
PURE progress in innovative IPM in pome fruit in Europe

Bart Heijne, Aude Alaphilippe, Vittorio Rossi, Imre Holb, Tito Caffi, Yvan Capowiez, Sylvaine Simon, Herman Helsen, Jan Buurma, Wil Hennen, Jörn Strassemeyer, Jürgen Köhl, Marleen Riemens

overview of the presentation

- introduction of PURE
- innovative IPM strategies for pome fruit
- results innovative pome fruit
- assessments
 - environment
 - cost-benefit analyses
 - overall sustainability
- conclusion

introduction

- European agricultural policy
 - Directive 2009/128EC
 - sustainable use of pesticides
 - national action plans
 - integrated pest management (IPM)
- Pesticide Use-and-risk Reduction in European farming systems with Integrated Pest Management (PURE)

Research 1 - INRA

2 - RRES

3 - AU

4 - JKI

5 - Stichting DLO

6 - WUR 7 - CNR

8 - KIS

9 - SCRI

40 551

10 - FEM 11 - IVIA

12 - IOR

13 - UDCAS

14 - JRC-IPTS

Extension

15 - DAAS

16 - ACTA

Industry

17 - BCS

18 - Biotop

19 - NPP

20 - Burkard

21 - Blgg

Management

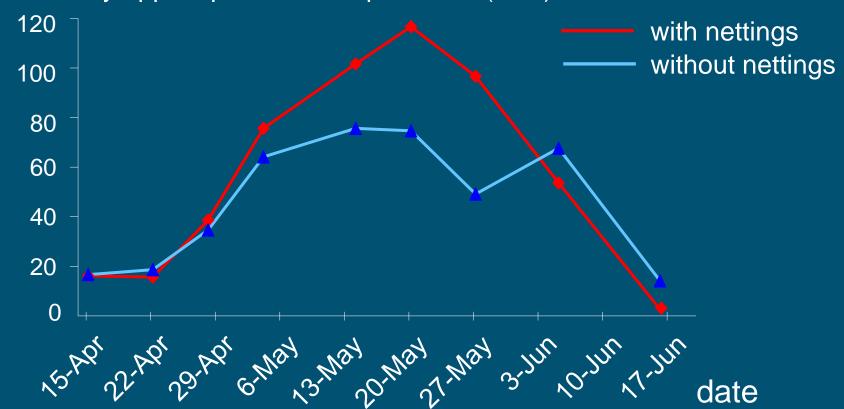
22 - INRA Transfert

approach PURE

- stepwise approach
 - on-station experiments
 - ex-ante assessment
 - on-farm experiments
 - ex-post assessment
 - solve bottlenecks adapt innovation
 - re-test
- "design assessment adjustment cycle"

exclusion netting

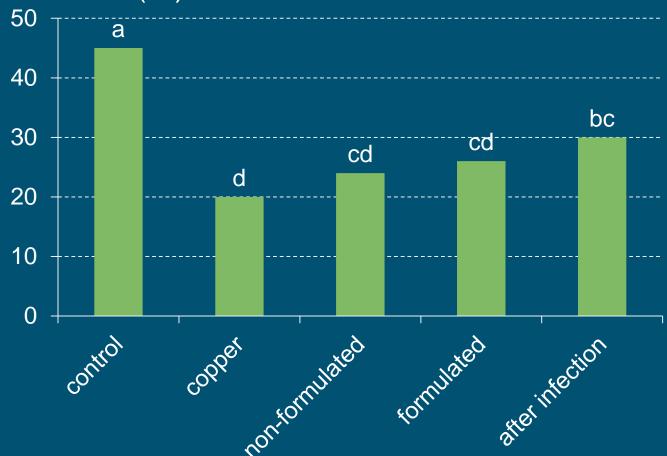
- 3.5 % → 0.2 %
- effect on rosy apple aphid
- effect on beneficial insects



rosy apple aphids - exclusion netting

mean rosy apple aphid number per shoot (total)

- sanitation measurements
 - urea, Vinasse at leaf fall
 - leaf shredding
 - leaf removal
- antagonists winter
 - Athelia
 - Microsphaeropsis
- antagonist summer
 - Cladosporium cladosporioides H39

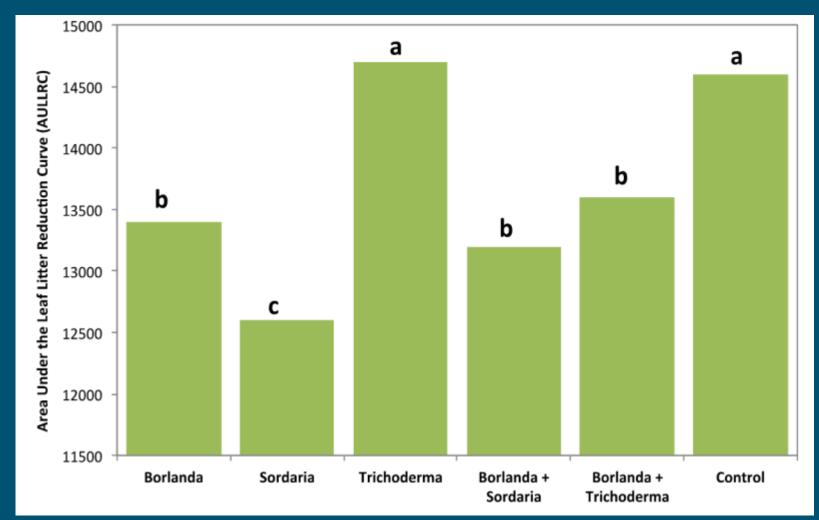


antagonist against scab (Venturia inaequalis)

scab incidence (%) - fruits

IPM brown spot (Stemphylium vesicarium)

- warning system
- antagonists
- leaf degradation



total AULDC (Area Under Leaf Degradation Curve)

pear psylla (Cacopsylla pyricola)

IPM pear psylla

- multiple generations
 - continuous suppression
- selective pesticide
 - side effects natural enemies
- promote natural enemies
 - woody scrubs / trees
 - flowers

canopy density sprayer

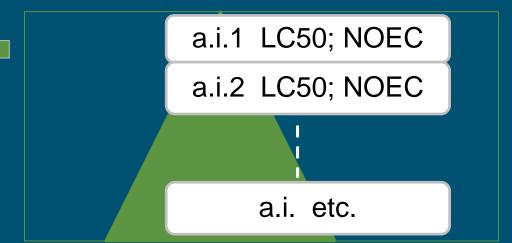
- environmental impact of plant protection
- risk assessment: field level and/or landscape level

exposure

soil

surface water

non target organisms

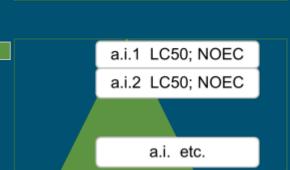

toxicity

earthworm

daphnia, algae, fish, lemna

bee


active ingredient database


<u>exposure</u>

soil surface water non target organisms

toxicity

earthworm daphnia, algae, fish, lemna bee

Risk (ETR)= calculated Exposure
Toxicity

Risk (ETR)= calculated Exposure
Toxicity

- field specific GIS-data
- application calendars
- field based surveys
- IPM strategies

SYNOPS – results

example: chronic aquatic risk 4 risk categories chronic risk

very low risk

low risk
0.1< ETR<1
medium risk
1< ETR<10
ETR<10
ETR<10

	conventional	innovative IPM	conventional	innovative IPM
	acute risk		chronic risk	
aquatic				
fish				
chironomus				
terrestrial				
bee				

SYNOPS - results

apple: codling moth (Cydia pomonella)

	conventional	innovative IPM	conventional	innovative IPM
	acute risk		chronic risk	
aquatic	446.42	55.97	39.66	8.79
fish	3.54	3.54	4.36	1.24
chironomus	55.97	55.97	2.67	2.67
terrestrial	8.16	0.08	55.94	0.82
bee	8.16	0.01	55.94	0.16

chlorpyriphos, other insecticides

SYNOPS - results

pear: psylla (Cacopsylla pyricola)

	conventional	innovative IPM	conventional	innovative IPM
	acute risk		chronic risk	
aquatic	18.29	0.00	34.08	0.02
fish	1.15	0.00	5.33	0.00
chironomus	18.29	0.00	8.02	0.01
terrestrial	0.26	0.00	2.38	0.00
bee	0.26	0.00	2.38	0.00

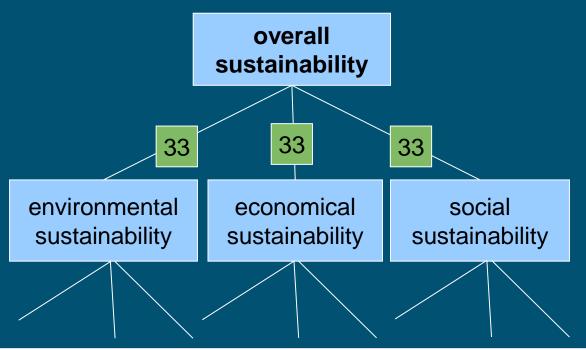
insecticides: limited to 1 application

	conventional	innovative IPM	break-even
yield class 1			
yield class 2			
yield class 3			
gross yield			
material costs			
labour costs			
pest control costs			
returns for covering other costs			

data are: values in euro (€) / ha

pear: brown spot (Stemphylium vesicarium)

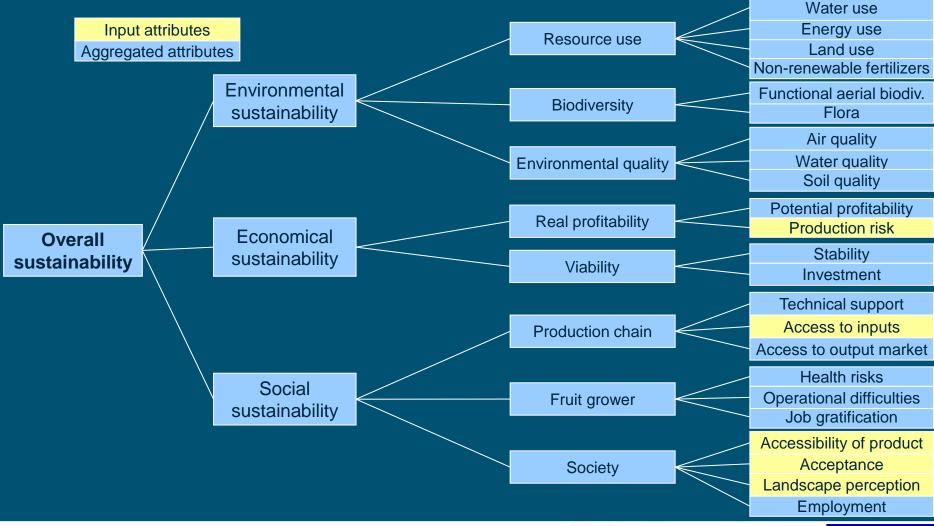
data are: values in euro (€) / ha


	conventional	innovative IPM	break-even
gross yield	42300	41400	42588
pest control costs	770	841	764
returns for covering other costs	41530	40559	41824

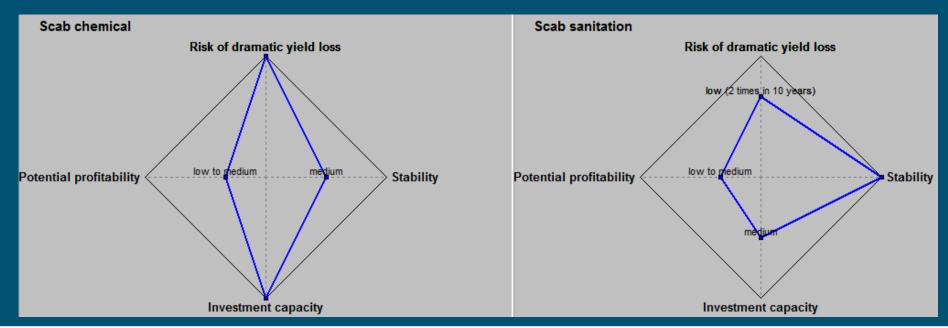
DEXIPM pome fruit

- complex decision: non-comparable subjects
- attributes scored: qualitative (high, medium, low)
- aggregated weight of attribute

Very low Low Medium High Very high



DEXIPM pome fruit overview



example: result DEXiPM - apple scab

- economic sustainability: conventional innovative
 - 4 parameters: risk dramatic yield loss, stability, investment capacity, profitability

summary

	codling moth	apple scab	brown spot	pear psylla
SYNOPS-WEB environment				
cost-benefit analysis				
conventional overall sustainability	medium-high	medium-high	high	high
innovative IPM overall sustainability	high	medium-high	high	high
DEXiPM pome fruit	\odot			

conclusion

- overall sustainability
 - conventional: medium high high
 - innovative IPM: only slightly improved
 - sensitivity models
- innovative IPM: equal efficacy
- costs innovative IPM: higher
- "design assessment adjustment cycle"
 - co-innovation

Stakeholder interaction

<u>Acknowledgement</u>

- my co-authors
- European Commission
- "The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/ 2007-2013) under the grant agreement n°FP7-265865"
- French office for Water (ONEMA) for funding via the program "Risk evaluation and reduction of pesticides use", axis 3 the French "Ecophyto 2018" plan
- The Hungarian part was supported by a grant of the Hungarian Scientific Research Fund (K108333) and by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/ 2-11/1-2012-0001 'National Excellence Program' under the project number: A2-SZJTOK-13-0061.
- Dutch Ministry of Economic Affairs

Thank you for your attention

© Wageningen UR

