubic packing of spheres and succeeded in calculating
the characteristic quantities. An attractive feature of this model is that it
has two gecmetrical parameters for fitting theory to experiment:

1. Sphere radius

2. Lattice constant.

The porosity of cubic packing is unfortunately far higher than anything en-
counterad in experimental samples. The results were therefore rejected from
consideration. This model yields values for specific acoustic impedance at the
sample surface which do not agree with experimental results.

I did not, however, work out the extension of the Korringa, Kronig and Smit
modz1l for a hexageonal packing, which vields a porositv in better agreement with
these encountered in soil samples. The principal reasons are: the mathematical
difficulties involved and the fact that such a model is still only an ideali-
zation of the structures prevailinpg in practice.

For the general description of the chamnel type mecdel the following symbols will
apply:

direction of propagation

£
n

direction of channel

N
It

3 = angle between z and x axis, x = zcos @

N = number of channels per unit area normal to x

U = volume velocity per channel, u = NU

§ = cropss-sectional area of a channel, normal to z, § = 5(z)
Sa = average of S over z.

A number of these definitions are significant for fine-grained materials only.
Fron the definitions one has for the porosity
h = ¢

N Sa/COS 8. (3-44)
New a short section of a channel is considered, S being assumed constant over

this section. Equations of motion and continuity for the section may be given
1
i

in the form

’ S ‘ —_—
- (3p faz) = Jorg g'm =4 u, ‘ (3-45)
a 1 g g
a
jwsa ' 5 (3-46)
- (B/ez)) =-+—=n — P
m a
Kp S
5 a
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where P, is average sound pressure in a cross—section of the channel, U is the

1 t

volume velocity and £ m and n are referred to as the perturbation factors

for homogeneous channels, i.e. having a constant cross—section. The subscript 1
indicates that the local values of the pressure pradient and the volume veloci-
ty—divergence are intended. Values for £ 'm and n'm will be derived in appendix
B, replacement of subscript m by subscriprt ¢ dencting eylindrical capillaries

and f that of the fissures.

Referring once again to the assumption of a fine-grained material, an interval
Lm in z is selected, large encugh tc encompass a representative range of values
for £ 'm’ n 'm and §, yet small relative to wavelength. Thus U in eq. (3-45)

and p_ in eq. (3-46) may be considered comstant over L.

Now eqs(3-45) and {(3-46) are averaged over the interval Lm in z and the following

quantities are defined:

1 L s¢g
Em= fm a’'m dz,
Lm 0 S
Lm
1 , s né
n_ = — —_— dz,
S 3 0 5
m a

where, from the definition

Lm
1
sa=-_f S dz.
L o

Elegance is enhanced by the introduction of a dimensionless variable m,

m=2z/L ,0<m< I, (3-47)
L] t
and counsidering S, Em s N_oas a function of m. Thus

i

Sa =f S(m) dm, {3-48)
A .
I Sa
Em =4/; e &é {(m) dm, (3-49)
1
/f S (m) .
n_= n' (m) dm, {3-50)
LI ga m
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¢ arnd n will be referred to as perturbation factors, the subscript m being
1 m

replaced by ¢ or f for capillaries and fissures, respectively. In the absence
cf heat conduction, viscosity and variations in channel cross—section, Em and
n  bo i

o Coth equal unity.

The zverage values of the pressure gradient and the volume-velocity divergence

along the chapnel, fellow from eqs(3-45), (3-46), (3-47), (3-49) and (3-50):

Ip jus
- —= 5 e oy, (3-51)
3z S o
a
au jmsa
-— = N Ps (3-52)
iz KPS

On referring to the definition of u, it follows that eqs(3-531} and (3-52) may

be restated in the following form:

tp ons€ n

- == u, (3-53)
ax N S cosd
a
Ju JuwNS n
= - am -
x kp_cost P (3-54)
8

and, a comparison of these eqs to eqs{i-52} and (1-53) and making use of eas

(1-54), (1-55) and {(3-44) shows that:

ik
Yor own a0 (3-5%)
JSC
s ——— V(£ /n ). (3-56)
1 cosB

No allowance is made for edge effects in deriving these results. Such edge
effects occur at discontinuities in the cross-sections of the channels and
arz essentially due to local distortions of the sound field. Their exclu-
sion is clear from eqs {3-49) and {3-50), where the quantities g'm and n‘m
are valid for homopeneous channels only . The correlation between g'm and

nl

avas not taken into account. This may be seen from the separate averaging
processes introduced in the equations mentioned. In other words: no attempt
was made to solve the equations for the sound field on the inhomogenecus trans-

rission line.
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Various arguments may be cited to justifv the crudity of the above procedure,
the principal cne being that the edge effects and the parameters chosen to
obtain the model are arbitrary and there 1s little reason to suppose that they
correspond to anything in a real material. 1t is thus doubtful whether their

inclusion would constitute an improvement.

As was stated previously the adoption of the same channel profiles for the
determination ¢f both Em and i is incorrect for certain structures, e.g. those

having dead end side pores, which may exercise considerable influence on n o

while hardly affecting gm. However adherence to the simple assumption avoids
an unmanageable number of parameters. Egs (3-55) and (3-36), in conjuncticn
with eq.(1-56), solve the problem of calculating sample impedance, as long as
the perturbation factors are known. These factors may be considered as a
further addition to the ways of representing Zm and Ym, as introduced in eqgs
{1-52) and (1-53). It is thus desirable to connect the preseunt representation
with the previous ones, the general nctation following Ferrero & Sacerdote
{1960) being the first choice {(see eqs(3-1) and (3-2)). Eqs(3-55) and (3-56)

in conjunction with egs(3-3) and (3-4) show that

€ =-—S o, (3-57)

Re n_, (3-58)

8
]

- Im i _, (3-59)

b = —2 . Re £ , (3-60)

where Cm and A 378 in first order approximation, independent of frequency. A
comparison of the simple model of Zwilkker & Kosten (1941) with the present
results shows that the former is equivalent to the assumptien n, = 1 {compare

eqs(3-24a) and (3-24b)) and that (see eqs{3-23a) and (3-23b))

k = —— Ret (3-61)

O according with eq(3-59). These latter equations are presented principally

102



I the tyg adjacens Prismg are fay from identical. Thisg heighs 2 can he refarrey

Subdivision of thig range g Reeessary Rowevay, Thus j, is apparent from the
figure 22 that i, the interval O<a<r(2v(2/3)-f) the free area jg determined by
the Iowe, layer o¢ spherag only hy, that in . interyay r(2VY2/3)—IJ<a<r/(2/3)

The average free areg in €ach of the tyg adjacens triangular Prisms i, figure 23
is taken 5, rebresentatlve for the Pore. T, facilitate caIcuIation, dimensionless
QUantirjeg ara introduced for the ®quivalens POre ragji,e R ang the Verticaj
displacement 8 - . RV7/r ang m = a/r/(2/3)$

respectively. For the two intervals referreg to above, i, oW £017] oyg that;
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respectively. For the two intervals referred to above, it now follows that:

Ogagr (2/(2/3)-1) 2

Oeme0.7753 ]b = (V3 - w/2 + m" /3 (3-623
r(2/(2/3) - 1)gage/(2/3) 5

5.775%me | ]b = (/3 - w/3 + 20(i-m)7/3). (3-63)
The relationship between m and b can be visualized in a graph. This 1s shown in
figure 24. The calculated data from Table 3-6 are represented by the sclid line.
The figure shows that this curve is rather complicated and does not lend itself
to mathematical evaluaticn., But this is not necessary, however, since the model
is a reugh approximation, particularly bv the introduction of an equivalent diam-
eter. The most practical solution lies in the use of an approximate distribution
function of a mathematical simple form. The dotted line in figure 24 represents
the approximate function, chosen from the wide range of pessibilities. The
simultanecus presence of large and small diameters imposes upon the sample an
acoustic behavicur differing from an arrangement of capillaries with constant
radius along their entire length.

The approximated function may be described as follows: a volume fraction g, of

the total pore space has a dimensionless diameter b = b, and a volume fraction

Table 3-6

The distribution function for a hexagonal packing

m b
0 0.4016
0.1382 0.4257
0.2764 0.4912
0.4146 0.5842
0,5528 0.6937
0.6910 0.8132
0.7753 0.3892
0.8292 0.8637
0.3983 0.8405
.00 0.8276

106



2, has a diameter b = b2, b] < b 5 The remaining pores possess a dimensionless
radius b given by

bo=bo+{m=g) by = b)) /g by gy, (3-64)
where By = 1 - g, " 8y

The numerical values selected are:

g, = 0.205 g, = 0.25; g, = 0.35; b, = 0.425; b, = 0.850, (3-6ha)

and eq.{3-64) is brought into the form:

m=-0.35+ 1.294 b; 0.20<m<0.75.

Surmarizing, it can be said that in the tetal pore space 207 is occupied by

pores with a radius R = O.iZS r = 0.2308 r, and 257 is occupied by pores with a
™

radius R = ngég ¥ = 0.4796 r, while the remaining pores have radii with equal

statistical welght, between the two above radii. These occupy 55% of the total
pore space.

Applying eq.(3-48) one finds

I-g

2 2 2 2

= i . 3-65

s, = (g R )bl + (g,n R )bz + f? % R” dm ( )
1

On replacing R by b, and using eq.{3-64) in the form

g
3
dm = s+—a— db, (3-66)
b, - b

2
the formula may be integratedjit follows that

2 2 2
S =7 { glbl + g2b2

2
4 + o0} . (3-67)

1 2
*3eybp v by,
Introduction of the numerical values from eg.(3-64a) vields

5, = 0.4485 2. (3-68)

Assuming in this way that the porous material is characterized by inhomogeneous
pores with a given distribution function and inclined with an angle 8 to the
direction of propagation, the porositv can, making use of eqs(3-44) and (3-68),

be calculated. One finds

h = 0.4485 r2 N/cos € . {3-69)
The following auxiliary functions for the caleculation of EC can be defined:
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2 J|
. — {x V-3, (3-70)
X /—j JO

H{x) =

with the abbreviated notation:

J] J](X)

— (x) = )

JO Jo(x)

F(x) = 1-H(x), and (3-71)

M(x) =f—2‘— dx, (3-72)
X~ T(x)

where x = Rf(wosfn). (3-713)

Comparing eq.(3-71), in conjunction with eqs(3-70) and (3-73), with eq.(B-2} in

appendix B, one sees that

g', = 1EX. (3-74)

As special value for x ig introduced

X

4= T /(moslrn), (3-75)

and it is noted that

for b = bl--l-x = E = bIXS’ (3-76)
for b = bz—a-x =X, = b2x3, (3-77)
S = WRZ = b2r2 = xzrzfxg, (3-78)
and, by using eqs(3-66), (3-73) and {2-75), that
83 1
dm = . — dx. (3-79)
b2_bl Xy

Eq.(3-49) can be used now for the calculation of s the integration in the

right side presents hardly any problem for the intervals in m where b is constant.
In the interval where such is not the case, x is introduced as the integration
variable, S being eliminated with the aid of eq.(3-78) and m with the aid of

eq.{3-79). Referring to the definition eq.(3-72) one finds

5 g 4 = i X
gc - _% { , 1 . 5 2 . "3 M(x) 2 (3-80)
r blF(x]) bZF(XZ) bZ-bl %,

where Sa/r2 may be obtained from eq.(3-68) and the other numerical values for
factbrs and arguments from eqs{3-64), (3-76) and {(3-77).

"he following additional auxiliary functions are defined for the calculations of
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n
o]
|+ 0.4 H(x), (3-81)
.}rxz cix) dx, (3-R2)

where, in this instance

G(x)

L(X]

x = RJ(moscp/\) (3-83)

and a comparison of eq.(3-81) in conjunction with egs(3-83) and (3-70) with

eq.E-22) as cited in appendix B, shows that

r
N = G{x), (3-84)
with adequate accuracy for bi-atomic gases.

A special value for x is introduced

bid

6 = r/{wnscp/vl), (3-85)

and it is noted that:

: = - = -5
for b b]—*-x X, b]X6, (3-%6}
for b = bj—#-x = Xg = b2X6, {1-87>
8 = xzrzlxé, (see eq.(3-78)), (3-89}
and eqs{3-66), (3-83) and (3-85) show that
4
dm = ——— . 1 ax. (3-89)
bymbp %

Eq.(3-50) is now used for the calculations of s the integration in the right
side presenting few problems for the intervals in m where b is constant. In the
interval where such is not the case x is introduced as the integration variable,
S being eliminated with the aid of eq.(3-88) and m with the aid of eq.{(3-89)}.

(n referring to the definition, eq.(3-82), one finds

=i { g,b> 6(x,) + gbs O(xg) +

€ 5
a

i X

. lE-L(x) 5} . {3-90)
*6

*4

3
(by=b))

whare TZ/Sa may be obtalned from eq.(3-68) and the other numerical wvalues for
the factors and arguments from eqs{(3-64a), (3-86) and (3-87). Note that the.
various definitions given for x in eqs(3-73) and (3-83) no longer affect the
results, egs(3-80) and (3-90). The model has been idealized to such an extent
that r and 6 are formal parameters and cannot be derived from the geometrical

paraneters of a sample material considered.
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In the special case of static flow, the specific resistance o, may be obtained
from eqs(3-59) and (3-80), permitting . to approach zero. In that case, the
arguments of the function F(x) (see eqs{(3-75), {3-76) and (3-77)) are small and
the function approaches

F{x) jx2/8.

This approximation yields

8 mn 5 g g b2+b b +b2
G = e O _l+_2+_lg 2 1z 1 (3-91)
L]
S 4 rlcosts o2 b? b; 33 b?' bg

and, on introducing the numerical values from eqs{3-64a) and (3-68) the result

is
. = 123.922 . (3-92)
& h rcos™ 8

Eq.(3-92) is in accordance with the model rule for static-flow resistances,
eq.(3-121),

3.7 The fissure model
The study of the fissure model will run along the same lines as that of the
capiliary model. Tthere possible gimilar svmhols will be used. The cross-sectional
area of a chanmel i1s obtained by considering a slab of material of unit thickness
in the direction normal to the plane of drawing figure 20. Thus for a fissure of’
width © thé cross-sectional area is 7 times unit length.

In future, the unit length as factor will be omitted from the equations.

A rather simple distribution function for the fissure widths D will be intro~
duced, which, while showing some resemblance to the distribution function for
the capillary radii, avoids the necessitv of solving the integrals appearing
on the right side of the defining eqs(3-4%) and (3-50}.

For the inhcmogeneous fissure the following assumptions are made with respect

to the distribution function for the fissure widths.

a fraccion 0.25 has a width D, = 4 D /(I + qa)z, (3-84)
a fraction 0.50 has a width D, = 4 Daqa /(1 + qa)z, (3~-95)
a fraction 0.25 has a width D, = 4 Daqazl(l R (3-96)

where Da is the average fissure width, independent from the value selected for
9, The ratio of the widths of the widest and the narrowest parts of the in-

homogeneous fissure, the fissure width ratio equals qaz.
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For the calculation of Ef the following auxiliary function is defined now:

Fo(x) = jeta 9 (3-97)
£ x v - i

where

x =(D/2)¥(wo /1) (3-98)

A comparison of eq.(3-97) in conjunction with eq.(3-98) and (B-6), shows that

£'f = l/Ff(x) . (3-99)

On introducing the special values:

2 Da wo 2
Xy = sy Y — O T S N (3-100)
(l+qa) n

the right-hand side of eq.(3-49) is readilv integrated resulting in

(1 + qa)2 1 2 |
£ = + — . (3-101)
16 Ff(xl) anf(XZ) anf(XB)

The following auxiliary function for the calculation of n,. is defined as

£
tan(x v - j)
H(x) = —m8— {(3-102)
f VI
]
where
x =% wp e /), (3-103)

Comparison of eq,{3-102) in conjunction with eq.{3~103) with eq.(B-18), as de-

rived in appendix B, yields

e 1+ 04 HGR) (3-104)



with adequate accuracy for bi-atomic gases.

On introducing the special values:

2 Da mos D 7
XZ. = (}+q )2 '/( - *); XS = qa X[} H X6 = (-Ia Xa, (3'105&,b,c)
4

A

the right side of eq.{(3-50) is readily integrated and yields:

0.4
- 2 1 _
ng = 1+ e )2 { Hf(xa} + 2 anf(XS) +al Hf(xé) } (3-106)
a

As in the case of the capillary model D sq, and 3 should the considered as
formal parameters, not related directlv to the sample geometry. Eqs(3-59) and
(3-106) yield the static specific flow resistance for the fissure model by

permitting w to vanish. In that case the arguments of Ff(x) are small(compare

eq.{3-105, a,b and c)) and hence

1/F (o) ~ =357

The result is

3 n (l+1/qa)6- (l+q§)2

. (3-107)
64 h c0528 Da2

in accordance with the scale rule {eq.{3-121)).

3.8 Compariscn of the behaviour of the capillary and the fissure model

As stated prevously, eqs{3-56) and (3-53) furnish the solution for the specific
acoustic impedance Z of the sample surface, where Ec and 1, may be introduced
r £ from eqs{3~102) and (3-106}

for the capillary and fissure models, respectively. Computers were used for

from eqs (3-80) and {(3-90) or altermatively #_ and n
the numerical calculations, and the locus of 7 was determined for constant
absolute steps in frequency. A consequence is that the steps in Z vary consider-
ably in the complex pltane. Hawever it was not felt worthwhile to correct for
this tendency as that would involve extremely complicated programmes and

oxcessive computation times. The problem is reconsidered in appendix D.
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The auxiliary functions Ff(x) and ”f(X)’ see eqs(3-97) and (3-102),for the
Tissure model present mno difficulties. Greater problems are encountered in the
catculation of the auxiliary functions for the capillary model, H(x), Fix),
M(x) and L{x) (see eqgs{3-70), (3-72), (3-71) and {3-82))and appendix C has been
devoted to this subject.

For the cylindrical capillary model, two geometrical parameters are available
for fitting the theoretical curves to the experimental ones: (1) the sphere
radius r and (2) the angle 0. For the fissure model, in addition to the average
ficsure width D, and the angle 0, a third parameter is available: the fissure
width ratio qi. The introducticn of this parameter in the fissure model onlv
appeared to be the wisest course, as this model i1s more sensitive to changes in
the distribution function of the channel cross-sectional areas than is the
capillary model. This may be seen from the following argument.

The locus of Z may be shifted by variation in the phase angles of Zm and Ym and
here Ecand gf are far more effective than n. and e the latter two quantities
departing but little from the real axis. The attention is thus focused on the
two former quantities and restricted to the high-frequency range, where \R/1v|,
I%D/1v|>>l (see appendix B). One can thus find the approximations for larpe values

of the argument:

_d oy -
IEx)m1- 5 /(wos) , (3-108)

. 2n

I/Ff(x)svl—-% 7 =) (3-109)

In these two cases, the approximations eqs(3-108) and (3-109) reduce q.(3-49)

to
S T j )
a A
£ z—f _— - — (———)! dm, (3-110)
c v Jy RZ R3 wo
l .
1 ] 2n
£, =D - - y § dm. (3=111)
f a 2
0 D D mos
Eq5(3']]0) and (3-111) are now compared under the special conditions:
7‘ D
R (m) = Dgf(m), (3-112)
Dlm) = Daf(m), (3~-113)
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the definition of Da (see eqs{(3-48) and (3-93)) requiring

f f{m) dm = I,

0

(3-114}

where f(m) may be any function of m. However monotomic functions are applied in

the present models exclusively.

By eqs{3-112) and (3~113), eqs(3-110) and (3-111) may be reduced to

i J
c . 3/2
o f(m) Da f (m)

1
- L. i /
g - (
f -Of{ Em o, £ m

It should be noted that the real

2n

) } dm,

wo
5

rts of Z
pa "o

(3-115)

(3-116)

are identical. A variation

and Ef

in f(m), of such a nature that eq.{3-114}) is still satisfied, will however tend

to introduce a larger change in the imaginarv nart of EC than in gf as f(m)

appears to a higher absolute power in the former tase. The change in phase angle

for Ef will
appropriate
propagation constant especially are required
mental data.

section has

3.9 Discussion on the possibilities

Before selecting simple spatial arrangements
it is worthwhile noting that the results for

impedance at the sample surface, will depend

thus exceed that in Ec. This suggests that the fissure model may be

in those cases, where substantial variations in phase angle of the

to match theoretical and experi-

Physically it is significant that the capillary of circ¢ular cross-

the minimum possible wall area for 2 given cross-sectional area.

of scale-rules

as models for porous materials
such models, culmipnating in the

on absclute geometrical dimensions

and the frequency as separate quantitiesiin other words scale rules do not

apply in cases of this kind. What a scale rule implies may be clarified by an

example: an acoustical system is characterized by the spatial dimensions a,

b,...,and some acoustical quantity. F

k. The result is of the general form

F=F (k,a,b,...).

If this result mav be brought into the form
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P o= F (kea, keb,...),

then a scale rule avplies for the svstem. !f so, increasing all linear di-
mensions hy an arbitrary factor and decreasing the frequency and thus the
wave number bv the reciprocal of that factor, will yield the same solutiom F,
the quantities ke-a, krb,... remaining the same.

That sclutions of this type do not obtain for porcus materials may be con-
cluded on considering two samples of such materials, A and B, where all geo-
metrical dimensions of sample B have been scaled down by a factor n{n *1) in
relation to sample A,

o B has the same shape as A, but ig smaller in size. If a scale rule is to
apply, the sound field in sample B must have the same form as in A, only
reduced in dimension by the factor 1/n. This imposes, e.g., the thicknesses of
the viscous and thermal boundary layers must be reduced by 1/n and the free
wave-length must be reduced by 1/n.

On assuming the same ideal gas to be the acoustic medium in both samples,

the boundaty layer thicknesses are universely propertional to the square root
of frequency (see appendix B}, thus requiring an increase in frequéncy by a
factor n2 for sample B in relation to sample A, whereas the free wavelength
is inversely proportional to frequency, thus requiring an increase in

frequency by a factor n. Excepting trivial cases, both conditiens cannct be

met simultaneously, and no frequency can he indicated for sample B, yielding
a sound field of the same form as for sample A.

The problem may be illustrated by deriving a scale rule for the static value
of the specific acoustic flow resistance and investigating its consequences
for the sound fields in the two samples. In the case of static flow, the
forces exerted by the frames of the samples on the medium are viscous ones

and the compressibility of the medium is irrelevant; generality is not im—
paired by assuming an incompressible medium. These considerations are express-

ed in three-dimensicnal motation in ceneral form:

o 2 2.,
ap/ax; = 1 zja ui/ij s 1,5 = x,v,2 {3-118)

The incompressibility can be expressed by
;8w /3%, = 0, (3-119)

where X is the generalized spatial co-ordinate and ug is the generalized
component of particle velocity. Note that 2q.(3-118) in fact represents three

equations.
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Cne solution for sample A is assumed to be known:

= W
ui ‘i(x1}772)1
and a second assumption is that a solution of the same form holds for sample
B. The generalized spatial co-ordinate for sample A is indicated by X, that
for B by Ei:

nEi R (3-120a)
Requiring equal particle wvelocities in corresponding points in the two samples

implies that for sample B:

u, =Wi(ﬂii, nEj, nEk).
a solution which satisfies the boundarv condicions automatically and, after
some consideration, is seen to satisfy eq.{3-119) too.
Sound pressure is indicated by q for sample B and eq.(3-118) yields

2

~ 2 2 22
3q/8£i =7 Zj 3 ui/agj = naq/Bxi =" 5Ty (xy» % xk) /axj .

This equation is identical with that for case A, if
g = np. (3-1200b)
The flow-resistance for flow in the direction k follows from

- Bﬁ/axk = Uﬁk. (3-120c)

where 5 the average sound pressure in the pores and 4 is the volume velacity per
unit area.

Tn the present instance, an averaging process is required over aun area large
enough to be representative for the sample and thus the flow resistance now
follows as:

for sample A
X./2 X, /2
-1 1 ] ap
nY. X, f-x,/z d"if—x./z 5 3
L] i J

GA = Lim : fxlfz Xifz >
ey ——r 0 — f 7 dx.f_ : dx, u
s X, Xi X, /2 i xj/z ik

{3-121a)




for sample B

i X /2n , Xj/Zn e 39

) h?:)?? f-X./Zn N ./.-X;/Zn é"J' ag

Ty T Lim An%_ X:/ZD Y./ ' (3-121p)
Kipky == i‘i“'"xjf-xi/zn de f—x';/zn ey uy

The limits introduced above are assumed to exist. Taking inte account that:
g q/BEk = Bnp/B(xk/n) = nzepfaxk, (3-122)

and reducing the integration variables in eq.(3-121b) to x; and X5 it follows

from eqs(3-12la) and (3-121k) that

Op = 0 0,- {(3-1233

Eq.{3-123) is a scale rule but not in the general sense required in acoustics

ae its wvalidity has been proven onlv for static flow.

Now eq.(l1-1) is adduced; the limitation to one spatial dimension does not
affect the principles involved. Air, as medium, is permitted to retain its

density but its motion is assumed to be hampered by 2 flow resistance, o, or

oy raspectively for the two samples under consideration. The sound fields

generated in these samples are harmonic, having circular frequencies Wy and W
respectively. Thus

for sample A

-ap/ix = (jwp 05+UA) u, (3-124a)
for sample B

-3q/3t = (ij os+oB) a . (3-124b)

Using eqs(3-122) and (3-123), eq.{3-124b}) is seen to be identical with eq.
(3~124%a), if:

2
= -— f
gy n Wy {(3-124¢)

This result was to be expected on the grounds of the frequency dependence
of the boundary lavers. That it clashes with the requirement imposed on the-

free wavelength will become apparent from eq.(1-2), which yields:
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for sample A ~3u/9x ij /¥, (3-125a)

for sample B -3u/3E = ij q/¥. (3-125b)
Eqs(3-120a), {3-120b) and (3-120c) reduce eq.{3-125b) to:

.2
-3u/3x = j n Wy p/K,
which is not in accordance with eq.{3-125a), thus showing that the scale rules
eqs(3-120a), (3-120b) and (3-120¢) lead to an inconsistency, although essential

for eqs(3-118) and (1-1}. Bence & scale rule for porous materials proves

impossible.
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3.1G The model of the prismatic soil structures

The models that were worked out are based on the principle of a homogeneous
layer. Heavy clay scils and slaked soils after a dry period often show pris-
matic structures. The larger cracks and fissures in such soil structures
perpendicular to the surface of the soil are often combined with smaller hori-
zortal slits at almost regular intervals.

As Iin homogeneous, isotropic porous materials, an idealized geometrical ar-
rargement is introduced, see figure 25. The problem is reduced to two di-
mer.sions, the cross—section in figure 25 1s assumed tc be constant in the
direction normal to its plane.

The vertical principal fissures or main slits have a width D, a depth | and
their number per unit length is M. The smaller horizontal cracks or side slits
are accorded a width d, a depth h (net to be confused with porosity) and there
are N of them per unit length. Vave propagaticn in the main slits is assumed
to be governed by inertia and adiabatic compressibility of the medium {air)
only, which is guite reasonable as these slits are usually rather wide and
viscous and thermal boundary lavers have little effect. Viscous and thermal
losses are thus confined to the side slirs. No end correctioms for the slits
were introduced, as the geometry has been idealized to such an extent that it
was felt that this additional straw was unlikely to break the camel's back.
The basic unit to be considered is half a main slit, its associated side slits
amd the accorded unit depth in the direction normal to the plane of figure 25.
This implies that all volume velocities and acoustic admittances are to be con-

sidered per unit depth, a fact that wiil be tacitly assumed in the following.

Wave propagation in homogeneous slits is discussed in appendix B: egs (B-6)
and (B-18) give the perturbation factors 5; and n; for such slits, in con-
junction with the equations for the boundary layer thicknesses, eqs (B-3) and
(B-14), respectively. Here, the side slits are homogeneous and the pertur-

bation factors for the homogeneous slits apply in the general case. Thus
Bp = Ep i ng =g (3-126)
and § = d
a
mzy be introduced into eqs{3-51) and (3-52). The equaticns of motion and con-

tinuity in cheunnels may be solved on the boundary condition U = o at the bottom

of these side slits. The method of solving is the same as that applied in 1-9
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M per unit length

N per unit
Length

Figure 25 TIdealized geometry for a prismatic structure

(note the similarity between eqs{(1-52), (1-53) and (3-51), (3-52); the result

sought now is the acoustical admittance at the wouth of the side slit, YS, where

_id e D _
Y, Y(ngfeg) tan kh V£l e n) (3-127)
o c
s
\see eqs{B-6) and B-18) for EE and n; ).
The acoustic admittance of the wall of the secticn of the main slit under

consideration, per umit length, is N Y, and the acoustic admittance due to the
compressibility of the air is given by

ij/ZKpS.

Thus the total acoustic admittance per unit length is given by

. 2h - ! v
y =48R gy, 8 /(ng/5,) tan [kh V(o er )_]J , (3-128)
* 2ep KD £ £ £

where the surface porosity for the side slits ha is given by

h =N~ d. (3-129)
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The acoucstic impedance per unit length for the section of the main slit under

corsiderstion is given by
z, = 2juaS/D, {3-130)

and the equations of motion and continuity for this slit thus take on the forms

- apidx = Z, U, (3-131)
- aU/9x = YA P. {3-132)
Fellowing the procedure adumbrated in section 129, with U = 0 at the bottom of

the main slit as boundary condition, the acoustic admittance Yp at the mouth of

a complete main slit is derived:

iD 2hs ﬂ% v Zh ﬂé o
y =2 /e =& /() tanikn J(gf-nf)? ran{ k1 ¥ I+ — Y(=tan{kh /£ -n )} ] )"
p 1 ! f 'f
FeC kD Ef kD £

{3-133)

The acoustic admittance per unit length at the sample surface is M-VP in the
present nomenclature. Nete, however, that this value is actually the acoustic
admittance per unit area, 1.e. the specific acoustic admittance. Thus, on

intreducing the surface porosity
h = M-} (3"1 34)

eq.{3-124) yields, for the normalized specific acoustic impedance at the sample

surface
. 2hS ] i t ]

1 -jeot (k1 V|14 o5 Y(ng /[ £0) tanlxh J{&f-nf)} )

g B e——

h v [1+%%§ /(né / ié) tan{ kh J(g; -né)}]

(3-135)

A Fortran program was devised for the calculation of £ from eq.(3-124). Some
results, for constant sample thickness and variable frequency are presented in
table 3-7.

In the low frequency range, where the boundary layer thicknesses exceed the
glit width of the side slits, eq.(3-135) may be approximated, provided h is not
too small. This latter condition is unlikely to be violated, as satisfaction

of the inequality, k/df(éwn/ps)> 2, will hold. In that case
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Table 3-7

Specific acoustic impedance for a prismatic soll structure (5 + jn)h;

¢rack width (D) = 0.001 m,slit widtk (d) = 0.008 m.

n 0.050 0.100

Hz  1(m) 0.040 0.072 0.040 0.072

200 0.08 = 72,117 1.01 + 1.00j 0.06 - 14.14] 1.04 + 1.00j
400 0.10 - 33.58] 1,02 + 1.00] 0.05 - 4.90j 1.03 + 1.00j
600 0.10 - 19.59] 1.02 + 1.00] 0.53 - 0.50i  1.47 + 1.07]
800 0.01 - 11.52  1.00 + 1.0Gj 1.40 - 3,727 14.23 + 7,15}
1000 G.34 - 5.517 1.06 + 1.003 2.06 - 11.603  4.27 + 2.25j
1200 2,09 - 0.347 1.46 + 1.07] 2,36 - 14.297  1.86 + 1.19]
1400 7.26 - 2,577  6.25 + 3.20] 1.34 — 5.715  1.43 + 1.06]
1600 7.70 - 12.005  7.74 + 3.93] 1.26 = 1.627  1.40 + 1.05]

In that case one may write:

1 . ‘ '
E —lgwlﬂ'and n_ = k. This gives
f 2 £
wp _d
s
1 ] n
R G e e N (3-138)
d ups d ps
From tan {(l-j)£} = -3 1Zexp(z2x(12})) it now follows, that with x>2,

l+texp(—2x(1+]))
L) 1
tan (kh/(gf nf) = tan (1-])x &-j. In this case

cot (k1 7|1+ (1-7) hS —l[‘)-c—i v (ps/su)g)])

C.h = —j - (3"]37)
/E * Q=3 b, = 7 (o /un )})

m

Note that the width of the side slits has a predominant influence on Z,

affecting both the side surface porosity hS and the ratio of the slit widths
a/n.
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3.11 Electro—acoustical equivalent networks

Sometimes the behaviour of an acoustical system may be classified by examining
its electrical analogous circuit. In the present instance, a porous material

is such a system and egs (1-52) and {1-53) indicate the procedure for transi-
tion from acoustical to electrical symbolism. If p is conceived as the voltage
on an electrical transmission line, u as the current, and Zm and Ym are taken
ro represent the series impedance and parallel admittance per unit length of
that line, respectively, the equaticns named become identical with the telegraph

equations.

In electrical analogous circults of the sort Lntended here, masses are replaced
Lty self-inductances, flow resistances by resistors and compliances with damping
by combinations of capacitors and resistors. Tn the present section, the possi-—
bility of composing reasonably simple electrical equivalent circuits for Zm and
Ym is examined; complicated circuitry may be ignored as it does not contribute

to clarity

A simple porous material will be considered, consisting of cylindrical pores of
constant, circular cross-section of radius R. The pores are ineclined from the

direction of propagation, the angle of inclination does not need to be constant
if the material remains homogeneous in the acoustical sense. For frequencies so
low that boundary layer thickness exceed tube radius, Zwikker & Kosten's (1949,

p. 38) results may be applied and after some reduction it follows that

4 juko 8 kn
m s m

A T —  ———— B (3']38)
me g h "%
-1
pS SSCVPS
Y o=~ ey ST (3~139)
S F 8hi

where the added subscript £ indicates the low-frequency approximation and h
gtands for porosity.
For comparison an electrical transmissicn line is considered, a unit length of

which is represented in Figure 26.

From this circuit diagram it follows that:

Lo = dul+ Ry, (3-140)
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Fipure 26 An element of an analogous electrical transmission line
Yme = I/[I/Jmc + RZ] . (3-141)

where the added subscript e indicates the electrical circuit. On comparing egs
{3-138) with (3-140) and (3-139) with (3-141) it will be seen that these equa-
tions become identical, pair by pair, and thus that Figure 26 is representative

for the porous material, if

5 kP 8k n
L=- B g =-E, (3-142, 143)
3 b hR
h poCcp R2
C=— SRy = (em1) ~EE (3-144, 145)
P, 8h

It should be noted, however, that the analogous circuit in Figure 26 is valid
only as a representation of the perous material under consideration for low
frequencies. Use ¢f Zwikker & Kosten's (1949, p.38) results for frequencies so

high that pore radius is large in relation tc boundary-layer thickness yields:

Jup k 2k

s m m .
Z T e —— \/(J".UD n) N (3—1 &6)
mh h hR N
juh 2h (k1) 3w
Yo T + V{ Y, (3-147
KPg KPSR xpscv

where the added subscript h indicates the higher frequencies and A refers to the
heat conductivity of free air.

It is impossible to devise a simple electrical circuit, of the same order of
complexity as that in Figure 26, yielding circuit equations of the form of eqs
(3-140) and (3-147). This is due to the nature of the frequency dependence of
boundary-layer thickness. Thus a unit length of a transmission line representing

eqs(3-146) and (3-147) would have to coantain infinite transmission lines as
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2ireuit elements and even if these latter can be approximated by a finite num—

ber of elements, discernability is lost.

It seems impossible to compose a satisfactory equivalent electrical circult for
the geometrically simnle porous material considered, covering the entire fre-

quency range. Thus no further efforts were made teo search for equivalent cir-

cvits for more complex materials.
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4 Some experiments discussed

4.1 Introduction

The principal aim of this chapter is the cxamination of the applicability of the
three mathematical models discussed in the previous chapter to the description
of soil-like materials. The examination is carried out by comparing measured and
calculated curves for the gquantity ¢-h, the product of normalized sample surface
impedance and porosity, for samples of given thickness and for variable frequen-—
ey. In assessing a mathematical model, two questions are posed: does the model,
with its parameters adjusted to cptimum fit, describe the sample and do these
parameters yield information on the geometrical arrangement of the sample
material?

The quantity ¢+h is appropriate in the present instance as all three models
happen to yield expressions for it which are independent of h. The calculated
curves are determined by the values of ;-h for a series of frequencies with
spacings of 100 Hz in most cases., Measurements were made from about 150 to 1750
Hz, but could not be carried out systematically at the spot frequencies. This is
due to the exigencies of the interferometer (e.g. resonances in the tube) and
the following procedure was introduced to find interpolated values for Z-h at
the spot frequencies. The measured points for i are entered in the complex plane
and the absorption coefficient a is plotted against the frequency f. In both
cases smooth curves are drawn through the points. From the a-f diagram values

of a for the spot frequencies are found and these values are used to find the
complex value of ¢+h in the complex plane,

7 was measured with the equipment described in chapter 2 and k was found by =
static method (ef. Introduction). In addition, the specific static flow
resistance o, was determined {c¢f. Introduction}.

The measured curves were matched with those obtained from the models, the latter
being constructed for various values of the parameters. A number of provisional
fits were obtained by comparing tables of measured and calculated values for z-h.
However the calculated curve giving the best fit was selected graphically, by
visual examination, taking into account the local accuracy in the 7+h plane

(cf. figure 14} and the sensitivity of the calculated curves for variaticns in

the parameter. Special attention was paid to those sections of the curve where
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the absorption coefficient is high, as accuracy is high there too. These sections
are commenly found near the first anti-resonance.

In a small number of cases the value of a parameter was interpolated after
matching one measured curve with two or more calculated ones. Thus broken values
for km have been found notwithstanding the fact that the calculations were
carried out with integer values.

With the imperfection of the models in view, no effort was made to develop a nu-
merical method of comparison. Such a method would be feasible after transfor-
mation of the locus from the z+h plane to another plane having e.g. an invariant
error circle. The derivation of an appropriate transformation presents consider-
able difficulties however. Better fitting curls could undoubtedly have been
calculated in some instances. This was not done, as the selected models were in

need of further refinement anyway.

4,2 Materials studied

For the purpose of matching measured and caleculated curves three types of sample
materials were used: isodiametrical spheres, gravel and crushed bricks. The first
series of measurements were made on isodiametrical spheres. The balls were made
of steel, glass or polystyrene. The steel balls, obtained from a ball bearing
factory, were perfectly round, and did not lend themselves to loose packing. The
glass spheres served their purpose, the very thin layer of water, always covering
them in the conditions of the experiment, made it possible to obtain packings of
varying densities. The polystyrene spheres had the same disadvantage as the steel
ones. Gravel and crushed bricks were also used, since they allowed not only a
study of the effects of variahle porosity, but also permitted variation of the
pore size distribution function. The gravel used consisted of both rounded
particles and particles that had been crushed to create sharp edges. Two sample
thizknesses were used practically exclusively: 40 and 72 mm. The spheres and the
gravels hardly absorb any water (in the order of 0,15 - 0,30 weight percent}, so
erushed bricks are a better simulation of soil than the other materials. The
material sometimes possesses many small pores which may or may'mot be filled with
water, It was chosen as it does not show any rearrangement or desintegration (of
particles) upor changes in moisture content resulting from variations in moisture
tension. This might have occurred in soil aggregates as these are subject to
structural changes through swelling and air explosions. No attempt was made to
explain the effect of moisture content with the aid of a model as adequate models

incorporating the effect of water content at a given suction on accessible pores
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are unavailable,

Measurements were also made on soil aggregales which had been stabilized with
scil conditioners, such as Krilium, Aerotil or carboxymethylcellulose. The use of
these aggregates was not very atkractive because of the difficulty in wetting
them completely. They can only be made to abscrb moisture by repeated evacuation
and moistening under vacuum.

Many measurements were made on core samples cbtained from field plots under
different methods of tillage. But none of the geometrical models selected allows
interpretation of the results obtained, These results will therefore not be dis-
cussed. Although many measurements were made at other laver thicknesses than
given above, the results of these measurements will not be listed later im the
tables nor will they be discussed. Discussion of results obtained with layered
systems in arrangements of coarse particles stacked on fine ones and the reverse
will also be omitted. But very interesting acoustical results come from a layer

of fine particles on a layer of coarse ones and they certainly justify extension

of the geometrical models in the future.

4.3 Comments on the calculation of the impedance curls

The calculated values for £-h were obtained from the mathematical models with
computetrs. Fach calculated curl was determined by calculating ¢-h for at least
eight spot frequencies: 200, 400 ... 1600 Hz. Sometimes smaller steps in frequen-—
cy were chosen. In a few cases the frequency range was increased. The layer
thicknesses for calculation corresponded to those that were measured. Two sample
thicknesses, 40 mm and 72 tm, were used almost exclusively, both for measurement
and calculation,

It is clear that the semnsitivity for a variation in one of the parameters on Z°h
cannot be predicted in a simple way from the mathematical models, which do not
lend always themselves to differentiation to the principal parameters. Thus the
most promising approach is the examination of the position, form and course of
the calculated impedance curl for various values of the parameters. Sometimes
the apex is of special interest.

Initially the values of cos 6 were varied between 0,50 and 1.00. A comparison of
the results obtained by measurement and calculation showed that the lower values
of cos O were seldom required. These were thereupon excluded from further calcu-
lations.

It can be concluded from figures 21 and 22 that a vertical displacement along a
model capillary of 0.8!6 r corresponds to a lateral displacement of /Y3 =

0.5773 r, thus a nominal value of (.7303 might be introduced for cos 0. After a
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Figure 27 (left) Calculated values of t¢*h for the fissure model (Da = 0.00068 m;
1 = 0.040 m; qa = 2.05; cos 8 = 0.645; 0.700; 0.780 resp.)

Figure 28 (right) Calculated values of r+h for the fissure model (Da = 0.00033 m;
1 = 0.040 m; q, - 2.0; cos 8 = 0.645; 0.700; 0.780; 0.866 resp.)
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Figure 29 Calculated values of £+h for the fissure model (Da = $.00039 m;
1 = 0.040 m; q, = 2.0; cos & = 0.645; 0.700; 0.780; 0.B66 resp.)
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Figure 30 Calculated values of c¢+h for the fissure model (Da = 0.00022 m;
| = 0.072 my q, = 2.0; cos 9 = 0,500; 0.645; 0.700; 0.780 resp.)
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Figure 31 Calculated values of z+h for the fissure model (Da= 0.00018 m;
1 =0.072 m; 9, = 2.03 cos 0 = 0.645; 0.700; 0.780; 0.860 resp.)

Figure 32 Calculated values of 7+h for the fissure model (Da = 0.00022 m;
1 = 0.072 m; 9, = 2.45; cos 6 = 0.645; 0.700; 0.780; 0.866 resp.)
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few trials, the following values were selected for q,: 1.6 1.8; 2.0; 2.2; 2.3;
2.4 and 2.6. D, was varied with 12 steps per decade. In total a few thousand
curls were generated,

In the graphs representing the calculated impedance curls the points for integer
maltiples of 100 Hz have been marked; those for 400, 1000 and 1600 Hz receiving
an enlarged symbol. The upper frequency in figures 27 to 39 is 1800 Hz. The
symbols used to mark the spot frequencies indicate the value of cos B and the
following markings were applied.

cos & 0.500 0.645 0.700 0.780 0.866

symbol O X A L -

In the complex planes where the calculated curves are represented, a rectangular
grid for integer values of &'h and n-h, with a spacing of two units, has been
entered. The lines of the grid corresponding to the axes of the complex plane are
drawn in full, the others are dotted. The transparency in the flap of this book
may be placed on the graphs thus permitting an estimate of the absorption coef-
ficient and the phase shift for the values of ¢-h plotted.

When considering the calculated curls it should be borne in mind that the pre-
cise position of the curve in those regions of the complex plane, where measuring
accuracy 1s low, is comparatively unimportant (see figure 13)}. Thus the effects
of variation in the parameters is of only secondary interest for such regions.
Figure 27 shows the results for a relatively wide fissure (Da = 6.8 mm) and smatl
layer thickness. The real component of ('L possesses a low and practically
constant value for increasing frequency; the imaginary component of £*h decreases
gradually. After crossing the real axis an increase in frequency leads to higher
absclute values for both the real and imaginary compenents of {+h. An increase

in cos 9 shifts the curve towards the lmaginary axis and the real axis is crossed
at higher frequencies if so, the influence of cos 0 is quite small. Figures 27
and 28 permit comparison of the effects of Da' For equal values of cos 6, the
smaller value for Da leads to higher values for the real part of Z+h and the real
axis is crossed at a far higher fregquency. The increase in the real component
exceeds inverse proportionality in relation to fissure width. The anti-resonance
frequency can be determined accuratély in the present case, which is of consider-
able assistance when making comparisons with measured curves.

Comparison of figures 28 and 29 shows the effect of sample layer thickness. The
curves for the thicker sample incorporating the first resonance show larger and
more evenly distributed intervals between the points for the spot frequencies.

An increase in cos €, corresponding to a decrease in km in the Zwikker Kosten

model, leads to an increase in the propagation velocity in the sample material
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Figure 33 Calculated values of {-h for the fissure model (Da = 0.000100 m;
0.500; 0.645; 0.700; 0.780 resp.)

1 = 0.040 m; 4, = 2.0; cos 8§
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as may be seen from, for instance the points for 1000 Hz in the fipgures 28 and
26, respectively. This result was to be expected {(cf. eq.3-35) as the direction
of propagation in the pores now coincides more closely with that of the sound
wave in the material.

The apexes of the curls in figure ?9 lie below the real axis {(cf. eq.3-56). This
is due to the preponderance of the viscous losses over the thermal cnes, as may
te proved mathematically.

Figure 30 gives curls for a very small fissure width but with the same values of
the other parameters as those for figure 29. An lunteresting feature can be de-
tected: as values of cos 8 increase the apex of the curl shifts towards the real
axis and the propagation velocity in the material obvicusly decreases.

Figure 31 shows the effect of cos & on the position of the curl. At the higher
frequencies the curl approaches its apex fairly closely and the effect of cos §
on the propagation constant is rather small at the lower frequencies. Note that
the apexes corresponding to the wave impedances should be considered slow
funetions of frequency. The figure demonstrates that the wave impedances are very
nearly real and not very larpe, All this means that in this sort of case accurate
comparison with measured curls is feasible.

Another phenomenon appearing in figure 31 is that some of the curls intersect
themselves. This implies that at least one point is bi-valued for frequency.

In figure 32 q, has been increased in relation to figure 31, and b, increased
slightly, It shows the transition from impedance curls with a loop to those that
are characterized by more simple forms. For very fine slits and a large variation
in pore size (qa = 2,45) high absorption coefficient will be attained at moderate
frequencies. The disctribution of the frequency markers along the curls is regular
above 1000 Hz. Thus interpolation between the spot frequencies is facilitated and
assists in the comparison with measured curls.

For this small figure width, the air flow resistance is high. The coth con-
verges towards unity for high frequency, so the upper part of the impedance curl
should approach the form of a rectangular hyperbola (Zwikker & Kosten, 1948,
P,

As in figure 31, the curves approach their wave impedances for higher frequencies.
These impedances are nearly real and determined to a large extent by specific
flow resistance. The figure shows that for larger values of cos 8 and thus for
lower resistances the real part of 7+h decreases almost in inverse proportion to
cosz 6.

At low frequencies the same trend for all curls is characteristic; the absorption

coefficient is proportional to the real part of Z+h, Here the result is a family
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Figure 34 Calculated values of f-h for the capillary model
(r = 0.00160 m; 1 = 0,040 w; cos G = 0.500; 0.645; 0.700; 0,780 resp.)}
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nf straight lines parallel te the imaginary axis, at a larger discance from this
a¥ls when the air resistance is higher.

Another effect appears in the figure: for the lower values of the flow resistance,

damping is still low enough to yield spiral-like contours. For high air flow re-

sistance these spiral-like forms vanish,

In figure 33 the fissure width has been diminished still further to 0.1 mm and

the spiral-like curves no longer appear. This small fissure width corresponds

to very high air flow resistances and leads to almost straight lines in the di-

rection +1 with an apex just below the point. For high frequencies the different

curls show small shifts due to variations of cos 0. Their course corresponds to

that of wood fibre plate as shown in Zwikker Kosten (1949, figure 18c}. This

mear.s at the same time that the effects of a variation in pore size distributiom,

leading to a different value of q, together with a different value of cos 6

gives practically identical impedance values. So the limits of the curves for

high frequencies are practically determined by fissure width, the effects of

cos 9 and q, are small. The absolute values of the impedances are quite high.
Sometimes the curves for r+h approach lines parallel to the imaginary axis. This
behaviour may be understood as follows. Necessary conditions are: low frequency,
small layer thickness and high air flow resistance. The sample may now be con-
sider as a system of distributed acoustical resistance and compliances. If the
modulus of the product of the propagation constant and the sample thickness is
comparatively small, the resistance and the compliances may be lumped and the
conplex impedance shows the behaviour typical of am B~C series circuit: a con-
stznt resistive part and a negative reactance diminishing in inverse proportion
to increasing frequency, At higher frequencies the mass reactance becomes more
important and the system starts to behave as a long transmission iine.

In figure 34 some curls are drawn, obtained from the capillary model. The sphere
racius was [.6 mm. The curls can be compared to those in figure 28. The sensi-
tivity to variatlions of cos ¢ is practically the same. No position of the apex
can be found within the frequency range studied.

Figure 35 surveys the capillary model for variations of the sphere radius, with
a fixed layer thickness (here 80 mm) and a fixed value for cos 6. As R is dimi-
nished the average radius of the impedance curls decreases practically propor-
tionally with R and for the highest frequency the progress towards resonance
increases, Some of curls have been calculated up to 3000 Hz and so an indication
of the apex is found. Due to the small scale of presentation a large of fre-
quency markers were omitted. For one of the curls a layer thickness of 32 cm

was chosen which demonstrates a different form of the curl aralogous teo those
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Figure 36 Calculated values of z+h for the capillary medel (r = 0.00070 m;
1 =0.072 m; cos 8 = 0.500; 0.645 m; 0.700; 0.780 resp.)
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Figure 37 Calculated values of £-h for the capillary model (influence of sphere
radius, ranging from 0.75 to 6.25 mm; cos 6 = 0,500; 0.645; 0,780
resp., frequency 600 Hz.)
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in figure 33. For smxll values of R and as resonance is approached,|; | becomes
large and compariscn to measured curves is very difficult as measuring accuracy
is low.

In figure 36 some curls for fine-grained materials are given in more detail. The
interesting shift of the apex with frequency is very clear and resembles that

in figure 31. The loops in the curls are smaller at lower values of cos 6. With
those complicated contours interpolation between various curls is impossible as
is obvious from the fipure, certainly this will be the case at the higher fre-
quencies.

Figure 37 presents the results for %°h for the capillary model in a different
manner. For one frequency, 600 Hz, leoci for varying sphere radius have been
entered, with cos § as parameter. For this low frequency the comparatively
straight-forward course of the curves permits interpelation. For higher freguen-—
cies this 1s no longer possible.

Calculations for the Zwikker Kosten model were carried out on the IBM 1620 com-
puter and took about 2 minutes per curve {(eight spot frequencies). From a pre-
liminary comparison with the results of the measurements it soon appeared that
the structure factor for the materials discussed seldom exceeds 4. In total more
than 600 curls were generated with this model. From the results of these calcu-

lations selection for steps and ranges for ¢, and km could be determined. It

d
turned out that large ranges for og were required. Although the effect of km is

quite large at high frequencies, its influence at low frequencies is only slight

For low frequencies kmrhardly affects the real part of ;.h. The flow resistance
a4 has a slight effect of a few percent on the imaginary part. This result is
in accordance with the low frequency behaviour as discussed for the capillary

model,

These conclusions are confirmed by figures 14 and 15 and the results shown in

tabel 4-1.
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Figure 38 Calculated values of ¢+h for the Zwikker — Kosten model

(o, = 36800 Nem 3 L = 0.080 m; k=3, 5, 7 resp.)
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Table 4-1
Effects on the variations of km and ¢+l from the Zwikker Kosten model

(od = 600 Nsm—a; layer thickness 40 mm)

frequency 400 Hz 1000 Hz 1600 Hz
k)
l 0.01-3.223 0.02-1.07j 0.02-0.40j
4 0.02-2.923 0.02-0.18j 0.07+1.987

The effect of layer thickness is very marked too as is illustrated by table 4-2.

Table 4-2
Effects of layer thickness on g+h from the Zwikker Kosten model

{c, = 600 Nsmﬁa'

d ’ km = 2.0
frequency 400 Hz 1000 Hz 1600 Hz
(1)
40 wm 0.02-3.12]  0.02-0.80;  0.03+0.12;
72 mm 0.03-1.48] 0.06+0. 44} 2.75+9.44]

From table 4-3 it can be concluded that at higher frequencies and high specific
flow resistance the sensitivity of ¢-h to change in layer thickness decreases

rapidly. In such cases the layer appreaches what amounts to infinite thickaess.

Table 4-3
Effects of layer thickness on §*h from the Zwikker Kosten model
-4
(Ud = 103,000 Nsm ; km =2.0)

km frequency 400 Hz 1000 Hz 1600 Hz
(1)
40 mm ¢ 1 3.05-3.80] 3.68-2.33j 2,16-1.84j
{ 4 3.15-3.54j 3.00-1.903 2.64-1.61j
72 nm (] 4.10-3.77] 2.61-2.43j 2,11-1.87]
{4 4.33-3.573 2.90-2.18; 2.51-1.56j

The examples quoted above were selected because the locus for g.h has not com-

pleted its first loop for the highest frequency. Only in this case is it pos-—
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sible to gain insight into the form of the locus for the three frequencies
given.

In figure 38 the shift of the apex is shown for the Zwikker Kosten model. Tt
oczurs at high values of km and at relatively high air flow resistances. These
Figures show an analogous behaviour to those in figure 31, although the change
in the size of the loops and in their position are different for the two
models. This difference is presumably due to the fact that in the channel-type

models, o and km are frequency-dependent.

It is apparent from the calculated curls for ¢-h (cf. figures 27 ... 38) that
the comparatively simple mathematical mcdels used can produce quite complicated
contours, incorporating loops, multiple loops and similar features which one
would not expect at first sight.

The Zwikker Kosten model and the twu channel-type models differ in this res-
pect that, whereas in the former the two adjustable parameters introduced can-
not be correlated directly with the pore geometry, in the latter the parame-
ters are geometrically significant and may render at least some assistance in

comprehending the acoustical behaviour of the sample.

The channel-type models are but crude approximations of the real pore geometry,
a5 has been stated previously. They are thus incapable of rendering a compre-
hensive description of the samples, Further refinement is required if the de-—
sired end is to be obtained. This might, but neet not, lead to an increase in
tie number of adjustable parameters.,

Tne problem of the number of significant parameters is complicated considerably
by not only the relatively low experimental accuracy, but also by the wide vari-
ations in sensitivity to parameter variation occurring along a curl and from

curl to curl.

4.4 Discussion of the results of measurements

In tables 4—-4 to 4=9 the results for c¢-h of some series of measurements are
Compared with calculated curves. The tables have been divided into two sections,
except table 4-5. The upper section is subdivided into two parts, corresponding
to the two sample thicknesses. The first two rows of each of these subsections
give, respectively: the layer thickness and the column indicatiens, under I the
reasured values of 9 and h, under TI the numerical values of the parameters for

the Zwikker Kosten model, under III those for the capillary mode! and under IV
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Figure 39 Comparison of measured to calculated values of f+h for glass beads of
6.25 mn diameter
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Table 4-4 Values

of £+h for glass beads of ¢ 6.25 mn

1 11 11 v
1 = 40 mm (h = 0.41) gg4= 3500 r = 6.00 n, =6.8 mn q, = 2.0
Hz a vy = 650 km =2 cos 8§ = 0,80 cos 6 = 0.95
200 0.02  0.12-4.963 0.11-6.547 0.51-19.78j 0.47-6.21j
500 0,04 0,12-2,807 0.11-3.12j 0.21- 5,245 0.20-3.07j]
600  0.06  0.13-2.07F  0.12-1.91j 0.14= 3,255 0.13-1.94j
800  0.10  0.13-1.477 0.12-1.25j 0.12- 2.17j  0.11-1.32]
1000 0,16  0.13-1.12§ 0.13-0.813 0.11- 1.447 0.,10-0.92]
1200  0.2%9 0.13-0.833 0.14=C.645 0.11- 0,88]  0,10-0.61j
1500 0.47  0.13-0.417  0.14=0.155 0.11- 0.417  0.10-0.36j
1500  0.69  0,14-0,15j 0,17+0,125  0,12¥ 0.02j  0.11-0.13]
1 =72 mm (h=0.39) o,=2000 r=6.30 D, =6.8mmq = 2.0
Hz a o, = 880 km =2 cos @ = (.90 cos & =D.95
200 0,03 0.08-1.62j 0,F1-3.517 0.29-5.86j  0.30-3.35]
400 0.08 0.08-1.24] 0,12-1.48§ 0.14-2.63j  0.16-1.50]
600 0.22 0,08-0.62j 0.13-0.667 0.12-1.38j  0.14-0.76]
800 0,51  0,11-0,24) 0,16-0.09F 0.12-0.59j  0.14-0.29j
1000 0.78  0.13+0.02§  0.2140.425  0.14+0.045  0.17+0.11j
1200 0.47  0.28+40.657  0.34+1.09j 0.18+0.68]  0.24+0.53]
1400 0.29  0.48+1,25j) 0.79+2.305  0.28+1.48j  0.39+1.07j
1600 0.20 0.92+42.40j  5.49+5.323  0.56+2.765  0.87+1.96j
L = 40 mm 1 =72 mm
Rz q,(-) D_(mm) cos 8 () a, D, {mm) cos 8
(2.0/2.3)  (5.6/8.2)  (0.90/1.00)  (1.8/2.0) (5.6/8.2) (0.90/1.00)
0.25-3.03j 0.21-1.48j
0.21-3.05j | ,0.21-3.05]  0.15-1.52j | 0.17-1.53]
4 :>0.20—3.07j(: :>0.|e—1.soj<:
0.22-3.065 7~ ] “0.20-3.09j 0.19-1.485 /| “0.16-1.53;
0.17-3.11j 0.13-1.53j
0.12-0,90j 0.22+0.13j
0.11-0.87] | 0.11~0.87F  0.54+0.10j ] 0.20+0.24j)
10 :>0.10-0.9zj<i ;>o.17+o.111<: :
0.11-0.88j i 0.09-0.96j 0.22+0.20j ] 0.15+0.01j
0.08-0.93j 0.14+0.10j
0.14-0.11j 1.13+1.93j
0.12-0.03j i 0.12-0.03]  0.66+1.71] | 1.62+2.713
16 0.11~0.13j<: G.87+1.96j<<
0.13-0.063 | 0.10-0.21j  1.44+2,35) 0.55+1.45]
0.09-0.14] 0.67+1.94]
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those for the fissure model. The values for the narameters given are those for

the best fitting calculated curls,

Sometlmes interpolated values for the paramcters were introduced; now and then
these values could only be found by graphical interpolation from the curls with

adjacent values of the parameters.

The lower section is confined to the three principal spot frequencies given in
the first column. It also gives values for 7+h and illustrates the selection of
the best fitting curl for the fissure model. In each case twe values for 4
three for Da and one or two for cos 8 are considered. The values of these para-
meters are given in the heads of the sections for the two layer thicknesses. The
resulting combination corresponding tc the best fit is underlined. Note that the
corresponding values of the parameters for these cases are identical with those
given in column IV in the upper sectien. This procedure justifies the choice
made, it also provides some information about rhe influences of the steps in the

parameters.

Figures 39 to 43 present, in graphical form, the curves obtained from both measu-
rement and calculation, the latter for all three models. The marks for the main
spot frequencies are enlarged as in the former figures. The marks for these main
frequencies are provided with a special indication, shown in the legend of figure
39. The numbers in the legend indicate the frequency divided by 100. At the same
time the frequency marks along the lines correspond to the values for Z+h in the
column I, II, III and IV. The numbers I, II, IIT and IV in the legend of figure

39 correspond to the numbers of the columns in the tables 4=5 to 4-9.
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Table 4--

Velues cf g for glass beads ¢ 6.25 mm for distinet layer thicknesses

Hz
200
400
60C
a0

160C

120C
140C

1600

Hz
200
400
600
800

1000

1200

1400

1600

1 [6. mm

{3 layers)
a (£+in)h
0.022
0.004 0.006-32.00
0.009  0.012-51.48
0.014  0,012-§1.17
0.019 0.012-30.90
0.023 0.012-30,74
0.027 0.009-30.63
0.030 0.006-j0.55

1

27 mr (h = 0.50)

(4 lavers)

a

0.003
0.006
G.012
0.019
0.026
0.033
0.044
0.062

1 =56 mm h = 0,39
(10 layers)

a

0.04
0.08
0.10
0.20
0.40
0D.74
0.7
0.47

(E+jn)h

0.07-72.34
0.07-j1.59
0.06-70.87
0.07-30.54
0.07-70.33
0.13+j0.04
0.30+30.42
1.22431.24

a

0.08
0.13
0.44
0.88
0.52
0.29
0.22
0.19

(£+3indh

0.018-72.59
0.018-71.70
0.017-31.25
0,017-31.10
0.016-70.89
0.016-70.,75
0.016-i0.58

a

0.005
0.012
0.021
0.033
0.049
0.075
0.122
0.200

1 =8 mm (h = 0.39)

(16 layers)
(£+in)h
0.07-31.23
0.08-30.90
0,11-70.40
0.19+30.07
0.81+j 100
2.53-1 232
0.77-32.03
0.23-31.28

= 35 mm ¢h = 0.39)
(6 layers)

(g+jn)h

02-i1.71
.03-71,38
.03-31.03
.03-10,74
.03-70.54
.03-30.44
.03-70.31

o O o o o o O
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Figure 40 Comparison of measured to calculated values of g-h for glass beads of
4.00 mm diameter
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Table 4-6 Values of r+h for glass beads ¢f § 4.00 mu

1 11 11 iv
1 = 40 mm o = 4000 o4 = 5000 r = 3.80 Da= 5.6 mm q, = 2.2
Hz, a h =0.52 km = 2 cos 6 = 0.90 cos 6 = 0,95
200 0.01 0.16-6.543 73-10,46] 0.54-6,08)

0,

400  0.03  0,17-3,593 0.16-3.127 0.31- 5,167 0.26-3.01j
600  0.06 0.17-2.375 0.16-1.91] 0.22- 3.27] 0.19-1.89j
ano 0.10  0.17-1.73) 0.,17-1.25] 0.18- 2,237 0.16-1,28]
1000 0.17 0,18-1.29] 0.18-0,81] 0.17= 1.56] 0.15-0.873
1200 0,30 0,18-0,87] 0,20-0.46] 0.17- 1.05] 0,15-0.55j
1400 0.50  0.18-0.497 0.22-0.165 0.17- 0.63j 0.15-0.28j
1600  0.76  0.19-0.143 0.25+0.12F5 0.17- 0.26] 0.17-0.05j

4 = 4500 r = 3.80 0= 5.6 mm q = 2.2
Hz a h = 0.50 %m =2 cos B = 0,90 cos & = 0,95
20 0,03  0,29-7.70) 0.,26-3.52) 0.49-5.59j 0.38-3.273
40 0.15  0.27-1.85] 0.27-1.49] 0.27-2.51} 0.24-1.45]
60 0.35 0.26-0.92) 0.30-0.67] .21-1,28; 0.22-0.71j
80 0.83 0.26-0.227 0.35-0.12) .24-0.50] 0.23-0.22j3

0
0
1600 0,83 0.32+0.32] 0.47+0.373 0.34+0.12] 0.29+0.213
0
0
0

1 = 72 mm US"-'!&AOO ¢}

1200 0.52  0.48+0.49]  0,72+0.95] .3740.787  0.4140.68;
1400 0.33  0.60+1.707  1.50+1.733 AB+1.615  0.72+1.29]
1600  0.25 0.95+2.34]  4.51+1.50] LG842.94] 1.83+2.173

1 = 40 mm 1 =72 mm
Hz q, Da(cm} cos 8 4, Da(cm) cos 6
T ).0/2.4)  (0.47/0.68) (0.90/--)  (2.0/2,3) 0,47(0,68)  (9.90/-)
0.31-2.96] .30%1.433
0.25-3.03] | 0.27-2.99]  0.21-1.483 | 0.25-1.,42]
4 >0.26-3.01} 0.24-1,45]
0.27-3.00] 7 < 0.26-1.44j:> 1 <
0.22-3,06] 0.19-1.48]
0.18-0.85j 0.37+0.22] ‘
0.12-0.90j | 0.16-C.813+ 0.22+0.13] I 0.34+0.35]
10 0.15-0.87] 0.29+0.21]
0.16-0.85j:> I < o.33+o.255:>h . '<:: -
0.11-0.88] 0.22+0.20]
0.21-0.03] 2.15+1,823 _
0.14-0,11j | 0.19+0.065  1.13+1,93] ) 3.35+2.32j
16 ;>o.17—o.055<: > 1.83+2.175&
0.19-0.01j T - 230421757 T -
0.13-0.06j [,44+2.35]
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Figure 41

Comparison of measured to calculated values of g+h for glass beads of
1.00 mm diameter

152



Table 4-7 Values of r+h for glass beads ¢ 1.00 mm

1 =43 mm gg= 19000 og= 12000 r=1.60 N =3.3m
Hz a b= 0,31 k = 2 cosh = 0.80 q, 2.3, cosf = 0.85
200  0.05 0.38-6,55}  1.16-9.08] 0.83-5.63]
400 0.13  0.33-1.56]  0.39-3.137  0.65-4.47] 0,53-2.80]
600 0,28  0.35-1.03j 0.40-1.937  0.51-2.76]  0.44-1.72]
800 0.47  0.38-0.72j 0.41-1.277 0.47-1.887 0.42-1.11}
1000 0.66  0,42-0.517 0.44-0.8337  0.46-1.18] 0.42-0.68;
1200  0.83  0.49-0.27] 0.47-0.497  G.48-0.62]  0.44-0,33]
1400  0.92  0.52-0.02] ©.52-0.213 0.53-0.15j  0.49-0.N3j
1600 0.85 0.64+0.12j 0.59+0.05; 0.60+0.30; 0.57+0.26]
1=72m o, = 19000 g, = 7000 r = 1.40 D,=33m
Hz a h = 0.3 k =2 cosf = 1.0 q, = 2,1, cas9 = 0.90
m
200  0.19 0.59-2.08] 0.40-3.527 0.70-4.13] 0.64-3.02]
400 0.49  0.47-0.76j 0.44-1.50§  0.58-2.22]  0.49-1.34]
600 0.77 0.49-0.38j 0,48-0.69] 0.53-1.16] 0.48-0.62]
800 0.91 0.59+0.02j 0.56-D.16j 0.56-0.48]  0.53-0.14]
1000 0.77 0.72+0.28] 0.71+0.297  0.55+0.00j 0.67-0.28j
1200 0.62 0.97+0.587  1.06+0.743  0.83+0.52] 0.96+0.69]
1400 0.52  1.18+0.755  1.87+1.195  1.17+1.04F  1.62+1.00j
1600 0.47  1.43+0.925  3.41+0.207  1,88+¢1.557  2.73+0,52j
1 =40 om 1 =72 mm
He qa Da cos © qa Da cos B
100
(2.2/2.4)  (2.7/3.9)  (0.80/0.50) (2.0/2.2)  (2.7/3.9)  (0.90/1.00)
0.68-2.72j 0.66-1.31j
0.50-2.80j | 0.57-2.77] 0.44-1.35] | 0.53-1.30j
4 :)0.53—2.80j<: 0.49-1.343¢
0.58-2.80j 0.50-2,82] 0.54-1.33] 0.47-1.37j
0.44-2.86) 0.38-1.37j
0.58-0.67j 0.9140.19j
0.37-0.70} : 0.47-0.60j G.57+0.267 0.81+0.41j
10 >0.42—0.68j< 0.67—0.28j<
0.47-0.66] 0.38-0.75] 0.77+0.29] 0.56+0.17j
0.32-0.69] 0.51+0.31j
0.78+0.22] 2,32+0.023
0.49+0.23]) | 0.70+0.43] 2.68+0,91j | 3.00-0.30]
16 ;>o.57+o.261<: :>2.73+o.5zj<:
0.66+0.29] ! 0.48+0,13j 2.77+0.13] 2.14+0.94]
0.44+0.27] 2.94+1.87]
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Figure 42 Comparison of measured to calculated values of r+h for gravel

(sieve fraction 3.4-7.0 mm)
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Table 4~8 Values of ¢+h for coarse gravel,3.4~7,0 mm
I 11 ITL v
1 = 40 mm o, 7 550 gy = 5000 r = 3.20 D= 5.6 mn q, - 2.2
Hz a h = 0.43 km = 2 cos 9 = 0.50 cos 6 = 0.85
200 0,02 0.15-3.70] 0.16-6.54; 0.84-10.287 0.56-6.,063
400 0,04 0.16-2,65] 0.16-3.12j .38~ 5.043 0.28-2.97]
0
0

600 0.11 .18-1.55] 0.17-1.913 0.26- 3.13j 0.21-1.833

$00  0.20 0.18-1.06] 0.17-1.25} 0.22- 2.07] 0.18-1.193
1000 0.39  0.19-0.68j 0.18-0.81] 0.21- 1,35}  0.17-0.75]
1200 0.65 0.21-0.38j 0.20-0.46j 0.21- 0.805 0.18-0.40j
1400 0.99  0.23-0.04] 0.22-0.16] 0.23- 0.32 0.20-0.09]
600 0.86 0,25+0.19) 0.25+0.12 0.26+40.125  0.23+0.20]
; =72m 94 = 450 o, = 5000 r = 3.20 D =5.6 m q, = 2.2
Hz a h = 0.43 k =2 cos 6 = 0.75 cos 8 = 0.85
00 0.08  0.89-4.87§  0.29-3.52j 0.56-5.47]  0.41-3,23;
400 0.20  0.35-1.67j  0.30-1.49]  0.35-2.26]  0.27-1.37]
600 0.62 0.36-0.66] 0.34-0,67] 0.34-0.07]  0.26-0.57;
800  0.96 0.46+0.16]  0.40+0.13] 0.40+0,16]  0.31-0.01]
1000 0.59  0.64+1.01]  0.53+0.367  0.59+1.09]  0.4240.53]
1200 0.38  0.97+1.83)  0.81+0.93]  1.1742.42]  0.72¢1.21
1400 0.28  1.5242.53]  1.62+1.647  1.94+3.80j  1.79+2.18;
1600 0.24  3,02+3.98]  4.23+1.06f 11.20.0,20§  5.31+0.47]
1= 40 mm 1=72m
5]
Hz aq, Da cos 8 qa Da cos
00 (3.0/2.3) (4.7/6.8)  (0.80/0.90) {(2.0/2.3) (4.7/6.8)  (0.80/0.90)
0.34-2.93] 0.50-3.16] .
0.20-2.99] | 0.29-2.947  0.23~1.40] ~ ,0.30-1.32]
4 P0.28-2.975¢ >0.27—1.371< _
0.29-2.96] 0.27-2.997  0.30-1.36] N0.25-1.42]
0.23-3.01] 0.21-1.40]
0.22-0.72j 0.54+0.53] '
0.15-0.793 | 0.19-0.67]  ©.32+0.42] | ,0.53+0.77]
10 o.17—0.753< >o.42+0.53]< _
0.19—0.735) | 0.16~0.815  0.49+0,59] T N0.3440.35]
0.14-0.77] 0.32+0.52;
0.30+0.22] 4,40-0.20] .
0.18+0.11j | 0.28+0.38F  4.25+2.50j | he14-2.34]
16 0.23+0.20j<< :>5.31+0.471<: .
0.26+0.25] 0.19+0.065  5.05-0.63] “\3.35+2.32]
0.1940. 18] 6.06+1.75]
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Teble 4-9 Values of z-h for small glass beads, 0.6 - 1.0 mm

I IT 111
1 =40 mm b= Q.44 o, = 34000 ¥ - 1.0
Hz US = 34000 km = 4 cos O = 0.60
200 0.09 2.30-5.73j 1.09-6.48]  1.56-7.19]
500 0.24 2.30-2.30j 1.12-3.00)  1.30-3.28j
600  0.44 2.06-1.805 1.18-1.73;  1.34-2.15]
800  0.57 1.75-0-61j  1.28-1.01;  1.40-1.06]
1000 0.62 1.71-0.03)  1.43-0.51]  1.57-0.23]
1200 0.63 1.70-0.15]  1.64-0.13;  1.91+0.46]
1400 0.63 1.73+0.507  1.96+0.13;  2.44+1.103
1600 0.59 1.89+0.43]  2.39+0.22  3.38+1.49j
Hz q D cos ©
T(:J-O a a
(2.0/2.4)  (1.8/2.7)  (0.50/0.70)
1.82-2,49]
1.06-2.45] [ 1.82-2.36]
4 ::;>1.35—2.47j<::
1.72-2.5] I 1.05-2.56]
0.99+1.273
2.05-0.60;
1.17-0.21]j 2.61-0.156
10 ::> 1.55-0.28i<”
%.00-0.47] 1.08-0.47
1.1270.123
2.61-0.50
2.31+0.71j ! 3.28-0.87]
t6 ::> 2.66+0 !8]<<:
2.79-0.40] l 1.70+0.38]

2.50+0.95]

v

Da = 0.22 mm, qQ,
cos B = 0.60

1.53-5.23j
1.34-2,473
1.32-1.40j
1.39-0.75]
1.55-0.28]
£.8140.06j
2.1940.25j
2.66+0. 18]

2.2
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Tablie 4-10 recapitulates the values of the parameters for the fissure medel, cho-
sen after an examination of the measured results for isodiametrical spheres, The
first three columns pive, respectively, the diameters of the spheres, the sample
thichnesses and the measured values of the porosity h. The remainder of the ta-
ble has been sectioned solely to reduce its length. Tn each of the sections the
first three columns (numbers 4, 5, and 6; or 9, 10 and 11) give values for the
parameters, each combination yielding a reasonable fit with the measured curl.
One may conclude that sometimes a number of combinations of wvalues of the para-
meters prove to be similar and can all be seen as acceptable selections. The
underlined combinations correspond to the fit finally estimated to be the best.
The nature and magnitude of the discrepancies between the measured and calcula-
ted curls is indicated to the right of the values for the parameters by two
vertical bars, the first corresponding to the real and the second to the imagi-
nary part of z*h. These vertical bars carry side bars whose meaning is explained
below in table 4-10. Side bars, when present at the low end of a vertical bar
indicate the magnitude of the discrepancies between a caleculated curl and a
measured one at 200 Hz. The side bars at the upper end correspond to 1600 Hz.

Absence of a side bar implies an excellent fit.

On comparing measured and calculated values of Z+h it should be considered that
accuracy is low when it departs appreciably from + 1. This situation occurs
fairly frequently for 200 Hz and thus relatively large discrepancies here may

well be rather unimportant.

Table 4-11 gives a general survey of the results for dry materials. for all
three models. The first column gives the size of the spheres or of the sieve
fractions, the second column the layer thickness and the third column the
measured value of the porosity. In the fourth column the mesured values for the
air flow resistance g are presented. The next three groups of columns evaluate
the results for the Zwikker Kosten, the capillary and the fissure models, res-—
pectively. The first two or three columns of each group list the values of the
appropriate parameters for the best fit. The quality of the fit is indicated in

the same way as in table 4-10,
In some case interpolated values of the parameters from table 4-10 have buen

intraduced. For a number of samples some of the models failes to produce an

acceptable curl. These cases have been marked.
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Table 4~10 Survey of best fitting parameters for layers of isodiametric spheres

size 1 h D q cos 8§  Re Im D qQ cos 8 Re Im
a a a a
(o) (mm) (=) | (o) (-3 (um) (=)
§ 6.25 .40 .41 [6.8 1.6 0.90 4 1|56 2.2 100 ¢ 1
6.8 1.8 0.95 1 156 1.6 09 4 1
6.8 2.0 0.90 1 7
6.8 2.0 0.95 & T
6.8 2.2 1.00 1 1
6.8 2.4 1.00 1 1
.72 .39 | 6.8 1.8  0.90 1 4 ]s5.5 2.4 1.00 1 7
6.8 2,2 1.00 1 j |
6.8 2.4  1.00 I 4/
g 4.00 .40 .50(S5.6 2.0 1.00 ) 1;5“ 16 090 ] T
5.6 0.55 1 1|4.7 1,6 0.95 I %
5.6 1.6 0.50 I 3
|
.72 .52 | 5.6 2.0 1.00 1 24,56 1.6 0.9 1 71
$2.00 .40 .37[3.3 1.8 0.50 J 41|27 1.6 0.9 g 1
1.3 1.8 1.0C J Ilz22 1.6 1.00 3 3
1.3 1.6 0.90 T 1|
.72 .37 | 3.3 1.6 0.90 T 1lz27 16 0090 J I
3.3 1.8 1.00 1 7!
—t
# 1.66 .40 .31 (3.3 2.0 0.90 1T 1y
3.9 2.2 0.9 1 11
3.9 2.3 0.95 1 4|
4
B 1.37 .40 .30 (3.9 2.2 0.90 7 4!
3.9 2.0 0.80 1 2 :
3.9 2.4 0.90 1 1
B 1.00 .40 .31 3.3 2. n.85 1 m:2.7 2.0 090 ) 4
.72 .31 133 2.0 0.90 S
2.2 0.90 I 4,27 20 095 7 ¢

Legend

LT The calculated value fits with measured value within a few 7.

J 1 The calculated value exceeds the measured one with less than 50%
J 4 The calculated value exceeds the measured one with more than 100%

J ] The measured value exceeds the calculated one with less than 50%
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Table 4-11 GCeneral survey of the dry material

2R 1 k¥ g g k Re Im|[ 2R cos9 Re Tm{ D g, cosé Re Im
5 4 d 4 m a a
(mm)  (om)(-) {Nsm ) (Nsm )(-) (o) (=) (m) (=)
6.25 40 0.41 650 3500 2 T f|6.2 0.30 ¢ 4|6.82.0 0.95 & [
720,39 880 2000 2 4 $|6.3 0.90 # 4}6.82.0 0.95 ¢ 1
4.00 40 0,38 2000 s000 2§ J n.on 1t %156 1.6 0.95 T %
72 0.38 2400 4500 2 L T [3.8 0.90 T Y|5.61.6 0.95 T T
2.00 40 0.37 4500 4500 2 3 41 2.2 0.95 T ft12.71.6 0,95 T Y
.66 40 0.31 8400 8000 2 ) 4{1.5 1.00 4 #}2.71.6 0.95 T I
1.00 40 0.35 10400 12000 2 T 4 y1.6 0.80 1 $13.32.3 0.8 ¢ 3
72 0.31 18500 7000 I 2|t too b T332 090 I L
3.4-7.0  0.41 550 5000 2 T %t ¢.80 4 #]5.6 2.2 0.8 T 1
0.43 450 5000 I 132 075 0 4|5.62.2 0.8 ¢ |
1.0~2.0 40 0.45 7800 16000 3 | 2| = 3.3 2.4 0.75 } 1
72 0,42 8100 % ] J = 3.9 2.4 0.75 1 )
0.6-1.0 0.43 22000 34000 4 L 1 [1.1 0.60 4 4-]2.22.2 0.65 1 1
0.3-0.6 0.41 83000 5 % 1.5 2.2 0.60 |
z no fitting curl

Evaluation of the models (cf. table 4-11)

In general the fissure model yields the best fitting eurls, expecially for sieve
fractions, which most closely resemble soils. In the complicated cases, as that
presented in figure 45, it is the only model capable of producing a reasonable
correspondence between measurements and theory. The performance of the capillary
model is usually poorer than the fissure types, although it corresponds reason-
ably with the experiment, at least in some cases. The simple Zwikker Kosten mo~
del leads to the greatest divergence and can be considered inadequate. The mayor
disadvantage of this model is the difficulty of introducing a relationship with
pore geometry. Another fundamental disadvantage is that it does not incorporate
the frequency dependence of the parameters. The fact that measurements on samples
of isodiametrical spheres often yield poor resuits, when compared with the mo-
dels need not cause undue concern. Plausible reasons for the discrepancies have
been advanced and a good fit for sieve fracticns is of greater importance as

such samples show more resemblance to soils.

160



Coarse materials are characterized by low losses and, as mentioned previously,by
a number of pores wider than to be expected from the particle size. Tor samples
of such materials the best fit is often ambiguous at the lower frequencies. At
the higher frequencies very large values for[C'h|0ccur thus accuracy of measure-—
merit is very low there. So the information derived from such curls does not con-

tribute much to the selection of the values of the parameters for the best fit.

For coarse materials the frequency for maximum absorption is practically in-
versely proportional to layer thickness. This effect is very marked for large
spheres, e.q. diam, 6.25 mm. Finer materials show better fitting curls. In such
cases q_ is usually higher than the value for the hexagonal packing of spheres
and the best fitting curl possesses a cos 6 which is usually above the nominal
value (0.7303). The fact that the fissure width does not vary in proportion with

rthe diameter of the spheres implies that the fissure model is still too simple.

The samples prepared from sieve fractions often yield better fits tham those
composed of isodiametrical spheres. Cne of the reasons may be that the theoreti-
cal porosity is more closely approached by samples of the former kind and another
related one is that stacked spheres in a cylindrical holder do not give a perfect
arrangement. The sample may well contain comparatively wide channels, especially
along the walls of the holder which are not incorporated in the model. This
effect will be more pronounced for the large spheres. One would expect the pre-
sence of such channels to lead to high values for cos & and low values for q,-

This trend can indeed be detected from table 4-19.

Some special cases will be treated now. Figure 44 shows three impedance curls,
for very small spheres. In this special case, the layer thickness was varied.

The air flow resistance is high and presumably leads to high losses even for
small sample thickness. The absorptiou coefficient is relatively high for a
layer only 3 cm thick. The impedance crul has the same general form as in figure
33. Further increase in layer thickness does not lead to a marked increase in
absorption. So a layer 3 to 4 cm thick of the very fine material can be consi-
dered infinitely thick. Even at high frequencies the absorption coefficient
remains fairly low due to the large mismatch in the wave impedances of the sample

material and the air column (see figure 6D).
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Figure 44 Measured values of f-h for three layers of very small glass spheres
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/
cosB = 0.86
4, = 2.45

Figure 45 Measured curve for ¢-h for a fine sieve fraction of gravel compared

to a calculated curl with similar contour
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In table 4-12 some interesting data are presented. They were determined on six

samples of two sieve fractions 1.0 - 2.0 mm and 2,0 - 3.4 mm of the same layer
thickness, consisting of gravel. Swmooth gravel of large size (7-20 mm) was

crushed and sieved to cbtain sharp edged material. For this sieve fraction the
values of column A were found. Next bricks were crushed and sieved, and curl B
was measured. Then the crushed bricks were thoroughly saturated with water by
repeated wetting and evacuation. The wet material was dried externally with blot-

ting paper and then columm C was found.

The particles composing the crushed brick sample are themselves porcus, con-
taining open pores which can be considered as belonging to the dead-end type.
Porous of this kind, which are much smaller than the inter-aggregate pores, in-
crease compressibility, more so at the lower frequencies than at the higher. An
increase in compressibility reduces the velocity of propagation and thus the
fact that the first anti-resonance frequency for sample B is lower than that for
sample A is in accordance with expectations. If the intra-aggregate pores are
still operative in the anti-resonance, the decrease in resonance frequency is a
measure for the volume of these pores in relation to the inter-aggregate or

principal pores.

When the intra-aggregate pores in sample B have been filled with water, thus
forming sample C, one would expect the results for the latter sample to agree
with those for sample A. And generally speaking this proves so. There are,how-
ever, some discrepancies, which are expecially pronounced for the higher fre-
quencies. These latter may well be due to residual water at the points of con-

tact of the particles in sample C, no such water being present in sample A.

There are further complications, however. On repeated cycling of the frequency
through the measuring range, sample C shows a lack of reproducibility. Various
causes of this effect may be surmised. Thus menisci may collapse under the
impact of the sound waves., Thus conjecture gains in plausibility on considering,
after cycling the frequency, the propagation velocity at the lower frequencies
tends to decrease. A further indication is that when reproducibility is low,
there is some loss of water from the sample. This loss might be attributed to

increased evaporation from the broken menisci.
In figure 45 an example is given of a very complicated curl found sometimes by

measurement. This type of curl shows that refinement of the mathematical

approach is needed to produce a perfect fit.
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Table 4-12 Values of 7+h for gravel, dry crushed bricks and crushed bricks,

partly filled with water

1 =40 mm, b = 0.44 1.0-2.0 mm

A B c”
Hz a {(¢+jn)h a (E+3ndh a {(E+imh
200 0.06 0.62-4.14j 0.25 0.86-3.85j 0.07 0.58-4.36
400 0.14 0.54-2.21j 0.75 0.66-7.25] 0.19 0.59-2.27j
600 0.30 0.56-1.45j 0.79 0.59-1.36] 0.37 0.60-1.49]
800 0.58 0.60-0.97j 0.69 0.52-0.87j 0.61 0.67-0.94j
1003 0.79 0.65-D.57] 0.62 0.77-G.43j 0.84 (.73-
1200 0.92 0.73-0.18j .53 ©.80-0.103 0.96 0,78-0.043
1400 0.91 0.77+0.05j 0.60 0.86+0.22] 0.93 0.83+0,22]
1600 0.8l 0.92+0.493 0.71 0.91+0,48] 0.84 0.92+40.48]

¥ (= + 10.5% H,0)

1 =40 mm, h = 0.64 2.0-3.4 mm

A B c "
Hz a {£+indh a (¢+in)h a (E+jn)h
200 0.08 0.62-4.52j 0.08 0.77-4.06] 0.05 0.64-4,96]
400 0.17 0.50-2.50] 0.17 0.85-3.24) 0.14 0.42-2,67]
600 0.32 0.50-1.62j 0.27 0.61-2.37j3 0,37 0.38-1.79)
800 0.57 0.94-1.15j 0.46 0.56-1,28] 0,62 0,37-1.19
1009 0,77 0.56-0.65j 0.68 0.56-0.75] 0.90 0.40~0.71]
1200 0.97 0.60-0.20j 0.93 0.59-0.323 0,99 0.43-0.29]
1400 0.98 0.60+0.17] 0.99 0.61-0.03] 0.97 0,47+0,02)
1600 0.88 0.67+0.47] 0.81 0.62+0.35j 0.92  0.34+0.88j

%
(= + 12% HZO)
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4.5 Considerations on the improvement of mathematical models

Of the three models considered, that of 7Zwikker Kosten is the simplest. Excluding
h, it contains only two parameters, which however are purely formal in nature:

even for a sample of precise and simple geometry, o, and km cannot be predicted.

Essentially, of course, the guantities corresponding to o and km are frequency-—
dependent.

The two channel-typemodels offer o geometry that bears at least some resemblance
to that of the sample material. Thus the parameters r and Da determine the
absolute size of the pores and ought to correlate with the size of the

particles of the sample. This correlation however is still of a formzl nature,

. only for extremely simple materials would prediction of r and Da present any
hope of success. The same applies for cos 8 and q, which do depend on sample
geometry but the precise form of this dependence is obscure.

The geometrical simplifications introduced into the channel-type models are so
far-reaching that perfect matches between measured and calculated curls cannot

be expected. To name a few of the imperfections:

a. The arbitrary cross-sections of the pores in the models will differ from those
actually obtaining in the samples and thus both the flow and temperature profiles
in the samples pores will deviate from those in the models. As an example one
might consider flow in a tube of an equilateral triangular cross-section and one
having a circular one. For the former, at least at higher frequencies, the
viscous bhoundary layer will have a larger effect than for the latter. Here the
free area of the sample material surface per unit volume of material obviously
affects the results. Between the fissure and the circular cross—-section the
differences will be even larger than in the previous case. Note that flow was
always laminar under the measuring conditions, Reynolds number being very low
and that contraction coefficients thus do not apply.

b. In actual samples the pore system consists of interconnected channels. Only a
fraction, albeit a large one, of these pores will carry the flow of air. The
remaining pores are limited to the function of acoustic compliance. Thus the
assumption of identical distribution functions for flow and compression in the
channel-type models is manifestly inceorrect. It was introduced selely for sim—
plicitys sake. For the samples considered here, the pores acting only as com—

pliances are presumably accessible over the entire frequency range; side holes

® pVvR
()<< 1000)
0

166



of the type represented in figure 14 showing a series impedance at the entrance
are probably either absent or unimportant. Summarizing)the porosity, as deter-
minec statically, is probably too high when flow is being considered.

¢. The assumption that & is equal [or all channels 1s also a simplification of
dubious validity. It is probably not far from the mark if chapnels of any se-
lacted cross-section occur for the same distribution of the values of €, the
larter then taking on the nature of an average. Should channel cross—section and
valuas of & be ccrrelated the assumption should not bte retained. Whether this
correlation does in fact exist is not yet known., (Marshall, 1958)

Although the present models show some promise for the description of the pore
geometries of the-materials considered, there are still discrepancies and the
mind turns to the possibilities of improvement. There appear to be various lines
of approach. Fer instance, the inttoduction of two porosities, for flow and re-
improve the correspondence between theory and experiment. The general form of
the distribution function should be identical in the twe cases. Similar con-
siderations hold for the introduction of z correlation between chanmel cross=~
section and €. Neither of the wariations proposed above requires the introduction
of an extra adjustable parameter. Note that no account has been taken of the
prooability distribution of two pores of given, different cross-sections ad-
joining each other. This is not necessary in the present cage where the wave-
length is very large in relation to pere dimensions.

Should refinement of the models yield inadequate improvement, the introduction
of a further adjustable parameter may be considered, e.g. the introduction of
different distribution functions for the cross—-sections of the pores carrying
the flow and those confined to compression. In the simplest case, only the ratio
¢of the porosities for the two kinds of pores could be introduced.

As stated above, the performance of the present wodels 1s not toe bad. Thus it
is practically impossible to predict which and how many of the methods of im-
provement suggested above are required to render the correspondence between
thaory and experiment completely acceptable. Even from the material now availa-
ble, the necessity for introducing one further parameter cannot be deduced. The
possibility that more than one extra parameter is required seems remote.

To elucidate the behaviour of the models as descriptive for the sample material,
further information is required. For all practical purpcses this information must
be derived by increasing the frequency range of the measurements as the possi-
bilities for increasing the accuracy of interferometer measurements are indeed

limited. Except for some peculiar cases, increasing the number of measuring

167



frequencies, in the range considered here, yields only a limited improvement in
accuracy.

The extension of the frequency range of an accustical interferometer beyond the
customary value of 1:10 is, however, not primarily the concern of the scil

scientist but of the acoustician,

Prospects

The experimental results on crushed bricks with variable water content open a
way to distinguish between inter-aggregate and intra—aggregate pores (section
4=-4). An improved model is presumably devisable as the intra-aggregate pores
correspond to something resembling the side fissures in the prismatic soil struc-
ture, see section 3.8. Retention to identical pore distribution functions for
flow and compression is obviously impossible. In this case the reasonable results
from the present crude models especially for sieve fractions, justifies some

confidence for future sophistication.

The selection of variants of the pore distribution functions for the models from
experimental data still constitutes an obstacle. One could suggest three prin-
cipal lines for further research.

1. A detailed analysis of the pF curve, together with a theoretical and practi-
cal investigation of hydraulic conductivities. The pF curve has however two
main disadvantages; the curve shows hysteresis and the results are thus am-
biguous and the determination of the curve may introduce shrinkage or swel-
ling of the soil sample, This may lead to a rearrangement or deformation of
the pore geometry originally present in the undisturbed sample. Application
of the customary type of pF curve may well require adaptation or refinement

for the fissure model.

2. An analysis of the fluid flow resistances combined with the determination of
agprepgate size distribution. This method at present yvields information main-
ly about aggregate geometry and very limited insight into pore geometry,

which is of greater interest here.

3. Micromorphological analysis, the optical study of very thin slices of impreg-
nated sample material may lead to a useful description of the pore geometry.
Thié method appears promising when considered fundamentally, but its techni-
cal achievement and an adequate mathematical expression of the data is still

difficult in most cases.
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Figure 46 Values of ¢*h for some layers of straw with variation in layer thick-

ness and packing densities
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Table 4-13
Values of & and ¢*h for some layers of struw at varicus layer thicknesses and

packing densities

1 = 67 mm 1 = 90 mm

h = 0.91 h = 0.9
Kz a (£ + jn)h a (€ + jn)h
200 .12 0.37 - 3 2.76 0.12 0.44 - 7 3.80
400 0.30 0.25 - 7 1.33 0.30 0.15 - j 1.07
600 0.55 0.26 - 7 0.61 0.55 0.20 - j 0.25
800 0.77 0.31 - j 0.08 0.67 0.28 + j 0.38
1000 0.73 0.50 + j 1.05 0.63 0.50 + j 0.92
1260 0.54 0.93 + j 1.33 0.52 2.87 + 3 2.37
1400 0.61 3.46 + 3 1,186 G.57 2,22 73 2.7
1600 0.70 1.49 - 3 1.41 0.72 1.06 - j 1.26

1 =110 mm 1 = 110 mm

h = C.91 h = 0.95
Hz a (& + jmh a (£ + jndh
200 0.31 0.32 - 7 1.23 0.1i2 0.15 -3 2.15
400 0.93 0.41 - 7 0.09 0.30 0.12 - j 0.63
600 0.78 0.64 + j; 0.74 0.55 0.11 + j 0.10
800 0.58 3.50 + 3 2.87 0.57 0.29 + j 0.66
1000 0.73 2.97 -~ j 1.09 0.53 0.57 + j 1.31
1200 0.97 0.94 - j 0.49 0.49 5.67 + j 0.55
1400 0.92 0.85 + j 0.50 0.54 1.06 — 3 1,80
1600 0.85 1,03 + 3 0.79 0.75 0.38 - 3 0.40
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4.6 Measurements on lavers of straw

So far now all layer measured, could be considered acoustically rigid. That
means that only the air vibrated. As an example of a complete different material
some measurements were taken on straw. (See figure 46 and table 4-14).

Alr-dry straw was cut in 3 cm lengths and packed intoc the sample holders.

Meaasurements were performed in both interometers.

Sevaral conclusions can be drawn from these data. The impedance curls de¢ not
form a logarithmic spiral. At higher frequencies absorbtion increases, because
of vibrations of the straw tubes. This effect originates partly from the reso-
nance properties of the straw tubes, which are open at one or both ends. The
problem of the resilient frame is discussed extensively by Zwikker and Kosten
{ 1949). In the general case their results are extremely complicated but they
may be simplified by the introduction of certain assumptions, e.q. porosity

approaching unity. Loosely packed straw satisfies this assumptiom.

Some theoretical attempts were made tc introduce their model with reasonable va-
lues for the parameters. The calculated curves for r+h departed significantly
from the measured ones and extension of the theory did not improve matters. In-
terpretation of the results is thus perforce postponed. One article was found
dealing with this problem. It discusses measurements on the acoustic behaviour
of steelwool (Bies, 1963). There an acceptable agreement was found with a sim-
plified model of Zwikker and Kosten. Steelwool does not however contain resona-

ting tubes.
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4.7 Conclusions

|. The introduction of a geometrical model, characterized by a few parameters
that are considered.to be representative for the material under study, has lead
to an acceptable relationship between calculated and measured impedance curls.
In some cases, especially for fine grained materials, more of parameters are
needed.

2. Layers of straw cannot be considered rigid in an acoustical sense. The frame
moves in the sound field. A more complex model is needed to describe their be-
haviour properly,

3, The method of Ferrero and Sacerdote offers no acceptable results in the de-
termination of the material constants by an extrapolating technique,

4, The introduction of a logarithmic impedance plane for separating the factors
'Wm and Y may help sometimes.

5. Use of scale rules to limit thecretical problems, and more especially the
number of measurements to be made, cannot help in the acoustical study of porous
materials.

6. The acoustic behaviour of prismatic soll structures can be studied with the
aid of formulae given. The size and number of the small horizontal fissures
influences the results considerably.

7. The help of an electro-acoustical analogous network for understanding the

acoustical behaviour of an porous material is very limited.
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Summary

The properties of a soil structure mav be examined in various manmers. As well
as a study of the stability, a knowledge of the geometry of the volume of air-
filled pores is often needed. The most common measurements, like those of
porosity and flow resistance to gases do ncot permit a detailed description of
this pore volume. Since wave phenomena are characterized by three independent
variables, viz. frequency, amplitude and phase, with frequency chosen freely,
the measurement of acoustical characteristics of the air in the soil offers new
opportunities. Also a determination of the acoustical properties of a porous
material is non-destructive.

In chapter 1, a description is given of an interferometric method of measurement
following the derivation of the wave equation. The propagation velocity of sound
in alr and the specific mass of air are the important physical quantities. The
change in these quantities is studied from variations in the experimental
conditions, such as temperature and humiditv. Next the principles of the
propagation of sound im porous materiazls are presented. For a sample of thickness
1 and having a rigid backing, the specific acoustic impedance 7 at the free
surface is given by Z = Wmcoth(yml), where Yo is the propagation constant for
acoustical waves in the sample and Wm is the specific acoustic wave impedance.
Z, Wm and Y, are complex quantities. Z may he measured in an interferometer and
Wm anid Yo characterize the sample material. Vi and Wm considered as functions
of frequency give more information on pore geometry than may bhe obtained from
static measurements. The loci of the function in two types of a complex plane
is studied. Finally the behaviour of this function in the complex planes is
shown with some examples.

Chapter 2 contains a discussion of the measuring equipment used and of the
calibration of the measuring set-up. After a discussion of the measuring
techniques, the sources of error are evaluated.

Chapter 3 deals with the propagation of waves in porous materials. Independent
determination of Wm and Yq PTOVeS impossible for soil samples.lA method for
this, described in the literature, is rejected on the grounds of inadequate
aceuracy. An alternative approach is followed: the material is described by

a mathematical model and the parameters in the model are considered as the

characteristic quantities for pore geometry. The models assume comparatively
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simple geometries and may be considered an extension of the work of previous
authors. In addition a new projection plane for the determination of Yo and W
by a graphical method is discussed. Use of the plane is confined to cases where
the sample thickness may be varied. Also, formulas are derived with which the
acoustical properties of prismatic of structures soils can be studied. Finally,
the applicability of scale rules and the possibility of an electric-—acoustical
equivalent network are examined for the sample material. Neither approach seems
promising.

Chapter 4 starts with a discussion of the problems to be expected on the com-
parison of calculated and measured curves for 7. Somes series of measurements
are discussed. The mathematical models selected vield a reasonably good relation-
ship between the theoretical and measured values. A short critical discussion is
given on the feasibility of an extension of the mathematical meodel.

In conclusion a brief discussion is devoted to measurements on layers whose
solid phases can no longer be considered as rigid, such as layers of mulech and

straw. Some results obtained with straw are dealt with.
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Samenvatting

He:: onderzoek naar de opbouw van een bodemstruktuur kan op uiteenlopende wijzen
plaatsvinden. Dikwijls wordt naast een onderzoek naar de stabiliteit eenr uit-
zicht verlangd in de geometrie van het met lucht gevulde porievolume. De meest
voorkomende metingen, zoals die van de porositeit en de stromingsweerstand voor
gassen laten geen gedetailleerde beschrijving van dit porievolume toe. Omdat
golfverschijnselen gekenmerkt kunnen worden door drie van elkaar onafhankelijke
patameters, nl., de frequentie, de amplitude en de fase, waarbij eerstgenocemde
vri] kan worden gekozen, biedt het meten van de akcestische eigenschappen van de
lucht in de bodem meer mogelijkheden. Daarenboven is een onderzoek van de akoes—
tische eigenschappen van een poreus materiaal non-destruktief.

In hoofdstuk | wordt een beschrijving van een interferometrische meetmethode ge-—
geven, nadat eerst de golfverpgelilking is afgeleid., De voortplantingssnelheid
van geluid in lucht en de specifieke massa van lucht zijn de belangrijkste fy-
sische grootheden. De wijzigingen in de waarde van deze grootheden onder varia-
ties van de meetomstandigheden, zoals de temperatuur en de vochtigheid worden
nader beschouwd. Vervolgens worden de beginselen van de voortplanting van geluid
in poreuze materialen gegeven. Van ecen monster met een laagdikte 1, dat azan de
achterzijde hard is afgesloten kan de specifieke akoestische impedantie Z aan
het vrij oppervlak van dit materiaal worden weerpegeven door de betrekking Z =
Wmcoth le, waarin Ym de voortplantingsconstante voor geluidgolven in het wmate-
riaal en wm de specifieke akoestische golfimpedantie van dit materiaal voorstel-
len. Z, Wm en Y zijn complexe groctheden. Z kan worden gemeten in een interfero—
metar; Wm en Y kenmerken het onderzochte materiaal. Ty €8 Wm, als funktie van
de Erequentie geven meer inlichtingen over de opbouw van het porievolume dan de
resultaten van statische metingen.

Beschreven wordt vervolgens hoe de funktiewaarden in twee typen van een complex
vlak kupmen worden weergepeven. Tenslotte wordt met behulp van enkele voorbeel-
den het gedrag van deze funktie in ket komplexe vlak toegelicht.

Hoofdstuk 2 bevat een bespreking van de gebruikte meetapparatuur en de ijking
van de meetopstelling. Nadat de wijze van meten in detail is besproken, volgt
een analyse van de foutenbronnen.

In khoofdstuk 3 wordt op de voortplanting van geluidgolven in poreuze materialen

uitvoerig ingegaan. Een onafhankelijke bepaling van Wm en Y blijkt voor bodem—
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monsters niet ultvoerbaar. Een methode die in de literatuur voorkomt en voor dit

doel werd ontworpen wordt verworpen om redenen van ontoereikende nauwkeurigheid.

Daarom wordt een andere wijze van benaderen gevolgd, Het model wordt beschreven
met behulp van een mathematisch model en de parameters, die het model bezit wor—
den gedacht de karakteristieke grootheden van de opbouw van het porievclume te
vertegenwoordigen. De modellen bezitten een betrekkelijk eenvoudige opbouw en
kunnen beschouwd worden als een voortgezette studie van het werk van eerdere
schrijvers. Ook wordt een nieuw type projektievlak voor een grafische bepaling
van y en W besproken. Het blijkt dat dit vlak slechts hulp kan bieden, als de
dikte van de monsterlaag kan worden gevarieerd. Er worden vervolgens vergelijkin-
gen afgeleid waarmede de akoestlsche eigenschappen van een prismatische bodem—
struktuur bestudeerd kunnen worden. Tenslotte wordt onderzocht of schaalregels,
respektievelijk een elektro-akcestisch analogon van nut kunmen zijn. Beide bena-
deringswijzen blijken geen perspektief te bieden.

In hoofdstuk 4 wordt eerst ingegaan op de problemen, die er rijzen wanneer geme-
ten en berekende waarden van Z met elkaar moeten worden vergeleken. Enkele series
meetresultaten worden nader beschouwd, De berekende waarden blijken een redelijke
overeenkomst te bezitten met de gemeten waarden. Aan een verdere uitbreiding van
het gekozen model wordt een korte beschouwing gewijd.

0ok worden in het kort enkele meetresultaten besproken, die werden verkregen aan
een materiaal waarvan gezegd kan worden dat het skelet bij de meting niet meer
stijf is, zoals een mulchlaag of een laag stro. Enkele resultaten die bij metin-

gen aan strolagen werden verkregen, worden gegeven,
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Appendix A. Basic formulae from the theory of vibrations

For a spring which behaves in accordance with Hooke's law, the displacement x
pring P

iz proportional to the applied force f. Thus,
£ ==-x/C, {A=1)
where the proportionality factor C is called the compliance of the spring. For
a mass m, subject to a force f the displacement x is determined by the following
relationship
f=m dzx/dtz. (A-2)
If a mass is attached to one end of a spring whose other end is anchored, in the
absence of an external force acting on the system, and if the mass of the spring
is neglected the sum of the forces acting on the comnecting peint of the spring
and mass must vanish, or

2 2
m d°x/dt” + x/C =0, (A-3)
A general solution of this equation is

x(t) =% cos{uwt + ¢), (a-4)

where % and ¢ are the integration constants and where the angular frequency w,

corresponds to
w ®= l/v’(mC). (A_s)

In complex notation,

X =X =/—1-i‘< exp(j9), see section 1-3.
2

The total energy W of the vibrating system is constant here and equal to the
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sum of the potential and kiretic energies.
In the real representation,
2

2
W =§n1(i§ + 1 2
dt C

=£m2m 22 sinz(mt +¢) + 1 2 ccsz(mt + 3)
C

=%2/c =213 %c. (A-6)

In the presence of a damping force which is considered to vary linearly with

the velocity of the moving mass the above differential eq.(A-3) changes to

2
min’zc+ré§-+—’5=0, (A-7)
dt de C

where r is the proportionality factor between the velocity and the damping force.
Sometimes r is called the resistance of the system. The general solution of this

equation in the real representation is

x =% exp(~ t/v) cos{wt + ¢), (A-8)

where the angular frequency is given by

1 2
w = Y(— -5

wC  4m (A-9)

and the relaxation time by

T = 2m/r, (A-10)

Eq .(A-8) represents a solution for non-steady state of the modified differential
equation. Although the introduction of the complex representation for transient

phenomena such as that under conmsideration is perfectly feasible, this matter

will not be pursued here as being beyond the scope of this book.
The behaviour of a damped mass spring system subject to a sinusoidal external

force is described by the differential equation

2
d x dx Fd
M—+ T —— + == f _
et e ¢ (A-7a)

where, in complex notatiom (c.f. section 1-3),
£ = f exp( jut), (a-11)

where the factor exp(juwt) has been introduced explicitly in order to indicate the

the angular frequency w is a given quantitv.
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This equation is analogous to the differential equation describing the electri-

cal kehaviour of a series circuit of self-inductance L, resistance R and ca-

pacitance C,driven by a harmonic alternating voltage

2
L33 s r 84 2 o ¥ expliot.) (A-12)
dt dt S

When the steady state has been reached the following particular soluticn of eq.

{A~7a) is found

X = t cos {wt ~ ¢) , {(A-13)
m/(r2+(wm-!/mc)2)

or in complex notation,

%= g s (A-14)
1/C - w'm + jur

from which the dependence of % on the frequency is evident. Utilizing the complex
notation the concept of mechanical impedance was usedrin this book. This quanticy
ZH is defined as the ratio of the complex force exerted on a point divided by the

complex velocity of that poiant.

¥

ZM = :l (A—IS)
u

with u = dx/dt.

The unit for %q in § I~units is Nsnr].

The mechanical impedance of the mass spring system is given by

ZH'-—%‘-;=r+jwm+'l-- (A-16)
Jux juwC

It thus follows that

l%

Notz from eq.(A-17) that in resonance, when w = 1//(mC), IZMI is minimai and

= e+ tume 9.
wl

equals r. Introductory textbooks on the theory of vibrations are: van Santen
{1950), Jones (1951), Mc Lachlan (1951), Sharman (1963). An introduction on sound
vibration is given by: Lamb (1960), Further details on the theory of sound can
be found in: Rayleigh (1945}, Morse (1948), Beranek (1949), Skudrzyk (1949),
Wood (1966).
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Appendix B. Derivation of the perturbation factors for homogeneous

channels

The viscosity and the thermal conductivity inherent in gaseous media cause
damping of acoustic waves propagating in channels. This damping may be ascribed
to two effects.

l. Wall absorption, comprising the lcsses in the viscous and thermal boundary
layers at the walls of the channel,

2. Volume absorption, which takes place in the body of the medium and corre-
sponds to the residual lesses in free waves.

These two forms of absorption differ in that the first is caused by diffusion
of momentum and kinetic energy in directioms normal to the direction of propa-
gation and the second by the diffusion of these same quantities in the di-~

rection of propagation.

For the range of temperatures, barometric pressures, frequencies and channel
cross-sections encountered in the accustical investigation of porous materials
tha second effect is negligible in relation to the first and need not be further

considered.

In a homogeneous channel, i.e. one having a constant cross-section, the concept
of a plane wave, perturbed only near the channel walls by the boundary layers,

is appropriate only if the transverse dimensions of the channel are comparatively
large with respect to boundary layer thickness. As these transverse dimensions
diminish, the boundary layers tend to cover the entire c¢ross—sectional area,
resulting in Poiseuille flow and isothermal changes of state in the limiting case
of very small dimensions. Although, in this latter case, the dissipation of
acoustic energy is distributed over the entire volume of the channel, the
dissipative mechanism is still that of wall absorption.

Tsking into account that momentum and kinetic energy are carried by the same
molecules, one would expect the viscous and thermal boundary layers to have
thicknesses of the same order of magnitude. That such is indeed the case will be

shown later in this section.

Kirchhoff solved the problem for the cylindrical tube in the high frequency ap-—
proximation and found formulae for the velocity of sound and the attenuation of

waves., In this case the ratio of the thickness of the boundary layers and the
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lube diameter is very small. Rayleigh (1927, p.319-327) studied the low frequen-
¢y appreximation; the above ratio is then large. Xosten (1949) extended this
derivation, giving formulae that can be used to higher frequencies., Crandall (1927,
p.229-241) studied the influence of viscosity for all frequencies, neglecting
heat conduction. This led to a correction of the equation of motion which corre-
sporids to the imtroduction of a complex demsity for the gasecus medium. The
rkeory comprises both the high and the low frequency approximations. Kosten
(1949, SAM, p.30-40) solved the complementary problem, i.e. the influence of
heat conduction for all frequencies by neglecting viscosity. The result was a
ccrrected equation of continuity in which the compression modulus of the medium
takes a complex form., The solution comprises the high and low frequency approxi-

mations.

The solutions of Crandall and Kosten cover the problem of the propagation of
waves in cylindrical tubes, provided the tube diameters are not excessively
large, and that does not eccur in porous materials. The reductions required by
this approach are brief, an advantage over the more cumbersome treatment which
introduces viscosity and thermal conductivity simultaneously. The results are
both the same (D.W.van Wulfften Palthe private communication). To demonstrate
the abbreviated methed, it will be used t? find Ehe viscous and thermal pertur-—

bation factors for homogeneous fissures Ef and g respectively.

Figure B-1 Section through a fissure

Figure B-1 represents a section through a fissure, the waves propagating in the

z-direction and y being the transverse coordinate. The particle velocity com-

ponent in the direction of propagation is u.

Tha derivation of E% daparts from the equation of motion for an infinitesimal

elemert of the medium, This equation may be brought into the form:

~ dpfaz + q Bzu/By2 = psaufat, {B-1)
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where n is rthe dynamic coefficient of viscosity and p is assumed teo be inde-

pendent of y. Solution of eq.(B~1) for harmoric time dependence and symmetry

in y yields:

1

u ==

ER 11 4 A cos((1-3)y/1.)0, (B-2)
jwps Az v

where the viscous boundary layer thickness 1v igs given by
e Vi . -
i, (2nfwo ) (B-3)

The integration coastant A is eliminated from eq.{B-2) with the boundary con-

dition for a rigid frame: u = 0 for y = 2 in:

g e o] gp_’{l - cos((1=y/lyy| (B-4)
jue, 9z eos(4(1-3)D/1)

Integrating eq.(B-4) over the interval —iD<y<iD, yields

ip
U=f udy = - D EBJT. (B-5)
) opg 9z Lg

here 5; N ”;, _ tan(3(=D/1, ) (56>
i(1-jn/1,

£; is the perturbation factor sought.

1)
The derivation of g is based on the following fundamental equations.

b, The law of Boyle - Gay Lussac p, = 0 R T, which reads in differential form

g

EE = d_p + d_T . (B—j
PS pS TS

The differentials dp, dp, dt are the variables in the given case., They will be
indicated further on by p, p ard €. Sc one can write B o_p L5

p, P, T

p is the incremental demsity due to the sound field, T, is the static absolute
temperature,

190



© is the incremental temperature due to the sound field,

R is the gas constant per unit mass.
As p, 0 and O are small quantities, a first order approximation of eq.(B-7) is:

po= p/(RgTS) -0 O/T . (B-8)

2, The equation of continuity. This expresses the fact that a gradient in parti-
cle displacement results in an incremental density. The appropriate form for

harmonic phenomena is

- osau/Bz = jup . (B-9)

3. The equation of heat transport!: Assuming heat to be transported transversely

only, the net flow of heat per unit mass (having a volume !/os) is given by:

2
a2 20 (B-10y

’
at Pe oy

whera 3 is the thermal conductivity of the medium. The appearance of the de-
rivative of the second order on the right side of eq.(B-10) may be understood
by considering that heat flow demsity is proportionazl to temperature gradient
and that it is thus the variation in gradient which determines whether and

how much a net flow of heat into a given volume will result.

4. The First Law of Thermodynamics for an ideal gas. For harmonic phenomena this

equation, applied to the unit of mass for the flow of heat is given by
Qfic = jmcp@ - jwp/ps, {B-11)

where ¢_ is the specific heat per unit mass at constant pressure for the gaseous

medium,

Elimination of the term 3¢/3t from the eqs{B-10) and (B-11} yields

_J_:L_,i_g+9=__2_, (B-12)
mpscp dy pscp

Assuming p to be independent of y, a solution, symmetrical in y, is sought for
eq.(B-12):
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B = p{l +A cos((]wj}y/lh)}/oscp, (B-13)

where the thermal boundary layer thickness lh has been introduced:

1 = ftzxfwoscp). (B-14)

The integration constant A in eqg.(B-13) is eliminated with the boundary con-
dition for a frame of constant temperature:

8 = 0 for y = % D so that

o = P ; { - cos((1=-{dv/1;, ) (B-15)
P c cos(3(1-1)D/1y

p is eliminated from eqs(B-8) and (B-9) which yields
- 3ufaz = jwp/ps - jw@/Ts. (B-16)

where ¢ is given by eq.(B-15). Elimination of 6 and integration over the interval
-1D<y<iD yields

) '
- 3Ufdz = —f —Q-Edy = jmpan /Kps, (B-17)
D oz
where
e o= 14 (x-1) 220CEAZD/AY) (B-18)
f 3(1-3)D/1,,

Comparison of eqs(B~17) and (3-46) shows that " from eq.(B-18) is indeed the

perturbation factor sought.

Rayleigh (1927, 1T, p.327-328) considered a homogsneous fissure, confining the

results to the low and the high frequency approximations.
Discussion of the results

The quantities 1v and 1h prove to be measures for the thicknesses of the

boundary layers, e.g., if %D/1h>>l, in the range where jD-y<<}D:

e =p {1 - exP((l*j)(Y“%D)flh)}/DSCP R (8-19)

192



The right of eq.(B-19) shows that, on decreasing y from the value }D ‘(where 0 =
0), O riges to the value p/p ¢ with a rapidity determined by 1h' Thus, for y =
-1, o] = 0.859 2— .
o e
5P
A relation for ideal gases, due to Eucken (Phwsik.Z., 14, 324-332,1913).

Ve, = (9-5)/4<
Using this equation together with egs.(B-13) and (B-14), the ratio of the thermal

and viscous boundary layers is found to be:
1,71 = YCac/(9e-5)). (B-20)

As the gaseous medium is composed of gases ranging from wonatomic to triatomic,

7/5<1k<5/3 and thus, from eq.(B-20):

0.82<1, /1 <0.87 . (B-20a)
Roughly, the two boundary layers prove to be equally thick.

The v1scous and thermal perturbation factors for the homogeneous cylindrical
tube, E and nc, respactively, may be read directly from Crandall’s and Kosten's
results as presented by Zwikker & Kosten (1949, SAM, p.25-40). It thus follows

from their eq.(2.06) that, on introducing the present notation:

J
X GEN YIS (3-21)

g, = 1i-
’ (1-j)r/1 JO

and from their eq.(2.13) that:

.
n, = 1+ (k=) 2

J
—2— L -nriy, (B-22)
(I-j)R!lh Iy

where R is the radius of the tube,.

Nota: Zwikker & Kosten's quantity v, defined on p.30, should be taken to equal

Ah/pocv in their notation or l/pscv in the notation used in this book.
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Appendix C Calculation of the function H(x) and its associated functions

There are three ranges for the arguments, the first is that where the function
is best described by its asymptotic behaviour for small values of the argument,
then there is a transition range and finally the range where the function is
best described by its asymptotic behaviour for large values of the argument. In
the present instance, the limits for the three ranges, respectively

Osxgl 0 ; 1<x<3.2 : 3.2¢x
appear to be the most practical with the computation of the numerical values
of H(x) in view {see eq.{3-70).
Approximations valid for one of the ranges only are indicated by the subscripts
1, 2 and 3 to H(x), F(x}, M(x}, G(x) and L(x), defined by eqs(3-71), (3-72),
(3-81) and (3-82) respectively are also approximated and receive the same

subscript as H(x), indicating the range of validity for the argument.

Calculation of the function H{x) from series expansions of the Bessel functions.

As the polynomial series representing Bessel functions are convergent, an
algorithm for the generation of H(x) and suitable for computer processing may
be formulated. The result is the Bessel subroutine described below. It should
be noted that the argument of the Bessel function, z = x¥/-j is assumed to lie
in the fourth quadrant, the angle being -u/4:

x is the modulus of the argument. As H(z) is a symmetrical function in z with
respect to zero, the arbitrary selection of the fourth quadrant for z does mnot
restrict the generality of the results.

Rewriting a series expansion as given by Jahnke and Embde, (p.128) gives:

w 2%
(2 = 1 L2 nk,
k=0 (k')
) &y 5" _
k=0,1,2,3 (k)2
; (§)2k ( l)klz - (%)Zk (_1)(k—l)/2
- = iz -
k=0,2,4 (k!}2 k=1.3.5 (k')2
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k

«

X, 4k k x, 4k
= (- 2 = - -1
= E __...__.____.._..__.(2) +'.}.{__- ¥ (2) ( )

Y R 2
k=0,1,2 [(2k)!} 4 k=0,1,2 {(1+21)!}

Furthermore:
@ 2k+1 k ® 2k+1 Lk
J. (Z) = 7 (%Z) (_]) . ‘/—j T (%x)z .l =
: k=0 k! (k+t)!? k=0 (k') (k+1)

w

evej |z 0 /2 iz Gy %% (cpyk-1)/2

]

k=0.2,4 (k)2 (1) K=1,3,5 (17 (k+1)
3,(2) = 42| = go® ok 2 ot -k
! k=0,1,2 i I = .
a2 roy 11 (2kel) 4 k=0,1,2  [(2k+1)1)° (2k42)

The terms required for the calculation of J, and J, can easily be derived

consecutively, The following quantities are introduced:

P

St en o ™ ent
. NIV NGGID

e A

ST M Y A CT St b W
[rd2ie) | © @D (2ks2)

The quantities are intervelated by!

P P G
(2k+1) 2k+1 2k+2
4 - s
B 5, . «
kTR o) (2x42)2 (2%+2)

The function H{x) can now be written as follows:

2J](z) ) LR j(xfz)2 %S5k

4{x) = (c-1)

. 2 :
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As P is the largest of the quantities with the same subscript, EkPk can best
serve as criterion for the required degree of accuracy. Egq.{C-1) has been
programted and is referred to as the Bessel subroutine. In table C-l some

numerical values of H(x) are given.

table C-1

Numerical values of B(x) obtained from the Bessel subroutine

x H(x) x H(x)

0.2 0.999966=0,004999 j 2.2 0.711598=0.366031 j
0.4 0.999466-0.019986 2.4 0.650648~0.376057 3
0.6 0.997310-0.044833 j 2.6 0.593947-0.376765 j
0.8 0.991570-0.079073 j 2.8 0,543214-0,3705498 ]
1.0 0.979772-0.121525 j 3.0 0.499010-0.359962 j
1.2 0.958304-0.169931 j 3.2 0.461086-0.346849 i
i.4 0.928155-0.220811 j 3.4 0.428761-0.332719 3
1.6 0.885683-0,269752 j 3,6 0.401190-0.318544 )
1.8 0.833178-0.312268 j 3.8 0.377534-0.304900 i
2.0 0.773776-0.344894 j 4.0 0.357038-0.292089 i

In practice, the calculation turned out to be time consuming. For this reason,
another method of calculation was developed. Eventually this last method pro-
duced results with sufficient accuracy. The methed described above was used as
a check only.

Caleculation of the function H(x) and its associated functions (0<x<l])

The converging series for the Bessel functionswere rewritten; a procedure which

is especially appropriate”if the argument of the Bessel function is relatively

small.
2 4 6
Jo(z) =1-Z 2 . Z ... , ey
4 64 64,36
and

.I](z)= bz (1 —lz2 +—l—z£' —--—-1—---.7.'6 I T

8 192 64-144

Making use of eq.{3-70) where H{x) has been defined, substitution and further

reduction leads to:

27 (2)
H](z)= 1 z1+iz2+-l-—z4+—31—-z6+...,
zJo(z) 8 48 64 *144
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where z = xv-] =((1-3)/V2)x.
Separating the real and imaginary parts of the argument by:

z=x/ -] = Ehyx gives

V2
4 2 6
By =1 -5 =B 2 (c-2)
{ 48 8 64.144

The last term of eqfc-2) influences the result of the calculated value of
H](x) but slightly, the contribution of this term can therefore be neglected.
From this series the calculation of the values for FI(X) and G](x) as defined
in eqs{3-72) and (3-82) can be done readlily. The calculation of the integrals
in L](x) and Ml(x) merits further attention.

Jhe integral L, (x).

Intreduction of the above series expansion from eq.(C-1) into eq.(3-81) and
(3~82) results in:

'x2 1 4 2
Litx) = f {1 +0.40 - yMyixtdx =
8 48

PRILIE NS G | S S (C-3)
3 100 1206+7
Confining x to the interval 0$x¢1 limits the error at the upper bound within

1Z.
_The calculation of fhe integral M, (x).

Introducing the series expansion from eq.(C-2) into eq.(3-72) leads to:

M(xs f -J— I=f z‘dx —68‘/. -GJ)
xZ(

Xy X (x2 +63) X (x + 36)
48 48
The solution Of this integral can be cbtained by separating the integrand:
dx —x2/36+'j6
< ) = _[3 f £l g, (c-4)
48 36x x +36
The integral
2 0 »
__Ji—- dx, is solved by substituting x = /6 tan y, resulting in:
% +36

. 2
[ Gv6tan’y —dy =L f : ; s%nZy > — — dy =
136{l+tanay)cos y 3 cos'y + sin'y + 2 sin"y cos'y - 2 sin y cos y

2
] 2x/3, _ 1 x“+2x/3+6 (c=5)
. y - .
e 7D T n{xf—ZxJSHS}

4¥3
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In an analogous way the solution of the following integral is found:

5 2
f 4dx I {2::\/3} , 1n{x2+2xJ3+!5 }
X '+36  24/3 6-x 4873 \-2xv/3+6

The last term of the right hand side of eq.{(C-3) can be written as:

] 2 j 1
- -~ 4x dx + 4 f I dx =
36/ x +36 6.J x +36
2
S (l1-j)arc tan Zx/g PR (1+31)1n Eiigifgié
14473 6-x 288v3 x“=2x/3+6

The integration of the two other terms presents no problems. Thus

. . . 2
M (x) =~ iy EL; - 4= arc tan {.“""*2]{/?2’ }+ 12, 3-—————-——’{2}'2’{/3%}. (c-6)
Ix 3x 3/3 6-x 6/3 x“-2x/3+6

The last two terms of the right side of eq.(C—6) can themselves be developed

inteo series for small values of the argument: (x<<l),

2x/3
1+
-1 2xv3 6+x2
— |€1-j) arc tan (—-—2) = J 1+ ln = }{ =
3/3 6~x |- 2%/
- 7
6+x

. (1—]')[2)(?3 _.l‘.i_.]
3

: R X
373 |6-x 3/ 3

373 {eex? 3/

g—&jl‘x_ [1 +§.§.] +_(I+_j)..§._[1—£2_]f;—.2j_x —K_3
33 /3 1 3v3 V3 18 9 81

Thus an analytic approximation is found:

3
M[(x) N S S gjx + 3 c-7)
3x 81 9 3x

For a more accurate calculation of M, more terms than in eq.(C-6) have to be
included in the integration. From a practical standpeint this is feasible by
numerical integration only. The influence of the number of steps per unit of x

was examined. The approximation directly from the program for the Bessel sub-
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routine (to be discussed later) is compared in table -2 with the chosen
approximation with 20 and 30 steps, respectively, and with a series expansion

of 4 terms.

table C=2

m(x[-xzj Bessel subroutine Numerical integration

Integr.lim. 9y *)

0.2-0.4 3.3190-287.2903 j 3.3034-282.,0960 j 3.3260-289.1789 ]
0.5-0.6 1.1097- 29.1976 j 1.1081- 29,0438 j 1.1103- 29.2520 j
0.6-0.8 0.5552- 7,1242 j 0.5548- 7.1002 j 0.5553— 7.1306 j
2.8-1.0 0.3332- 2.5400 j 0.3331- 2.5362 j 0.3332~ 2.5413 j
1.0-1,2 0.2221- 11,1243 j 0.2220- 1.1123 j 0.2221~ 1.1243 ;3

) From numerical integration with 20 steps per unit of x
") From numerical integration with 30 steps per unit of x
Disregarding the smallest values of the arguments the differences between the

results for the various methods remain below 1Z.

An approximation for H(x)} and its associated functions in the transition range

Values for Hz(x) in the range [.0<x<3.2 can be obtained from the tables from
Juhnke and Emde; the complex conjugates of the function required being listed
on pages 246 to 249. The following relations held:

. L T . g, 7 N
Ip(x/=3) = 37 &/5), and V-5 3, /- =5 3 (D
where /) is taken to lie in the first quadrant. After substitution, H(x) follows
from:

- - *

2 [JJJI (7 )]
H(x) = e———

x[JO(x;H)]

&n example of the determination of H{x) is given as an illustration. For x = 1.8,

the real and imaginary components of V] Jl(xJﬁ) are: + 0.3612 and + 0.8509 j,
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respectively. The real and imaginary terms of Jo(x/ j) are: + 0,8367 and - 0.7953
i, respectively. Using eq.(C-8) it follows that:

(0.3612 - 0.850%1)+0.8367 - 0.7953 )

3 > = 0.832 - 0.312 j.
(0.7953° + 0.83679)

H(x) = 2.
1.8

In this manner the second columm of table C-3 was composed.

Table C-3

Numerical values of H(x) and those of an approximate function H(x)'

X H(x) H(x)

1.0 0.980-0.122 j 0.980-0.122 3
1,2 0.958-0.172 j 0.958-0.172 3
1.4 0.925-0.221 j 0.925-0.221 j
1.6 0.882-0.269 j 0.882-0.269 |
1.8 0.832-0.311 3 0.832-0.311 j
2.0 0.776-0.344 0.776-0.344 ;
2.2 0.713-0.366 } 0.716-0.366 ;
2.4 0.654~0.376 j 0.654-0.376 j
2.6 0.595-0.377 j 0.595-0.377 j
2.8 0.543-0.371 3 0.543-0.371 j
3.0 0.503~0.360 j 0.503-0.360 ;
3.2 0.461-0.347 j 0.548-0,347 ;
3.4 0.429-0,333 j 0.353-0.333 3

In the transition range an amalytic approximation for Hz(x) is introduced: egs.
(C-8), (C~9). Table C-3 shaws that this approximaticnm, Hz(x), is acceptable in
the range !<x<3.2.

The somewhat complicated course, especially of the real part means that for
practical purposes an approximate formula must be used in which higher powers
of x are included. Through adjustment to numerical factors appearing in eq.
(C-8) and (C-9) reasonable agreement with the values in the second columm of

table C-3 may be achieved.

3
(X-O.II) (C‘B) .

Re Hz(x) =1 - 3 T -5
(x-0.4)"+8.60+3.75(x-0.4)-0.052(x-0.4)"+0.052"(x~0.4)
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(x—l)S
5 k]
0.514(x-1)"+10(x-1)"+26.66

- Im HQ(X) = 0,122+0.249(x-1)- . (C-9)

With the use of eqs(C-8) and (C-9) the funetion Fz(x) and Gz(x) can be written.
A polynomial through the calculated values of Fz(x) and Gz(x) will be given in
the survey at the end of appendix C.

The derivation of Mz(x} and Lz(x) is more difficult.

The integral L,(x)

3 o 03
Re Ly(x) = > + o.afxz- 1- : (x70.4) - > 8-]dx
3 (x=0.4)°+8.60+3.75 (x=0.4)~0.052 (x~0.. 5) *+0.052% (x-0.4) %]
Re Ly(x) = + =% 5 = 0.4 1. (c-10)
2 3

x-0.4

After the introduction of = u, u lying between 0.12 and 0,52, the integral

1. can be transformed into

'
_J{ (5545 + 0.8:5%% + 0.16+5%:7)a 50

5350 & 8.60 + 3.75+5 u - 0.052:57u + 0,0522:554y

8

5 = 14.793 1

u® -~ 0.15383 u> + 0.11834 u> + 0.017751 u + 0.008142

5 4 3
14‘793[ (u” + 0.16°u + 0.0064 u')du ,

{c-11)

Splitting of the denominator into the above integrand involves a search for a
number of complex or real roots of a polynomial, Kunz (1939) presents a
solution through use of the Lin-Bairstow method. A Fortran program was made for
this technique.

The real roots of the denominator turn cut to be:

u = - 0.30145825

u, = - 0.59601104

while the products of the pairs of conjugated complex roots can be written as:
(u-u3)-(u“u4) = u2 - 1,22857214 u + 0.47065730

(w-u )+ (umug) = u’ = 0.24548668 u + 0.18610927

u? + 0,57658953 u + 0,51734090

(u-u7)-(u-u8)
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As a vesult of this, the integral 12 can be split up

1, = {'AA + B Cu+D . Eu+F + Gu+H du.
I_u—u1 u-u, (u-u3)'(u_u4) {u-us)-(u—uﬁ) (u-u7)-(u—u8)

Solution of a matrix will lead to the coefficients of the numerators. This in-
volved more difficulties than anticipated and was possible only after repreated
programming, for which use was made of the well-known Crout-reduction method.

Substitution of the coefficients of the denominators leads to:

I. = l-—0.032103222 + 0,33772185 . 0.386472%u + 0.01060727 +
) =
L u-u, u-u, (u*u3)-(u-u4)

+ -0.288872957u + 0.11556302 _ 0.40321186u + 0.570949!i}du (C-12)

(u—u7)'(u-u6) (u-u7)'(u*u8)

Integration of these partial subintegrals leads to further subdivision, since

._Ec_uil.:.)._. du = [E 1n(u2+pu+q)+ -g&%i%—- arc tan -El/_;__] N (C_I3)
u“+puiq 2 ¥{q-p /4) J(Q"P 14)

where the limits for u are derived from u = 0.2x-0.08.
After integration of all the subintegrals, the function for the real part of
Lz(x) can be written as:
1.4 13
Re L, (x) = — %~ - 5.9172 1,.
2 3 2

The imaginary component of Lz(x) can be treated as follows:

2 (x-])s
~Im Lz(x) = 0.4fx 0.122 + 0.249{x~1) - 5 3 dx,
0.514(x-1)Y"+10(x=1)"+26.66

3 4 2 3
_ _ 1 x X 1 % (10(x-1)"+26.66)
= 0.4[-(0.127+ ) =+ 0.249 = + 2[ = 5 5252 dx.
0.514 3 4 0.514 {(x-1) "+ — (x~-1)"+ —~—
0.514 O.SIfJ
(C-14)

The last term of eq.{C-14) is defined as T,. This leads to

5t
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I. s=

10 f (x_1)5+2(x-1)£‘+(x—1)3+2 666(x—l)2+5.33ﬁ(x-1)+2-666 dx-13
3 ‘

0 5142 ey 5 1013, 658

0.514 0.514

Or introducing v = ! ang L, = 19 2(x+14)it follows that

10 0.514

[}v ~1.8455v3 + 0.02666v> + 0.005332 v ~ 0. 0049295]
3 3 = o

vo o+ 0.1946v" + 51.87+10
When the denominator is split according to the method applied previously the
real root of the denominator is given by:
;= - 0.1345979023,

while the coefficients of the pairs of conjugate complex roots meet the con-

v

ditions:
(v-v,) " (v-v,) = v% ~ 0.1482298637 v + 0.0197654211

(v=v,)+ (5-vg) = v2 + 0.0136319614 v + 0.1949718380

Subgtitution of the calculated coefficients in the numerators of the integrands

now yields:

. ,/ﬁ[b .0001395136164 , 0.013801585v + 0.0032919790_ +
¥ J |vr0.1345079023  v2-0.1482298637v+0.019765421 1

2

4198605890y — 1.81716117 dv
vo+0.0136319614v+0.1949718380

where the limits for v follow from v = (x-1)/10.
Integration can now be carried out immediately.
The high accuracy of the numerical factors in the above equations takes the

possibility into account that two numbers with a small difference will

be subtracted in the course of the calculations. It is not worthwhile analysing
whether this contingency is realized or not as a reduction in accuracy does not
increase the speed of the calculations.

It now follows that '

+ Inm L,(x) = ~ 0.0249 x*

+ 0.27632 x° - 15.1403 x = 15.1403 T (C-15)

5"

In the following table (C-4) are listed the results obtained from the ex-

pansions of Lz(x). The valuas, as obtained by numerical integration of H{x) are
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given in column I. The results of the considerably less time consuming procedure
of approximation through root splitting and the introduction of sub-integrals are
listed in colummn II.

Column III presents the results obtained from a polynomial approximation which
was fitted to the numericszl values of L{x) as given in column I. This polynomial

is given by:

Re L,(x) = 0.44133 £ + 0.0456 x* - 0.027 x° + 0.00333 x° + 0.00000267 x2(x-1)’,
(G-16)

3 4 5 6 7.,

Im L,(x) =(0.016 x7 - 0.04201 x + 0.05202 x” ~ 0.015887 %~ + 0.001587 x )i
(c-17)

and this simple approximation deviates less than 1% from the values of columm I.

Table C-4
Integr.lim. Numerical values of Lz(x)
x, X, I I 111
1.2 1.0 0.3372-0.0144 j 0.3367-0.0145 i 0.3367-0.0145 j
1.4 1.2 0.4669-0.0268 j 0.4661-0.0270 j 0.4661-0.0268 j
1.6 1.4 0.6145-0.0446 j 0.6134-0.0446 § 0.6135-0.0447 j
1.8 1.6 0.7778-0.0678 j 0.7769-0,0677 j 0.7768-0.0677 j
2.0 1.8 0.9550-0.0955 j 0.9547-0.0954 j 0.9544-0,0955 j
2.2 2,0 1.1448-0.1260 j 1.1455-0.1263 j 1.1451-0.1257 j
2.4 2.2 1.3467-0.1575 j 1.3481-0.1580 j 1.3481-0.1574 |
2.6 2.4 1.5617-0.1886 j 1.5623-0.1893 j 1.5619-0.1889 j
2.8 2.6 1.7900-0.2182 j 1.7896-0.2190 j 1.7914-0.2185 j
3.0 2.8 2.0330-0.2459 j 2.0334-0.2468 j 2.0317-0.2455 j
3.2 3.0 2.2915-0.2717 j

The integral Mzgx):

M, (x) =f_.2.___dx = f Py + j(x/z)zng, dx
2 ¥~ (1-H(x)) x z(p R + j(x/z)zg(qk_sk)

-

. 2
Restricting the series to three terms and temporary replacement of (x/2)" by 2

yields:
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dx.

M (K) . 2[ (I—V /4+V .’2‘{l2)“’_]‘-'(]*V /36)-\/ /120 )
2 x2e { v(1-v2 (12009 11407203/ (3-§ (1-v?/26+v* 1720+ 120))

A simple check makes clear that terms with higher values of the exponent than

six can be neglected, the range being limited to x<3.2

. 4 x2/3 {1+ (v2/10)+ (v /630)}_—8ﬁ(1+(v [6)+v }
M, (o) = (c-18)

«* {1e(v?19)+ (o4 /5800

Rool: splitting to prepare partial fractions of this integral gives very expanded
forms. As computer facilities were available the integration for (6—!8) was
performed numerically. Extensive testing proved that with 20 steps per wumit of x
an accuracy of 0.2Z could be obtained.

A simpler way for calculating Mz(x) was found by approximating values for M(x)
caleulated from the values of the Bessel function and numerical integration.

The following function was found:

2.658

5 - 0.023vx). {C-18a)

¥,(x) = - 4~ 0.0003x° + ===
3x X
Values of the integrand H {x) obtained by numer1ca1 integration, making use of
eq.{3~72) and the Bessel subroutlne and those, M (x), from eq.(C-18)
Table C-5
Integrand of Mx(x)

X From series expansion eq.(C-~18) From analytic approximation eq.(C-18a)
1.0 1.333-8.0073 1.333-7.986j
1.2 0.926-3.865) 0.925-3.856]
1.4 0.680-2,089j 0.679-2.085j
1.6 0.520-1.228j 0.520-1,2263
1.8 0.411-0,769] 0.410-0,7723
2.0 0.332-0,50683 0.332-0,5066j
2.2 0.274-0.3483] 0.274-0.34823
2.4 0.230-0.2478j 0.230-0,2478]
2.6 G.1958-0,1816j 0.1956-0.18163
2.8 0.1684-0.1366) 0.1684-0.13663
J.0 0.1463-0.1051j 0.1467-0.10513
3.2 0.1281-0.0825] 0.1283-0.0825]
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Expansion of H{x)} for large argument {x>3)

Jahnke and Emde (1938}, page 138, give on the series expansion for large argu-
ment of the Bessel functioms of the respective orders, together with literature

reference:

1
Y (iz)

[%OCZDCOSCZ --%) - Qp(=)sin(z - 1;],

Jo(z) ~ 4

and

Jl(z) g ! [Ql(z)cos(z -y 4 Pl(z)sin(z - 1)].
Y (4nz) 4 4

in which the functions Po(z) et¢. can be represented as series!

Po(z) = 1 - 2 SITUN
128 =z

Q=) = -+ (1 -—Ls

82 128 =z

15
P.(z) =1+ Ve
! 128 z2
Q) =1 - —25 . .
82 128 2

After substitution it follows that

2 P](z) tan(z - n/4) + QICz)/Pl(z)
H{x) = — s (Cc-19)
2 Po(z) 1 - tan(z - n/l})Qo(z)/PO(z)
where once again z = x/-j.
Provided that |tan(z-w/4)|4>l and that {(Q, | (2}/Py (z})

for large values of z it follows that:

<<1, which is the case

Ha(x) 13 2 tan(z - Y [1 +—2i7 + -—--]---ftanz(z - Tr/4)] .

2 4 128 z 64 z
1+ 2—(] 1 3| cotan(z - nfd) - l—(1 _ 86 stan(z ~ /&) - 2 =1 -
8z 128 2 8z 128 z 64 2
(c-20)
where
. exp{xv/2+ixd2~jn/2)-1

tan{z-v/4) = -j
exp(xvV2+jxv2-jn/2)+1
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For large values of x the terms exp(+x/2)>>1; this means that tan(z-w/4) -j,
Making use of eq.(C~19) one may write

s P{z)  1+3Q. (2) /P, (2)
H(x) = -2j 1 . [ 1
z Py(z) 1+JQ0(Z)/PO(Z)

. . . 4 .
1f, in the series expansion, the terms 1/z are incorporated, then

P (x)  1+iQ, (2)/P, (2)-iQy(2) /P (2)4Qy(2)Q, (2) /P4 (2)Q, (2)

H(x) = 221
z P (z) 1402 (2) /P2 (2)
0 0 0

Introduction of the series developments for P and Q leads to:

5~ —% (c-21)

i (x)-g,:.gia,..l._ - A 1
3 2
z z bz 4z

From eq.(C-21), F3(x) and G3(xJ can be approximated

2 1 1
R s s Rl
z z bz 4z
V2 1 ) v 1 1
=l -— - —- + jl= = - s (c-22)
x &2 X3 :;E x x2 42 xa

and

. V2 ! 1 . Y21 1
Gl.x)-l+0.4(—-+ﬂ+-——)—]0.4(—--—- ).
3 x 472 x 4x4 x x2 4v'2 x3

(C-23)

In table C-6 the results are shown for the calculation of F(x). This table indi-
cates that the selection of x<l and x<3.2 as range-limits yields acceptable
results for the approximations.
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Table C-6
F{x) F](x) Fz(x) F3(x)
0.2 0.000033 0.,0050 0.,00033 0.00048
0.4 0.00054 0.0200 0.00054 0.60198
0.6 0.00269 0.0448 D.0027 0.0450

0.8 0.0084 0.0791 0.0085 0.0798

1.0 0.020 0.122 0.,0208 0.1245 0.0185 0,122

1.2 0.042 6.170 0.0432 0.1800 0.0423 0.172

1.4 0.075 0,222 0.0800 0.2448 0.0752  0.221

1.6 0.117 0.270 0.1356 0.3198 0.1§75 0,269

1.8 0.167 0.312 0.2187 0.4050 0.1678  0.310

2.0 o0.222 0.345 0.2243 0,344

2.2 0.288 0.366 0.2845 0.366

2.4 0.349 0.376 0.3453 0.372

2.6 0.406 0.377 0.4048 0.377 0.441 0.385
2.8 0.457 0.371 0.4568 0,371 0.483 0.369
3.0 0.501 0.360 0.4966 0.360 0.519 0.354
3.2 0.539 0.347 0.5567 0.346 (0.550 0.339
3.4 0.571 0.333 0.6467 0,333 0.5778 0.325
3.6  0.599 0.319 0.7976 0,318 0.589 0.311
3.8 0,622 0.305 ¢.6129 0.300

., 2 2. .
Introduction of F3(x) from eq.{(C-22) yields 1/x2F3(x) = —jfz ({z+3)"+i(1-3/z)b2)
The second term in the denominator of the right side of the equation is com-

paratively small, Therefore, in first order-approximation:
= —5 - —l— a-bi.
x“ F(x)  (z+j) 4z (z+)) z

Temporary introduction of v = z+j leads to

. 3. 2 . 3.2 .
1 LA o R G At O +_JZ !

—_=

. 2
z  y=j oyl vy -l ¥

while

AL Y Y e i ST e A 23
2 8
z ¥

so that
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i 1 1
-5 - T e = e = m—t T L
X F(x) Y2 4Y5 477 2Y8 ¥9

Usiag dx = /idz, it follows that

dx i 1 1 i
M.(x)-f SN 1 I D U N
3 x2 Fdx 2 hys 4V7 2V8

v

J-i Vi -
R e A A

Ag appears from a simple check, it makes little sense in practice to retain
more than two terms pf the expansion on the right side of the equation. Thus,

A8 an approximation with acceptable accuracy, it 1s found that
M‘I‘(x) = _‘/_J + V'Jl‘ = - - JJ 7
- ¥ 16y7  x—~/-j  16(x-7-3)

in which

1 . x-/ﬁ
x=V=j  xi-x/241]

so that
70 . b

M) = ) AG

x“=xy2+1 16(x“—x/2+1)
¥ (x) =LY [x4//2-6x2f/2+ﬁx—l//2‘] . j[ 1 ) —1+sx2-4ng3+x4],

3 x2=x/241 16 (x-xr241)" /2 (x2-x/241) 1672 (x2~x/2e 1)
4 .2

MS{X) - —gx-l//ﬁ) _ X —6; +4x/2-z

x“-xv2+l 1o (x“~xV2+1) V2

4,3 2
v il— ] x —4xz/z+6x _i ] (c~24)
(x“-x/2+1)/2 16 (x“-x/2+1)7 /2

For an accurate calculation with large arguments it appears that an additional

term of the series development has tc be included, namely
4 (x75) 8124 (xP—x/241) 8,

This extension is included in the computer program.
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The_integral L.(x)

3
2 .
1,60 = fxP1140.4 K, (x) b =~_.’3i +o. 3/ [, 22z =

3 : 1
=2+ 0.4v-] Lzz mgeddnz L
3 4 bz

Neglecting the constant term gives
3

L, () =X L 0.4]x%/) + §x ylilnx 1o
3 4 4x |

(C-25)

Some remarks about accuracy should be made. The error in H3(K), due to the ap-

proximation of tan{z - n/4), is in the order of 17 when x equals 3. This means

that terms with l/x3 should be incorporated and that terms with ]/xﬁ or*higher

order may be dismissed.
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A comparison was made between the results obtaimed with the approximative method
and the method to be referred as the expansion of the Bessel subreoutine. The
calculations were performed on the IBM 1620 computer. The fellewing table gives

examples of the results for fh obtained with the two procedures.

Table C-7

z+h for the capillary model calculated acceording two procedures.

frequency Bessel Approximative
(Hz) subroutine method
200 12.44-11,563° I2.32—]!.60jO
40C 9.88- B,55] 9,90- 8.,46)
600 8.21- 7,043 7.88- 6.80]
800C 7.21~- 5,99] 6.86- 5.72j
1000 6.58- 5.23j 6.21- 4.95]
1200 6.14- 4.67] 5.76—- 4.39]
1400 5.82- 4.23] 5.35- 3.88]
160G 5.57- 3.88j 5.23- 3.64j

9 layer thickness 0.040 m; sphere radius 3 mm; cos € = (,500.

200 0.70- 5.26j= 0.66- 5.08j%
400 0.41- 2.44]) 0.40- 2,34}
00 0.35- 1.31j 0.35- 1.313
800 0.36- 0.613 0.36- 0.61j
1000 0.41- 0.05j 0.41- 0.05j
1200 0.51+ 0.47] 6.51+ 0.463
1400 0.72+ 1,05j 0.72+ 1.04j
1600 1.18+ 1.76] 1,18+ 1.76]

# layer thickness 0.072 m; sphere radius 2 mm; cos 8 = 1.00,

The results given show that the accuracy with the approximative method is ade-
quate.,
Calculations were made for values of r between 0.0003 and 0.0063 m. The values

of cos 6 were chosen to lie between 0.50 and 1.00,
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Appendix D Some remarks on the calculation of the locus of the sample

surface impedance in the complex plane

In section 3~10 one of the principal problems in construecting a locus for the
normalized specific acoustic impedance at the sample surface was referred to
briefly: the unequal distribution of calculated points along the locus if the
steps in frequency are constant. A reasonable distribution of the points facili-
tates the construction of the locus and a procedure to that end is considered
below., A reasonable distribution is considered to have been realized if:

a)} The distance along the locus between twoe adjacent calculated points exceeds

a given value 48 ,

b) the angle between the tangents in two adjacent calculated points does not

exceed a given value 69,

As in section 1=J]1 attention will be focused on the transcendental factor in Z
{eq.(1-65)):

X+ jy = coth(le). D-1)

for the simple case of comstant frequency and variable sample thickness. The
variables A and q as introduced in section 3-4 will be applied; in the case con-

sidered, A is a parameter and q a variable. Eqs{3-12a) and (D-1} yvield:
x = sinh{A-q)/{(cosh(A*q)-cos q), (D-2)
y = - sin gq/(cosh(A-gq)-cos q). (D-3)

For an infinitesimal step dq in q, the distance ds traversed by the locus is

given by

ds = [(dx/dc;)2 + (dy/dq)z]% dq

=[/(I+AZ)/(cosh(A-q)-cos qﬂ dg {n-4)

and the radius of curvature, R, is given by

R = [1+(dy/dx)213/2 (dx/dq)
d{dy/dx)/dq




= V(1+42)/(sinh{A+q) - A+sin q). (0-5)

The angle d¢ between the tamgents in two peints of the locus separated by a

ssacing ds is given by:
do = ds/R. (B-6)

As high accuracy is unnecessary, the differential eqs(D-4) and (D-6} will be

assumed to retain their validity when accorded the form of difference equations

and thus:

&g = (cosh(A+gq) - cos q)ﬁs/f(l+&2)s {(p-7)
6¢ = 8s/R. (D-8)
8q = (cosh(A+q) - cos q)és/(sinh{r+*q) - A+sin q), (D-9)

where use has been made of eq.{(D-5).

If 8s = &€ is introduced in eq.(D-7), the largest permissable step §q in g
follows. Increasing q from a low value, a complication arises from the fact
that !/R increases monotonically with q (eq.(D-5)). Thus, keeping &s at &8, &
will exceed 83 if q exceeds a critical value a, {eq.(D-8)). In the range 4>q, >
the largest permissible step 8q follows from eq.(D-9) with & = 3. For q = Qs
R =~ R and eq.(D-8) yields

Ro = §8/8%. (D-10)

Ro {s thus easily determined. This is not true for 4, itself, because of the

transcendental nature of eq.(D-5).

For vanishing g, x and y tend to + = and - =, respectively. It is thus neces-
sary to select a finite initial value for o, 4y when calculating the locus and

here 9 =7 corresponding to the first anti-resonance, has the advantage of

vielding a point certainly falling within the limits of a finite diagram. For

the initial wvalue q;> R, is derived from eq.{D-5) and now two cases must be dis-

1
tinguished, differing in the manner in which further values for q are generated.
In casa I, R]>R0 and in case IT, RI‘RO’ corresponding to 9,%4, and q,*qg, Te-

spectively., As the various values for q are generated, the corresponding points
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of the locus follow from eqs{D-2) and (B-3). For the sake of clarity, the pro-
cedures for the two cases will be described separataly, although this involves

some duplication.

Case T, q1<q0.

1. Departing from a.» 9 diminishes by steps following from eq.(D-7) with &8s = &%8.
2, The above process i1s terminated when x or y exceed predetermined limits, usu-
ally dictated by the finite dimensions of the diagram.

3. Departing from 9,5 9 is increased by steps following from eq.(D-7). For each
step, R is determined from eq.{D-5) and compared to R . If R*R,, the process is
continuad.

4, 1t R<R0, q is increased by steps following from eq.(D-9), with 8¢ = &§.

S. The procedure is terminated if q exceeds a given maximal value. Nota that
this value determines the number of antiresonances and resonances in the calcu—

lated section of the locus.

Case II, q|>qo.

l. Departing from 9, 4 diminishes by steps following from eq.(P-9) with 8¢ =
§3. For each step, R is calculated and compared to RO' Provided R<R0 the process
is continued.

2. If R>R,, q diminishes by steps following from eq.{(D-7), with §s = 5.

3. The process is terminated if X or y exceeds a predetermined limit.

4. Departing from 4+ 9 is increased by steps following from eq.(D-9).

5

. The procedure is terminated if q exceeds a set maximum.

In the simple case of constant frequency and variable sample thickness, the
computation procedures are thus complicated appreciable if a reasonable distri-
bution of the calculated points of the locus is deemed essential. In this simple
case, &5 and the limits for x and y may be selected, allowing for the complex

specific wave impedance of the sample material.

If, however, sample thickness is held constant and frequency is varied, compu-

tation hecomes even more complicated, as variations in Wm and A should be taken

into account too, thus requiring adjustment of &8 and 8%, and q is also a com-
plicated function of frequency. As most of the measurements were carried out
under the above tonditioms, the simple case considered previously can only
illustrate the nature of the problem. Its solution, under the present con~

ditions, seems to require excessively complicated procedures of computation.
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