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1. Introduction and thesis outline 

 

Introduction 

 

With the rising global energy demand, the need for renewable alternatives to fossil fuels 

becomes more apparent. One class of renewable alternatives is energy derived from 

biological systems. In this thesis, one of the possibilities within this class, the 

bacteriological conversion of light and organic acids to hydrogen, is studied. 

 

 

Global energy demand 

 

The projected world energy demand will continue to rise while crude oil production 

capacity decreases, as natural reserves are rapidly wearing out (Birol 2010; Dudley 2011). 

In Figure 1.1, the total global energy demand in time is presented from 1990 to 2010, 

divided into its main resources. The total global energy demand has increased steadily in 

this time interval. The contribution of fossil fuels (oil, natural gas and coal) to the global 

energy supply has largely remained unaltered at around 88%. The contribution of 

renewable energies including hydroelectricity increased from 6.3 to 7.6%, of which 

80-95% can be attributed to hydroelectricity (Dudley 2011). 

Aside from an inevitable shortage in energy supply in the near future, other disadvantages 

of large-scale combustion of fossil fuels are the associated adverse effects on the air 

quality in the troposphere, acid deposition, the depletion of the stratospheric ozone layer 

and global warming, resulting largely from SOx, NOx and CO2 -emissions. 

The most efficient way of reducing this effect is by a reduction in energy consumption, but 

in view of the developments in world population increase and economic growth, the 

global energy demand is expected to rise fast, resulting in a requirement for alternatives 

for fossil fuels. 
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Figure 1.1 Development of the global energy consumption, divided into its main resources 

(data adapted from (Dudley 2011), toe = tonnes oil equivalent; 1 tonne oil 

equivalent = 41.85 GJ.) 

 

 

Alternatives to fossil fuels 

 

As the establishment of an alternate energy supply that can alleviate these drawbacks will 

take a considerable amount of time, much effort is invested in the development of 

promising near-future scenarios. In the current energy supply, a non-renewable, net CO2 

generating solid/liquid energy carrier mix is applied. It is generally accepted that scenarios 

for a stable future energy supply require the transition to renewable, carbon neutral 
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energy carriers, in order to limit the afore-mentioned disadvantages associated with the 

combustion of fossil fuels. 

A vast array of alternative energy yielding technologies is under investigation. The change 

process will have to be executed gradually, resulting in intermediate solutions that do not 

fully comply with the desired carbon neutral energy supply. A gradual shift towards de-

carbonation of fossil fuels by sequestration of solid carbon and the application of carbon 

neutral bio-based fuels like biodiesel (Chisti 2007; Ma and Hanna 1999) and hydrogen is 

often proposed. When biofuels are considered, the degree to which land surface area will 

be available is not certain, as it will have to compete with agriculture aimed at food 

production. 

In many aspects, hydrogen gas is an ideal fuel. Not only as an alternative energy source, 

but also as a highly efficient energy carrier (Zajic et al. 1978). The hydrogen molecule has 

the highest energy content per unit of weight (120.7 kJ⋅g
-1

) in comparison to other energy 

sources, and its combustion yields only energy and water. Hydrogen gas is currently 

predominantly used as a bulk chemical in process industry, mainly in crude oil refining and 

the production of ammonia and methanol. It has been put forward by many scientists as 

the chemical energy storage form of the future, mainly in transportation and domestic 

applications (Armaroli and Balzani 2011; Balat 2009).  

Roughly all hydrogen produced today is generated by steam reforming of hydrocarbons 

(mainly methane, but oil and coal are also used), followed by gas separation using zeolites 

and pressure swing absorption. This process is the most cost efficient and about a factor 

three more cost efficient when compared to the electrolysis of water (Lipman 2004).  

The largest renewable energy source is the sun, exemplified by the fact that more energy 

impings on the earth in one hour then all energy consumed by man in one year (Lewis and 

Nocera 2006). In contrast, only about 0.25% of the global energy and about 0.5% of all 

applied fuels is generated by using renewable solar energy. The direct conversion of solar 

energy to electricity has recently made significant progress, with relatively simple thin 

layer silicon PV cells that do not contain any ‘rare earth’ metals reaching stable light to 

electricity conversion efficiencies of 8.54% (Chang et al. 2012). The downside of this direct 
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solar to electrical energy conversion for general energy supply is that it is intermittent. For 

that reason, energy generation and use are not synchronised, and a second energy 

conversion is required in order to store the harvested solar energy. Lewis and Nocera 

(Lewis and Nocera 2006) suggested that the efficient capture and storage of solar energy 

in the form of hydrogen or hydrocarbons has great potential for future energy supply. The 

efficiencies of these methods, however, need to be much higher than the ones reported 

to date for plant and algal photosynthesis. 

 

 

Challenges related to the application of hydrogen as an energy carrier 

 

Obviously, there are still some challenges that need to be solved. First, sufficient amounts 

of hydrogen need to be made available to cover a significant part of the global energy 

demand. 

A second prerequisite is an infrastructure for the distribution of hydrogen to the end user. 

Such a separate distribution network will require significant investment costs. This 

becomes a serious restraint only when hydrogen supply really takes off, as during a 

transition phase the hydrogen produced for energy supply purposes can be suppleted to 

the natural gas supply without the need for an additional distribution network. 

Another issue that requires attention is the storage of hydrogen gas. The energy density 

of hydrogen gas is very low. Its application as an energy carrier in for instance the 

transportation sector is only feasible if the resulting driving range is reasonable, for 

instance 500 km. As a result, an automotive hydrogen energy storage system needs to 

have a high energy density at low cost in order to be a suitable candidate for successful 

implementation. A hydrogen storage technology that meets these targets is currently not 

available (Chalk and Miller 2006; David 2005; Ross 2006). However, future developments 

might provide such technology. 

1
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The energetic efficiency of a proton exchange membrane fuel cell (or PEM fuel cell in 

short) ranges between 40 and 60%. This is far better than the energetic efficiency of an 

internal combustion engine, which is typically around 20%. As a result of their precious 

metal content (mostly platinum), PEM fuel cells are expensive. Their performance 

decrease over time and their price are fields in which improvement is required prior to 

large scale application in the automotive sector (Chalk and Miller 2006). 

 

 

Hydrogen from biomass 

 

There are several technologies available for the carbon neutral production of hydrogen 

from biomass feedstocks. Figure 1.2 gives an overview of these technologies, with a sub-

division into biochemical and thermochemical routes. 

 

Figure 1.2 Overview of the technologies that are available for the conversion of biomass to 

hydrogen, adapted from Muradov and Veziroğlu (Muradov and Veziroğlu 2008). 
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Two stage hydrogen fermentation 

 

The first two main technologies displayed in Figure 1.2 are biochemical fermentation 

technologies that result in direct hydrogen formation, without the formation of any 

intermediate energy carrier. 

Hydrogen production by fermentative bacteria from sugars in dark fermentation proceeds 

according to stoichiometry Equation 1.1. 

 

Equation 1.1 C6H12O6 + 4 H2O → 2 CH3COO
-
 + 4 H2 + 2 HCO3

-
 + 4 H

+ 
∆G0 = -206.1 kJ⋅mol

-1
  

 

This process can be executed efficiently by extreme thermophilic micro-organisms like 

Caldicellulosiruptor saccharolyitcus and Thermotoga elfii and it has been studied 

extensively (van Niel et al. 2002). A further conversion of the formed acetate is not 

possible by most fermentative organisms, because the Gibbs free energy change (∆G0) of 

such a conversion has a positive value (see Equation 1.2), meaning that it is 

thermodynamically unfavourable. 

 

Equation 1.2 CH3COO
-
 + 4 H2O → 2 HCO3

-
 + 4 H2 + H

+
 ∆G0 = 104.6 kJ⋅mol

-1 

 

Equation 1.3 C6H12O6 + 12 H2O → 12 H2 + 6 HCO3

-
 + 6 H

+
 ∆G0 = 3.0 kJ⋅mol

-1
 

 

In order to achieve complete conversion of glucose via acetate to hydrogen, according to 

Equation 1.3, two fermentative processes can be combined. In the first process step, 

glucose is fermented to hydrogen and acetate according to Equation 1.1, after which the 

acetate is converted to additional hydrogen in a second process step according to 

Equation 1.2. 

This second process step can only proceed if additional energy is supplied to the system. 

This additionally required energy can be light energy, supplied to purple non-sulphur 
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bacteria (or PNS bacteria in short). This class of bacteria is capable of photoheterotrophic 

growth and hydrogen production on reduced organic substrates and light energy. 

The combination of dark and photo fermentation creates the possibility of a complete 

conversion of residual carbohydrates, originating from for instance organic waste streams 

(Chen et al. 2008; Fascetti et al. 1998; Lee et al. 2002; Sasaki 1998) or especially grown 

energy crops. The process is depicted schematically in Figure 1.3. This process outline 

formed the basis for two projects, in which the chair group of Bio Process Engineering of 

Wageningen UR took part: The EU FP5 project Biohydrogen and the Dutch project EET 

Biological Hydrogen Production (2000-2003). 

Most biomass sources contain significant amounts of lignocellulose, and as its structure 

causes it to be inaccessible to biological conversion, a pre-treatment is required (Claassen 

et al. 1999). The pre-treated biomass slurry is then fed to a bioreactor in which the 

microbial conversion according to Equation 1.1 takes place. Van Groenestijn proposed the 

application of thermophilic organisms in a trickling filter bioreactor for this conversion, as 

this concept allows a low H2 partial pressure, which is a pre-requisite for the reaction in 

Equation 1.1 to take place (Van Groenestijn et al. 2002). 

In a second bioreactor, the organic acids that were generated in the first are converted to 

additional hydrogen in a photoheterotrophic fermentation using PNS bacteria. We 

proposed a flat panel photobioreactor for this conversion, equipped with gas-recirculation 

for sufficient mixing in order to supply light energy to the entire photoheterotrophic 

bacterial culture (Hoekema et al. 2002). 
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Figure 1.3 Graphical representation of the proposed two-stage bacterial fermentative process 

for the complete conversion of biomass to hydrogen. 

 

 

Metabolism of the purple non-sulphur bacteria 

 

PNS bacteria have a very versatile metabolism, resulting in their capability of growing 

under a wide variety of environmental conditions and their compatibility with a large 

number of substrates (Tabita 1995). 

This class of bacteria is not capable of using sulphur compounds as reducing agent for 

growth. PNS bacteria are anoxygenic, as they perform photosynthesis without oxygen 

evolution. This is essential, as oxygen inhibits the activity of the enzymes that catalyse the 

production of hydrogen, as will be covered shortly. 

 

Light harvesting and photosynthesis 

All PNS bacteria belong to the α and β subdivisions of the phylum proteo-bacteria and are 

pigmented with bacteriochlorophyll (Bchl) and carotenoids, which give them colours 

ranging between purple, red, brown and orange (Bryant and Frigaard 2006). The complete 

1
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photosynthetic complex of PNS bacteria is located on chromatophores, which are small 

encapsulations in the bacterial cell membrane, as can be seen in Figure 1.4A, an electron 

microscopic picture of Rhodobacter capsulatus cells. A graphic representation of the main 

constituents of the cell membrane associated photosynthetic complex present in a 

chromatophore in is given in Figure 1.4B. 

 

 

Figure 1.4 (A) An electron microscopic picture of Rhodobacter capsulatus cells, on which the 

individual chromatophores can be identified as black spherical bodies that form an 

integral part of the cell membrane (Borghese et al. 2004). (B) Graphic 

representation of the main constituents of the cell membrane associated 

photosynthetic complex of PNS bacteria inside a chromatophore. LH light 

harvesting complex; RC reaction center; ATP adenosine tri phosphate (Şener et al. 

2007). 

 

PNS bacteria have a distinct light absorption spectrum, resulting from the light absorbing 

properties of their light harvesting complex. Light harvesting complex 2 contains 

carotenoids that typically absorb photons in the 400-550 nm range, while light harvesting 

complex 1 contains bacteriochlorophylls, that have photon absorption maxima in the 

750-950 nm range (see Figure 1.4B for the location of the light harvesting complexes 
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within a chromatophore). Figure 1.5A displays the wavelength dependent light 

absorbance characteristics of photo-heterotrophically grown Rhodobacter capsulatus 

NCIMB 11773 cells. Figure 1.5A also illustrates that the biomass specific absorption 

capacity increases at elevated biomass concentrations. 

This is the result of a physiological response, triggered by a decrease in light availability 

within the culture, a phenomenon that will be investigated further in this thesis. 

In Figure 1.5B, the spectral irradiance spectrum of two light sources is given. Phototrophic 

processes should finally be driven by the sun in order to be both energy-effective and for 

that reason also cost-effective. Tungsten-Halogen lamps, however, are used when 

conducting laboratory experiments with continuous cultures, because they are rich in far-

red radiation as opposed to other artificial light sources. 

 

 

Figure 1.5 Biomass specific light absorption coefficient of photo-heterotrophically grown 

Rhodobacter capsulatus NCIMB 11773 cells at low (solid line) and high (dotted line) 

cell density (A). Spectral irradiance of two light sources: the sun (solid line, (ASTM 

2005)) and a Philips Halotone halogen-tungsten lamp (dotted line) (B). λ 

wavelength; nm nanometers. 

 

The photosynthetic complex of PNS bacteria contains one photosystem, which in turn 

contains a reaction center, referred to as P870 (as its light absorbance is maximal at 870 

nm). The reaction center in fact is a special pair of Bchl-a molecules. Within the reaction 

1
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center, photon absorption leads to a singlet excited electronic state. This process is 

referred to as primary charge separation. After primary charge separation has taken place, 

the electron is transferred via a cascade of redox mediators, as displayed in Figure 1.6A. 

The corresponding free energy levels and time scales of the individual redox reactions are 

displayed in Figure 1.6B. 

 

Figure 1.6 Electron transfer in the Rhodobacter sphaeroides photosystem. (A) redox potential 

of the electron transfer intermediates. (B) free energy and time scales of charge 

separation in the reaction center. Adapted from Fajer, Kirmaier and Holten and 

Tang et al. (Fajer et al. 1975; Kirmaier and Holten 1987; Tang et al. 1999). Em redox 

midpoint potential; hν light flash; P primary electron donor P870; BA monomer 

bactereochlorophyll; HA bactereopheophytin; Q ubiquinone; cyt cytochrome. 

Redox couples are denoted in reactant/product format. 
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Cyclic electron transfer 

The electron that was initially excited in the reaction center can thus flow back to it to be 

excited again (Figure 1.6A), resulting in a continuous and cyclic electron transfer.  

The light-induced electron transfer is coupled to proton transfer (Paddock et al. 2003), 

and results in a proton motive force. First, the electron transfer results in a reduced quinol 

molecule. The reduced quinol molecule transfers its protons and electrons to cytochrome 

bc1. This complex transports them across the chromatophore membrane and transfers the 

protons to the outer side. It also transfers the electrons to cytochrome c2, which in turn 

recycles the electrons to the reaction center. 

In summary, Figure 1.7 provides a graphical representation of the complete process of 

light capture, cyclic electron transfer and ATP generation in PNS bacteria. 

 

 

Figure 1.7 Graphical representation of light capture, cyclic electron transfer and ATP 

generation in PNS bacteria (Schulten 1999). hν light flash; Q ubiquinone; ADP 

adenosine diphosphate; ATP adenosine triphosphate; LH light harvesting complex. 

 

Non-cyclic electron transfer 

In case electrons are needed for assimilatory purposes, an electron donor is required. As 

the redox potential of P870 is +0.45 V (comparable to photosystem I in plant and algal 

photosynthesis, see Figure 1.6A), the bacterial photosystem is not able to split water and 

1
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use it as an electron donor, as it has a redox potential of 0.82 V. Instead, it requires a 

more reduced electron source, like acetate (redox potential -0.60 V). The electrons are 

taken up into the electron transport chain from the substrate by cytochrome c2. Like cyclic 

electron transport, non-cyclic electron transfer also results in a proton motive force. 

 

Efficiency of photosynthetic ATP generation by PNS bacteria 

The quantum efficiency of primary charge separation of the purple non sulphur bacterial 

light harvesting complex has been reported to reach values in excess of 90% over a broad 

spectral range (Paddock et al. 2005; Trissl et al. 1990; Wraight and Clayton 1974). The 

subsequent electron transfer via the cell membrane spanning reaction centre associated 

cytochromes QA, QB, cytochromes bc1 and c2 (Nitschke and Dracheva 1995) all progress at 

near 100% efficiency (Paddock et al. 2005) and each pair of electrons transferred result in 

the export of 4 protons to the outer part of the chromatophore. 

The exported protons migrate back into the cell via the cell membrane spanning enzyme 

ATPase (see Figure 1.7), which phosphorylates ADP to form ATP. Each ATP generated 

requires the migration of 4 protons through the ATPase enzyme (Allen 2003). 

From the above we can summarize that PNS bacteria require 2 photons in order to 

photosynthetically generate 1 ATP. Some researchers have reported lower efficiencies, 

which might be explained by the lower accuracy of the analytical methods applied. In 

these cases light to biomass conversion (Göbel 1978) and light gradient fluorescence 

measurement, which has a lower accuracy at lower wavelengths (Trissl et al. 1990) were 

used. 

An important pre-requisite for attaining this 2:1 conversion of absorbed photons to ATP is 

that the light supply is non-saturating for each individual reaction center. Light absorbed 

in excess of saturation will either not be absorbed by the photosystem at all or will not be 

processed due to the fact that the RC is not available for light absorption, as it has not yet 

changed back from its charge separated state (Trissl et al. 1990). The excess absorbed 

light will be dissipated to heat by non-photochemical quenching (Cleland et al. 1992; 
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Parson 1969; Wormit and Dreuw 2007). If the capacities of photochemistry and non-

photochemical quenching together are not sufficient to process all absorbed light, photo-

oxidative damage seems inevitable (Marshall et al. 2000; Müller et al. 2001). 

 

Carbon metabolism in PNS bacteria 

PNS bacteria exhibit a great diversity in their metabolism of simple carbon compounds. 

They are capable of breaking down and/or assimilate one, two, three and four carbon 

compounds and sugars. As a result, they are probably the most metabolically diverse 

organisms found in nature (Madigan and Gest 1979). As genetic manipulation of 

Rhodobacter and Rhodospirillum species is relatively easy, they form a group of organisms 

for which alternative routes for CO2-assimilation to the Calvin cycle have been uncovered. 

Aside from anaerobic phototrophic metabolism, some carbon compounds also support 

aerobic chemotrophic metabolism, but PNS bacteria generally favour strictly anoxygenic 

growth conditions (Tabita 1995). 

Virtually all PNS bacteria can grow on acetate (Thiele 1968). In the presence of acetate 

and active photosynthesis, acetate is metabolised via the glyoxylate cycle in most PNS 

bacteria (Blasco et al. 1991), although some data reported previously demonstrates that 

several PNS bacteria do not (Albers and Gottschalk 1976; Meister et al. 2005; Payne and 

Morris 1969). These observations might be caused by an adaptation to acetate 

assimilation, as described by Nielsen and Sojka (Nielsen and Sojka 1979), that is not 

always required. 

PNS bacteria are also capable of accumulating poly-β-hydroxybutyrate (PHB in short) 

when metabolising substrates like acetate or butyrate, resulting in large intracellular PHB 

granules, like reported by Boatman for Rhodospirillum rubrum (Boatman 1964). 

Metabolic control of carbon flow forms an integrated whole with the control of the 

cellular redox state of PNS bacteria. The metabolism of highly reduced electron donors 

like H2, propionate or butyrate results in a stronger coupling of the two. As 

photoheterotrophic assimilation of carbon substrates in most PNS bacteria takes place via 

1
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the glyoxylate cycle, it generates CO2, which in turn is reduced via reactions in the Calvin-

Benson-Bassham pathway, again in order to maintain a balanced redox poise state (Tabita 

1995). 

 

Nitrogen metabolism in PNS bacteria 

Many PNS bacteria are diazotrophs, meaning that they are capable of fixing molecular 

nitrogen using the nitrogenase enzyme (Madigan et al. 1984; Yoch 1978). 

Bregoff and Kamen concluded from their experimental stoichiometry results that the 

electron supply required for the photo-evolution of H2 could be accounted for by the 

dissimilation of organic acids (Bregoff and Kamen 1951). The relationship between N2 

fixation and H2 evolution by PNS bacteria was postulated later by Ormerod and Gest 

(Ormerod and Gest 1962). The nitrogenase enzyme co-produces H2 during N2 fixation, as 

can be seen in Equation 1.4. 

 

Equation 1.4 N2 + 8
+
 + 8 e

-
 + 16 ATP → 2 NH3 + H2 + 16 ADP + 16 Pi  

  ∆G0 = -1086.7 kJ⋅mol
-1

  

The electrons required for the nitrogenase activity according to Equation 1.4 are supplied 

by ferredoxin in Rhodospirillum rubrum (Yoch and Arnon 1975).  In turn, the electrons 

required for the reduction of Fdox in PNS bacteria might well be supplied by the 

dissimilation of organic acids. 

Alternatively, protons and electrons might be recycled from H2 by a hydrogenase enzyme 

(explained in more detail later), as was proposed by Mortenson for Clostridium 

pasteurianum nitrogenase (Mortenson 1964). 

Yoch demonstrated the high energy demand of nitrogen fixation by using either a N2 

atmosphere or NH4

+
 as nitrogen source, in combination with 5 mM of pyruvate as carbon 

source and electron acceptor during the growth of Rhodopseudomonas palustris cells. 
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NH4

+
 grown cells had a 30% higher growth yield on carbon compared to the N2 grown 

cells, demonstrating an extra requirement for reductant in the latter case (Yoch 1978). 

An overview of the general mechanism of the reactions that nitrogenase catalyses is given 

in Figure 1.8. Nitrogen fixation proceeds optimally under anaerobic conditions in the light 

(Paschinger 1974). During the process of nitrogen fixation, N2 is reduced to NH4

+
 (see 

Equation 1.4). This N2 reduction process depends strongly on the hydrogen partial 

pressure. Its stoichiometry is generally written as is in Equation 1.4, as the energetic cost 

of the transfer of 2 electrons by FeMo/Fe nitrogenase equals 4 ATP. As the N2 partial 

pressure decreases, the ratio of N2 reduced to H2 evolved decreases drastically in Mo-

Fe/Fe nitrogenase containing extracts of A. vinelandii (Hwang and Burris 1972). 

As nitrogen fixation is a very energy demanding process (see Equation 1.4), both the 

synthesis of nitrogenase and its activity are tightly regulated in diazotrophs, in order to 

achieve an optimal metabolic efficiency. 

 

 

Figure 1.8 Schematic representation of the reductions catalysed by the nitrogenase enzyme. 

Adapted from Dalton and Mortenson (Dalton and Mortenson 1972) Fd ferredoxin; 

red reduced; ox oxidised; Mo molybdenum; CO carbon monoxide. 

 

1



 Chapter 1 

 26 

Short-term regulation of nitrogenase activity 

Short-term post translational regulation of nitrogenase activity is triggered by the 

presence of O2, NH4

+
, glutamine, asparagine and urea (Zumft and Castillo 1978).  

 

Long-term regulation of nitrogenase activity 

On a longer time scale, the nitrogenase activity in PNS bacteria is regulated 

transcriptionally.  The most important factors that influence the transcriptional regulation 

of the nitrogenase activity of PNS bacteria are the applied nitrogen source (Alef et al. 

1981; Arp and Zumft 1983; Jouanneau et al. 1985; Zumft and Castillo 1978), the NH4

+
 

concentration (Jouanneau et al. 1984; Yakunin and Hallenbeck 1998), the rate of NH4

+
-

uptake (Yakunin and Hallenbeck 1998), the severity of nitrogen limitation (Yakunin and 

Hallenbeck 1998), the adenylation state of the glutamine synthetase enzyme (Jouanneau 

et al. 1984; Yakunin and Hallenbeck 1998) and the local light intensity, which results in the 

local rate of photophosphorylation (Jouanneau et al. 1985). 

NH4

+
-limitation yields cells that exhibit the highest nitrogenase activity, while cells that are 

grown under a N2 atmosphere have a limited nitrogenase activity, as the freshly 

assimilated intracellular nitrogen in the form of NH4

+
 represses the synthesis of 

nitrogenase (Munson and Burris 1969). 

 

Subsequent steps in the nitrogen assimilation pathway 

After ammonia has been generated by the nitrogenase enzyme, it is subsequently 

incorporated by the glutamine synthetase / glutamine-2-oxaloglutarate aminotransferase 

(or GS/GOGAT) pathway, resulting in glutamate, which in turn is taken up into the cellular 

assimilative metabolism. 

 

Hydrogen photo-production by PNS bacteria 

Hydrogen can be used as an energy source by many bacteria, as many hydrogen 

consuming reactions of energy metabolism have a negative Gibbs free energy change 
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(Thauer et al. 1977). Depending on the redox potential at which bacteria are capable of 

oxidizing H2 and the redox state of the cell, it is either oxidised (methanogens, 

fermentative bacteria, sulphate reducers, Fe
3+

-reducers and denitrifiers are capable of 

consuming H2) or excreted as a waste product (Vignais and Billoud 2007). 

In case the growth conditions of PNS bacteria allows for the existence of active 

nitrogenase in combination with an excess of reduction equivalents, the nitrogenase 

enzyme can also catalyse hydrogen generation by combining protons and electrons 

according to Equation 1.5. 

 

Equation 1.5 2 H
+

 + 2 e
-
 + 4 ATP → H

2
 + 4 ADP + 4 P

i
 ∆G

0
 = 199.7 kJ⋅mol

-1
 

 

Accordingly, all parameters mentioned above that regulate the activity of nitrogenase also 

regulate hydrogen evolution by PNS bacteria. As the nitrogenase reaction is 

unidirectional, its activity will generate hydrogen according to Equation 1.5, irrespective of 

the hydrogen partial pressure (McKinlay and Harwood 2010). Hydrogen generation by 

nitrogenase is less energy consuming then nitrogen fixation, but still has a high metabolic 

energy demand. 

 

Hydrogenases 

A second class of enzymes related to hydrogen metabolism, the hydrogenases, is present 

in PNS bacteria. This class of enzymes catalyses the reduction of protons to form H2, 

according to Equation 1.6. Hydrogenase based systems have the advantage of an order of 

magnitude higher catalytic rate (McKinlay and Harwood 2010), combined with a lower 

metabolic energy requirement when compared to nitrogenase based systems. For these 

reasons, hydrogenase based systems are very interesting candidates for photobiological 

hydrogen production. 

 

Equation 1.6 2 H
+
 + 2

 

e
-
 ↔ H2 ∆G

0
 = 79.7 kJ⋅mol

-1
 

1
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The net hydrogen producing catalytic activity of hydrogenase is sensitive to H2 inhibition, 

as it is reversible (Vignais and Billoud 2007). 

 

 

Outline of this thesis 

 

In order to valorise bio-hydrogen and make it into a technology that can provide a 

contribution to renewable energy supply in the near future, fundamental knowledge of 

the underlying processes is required. 

The main goal of this thesis is to investigate the process of photobiological hydrogen 

formation by photosynthetic bacteria, as part of the previously described two-stage 

process. Several sub-goals were identified, each of them leading to a chapter in this thesis: 

 

1. What strategy is most suitable for the fast optimization of phototrophic 

bioprocesses in order to reach maximal productivity? 

2. What photobioreactor design should be applied for anoxygenic hydrogen 

production from organic acids by PNS bacteria? 

3. What are the kinetic parameters for growth of photo-heterotrophically grown 

PNS bacteria? 

4. What light-to-hydrogen efficiency can be reached in theory versus in practise? 

5. How do the current results compare to the active research field and what 

improvements are required in order to make photobiological hydrogen a serious 

renewable alternative to fossil fuels? 

In order to optimize biomass and/or growth associated product formation in phototrophic 

cultures, various techniques can be applied. 

 



  Introduction 

  29 

Chapter 2, entitled ‘Deceleration-stats save lots of time during phototrophic culture 

optimization’, gives an overview of optimization techniques that can be applied in 

phototrophic fermentation. A comparison between the well-established series of 

chemostat experiments and the alternative, a single D-stat experiment, was made in 

terms of time expenditure. The time-gain that can be achieved by applying a D-stat as 

calculated based on model predictions turned out to be at least 80%. 

 

Chapter 3, entitled ‘A pneumatically agitated flat-panel photobioreactor with gas re-

circulation: anaerobic photoheterotrophic cultivation of a purple non-sulphur bacterium’, 

describes the various types of photo-bioreactors that are available to researchers and the 

development of an autoclavable flat panel photobioreactor with a very small (3 cm) 

optical path, in order to limit self-shading of the phototrophic culture. Also, this system 

has the possibility of re-circulating the gas stream, facilitating turbulent mixing combined 

with the production of a non-diluted hydrogen gas stream. 

After defining the appropriate experimental technique and designing the appropriate 

photobioreactor, they were applied in order to find the kinetic parameters for growth by 

the PNS bacterium Rhodobacter capsulatus NCIMB 11773. Here, the cultures were kept in 

pseudo steady-state in order to facilitate an accurate measurement of yield and 

maintenance coefficients. 

 

Chapter 4, entitled ‘Controlling light-use by Rhodobacter capsulatus continuous cultures 

in a flat-panel photobioreactor’ presents a light energy balance, in which the absorbed 

light energy is distributed amongst biomass formation, biomass maintenance, hydrogen 

formation and dissipation to heat.  

The maintenance and yield parameters for biomass formation on light energy were 

determined and inserted into the light energy balance. 

The light energy expenditure for biomass growth can be decreased, for instance by 

maintaining steady state at a low dilution rate. As a result, the fraction of the absorbed 

light energy that can be directed to hydrogen was estimated to have a maximum at 3.3%. 
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The light to hydrogen conversion efficiencies as predicted in Chapter 4 were measured 

during two stat experiments which are presented in Chapter 5, entitled ‘Exploration of the 

hydrogen producing potential of Rhodobacter capsulatus chemostat cultures: The 

application of Deceleration-Stat and Gradient-Stat methodology’. The light to hydrogen 

conversion efficiency was determined in a continuously operated photo-bioreactor. 

The hydrogen production capacity increased linearly with the biomass concentration. 

However, at biomass concentrations exceeding 1.5 g⋅L
-1

, light availability caused a decline 

in the specific hydrogen production capacity. As this decline was also present in the 

dedicated short-term batch experiments, light availability was not solely responsible for 

the decreased specific hydrogen production capacity. As a consequence, the light to 

hydrogen conversion efficiency that could be demonstrated was limited to 1.6%. 

 

The potential of biological hydrogen production is discussed in Chapter 6, based on both 

literature results and the results generated in this thesis. Also, an overview is given of the 

potential directions of future research. It is discussed what further developments are 

needed in order to make photobiological hydrogen a serious renewable alternative for 

current fossil-based fuels. 
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2. Deceleration-stats save much time during phototrophic culture 

optimization 

 

 

Abstract 

 

In case of phototrophic cultures, photobioreactor costs contribute significantly to the total 

operating costs. Therefore one of the most important parameters to be determined is the 

maximum biomass production rate, if biomass or a biomass associated product is the 

desired product. This is traditionally determined in time consuming series of chemostat 

cultivations. 

The goal of this work is to assess the experimental time that can be saved by applying the 

D-stat (deceleration stat) technique to assess the maximum biomass production rate of a 

phototrophic cultivation system, instead of a series of chemostat cultures. 

A mathematical model developed by Geider and co-workers was adapted in order to 

describe the rate of photosynthesis as a function of the local light intensity. This is 

essential for the accurate description of biomass productivity in phototrophic cultures.  

The presented simulations demonstrate that D-stat experiments executed in the absence 

of pseudo steady-state (i.e. the arbitrary situation that the observed specific growth rate 

deviates less than 5% from the dilution rate) can still be used to accurately determine the 

maximum biomass productivity of the system. Moreover, this approach saves up to 94% 

of the time required to perform a series of chemostat experiments that has the same 

accuracy. In case more information on the properties of the system is required, the 

reduction in experimental time is reduced but still significant. 
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Introduction 

 

Great potential has been attributed to phototrophic microorganisms as they can produce 

both high-value compounds and low-value bulk materials, such as second-generation 

biofuels (Chisti 2007; Rodolfi et al. 2009; Wijffels and Barbosa 2010; Wilhelm and Jakob 

2011; Williams and Laurens 2010). However, high areal productivities can be reached only 

in optimized production systems (Janssen et al. 2001; Morweiser et al. 2010). 

The reference approach for the determination of the properties of steady state 

continuous cultures is a series of chemostat cultivations (Yee and Blanch 1993). A 

sequence of step-wise changes in dilution rate, or medium composition, is applied. After 

each step the culture needs time to acclimate and reach a new steady-state. This 

approach is time consuming and a faster alternative would be beneficial to reduce the 

costs of process optimisation. 

The acceleration stat (A-stat) cultivation technique is an alternative that yields more data 

in a limited period of time. The A-stat method was developed for the rapid investigation 

of growth kinetics of microorganisms (Müller et al. 1995; Paalme et al. 1995). This is 

achieved by applying a constant increase in dilution rate, referred to as the acceleration 

rate. If the dilution rate is decreased instead of increased, the cultivation is referred to as 

a deceleration stat (D-stat). 

The advantage of the D-stat over the A-stat is two-fold: the dilution rate of the initial 

steady state is higher, and therefore it is reached faster and a D-stat can be terminated 

faster, provided that the maximum biomass production rate occurs at a high specific 

growth rate (see materials and methods section for a more detailed motivation). 

The higher the change rate applied, the faster the procedure is finished. However, culture 

characteristics that approach true steady-state characteristics can only be maintained at 

infinitely low change rates. 

If the change rate allows the microorganism to acclimate to its changing environment, the 

culture properties at a given time point in a D-stat are equal to those in a chemostat at 
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the same dilution rate (Paalme et al. 1995; van der Sluis et al. 2001a). The number of 

pseudo steady-states that can be measured in a given amount of time is then limited only 

by the rate of the required analyses. 

A limited number of studies has been carried out using A-stat and D-stat techniques for 

both chemotrophic and phototrophic microorganisms. An overview of these studies, the 

applied microorganisms, the dilution change rates that safeguarded pseudo steady-state 

and the ones that did not, is given in Table 2.1. The estimation of steady-state 

characteristics was considered successful if the deviation between the set dilution rate 

and measured specific growth rate was less than 5%. So far it has remained unclear to 

what extent the acceleration or deceleration rate can be increased, while still providing 

reliable data for process optimization. 

The goal of this work is to minimize the experimental time that is needed to provide a 

good estimation of the maximum biomass production rate in a microalgal cultivation 

system. This is done by model simulations of continuous microalga cultivation in 

photobioreactors (PBRs, see also the list of abbreviations). 

Phototrophic organisms have evolved mechanisms for sensing and responding to 

changing light conditions, for instance as a result of diurnal or seasonal changes. They 

respond to a decrease in available light intensity by increasing the number of copies and 

size of their photosynthetic units, in order to maximize light harvesting and utilization 

efficiencies under low light, while preventing photo-oxidative damage under (too) high 

light (Dubinsky and Stambler 2009). As a result, photo-acclimation is one of the most 

important acclimation processes taking place during changes in cultivation conditions in 

phototrophic cultures. The kinetic model developed by Geider et al. (Geider et al. 1996) 

was used in this work. It provides a validated description of photosynthetic growth, as it 

corresponds well with experimentally acquired data on balanced growth and photo-

acclimation of several diatom species, such as Synechococcus, Chlorella, Skeletonema, 

Thalassiosira and Phaeodactylum (Geider et al. 1996; MacIntyre et al. 2002). The signal 

that determines the rate of photo-acclimation is described mathematically as the ratio 

between the photosynthetic capacity and the rate of light absorption. This description is 
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in accordance with our current understanding of photo-acclimation (Li et al. 2009). 

Additionally, the Geider model requires only a limited number of kinetic and physiological 

properties of the applied phototrophic microorganism. 

As it is widely recognized that the local light intensity governs the local rate of 

photosynthesis in PBRs (Takache et al. 2012), the Geider model was extended with a light 

balance, and an average rate of photosynthesis was calculated by averaging the local 

rates. 

In this work, the extended Geider model was used to compare two different optimization 

approaches: The D-stat and the series of chemostats. Based on the work presented here, 

we conclude that data from D-stat cultures can be used to accurately determine the 

maximum biomass production capacity of the system, even if the deceleration rate 

exceeds the rate at which a pseudo steady-state is maintained. This means that the 

experimental time required to accurately assess the maximum biomass production rate of 

a phototrophic system can be reduced by up to 94% compared to the chemostat method. 

 

 

Materials and Methods 

 

Culture properties 

In all simulations the properties of the microalga Thalassiosira pseudonana published by 

Geider et al. (Geider et al. 1996) were used (see Table 2.2). These properties are the 

functional cross section of the light harvesting complex (σ, m
2
⋅mol

-1
 photons PAR), the 

maximum rate of photosynthesis (P
E

m, d
-1

). Table 2.2 also gives the constant proportion of 

assimilated carbon dioxide (3-carbon sugars) which is directed towards the biosynthetic 

machinery, κE, and the decay coefficient (rm, d
-1

). The maximum specific growth rate 

(µmax, d
-1

) can be recalculated from the model parameters (Geider et al., 1996). 
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Table 2.1 Applied change rates in dilution rate reported in literature. The estimation of 

steady state characteristics was considered successful in case the deviation 

between dilution rate and resulting specific growth rate was less than 5%. 

Microorganism 

Applied acceleration rate 

(% of µµµµmax⋅⋅⋅⋅d
-1

) 

Success Failure 

D. tertiolecta
1
 6.3 43 

Z. rouxii
2
 13.3 133 

L. plantarum
3
 - 72 

E. coli K12
4
 - 49.3 

S. cerevisiae
5
 - 54.6 

R. capsulatus
6
 1.32 - 

 

 

PBR properties 

In principle simulations can be executed using any PBR for which light distribution can be 

described mathematically. In the simulations presented here, the properties of a PBR that 

were described previously (Hoekema et al. 2006) were used: a flat panel PBR illuminated 

from one side with a depth of 3 cm. 

  

                                                                 

 

 

1
 (Barbosa et al. 2003) 

2
 (van der Sluis et al. 2001a) 

3
 (Kask et al. 1999) 

4
 (Paalme et al. 1995) 

5
 (Paalme et al. 1997) 

6
 (Hoekema et al. 2006) 
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Light intensity 

The light intensity on the surface of the PBR is given as the photon flux density (I), in 

mol photons⋅m
-2
⋅d

-1
 in the PAR range (photosynthetically active radiation: 400-700 nm). 

Simulations were performed using an incident light intensity of 8.65 (low) or 86.5 (high) 

mol photons⋅m
-2
⋅d

-1
, corresponding to 100 and 1000 µmol photons PAR⋅m

-2
⋅d

-1
. 

A one-dimensional light-path perpendicular to the light-exposed reactor surface was 

assumed with a uniform light distribution. Lambert-Beer’s law (Equation 1 in Figure 2.1) 

was used to calculate the local light intensity. Even though Lambert-Beer’s law is only 

valid for one-dimensional light propagation, it was found previously to describe the 

irradiance distribution inside a PBR sufficiently accurate (Evers 1991; Luo and Al-Dahhan 

2012; Wu and Merchuk 2001). 

 

Table 2.2 Modeling parameter values for T. pseudonana (Geider et al. 1996). An overview of 

the parameter-values that were used in all simulations using the model described 

in Figure 2.1. The parameters are defined in the list of abbreviations. 

Parameter Value Units 

σ 2.0 m
2
⋅mol photons

-1
 

Chl: C 0.2 g⋅g
-1
⋅L

-1
 

A��	∗  10 m
2
⋅g Chl a

-1
 

κ�(= ρ�) 0.6 - 

P�� 5.55 d
-1

 

r� 0.05 (0.15
1
) d

-1
 

μ��� 3.28 d
-1
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Mathematical model 

For this study the model of Geider et al. (Geider et al. 1996) was adapted (see Figure 2.1) 

to describe local light intensities and photosynthesis rates. Based on the local rates, the 

average rate of photosynthesis over the photobioreactor volume can be calculated, 

resulting in the average biomass productivity. Next, a program based on the model was 

constructed in order to simulate cultures grown in batch, chemostat, and D-stat mode. All 

simulations were done with Mathcad 14.0. Differential equations were solved numerically 

with the Radau ODE solver. 

A schematic representation of the applied model is presented in Figure 2.1. The light 

intensity profile along the light path in the PBR, which is illuminated from one side, is 

calculated with Equation 1, the light balance. 
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Figure 2.1 Outline of the mathematical model that was applied to generate all presented 

simulations. 

2
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Photo-saturation in photosynthesis can be accurately described as an exponential 

function referred to as the photosynthesis irradiance curve (or PI curve in short), as Webb 

et al. demonstrated first (Webb et al. 1974). Accordingly, Equation 2 describes the local 

specific rate of photosynthesis based on the local light intensity. 

Photo-acclimation is governed by the ratio of photosynthetic rate (P
E
⋅E) over light 

absorption (σ⋅I⋅L) (Geider et al. 1996). This can be seen in Equations 3-5, in which the local 

fractions of new photosynthate that is directed towards the biosynthetic machinery E, the 

light harvesting complex L, and storage material R are calculated. The sum of these three 

fractions is 1. 

With the local distribution of assimilated carbon known, the global changes in 

concentrations of L, E and R can be calculated from the component balances; the integrals 

give the average specific rates over the depth of the PBR (Equations 6-8). The light 

gradient across the PBR results in a similar variation in the local rate of photosynthesis 

and distribution of assimilated carbon. These terms are averaged over the entire PBR after 

their local values have been determined for each time step. Summation of the 

concentrations of the three biomass fractions gives the biomass concentration 

(Equation 9) and Equations 10 and 11 give the biomass production rate and the specific 

growth rate, respectively. 

 

Starting values of model simulations 

The starting point for each simulation was a chemostat culture in steady state. The 

dilution rate was either decreased gradually (D-stat) or step-wise (series of chemostats). 

First, a batch culture was simulated. The batch time was chosen such that a biomass 

concentration was reached that matches the predicted steady state biomass 

concentration for the initial chemostat culture. Subsequently, this chemostat was 

simulated. The time required to reach steady state following a step change in dilution rate 

was assessed from the simulation results. Steady state was assumed when a residual 

difference between µ and D of 1% or less was observed.  
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Simulation of chemostat experiments using trisection 

The biomass production rate is the product of the dilution rate and the biomass 

concentration. The mathematical relation between the production rate and dilution rate 

has a maximum (Goldman 1979). This maximum is characterized by the location on the 

curve where the slope is zero. Due to the need for numerical integration of the differential 

equations (see Figure 2.1), the maximum cannot be found analytically. It has been 

approximated by using a trisection method. 

First, an estimate of the maximum specific growth rate of the alga under investigation is 

required. This information might be retrieved from literature or assessed by means of a 

wash-out experiment. Accordingly, one value at 85% of the highest supported dilution 

rate is arbitrarily chosen, as well as one value close to zero. Then two intermediate 

dilution rates are chosen, such that the total range in dilution rate is sub-divided into 

three equally distributed intervals. 

Chemostat simulations are run at these dilution rates and the corresponding biomass 

production rates are calculated. The slope of the biomass production rate as a function of 

the dilution rate (∆��/∆D) is calculated for each interval resulting in three values. The 

maximum biomass production rate is reached at a dilution rate that lies within one of two 

intervals adjacent to the point where the slope changes sign. 

The remaining interval can be discarded during a subsequent repetition of the procedure, 

which requires two additional steady states. The procedure was halted when the maximal 

observed difference within the three remaining biomass production rates was less than 

5%, as this level of accuracy can also be achieved experimentally (based on for instance 

biomass dry weight analysis). By summation of the time-intervals required for each steady 

state, the time required for the assessment of the specific growth rate that results in the 

maximum biomass production rate is determined. 
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Simulation of D-stat experiments 

In a D-stat, the initial hydraulic residence time is shorter, resulting in a faster arrival at the 

initial steady state, provided that the initial dilution rate does not exceed 0.9⋅µmax, as 

beyond this value, a system will typically take a long time to reach steady state (Perram 

1973). For this reason, a D-stat is more advantageous than an A-stat, assuming that a fixed 

number of hydraulic residence times is required to reach initial steady state. A further 

reduction in experimental time can be achieved if an experiment is terminated once the 

maximum biomass production rate has been reached. This optimum is mostly found at 

elevated specific growth rates in light limited phototrophic cultures (Barbosa et al. 2005; 

Cuaresma et al. 2009; Goldman 1979; Molina Grima et al. 1997; Pruvost et al. 2011; 

Zijffers et al. 2010), thus a D-stat experiment can be terminated faster. For these reasons, 

we have chosen to exclusively simulate D-stat experiments as a second process 

optimization option. 
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Results and Discussion 

 

Chemostat simulations 

Before simulating an optimization study based on either D-stats or chemostats, the 

productivity of the system was assessed as a function of the specific growth rate. This was 

done by simulating a large number of chemostats at different dilution rates. The 

simulations were done for the diatoms Thalassiosira pseudonana and Phaeodactylum 

tricornutum (see Appendix I). The applied model parameters were taken from literature 

(Geider et al. 1996) and are presented in Table 2.2. Simulations were executed at low and 

high light intensity, corresponding to 8.65 and 86.5 mol photons PAR m
-2

·d
-1

 respectively. 

The results of these simulations are presented in Figure 2.2A for low light intensity and 

Figure 2.2B for high light intensity. 

A tenfold increase in light intensity results in a mere 4.5-fold increase in biomass 

production rate. This can be ascribed to photo-saturation in the photic zone of the PBR. 

Here, the rate of light absorption is considerably higher than the maximum rate at which it 

can be used to drive photosynthesis, resulting in dissipation of the excess absorbed light. 

Figure 2.2 shows that at low light intensity the maximum in the biomass production rate is 

much more pronounced than at high light intensity. To the left of the maximum, at low 

specific growth rate and high biomass concentration, the larger contribution of the decay 

coefficient results in a decrease in biomass production rate. To the right, an elevated 

growth rate can only be supported if the average light intensity increases, which requires 

a lower biomass concentration. Photons that have not been absorbed then pass the 

reactor, resulting in an increasing fraction of incident light that is not absorbed by the 

culture. The remaining information displayed in Figure 2.2 will be discussed later in this 

chapter. 
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Maximization of the biomass production rate by a series of chemostats 

The time required to find the chemostat settings that result in the maximum biomass 

production rate was minimized by using the trisection method (see Materials and 

Methods section). The method aims at re-constructing part of Figure 2.2 in order to find 

the maximum biomass production rate in the smallest amount of time. 

Table 2.3 summarizes the simulation results. It demonstrates that at low light intensity 64 

days of experimental time are needed in order to find the maximum biomass production 

rate at the required 5% accuracy and at high light intensity 36 days. 

As the procedure is executed, the biomass production rate soon stabilises at both applied 

light intensities, due to the broad optima shown in Figure 2.2. The maximum biomass 

production rate was determined within a 5% deviation margin after 3 and 2 iterations for 

low and high light intensity, respectively. 

As will be discussed later, such broad optima are not always present in experimental data. 

When a more distinct optimum is present, a larger number of iterations would be 

required in order to find it. 

 

 

 

 

Figure 2.2 Simulation results of T. pseudonana chemostat cultures in steady state at low (A) 

and high (B) light intensity. Biomass productivity (r�, black solid line) and the 

fraction of the incident light that is not absorbed (I���/I !, grey line) using the 

standard parameter values. Biomass productivity (r�, black dashed line) and the 

fraction of the incident light that is not absorbed (I���/I !, grey dashed line), using 

a three-fold increased decay coefficient. The dotted vertical lines represent the 

compensation point, at which the rate of photosynthesis equals the decay rate in 

the back of the PBR, resulting in the maximally attainable biomass production rate. 

Low and high light intensities correspond with 100 and 1000 µmol photons m
-2
⋅s

-1
 

of PAR. 
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Maximization of the biomass production rate in a D-stat experiment  

Low deceleration rates (typically below 10% of µmax per day for phototrophic cultures, see 

Table 2.1) provide a more accurate approximation of steady state, but take more time. 

The results of a D-stat simulation at low light intensity and a deceleration rate of 10% of 

µmax per day are presented in Figure 2.3A. The figure demonstrates that already at this 

moderate deceleration rate, the culture does not remain in pseudo steady state, as the 

specific growth rate deviates more than 5% from the applied dilution rate. If the dilution 

rate decreases fast enough, the availability of light exceeds the availability at the 

corresponding steady state in a chemostat, resulting in a specific growth rate that is 

higher than the applied dilution rate. 

Figure 2.3B illustrates the specifics of photo-acclimation during the simulation, which 

results in a change in biomass composition. A decrease in dilution rate leads to 

accumulation of biomass and causes a decrease in light available per cell. This results in 

up-regulation of the fraction of assimilated carbon directed to the light harvesting 

complex since the ratio of photosynthetic rate (P�⋅E over light absorption (σ⋅I⋅L) 

approaches unity (Equations 3-5, Figure 2.1). 

 

 

 

 

 

Figure 2.3 D-stat simulation for the microalga T. pseudonana grown at low light intensity with 

a deceleration rate of 0.1⋅μ���. (A) Dilution rate (D, black line), specific growth rate 

(µ, dashed black line), the volumetric biomass production rate (r�, grey line). (B) 

Fraction of new photosynthate allocated to the synthesis of light harvesting 

complex (ρ$, solid line) and reserve compounds (ρ%, dotted line). The fraction of 

the incident light energy that is not absorbed (I���/I !, grey line) is also shown. 

Low light intensity corresponds with 100 µmol photons m
-2
⋅s

-1
 of PAR. 
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The fraction of carbon directed to the light harvesting complex increases from 0.26 to 0.40 

at the expense of the fraction directed to reserve compounds. Moreover, the increased 

size of the light harvesting complex results in a more rapid attenuation of light along the 

reactor depth. This in turn results in a faster change of the local light intensity when the 

biomass density increases which has a direct effect on the local rates of photosynthesis. 

As the deceleration rate is increased, the deviation between the specific growth rate and 

the imposed dilution rate increases further (results not shown). Also, at high light intensity 

the maximum biomass productivity is higher for the simulations carried out with higher 

deceleration rates (Figure 2.4B). In this situation photo-acclimation lags behind, resulting 

in cells with a smaller light harvesting complex in comparison to the real steady state 

situation. This in turn results in a reduced biomass specific light absorption coefficient and 

thus less over-saturation at the light exposed surface and a higher yield of biomass on 

absorbed light. 

At low light intensity (Figure 2.4A), deceleration rates exceeding 0.25⋅μ��� per day result 

in a situation where the maximum productivity is not reached, as at the end of the 

experiment, the biomass concentration that is present in the PBR is still too low to absorb 

the majority of the incident light, resulting in a restriction on the maximum deceleration 

rate that can be applied. 

 

 

 

 

 

 

Figure 2.4 D-stat simulations for the microalga T. pseudonana grown at low (A) and high (B) 

light intensity with deceleration rates of 0.001 (solid line), 0.01 (long dash), 0.1 

(medium dash), 0.25 (short dash) and 0.5 (dot)⋅μmax. Low and high light intensities 

correspond with 100 and 1000 µmol photons⋅m
-2
⋅s

-1
 of PAR. 
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1
 Total time required, including batch pre-growth and initial steady state. 
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Error analysis at elevated deceleration rate 

In order to assess which deceleration rates still provide a good estimate of the maximum 

biomass production rate, a sequence of simulations was performed at various 

deceleration rates. The maximum biomass production rate and the associated specific 

growth rate from D-stats were compared with those from steady state chemostat cultures 

(Figure 2.2). The maximum error that is accepted between the two is ± 5% of the value 

determined in chemostat simulations. Figure 2.5A shows the error for low light intensity, 

and Figure 2.5B for high light intensity, both as a function of the applied deceleration rate. 

As can be seen in Figure 2.5, the errors made in the determination of the maximum 

biomass productivity remain acceptable up to a deceleration rate of 28% of μ��� per day 

at low light intensity and 60% of μ��� per day at high light intensity. This observation 

confirms the notion that even though the dilution rate is too high for pseudo-steady state 

to be maintained (Figure 2.3), the maximum biomass production rate can still be 

predicted with an accuracy of ± 5% compared to chemostat cultures. Probably, most 

literature data shown in the column entitled ‘Failure’ in Table 2.1, can be used to 

accurately assess the maximum biomass production rate, even though the cultures did 

not remain in pseudo steady-state. The error in the determination of the specific growth 

rate that corresponds to the maximum biomass production rate that is also presented in 

Figure 2.5 is discussed below in the ‘practical relevance of the simulation results’ section. 

As the time that is required for a series of chemostat experiments and D-stat experiments 

executed at varying deceleration rate has now been determined, the experimental time 

that can be saved by applying the D-stat technique can be quantified. 

 

 

 

 

 

2
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Reduction of experimental time by using the D-stat approach 

The simulated experimental time that is required for the successful execution of the two 

biomass production maximization strategies presented in this work is compared in Table 

2.3. It shows that the assessment of the maximum biomass production rate by a D-stat 

experiment saves over 80% of the experimental time needed for a series of chemostat 

experiments using the kinetic parameters of T. pseudonana, both at low and high light 

intensity. 

In order to demonstrate general applicability of this approach, simulations were repeated 

using the kinetic parameters of P. tricornutum. This is a diatom species with both a 

maximum specific growth rate that is less than half that of T. pseudonana and different 

light absorption characteristics. These simulation results are presented in Appendix I and 

show similar characteristics, resulting in an even stronger reduction in experimental time 

obtained with the D-stat approach. 

 

 

 

 

Figure 2.5 Errors in the D-stat estimation of the steady state parameters at which the 

maximum biomass production rate occurs in comparison to the true chemostat 

optimum, as a function of the deceleration rate for T. pseudonana cultures. Errors 

in the simulated determination of rx (black line) and the associated specific growth 

rate μ (dashed line), expressed as a percentage of the values that resulted in the 

maximum biomass production rate in chemostat. Cultures of the microalga 

T. pseudonana were simulated at low (a) and high (b) light intensity. The dotted 

grey lines represent the accepted ± 5% error margin. Also shown is the reduction in 

required experimental time in case the D-stat technique is applied (grey line), 

expressed in a percentage of the time needed for a series of chemostat 

experiments. Low and high light intensities correspond with 100 and 1000 

µmol photons m
-2
⋅s

-1
 of PAR. 
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The influence of the decay coefficient on the simulation results 

The chemostat simulation results displayed in Figure 2.2 show a broad optimum. This 

trend can be observed in data presented previously (Barbosa et al. 2005; Molina Grima et 

al. 1997; Zijffers et al. 2010). In several cases however, published experimental data has 

shown more distinct maximum biomass productivities (Cuaresma et al. 2009; Pruvost et 

al. 2011). The decay coefficient has a large effect on the ‘sharpness’ of the optimum. The 

decay coefficient of microalgal cultures has been reported to  have values of up to 

5% of μ��� (Kliphuis et al. 2011). The relatively low value of 1.5% of μ��� used in this 

study contributed to the observed broad optimum in biomass production rate; this is 

illustrated by additional chemostat simulations with an increased decay coefficient of 

4.5% of μ��� (Figure 2.2). 

An increase in r� results in an overall lower biomass production rate and in a more 

distinct optimum at a higher specific growth rate. This shift is caused by the higher 

decrease in biomass productivity at lower dilution rates. It results in a sharper optimum 

and the need for more iterations during the chemostat optimization, shifting the 

comparison even more in favour of the D-stat approach. 

 

Practical relevance of the simulation results 

In practise, researchers will be interested in identifying the specific growth rate (which 

equals the dilution rate in a continuous culture) that results in the maximum biomass 

production rate. The accurate determination of this optimum specific growth rate 

requires a lower deceleration rate in D-stat cultures than accurate determination of the 

highest possible production rate, as can be seen in Figure 2.5. At the same time however, 

more iterations are required in the chemostat (see Table 2.3). The experimental time that 

can be saved by using the D-stat method for finding both the maximum biomass 

production rate and the specific growth rate at which it occurs therefore remains 

significant. 

The observed deviations in maximum biomass production rate remain much smaller than 

the deviation in the optimal specific growth rate, because errors in the specific growth 
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rate and errors in the biomass concentration partially compensate each other in a D-stat 

(data not shown). A further increase in deceleration rate would result in a deviation 

between the D-stat and chemostat estimated values that exceed the accepted ± 5% error 

criterion. This is due to the fact that photo-acclimation cannot keep up, as described 

earlier. 

 

 

Conclusions 

 

In this work, continuous cultures of the microalgae Thalassiosira pseudonana and 

Phaeodactylum tricornutum were simulated using a model that describes phototrophic 

growth and photo-adaptation based on the local rate of photosynthesis. 

The model was used to simulate two optimization methods in order to compare their 

experimental time expenditures. The first optimization method is the traditional series of 

chemostats, combined with a trisection optimization routine. The second optimization 

method is a D-stat experiment. During a D-stat experiment, the dilution rate is decreased 

at a constant speed. 

The presented simulations demonstrate that D-stat experiments executed in the absence 

of pseudo steady-state – i.e. |μ − D| > 0.05D – can still be used to accurately determine 

the maximum biomass productivity of the system. Moreover, the application of this 

approach saves up to 94% of the time required to perform a series of chemostat 

experiments with the same accuracy. 

The D-stat optimization method is thus an attractive alternative to a series of chemostats 

during the optimisation of the biomass production rate in phototrophic reactors. 
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Nomenclature 

 

A��	∗  Chl a specific light absorption coefficient [m
2
·g Chl a

-1
] 

Chl: L Carbon fraction of chlorophyll a in L [g Chl a· g L
-1

] 

C� Biomass concentration [g C·m
-3

] 

d Deceleration rate [d
-2

] 

D Dilution rate [d
-1

] 

E Biomass of the biosynthetic machinery [g C·m
-3

] 

I Light intensity [mol photons·m
-2

·d
-1

] 

I2  Incident light intensity [mol photons·m
-2

d
-1

] 

L Biomass of the photosynthetic apparatus [g C·m
-3

] 

PAR Photosynthetically Active Radiation (400- 700 nm)  [-] 

PBR photobioreactor [-] 

P�
 E-specific rate of photosynthesis [d

-1
] 

P��  Maximum E-specific rate of photosynthesis [d
-1

] 

r� Decay coefficient [d
-1

] 

r� Biomass production rate [g·m
-3

·d
-1

] 

R Biomass of the storage pool [g C·m
-3

] 

z Location inside the PBR along light path [m] 

Z Optical depth of photobioreactor [m] 

κ� Proportion of biosynthate allocated to synthesis of E [-] 

μ Specific growth rate [d
-1

] 

ρ$ Proportion of photosynthate allocated to L synthesis [-] 

ρ� Proportion of photosynthate allocated to E synthesis [-] 

ρ% Proportion of photosynthate allocated to R synthesis [-] 

σ Functional cross section of L [m
2
·mol photons

-1
] 
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Appendix 1 Simulation results for P. tricornutum cultures. 

 

In order to demonstrate general validity of the presented results, additional simulations 

were done for the significantly slower growing diatom Phaeodactylum tricornutum. The 

model parameters presented in Table 2.4 were taken from literature (Geider et al. 1996) 

and the model presented in Figure 2.1 was used. 

 

Table 2.4 Modeling parameter values for P. tricornutum (Geider et al. 1996). 

Parameter Value Units 

σ 1.0 m
2
⋅mol photons

-1
 

Chl: C 0.1 g⋅g
-1
⋅L

-1
 

A��	∗  10 m
2
⋅g

-1
 Chl a 

κ�(= ρ�) 0.6 - 

P�� 2.40 d
-1

 

r� 0.05 d
-1

 

μ��� 1.39 d
-1

 

 

Figure 2.6A shows the errors made in both the maximum biomass production rate and the 

associated growth rate at low light intensity, and Figure 2.6B for high light intensity, both 

as a function of the applied deceleration rate. Table 2.5 summarizes the P. tricornutum 

simulation results. It shows that the D-stat experiment results in a similar reduction of 

required experimental time compared to a series of chemostat experiments, as was found 

for T. pseudonana (Table 2.3). 
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The advantage of applying D-stat methodology is even more pronounced in this case, as 

P. tricornutum has a maximum specific growth rate that is less than half that of 

T. pseudonana. Thus it takes more time to achieve steady state in chemostat cultures, as 

can be seen in Table 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Errors in the D-stat estimation of the steady state parameters at which the 

maximum biomass production rate occurs in comparison to the true chemostat 

optimum, as a function of the deceleration rate. Errors in the simulated 

determination of r� (black line) and the associated specific growth rate μ (dashed 

line), expressed as a percentage of the values that resulted in the maximum 

biomass production rate in chemostat. Cultures of the microalga P. tricornutum 

were simulated at low (a) and high (b) light intensity. The dotted grey lines 

represent the accepted ± 5% error margin. Also shown is the reduction in required 

experimental time in case the D-stat technique is applied (grey line), expressed in a 

percentage of the time needed for a series of chemostat experiments. Low and 

high light intensities correspond with 100 and 1000 µmol photons m
-2
⋅s

-1
 of PAR. 
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A pneumatically agitated 

flat-panel photobioreactor 

with gas re-circulation: 

anaerobic 

photoheterotrophic 

cultivation of a purple non-

sulfur bacterium 

 

 

The contents of this chapter have been published as 

Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffels RH. 2002. A pneumatically agitated 

flat-panel photobioreactor with gas re-circulation: anaerobic photoheterotrophic 

cultivation of a purple non-sulfur bacterium. International Journal of  Hydrogen Energy 

27:1331-1338.  
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3. A pneumatically agitated flat-panel photobioreactor with gas re-

circulation: anaerobic photoheterotrophic cultivation of a purple 

non-sulfur bacterium 

 

Abstract 

 

The application of hydrogen as a notable energy carrier in the near future becomes more 

and more evident. Within the process of photobiological hydrogen production, purple 

non-sulfur bacteria are an interesting subject of study because of their high hydrogen 

producing capacity. In the research presented, a Rhodopseudomonas species was used, 

which had proven to be an efficient hydrogen producer from acetic acid and light energy. 

A combination of a short light path, combined with turbulent mixing, can counter-act the 

effect of self-shading in a photobioreactor. Therefore we constructed a pneumatically 

agitated flat-panel photobioreactor with a light path of only 3 cm. The gas used for 

agitation was re-circulated in the closed, anaerobic system. 

Batch experiments and a chemostat experiment were performed to demonstrate the 

proper functioning of the new reactor. Evidence is provided that gas re-circulation might 

even be a prerequisite for growth in a pneumatically agitated system in order to retain a 

sufficient concentration of dissolved carbon dioxide in the culture liquid. 
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Introduction 

 

The worldwide energy requirement is growing exponentially, the reserves of fossil fuels 

are decreasing rapidly and the combustion of fossil fuels has serious negative effects on 

the environment. For this reason, much research is aimed at the exploration of new and 

sustainable energy production systems that could substitute energy production based on 

fossil fuels. 

Hydrogen is a clean and efficient fuel and is definitely a potential substitute. Most 

hydrogen used today is produced in physical-chemical processes (steam reforming of 

natural gas) or electrochemical processes (electrolysis of water). These processes are 

energy intensive and they are not sustainable because there is only a limited reserve of 

fossil fuels. 

Biomass can also be used as the raw material to produce hydrogen. This can be done 

either by physical/chemical treatment, for instance gasification, or by conversion in a 

biological system. A drawback of gasification is the large amount of energy needed to 

evaporate the water present in the biomass. Wet substrates are favorable to biological 

systems for hydrogen production. Biological hydrogen production could play an important 

role in developing a renewable hydrogen industry (Benemann 1996). 

Anoxygenic photosynthetic bacteria (purple non-sulfur bacteria) can produce hydrogen 

from simple organic molecules like organic acids or alcoholic compounds. Light energy 

(sunlight) is used to provide the energy needed for this thermodynamically unfavorable 

conversion. The combination of these bacteria and other bacteria (Facultative anaerobes, 

obligate anaerobes or even thermophiles and aerobes) in a two-step system could provide 

a system that can efficiently produce hydrogen from carbohydrates present in (waste) 

biomass. In the first step of such a process bacteria convert the carbohydrates to organic 

acids like acetate. In the second photoheterotrophic step the organic acids are converted 

to hydrogen (Barbosa et al. 2001; Claassen et al. 1999). 
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Examples of full-scale application of biological systems for the production of hydrogen are 

not presented in literature, but research on lab scale is well documented (Asada and 

Miyake 1999; Zürrer and Bachofen 1979). For the successful scale-up of the second 

photoheterotrophic step, the efficiency at which light energy is directed to biomass 

growth and hydrogen production is the most important optimization parameter. 

Also in algal biotechnology research has been focused on the efficient utilization of solar 

irradiance. The light utilization efficiency was found to be close to the theoretical 

maximum in short light-path photobioreactors operated at high biomass densities and 

intense aeration (Qiang et al. 1996; Richmond 2000). This was demonstrated under 

outdoor solar irradiation for the cultivation of the phototrophic cyanobacterium Spirulina 

platensis (Qiang et al. 1998a). 

For this reason we developed a lab-scale flat-panel photobioreactor for the anaerobic 

cultivation of purple non-sulfur bacteria and concomitant hydrogen production from 

organic acids. Richmond and co-workers (Richmond 2000) were able to use air as the gas 

facilitating turbulent mixing. For the process of photoheterotrophic hydrogen production, 

argon needs to be used because oxygen (air) and nitrogen gas lower nitrogenase-based 

hydrogen production. The continuous throughput of fresh argon gas is expensive and the 

hydrogen produced will be diluted strongly. These effects are undesirable and applying a 

closed gas-re-circulation system could provide a solution for this problem. 

In this study a lab scale flat-panel photobioreactor design is described. It was tested for its 

applicability for the cultivation of the purple non-sulfur bacterium Rhodopseudomonas sp. 

The experiments were done using continuous re-circulation of argon gas. It was 

demonstrated that the system works well and that a steady state could be attained. In 

addition, it will be shown that gas re-circulation might even be essential to maintain 

optimal growth conditions. 
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Materials and Methods 

 

Bacterial strain and medium composition 

A Rhodopseudomonas sp. HCC 2037 culture was kindly provided by JoAnn Radway of the 

University of Hawaii. The culture was maintained in so-called ‘SyA’ medium under a 

nitrogen headspace. The composition of the SyA medium is given in Table 3.1. The 

cultures were illuminated with 90 µmol m
-2
⋅s

-1
 of PAR (Photosynthetic Active Radiation, 

400 – 700 nm) in a day/night cycle of 16 h/8 h at 25°C. 

During the batch experiments so-called ‘AA-b’ medium was used. During the chemostat 

experiment the culture was diluted with so-called ‘AA-c’ medium. The composition of the 

media is given in Table 3.1. The media were prepared from concentrated stock solutions 

and autoclaved prior to use. Calcium chloride and magnesium sulfate were autoclaved 

together, but separated from the other components to prevent calcium- and magnesium 

phosphate depositions. The concentrated vitamin solution used was filter sterilized first. 

Initially AA-b1 medium was used, which is similar to the SyA medium except for the 

concentrations of the carbon- and nitrogen source. After some experiments it was found 

that the gas spargers clogged. This was probably due to calcium- and magnesium 

phosphate precipitations. In further experiments, the concentrations of phosphate buffer 

and macronutrients (calcium chloride and magnesium sulfate) were reduced to the levels 

indicated under AA-b2 medium in Table 3.1. 

The concentrations of elements needed to yield a certain biomass concentration (C�) 

were calculated according to the elemental composition of our bacterium (measurements 

not published). This composition was CH1.76O0.38N0.14. The phosphorous content was taken 

to be 1.61% as reported by Tsygankov and Laurinavichene (Tsygankov and Laurinavichene 

1996b) for Rhodobacter capsulatus. The sulfur content of the bacteria was assumed to be 

0.0045 mol⋅mol C
-1

. Taking this into account, the elemental composition of the biomass 

yielded CH1.76O0.38N0.14P0.01S0.0045. 
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Table 3.1 Composition of the different media used. 

 

Component class 

 

Component 

Concentration [mg⋅L
-1

] 

SyA 

medium 

AA-b1 

medium 

AA-b2 

medium 

AA-c 

medium 

Vitamins 

biotin 1 - - 1 

thiamin 1 - - 1 

p-amino benzoic acid 1 - - 1 

vitamin b12 1 - - 1 

nicotinamide 1 - - 1 

Phosphate buffer 
KH2PO4 1732 1732 108.3 433 

K2HPO4 1466 1466 91.6 366 

Macro nutrients 

MgSO4.7H2O 200 200 12.5 50 

CaCl2.2H2O 99 99 6.2 25 

Na2EDTA.H2O 20 20 20 20 

FeSO4.7H2O 11.8 11.8 11.8 11.8 

H3BO3 2.8 2.8 2.8 2.8 

MnSO4.H2O 2.77 2.77 2.77 2.77 

Na2SO4.7H2O 0.75 0.75 0.75 0.75 

ZnSO4.7H2O 0.24 0.24 0.24 0.24 

Cu(NO3)2.3H2O 0.04 0.04 0.04 0.04 

C and N sources 

Na-succinate 8100 - - - 

Yeast extract 1000 - - 100 

Na-acetate [mM] 20 40 40 105 

NH4Cl [mM] - 9.3 9.3 24.3 

(NH4)2SO4 [mM] - - 0.39 1.11 

 



  A pneumatically agitated flat-panel photobioreactor with gas re-circulation 

  67 

On the basis of this elemental composition, the AA-b2 medium was designed to support a 

C� of 1.7 g⋅L
-1

. The concentrations of magnesium and calcium were assumed to be 

sufficient to support this biomass density although no references were found in literature 

to support this. The composition of the ’AA-c’ medium that was used for chemostat 

cultivation is also shown in Table 3.1. It was designed to support a C� of 4 g⋅L
-1

. 

 

Acetic acid determination 

The acetic acid concentration in the culture medium was determined by gas 

chromatography. Samples were centrifuged and the supernatant was diluted 1:1 with 3% 

(v/v) formic acid and stored at -80 °C. The samples were analyzed on a HP 5890 gas 

chromatograph equipped with a glass packed column (length 2 m, internal diameter 

2 mm, 10% Fluorad 431 on Supelco-port, 100 – 120 mesh) and a FID (flame ionization 

detector). The column and the FID were kept at 130 and 280 °C, respectively. Nitrogen 

saturated with formic acid was used as the carrier gas at a flow rate of 40 mL⋅min
-1

. 

 

Ammonium determination 

Samples for ammonium determinations were centrifuged and the supernatant was stored 

at -80°C. The concentration of ammonium in the samples was determined using Nessler’s 

reagent. Nessler’s reagent (HgI4

2-
) together with NH4

+
 forms the yellow complex NH4HgI4; 

potassium sodium tartrate was added to keep the salts dissolved that might interfere with 

the determination. The absorbance was read at 440 nm on a Spectronic 20 Genesys 

spectrophotometer and compared to the absorbance of standard solutions. 

 

Hydrogen determination 

The volume fraction of hydrogen in the gas produced was determined using a gas 

chromatograph: Chrompack CP9000 series equipped with a packed column (length 1.8 m, 

internal diameter 0.25 inch, molsieve 13X, 60-80 mesh) and a TCD (thermal conductivity 
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detector). The column and the TCD were kept at 100 and 120°C, respectively. The carrier 

gas was argon at a flow rate of 20 mL⋅min
-1

. 

 

Light intensity 

The PAR light intensity was measured using a LI SA-190 quantum sensor combined with a 

LI-250 read-out unit (Li-Cor, USA). 

 

Other determinations 

Bacterial growth was monitored measuring the optical density of the cultures at 660 nm 

(OD660) using a Spectronic 20 Genesys spectrophotometer. The cell dry weight was 

determined by centrifuging 50 ml of cell suspension (7000 g for 10 min), washing the 

pellet with deionized water and drying at 103°C until constant weight. One OD660-unit was 

found to be equal to a C� of 0.7 g⋅L
-1

. 

 

Chemicals 

All chemicals used were reagent grade and produced by Merck, Darmstadt, Germany. 

 

Flat-panel photobioreactor 

The new design of the flat-panel photobioreactor (PRB) is depicted in Figure 3.1. It was 

autoclaved completely prior to all runs. It consists of a stainless steel frame and 

polycarbonate panels. A membrane gas pump circulates the gas through the spargers 

(hypodermic needles) at the bottom of the reactor. The produced gas is collected in a 

gasbag. Two 1-liter pressure vessels prevent pressure fluctuations in the gas re-circulation 

system. A pressure valve maintains a constant input pressure to the mass flow controller. 

A condenser prevents water vapor from entering the gas re-circulation system. A pH 

electrode and a redox electrode were fitted into the reactor for pH-control and 

monitoring purposes, respectively. The medium was autoclaved separately and fed to the 

reactor after autoclaving. 
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Figure 3.1 Schematical drawing of the bioreactor setup. Membrane gas pump (1); gasbag for 

collection of produced gas (2); two 1-liter pressure vessels (3); pressure valve (4); 

mass flow controller (5); condenser (6); pH/redox electrode (7). 
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The reactor is composed of two compartments located behind each other. The front 

compartment contains the bacterial culture (3 cm deep). The culture volume is 2.4 liters. 

Through the other compartment (2 cm deep) water was circulated via a temperature 

controlled water bath in order to maintain the temperature at 30°C. 

Two 500 W tungsten-halogen lamps (Philips Halotone R7s fitted in Philips QVF 415n 

reflectors) are placed on one side of the reactor. The lamps are mounted above each 

other in a frame and placed on 75 cm distance from the reactor. The average light 

intensity at the reactor surface was 325 µmol PAR⋅m
-2
⋅s

-1
.  

Bacterial growth was monitored on-line. On the left-hand side of the reactor a small tube 

was attached to the reactor Figure 3.1). The bacterial suspension flowed through this tube 

as a result of an airlift effect. A red light emitting diode (LED) peaking at 665 nm was used 

as a light source on one side of the tube. On the other side an in-house constructed PAR 

light sensor registered the remaining PAR light intensity as a mV signal. This signal was 

translated to a value similar to the absorbance measured in a spectrophotometer 

according to Equation 3.1. 

 

Equation 3.1 ABS = −log :
:; 

 

Where ABS = absorbance [-] 

 < = light-induced signal after passage through the tube [mV] 

 <2 = reference light-induced signal with only medium without bacteria in the tube [mV] 

 

The liquid level was controlled using another similar homemade light sensor as described 

previously.  The sensor is placed behind the reactor at the desired level and the effluent 

pump was controlled on the basis of this signal. The set-up was computer controlled and 

most signals were recorded using a data logger. The pH was controlled at 6.8 – 7.0 in all 

experiments using 0.5 M HCl dosing. 
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Serum flask experiments 

In one experiment to assess the influence of the ammonium concentration 8 closed 

100 mL serum flasks were used. These were filled with 50 mL of medium and autoclaved. 

The flasks were inoculated under an argon headspace. The flasks were stirred 

continuously using a magnetic stirrer and illuminated with 90 µmol PAR⋅m
-2
⋅s

-1
 in a 

day/night cycle of 16 h/8 h at 25°C. 

 

Bubble column experiments 

Other experiments were done in small 300 mL glass bubble columns to investigate the 

effect of shear on Rhodopseudomonas sp. The reactors were equipped with a water jacket 

for the re-circulation of cooling water via a temperature controlled water bath. The 

temperature was controlled at 30°C. The reactors were autoclaved empty and filled with 

medium afterwards. Two 300 W tungsten-halogen lamps (Philips Halotone R7s fitted in 

Philips QVF 415n reflectors) were placed on one side of the reactor. The lamps were 

mounted above each other and placed on 30 cm distance from the reactor in order to 

yield an average light intensity of 250 µmol PAR⋅m
-2
⋅s

-1
 at the reactor surface. 

 

 

Results and Discussion 

 

Operation of flat-panel photobioreactor with continuous gassing of argon 

During this first experiment using the flat-panel bioreactor AA-b2 medium was used, 

containing 40 mM acetate and 9.3 mM ammonium.  The reactor was gassed continuously 

with argon at a flow rate of 0.83 L⋅L
-1
⋅min

-1
. Argon was used as the agitation gas because 

oxygen and nitrogen negatively affect the hydrogen evolving capacity of the bacterial 

nitrogenase enzyme. 

The recorded on-line absorbance of the bacterial suspension is shown in Figure 3.2. This 

absorbance was measured in a small tube attached to the reactor in which the culture 
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flowed. It can be seen clearly that the absorbance of the culture does not change and 

apparently no growth occurred. 

 

Figure 3.2 Light absorbance and OD660-values during all experiments in the flat-panel 

photobioreactor. On-line light absorbance measurement during the batch 

experiment with continuous argon sparging (1). On-line light absorbance 

measurement and off-line OD660 measurements (�) during the batch experiment 

with gas re-circulation (2). On-line light absorbance measurement and the off-line 

OD660 measurements (�) during the chemostat experiment (3). The arrow indicates 

the point where the batch pre-culture ended and chemostat operation was 

started. 
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It was unclear what the reason for the absence of growth was. Possibly ammonium-

inhibition played a role. No data was available on possible growth inhibition of ammonium 

on Rhodopseudomonas sp. Therefore, a set of serum flask experiments was performed to 

assess the effect of ammonium on the growth and hydrogen evolution of our species. 

The results are presented in Figure 3.3. Batch incubations were performed using AA-b1 

medium with 30 mM acetate and 0, 1, 2, 5, 10, 15 and 20 mM of ammonium respectively. 

At the end of the growth phase the OD660 and the volume fraction of H2 in the headspace 

were determined. Using the volume fraction the total amount of hydrogen gas produced 

was calculated. It can be seen clearly that the final OD660 value increases with the 

increasing initial concentration of ammonium up to 20 mM. A concentration of 9.3 mM of 

ammonium is therefore much too low to cause full inhibition of growth. From Figure 3.3 it 

is also clear that ammonium represses hydrogen production significantly above a 

concentration of 5 mM. It is a well-known fact from literature that ammonium inhibits the 

nitrogenase enzyme at milli-molar concentrations (Fedorov et al. 1999; Yagi et al. 1994; 

Yakunin and Hallenbeck 1998). 
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Figure 3.3 The influence of the initial ammonium concentration on the final OD660 value (�) 

and the total amount of hydrogen gas evolved (�) in closed 100 ml serum flasks. 

 

Another explanation for the lack of growth in the flat-panel photobioreactor continuously 

gassed with argon could be shear stress caused by gas bubbling. In order to investigate 

this further, five experiments were performed in 300 ml glass bubble columns, using 

nitrogen or argon at various flow rates. AA-b1 medium with 40 mM of acetate and 9.3 

mM of ammonium was used. Five experiments were done: one experiment without any 

agitation, another experiment applying 2 L⋅min
-1

 nitrogen, and three more experiments 

applying argon at 0.33, 1.66 and 6.66 L⋅L
-1
⋅min

-1
 respectively. Figure 3.4 shows the optical 

density (OD660) in time for all experiments. Only in the experiment in which no agitation 

was applied an OD660-increase was observed. The optical density reached a value of 2.4; 

this is equal to a C� of 1.7 g⋅L
-1

, which was the biomass concentration the medium was 
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designed for. The remaining incubations did not show any increase in OD660 in time, 

indicating that no growth had occurred. From these results it is clear that pneumatic 

agitation with nitrogen or argon inhibited bacterial growth at 6.66 L⋅L
-1
⋅min

-1
 and at any 

flow rate ranging from 0.33 to 6.66 L⋅L
-1
⋅min

-1
 respectively. 

The extremely low flow rate of 0.33 L⋅L
-1
⋅min

-1
 already prevented the culture from 

growing, which made shear stress improbable. Moreover, all bacteria from the 

Rhodospirillaceae family are contained by a cell wall (Weckesser et al. 1995) that offers 

extra protection against shear stress. 

The absence of growth could also have something to do with stripping of carbon dioxide 

from the culture medium by the continuous gas flow. The carbon dioxide dependent 

growth of members of the Rhodospirillaceae family on acetate as the only organic 

substrate can be explained in two ways. Firstly, when phototrophic bacteria grow on 

highly reduced substrates they must have a means for disposing of excess reducing 

equivalents, in order to retain the redox balance between the substrates consumed and 

their metabolic products (Ferguson et al. 1987). These reduction equivalents can be 

consumed by the Calvin cycle enzymes during carbon dioxide fixation (Lascelles 1960). 

Dependent on the discrepancy between the degree of reduction of the biomass and the 

organic substrate carbon dioxide can be either produced or consumed (Sojka 1978). The 

incorporation of 
14

CO2 into cell material during growth of Rhodospirillum rubrum on a 

range of reduced carbon substrates including acetate was observed. There was only net 

uptake of carbon dioxide during growth on propionate and butyrate (Ormerod 1956). 

Moreover it was shown that the activity of ribulose bisphosphate carboxylase (the enzyme 

responsible for carbon dioxide fixation in the Calvin cycle) of Rhodobacter sphaeroides 

was strongly de-repressed during growth on highly reduced substrates (Gibson and Tabita 

1976). Although the operation of the Calvin cycle may be needed to a certain extent, it is 

energetically expensive and assimilation of a broad spectrum of reduced substrates is 

apparently favored over wholesale carbon dioxide fixation (Ferguson et al. 1987). 
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Secondly, a large group of phototrophic bacteria from the Rhodospirillacae family lack the 

enzyme isocitrate lyase. This enzyme is part of the glyoxylate cycle that replenishes the 

pool of citric acid cycle intermediates. A large group of these bacteria are able to grow on 

acetate as the sole organic substrate and therefore need another route for the 

replenishment of the used citric acid cycle intermediates. Ivanovskii et al (Ivanovskii et al. 

1997) proposed an anaplerotic cycle of acetate assimilation in which citramalate is an 

intermediate during glyoxylate formation. In this citramalate cycle carbon dioxide is used 

and formed again and no net consumption takes place. However, since propionyl-CoA 

carboxylase (the enzyme that couples carbon dioxide to propionate) has a low affinity for 

carbon dioxide a certain carbon dioxide concentration is needed to maintain a high rate of 

growth and acetate assimilation (Ivanovskii et al. 1997). 

Possibly most of the carbon dioxide produced was removed in our pneumatically agitated 

systems quite efficiently due to the continuous stripping with argon gas. This might have 

caused the absence of growth in this first experiment with the flat-panel photobioreactor. 

It gave an extra incentive to start with experiments using the gas re-circulation system. In 

this mode of operation all the carbon dioxide produced is retained in the system.  
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Figure 3.4 The influence of the type of gas agitation and its flow rate on bacterial growth, 

measured as OD660 in 300 mL bubble columns. No gas agitation (bold line); 

Nitrogen 6.66 L⋅L
-1
⋅min

-1
 (�); Argon 6.66 L⋅L

-1
⋅min

-1
 (�); Argon 1.66 L⋅L

-1
⋅min

-1
 (◊); 

Argon 0.33 L⋅L
-1
⋅min

-1
 (∇). 

 

Operation of the flat-panel photobioreactor with gas re-circulation 

A batch experiment in the flat-panel photobioreactor system was performed using gas re-

circulation. After inoculation the complete system was flushed with argon to create 

anaerobic conditions and the gas re-circulation was switched on at 0.83 L⋅L
-1
⋅min

-1
. AA-b2 

medium was used, containing 40 mM acetate and 9.3 mM ammonium. In Figure 3.2 the 

development of both the recorded on-line culture absorbance, and the OD660 measured 

off-line are shown. During the course of the experiment the absorbance of the bacterial 

suspension increased significantly from 0.01 to 0.25. The off-line OD660 measurements, 

also shown in Figure 3.2, show the same trend and increased from 0.15 to 1.2. It is clear 
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that growth occurred now and apparently our assumption of carbon dioxide depletion in 

the previous experiment was correct because during this new experiment with gas re-

circulation growth was supported. The medium was designed to support 1.7 g⋅L
-1

 of dry 

weight biomass and as can be seen from Figure 3.2 an OD660 of 1.2 was reached. This 

value equals 0.85 g⋅L
-1

 of biomass. It is not clear why the biomass concentration remained 

lower than anticipated, while acetate and ammonium were still present in the medium. 

After growth was demonstrated in batch culture, an experiment was performed to 

cultivate Rhodopseudomonas sp. in chemostat. During this experiment the redox potential 

of the culture was monitored to check for anaerobicity. First, a batch pre-culture was 

grown similar to the one described above. This time, AA-b2 medium was used; a small 

amount of yeast extract and vitamins was added to stimulate growth at concentrations 

indicated under AA-c medium (Table 3.1). After the batch pre-culture, the culture was 

switched to a chemostat at a dilution rate of 0.035 h
-1

. This rate equals 50% of the 

maximum growth rate of our Rhodopseudomonas sp. of 0.07 h
-1

 measured in batch 

experiments previously (data not published). 

During chemostat mode the AA-c medium (Table 3.1) was used. The elemental 

composition of this medium supports a C� of 4 g⋅L
-1

. Figure 3.2 shows the development of 

both the culture absorbance recorded on-line and the OD660 measured off-line. As can be 

seen from Figure 3.2, the OD660 was 1.2 at the end of the batch pre-culture, which equals 

a C� of 0.84 g⋅L
-1

. This is identical to the previous experiment. Apparently the vitamins and 

yeast extract added did not contribute to a higher biomass concentration at the end of 

the batch culture. 

After switching to a chemostat on day 4, a slight temporal decrease in absorbance can be 

observed (Figure 3.2). Possibly the culture needed some adaptation time. After this the C� 

rose again and became more stable at an OD660 of 1.63, which equals 1.14 g of 

biomass⋅L
-1

. It is not clear what is the reason why the C� was lower than anticipated. 
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Figure 3.5 Concentrations of acetate (�) and ammonium (�) during the chemostat 

experiment in the flat panel photobioreactor (line 3 in Figure 3.2). 

 

Possibly it was caused by a limitation in the concentrations of calcium chloride, 

magnesium sulfate or phosphate in the medium. During preliminary experiments in the 

flat-panel photobioreactor we observed clogging of the gas spargers due to salt 

precipitates. Probably these precipitates were calcium- and magnesium phosphates. 

Therefore we decided to lower the concentrations of calcium chloride, magnesium sulfate 

and phosphate buffer, which resulted in the AA-b2 medium as given in Table 3.1. Another 

possibility is that the light intensity on the reactor surface, 325 μmol m
-2
⋅s

-1
 on average, 

did not support a high concentration of biomass in our chemostat. 

Figure 3.5 shows the concentrations of acetate and ammonium during the entire 

experiment. It can be seen that the concentrations decrease fast during the batch period. 

After day 4, at the start of continuous chemostat dilution, the concentrations of both 
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acetate and ammonium increase again due to the fact that more of the substrates is 

introduced than can be consumed by the culture. During the entire experiment the 

ammonium concentration remains higher than 4 mM. This is too high to facilitate 

hydrogen production, as can be seen in Figure 3.3. In Figure 3.5 we can also see that the 

consumption of the two substrates follows the biomass composition perfectly. The C/N 

ratio in the consumption of substrates equals 8.3 throughout the experiment. This 

corresponds perfectly with the elemental balance shown in Equation 3.2, from which a 

C/N ratio of 8 can be calculated. The biomass composition was determined in previous 

experiments (data not published). 

 

Equation 3.2 3.96 CH3COOH + NH4+ � 7.143 CH1.76O0.38N0.14 + 0.79 CO2 + 3.64 H2O 

 

The redox potential remained around –50 mV during the entire experiment, indicating 

anaerobic conditions. 

 

 

Conclusions 

It was demonstrated that the newly developed photobioreactor with gas re-circulation 

functions properly. It was possible to attain a chemostat culture of a photoheterotrophic 

bacterium under anaerobic conditions.  

The observed absence of growth of Rhodopseudomonas sp. during experiments with 

continuous gassing with argon was probably caused by the need for carbon dioxide. When 

gas re-circulation was applied, growth was observed. Apparently carbon dioxide is needed 

when photosynthetic bacteria grow on reduced carbon substrates. Indications in this 

direction were also found in literature. 

This new design of a flat-panel photobioreactor with pneumatic agitation opens up a 

future in which possibly light energy can be directed to hydrogen gas production at high 

efficiency. 
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The contents of this chapter have been published as 

Hoekema S, Douma, RD, Janssen M, Tramper J, Wijffels RH. 2006. Controlling light-use by 

Rhodobacter capsulatus continuous cultures in a flat-panel photobioreactor. 

Biotechnology and Bioengineering  95(4):613-626. 
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4. Controlling light-use by Rhodobacter capsulatus continuous 

cultures in a flat-panel photobioreactor 

 

Abstract 

 

The main bottleneck in scale-up of phototrophic fermentation is the low efficiency of light 

energy conversion to the desired product, which is caused by an excessive dissipation of 

light energy to heat. The photoheterotrophic formation of hydrogen from acetate and 

light energy by the microorganism Rhodobacter capsulatus NCIMB 11773 was chosen as a 

case study in this work. A light energy balance was set up, in which the total bacterial light 

energy absorption is split up and attributed to its destinations. These are biomass growth 

and maintenance, generation of hydrogen and photosynthetic heat dissipation. 

The constants defined in the light energy balance were determined experimentally using a 

flat-panel photobioreactor with a three centimeter optical path. An experimental method 

called D-stat was applied. Continuous cultures were kept in a so-called pseudo steady-

state, while the dilution rate was reduced slowly and smoothly. The biomass yield and 

maintenance coefficients of Rhodobacter capsulatus biomass on light energy were 

determined at 8.4 W⋅m
-2

 (400 – 950 nm) and amounted to 3.8 ± 0.03⋅10
-8

 kg⋅J
-1

 and 

71.6 ± 11.3 W⋅kg
-1

, respectively. 

The fraction of the absorbed light energy that was dissipated to heat at 410 W⋅m
-2

 

depended on the biomass concentration in the reactor and varied between 0.85 and 0.90, 

as the biomass concentration was increased from 2.0 to 8.0 kg⋅m
-3

. The process conditions 

were estimated at which a 3.3% conversion efficiency of absorbed light energy to 

produced hydrogen energy should be attainable at 410 W⋅m
-2

. 
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Introduction 

 

Phototrophic microorganisms are of commercial interest due to the fact that they 

produce a wide variety of valuable compounds that are used in industry today. Their 

protein and pigment content makes them suitable for whole cell application in food- and 

feed industry. Extracts containing compounds such as colouring agents, biopolymers, anti-

oxidants and vitamins can be used in functional foods, personal care products and 

pharmaceuticals (Apt and Behrens 1999; Pulz et al. 2001). Purple non-sulphur bacteria in 

specific are interesting because of their ability to generate the energy carrier hydrogen 

from simple organic molecules, under photoheterotrophic conditions (Sasikala et al. 

1993). 

Industrial application of phototrophic fermentation is generally restricted by the limited 

efficiency of light energy conversion. This photosynthetic efficiency is defined as the 

fraction of the absorbed light energy that is converted into the energy content (enthalpy 

of combustion) of the desired product. This product can be either the generated biomass 

itself or a certain product ‘p’ either contained in the biomass or excreted by it. 

The development of strategies on how to improve the photosynthetic efficiency of the 

direct conversion of light energy to specific metabolites has not been looked into in great 

detail. For example in case the product of interest is not part of the biomass produced, 

but an extra-cellular metabolite. As a case study, we investigated the conversion of 

acetate and light energy to hydrogen energy by the purple non-sulphur bacterium 

Rhodobacter capsulatus NCIMB 11773. Values reported in literature on the 

photosynthetic efficiency of photoheterotrophic hydrogen formation can be as high as 

9.6 – 35% (Miyake and Kawamura 1987; Nagamine et al. 1996; Yamada et al. 1998). 

However, these efficiencies were measured in small scale batch experiments at low light 

intensities, applying illumination by xenon lamps. The photosynthetic efficiency of 

photoheterotrophic hydrogen formation that can be calculated from literature data when 

solar or tungsten halogen illumination is used are in the 0.5 – 6% range. It declines as the 
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volume to surface ratio and/or the light intensity is increased (Otsuki et al. 1998; Sasaki 

1998; Steinborn and Oelze 1989; Zürrer and Bachofen 1982). Evidently, larger scale 

processes and real daylight conditions need to be considered when investigating the 

efficient use of sunlight. The global solar irradiance on a day in June in Seville (south of 

Spain) for example varies from 100 W⋅m
-2

 in the morning to 1100 W⋅m
-2

 from 2 – 3 p.m. 

Similar light intensities should be taken as a reference point to investigate the possibilities 

of the commercial application of the direct conversion of light energy to hydrogen energy 

using a photobiological process. 

In order to do so, a systematic approach was chosen towards studying the growth and 

hydrogen producing capacity of continuous Rhodobacter capsulatus cultures. All 

continuous experiments in this work were performed in a 3.6 L flat-panel photobioreactor 

with a working volume of 2.4 L and an optical path (OP) of 3 cm, as described previously 

(Hoekema et al. 2002). A light energy balance, in which the energetic expenses related to 

light absorption for biomass formation, biomass maintenance, photosynthetic heat 

dissipation and hydrogen production are included is presented. Also, a strategy on 

calculating the maximally achievable volumetric rate of hydrogen production is given. 

 

Equation 4.1 r	=� = >I ! − I���(C�)? ∙ A
 

 

Where r	=�  = Volumetric light energy absorption in W⋅m
-3

 (400 – 950 nm) 

 I = Light intensity in W⋅m
-2

 (400 – 950 nm) 

 in = Entering 

 out = Exiting 

 C� = Biomass concentration in kg⋅m
-3

 

 A = Specific surface area in m
2
⋅m

-3
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Figure 4.1 Schematic representation of light energy absorption by a phototrophic 

microorganism. Overall light energy absorption on reactor scale according to 

Equation 4.1 (A). Metabolic heat is released during the entire metabolism. 

Photosynthetic heat dissipation is defined as the overflow mechanism of the light 

harvesting antenna system in Equation 4.2 (B). Abbreviations: LHC light harvesting 

complex; ABC2 photosystem reaction center; NADH protonated nicotinamide 

adenine di-nucleotide; ATP adenosine tri-phosphate. 
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Theory 

 

The light energy balance 

The overall light energy absorption inside a photobioreactor (PBR) can be described using 

Equation 4.1.  

Figure 4.1 A is a schematic representation of this process. 

The light energy that is absorbed has several destinations. In case of purple non-sulphur 

bacteria producing hydrogen photoheterotrophically, these are: (1) biomass growth, (2) 

biomass maintenance, (3) hydrogen generation and (4) photosynthetic heat dissipation. 

When the primary electron donor ABC2  in the photosystem of purple non sulphur bacteria 

is saturated by photons, additional photons that are absorbed by that photosystem do not 

result in additional primary charge separation (Sundström and van Grondelle 1995). This 

phenomenon occurs at high light intensities. All additional light energy that is absorbed on 

top of saturation is therefore dissipated as heat (Koyama 1991). This dissipation of light 

energy within a photosynthetic unit is illustrated in  

Figure 4.1B and is considered to be a separate heat flow next to the metabolic heat 

generated during overall metabolism. 

The total volumetric light energy absorption can be assigned to its 4 destinations 

according to Equation 4.2, when steady-state is assumed. 

 

Equation 4.2 r	=� = ��D
E�,GH + m	= ∙ C� + �JKD

EJK,GH + f�=��(C�) ∙ r	=�  

 

Where MNO = PN ∙ Q, giving the volumetric biomass production rate in kg⋅m
-3
⋅s

-1
 

 RN,ST  = yield coefficient of biomass on light energy in kg⋅J
-1

 

 mle = biomass maintenance coefficient on light energy in W⋅kg
-1

 

 MUK
O  = PN ∙ VUK, giving the volumetric hydrogen production rate in mol m

-3
⋅s

-1
 

 RUK,ST  =  yield coefficient of hydrogen energy on absorbed light energy in mol⋅J
-1

  

 WXTYZ   = fraction of the absorbed light energy that is dissipated to heat within the photosystem. 
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The relationship between the stoichiometry of substrate to biomass conversion, light 

energy absorption and heat generation in the photosystem and that resulting from overall 

metabolism of a photoheterotrophic culture will be demonstrated a by means of an 

enthalpy balance. 

 

Equation 4.2 was extended with a restriction that limits the specific hydrogen production 

rate q\K  to the experimentally determined maximal specific hydrogen production rate 

(q\K,���, mol⋅kg
-1
⋅s

-1
). This restrictive addition to Equation 4.2 can be expressed according 

to Equation 4.3. 

 

Equation 4.3 r\K
� ≤ C� ∙ q\K,��� 

 

The use of Equation 4.2 to model and predict the r\K
�  that can maximally be achieved 

requires the experimental determination of RN,ST, m	=, Y\K,	= and q\K,���, as well as a 

relation for the dependency of f�=�� on C�. 

 

Yield, maintenance and photosynthetic heat dissipation coefficients 

The yield coefficient of biomass on light energy RN,ST and the biomass maintenance 

coefficient on light energy m	= can be determined experimentally. The specific light 

absorption characteristics of the culture (r	=� /C�, W⋅kg
-1

) can be plotted against the specific 

growth rate for a number of steady-state combinations at different dilution rates, while 

applying a constant light intensity. This results in a straight line with slope 1/Y�,	= and 

offset m	=. The photosynthetic heat dissipation and hydrogen production terms in 

Equation 4.2 are required to remain zero in this case. 

The extent of photosynthetic heat dissipation can be minimized by applying low light 

intensities. The specific growth rate (μ, s
-1

) of a continuous Rhodobacter capsulatus 

culture was reported to increase linearly with the incident light intensity up to 30 W⋅m
-2

 

(Tsygankov and Laurinavichene 1996b). This indicates that by applying an incident light 
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intensity below a certain value, the photosynthetic dissipation of light energy to heat can 

be reduced to an insignificant level. Since the applied photobioreactor differs in various 

aspects from the one used by Tsygankov and Laurinavichene (Tsygankov and 

Laurinavichene 1996b), the assumption that photosynthetic heat dissipation does not 

occur below a light intensity of 30 W⋅m
-2

 requires experimental validation. 

Hydrogen production can be prevented by the presence of ammonium in the culture 

medium. The process of photobiological hydrogen production by purple non-sulfur 

bacteria like Rhodopseudomonas capsulatus is catalyzed by the nitrogenase enzyme-

complex. Hydrogen production by Rhodobacter capsulatus can be prevented by 

inactivating the nitrogenase enzyme-complex using ammonium ions. The nitrogenase 

activity of a Rhodobacter capsulatus culture is completely repressed when ammonium is 

present in the culture medium at a concentration of at least 1 mM (Jouanneau et al. 

1984). 

Knowing RN,ST and m	=, the dependency of the fraction of the absorbed light energy that is 

dissipated to heat on the applied biomass concentration f�=��(C�) can be quantified 

experimentally at high incident light intensity by applying Equation 4.2 and the 

parameters RN,ST and m	=. Prevention of hydrogen production by means of ammonium 

addition is still required. 

 

Estimation of the yield of hydrogen energy on light energy 

On average, the photosystem of purple non sulfur bacteria can convert one mole of 

quanta from tungsten halogen light to 0.51 moles of ATP (Göbel 1978) and own 

estimation). Miyake and Zaborsky estimated that nitrogenase-mediated photoproduction 

of one mole of hydrogen requires 6 moles of ATP and additionally 2 moles of quanta for 

the liberation of the required electrons (Miyake and Zaborsky 1998). In total, 12.9 moles 

of quanta are then needed for the photo production of 1 mole of hydrogen. The average 

energy content of a mole of quanta emitted by the applied tungsten halogen lamps in the 

400 – 950 nm range equals 167.3 kJ and the enthalpy of combustion of hydrogen is 
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285 kJ⋅mol
-1

. Using these data, the yield coefficient of hydrogen energy on light energy 

Y\K,	= can be estimated to be 8.86⋅10
-7

 mol⋅J
-1

. This corresponds to a light energy 

conversion yield to hydrogen energy of 25.3% in case tungsten halogen light is applied. In 

case of sunlight, the value of Y\K,	= becomes 10.6%, since a considerably smaller fraction 

of the energy in the solar spectrum is located around 860 nm, the absorption maximum of 

the photosystem of purple non-sulphur bacteria. 

 

 

Materials and methods 

 

Bacterial strain and medium composition 

The purple non-sulphur bacterium Rhodobacter capsulatus NCIMB 11773 was used in all 

experiments described in this work. It was selected based on its wide substrate range and 

high C-substrate to hydrogen conversion efficiency (Segers and Verstraete 1983). An 

exponentially growing culture was stored at -80°C in aliquots of 1 mL containing 15% 

glycerol. Prior to starting an experiment, a cryo-vial was thawed and its contents 

transferred aseptically to a 500 mL flask containing 250 mL of SYA-medium under a 

nitrogen headspace. This medium is based on previously reported aSy-medium (Miyake et 

al. 1984). The culture flasks were incubated at 30°C, stirred and continuously illuminated 

at about 90 µmol m
-2
⋅s

-1
 of photosynthetically active radiation (PAR, µmol photons m

-2
⋅s

-1
, 

400 – 700 nm). 

All D-stat experiments were performed with modified aSy-medium, designated 

‘AA’- medium (‘Acetate Ammonium’ medium). During the D-stat experiment under high 

light intensity (410 W⋅m
-2

), halfway the experiment all macro- and micro nutrient 

concentrations in the medium were doubled, to prevent them from becoming limiting for 

biomass growth. This medium was designated AA
+
-medium. All media used in the D-stat 

experiments had a carbon to nitrogen ratio (C/N-ratio) of 8.2. This value is equal to the 

C/N-ratio of the dried culture biomass. 
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The maximal hydrogen production rate q\K,��� of the Rhodobacter capsulatus 

NCIMB 11773 cultures was assessed in q\K,���-medium. It contained no ammonium and 

had a higher buffer capacity. 

The composition of all media described above is displayed in Table 4.1. The media were 

prepared from concentrated stock solutions, set to pH 7.0 and autoclaved prior to use. 

Only the calcium chloride and magnesium sulphate stock solution was autoclaved 

separately. The concentrated vitamin stock solution used was filter sterilized (0.2 μm) 

before aseptic addition to the medium. 

 

D-stat experiments 

The determination of the described parameters in Equation 4.2 requires the quantification 

of multiple steady-states at different combinations of volumetric light energy absorption 

r	=� , biomass concentration C� and specific growth rate μ. Acquiring such a data set is time 

consuming. 

A faster experimental technique is the acceleration (A)-stat. During this experimental 

procedure, the dilution rate (D, d
-1

) of a steady-state culture is increased slowly and 

smoothly towards a higher value using a certain acceleration rate (a, d
-2

). Since the culture 

remains in equilibrium with the increasing dilution rate, we refer to this dynamic 

equilibrium as ‘pseudo steady-state’ (Barbosa et al. 2003; Paalme et al. 1995). The 

concept was demonstrated before for continuous cultures of the bacterium E. coli 

(Paalme et al. 1995), the yeast Z. rouxii (van der Sluis et al. 2001b) and the marine micro-

alga D. tertiolectra (Barbosa et al. 2005). 

To allow for a further reduction in experimental time, all described experiments were 

started at the highest dilution rate in the desired range. After steady-state was 

demonstrated, the dilution rate was decelerated at a certain deceleration rate (d, d
-2

) and 

therefore we refer to these experiments as deceleration (D)-stat experiments. 

A- and D-stat experiments will give reliable predictions, provided that the metabolic 

adaptation time is smaller than the applied change in dilution rate (van der Sluis et al. 
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2001b). When the observed specific growth rate deviated less than 25% from the set 

dilution rate, pseudo steady-state was assumed to be maintained. 

We chose a deceleration rate of maximally -0.17 d
-2

. The pseudo steady-state criterion 

μ = D was validated during all experiments. Each D-stat experiment was started at the 

initial dilution rate D2 (, d
-1

), equal to 40% of the maximal specific growth rate at the 

applied light intensity. The dependency of the specific growth rate of Rhodobacter 

capsulatus on the incident light intensity was estimated from literature data (Tsygankov 

and Laurinavichene 1996b). After steady-state was demonstrated at D2, the decrease in 

the dilution rate was started until the final dilution rate, which was equal to zero, was 

reached. Halfway the experiment, the deceleration was halted to verify comparability 

between the pseudo steady-state situation and steady-state situation. In all cases these 

two situations were comparable. 

 

D-stat calculations 

Equation 4.1 and Equation 4.2 were re-written to give Equation 4.4, which describes the 

light energy absorption and utilization during a D-stat experiment in time, as C� increases. 

 

Equation 4.4 r	=� (t) = >I ! − I���(C�)? ∙ A = ��D(�)
E�,GH + m	= ∙ C�(t) + �JKD (�)

EJK,GH + 

f�=��(C�) ∙ r	=� (t) 

 

Biomass yield and maintenance under low light intensity 

By applying a light intensity below 30 W⋅m
-2

 and maintaining the ammonium 

concentration above 1 mM, both photosynthetic heat dissipation and hydrogen 

production are probably negligible, as motivated in the Theory section. Their 

corresponding terms can therefore be deleted from Equation 4.4, which then reduces to 

Equation 4.5. 
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Equation 4.5 r	=� (t) = a
E�,GH ∙ r��(t) + m	= ∙ C�(t) 

 

Equation 4.5 can be re-written to Equation 4.6: 

 

Equation 4.6 
rleu (t)
Cx(t) = d(Z)

Yx,le + mle 

 

The specific light energy absorption r	=� (t)/C�(t) can be plotted against the specific growth 

rate μ(t) for a dataset containing a number of pseudo steady-state combinations of r	=� (t) 

and C�(t) at constant (low) incident light intensity I. This results in a straight line with 

slope 1/Y�,	= and offset m	=, as described in the Theory section. 

 

Determination of the specific growth rate  

The rate of biomass production during a D-stat experiment can be described according to 

Equation 4.7. 

 

Equation 4.7 r��(t) = 	μ(t) ∙ C�(t) = f��(�)
f� + D(t) ∙ C�(t) 

 

From Equation 4.7, μ(t) can be isolated according to Equation 4.8: 

 

Equation 4.8 μ(t) = gh�(i)
gi��(�) + D(t) 

 

The biomass concentration was measured discontinuously. Therefore, an approximation 

of dC�/dt is used in Equation 4.9: 

 

Equation 4.9 μ(t) = j >h�(ikl)mh�(i)?
>i(ikl)mi(i)?∙h�(i)no(�)pnj >h�(i)mh�(iml)?

>i(i)mi(iml)?∙h�(i)no(�)p
q  

 



 Controlling light-use by Rhodobacter capsulatus continuous cultures in a flat-panel photobioreactor 

  93 

Photosynthetic heat dissipation at high light intensity  

Knowing Y�,	= and m	=, the dependency of the photosynthetic heat dissipation term on the 

biomass concentration f�=��(C�) at high incident light intensity can be quantified. A D-stat 

experiment executed at high incident light intensity, while still preventing the hydrogen 

production by ammonium, provides the required data to fit f�=�� to an arbitrary function 

of C�. When the photosynthetic heat dissipation term is included in Equation 4.5, it can be 

re-written to give Equation 4.10: 

 

Equation 4.10 r	=� (t) = ��D(�)
E�,GH + m	= ∙ C�(t) + f�=��(C�) ∙ r	=� (t) 

 

The volumetric hydrogen production capacity 

With the other parameters within Equation 4.4 known, the volumetric hydrogen 

production capacity r\K
�  and its dependency on D and C� can now be estimated. Equation 

4.4 can be re-written to Equation 4.11, from which the volumetric hydrogen production 

capacity r\K
�  can be calculated for each chemostat situation at constant D and C�. 

 

Equation 4.11 r\K
� = r>1 − f�=��(C�)? ∙ r	=� − ��D

E�,GH − m	= ∙ C�s ∙ Y\K	= 

 

Carbon substrate feeding 

A prerequisite for a successful light limited D-stat experiment is that no other substrate 

limitation- or toxicity effects occur. However, as the dilution rate is decreased in time and 

the biomass density increases, substrates administered through the influent will be 

depleted at some point during the experiment. During biomass formation, acetate 

consumption and hydroxide formation are equimolar, according to Equation 4.12. 

 

Equation 4.12  

xCHuCOOw + yNHzn + zHqO 			�{			|}}~ CH�O�N� + kCOq + (m + y)HqO + (x − y)OHw 
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An acetate supply through pH control with acetic acid provides acetate to the reactor on 

the basis of the culture’s demand. As a result of this demand based feeding strategy, not 

only the pH but also the acetate concentration is maintained constant in time, irrespective 

of the dilution rate. The C/N-ratio of the pH-regulation solution should be 8.2, similar to 

that of the medium used, by adding ammonium to the solution. 

But, due to the acidic action of the ammonium ion, adding only acetic acid and 

ammonium to the pH-regulation solution causes the total amount of carbon added to be 

smaller than the total amount of carbon consumed.  This discrepancy in feed rate and 

consumption rate of acetate can be prevented by adding Ac
-
 to the solution in an 

equimolar concentration to NH4

+
. With a total carbon concentration of 4.0 M and a C/N 

ratio of 8.2, the composition of the pH-regulation solution becomes 1511 mM HAc, 

489 mM Ac
-
 and 489 mM NH4

+
. The composition of the pH-regulation solution was kept 

unaltered in all D-stat experiments and is displayed in Table 4.1. 

 

Experimental configurations 

 

D-stat experiments 

All D-stat experiments were performed in a flat-panel PBR described before (Hoekema et 

al., 2002) that was computer controlled using LabVIEW
©

 5.1 software (National 

Instruments, Austin, TX) via an ADAM-5000 data acquisition and control module 

(Advantech, Milpitas, CA). It was autoclaved completely prior to all experiments. Mixing 

was facilitated by a gas mixture of 2 nL⋅min
-1

 N2 containing 0.5% v/v CO2 that was sparged 

into the culture chamber through 25 hypodermic needles (0.5 mm int. diam., 16 mm in 

length).  

The reactor consisted of two compartments, the first one being oriented to the light. 

Water was circulated through it via a cryostat water bath to remove excessive thermal 

radiation emitted by the lamps and to maintain the temperature in the culture 

compartment at 30°C. The culture compartment had an optical path of 3 cm and a 
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working volume of 2.4 L (total volume 3.6 L). The pH was controlled at 7.0 by dosing acetic 

acid enriched with acetate and ammonium to the reactor (see Table 4.1 for the 

composition). 

The reactor was illuminated using two 500 W tungsten halogen lamps that were placed on 

one side of the reactor. The lamps were mounted in a frame, on top of each other. The 

desired incident light intensity was reached by placing white paper sheets between the 

lamps and the reactor. It was fine-tuned by altering the distance between the reactor and 

the lamp-frame. When paper sheets were used, their influence on the spectral 

composition of the incident light was measured and corrected for. 

The medium and outflow vessels were autoclaved separately and connected to the 

reactor after autoclaving. The medium was fed to the reactor using a peristaltic pump. The 

culture was pumped out of the reactor via an L-shaped glass tube with its opening placed 

at the desired liquid level. The weight of the effluent vessel was logged in order to 

calculate the actual dilution rate of the system. A diluted (40 times) Antifoam B Silicone 

emulsion (J. T. Baker, Deventer, the Netherlands) was automatically dosed into the culture 

as foam was detected in the headspace by means of a conductivity sensor. 

 

VUK,�YN determination experiments 

Three glass batch reaction vessels with an internal volume of about 120 mL were used for 

the experimental quantification of the maximal specific hydrogen production rate of the 

culture (q\K,���, mol⋅kg
-1
⋅s

-1
). Stirring was facilitated using magnetic stirrer bars at a rate 

of 300 rpm. The temperature of the double-jacketed vessels were controlled at 30°C. On 

top of the vessels light diffusing plates and 50 W tungsten halogen spots were fitted. 

The vessels were flushed with argon and 10 mL cell suspension with known cell 

concentration (washed and/or concentrated if required) was added. Two screw-caps with 

septa in the vessels’ walls facilitated argon flushing and headspace sampling. The increase 

in the hydrogen concentration was measured as well as the final pressure in the vessels 

using a Cerabar M PMP41 0 – 4 bara pressure sensor (Endress + Hauser, Germany). The 
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value of q\K,��� was calculated from the region with linear kinetics (see Results). The pH 

of the applied medium was set to 7.0 initially and checked after the experiment was 

ended. It increased between 0.7 to 2.0 units. 

 

Analyses 

 

Small samples (up to 20 mL) were withdrawn from the flat-panel PBR using a sampling 

port connected to the outflow. Larger samples for dry weight determination were 

collected overnight on ice from the regular outflow of the reactor. 

The volume fraction of hydrogen in the off-gas and the acetate and biomass 

concentrations (dry weight and optical density) were determined as described previously 

(Hoekema et al., 2002). 

 

Ammonium  

Samples for determination of the ammonium concentration were centrifuged and the 

supernatant was stored at -80°C. The ammonium concentration was determined at a later 

time using a spectrophotometer test kit issued by Dr. Lange (Dr. Lange GmbH, Germany). 

 

Absorptive properties of the biomass 

During the time-course of the D-stat experiments described in this work, the specific 

absorption surface (af�∗ , m
2
⋅kg

-1
) of the biomass was quantified daily. This was done in the 

350 - 1000 nm range using a Beckman DU 640 UV/VIS spectrophotometer (Beckman 

Coulter, Inc., Fullerton, CA) equipped with a Labsphere RSA-BE-65 integrating sphere 

(Labsphere, North Sutton, NH). This integrating sphere collects forward scattered light, in 

addition to non-absorbed and non-scattered light, and reflects it towards the detector. 

Samples were standardized to a biomass concentration of 0.33 kg⋅m
-3

 using reactor 

medium without acetate and ammonium. 
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Table 4.1 Composition of all media and stock solutions used to prepare the media. 

 
Stock Solutions, 

C/N sources 

Medium →→→→ 

Stock g⋅⋅⋅⋅L
-1
↓↓↓↓ 

SYA 

(µµµµM) 

AA 

(µµµµM) 

AA
+
 

(µµµµM) 

���,��* 

(µµµµM) 

pH-regulation 

solution 

 

Buffer 

 

KH2PO4 

K2HPO4 

 

86.6 

73.3 

20 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

12726 

8416 

6 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

3818 

2525 

12  mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

7636 

5050 

40  mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

25452 

16832 

 

- 

 

 

Macro 

nutrients 

 

MgSO4.7H2O 

CaCl2.2H2O 

 

5.00 

2.48 

40 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

812 

674 

40 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

812 

674 

80 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

1624 

1348 

40 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

812 

674 

 

- 

 

 

Micro 

nutrients 

 

Na2EDTA.2H2O 

FeSO4.7H2O 

H3BO3 

MnSO4.2H2O 

Na2MoO4.2H2O 

ZnSO4.7H2O 

Cu(NO3)2.3H2O 

 

2.00 

1.18 

0.280 

0.277 

0.0750 

0.0240 

0.0040 

10 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

53.7 

42.5 

45.3 

16.4 

3.10 

0.835 

0.166 

10 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

53.7 

42.5 

45.3 

16.4 

3.10 

0.835 

0.166 

20 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

107.5 

84.9 

90.6 

32.8 

6.20 

1.67 

0.331 

10 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

53.7 

42.5 

45.3 

16.4 

3.10 

0.835 

0.166 

 

 

- 

 

 

Vitamins 

 

Biotin 

Thiamin 

p-aminobenzoic acid 

vitamin B12 

nicotinamide 

 

0.1 

0.1 

0.1 

0.1 

0.1 

10 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

10 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

20 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

2 mg⋅L
-1

 

2 mg⋅L
-1

 

2 mg⋅L
-1

 

2 mg⋅L
-1

 

2 mg⋅L
-1

 

10 mL⋅⋅⋅⋅L
-1
↓↓↓↓ 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

 

 

- 

 

 

SYA 

 

Na2 succinate 

Yeast extract 

Na acetate 

 

81 

10 

16.4 

50 mL⋅⋅⋅⋅L-1↓↓↓↓ 

25 mM 

500 mg⋅L-1
 

10 mM 

 

 

- 

 

 

 

- 

 

 

 

- 

 

 

 

- 

 

Carbon 

source 

HAc 

NaAc 

- 

- 

- 

- 

- 

25 mM 

- 

25 mM 

- 

30 mM 

1511 mM 

489 mM 

Nitrogen 

 source 

NH4Cl - - 6.11 mM 6.11 mM - 489 mM 

Headspace - nitrogen nitrogen nitrogen argon - 
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Light composition and intensity 

The spectral distribution of the light emitted by the tungsten halogen lamps was acquired 

using an IRRAD 2000 fiber-optic spectroradiometer (TOP sensor systems, Eerbeek, the 

Netherlands). The spectral limits of the spectroradiometer are 340 and 999 nm. 

The light intensity on the reactor surfaces, on the other hand, was measured as the 

photon flux density (PFD, μmol⋅m
-2
⋅s

-1
) in the PAR range (photosynthetic active radiation, 

400 – 700 nm). A 2π LI-190SA quantum sensor (Li-Cor, Lincoln, NE) was used for this. 

The PAR photon flux density entering the PBR was measured prior to fermentation at 38 

locations distributed uniformly over the illuminated culture compartment surface in the 

empty PBR using a grid, with the cooling water compartment present in front of it. The 

light intensities at the bottom of the vessels used for the VUK,�YN determinations were 

measured in an open version of the vessel, constructed especially for this purpose. 

The average PAR photon flux density (PFDin, μmol⋅m
-2
⋅s

-1
) value was re-calculated to the 

light energy flux density or light intensity I (W⋅m
-2

, 400 – 950 nm), by multiplying the 

PAR-value with a conversion-factor, for which the spectral distribution of the light emitted 

by the tungsten halogen lamps was used. An identical procedure was employed for the 

quantification of the light intensity entering the vessels used for the q\K,��� 

determinations. All light intensities reported are I -values, unless stated otherwise. 

The PFD exiting the photobioreactor (PFDout, μmol⋅m
-2
⋅s

-1
 from 400 – 700 nm) was 

quantified daily, using the same grid. This PAR value was converted to a light intensity 

using the spectral distribution of the light emitted by the lamps, corrected for the 

wavelength dependent absorption by the culture, analogous to a method described 

previously by Dubinsky et al. (Dubinsky et al. 1986). 

 

Viability of the biomass 

Cell viability was determined using a FACSCalibur flow cytometer (Becton Dickenson 

Immunocytometry Systems, Franklin Lakes, NJ). The viability assessment was performed 

using a Propidium Iodine (PI) staining procedure. PI penetrates bacteria with damaged cell 
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membranes and complexes with cellular DNA. This complex has a higher fluorescence at 

670 nm (Bunthof et al. 2001) on the basis of which these cells can be identified. Green 

fluorescent latex beads (488 nm) with a diameter of 6 µm at a final concentration of 

3⋅10
6
 beads⋅mL

-1
 were added to the samples as an internal standard. Each analysis was 

performed in triplicates of 20.000 counts. The collected data were analyzed using the 

CellQuest program (version 4.02, Becton Dickenson Immunocytometry Systems, USA). As 

a positive control, heat-killed cells (20 minutes at 70°C) were analysed. Fluorescent beads 

were added after the heat treatment. 

 

Biomass elemental composition 

At regular time intervals, the elemental composition of the washed and dried biomass was 

determined using a Fisons EA 1108 CHN-O element analyzer (Fisons, Beverly, MA). 

Atropine (elemental composition 71.11% C, 4.86% N, 8.06% H) was used as a reference 

compound. The remainder, minus the ash-residue, was assumed to be oxygen, as the 

other constituents of the biomass are present in traces only. 

 

 

Results & Discussion 

 

Deceleration-stat experiments 

Four D-stat experiments were performed. Their experimental settings and results are 

summarized in Table 4.2. Figure 4.2 displays the values of the dilution rate, the growth 

rate (calculated according to Equation 4.9) and the biomass dry weight values obtained 

during the D-stat executed at 21.9 W⋅m
-2

. All other D-stats followed a similar pattern (data 

not shown). 

During all complete D-stat experiments, the observed value of μ was structurally slightly 

larger than the value of D. This was caused by its continuous adaptation to the imposed 

decreasing D. When D. tertiolectra was cultured in A-stat, μ also lagged behind D, 

4



 Chapter 4 

 100 

resulting in a value of μ that was structurally slightly smaller than the imposed increasing 

D  (Barbosa et al., 2005). The average deviation between μ and D was about 8%. Only 

those data-points were used for which μ and D had a non-structural deviation of less than 

25%. Pseudo steady-state was assumed to be maintained in this case. Every steady-state 

situation was only used once in the calculations. If more data was available on a single 

steady-state situation, an average was taken. 

In all D-stat experiments, the application of the demand based feeding strategy resulted in 

stable acetate and ammonium concentrations in the PBR. The acetate and ammonium 

concentrations remained between 10 - 25 mM and 5 - 10 mM respectively during pseudo 

steady-state. This prevented both substrate limitation and -inhibition of growth for these 

substrates during all D-stat experiments (data not shown). Simultaneously, the applied 

ammonium concentration prevented the occurrence of active nitrogenase and with that 

the production of hydrogen. 

 

Effect of the light intensity and dilution rate on culture characteristics 

It can be seen from Figure 4.2 that the pseudo steady-state criterion	μ = D was 

maintained during the larger part of the experiment, even though the applied 

deceleration rates of the dilution rate were up to 6 times faster compared to the maximal 

acceleration rate that could be applied on D. tertiolectra continuous cultures (Barbosa et 

al. 2005), without compromising the pseudo steady-state criterion. 

From Figure 4.2 it can also be seen that the increase in the biomass dry weight value was 

steeper as the value of the dilution rate was lower. The deceleration rate was decreased 

from -0.17 d
-2

 to -0.072 d
-2

 at a D of 0.65 d
-1

 (Table 4.2) to allow the biomass more time to 

adapt to the more rapid change in light regime. 
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Table 4.2 Settings and results for the four D-stat experiments performed and resulting values 

for the yield coefficient of biomass on light energy (Y�,	=) and biomass maintenance 

energy requirement of the biomass (m	=). Abbreviations: I light intensity; μ���(I) 

maximal specific growth rate at light intensity I; a acceleration rate; D dilution rate; 

Y�,	= yield coefficient of biomass on light energy; m	= biomass maintenance 

coefficient on light energy; s.e. standard error; n degrees of freedom; rq 

correlation coefficient; r	=� /C� specific light energy absorption (W⋅kg
-1

); μ specific 

growth rate (d
-1

). 

  
D-stat 

1 2 3 4 

Settings      

I W⋅m
-2

 8.4 11.9 21.9 410 

μ���(I) d
-1

 1.85 2.56 3.81 7.56 

D�����; 40% of μ���(I) d
-1

 0.65 1.01 2.00 3.02 

Deceleration I      

a d
-2

 - -0.17 -0.17 -0.17 

D=!f d
-1

 0.65 0.65 0.65 0.65 

Deceleration II      

a d
-2

 -0.018 -0.072 -0.072 -0.072 

D=!f d
-1

 0 0 0 0 

Calculations      

OD860/OD660 ± s.e. -  1.41 ± 0.03 1.10 ± 0.01 1.56 ± 0.01 1.70 ± 0.02 

Y�,	=	± s.e. kg⋅J
-1

 3.8 ± 0.3⋅10
-8

 2.5 ± 0.3⋅10
-8

 2.3 ± 0.3⋅10
-8

 -  

m	= ± s.e. J kg
-1
⋅s

-1
 71.6 ± 11.3 92.0 ± 22.2 197.4 ± 48.4 -  

n -  23 6 13 -  

rq [r	=� /C� vs μ] -  0.90 0.97 0.93 
-  
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Figure 4.2 Effect of the dilution rate (D, �) on the specific growth rate (μ, �) and the 

biomass concentration (C�, �) during the D-stat experiment performed in 

the flat panel PBR at a light intensity of 21.9 W⋅m
-2

. The dotted line 

represents the set dilution rate. The error bars represent standard errors. 

 

In general, purple non-sulphur bacteria respond to a decrease in the average light 

intensity they are exposed to (I�{, W⋅m
-2

), resulting from an increase in biomass 

concentration at constant incident light intensity, by increasing their cellular chlorophyll 

content (Göbel 1978). Notably, the OD860/OD660-ratio of the cultures (Table 4.2), which is 

an indication for the cellular BChl a content, remained constant during each complete 

individual D-stat. Photoautotrophs also respond to an increase in mutual shading by 

increasing their cellular chlorophyll content (Tredici and Zittelli 1998; Zou and Richmond 

2000). However, no increase in cellular chlorophyll concentration could be observed as 

the biomass concentration of continuous cultures of the micro-alga Dunaliella tertiolectra 
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grown in A-stat increased (Barbosa et al. 2005). Within our and Barbosa’s experiments, 

the increase in biomass concentration during each individual experiment was only about a 

factor four, which might not have been sufficient to realize a noticeable change in the 

(bacterio-)chlorophyll content of the cultures. 

Amongst the individual experiments, the differences in the OD860/OD660-ratio are more 

noticeable. In general, this ratio increased slightly with the applied light intensity, as can 

be seen in Table 4.2. 

At 8.4 W⋅m
-2

, the culture required larger adaptation times. A lower deceleration rate 

of -0.018 d
-2

 during the entire run resolved this and resulted in a culture for which the 

pseudo steady-state criterion μ = D was valid for the larger part of the D-stat (data not 

shown). Possibly, the lower than anticipated OD860/OD660-ratio of 1.10 observed at 

11.9 W⋅m
-2

 (Table 4.2) was also caused by a requirement for larger adaptation times. 

An attempt was made to run a D-stat at 4.1 W⋅m
-2

. It was possible to achieve a 

steady-state situation at a dilution rate of 0.38 d
-1

 (40% of μ���(I)). As the dilution rate 

was decreased, the growth rate was about 30% higher than the set dilution rate 

structurally (data not shown). During this experiment, the OD860/OD660-ratio was stable at 

1.07. Possibly, at these very low light intensities, the culture was so energy limited that it 

was not capable of synthesizing a normal amount of light harvesting complexes, 

disqualifying such very low light intensities for the determination of parameters related to 

light energy expenditures for biomass growth and maintenance by phototrophs. 

A low dilution rate might compromise the viability of a cell suspension. The cultures 

grown at 8.4 and 410 W⋅m
-2

 were therefore checked for viability towards the end of the 

experiments. In both cases, more than 94% of the cells were demonstrated to be viable 

(data not shown). Dilution rates in the range of 0.05 d
-1

 do not seem to have a noticeable 

influence on the viability of the bacterial cells, even at biomass concentrations as high as 

8.0 kg⋅m
-3

. 
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Biomass yield on light energy and light energy maintenance requirements 

The collected data were used to calculate r	=� (t) and μ(t), according to Equation 4.1 and 

Equation 4.9, respectively. The data from the D-stat experiments that were performed at 

8.4, 11.9 and 21.8 W⋅m
-2

 (Table 4.2) were used to find the yield coefficient of biomass on 

light energy, Y�,	=, and the biomass maintenance coefficient on light energy, m	=. The 

specific light energy absorption (r	=� /C�, W⋅kg
-1

) was plotted against μ in Figure 4.3 for 

these three experiments. Linear fits were made through the data points, resulting in 

correlation coefficients of around 0.90, as can be seen from Table 4.2. The offsets of these 

fits represent m	=, while the slopes represent the reciprocal of Y�,	=. The values of Y�,	= and 

m	=, together with their standard errors are displayed in Table 4.2 for all three 

experiments. 

The values of Y�,	=	and m	= as determined from Figure 4.3 are displayed as a function of 

the applied incident light intensity in Figure 4.4. It demonstrates that Y�,	=	decreases and 

m	= increases at increasing incident light intensity. Probably, part of the absorbed light 

energy is dissipated as heat already at the applied low light intensities. We anticipated 

photosynthetic heat dissipation to occur above a light intensity of 30 W⋅m
-2

, based on data 

presented previously by Tsygankov and Laurinavichene (Tsygankov and Laurinavichene 

1996b) on Rhodobacter capsulatus continuous cultures. However, the PBR used in this 

work has an optical path of 3 cm, which is about twice that of the cylindrical system used 

by Tsygankov and Laurinavichene. Therefore it is probable that light saturation occurs 

already at lower incident light intensities, resulting in an increase in the - apparent - mle 

and a decrease in the - apparent - Y�,	= at increasing light intensity, even below 30 W⋅m
-2

. 

The values for Y�,	= and m	= that were determined at 8.4 W⋅m
-2

, the lowest applied light 

intensity that resulted in a pseudo steady-state during the larger part of the D-stat, are 

therefore probably the most accurate. The value for Y�,	= equalled 3.76 ± 0.03⋅10
-8

 kg⋅J
-1

 

and the value of m	= was 71.6 ± 11.3 W⋅kg
-1

 within this experiment (see Table 4.2). 
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Figure 4.3 Total specific light absorption r	=� /C� as a function of the specific growth rate μ for 

the three D-stat experiments performed in the flat panel PBR at light intensities of 

8.4 (�), 11.9 (�) and 21.9 (�) W⋅m
-2

. The error bars represent standard errors. 

 

 

The value of Y�,	=	is comparable to the upper value of 2.15⋅10
-8

 kg⋅J
-1

 reported previously 

(Tsygankov and Laurinavichene 1996b) for a Rhodobacter capsulatus continuous culture 

growing on lactate and tungsten halogen light at 6.7 W⋅m
-2

. Photo-autotrophically grown 

Rhodobacter capsulatus cultures exhibited a lower Y�,	=	of 0.59⋅10
-8

 kg J
-1

 and a higher m	= 

of 527 W⋅kg
-1

 on tungsten halogen illumination (Minkevich et al. 2004). The enthalpy 

balance for biomass growth of a Rhodobacter capsulatus continuous culture illuminated at 

8.4 W⋅m
-2

 is illustrated in Figure 4.9A in Appendix I. 
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Figure 4.4 Yield coefficient of biomass on light energy (Y�,	=,�) and biomass maintenance light 

energy requirement of the biomass (m	=,�) in the flat panel PBR as a function of 

the applied light intensity. The error bars represent standard errors. 

 

 

Photosynthetic heat dissipation at high light intensity 

With Y�,	= and m	= known, the fraction of the total absorbed light energy that is dissipated 

to heat f�=��(C�) can be quantified in a D-stat experiment performed at high light intensity 

(410 W⋅m
-2

 in this case). The light energy that was absorbed by the culture and that was 

not used to generate or maintain biomass must have been dissipated as heat, as can be 

seen from Equation 4.10. 
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Figure 4.5 Effect of the dilution rate (D, �) on the specific growth rate (μ, �) and the biomass 

concentration (C�, �) during the D-stat experiment performed in the flat panel PBR 

at a light intensity of 410 W⋅m
-2

. The dotted line represents the set dilution rate. 

The error bars represent standard errors. 

 

Figure 4.5 displays the values of the dilution rate D, the growth rate μ (calculated 

according to Equation 4.9) and the biomass dry weight values obtained during the D-stat 

experiment executed at 410 W⋅m-2
. Again, D and μ have similar values during the larger 

part of the experiment and the value of μ is structurally a bit larger than the value of D. 

From these data, the fractions of the total light energy absorption attributed to biomass 

growth, biomass maintenance and photosynthetic heat dissipation could be calculated for 

the complete pseudo steady-state part of this experiment (Equation 4.2). The results are 

plotted in Figure 4.6. In the biomass concentration range of 2.0 – 8.0 kg⋅m-3
, the fraction 

of the total absorbed light energy that is used for biomass synthesis f�� decreased from 

4
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0.18 to 0.08, while the fraction that is used for biomass maintenance f� increased from 

0.013 to 0.052. 

As can be seen from Figure 4.6, f�=��(C�) ranges from 0.80 at 2.0 kg⋅m
-3

 to 0.87 at 

8.0 kg⋅m
-3

. This extent of light energy dissipation to heat is rather similar to values 

reported previously for photoautotrophic micro-algal cultivations of 0.80 to 0.90 

(Goldman 1979; Hallenbeck and Benemann 2002). It depends on the applied optical path, 

light intensity, biomass concentration and mixing intensity (Qiang et al. 1998b). Therefore, 

this variable is system specific and the reported values only hold for the applied 

combination of photobioreactor and operational settings. As a consequence, the reported 

values for f�=��(C�) could possibly be reduced significantly upon optimization of the 

applied mixing rate. 

From these results we can find that the determination of the maximally achievable rate of 

product formation in phototrophic culture at high incident light intensity is always a trade-

off between the extent of photosynthetic heat dissipation and the volumetric production 

capacity of the culture. A higher biomass concentration causes a larger production 

capacity of the system. At the same time however, the fraction of absorbed light energy 

that is dissipated as heat increases at a higher biomass concentration, unless the rate of 

mixing is increased accordingly (Qiang et al. 1998b).  

The enthalpy balance for biomass growth of a Rhodobacter capsulatus continuous culture 

illuminated at 410 W⋅m
-2

 is illustrated in Figure 4.9B in Appendix I. 
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Figure 4.6  Fraction of the absorbed light energy used for biomass growth (f�� = (r��/r	=� ) ∙
(1/Y�,	=)	, �), biomass maintenance (f� = (m	= ∙ C�)/r	=� , �) and photosynthetic 

heat dissipation (f�=��,�) as a function of the biomass concentration C� for the 

D-stat experiment performed in the flat panel PBR at a light intensity of 410 W⋅m
-2

. 

 

The  maximal specific hydrogen producing capacity of the culture 

The maximal specific hydrogen producing rate q\K,��� of the Rhodobacter capsulatus 

culture used was determined by directly applying samples of a culture that was grown in 

the same flat-panel PBR set-up, but under argon sparged (2 L⋅min
-1

), ammonium limited 

conditions, at 410 W⋅m-2
 tungsten halogen illumination, a biomass concentration of 

0.7 - 1.5 kg⋅m
-3

 at a dilution rate of 0.4 d
-1

. The results of one set of three parallel repeated 

q\K,��� determinations acquired at a C� of 1.5 kg⋅m
-3

 are displayed in Figure 4.7. From 

these data, a q\K,��� value of 0.52 ± 0.02 mmol⋅kg
-1
⋅s

-1
 was calculated. 
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Figure 4.7 Maximal cumulative hydrogen production as determined in three (�,�,�) 120 mL 

reaction vessels containing 10 mL of bacterial suspension sampled from an 

ammonium limited, hydrogen producing flat-panel PBR culture at a C� of 

1.5 kg m
-3

. 

 

 

The influence of the applied biomass concentration and agitation rate on the observed 

value of q\K,��� was investigated. There was no clear influence on the observed q\K,��� 

upon varying the biomass concentration between the applied extremes, 2.27 and 14.31 

kg⋅m
-3

 and upon varying the agitation rate between 100 and 600 rpm (data not shown). 

This demonstrates that the applied method ensured light saturation and is therefore an 

accurate method for the determination of the value of q\K,���. 
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The observed q\K,��� is comparable to values of 0.41 and 0.58 mmol⋅kg
-1
⋅s

-1
 reported for 

Rhodopseudomonas palustris wild type species grown photoheterotrophically on a 

mixture of acetate and glutamate (Fissler et al. 1994; Vincenzini et al. 1982). 

The specific hydrogen production rate purple non sulphur bacteria exhibit while growing 

on other organic acids is significantly higher. An ammonium limited Rhodobacter 

capsulatus strain grown on lactate at a dilution rate of 0.96 d
-1

 was reported to exhibit a 

maximal specific hydrogen production rate of 1.24 mmol⋅kg
-1
⋅s

-1
 (Tsygankov et al. 1998a). 

By genetic modification, the maximal specific hydrogen production rate can be increased 

even further. Knocking out the uptake hydrogenase or preventing the storage of reducing 

equivalents in an alternative way, like the accumulation of intracellular polyhydroxy 

butyric acid, can significantly increase the maximal specific hydrogen production rate. 

Zorin et al. reported that a Rhodobacter capsulatus species deficient in uptake 

hydrogenase, grown on a mixture of lactate and glutamate, produced hydrogen at a rate 

of 1.60 mmol⋅kg
-1
⋅s

-1
, compared to 1.11 mmol⋅kg

-1
⋅s

-1
 for the wild type strain (Zorin et al. 

1996). 

 

The maximally achievable yield of hydrogen energy on light energy 

By applying the determined parameters to Equation 4.11, r\K�  can be written as a function 

of  C� and D. r	=�  and f�=�� also depend on C�. Therefore, these relationships were fit to the 

data acquired during the D-stat performed at 410 W⋅m
-2

 (Figure 4.5), resulting in Equation 

4.13 and Equation 4.14. Both curve-fits display a correlation coefficient larger than 0.90. 

Equation 4.13 r	=� (C�) = �1.84 ∙ 10B − u.�a∙a2�
(��)K  

 

Equation 4.14 f�=��(C�) = 0.015 ∙ C�2.C�q + 0.82 

 

The value of r\K
�  can also be described using the maximal hydrogen producing capacity 

q\K,��� of the biomass that is present in the reactor, according to Equation 4.3. 

Whichever outcome for r\K
�  is lower is limiting the reactor performance when that 

4
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combination of C� and D is applied. Based on this model, Figure 4.8 was constructed. 

Figure 4.8A displays the value of r\K
�  as a function of D at constant C�. Three C�-values 

within the applied experimental range of the D-stat performed at 410 W m
-2

 (3, 4 and 

5 kg⋅m
-3

) were chosen. At 3 and 4 kg⋅m
-3

, combined with a sufficiently low dilution rate, 

the value of r\K
�  is set by the hydrogen production capacity of the biomass, according to 

Equation 4.3. As the dilution rate is increased, the value of r�� in Equation 4.11 increases, 

resulting in a decrease in r\K
� . This decrease is faster and occurs at a lower dilution rate as 

the biomass concentration is higher (Figure 4.8A). More and more absorbed light energy 

must be used for generating additional biomass as the dilution rate is increased further. 

Finally, all the absorbed light energy is used for the formation of biomass and no absorbed 

light energy is available for generating hydrogen. 

Similarly, the biomass concentration can be increased while keeping the dilution rate 

constant. This is shown in Figure 4.8B for three values of D (0.1, 0.4 and 0.8 d
-1

) within the 

experimental range of the D-stat performed at 410 W⋅m
-2

. At low biomass concentrations, 

the value of r\K
�  is limited by the hydrogen production capacity of the biomass present 

(Equation 4.3). When its value is increased, r\K
�  increases and reaches a maximum. As C� is 

increased further, r�� must increase at the expense of r\K
�  (Equation 4.11). This effect is 

more pronounced as larger values of D are chosen, due to a further increase in r��. 

 

 

Figure 4.8 Simulation results of the volumetric hydrogen production rate r\K
�  within the flat 

panel PBR at a constant biomass concentration C� of 3, 4 and 5 kg⋅m
-3

 as a function 

of the dilution rate D (A) and at a constant D of 0.1, 0.4 and 0.8 d
-1

 as a function of 

C� (B). 
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From Figure 4.8, it can be seen that the dependency of r\K
�  on C� or D should have a clear 

maximum. By adjusting the biomass concentration or the dilution rate of a continuous 

hydrogen producing culture of Rhodobacter capsulatus, a significant increase in the value 

of r\K
�  can possibly be achieved, reaching values up to 1.6 mmol⋅m

-3
⋅s

-1
. This hydrogen 

production rate corresponds to a photosynthetic efficiency of 3.3% (considering light 

energy input and hydrogen energy output only), at which 98% of all incident light energy 

(400 – 950 nm) is absorbed. This maximally achievable efficiency of absorbed light energy 

to hydrogen energy conversion is expected to take place when a dilution rate of 0.1 d
-1

 is 

combined with a biomass concentration of 2.55 kg⋅m
-3

, as illustrated graphically in Figure 

4.8B. 

The enthalpy balance for biomass growth and hydrogen production of an ammonium 

limited Rhodobacter capsulatus continuous culture illuminated at 410 W⋅m
-2

 is illustrated 

in Figure 4.9C in Appendix I. 

 

 

Conclusions 

The commercial applicability of microbial phototrophic fermentation is limited mainly by 

its photosynthetic efficiency. In this work we describe a model-based approach to 

calculate what photosynthetic efficiency can maximally be achieved in a given 

photobioreactor. A new experimental method to quantify both the biomass yield and 

maintenance coefficient on light energy of phototrophic cultures in a limited time span 

was designed and tested. For this an experimental technique called D-stat was used. 

The photo production of hydrogen by Rhodobacter capsulatus NCIMB 11773 at realistic 

solar irradiation conditions was taken as a case-study. The yield coefficient of biomass 

synthesis on light energy was determined to be 3.8 ± 0.03⋅10
-8

 kg⋅J
-1

 and the biomass 

maintenance coefficient on light energy was 71.6 ± 11.3 W⋅kg
-1

 at an incident light 

intensity of 8.4 W⋅m-2
 (400 – 950 nm). The fraction of the light energy that was absorbed 

by the culture but was not used for either biomass synthesis or maintenance under non-
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ammonium limited conditions was dissipated to heat. It varied between 0.80 and 0.88 in 

the applied photobioreactor, at a light intensity of 410 W⋅m-2
 (400 – 950 nm). 

The destinations of the absorbed light energy under ammonium limitation are biomass 

synthesis and maintenance, hydrogen formation and dissipation to heat. They were 

modelled using the abovementioned parameters. By limiting the extent of biomass 

synthesis, while retaining a sufficient viable biomass concentration in the 

photobioreactor, the volumetric hydrogen production rate can possibly be increased up to 

1.6 mmol⋅m-3⋅s-1
, at an incident light intensity of 410 W⋅m-2

. This hydrogen production rate 

corresponds to a photosynthetic efficiency of 3.3%. The model predicts this maximally 

achievable efficiency to occur at a dilution rate of 0.1 d
-1

 combined with a biomass 

concentration of 2.55 kg⋅m-3
. The validation of the described model will be subject of 

future work. 

 

 

Erratum 

The light intensities at the surface of the PBR that are reported in this chapter are lower 

than those reported previously (Hoekema et al. 2006). The originally reported light 

intensities were based on an emission spectrum of the applied halogen-tungsten lamps 

that was acquired with a spectrometer that was not properly calibrated. More details are 

provided in Appendix II. 
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Appendix I 

 

a) Relation between yield factors and the enthalpy balance 

Equation 4.15 represents the stoichiometry for Rhodobacter capsulatus growth on acetate 

and ammonium, based on the biomass’ elemental composition. 

 

Equation 4.15 Y��,� ∙ CHuCOOw + Y���,� ∙ NHzn
		�GH			|}}~ 

CH�O	N� + Y��K,� ∙ COq + Y\K�,� ∙ HqO + Y�\m,� ∙ OHw 

   

The parameters Y�,� represent the yield coefficients of a per C-mole biomass and W	= is 

the work exerted on the system in the form of the total light energy absorption. Since 

biomass growth can be considered to be a constant pressure process, an enthalpy balance 

can be made according to Equation 4.16. 

 

Equation 4.16 ∑∆�H���2 − ∑∆�H !2 + W	= + Q�=� = 0 

 

The summations ∑∆�H !2  and ∑∆�H���2  represent the enthalpies of the reactants and 

products, while Q�=� is the heat generated during all metabolic processes involved with 

biomass synthesis, including maintenance. The enthalpy change was calculated using 

enthalpies of combustion as a reference state (von Stockar et al. 1993). The enthalpy of 

combustion of the biomass was estimated on the basis of its elemental composition 

(Spoehr and Milner 1949). The temperature used was 25°C since temperature influence is 

negligible (von Stockar et al. 1993). 
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b) Biomass formation at low light intensity 

Considering the process of biomass formation at rate r�� to be at steady-state, Equation 

4.16 was rewritten to Equation 4.17. The contributions of CO2(g), H2O(l) and OH
-
(aq) to 

the enthalpy balance are zero and were left out of Equation 4.17. 

 

Equation 4.17 r�� ∙ ∆�H�(�)2 − Y��,� ∙ r�� ∙ ∆�H��(��)2 − Y���,� ∙ r�� ∙ ∆�H���(��)2  

+W	= + Q�=� = 0 

Where �ST  = MSTO  

 

When the experimental results obtained during the D-stat at 8.4 W⋅m
-2

 are combined with 

Equation 4.17, the enthalpy balance for biomass synthesis can be calculated. The results 

are presented in Figure 4.9A. The fraction of the total enthalpy taken up that is recovered 

as biomass equals 38.2%. 

 

c) Biomass formation at high light intensity 

The situation in which the culture is producing biomass at 410 W⋅m
-3

 is considered. 

Equation 4.17 is now re-written to Equation 4.18 to include photosynthetic heat 

dissipation. 

 

Equation 4.18 r�� ∙ ∆�H�(�)2 − Y��,� ∙ r�� ∙ ∆�H��(��)2 − Y���,� ∙ r�� ∙ ∆�H���(��)2  

+W	= + Q�=� + Q���� = 0 

Where �ST  = MSTO  

 ��X�Z = −1 ∙ WXTYZ(PN) ∙ MSTO  

 

The enthalpy balance for biomass synthesis is presented in Figure 4.9B. The fraction of the 

total enthalpy uptake that is recovered as biomass equals 10.5%. 
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A B 

Figure 4.9 Enthalpy balance for biomass 

synthesis in the flat panel PBR at 

8.4 W⋅m
-2

 (A), biomass synthesis 

in the flat panel PBR at 410 W⋅m
-2

 

(B) and biomass synthesis and 

simultaneous hydrogen 

production in the flat panel PBR 

at 410 W⋅m
-2

 (C). The numeric 

values are based on a total light 

absorption of 10 kJ. 

C
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d) Biomass and hydrogen formation under high light intensity 

Finally, the situation in which the culture is illuminated at 410 W⋅m
-3

 and is actively 

producing hydrogen is considered. In this situation, the enthalpy balance is written 

according to  

Equation 4.19. 

 

Equation 4.19 r�� ∙ ∆�H�(�)2 + r\K
� ∙ ∆H\K(�)� − Y��,� ∙ r�� ∙ ∆�H��(��)2 − 

Y���,� ∙ r�� ∙ ∆�H���(��)2 + W	= + Q�=� + Q���� = 0 

Where �ST  = MSTO  

 ��X�Z = −1 ∙ WXTYZ(PN) ∙ MSTO  

 

The enthalpy balance is presented in Figure 4.9C. The fraction of the total enthalpy 

consumption that is recovered as hydrogen equals 3.3%, while 0.6% is recovered as 

biomass. The light energy to hydrogen energy conversion efficiency equals 3.8% in this 

case. 

  

4
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Appendix II 

 

The light intensities at the surface of the PBR reported in this chapter are lower than 

those reported previously (Hoekema et al. 2006). This is due to an incorrect factory 

calibration of the spectroradiometer used in this study. The re-calculated light intensities 

presented in this thesis are significantly lower than reported previously and result in 

changes in the numeric values of the parameters included in the light energy balance. 

However, they do not change the general conclusions that were drawn previously from 

this work. 

Below, the correct procedure for the measurement and calculation of the light intensity is 

explained in detail. The newly calculated light intensities were thus used in this thesis.  

First, the spectral composition of the light source (in this case 500 W Philips Halotone R7s 

halogen-tungsten lamps fitted in Philips QVF 415n reflectors) is measured by using a 

calibrated fiber optic CCD based spectroradiometer (Avaspec 2048 detector, 

FC-IR100-1-ME fiber, Avantes, Eerbeek, the Netherlands). Its output in µW⋅cm
-2
⋅nm

-1
 is re-

calculated to µmol⋅cm
-2
⋅s

-1
⋅nm

-1
 using Planck’s relation. The spectral composition is used 

to calculate a light energy output in µmol⋅m
-2
⋅s

-1
, both the in the 400-700 (PAR) and the 

400-950 nm range. Accordingly, a conversion factor can be calculated from 

µmol PAR⋅m
-2
⋅s

-1
 to W⋅m

-2
 (400-950nm). 

Second, the light source is positioned in front of the PBR and an average light intensity is 

measured at the surface of the PBR by means of a LI SA-190 quantum sensor combined 

with a LI-250 read-out unit (Li-Cor, USA). This device gives a light intensity value in 

µmol PAR⋅m
-2
⋅s

-1
. The conversion factor derived from the light spectrum is then used to 

calculate the light intensity in W⋅m
-2

 (400-950 nm) from the measurements of the PAR 

quantum sensor. 
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The light intensities reported previously were calculated on the basis of a spectral 

composition that was determined with another spectroradiometer that was not properly 

calibrated. Both the initial and corrected calibration curves are displayed in Figure 4.10. 

The application of the old calibration information results in a significant overestimation of 

the light energy output at wavelengths exceeding 700 nm. 

 

 

Figure 4.10 Relative spectral irradiance of a Philips Halotone halogen-tungsten lamp using the 

initial (solid line) and corrected (dashed line) calibration information. 
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Nomenclature 

 

a Acceleration rate [d
-2

] 

A-stat Acceleration stat  [-] 

af�∗  Specific absorption surface  [m
2
⋅kg

-1
] 

A Specific surface area  [m
2
⋅m

-3
] 

ADP Adenosine di-phosphate  [-] 

ATP Adenosine tri-phosphate  [-] 

BChl a Bacteriochlorophyll a  [-] 

C� Biomass concentration  [kg⋅m
-3

] 

C/N-ratio Carbon to nitrogen ratio  [-] 

d Deceleration rate [d
-2

] 

d.w. Dry weight  [kg⋅m
-3

] 

D Dilution rate  [d
-1

] 

D-stat Deceleration stat  [-] 

Fd Ferredoxin  [-] 

f�=�� Fraction of the total absorbed light dissipated as heat [-] 

f�� Fraction of the total absorbed light used for biomass synthesis [-] 

f� Fraction of the total absorbed light used for biomass maintenance [-] 

LHC Light harvesting complex  [-] 

I Light intensity  [J⋅m
-2
⋅s

-1
, 400 – 950 nm] 

m	= Biomass maintenance coefficient on light energy [J⋅kg
-1
⋅s

-1
] 

NADH Protonated nicotinamide adenine di-nucleotide [-] 

OP Optical path  [m] 

PBC2 Primary electron donor in the photosystem of PNS bacteria [-] 

PAR Photosynthetic Active Radiation  [μmol⋅m
-2
⋅s

-1
, 400 – 700 nm] 

PBR Photobioreactor  [-] 

PFD Photon flux density  [μmol⋅m
-2
⋅s

-1
] 
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P  Orthophosphate  [-] 

PI Propidium Iodine  [-] 

Q�=� Heat generation related to metabolic and maintenance processes [kJ] 

Q���� Heat generation due to photosynthetic heat dissipation [kJ] 

q\K  Specific hydrogen production rate  [mol⋅kg
-1
⋅s

-1
] 

q\K,��� Maximal specific hydrogen production rate [mol⋅kg
-1
⋅s

-1
] 

r	=�  Volumetric light energy absorption  [J⋅m
-3
⋅s

-1
, 400 – 950 nm] 

r\K
�   Volumetric hydrogen production rate  [mol⋅m

-3
⋅s

-1
] 

r�� Volumetric biomass production rate  [kg⋅m
-3
⋅s

-1
] 

t Time  [s] 

s.e. Standard error  [-] 

W	= Work exerted onto the system in the form of light energy abs. [kJ] 

Y\K,	= Yield coefficient of hydrogen energy on light energy [mol⋅J
-1

] 

Y�,	= Yield coefficient of biomass on light energy [kg⋅J
-1

] 

∆H�2 Enthalpy of combustion  [kJ⋅mol
-1

] 

μ Specific growth rate  [d
-1

] 

μ��� Maximal specific growth rate  [d
-1

] 

μ���(I) Maximal specific growth rate at light intensity I [d
-1

] 

 

Subscripts 

0 initial 

av average 

aq aqueous 

f final 

i inorganic 

in ingoing 

l liquid 

le light energy 

4



 Chapter 4 

 124 

red reduced 

s solid 

out outgoing 

ox oxidized 

x biomass 
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5. Exploration of the hydrogen producing potential of Rhodobacter 

capsulatus chemostat cultures: The application of deceleration-

stat and gradient-stat methodology 

 

Abstract 

 

In this work, the dependency of the volumetric hydrogen production rate of ammonium-

limited Rhodobacter capsulatus chemostat cultures on their imposed biomass 

concentration and dilution rate was investigated. 

A deceleration-stat experiment was carried out by lowering the dilution rate from 1.0 d
-1

 

to zero aimed at a constant biomass concentration of 4.0 g⋅L
-1

 at constant incident light 

intensity. The results displayed a maximal volumetric hydrogen production rate of 

0.6 mmol⋅m
-3
⋅s

-1
, well below model predictions. Possibly the high cell density limited the 

average light availability, resulting in a sub-optimal specific hydrogen production rate. 

In order to investigate this hypothesis, a gradient-stat experiment was conducted at 

constant dilution rate of 0.4 d
-1

 at constant incident light intensity. The biomass 

concentration was increased from 0.7 to 4.0 g⋅L
-1

 by increasing the influent ammonium 

concentration. Up to a biomass concentration of 1.5 g⋅L
-1

, the volumetric hydrogen 

production rate of the system increased according to model predictions, after which it 

started to decline. The results obtained provide strong evidence that the observed decline 

in volumetric hydrogen production rate at higher biomass concentrations was at least 

partly caused by a decrease in light availability. 
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Introduction 

 

Limited global fossil fuel reserves and the greenhouse effect have caused a renewed 

interest in studies on biological systems for the production of renewable energy carriers. 

Hydrogen is one of them and it can be produced by many different micro-organisms, 

including chemoheterotrophs like Caldicellilosiruptor and Thermotoga (fermentative 

bacterial) species, phototrophs like Chlamydomonas (green algal) species and 

Rhodobacter (purple non-sulfur, PNS, bacterial) species. The focus of the current 

investigation is on hydrogen photoproduction by PNS bacteria. 

In PNS bacteria, hydrogen production is catalyzed by the nitrogenase enzyme complex. 

Significant nitrogenase inhibition in Rps. capsulata cultures typically starts at an 

ammonium concentration of 100 μM (Willison et al. 1983). Thus, PNS bacteria are able to 

produce hydrogen only under ammonium-limited (< 100 μM) conditions. 

Hydrogen production by PNS bacteria is not solely dependent on the ambient ammonium 

concentration. The application of phototrophic micro-organisms in general is limited by 

the low efficiency at which light energy conversion takes place. The main reason for this is 

the excessive dissipation of light energy to heat, resulting from simultaneous light over-

saturation in the photic zone and light limitation in the dark zone of a photobioreactor. 

This self-shading effect can be limited by decreasing the optical path of the applied 

photobioreactor (PBR) as demonstrated extensively for cyanobacteria (Qiang et al. 

1998b). 

The light energy expenditure for biomass formation and maintenance, hydrogen 

production and photosynthetic heat dissipation by Rba. capsulatus was measured 

previously for the PNS bacterium Rba. capsulatus, cultivated in a three cm thick flat-panel 

PBR. These data were used to model the volumetric hydrogen production rate of a 

Rba. capsulatus culture as a function of both its biomass concentration and its dilution 

rate at fixed incident light intensity (Hoekema et al. 2006). In this paper, data are 

presented that were obtained using two alternative and fast experimental methods to 

5
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generate multiple steady state data in the same flat panel PBR. They are referred to as 

deceleration-stat and gradient-stat and are based on the gradual change in either the 

dilution rate or the concentration of the growth limiting substrate. Their application 

resulted in the generation of information on wide ranges of process operation. 

All experiments described in this work were conducted in order to explore the hydrogen 

producing potential of ammonium-limited Rba. capsulatus cultures and its dependency on 

both their imposed dilution rate and biomass concentration. The acquired data were used 

to evaluate the hydrogen producing potential of chemostat cultures and compare them to 

the model estimations derived previously (Hoekema et al. 2006). 

 

 

Theory 

 

The D-stat experimental method 

During a Deceleration-stat (D-stat in short) experiment, the dilution rate (D, d
-1

) is 

decreased gradually in time. As a result of the decrease in dilution rate, the biomass 

concentration (C�, kg⋅m
-3

) generally increases (Hoekema et al. 2006). However, when the 

culture is subjected to growth limitation by applying a constant, limiting ammonium 

concentration in the influent, its biomass concentration should remain constant. The 

dilution rate can therefore be changed without a concomitant change in biomass 

concentration. 

 

The G-stat experimental method 

During a gradient-stat (G-stat in short) experiment, a gradient in the concentration of one 

or more of the substrates in the influent is introduced in time while maintaining a 

constant dilution rate. A gradual increase in the influent ammonium concentration of an 

ammonium-limited chemostat culture results in a gradual increase of its biomass 
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concentration. Thus the biomass concentration can be changed without a concomitant 

change in dilution rate. 

 

Pseudo steady-state 

Both experimental approaches described above yield more information in less 

experimental time compared to multiple steady state approaches, provided that the 

D-stat or G-stat remains in pseudo steady-state. According to chemostat theory, a 

microbial culture is considered to be in steady state when its growth rate (μ, d
-1

) is equal 

to its dilution rate (Gottschal 1992). When a step-wise change in one of the culture 

conditions is imposed on such a steady-state culture (for instance its dilution rate or 

growth-limiting substrate concentration), the culture’s response will eventually result in 

another steady state, provided that it lies within the physiological capacity of the applied 

microbe. During the time that is required to reach this second steady state, the culture is 

not in steady state. 

In case the imposed change is not executed step-wise, but slowly and smoothly enough, 

the microbe can keep up with the imposed change rate. This is the case only when the 

time the culture requires for metabolic and physiologic adaptation as a result of the 

change rate is smaller than the imposed change rate itself. 

Because the culture is subjected to changing cultivation conditions, this situation cannot 

be classified as a steady state situation. However, when the change is so slow that no 

dissimilarity between the culture properties at a discrete time-point during the D- or 

G-stat experiment and its corresponding steady state can be observed, we refer to this 

situation as pseudo steady-state (Barbosa et al. 2003; Paalme et al. 1995; van der Sluis et 

al. 2001a). 

 

Calculations 

Energy balances were set-up as described before (Hoekema et al. 2006), in which the total 

light energy absorbed was divided into fractions used for biomass maintenance, biomass 

5
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synthesis and hydrogen production and in which the remainder was assumed to be 

dissipated as heat. 

 

 

Materials and methods 

 

Bacterial strain and medium composition 

The PNS bacterium Rba. capsulatus NCIMB 11773 was used in this work. It was selected 

based on its wide substrate range and its high C-substrate to hydrogen conversion 

efficiency (Segers and Verstraete 1983). An exponentially growing culture was harvested 

and stored at -80°C in aliquots of 1 mL containing 15% glycerol. Prior to starting an 

experiment, a cryo-vial was thawed and its contents transferred aseptically to a 500 mL 

flask containing 250 mL of SYA-medium under a nitrogen headspace. This medium is 

based on the previously reported aSy-medium (Miyake et al. 1984). The culture flasks 

were incubated at 30°C, stirred and illuminated continuously at about 90 µmol⋅m
-2
⋅s

-1
 

using fluorescent lamps. 

During the entire D-stat experiment carried out in the flat panel PBR, modified 

SYA-medium, designated ‘D-stat’-medium was used. It contained macro- and 

micronutrients, acetate and ammonium. During the G-stat experiment, ‘G-stat’-medium 

was used, containing macro- and micronutrients, vitamins and acetate. The ammonium 

concentration in the PBR influent was increased in time by increasing a separate 

concentrated ammonium inflow. 

The maximal specific hydrogen production rate (q\K,���, mol⋅kg
-1
⋅s

-1
) of the cultures was 

assessed using q\K,���-medium. It contained no ammonium and had a higher buffer 

capacity. Ammonium was added at a concentration of 1 mM where indicated. The 

composition of all media described above is displayed in Table 5.1. The media were 

prepared from concentrated stock solutions, set to pH 7.0 and autoclaved prior to use. 

Only the stock solution of calcium chloride and magnesium sulfate was autoclaved 



  Exploration of the hydrogen producing potential of R. capsulatus chemostat cultures 

  131 

separately and added later. The concentrated vitamin stock solution used was filter 

sterilized (0.2 μm) prior to addition to the medium. 

 

Table 5.1 Composition of all media and stock solutions used to prepare the media. 

 
Stock Solutions, 

C/N sources 

Medium →→→→ 

Stock g⋅⋅⋅⋅L
-1
↓↓↓↓ 

SYA 

(µµµµM) 

D-stat 

(µµµµM) 

G-stat 

(µµµµM) 

���, ¡¢ 

(µµµµM) 

pH-regulation 

D- / G-stat 

Nitrogen feed 

G-stat 

 

Buffer 

 

KH2PO4 

K2HPO4 

 

86.6 

73.3 

20 mL⋅L
-1
↓ 

12726 

8416 

6 mL⋅L
-1
↓ 

3818 

2525 

6  mL⋅L
-1
↓ 

3818 

2525 

40  mL⋅L
-1
↓ 

25452 

16832 

 

- 

 

 

- 

 

 

Macro 

nutrients 

 

MgSO
4
.7H

2
O 

CaCl2.2H2O 

 

5.00 

2.48 

40 mL⋅L
-1
↓ 

812 

674 

40 mL⋅L
-1
↓ 

812 

674 

40 mL⋅L
-1
↓ 

812 

674 

40 mL⋅L
-1
↓ 

812 

674 

 

- 

 

 

- 

 

 

Micro 

nutrients 

 

Na2EDTA.2H2O 

FeSO4.7H2O 

H3BO3 

MnSO4.2H2O 

Na2MoO4.2H2O 

ZnSO4.7H2O 

Cu(NO3)2.3H2O 

 

2.00 

1.18 

0.280 

0.277 

0.0750 

0.0240 

0.0040 

10 mL⋅L
-1
↓ 

53.7 

42.5 

45.3 

16.4 

3.10 

0.835 

0.166 

10 mL⋅L
-1
↓ 

53.7 

42.5 

45.3 

16.4 

3.10 

0.835 

0.166 

10 mL⋅L
-1
↓ 

53.7 

42.5 

45.3 

16.4 

3.10 

0.835 

0.166 

10 mL⋅L
-1
↓ 

53.7 

42.5 

45.3 

16.4 

3.10 

0.835 

0.166 

 

- 

 

 

- 

 

 

Vitamins 

 

Biotin 

Thiamin 

p-aminobenzoic acid 

vitamin B12 

nicotinamide 

 

0.1 

0.1 

0.1 

0.1 

0.1 

10 mL⋅L
-1
↓ 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

10 mL⋅L
-1
↓ 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

10 mL⋅L
-1
↓ 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

10 mL⋅L
-1
↓ 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

1 mg⋅L
-1

 

 

 

- 

 

 

 

- 

 

 

SYA 

 

Na2 succinate 

Yeast extract 

Na acetate 

 

81 

10 

16.4 

50 mL⋅L-1↓ 

25 mM 

500 mg⋅L-1
 

10 mM 

 

- 

 

- 

 

- 

 

- 

 

- 

Carbon 

source 

Acetic acid 

Na-acetate 

- 

- 

- 

- 

- 

52 mM 

- 

20 mM 

- 

50 mM 

2.0 / 2.0 M 

27 / 20 mM 

 

520 mM 

Nitrogen 

 source 

NH4Cl - - 27 mM - 1 mM
1
 27 / 0 mM 500 mM 

Headspace - nitrogen nitrogen nitrogen argon -  

                                                                 

 

 

1
 Where indicated 
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Experimental procedures 

During the D-stat experiment the dilution rate was decreased smoothly from 1.0 to 0 d
-1

 

at a fixed influent ammonium concentration of 27 mM in order to find the dilution rate 

that yields an optimal volumetric hydrogen production rate (MUKO , mol⋅m
-3
⋅s

-1
) at a constant 

biomass concentration of 4 g⋅L
-1

. A D-stat experiment executed previously at similar 

conditions demonstrated that the application of a deceleration rate (d, d
-2

) of 0.17 

warranted pseudo-steady state. In order to expand the experimental time available to 

collect the required data, a value of d of 0.1 d
-2

 was chosen. The specific growth rate was 

calculated as described before (Hoekema et al. 2006). 

During the G-stat experiment, the biomass concentration was increased smoothly by 

increasing the ammonium concentration in the reactor influent using a separate 

concentrated ammonium flow to which an equimolar concentration of acetate was added 

for pH compensation (see Table 5.1 for concentrations). The dilution rate was fixed at 

0.4 d
-1

 to make sure that steady state could be reached relatively fast. At this dilution rate 

the model of Hoekema et al. (Hoekema et al. 2006) predicts an optimum in volumetric 

hydrogen production rate of 1.60 mmol⋅m
-3
⋅s

-1
 at a biomass concentration of 2.55 kg⋅m

-3
. 

An experimental biomass concentration range of 0.7 - 4.2 g⋅L
-1

 was chosen, as it enables 

the verification of the predicted optimum while a wide range of average light intensities is 

covered. The experiment was started in chemostat mode at an influent ammonium 

concentration of 2.7 mM (corresponding to a biomass concentration of 0.7 g⋅L
-1

). During a 

D-stat experiment run earlier at identical illumination, pseudo-steady state was 

maintained at a biomass increment of 0.2 g⋅L
-1
⋅d

-1
 (Hoekema et al. 2006). This increment 
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was also applied during the G-stat experiment and corresponds to a gradient rate 

(g, mM⋅d
-1

) of 0.8
1
. 

Comparability with steady state conditions was verified experimentally by incorporating a 

true steady state period into each experiment during which the dilution rate or influent 

ammonium concentration was kept constant. 

Since the focus of this work is on studying the conversion of light energy into hydrogen 

energy in ammonium-limited Rba. capsulatus cultures, the carbon to nitrogen (C/N) ratio 

in the influent was kept above the C/N ratio of the biomass at all time in order to assure 

full nitrogenase expression (Dörffler et al. 1998). 

During both experiments, pH regulation using acetic acid yielded stable acetate 

concentrations of 20 - 25 mM in the PBR (data not shown). This acetate concentration 

range neither limits nor inhibits growth of Rba. capsulatus NCIMB 11773 cultures (data 

not shown). 

 

Experimental configurations 

 

Photobioreactor 

Both stat experiments were carried out in the flat-panel PBR described before (Hoekema 

et al. 2002). It was computer controlled using LabVIEW
©

 5.1 software (National 

Instruments, Austin, TX) via an ADAM-5000 data-acquisition and control module 

(Advantech, Milpitas, CA). It was autoclaved completely prior to use. Mixing was 

facilitated by sparging 0.85 nL⋅L
-1

 min
-1

 argon into the culture chamber through 25 

hypodermic needles. 

                                                                 

 

 

1
 An 80% conversion efficiency of NH4

+
-N to biomass-N and a biomass elemental composition of 

CHa.£B£O2.z£�N2.aaa (based on previous experimental results with an ammonium-limited culture at identical 

illumination) were used. 
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The reactor consisted of two compartments, the front one being oriented to the light. 

Water was circulated through it via a cryostat water bath to maintain the temperature in 

the culture compartment at 30°C. The culture compartment had an optical path of 3 cm 

and a working volume of 2.4 L (total volume 3.6 L). Both a pH and a redox probe were fit 

into the reactor for control and monitoring purposes. The pH was controlled at 7.0 by 

dosing acetic acid enriched with acetate to the reactor using a pH-controller (see Table 5.1 

for the composition of the pH regulation liquid). This is similar to the carbon substrate 

feeding methodology described previously (Hoekema et al. 2006). 

The reactor was illuminated by two 500 W tungsten halogen lamps (Philips Halotone R7s, 

fitted in Philips QVF 415n reflectors, Philips, Eindhoven, the Netherlands), placed on one 

side of the reactor. The lamps were mounted in a frame, on top of each other. The desired 

incident light intensity was reached by altering the distance between the reactor and the 

lamp-frame. The average radiation on the inner surface of the culture compartment was 

measured prior to cultivation, in the empty reactor, with the cooling-water compartment 

present. The D-stat and G-stat experiments were executed at light intensities of 590 and 

410 W⋅m
-2

 (400-950 nm) respectively. 

The medium was pumped into the reactor using a peristaltic pump. The culture was 

pumped out of the reactor via an L-shaped glass tube with the small leg upwards at the 

desired liquid level, using a second peristaltic pump. The weight of the effluent vessel was 

measured continuously in order to calculate the actual dilution rate of the system. A 

diluted (40 times) ‘Antifoam B’ Silicone emulsion (J. T. Baker, Deventer, the Netherlands) 

was automatically dosed into the reactor as a conductivity sensor detected the presence 

of foam in the reactor headspace. 

 

VUK,�YN determination 

Glass vessels with an average internal volume of 120 mL were used for the experimental 

quantification of the maximal specific hydrogen production rate of culture samples from 

the PBR by applying light-saturated conditions. Stirring was facilitated using magnetic 
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stirrer bars at 300 rpm. The temperature of the double-jacketed vessels was kept at 30°C. 

On top of the vessels light diffusing plates and 50 W tungsten halogen lamps were fitted. 

Their light intensity was measured at the bottom of the culture compartment in an open 

vessel, constructed especially for this purpose, and amounted to about 200 W⋅m
-2

 

(400-950 nm). 

The vessels were flushed with argon and 10 mL of cell suspension (taken directly from the 

reactor or washed with the appropriate media where indicated) was added, resulting in an 

optical light path of 7 mm. Two screw-caps with septa in the vessels’ walls facilitated 

argon flushing and headspace sampling. The increase in the hydrogen concentration in 

time in the headspace was measured using gas chromatography. The final pressure in the 

vessels was measured using a Cerabar M PMP41 0-4 bara pressure sensor 

(Endress+Hauser, Reinach, Switzerland). The value of q\K,��� was calculated from the 

region with linear kinetics (see Results section). The pH of the applied medium was set to 

7.0 initially and was checked after the experiment was ended. It generally increased by 

0.7-2.0 units over a six hour incubation period. 

 

Analyses 

 

Sampling 

Small samples (up to 20 ml) were withdrawn directly from the PBR using a sampling port. 

Larger samples (for instance for biomass dry-weight determination) were collected 

overnight on ice from the PBR effluent. 

The ammonium concentration in the culture, the hydrogen concentration in the gas 

phase, the absorptive properties of the biomass, the light intensity, the spectral 

composition entering and exiting the PBR, the viability of the biomass, the biomass 

concentration and the elemental composition of the biomass were determined as 

described previously (Hoekema et al. 2006). 
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Specific absorption surface  

The light absorptive properties of the biomass were determined using a 

spectrophotometer equipped with an integrating sphere according to (Hoekema et al. 

2006) eliminating the effect of light scattering on the absorption measurement. The 

specific absorption surface of the biomass (af�∗ , m
2
⋅kg

-1
) was calculated from the 

wavelength dependent absorption coefficients measured in the wavelength range 

between 400 and 950 nm (0.5 nm interval). The wavelength dependent absorption 

coefficients were first weighed according to the emission spectrum of the tungsten 

halogen lamps and then averaged. This method of calculation is analogous to the 

calculation of the average spectral extinction coefficient described previously (Dubinsky et 

al. 1986). 

 

pH and redox potential 

The pH was measured and controlled on-line. The pH value was checked off-line daily and 

the electrode calibration was adjusted when required. The redox potential was measured 

on-line to check for anaerobicity, which was always maintained (data not shown). 

 

Acetate 

The acetate concentration in the culture medium was determined by gas 

chromatography. Samples were centrifuged and the supernatant was diluted 1:1 with 

3% (v/v) formic acid and stored at -80°C. The samples were analyzed on an HP 5890 gas 

chromatograph equipped with a Heliflex AT-Aquawax-DA column (length 30 m, int. diam. 

0.32 mm, film thickness 0.25 μm) and an FID (flame-ionization detector). The column 

temperature was increased from 80-200°C at a rate of 25°C⋅min
-1

, while the FID was kept 

at 300°C. Nitrogen saturated with formic acid was used as the carrier gas at a flow rate of 

1.5 mL⋅min
-1

. 
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Results and discussion 

 

In the experiments presented the hydrogen producing potential of ammonium-limited 

R. capsulatus continuous cultures was explored. Its dependency on both the imposed 

dilution rate and biomass concentration was studied. First a D-stat experiment was 

conducted in order to determine the volumetric hydrogen production rate at set biomass 

concentration and variable dilution rate. Then a G-stat experiment was conducted to 

investigate the extent of light limitation at different biomass concentrations. 

 

D-stat experiment 

During the D-stat experiment, the biomass concentration was intended to remain 4.0 g⋅L
-1

 

by applying a constant, limiting ammonium concentration in the influent. This biomass 

concentration ensures sufficient hydrogen generating capacity in the PBR to direct 3.3% of 

the light energy input towards hydrogen. The ammonium concentration in the PBR never 

exceeded 55 μM (data not shown), resulting in nitrogen limitation for the biomass. 

According to model predictions, a dilution rate of 0.1 d
-1

 should result in a volumetric 

hydrogen production rate of 1.30 mmol⋅m
-3
⋅s

-1
 at this biomass concentration (Hoekema et 

al. 2006). The biomass concentration was constant at 4.0 g⋅L
-1

 during the first 15 days of 

the experiment. However, as the dilution rate was decreased below 0.8 d
-1

, the biomass 

concentration in the PBR increased up to 5.5 g⋅L
-1

, causing a deviation between the 

dilution rate and the specific growth rate (Figure 5.1). An increase in the C/N-ratio of the 

biomass from 7.1 to 9.0 was measured at the point where the increase in biomass 

concentration was observed (data not shown). 
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Figure 5.1 Dilution rate (D, �), resulting growth rate (Q, �) and biomass concentration (C�, �) 

during the D-stat experiment. The dotted line represents the set dilution rate. The 

error bars represent standard errors of the mean. 

 

An unexpected increase in the concentration of several organic acids was observed in the 

culture medium at this point (Figure 5.2), indicating a shift in the bacterial carbon 

metabolism. All three observations could be related to the accumulation of carbon 

storage materials like poly-β-hydroxybutyrate, which is not uncommon for ammonium-

limited cultures of PNS bacteria, especially when  grown on acetate (Göbel 1978; Khatipov 

et al. 1998). 
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Figure 5.2 Glutamate (glu, �), malate (mal, �) and lactate (lac, �) concentrations in the PBR 

culture supernatant during the D-stat experiment. 

 

The volumetric hydrogen production rate r\K
�  increased slightly from 0.30 to 

0.60 mmol⋅m
-3
⋅s

-1
, the latter corresponding to a light- to hydrogen energy conversion 

efficiency of  0.8% at a dilution rate of 0.6 d
-1

 (data not shown). This is significantly lower 

than the 1.6 mmol⋅m
-3
⋅s

-1
 or 3.3% light to hydrogen energy conversion efficiency that 

resulted from model calculations at a dilution rate of 0.1 d
-1

 (Hoekema et al. 2006). 

The specific hydrogen production rate (q\K , mmol⋅kg
-1
⋅s

-1
) in the PBR was constant at 

0.11 mmol⋅kg
-1
⋅s

-1
 during the entire experiment. The maximal specific hydrogen 

production rate was much higher, around 0.40 mmol⋅kg⋅s
-1

 (data not shown), but did not 

reach 0.52 mmol⋅kg
-1
⋅s

-1
 as measured previously (Hoekema et al. 2006). Possibly, light 

limitation inside the PBR caused the large deviation between the recorded values for q\K  
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and q\K,���. Such a severe influence of light limitation on the volumetric hydrogen 

production rate was unanticipated at this relatively low biomass concentration combined 

with the short 3 cm optical path of the PBR. 

The influence of the biomass concentration on the specific hydrogen production rate was 

studied next, as the light availability inside the PBR is directly influenced by it. 

 

G-stat experiment 

The G-stat experiment was executed at an elevated dilution rate (0.4 d
-1

 instead of 

0.1 d
-1

), in order to prevent the shift in carbon metabolism observed during the D-stat 

experiment. Both the imposed dilution rate and the resulting specific growth rate are 

shown in Figure 5.3 and display close resemblance, indicating that steady state was 

maintained. 
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Figure 5.3 Dilution rate (¤, �) and resulting growth rate (Q, �) during the G-stat experiment. 

The dotted line represents the set dilution rate. The error bars represent standard 

errors of the mean. 

 

No accumulation of organic acids was detected (data not shown). After demonstration of 

initial steady-state (Period I), the influent ammonium concentration was increased 

gradually at a gradient rate of 0.8 mM⋅d
-1

, starting on day 18. This resulted in an increase 

in biomass concentration and a decrease in light intensity exiting the PBR in time 

(Period II), as can be seen in Figure 5.4. 
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Figure 5.4 Ammonium concentration in the reactor influent (NHzn, �), resulting PBR biomass 

concentration (C�, �) and residual light intensity (I���, �) during the G-stat 

experiment. The error bars represent standard errors of the mean. 

 

The culture was always ammonium-limited, as evidenced by the immediate increase in 

biomass concentration as the influent ammonium concentration was increased and an 

ammonium concentration that remained below 10 μM (data not shown). Between 

days 25 and 30 the increase in influent ammonium concentration was paused (Period III). 

Comparability between the pseudo-steady state reached and true steady state was 

demonstrated in this interval because no significant changes in the properties of the 

culture were observed during this period. On day 30 the increase in influent ammonium 

concentration was resumed, but at a lower increment of 0.4 instead of 0.8 mM⋅d
-1

 

(Period IV), in order to study the dependency of r\K
�  on C� with higher resolution. 

After day 54 the influent ammonium concentration was kept constant (Period V, see 

below for an explanation). The five periods identified above are indicated throughout 

Figures 5.3-5.7. 
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Figure 5.5 Predicted (�) and actual (�) volumetric hydrogen production rate r\K
�  during the 

G-stat experiment. The error bars represent standard errors of the mean. 

 

Both the predicted and actual values of r\K
�  as the D-stat experiment progressed are 

displayed in Figure 5.5. The increase in biomass concentration caused a proportional 

increase in r\K� , reaching 0.70 mmol⋅m
-3
⋅s

-1
 at 1.5 g⋅L

-1
, corresponding to a light to 

hydrogen conversion efficiency of 1.6%. This value is in good accordance with model 

predictions. As can also be seen here, a further increase in biomass concentration resulted 

in a decline in r\K
� , while model-predictions suggested a further increase (Hoekema et al. 

2006). After day 53 a minor recovery was observed, which will be discussed later. 

All light energy absorbed by the bacterial culture is either used for biomass growth, 

biomass maintenance, hydrogen production or is dissipated as heat. The presented model 

predictions are based on the assumption that the ratio of fractions of the total absorbed 

light energy used for biomass synthesis and hydrogen photo production can be influenced 
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directly by altering the biomass synthesis rate. The results demonstrate that this 

assumption is only partly true and that a decrease in volumetric biomass synthesis rate 

does not result in an energetically proportional increase in the volumetric hydrogen 

production rate. The efficiency of biomass synthesis and maintenance on light energy is 

unlikely to have changed under these conditions. The absorbed light energy that was 

neither used for additional biomass nor for additional hydrogen production must have 

resulted in additional heat dissipation, as the elemental composition of the biomass 

essentially remained unaltered and no organic acids were observed in the culture medium 

during the later stage of the exeriment (data not shown). 

The specific hydrogen production rate q\K  and the maximal hydrogen production rate 

q\K,��� are displayed in Figure 5.6. Interestingly, both parameters reach a maximum of 

0.50 mmol⋅kg
-1
⋅s

-1
 simultaneously, around day 25 of the G-stat experiment. This value is 

comparable to literature values for nitrogen-limited R. palustris cultures grown on acetate 

(Fissler et al. 1994; Vincenzini et al. 1982). 
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Figure 5.6 Specific hydrogen production rate (q\K, �) during the G-stat experiment. Maximal 

specific hydrogen production rate in the PBR during the G-stat experiment. The 

medium used contained either no (q\K,���, �) or 1 mM (q\K,���, �) ammonium. 

The error bars represent standard errors of the mean. 

 

Hydrogen production rate at higher biomass concentrations during the G-stat 

As the biomass concentration was increased further, q\K  and q\K,��� declined 

simultaneously, starting on day 31 at a biomass concentration of 1.5 g⋅L
-1

. Several 

explanations have been given in literature for the variability of the volumetric hydrogen 

production rate in continuous cultures of PNS bacteria. They will be discussed below in 

the light of current observations. 
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The applied growth rate 

The volumetric hydrogen production rate of R. capsulatus continuous cultures has been 

reported to increase as the culture is subjected to a lower growth rate, reaching 

0.90 mmol⋅m
-3
⋅s

-1
 at 0.96 d

-1
 (Tsygankov et al. 1998a). A volumetric hydrogen production 

rate of 1.93 mmol⋅m
-3
⋅s

-1
 at a dilution rate of 0.24 d

-1
 was reported previously for a 

R. rubrum chemostat culture (Zürrer and Bachofen 1982). The applied growth rate of 

0.4 d
-1

 lies in between these values and since it was kept constant, it is not expected to be 

related to the observed decline in r\K
� . 

 

Product inhibition 

The actual rate of hydrogen photoproduction by Rba. capsulatus in a PBR might be lower 

than the potential rate due to product inhibition by hydrogen (Tsygankov et al. 1998a). 

Since the PBR was continuously flushed with 0.85 L⋅L
-1
⋅min

-1
 argon, it seems unlikely that 

inhibition by hydrogen played a significant role. 

In addition, the value of q\K,��� of washed culture samples (data not shown) yielded 

results comparable to those for unwashed culture samples and to the q\K  values 

measured directly in the PBR (Figure 5.6). This observation excludes the possibility of the 

presence of an extracellular compound exerting a negative influence on the specific 

hydrogen producing rate of the culture. 

 

Nitrogen limitation 

As the extent of nitrogenase derepression was suggested to be correlated with the degree 

of nitrogen deficiency (Arp and Zumft 1983), the culture’s nitrogen deficiency was 

examined. 

According to Monod’s chemostat theory, the residual concentration of the growth limiting 

substrate S depends on the micro-organism’s maximal growth rate, the saturation 

constant for the growth-limiting substrate (K�, kg⋅m
-3

) and the set dilution rate according 

to Equation 5.1. 
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Equation 5.1 S = o∙¦§
¨©ª�wo 

 

The micro-organism’s maximally achievable growth rate in phototrophic culture depends 

on the available average light intensity, which declines concomitantly with an increase in 

C� as a result of increased light limitation (Tsygankov and Laurinavichene 1996b). During 

the G-stat experiment, the biomass concentration increased, resulting in a decrease in 

μ���	(I) (resulting from a decreased light availability) and, according to Equation 5.1, a 

decrease in the extent of nitrogen limitation. The observed increase in supernatant 

ammonium concentration from 1.3 to 5.8 μM and the increase in dry biomass nitrogen 

content from 4.1 to 4.9% (data not shown) as the G-stat experiment progressed might be 

related to this decrease in degree of ammonium limitation. The observed increase in 

supernatant ammonium concentration is not likely to have had a significant inhibiting 

effect on the specific hydrogen production rate of the culture, as nitrogenase inhibition in 

ammonium-limited Rba. capsulatus cultures starts at much higher ammonium 

concentrations of about 100 μM (Willison et al. 1983). 

 

The accumulation of Nif 
-
-mutants 

The accumulation of a spontaneous Nif
-
-mutant in a daily serial transfer of Rps. capsulata 

in time was reported previously, reaching nearly 100% after 8 days (Wall et al. 1984). This 

Nif
-
-phenotype was unable to grow with N2 as the nitrogen source and had no measurable 

nitrogenase activity. 

It is unclear to what extent such Nif
 -
-mutants might have accumulated in the culture 

during the G-stat experiment. However, both the initially observed increase in volumetric 

and specific hydrogen production rate (until the end of Period III) and the maximal 

hydrogen production rate throughout the experiment indicate that the presence of a Nif
-

-phenotype may not have been significant. 
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The relationship between light availability and specific nitrogenase activity 

As the G-stat experiment progressed, the biomass concentration in the PBR increased, 

resulting in a decrease in the average available light energy (Figure 5.4). Possibly, this 

decrease in average light intensity caused a decreased synthesis of nitrogenase 

(Tsygankov and Laurinavichene 1996a), which may have resulted in the decrease in both 

q\K  and q\K,��� at biomass concentrations higher than 1.5 g⋅L
-1

. At this biomass 

concentration, the residual light intensity was still about 50 W⋅m
-2

, while the specific 

nitrogenase activity of Rba. capsulatus cultures was reported to be already saturated at 

22 W⋅m
-2

 (Tsygankov and Laurinavichene 1996a). 

Not only the average light availability but also light quality and -distribution may have 

contributed to the observed decline in q\K , as was indicated previously (Tsygankov et al. 

1998a). Most probably, the spectral composition of the available light after passing 

through part of the PBR was not such that it could be used optimally by the bacterial 

photosystem. Indeed a sharp decline in the fraction of the residual light spectrum leaving 

the PBR near the absorption maximum of BChl a along the optical path could be 

demonstrated, using the light absorptive properties of the culture and the spectral 

composition of the light entering the PBR. (data not shown). 

The samples taken from the PBR were exposed to a higher and more uniform light 

intensity during the q\K,��� determinations. The increased light availability possibly 

resulted in de novo synthesis of nitrogenase, resulting in an increased discrepancy 

between q\K  and q\K,��� (Figure 5.6), as was demonstrated previously (Jouanneau et al. 

1985). 
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Figure 5.7 Maximal specific hydrogen production rate of the PBR culture after 19 (A), 32 (B), 

42 (C without, D with 1 mM NHzn supplied to the medium), 52 (E) and 63 (F) days 

in the G-stat experiment. The error bars represent standard errors of the mean. 
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As can be seen in Figure 5.7, an increase in q\K,��� was observed on days 42, 52 and 63. 

As the G-stat experiment progressed, the final value of q\K,��� was lower and was 

reached more slowly. Both observations are probably directly related to the decreased 

value of q\K  (Figure 5.6), which most probably resulted from the decreasing average light 

availability within the culture as the biomass concentration in the PBR was increased. 

The initial lag phase, followed by an increase and a final value of q\K,��� that is much 

higher than the corresponding value of q\K  in the PBR are most pronounced when 

ammonium was added to the medium (Figure 5.7C and D). This nitrogen stimulated 

nitrogenase activity was demonstrated previously (Steinborn and Oelze 1989), who 

demonstrated that under conditions of energy limitation, nitrogenase activity is indirectly 

influenced via glutamate consumption. 

A limited supply of ammonium was probably required for de novo synthesis of additional 

nitrogenase under high light conditions that facilitated the observed significant increase in 

specific nitrogenase activity. Based on these results, light availability must have 

contributed significantly to the observed drop in specific hydrogen production rate. 
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Figure 5.8 Specific absorption surface («¬­∗ , �) during the G-stat experiment. Ammonium 

spikes and nitrogen flushes are indicated by black and white arrows respectively. 

 

 

Specific absorption surface of the bacterial culture 

The results indicate that light availability within the PBR is a key factor in nitrogenase 

expression in PNS bacteria and for this reason, the physiological properties of the culture 

that are related to light absorption were looked into. The specific absorption surface 

(af�∗ , m
2
⋅kg

-1
) of the bacterial culture, together with the biomass concentration, 

determines the average light availability inside a PBR. The specific absorption surface 

during the G-stat experiment is presented in Figure 5.8. Phototrophic cultures in general 

respond to a decrease in light availability (and hence a decrease in specific growth rate) by 

increasing their photosynthetic apparatus (Göbel 1978; Tsygankov and Laurinavichene 
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1996b), resulting in an increase in specific absorption surface, as is evident throughout 

Periods I to III in Figure 5.8. 

The observed decline in specific absorption surface of the culture as its biomass 

concentration exceeded 1.5 g⋅L
-1

 was unanticipated, since the growth rate remained 

constant and the average light intensity inside the PBR decreased in time. The down 

regulation of the expression of genes related to nitrogen fixation (nitrogenase) was 

possibly accompanied by the down regulation of genes related to the expression of the 

photosynthetic apparatus as reported previously for Rba. capsulatus cultures (Masepohl 

et al. 2002). The prolonged exposure to ammonium limitation could also have caused the 

unanticipated decline in specific absorption surface of the culture. In the later phase of 

the G-stat experiment, this possibility was investigated by supplying the culture with 

additional nitrogen. 

Two ammonium spikes were given (1 mM on day 53 and 4 mM on day 59) after which the 

culture was intermittantly sparged with 0.85 L⋅L
-1
⋅min

-1
 of di-nitrogen instead of argon (6 

times per day for 10 minutes from days 60 to 65). The supply of additional nitrogen in 

Period V did not result in a significant increase in either the calculated specific growth rate 

(Figure 5.3) or the biomass concentration of the culture (Figure 5.4). It did however result 

in a small increase in its volumetric hydrogen production rate (r\K
� , Figure 5.5), its specific 

hydrogen production rate and its maximal specific hydrogen production rate (Figure 5.6). 

Moreover, the culture’s specific absorption surface increased significantly (Figure 5.8). 

Possibly the co-expression of the photosystem and the nitrogenase enzyme is stimulated 

separately by both the light availability and the availability of di-nitrogen. Contrary to our 

observations in this latter phase of the experiment,  nitrogen-limited Rps. palustris batch 

cultures were reported to exhibit a four to eight-fold higher specific nitrogenase activity 

relative to cells sparged with di-nitrogen due to overproduction of nitrogenase (Arp and 

Zumft 1983). The observed effects of the repeated di-nitrogen flushes are very distinct 

and unexpected. 
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Conclusions 

 

In this work, the hydrogen producing potential of nitrogen-limited Rba. capsulatus 

NCIMB 11773 chemostat cultures was explored. Its dependency on both the imposed 

biomass concentration and the dilution rate was investigated in a flat-panel PBR with an 

optical path of 3 cm developed previously. Two experimental methods referred to as 

Deceleration-stat and Gradient-stat were applied successfully, generating the required 

data in a reduced time span.  

The Deceleration-stat experiment was aimed at a constant biomass concentration of 

4.0 g⋅L
-1

 while decelerating the dilution rate starting at 1.0 d
-1

. The volumetric hydrogen 

production rate of the culture did not exceed 0.6 mmol⋅m
-3
⋅s

-1
 which is low when 

compared to 1.3 mmol⋅m
-3
⋅s

-1
 according to model predictions. These low values were 

probably related to the relatively high biomass concentration resulting in light limitation 

inside the PBR. The decrease in dilution rate also resulted in a shift in bacterial carbon 

metabolism. 

The Gradient-stat experiment demonstrated that the model predictions for r\K
�  are rather 

accurate provided that the biomass concentration does not exceed 1.5 g⋅L
-1

. While the 

growth of the culture was nitrogen-limited during the complete experiment, its specific 

hydrogen production rate most probably was light-limited as the biomass concentration 

exceeded 1.5 g⋅L
-1

. Similar observations were made for ammonium-limited Rps. capsulata 

continuous cultures (Jouanneau et al. 1984) and these conditions were referred to as 

‘double limitation’ (Tsygankov et al. 1996). 

The unexpected shift in metabolism that was observed during the Deceleration-stat 

experiment at very low dilution rates requires more detailed investigation. Also, the 

interplay between light and nitrogen availability on the one hand and the expression of 

the photosystem and the nitrogenase enzyme on the other is not fully understood and 

should be studied in more detail in order to achieve conditions that facilitate the culture 

to exhibit a high and stable specific hydrogen production rate. 
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To study this phenomenon further, the influence of (partial) light limitation on the 

volumetric hydrogen production rate should be studied in more detail. Possibly a high 

value of  q\K,��� can be maintained up to higher biomass concentrations in reactors with 

even shorter optical paths. The positive effect of light path reduction on the efficiency of 

light use was demonstrated for cynobacterial mass cultures (Qiang et al. 1998b). As clearly 

demonstrated (Qiang and Richmond 1996), a further reduction in optical path should be 

accompanied with the selection of the optimal biomass density and mixing rate. If the 

required biomass concentration for an optimal photosynthetic efficiency at a given 

illumination is 2.3 g⋅L
-1

, as is the case for the applied system with a 3 cm optical path, a 

dilution rate of 0.4 d
-1

 and a light intensity of 410 W⋅m
-2

, a similar areal hydrogen 

production capacity is reached at 6.9 g⋅L
-1

 in case the optical path of the PBR is reduced to 

1 cm. 

This drastically increases the importance of optimal light distribution and -integration. 

Also, the physiological properties of the applied micro-organisms specific hydrogen 

production rate is important for future work, because they can significantly reduce the 

biomass concentration that is required for a certain efficiency of light- to hydrogen energy 

conversion. Both the fraction of light energy that is converted into biomass energy and 

the extent to which heat dissipation takes place might be drastically reduced as the 

specific hydrogen production rate of the culture is higher. For example, a Hup
-
 mutant of 

Rba. sphaeroides RV displayed a two-fold higher specific hydrogen production rate when 

compared to the wild type (Franchi et al. 2004). However, at the elevated biomass 

concentrations still required for good conversion of light energy into hydrogen energy, a 

certain degree of light limitation cannot be avoided. As such, investigating the influence of 

light limitation on the volumetric hydrogen production rate is of prime importance to 

realize breakthroughs in this type of process in the future. 
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Nomenclature 

 

af�∗  Specific absorption surface [m
2
⋅kg

-1
] 

C/N -ratio Carbon to Nitrogen ratio [-] 

C� Biomass concentration [kg⋅m
-3

] 

d Deceleration rate [d
-2

] 

D Dilution rate [d
-1

] 

D-stat Deceleration-stat [-] 

g Gradient rate [M⋅d
-1

] 

G-stat Gradient-stat [-] 

I Light intensity [W⋅m
-2

, 400 – 950 nm] 

K� Saturation constant [kg⋅m
-3

] 

PBR Photobioreactor [-] 

q\K  Specific hydrogen production rate [mol⋅kg
-1
⋅s

-1
] 

q\K,��� Maximal specific hydrogen production rate [mol⋅kg
-1
⋅s

-1
] 

r\K�  Volumetric hydrogen production rate [mol⋅m
-3
⋅s

-1
] 

S Growth limiting substrate concentration [mg⋅L
-1

] 

μ Specific growth rate [d
-1

] 

μ��� Maximal specific growth rate [d
-1

] 

μ���(I) Maximal specific growth rate at light intensity I [d
-1

] 
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6. The future of photobiological hydrogen energy 

 

Abstract 

 

In this work, an overview is given on the current status of development of photobiological 

hydrogen production processes using purple non sulfur bacteria and photoautotrophic 

microorganisms. 

The applied cultivation system, the applied microorganism and the mode of operation of 

the system all play a role in the final efficiency at which light energy is converted into 

hydrogen energy. For this reason, all three topics are covered, including their 

interdependencies. 
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Introduction 

 

It is generally accepted that the final answer to the ever increasing global energy 

consumption, once fossil energy resources are depleted, lies within solar energy supply 

(Lewis and Nocera 2006). During the past decades, the application of photosynthesis for 

the generation of renewable energy from sunlight has received much attention. Several 

applications are very promising, like the generation of biodiesel that uses microalgal 

biomass as a source material (Chisti 2007). Another promising process that results in 

renewable energy derived from photosynthesis generates molecular hydrogen, which can 

be applied as an intermediate energy carrier. Hydrogen can be produced by phototrophic 

micro-organisms like purple non sulphur bacteria (or PNS bacteria in short). The required 

electrons are generated by the dissimilation of organic acids. Also micro-algae are capable 

of producing molecular hydrogen, when they are subjected to specific conditions, like 

environmental conditions and/or their growth phase. 

Despite the potential of photosynthetic processes as a source for renewable energy and 

the attention they have received in a time frame of over 4 decades, the commercial 

viability of large scale application remains to be demonstrated. This is mainly caused by 

the lack of a competitive efficiency of light energy conversion at larger scales, combined 

with the high degree of variation in real-life solar light intensities as they are present at 

ground level on earth (i.e. diurnal variation with variations in the 1000 W⋅m
-2

  range), as 

was concluded previously (Adessi et al. 2012; Eroglu and Melis 2011; Tredici 2009). This 

limited conversion efficiency at larger scales and highly varying light intensity results from 

the combination of three factors, which are: 

 

(1) the maximal efficiency of photosynthesis 

(2) the evolutionary physiological properties of phototrophic organisms and 

(3) the design properties of photo-bioreactors (PBRs). 
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In this chapter, a substantiation of this conclusion is given. Several topics that require 

further investigation are highlighted, as their study could increase the chance that a 

process for renewable energy generation based on photosynthesis will become 

commercially viable in the future. 

 

 

Theoretical efficiency of photosynthesis 

 

Theoretical efficiency of oxygenic photosynthesis 

Photosynthesis is a very efficient process, during which light is harvested and converted to 

metabolic energy. Microalgae can use radiation between 400 and 700 nm for oxygenic 

photosynthesis, and for this reason this part of the solar spectrum is referred to as 

photosynthetic active radiation or PAR  in short. Forty-three per cent of all solar 

irradiation energy reaches the surface of the earth in the PAR region (Thimijan and Heins 

1983). The maximal theoretical efficiency of algal photosynthesis (the conversion of light 

energy into biochemical energy) equals 35% at 600 nm. This efficiency decreases to 27.7% 

when the entire solar PAR range is included. It decreases even further to 12.4% when the 

efficiency of photosynthesis over the complete solar spectrum is considered (Tredici 

2009). 

 

Theoretical efficiency of anoxygenic photosynthesis 

Purple non-sulfur bactera (PNS bacteria in short) have a larger spectral range 

(400-950 nm) that can be used for anoxygenic photosynthesis. The maximum solar light to 

hydrogen energy conversion efficiency within this range equals 10.6% in this case, as was 

calculated previously (see Chapter 4 for the details on this calculation).  
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Practical efficiency of photosynthesis 

 

Caloric measurements on algal growth, on small scale and at low light intensity, 

demonstrated a 27% energy conversion efficiency at ∼700 nm (Radmer and Kok 1977). 

These experiments demonstrated that the theoretical maximum photosynthetic efficiency 

described previously can be approached experimentally. 

On a larger scale, at a higher light intensity and using increased biomass densities, the 

conversion of solar light to biomass in mass cultures of unicellular phototrophic organisms 

has additional limitations. Several factors, including light reflection at the surface of the 

PBR, maintenance requirements of the microorganism and a non-uniform distribution of 

light resulting in both light oversaturation and self-shading (these topics will be adressed 

in more detail later on in this chapter) can cause additional limitations. Even so, Qiang and 

Richmond demonstrated that a photosynthetic efficiency of 17.5% on PAR basis could be 

achieved in dense Spirulina platensis cultures when an irradiation of 1800 µmoles PAR was 

applied (Qiang and Richmond 1996). 

These restrictions on the maximal efficiency of oxygenic photosynthesis also hold for 

anoxygenic photosynthesis by purple non sulfur bacteria. 

 

 

Light to hydrogen conversion efficiency 

 

The efficiency of the process of molecular hydrogen generation is mostly reported in 

literature as the light energy to hydrogen energy conversion efficiency. Other substrates 

(for instance an electron donor) and/or products (for instance biomass) are not 

considered in this case. Because biomass has to be generated first, after which the 

photobiological conversion of organic acids to hydrogen can take place, this represents an 

additional restriction in the conversion efficiency that can be achieved. 
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Considering the 400-950 nm spectral irradiance of halogen-tungsten lamp (see Figure 

1.5B), the maximal light to hydrogen conversion ratio of PNS bacteria equals 25.3% (see 

the Theory section in Chapter 4). The difference between the maximal and practical light 

to hydrogen conversion ratio is significant and requires further explanation. 

 

Light to hydrogen conversion efficiencies by photohetertrophs 

PNS bacteria contain the enzyme nitrogenase. While this enzymes primary function is to 

fix molecular nitrogen, it can also catalyse the combination of 2 protons and 2 electrons to 

form molecular hydrogen in order to control the intra-cellular redox poise (Tabita 1995). 

The energy requirement of nitrogenase and its dependency on the availability of light 

(Jouanneau et al. 1985; Tsygankov et al. 1996) causes further restrictions to the light to 

hydrogen conversion efficiency that can be reached using PNS bacteria. 

The highest light to hydrogen conversion ratios reported in literature are presented in 

Table 6.1 for batch and in Table 6.2 for chemostat experiments. The highest light to 

hydrogen conversion ratio ever to have been reported to our knowledge is 35% (Yamada 

et al. 1998). In this specific case, a Xenon light source was applied at non-saturating 

conditions. Xenon lamps have distinct emission peaks located close to the adsorption 

maxima of the bacterial photosystem, resulting in a larger fraction of the emitted light 

that can be used for photosynthesis. Experiments executed with the more commonly 

applied tungsten lamp gave significantly lower conversion ratios, of which the highest is 

10.4% (Kim et al. 2006). 

 

Light to hydrogen conversion efficiencies by photoautotrophs 

Several photo-autotrophic organisms are also capable of generating molecular hydrogen. 

Their highest light to hydrogen conversion ratios reported in literature are presented in 

Table 6.3. With a PAR based light to hydrogen conversion ratios of 10.4%, Greenbaum 

demonstrated the large potential of photoautotrophs for converting light to hydrogen 

(Greenbaum 1988). In general, however, their performance is lower than that of 

photoheterotrophs, as will be explained later. 
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Light oversaturation 

Table 6.1 to Table 6.3 show that the light to hydrogen conversion efficiency decreases 

when the applied light intensity increases. For instance, from the data reported by 

Yamada et al., a drop in light to hydrogen conversion efficiency of 35 to 1.6% can be 

calculated as the light intensity increases from 13 to 1800 W⋅m-2
 (Yamada et al. 1998). 

Other researchers have reported data that illustrate the same relationship (Hoekema et 

al. 2009; Jouanneau et al. 1984; Tsygankov et al. 1998a). 

Assuming that the larger part of the supplied light was absorbed by the cultures, these 

observations might be caused by light oversaturation of the reaction centers of the 

photosystem in question, resulting in a decreased efficiency at which absorbed light is 

used for photosynthesis. This process, referred to as non-photochemical quenching, acts 

as a safety valve, protecting the photosystem from photo-oxidative damage in case the 

light energy absorption capacity exceeds the capacity for light utilization. Most probably, a 

quencher molecule is formed in the light harvesting complex that dissipates excess 

absorbed light energy (Cleland et al. 1992; Müller et al. 2001). Non-photochemical 

quenching results in a fraction of absorbed light that is not used in photosynthesis and it 

negatively influences the light to hydrogen conversion efficiency. 

In our experiments 80 to 90% of all light energy absorbed under high light intensity 

(410 W⋅m
-2

), did not result in primary charge separation, but was dissipated as heat 

instead (Hoekema et al. 2006). Similar values for the dissipation of absorbed by 

phototrophic microorganisms that are exposed to high light intensities were recorded 

before (Goldman 1979; Hallenbeck and Benemann 2002). 

 

Self-shading 

As light is absorbed by a culture of phototrophic organisms, its intensity is attenuated 

along the light path of a PBR. The physiological response of a photosynthetic organism to 

low light intensity is to increase its light harvesting capacity by synthesizing additional light 

harvesting complex, resulting in additional light attenuation, dark zones and a decreased 

photosynthetic efficiency. 
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Table 6.1 to Table 6.3 show that in general, the specific hydrogen production rate 

decreases as the biomass concentration and/or the optical path of a PBR increases, even 

at moderate light intensities. This is most probably caused by self-shading, as the part of 

the culture that is completely deprived of light does not contribute to the specific 

hydrogen production capacity of the system. 

For example, chemostat cultures of R. capsulatus with a density of 400 mg⋅L
-1

 reached a 

plateau level of nitrogenase activity when exposed to an incident light intensity of 60 

W⋅m
2
 in a PBR with an optical light path of 13 mm (Tsygankov et al. 1996). Jouanneau 

found comparable results under comparable conditions, also with chemostat cultures of 

R. capsulatus (Jouanneau et al. 1985). These observations illustrate that not only should 

an optimally constructed PBR for PNS bacterial hydrogen production be void of dark 

zones, a significant level of light needs to be supplied to each individual cell continuously 

to safeguard maximal specific nitrogenase activity. 

As the biomass concentration of a R. capsulatus chemostat culture in a PBR with an 

optical light path of 3 cm and an incident light intensity of 410 W⋅m
-2

 was gradually 

increased, we also found that the specific nitrogenase activity started to decline as a 

biomass concentration of 1.5 g⋅L
-1

 was reached (Hoekema et al. 2009). 

  

 

How to improve the light to hydrogen energy conversion process 

 

Silicon solar cells have already been produced that reach light energy conversion 

efficiencies of up to 24.4% at elevated light intensities (Zhao et al. 1998). However, the 

production of solar cells is energy intensive and their lifespan limited. Also, electricity is 

energy in a form that cannot be stored. The conversion to a storable form will have a 

negative impact on the overall light conversion efficiency. The comparison does however 

illustrate that a competitive process based on photosynthesis should have a significant 

energy conversion efficiency (Blankenship et al. 2011). 
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The light to hydrogen energy conversion efficiency of a biotechnological process based on 

unicellular phototrophic organisms results from the interplay between (A) the design of 

the applied PBR, (B) the physiological properties of the applied unicellular micro-organism 

and (C) their coupling, resulting in a mode of operation of the process. For this reason, 

these three essential process constituents and their interdependencies will be discussed 

here. 

 

(A) PBR design 

A properly constructed PBR should facilitate optimal process economy. For this reason, it 

should create an environment in which the selected organism can generate the desired 

product the fastest (resulting in a smaller required volume) or the most efficient (resulting 

in the most efficient use of substrates), depending on the process economics. 

In the case of phototrophic processes, the predominant optimization factor is surface 

area, as it is expensive (Brentner et al. 2011) and its minimization reduces the food versus 

fuel debate (Lam and Lee 2012; Wijffels and Barbosa 2010). In view of process 

intensification, many PBRs that have been designed and investigated have a very high 

surface to volume ratio, as can be seen in Table 6.1 to Table 6.3. 

To facilitate a high light to hydrogen conversion efficiency by PNS bacteria, a proper PBR 

design should adhere to the following three design criteria: 
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1. It should absorb most of the light impinging on it; 

2. It should provide sufficient light to all cells so that they can execute 

photosynthesis at near maximal photosynthetic efficiency and retain active 

nitrogenase; 

3. It should have limited construction costs and power consumption requirements 

during process operation (which implies the need for simplicity and process 

intensification). 

As is evident from literature, it is the combination of these pre-requisites that results in a 

significant engineering challenge. Much progress has been made in understanding the 

physiological mechanisms of PNS bacteria, microalgae and cyanobacteria that underlie 

these design criteria. Below the most important aspects will be discussed. 

 

Light energy supply to the individual cell 

The use of strong light infers that cells near the illuminated surface of a PBR can suffer 

cellular damage due to over-exposure to light, resulting in an increase in maintenance 

requirements up to total inhibition of the photosynthetic system (Adir et al. 2003). 

Additionally, dark zones develop in a PBR beyond a certain cell concentration and PNS 

bacteria are not able to execute part of the photosynthetic process. Parts of the culture 

that are not exposed to light therefore negatively influence the overall light to hydrogen 

conversion efficiency, as it is not expected that maintenance energy requirements 

decrease significantly in the absence of light. Dark zones in a culture of PNS bacteria will 

therefore negatively influence the overall performance of the system, especially at 

elevated cell concentrations. The PBR optical light path and the applied biomass 

concentration must be balanced in order to prevent the creation of dark zones but still 

absorb almost all the light impinging on the PBR surface. 
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The energy requirements for turbulent mixing 

At a certain cell density, a dark zone will develop in a microalgal culture. As a result, the 

individual cells are exposed to light flashes as part of a light/dark cycle. In case the 

light/dark cycle is short enough, the productivity of each individual cell can remain close 

to its maximum, a phenomenon referred to as light integration (Janssen et al. 2000; Kok 

and Burlew 1953; Qiang et al. 1998b; Vejrazka et al. 2011). Vejrazka et al. postulated that 

an intracellular pool of reducing equivalents enables light integration, as the dark reaction 

of photosynthesis can continue during the dark period (Vejrazka et al. 2011) . 

Turbulent mixing is needed in order to keep the light/dark cycles short, which translates 

to a significant required power input. Even though the areal biomass production efficiency 

and concomitant light conversion efficiency reported by Qiang et al. (Qiang et al. 1998b) is 

amongst the highest ever reported, the power input required for mixing alone was at least 

20% of the generated biomass energy output in this case, assuming a 200 mbar air 

compression requirement. This example illustrates that even though the light conversion 

efficiency is an important property of a system based on a phototrophic microorganism, 

the total energetic efficiency of a process will finally determine its commercial viability. 

 

 

Dilution of strong light 

Strong light can be diluted to levels that prevent oversaturation of the photosynthetic 

machinery. This does however result in the need for additional surface area. This dilution 

of light can be achieved for instance by positioning the PBR vertically. Cuaresma et al. 

demonstrated a 30% increase in photosynthetic efficiency of Chlorella sorokiniana 

cultures upon vertical instead of horizontal PBR placement, resulting from a 78% decrease 

in  light intensity (Cuaresma et al. 2011). Similar results were obtained by Qiang et al., who 

demonstrated an increase in biomass output by adjusting the tilt angle of the PBR relative 

to the surface of the earth, depending on the season. In summer, the highest 

photosynthetic efficiency of Spirulina platensis cultures was recorded in PBRs that had a 

90° tilt angle (Qiang et al. 1998a). 
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Alternatively, a light concentration and re-distribution system can be used in order to 

dilute light. A parabolic mirror was proposed by Janssen et al. for concentrating light, after 

which an optical fiber light distribution system can be used to distribute the light 

homogeneously throughout the PBR (Janssen et al. 2003).  

The two concepts of adjusting tilt angles and concentrating and re-distributing light can 

also be combined, as was shown by Zijffers, who designed and built a PBR concept in 

which a moving Fresnel lens system performs solar tracking and the captured light is re-

distributed by a light guide towards an algal suspension (Zijffers 2009). These light dilution 

strategies may also be applied on PNS bacterial cultures succesfully and should be 

considered in concert with the need for continuous illumination of each individual cell as 

described previously.   

 

(B) Physiological properties of the applied unicellular micro-organism  

The reduction of protons to molecular hydrogen by PNS bacteria is catalyzed by two 

classes of enzymes called nitrogenases and hydrogenases. As not all phototrophic 

hydrogen producing microorganisms contain both classes of enzymes, the choice for the 

catalyst results in a reduced freedom of choice of the microorganism and vice versa. 

Microalgae for instance do not contain nitrogenases, while PNS bacteria contain both 

classes of enzymes. 

 

Nitrogenases 

The primary function of nitrogenases in cellular metabolism is to fix molecular nitrogen by 

reducing it to ammonia. However, this enzyme can also catalyse the reduction of protons 

to molecular hydrogen. The physiological significance of this side reaction is that the cell is 

capable of controlling its internal redox state (Tichi and Tabita 2001) and represents an 

emergency release valve for excess reduction equivalents. 

The main advantage of nitrogenase-based photosynthetic hydrogen production systems is 

the fact that its catalytic activity is irreversible, thus an elevated partial hydrogen pressure 
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does not affect the hydrogen generating capacity of the culture and hydrogen evolves 

spontaneously an does not need to be stripped from the system. 

There are also drawbacks to the application of nitrogenase-based systems. The energy 

requirement of nitrogenase activity is very high. The fixation of one molecule of nitrogen 

takes place at the expense of 16 ATP, while the generation of one molecule of hydrogen 

costs 4 ATP. 

For this reason, nitrogenase activity is tightly regulated. Short-term post-translational 

nitrogenase-activity downward regulation mechanisms are triggered by the presence of 

oxygen, nitrogen, ammonium, glutamine, asparagine and urea (Munson and Burris 1969; 

Zumft and Castillo 1978). Nitrogenase activity is difficult to control, particularly because 

anaerobic conditions are required and less expensive nitrogen sources like ammonia and 

urea are more difficult to apply, as in these cases nitrogen limited growth is required due 

to the inhibitory effect of these nitrogen sources. The activity of the nitrogenase of 

Rb. Capsulatus depended strongly on illumination conditions as well.  Under conditions of 

light limitation, any change in the intensity of illumination is paralleled by a proportional 

change in nitrogenase activity (Steinborn and Oelze 1989). 

During our work on the maximization of the fraction of the absorbed light energy that is 

directed towards hydrogen (Hoekema et al. 2009), a decrease in specific hydrogen 

production rate of a Rb. capsulatus chemostat culture was observed as the biomass 

concentration in the bioreactor increased (see Figure 5.6). This observation might well be 

explained by the progressing level of light limitation the culture experienced. 

The exposure of culture samples to saturating light intensities only resulted in a noticeable 

increase in specific nitrogenase activity in case a low concentration of nitrogen was 

supplied in the applied medium. This observation could indicate that the increase of 

nitrogenase activity can only take place after de-novo synthesis of nitrogenase, as 

indicated previously (Jouanneau et al. 1985). 
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Maximal specific rate of hydrogen production 

The suitability of a phototrophic microorganism for application in a photobiological 

hydrogen generating system largely depends on its maximal specific hydrogen production 

rate (q\K,���, mmol⋅kg
-1
⋅s

-1
). By using a microorganism that has an increased specific 

hydrogen production rate, there is less need for high biomass at elevated light intensities. 

This lower biomass requirement in turn decreases the negative effect of self-shading and 

cellular maintenance on the light to hydrogen conversion ratio. Table 6.1 to Table 6.3 

show that the maximal specific hydrogen production rate of the various microorganisms 

varies a lot. Most evaluated PNS bacteria show a maximal specific hydrogen production 

rate ranging from 0.2 to 0.7 mmol⋅kg
-1
⋅s

-1
. From the data reported by Jouanneau et al., a 

maximal specific hydrogen production rate of 6.9 mmol⋅kg
-1
⋅s

-1
 could be calculated for a 

chemostat culture of a nitrogen limited wild type species of Rps. capsulata (Jouanneau et 

al. 1984). 

A comparable nitrogen limited Rhodobacter capsulatus chemostat culture displayed a 

maximal specific hydrogen production rate of 0.52 ± 0.02 mmol⋅kg
-1
⋅s

-1
 (Hoekema et al. 

2006), while also intermediate rates were reported, for instance 1.4 mmol⋅kg
-1
⋅s

-1
 for a 

nitrogen limited Rhodobacter capsulatus wild type culture (Tsygankov et al. 1998a). 

 

How to improve the maximal specific hydrogen production rate? 

Several physiological properties of a photosynthetic microorganism determine its maximal 

specific hydrogen production rate and with it its suitability for application in a 

phototrophic hydrogen production process. Some of these properties are discussed here, 

and the reported efforts to change these them in favor of an increase of the specific 

hydrogen production rate. 

 

The light harvesting complex 

The degree of light attenuation increases with the density of a photosynthetic micro-

organism in a PBR. This can seriously limit the overall photosynthetic efficiency, as part of 
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the culture will not be able to execute photosynthesis or maintain a high specific 

nitrogenase activity. This negative influence on the overall performance can be reduced 

by genetically modifying the properties of the light harvesting complex. 

Melis reported on random tag mutagenesis and subsequent screening resulting in a 

Chlamydomonas reinhardtii strain having a light harvesting Chl antenna with a size that is 

reduced by 60%. As a result, the half saturation light intensity of the pertinent strain is 

117% as compared to the wild type. When these results are extrapolated to PBR scale, the 

improved half saturation light intensity translates to a 45% increase in productivity and 

therefore in photosynthetic efficiency (Melis 2009). Formighieri et al. recently presented 

modelling predictions that indicate a similar improvement in PE when a Chlamydomomas 

reinhardtii strain that has an 80% reduced chlorophyll concentration is cultivated in a PBR 

that has a 50 mm optical path and is exposed to strong light (Formighieri et al. 2012). 

Kondo et al. reported on a Rhodobacter sphaeroides strain that shows a 40-50% decrease 

in the concentration of the complete light harvesting complex after UV exposure 

mutagenesis. The mutant displayed a 50% increase in specific hydrogen production 

capacity when compared to the wild type, which can be ascribed to the increase in 

average light availability within the mutant strain cultures (Kondo et al. 2002). 

 

Hydrogenases 

A second class of hydrogen-generating enzymes, named hydrogenases, is present in both 

PNS bacteria and green algae. Hydrogenases also function to maintain intracellular redox 

poise, but do not require metabolic energy for their catalytic activity. Their catalytic rates 

are also much higher than those of nitrogenases (McKinlay and Harwood 2010). The main 

drawback of systems based on hydrogenases is the reversibility of their catalytic activity 

(Kosourov et al. 2012; Vignais and Billoud 2007), limiting the hydrogen partial pressure in 

the system that can be applied. 

Several hydrogenases are so-called uptake hydrogenases. Their catalytic activity 

contributes to the recycling of electrons to nitrogenase (Willison et al. 1983) and with it 
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reduces the net hydrogen producing capacity of the micro-organism and hence the light 

to hydrogen conversion efficiency of the system. 

The efficiency of light to hydrogen conversion can be improved in case the uptake 

hydrogenase (Hup) genes are knocked out. Yamada et al. demonstrated a significant 

increase in the photosynthetic efficiency of Rhodovulvum sulfidophilum when its uptake-

hydrogenase gene was removed from 26 to 35% (Yamada et al. 1998). The process details 

are presented in Table 6.1. Kern et al. (Kern et al. 1994) also reported a 40% increase in 

hydrogen production capacity of their Rhodospirillum rubrum strain after its Hup-activity 

was genetically removed. 

 

PHB accumulation 

PNS bacteria accumulate PHB (poly (3-hydroxy) butyric acid) when carbon (preferentially 

acetate) and energy sources are present in excess, while growth is limited by the 

availability of nitrogen, sulphur or phosphorus. The metabolic routes that lead to either 

PHB or H2 compete for reducing equivalents. Hustede et al. demonstrated that various 

PNS bacteria  accumulate PHB up to 70% of their dry weight, while their PHB
-
 mutants did 

not accumulate any PHB and displayed a better substrate to hydrogen conversion ratio 

(Hustede et al. 1993). 

 

Combinations of genetic modifications 

Several examples of PNS bacteria that have multiple genetic modifications directed 

towards improving the hydrogen production capacity or the substrate to hydrogen 

conversion ratio can be found in literature. For example, Kim et al. constructed a R. 

sphaeroides mutant that displayed a 38% increase in hydrogen production rate and 

photosynthetic efficiency when compared to the wild type upon knocking out both the 

uptake hydrogenase and the PHB synthase genes (Kim et al. 2006). 
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Alternative micro-organisms to PNS bacteria for application in a phototrophic hydrogen 

production process 

The maximal efficiency of the conversion of solar light to hydrogen energy by means of 

PNS bacteria using a nitrogenase is restricted to 10.5% (Hoekema et al. 2006). Other 

photosynthetic micro-organisms, like the cyanobacterial genera Anabaena and Nostoc, 

can also produce hydrogen by both their nitrogenase and hydrogenases activity. As can be 

seen in Table 6.3, cyanobacteria have been produced that are deficient in uptake 

hydrogenases, aiming at an increased specific hydrogen production rate. 

As can be seen from Table 6.3, these cyanobacterial strains do not display a high light to 

hydrogen energy conversion ratio, even at low light intensities. One of the main factors 

restricting the maximal light to hydrogen conversion efficiency is the high energy 

requirement of the nitrogenase enzyme and the inhibition of its activity due to the release 

of molecular oxygen by photosystem II in the photosynthetic process. 

 

Microalgae have the potential for being  more efficient hydrogen producers than PNS 

bacteria, as they only contain hydrogenases (Miura et al. 1982). The algal species that has 

received the most attention in the field of photosynthetic hydrogen production is 

Chlamydomonas reinhardtii. (see Table 6.3) As a result of oxygenic photosynthesis, algae 

produce hydrogen as well as the hydrogenase inhibitor oxygen. 

A hydrogen production process in which a micro-alga or cyanobacterium is used as 

efficiently as possible requires two phases. In the first phase, the microorganism executes 

oxygenic photosynthesis and accumulates intracellular storage compounds. In the second 

stage, these storage compounds are digested and an excess of electrons is vented by 

means of hydrogenase activity (Markov et al. 1996; Melis et al. 2007). The application of 

algae has the advantage that only the catalytic activity of hydrogenase results in the 

emission of hydrogen, and no additional metabolic energy is required. The light to 

hydrogen conversion efficiency of a hydrogen-generating process using micro algae can 

theoretically reach 12.4% based on the complete solar spectrum. A photosynthetic 

efficiency approaching this value has already been reached. Greenbaum demonstrated a 
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PE of 10.3% (considering the complete solar spectrum), using a thin layer of 

Chlamydomonas moewusii cells trapped on filter-paper, combined with a very low light 

intensity of 9.1 µW⋅cm
-2

 (Greenbaum 1988). As the hydrogenase mediated hydrogen 

generation is reversible, an increased hydrogen concentration in the gas phase results in 

significant inhibition of hydrogen generation (Kosourov et al. 2012). 

Unfortunately, this range of photosynthetic efficiencies has not been demonstrated at 

light intensities exceeding 70 µmol⋅m
-2
⋅s

-1
 (PAR). At increased light intensity, the 

photosynthetic efficiency generally drops well below 1% (Ghirardi 2006; Giannelli et al. 

2009; Kosourov et al. 2012). In Table 6.3, an overview of the highest reported light to 

hydrogen conversion efficiencies is given during algal phototrophic hydrogen production. 

  

(C) Mode of operation of a PBR 

Apart from the properties of the applied PBR and micro-organism, the mode of operation 

of a PBR is the third factor that plays a key role in the efficiency of a phototrophic process. 

As phototrophic hydrogen is generated due to a specific catalytic activity of the applied 

micro-organism, the growth and maintenance expenditures of this micro-organism should 

be as low as possible. This situation requires a biomass concentration that still safeguards 

a sufficient catalytic activity in the PBR for (near) complete light absorption, but which is 

not too high, as this would result in increased maintenance losses. At the same time, the 

dilution rate should be as low as possible, as higher dilution rates result in increased losses 

due to biomass generation. 

 

Light energy balance 

A light energy balance in which these contributions are quantified as a function of 

operating conditions can be a valuable tool to predict the mode of operation that will 

result in the highest attainable photosynthetic efficiency. In order to do so, the growth 

and maintenance expenditures of the microorganism in question need to be determined 

experimentally. Once these parameters have been determined, a light energy balance can 
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be set up, dividing the absorbed light energy into fractions used for maintenance, growth 

and hydrogen production (Hoekema et al. 2006). The light energy balance can be used to 

predict the dilution rate and biomass concentration that yield the maximal light to 

hydrogen conversion efficiency during chemostat cultivation. A light to hydrogen 

conversion efficiency of 3.3% was predicted to be achievable by a chemostat culture of R. 

capsulatus in a 3 cm flat panel PBR illuminated at 410 W⋅m
-2

 (400-950 nm). The settings at 

which this efficiency was predicted were a biomass concentration of 2.55 kg⋅m
-3

 combined 

with a dilution rate of 0.1 d
-1

  (Hoekema et al. 2006). 

 

Predicted versus experimental results  

The predicted light to hydrogen conversion efficiency using the light energy balance was 

checked in a G-stat experiment. During this experiment a nitrogen limited Rhodobacter 

capsulatus culture was fed an increasing amount of ammonium in time, resulting in a 

gradual increase in culture biomass density. 

Up to a biomass concentration of 1.5 g⋅L
-1

, the culture produced molecular hydrogen near 

its maximal specific rate, which was experimentally determined to be 

0.52 ± 0.02 mmol⋅kg
-1
⋅s

-1
. At a dilution rate of 0.4 d

-1
, a light to hydrogen energy 

conversion efficiency of 1.6% was predicted and demonstrated. A further increase in 

biomass concentration resulted in a lower maximal specific hydrogen production rate. 

This observation may well have coincided with the on-set of light limitation, resulting in a 

limitation for both nitrogen and light, referred to as a double limitation (Tsygankov et al. 

1996). 

Much higher specific hydrogen production rates could be calculated from literature data, 

as can be seen in Table 6.1 and Table 6.2. As argued before, a higher specific hydrogen 

production rate decreases the requirement for high cell densities at increased light 

intensities and with it the risk of self-shading, resulting in the loss of specific nitrogenase 

activity. 
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At a higher specific hydrogen production capacity, the predicted 3.3% light to hydrogen 

energy conversion efficiency would have been more easily achieved in the applied system, 

due to the lower required biomass concentration and the concomitant lower fraction of 

the absorbed light that is not used for photosynthesis due to over-saturation and 

subsequent non-photochemical quenching (Hoekema et al. 2006). This fraction could be 

reduced even further by applying a PBR design that facilitates the dilution of the incident 

light, as discussed previously. 

 

D-Stat experimental approach 

Both the determination of the parameters that are included in the light energy balance 

Y�,	=, m	= and f�=�� as well as the experimental validation of the balance require a vast 

amount of chemostat experiments. The application of stat technologies can be an efficient 

alternative, as in this way the required information can be acquired much faster 

(Hoekema et al. 2006; Hoekema et al. 2009). The application of stat technologies can 

result in a significant reduction of experimental time required for process optimization 

when compared to the more traditional series of chemostat experiments approach 

(Hoekema et al. 2014). To validate this approach a model was set up to describe and 

simulate both D-stat and chemostat cultivations of the diatoms Thalassiosira pseudonana 

and Phaeodactylum tricornutum in a flat panel PBR with an optical light path of 3 cm. 

When optimizing these cultures for biomass output rate, a reduction in required 

experimental time ranging between 85 and 94% is calculated, depending on both the 

applied microorganism and light intensity on the surface of the PBR  (Hoekema et al. 

2014), in favor of the D-stat experimental approach. 
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Conclusions 

 

Light to hydrogen energy conversion by microorganisms is a concept that has been 

studied for decades. During this time, a lot of knowledge was gained on the required 

characteristics of the applied cultivation system, the physiological responses of the 

applied microorganisms and the way the activities of the key enzymes in the process are 

regulated. 

Due to light oversaturation on the illuminated side of a photo bioreactor system and self-

shading on the other, practical light to hydrogen conversion efficiencies are much lower 

than can be calculated based on theory. For this reason, photobiological hydrogen 

generating systems are not commercially viable at this moment. 

Related to the applied photo bioreactor, it can be concluded that its construction should 

be as simple as possible. A high efficiency of light to hydrogen energy conversion requires 

a photobioreactor design in which strong light is diluted, at the cost of additional surface 

area. The PBR should facilitate illumination of all microorganism present above the 

compensation point in case of photo autotrophs or above the light intensity that 

safeguards full nitrogensase expression in case of PNS bacteria. This can be achieved by 

controlling for instance the biomass concentration, either by the imposed dilution rate or 

by nitrogen limitation. 

As far as the applied microorganism is concerned, there are several possibilities for 

improving its performance by means of genetic modification. A reduced light harvesting 

complex results in reduced light gradients and self-shading of the culture. Other genetic 

modifications that have proven their effectiveness aim at directing a larger fraction of the 

total available reducing power towards hydrogen, by knocking out the routes that 

facilitate the recycling of hydrogen or the intracellular accumulation of reducing power in 

storage compounds like PHB. Mutant strains that have multiple modifications that are all 

intended to improve the light to hydrogen conversion efficiency have also been 
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constructed and have demonstrated an increased capacity for light to hydrogen 

conversion or an increased specific rate of hydrogen production. 

Despite this knowledge-base, a limited amount of pilot studies using solar irradiation for 

the production of molecular hydrogen have been reported. A pilot scale study was 

executed by Adessi et al. with Rp. palustris in a tubular PBR at 50L scale. (Adessi et al. 

2012). The light to hydrogen conversion efficiency that could be achieved did not exceed 

1% (see Table 6.1). 

Given the effort that has been invested in investigating processes for phototrophic light to 

hydrogen conversion, and considering their complexity and the requirement for a simple 

system, the future of photobiological hydrogen is by no means certain. The present study 

demonstrates that in this field of research, stat experiments are very useful. Their use has 

been demonstrated both during the determination of model parameters and both the 

optimization and validation of the process. Also a light energy balance for absorbed light is 

very useful in order to gain process insight and to make rational process optimization 

decisions.  
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Nomenclature 

 

C� Biomass concentration [kg⋅m
-3

] 

Hup Hydrogenase Uptake [-] 

OP Optical path [mm] 

PAR Photosynthetic Active Radiation  [μmol⋅m
-2
⋅s

-1
, 400 – 700 nm] 

PBR Photo Bio Reactor [-]  

PHB poly(3-hydroxy) butyric acid [-] 

PNSB Purple Non-Sulphur Bacteria [-] 

PS Photo System [-] 

q\K,��� Maximal specific H2 production rate [mol⋅kg
-1
⋅s

-1
] 

q\K,���,��	� Maximal Chl a specific H2 production rate  [µmol⋅mg Chla
-1
⋅h

-1
] 

S Surface area [m
2
] 

UV Ultra violet [-] 

V Volume [m
3
] 

η	 ���→\K  Light to hydrogen conversion efficiency [%] 
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 Values that were calculated from the reported data are indicated with an asterisk. 

2
 Based on a 400-950 nm spectral range. Light and hydrogen are the only substrate and product considered. 

3
 Incident light energy based on the 400-950 nm spectral range. 
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1
 Values that were calculated from the reported data are indicated with an asterisk. 

2
 Based on a 400-950 nm spectral range. Light and hydrogen are the only substrate and product considered. 

3
 Incident light energy based on the 400-950 nm spectral range. 
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1
 Values that were calculated from the reported data are indicated with an asterisk. 

2
 Based on a 400-700 nm spectral range (PAR). Light and hydrogen are the only substrate and product considered. 

3
 Incident light energy based on the 400-700 nm spectral range (PAR). 
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Summary 

 

The rising global energy demand, depleting fossil fuel reserves and the negative impact of 

the combustion of fossil fuels on our environment increase the need for clean and 

renewable energy sources. These clean and renewable energy sources will most probably 

be based on solar energy. One of the possibilities for applying solar energy for the 

generation of clean and renewable energy is the conversion of sugars from energy crops 

like Sorghum into the energy carrier hydrogen. For the complete conversions of sugars 

from biomass to hydrogen, a two–step biological process was proposed. In the first step, 

fermentative microorganisms convert the sugars that are liberated from the biomass by 

enzymatic treatment to hydrogen and organic acids. In the second step, these organic 

acids are converted into additional hydrogen by phototrophic fermentation. 

This thesis describes the process development of the second step, the conversion of 

acetate and light energy to molecular hydrogen by the purple non sulfur bacterium 

Rhodobacter capsulatus. 

 

The development of the process of photobiological hydrogen production requires a 

substantial amount of information on the bacterium and its response to variations in 

process conditions. This information was acquired mostly by continuously illuminated 

chemostat cultivations. Traditionally, continuous bioprocesses are studied by chemostat 

experiments. During each chemostat, the level of the parameter under investigation is 

changed. After each change, a new steady state needs to be established, which is time 

consuming. Another method for studying the influence of the dilution rate on a 

continuous process is a D-stat. During a D-stat, the dilution rate is slowly decreased in 

time. 

With the aim of finding the maximum biomass output rate, both experimental methods 

were simulated in a mathematical model that describes photo-acclimation and biomass 

productivity as a function of the local light intensity in a photobioreactor. The 
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physiological properties of the diatoms Thalassiosira pseudonana and Phaeodactylum 

tricornutum were used for generating the model output. 

Even at higher change rates of the dilution rate, when the culture was clearly not in steady 

state, D-stats simulations still resulted in the successful determination of the maximum 

biomass output rate, resulting in a reduction of required time of up to 94%. 

Having confirmed the applicability of the D-sat approach a fully controlled flat panel 

photobioreactor was designed and constructed as the cultivation system for purple non 

sulfur bacteria. The limited optical path (30 mm), combined with turbulent mixing, 

facilitates the proper illumination of the entire culture, which is required in order to 

prevent non-productive dark zones. Additionally, the mathematical description of light 

transfer towards a flat panel photobioreactor is easier than alternative geometries. 

The PBR was constructed from a stainless steel frame and transparent polycarbonate 

sheets, facilitating autoclaving for axenic culturing. 

 

A light energy balance was constructed for photobiological hydrogen production by 

R. capsulatus continuous cultures in the flat panel photobioreactor. The required kinetic 

parameters in the light energy balance were determined by the use of the D-stat method, 

as it saves significant amounts of time. The balance allocates the total absorbed light to 

biomass synthesis, biomass maintenance, non-photochemical quenching and hydrogen 

production. 

In order to determine the four fractions in the balance, the biomass yield on light energy 

and the maintenance coefficient were determined to be 3.8 ± 0.03⋅10
-8

 kg⋅J
-1

 and 

71.6 ± 11.3 W⋅kg
-1

. This experiment was done at low light intensity at the reactor surface 

(8.4 W⋅m
-2

) and under non-hydrogen producing conditions, using acetate as the electron 

donor. Subsequently, the fraction of light that was absorbed by the culture but not used 

for photosynthesis was determined to be 0.85 - 0.90, increasing with increasing biomass 

concentration. This experiment was executed at high light intensity at the reactor surface 

(410 W⋅m
-2

), under non-hydrogen producing conditions. 
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The maximal specific hydrogen production rate of nitrogen limited continuous cultures of 

R. capsulatus was required to do predictions for the light to hydrogen conversion 

efficiency of the system. The maximal specific hydrogen production rate was determined 

to be 0.52 ± 0.02 mmol⋅kg
-1
⋅s

-1
. 

The biomass yield on light energy, the maintenance coefficient, the fraction of the 

absorbed light that was not used for the photosynthetic process and the maximal specific 

hydrogen production rate were used to predict the light to hydrogen conversion efficiency 

at a given mode of operation (a combination of the dilution rate and the biomass 

concentration). A peak in predicted conversion efficiency was found at the combination of 

a dilution rate of 0.1 d
-1

 with a biomass concentration of 2.55 kg⋅m-3
, in which case the 

system should be capable of converting light energy to hydrogen with an efficiency of 

3.3% at high light intensity at the reactor surface (410 W⋅m
-2

). Only the light to hydrogen 

conversion efficiency is considered here, excluding the energy content of the other 

(organic) substrates. 

 

The potential of R. capsulatus chemostat cultures for converting light energy into 

hydrogen energy was then investigated in the developed photobioreactor, at high light 

intensity at the reactor surface (410 W⋅m
-2

), in order to validate the light energy balance 

developed previously. 

First, a D-stat was executed that had an initial dilution rate of 1.0 d
-1

 and a final dilution 

rate of 0 d
-1

 (ending as a batch cultivation), aiming at a constant biomass concentration of 

4.0 kg⋅m
-3

. The maximal specific hydrogen production rate never exceeded 

0.11 mmol⋅kg
-1
⋅s

-1
, a much lower value than measured previously 

(0.52 ± 0.02 mmol⋅kg
-1
⋅s

-1
). Probably, the high biomass concentration limited the average 

availability of light, and with it the maximal specific hydrogen production rate. This 

resulted in a volumetric hydrogen production rate remaining at 0.6 mmol⋅m
-3
⋅s

-1
, which is 

well below the predicted 1.3 mmol⋅m
-3
⋅s

-1
. 
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In order to investigate this discrepancy further, a gradient (G)-stat was executed in which 

the supply of the nitrogen source (ammonium) was slowly increased in a nitrogen limited 

culture. The initial specific hydrogen production rates were comparable to results 

obtained previously. The biomass concentration increased from 0.7 to 4.0 g⋅L
-1

 during the 

course of the experiment, at a constant dilution rate of 0.4 d
-1

. Up to a biomass 

concentration of 1.5 g⋅L
-1

, the volumetric hydrogen production rate of the system 

increased according to model predictions. At this point, the system converted light energy 

into hydrogen energy at an efficiency of 1.6%. At higher culture densities, the volumetric 

hydrogen production rate commenced to decline, due to a decline in the specific 

hydrogen production rate. 

The obtained results provide strong evidence that the observed decline in volumetric 

hydrogen production rate at higher biomass concentrations was at least partly caused by 

a decrease in light availability. 

 

During the optimization of a photobiological hydrogen production using purple non-sulfur 

bacteria, several factors need to be considered as they directly influence the economic 

feasibility of such a process. 

First, the construction of the photobioreactor should be inexpensive and simple, but at 

the same time facilitate light transfer to the entire culture. This can be achieved by a 

system that dilutes the incident light intensity to a level that can be adsorbed by the 

culture without oversaturation near the surface and light limitation along the optical light 

path. 

Second, the applied micro-organism should retain its (near) maximal specific hydrogen 

production rate under the proposed mode of operation. Because the maximal specific 

hydrogen production rate decreases as the local light intensity decreases below a certain 

level, this level should be investigated and culture densities should be chosen that support 

this level in the complete photobioreactor. The maximal specific hydrogen production rate 

of a purple non-sulfur bacterium is mainly caused by its nitrogenase activity. The 
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nitrogenase activity of a purple non sulfur bacterium can be influenced by genetic 

engineering. This goal can be achieved by increasing the availability of light, as a result of a 

decrease in the size of the light harvesting complex. Another approach is to take away 

alternative routes the microorganism has to vent reducing equivalents (for instance the 

intracellular storage of PHB) or to recycle molecular hydrogen once it has been produced 

(for instance the activity of uptake hydrogenases). Several cyanobacterial and algal 

species have been shown to produce hydrogen photoautotrophically. These 

microorganisms produce hydrogen by hydrogenases. As, contrary to nitrogenases, 

hydrogenases have no energy requirement for their catalytic activity, their application has 

a great potential.  

Finally, the mode of operation in terms of dilution rate and biomass concentration should 

be chosen using a light energy balance. With it, light expenditures for biomass production 

and maintenance, as well as light absorption that does not result in photosynthetic 

activity can be taken into account during the process optimization for the light to 

hydrogen conversion efficiency of the system. 

Although photobiological systems for the conversion of light to hydrogen energy have 

shown great potential, their commercial viability has not been demonstrated and their 

future remains uncertain. The present study demonstrates that in this field of research, 

stat experiments are very useful. Their use has been demonstrated both during the 

determination of model parameters and both the optimization and validation of the 

process. Also a light energy balance for absorbed light is very useful in order to gain 

process insight and to make rational process optimization decisions. 
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Samenvatting 

 

De stijgende globale energiebehoefte, de uitgeput-rakende fossiele brandstofreserves en 

de negatieve invloed die de verbranding van fossiele brandstoffen heeft op ons milieu 

vergroten de behoefte aan schone en hernieuwbare energie bronnen. Deze schone en 

hernieuwbare energiebronnen zullen hoogstwaarschijnlijk gebaseerd zijn op zonne-

energie. Een van de mogelijkheden van toepassing van zonne-energie voor het opwekken 

van schone en hernieuwbare energie is de conversie van suikers uit energiegewassen 

zoals Sorghum in de energiedrager waterstof. De volledige conversie van suikers uit 

biomassa naar waterstof kan worden uitgevoerd met een proces dat uit twee stappen 

bestaat. In de eerste stap worden de suikers die zijn vrijgekomen na enzymatische 

behandeling van de biomassa door fermentatieve micro-organismen omgezet in waterstof 

en organische zuren. In de tweede stap worden deze organische zuren ook nog omgezet 

in waterstof door middel van fototrofe fermentatie. 

In dit proefschrift wordt de ontwikkeling van de tweede processtap, de conversie van 

acetaat en licht energie naar moleculaire waterstof door de paarse niet-zwavelbacterie 

Rhodobacter capsulatus, beschreven. 

 

De ontwikkeling van het proces van foto-biologische waterstof productie vereist een 

aanzienlijke hoeveelheid informatie over de bacterie en zijn reactie op variaties in de 

procesomstandigheden. Deze informatie is hoofdzakelijk verkregen met behulp van 

continu-belichte chemostaat kweken. Continue bioprocessen worden van oudsher 

bestudeerd met behulp van chemostaat experimenten. Tijdens elke chemostaat wordt de 

ingestelde waarde van de te onderzoeken parameter gewijzigd. Na iedere wijziging moet 

een nieuwe steady state worden bereikt, wat tijdrovend is. Een andere manier om de 

invloed van de verdunningssnelheid op een continu proces te bestuderen is een D-stat. 

Tijdens een D-stat wordt de verdunningssnelheid gedurende het experiment langzaam 

verlaagd. 
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Een mathematisch model dat foto-acclimatie en biomassa productiviteit als functie van de 

plaatselijke lichtintensiteit in een fotobioreactor beschrijft werd gebruikt om beide 

experimentele methoden, chemostaat en D-stat, te simuleren. Het doel van deze 

simulaties was vast te stellen wat de maximale biomassa productie snelheid van het 

systeem is en hoeveel tijd het kost om deze maximale biomassa productie snelheid 

experimenteel vast te stellen. De fysiologische eigenschappen van de diatomeeën 

Thalassiosira pseudonana en Phaeodactylum tricornutum werden gebruikt om de model 

resultaten te genereren. 

Zelfs als de verdunningssnelheid snel werd veranderd, waarbij de cultuur duidelijk niet in 

steady state was, kon de maximale biomassa productiesnelheid toch nog succesvol 

bepaald worden. Dit resulteerde in een verlaging van de benodigde tijd tot wel 94%. 

Nadat de toepasbaarheid van de D-stat experimentele methode was bevestigd werd een 

volledig geautomatiseerde vlakke plaat fotobioreactor ontworpen en gebouwd. Deze 

werd gebruikt als kweeksysteem voor paarse niet-zwavel bacteriën. Het beperkte optische 

pad (30 mm), gecombineerd met turbulente menging, maakte belichting van de gehele 

cultuur mogelijk. Dit is van belang ter voorkoming van niet-productieve donkere zones in 

de fotobioreactor. Daarnaast is de overdracht van licht naar een vlakke plaat eenvoudiger 

te beschrijven dan in het geval van andere geometrieën. 

De fotobioreactor bestond uit een roestvaststalen frame en transparante polycarbonaat 

platen, waardoor het systeem kon worden geautoclaveerd en gebruikt voor steriele 

cultivaties. 

 

Een lichtenergiebalans is opgesteld voor foto-biologische waterstofproductie door continu 

cultures van R. capsulatus in de vlakke-plaat fotobioreactor. De benodigde kinetische 

parameters in de lichtenergiebalans zijn bepaald met behulp van de D-stat methode, 

omdat op die manier veel tijd bespaard kon worden. De balans verdeelt het 

geabsorbeerde licht over biomassasynthese, biomassaonderhoud, niet-fotochemische 

uitdoving en waterstofproductie. 
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Om de vier fracties in de balans te kunnen kwantificeren, werden de coëfficiënten voor 

biomassaopbrengst (3.8 ± 0.03⋅10
-8

 kg⋅J
-1

) en biomassaonderhoud (71.6 ± 11.3 W⋅kg
-1

) 

bepaald. Dit experiment werd uitgevoerd bij lage lichtintensiteit aan het reactoroppervlak 

(8.4 W⋅m
-2

) en onder niet-waterstof-producerende condities, met acetaat als 

elektrondonor. Vervolgens werd de fractie geabsorbeerd licht die door de cultuur werd 

geabsorbeerd, maar niet werd gebruikt voor fotosynthese, bepaald. Deze fractie bedroeg 

0.85-0.90 en nam toe met de biomassaconcentratie. Dit experiment werd uitgevoerd bij 

hoge licht intensiteit aan het reactor oppervlak (410 W⋅m
-2

), onder niet-waterstof-

producerende condities.  

De maximale specifieke waterstofproductiesnelheid van stikstof-gelimiteerde continu 

cultures van R. capsulatus was benodigd om de licht naar waterstof conversie-efficiëntie 

van het systeem te voorspellen en werd vastgesteld op 0.52 ± 0.02 mmol⋅kg
-1
⋅s

-1
. 

De biomassaopbrengst op lichtenergie, de biomassaonderhoudscoëfficiënt, de fractie 

geabsorbeerd licht die niet gebruikt wordt voor fotosynthese en de maximale specifieke 

waterstofproductiesnelheid werden vervolgens gebruikt om de licht naar waterstof 

conversie-efficiëntie te voorspellen, als functie van de opgelegde verdunningssnelheid en 

biomassaconcentratie. Deze conversie-efficiëntie vertoont een piek bij een 

verdunningssnelheid van 0.1 d
-1 

en een biomassa concentratie van 2.55 kg⋅m-3
. In deze 

situatie zou het systeem in staat moeten zijn om bij hoge lichtintensiteit (410 W⋅m
-2

) 

lichtenergie naar waterstofenergie om te zetten met een efficiëntie van 3.3%. De energie-

inhoud van andere (organische) substraten en producten is hier buiten beschouwing 

gelaten. 

 

  



   Samenvatting 

  215 

De werkelijke capaciteit van R. capsulatus chemostaat cultures om lichtenergie om te 

zetten in waterstof energie is vervolgens onderzocht in de eerder ontwikkelde 

fotobioreactor, bij hoge lichtintensiteit aan het reactoroppervlak (410 W⋅m
-2

), ten 

behoeve van validatie van de lichtenergiebalans. 

Eerst werd hiertoe een D-stat uitgevoerd met een initiële verdunningssnelheid van 1.0 d
-1 

en een uiteindelijke verdunningssnelheid van 0 d
-1

 (uitlopend in een batch cultivatie) bij 

een constante biomassa concentratie van 4.0 kg⋅m
-3

. De maximale specifieke 

waterstofproductiesnelheid kwam niet boven de 0.11 mmol⋅kg
-1
⋅s

-1
, een veel lagere 

waarde dan eerder gemeten (0.52 ± 0.02 mmol⋅kg
-1
⋅s

-1
). Waarschijnlijk veroorzaakte de 

hoge biomassaconcentratie een beperking in de beschikbaarheid van licht, en daarmee 

ook in de maximale specifieke waterstofproductiesnelheid. Deze observatie resulteerde in 

een volumetrische waterstofproductiesnelheid van 0.6 mmol⋅m
-3
⋅s

-1
, hetgeen ook ruim 

onder de voorspelde 1.3 mmol⋅m
-3
⋅s

-1
 is. 

Om deze discrepantie verder te onderzoeken werd een gradiënt (G)-stat uitgevoerd 

waarbij de toevoer van de stikstof bron (ammonium) aan een stikstof-gelimiteerde cultuur 

langzaam werd verhoogd. De initiële specifieke waterstofproductiesnelheid was 

vergelijkbaar met eerder verkregen resultaten. Gedurende het experiment steeg de 

biomassaconcentratie van 0.7 tot 4.0 kg m
-3

, bij een constante verdunningssnelheid van 

0.4 d
-1

. Tot aan een biomassaconcentratie van 1.5 kg⋅m
-3

 steeg de volumetrische waterstof 

productie snelheid conform de modelvoorspellingen. Op dit moment zette het systeem 

lichtenergie om in waterstofenergie met een efficiëntie van 1.6%. Bij hogere 

biomassaconcentraties begon de volumetrische waterstofproductiesnelheid af te nemen, 

door een afname in de specifieke waterstofproductiesnelheid. 

De verkregen resultaten verschaffen sterk bewijs dat de waargenomen afname in 

volumetrische waterstofproductiesnelheid bij hogere biomassaconcentraties, op zijn 

minst ten dele, veroorzaakt werd door een afname in beschikbaarheid van licht. 
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Bij de optimalisatie van foto-biologische waterstofproductie met behulp van paarse niet-

zwavel bacteriën moeten diverse factoren beschouwd worden, omdat ze de economische 

haalbaarheid van een dergelijk proces direct beïnvloeden. 

Allereerst moet de constructie van de fotobioreactor goedkoop en eenvoudig zijn, maar 

tegelijkertijd moet ervoor worden gezorgd dat de gehele cultuur goed wordt belicht. Dit 

zou kunnen worden bereikt door toepassing van een systeem dat het licht verdunt tot een 

niveau waarbij adsorptie door de cultuur niet leidt tot oververzadiging bij het oppervlak 

en lichtlimitatie dieper in de fotobioreactor. 

Ten tweede moet het toegepaste micro-organisme dicht bij zijn maximale specifieke 

productiesnelheid waterstof kunnen produceren bij de gekozen procesomstandigheden. 

Omdat de maximale specifieke waterstofproductiesnelheid beneden een bepaalde 

lichtintensiteit afneemt, moet worden bepaald bij welke lichtintensiteit dit gebeurt en 

vervolgens moet de biomassaconcentratie zo gekozen worden dat deze lichtintensiteit in 

de volledige fotobioreactor gegarandeerd is. De maximale specifieke 

waterstofproductiesnelheid van een paarse niet-zwavelbacterie wordt vooral bepaald 

door zijn nitrogenase-activiteit. Deze nitrogenase-activiteit kan worden verhoogd door 

middel van genetische modificatie. Dit doel kan worden bereikt door verkleining van het 

licht-invangend complex, wat resulteert in een verhoging van de beschikbaarheid van 

licht. Een andere benadering is het wegnemen van alternatieve routes die het micro-

organisme ter beschikking heeft om reductie-equivalenten kwijt te raken (bijvoorbeeld 

intracellulaire opslag van PHB) of om juist waterstof te recyclen als het al is geproduceerd 

(bijvoorbeeld de activiteit van opname hydrogenases).  Voor enkele cyanobacteriën en 

algen is aangetoond dat zij in staat zijn om foto-autotroof waterstof te produceren. Deze 

micro-organismen produceren waterstof met behulp van hydrogenases. Omdat 

hydrogenases, in tegenstelling tot nitrogenases, geen energie nodig hebben voor hun 

katalytische activiteit, hebben hun toepassing veel potentie. 

Als laatste dient de manier waarop het proces wordt bedreven (de keuze voor een 

verdunningssnelheid en biomassaconcentratie) te zijn gebaseerd op een 

lichtenergiebalans. Met behulp van een dergelijke balans kan bij de procesoptimalisatie 
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van de licht naar waterstof conversie-efficiëntie van een systeem rekening worden 

gehouden met de fracties van het geabsorbeerde licht die worden gebruikt voor productie 

en onderhoud van biomassa en het licht dat geabsorbeerd wordt maar niet resulteert in 

fotosynthetische activiteit.  

Alhoewel foto-biologische systemen voor de conversie van licht- naar waterstofenergie 

hun potentie hebben laten zien, is hun commerciële levensvatbaarheid nog niet 

aangetoond en blijft hun toekomst onzeker. De huidige studie laat zien dat stat-

experimenten in dit werkveld erg nuttig zijn. Hun toepasbaarheid is aangetoond bij het 

bepalen van modelparameters en bij de optimalisatie en validatie van het proces. Ook een 

lichtenergiebalans is erg nuttig om inzicht in het proces te verkrijgen en om op rationele 

wijze procesoptimalisatie-beslissingen te kunnen nemen. 
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Dankwoord 

 

Het is inmiddels een behoorlijke tijd geleden dat ik in het Biotechnion op de zesde 

verdieping bij Proceskunde bezig was met mijn promotie onderzoek. Evengoed kijk ik (ver) 

terug op een uitdagende maar vooral leuke tijd, waarin ik heel erg veel heb geleerd, zowel 

tijdens het doen van het onderzoek als tijdens het schrijven van het proefschrift. Beide 

waren enkel mogelijk met de hulp van en samenwerking met een boel personen. Hiervoor 

ben ik onbeschrijfelijk dankbaar, maar toch zal ik hier, volgens de consensus, een poging 

wagen. 

 

René, zoals je weet had ik vooral met het richting geven aan wat er moest gebeuren in 

vier jaar, op weg naar een proefschrift, veel moeite. Ik denk dat jij meer vertrouwen had 

in een goede afloop dan ikzelf. Met alle positieve energie van jouw pep talks kon ik altijd 

wel weer even vooruit! Eind goed, al goed. 

Marcel, jouw geduld, kennis, inzicht en enthousiasme hebben mij heel erg goed vooruit 

geholpen, ik heb door de jaren heen bijzonder veel waardering voor jou gekregen. Met 

een kritische en positieve blik was jouw commentaar op mijn werk en artikelen vrijwel 

altijd zeer nuttig. Bedankt voor je vertrouwen! 

Hans, ook jij hebt veel ondernomen om mijn motivatie het proefschrift af te ronden op 

peil te houden, vooral in de laatste fase. Ook bij het schrijven (met quotes als ‘sorry maar 

dit begrijp ik echt niet’) wist je me altijd uit te dagen om meer te verduidelijken en meer 

structuur aan te brengen. 

Arjen, dankzij jou ben ik natuurlijk bij proceskunde komen werken als onderzoeker op 

vaste stof fermentatie; ik was blij met die mogelijkheid. Ik heb jouw hulp bij het tot stand 

brengen van het tweede hoofdstuk van mijn proefschrift ook bijzonder gewaardeerd. 

 

Ik deelde eerst een kamer met Marcel en Maria, en later met Eduard, Tim, Mohammad en 

Jan-Willem. Er was altijd tijd voor een goed gesprek, en een grap op zijn tijd. Mede 
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daardoor heb ik me altijd erg thuis gevoeld bij proceskunde. Ook alle gezellige activiteiten, 

zoals de filmavonden, kerstdiners, labuitjes en borrels die georganiseerd werden, hebben 

daar zeker aan bijgedragen, het was altijd een gezellige boel! 

 

En dan niet te vergeten de andere mariene biotechnologen van de vakgroep uit die tijd: 

Rouke, Ronald, Detmer, Mohammad, Eira en Wim. Dank voor jullie enthousiasme! Ronald 

en Detmer: dank voor de proceskunde squashladder en de ’squashles’ die ik van jullie 

kreeg. Rouke, dank voor jouw tomeloze enthousiasme en bereidheid mee te denken als ik 

weer eens met lichtdistributie modellen bezig was. 

 

Hylke en Olivier, bedankt voor de vele technisch inhoudelijke lunch wandelingen door het 

arboretum. 

 

Pieter, wat wist jij altijd een gevatte opmerkingen te produceren bij vrijwel elke 

gelegenheid. Met Rouke op de kamer vormden jullie een zeer geslaagd humoristisch 

koppel. Chapeau! 

 

Er gaat ook veel dank uit naar de studenten die ik met veel plezier heb mogen begeleiden: 

Martijn, David, Simon, Tom, Rutger en Frank. Dank voor jullie tomeloze inzet tijdens het 

bedenken en uitvoeren van velerlei experimenten, ik vond het zeer plezierig om met jullie 

samen te werken en ik heb er een boel van opgestoken. 

 

Jan en André van de werkplaats, Frans, Rouke, Fred, Maurice en Sebastiaan: dank dat 

jullie altijd klaar stonden en meedachten bij alle uitdagingen tijdens het bouwen van 

reactoren en opstellingen en het opzetten van diverse analyses.  

  

Jan en Stan, ik ben blij dat jullie bij de verdediging van dit proefschrift samen met mij op 

het podium plaats willen nemen. Dank voor jullie vriendschap, enthousiasme en 

vertrouwen. 
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Erik, jij had goed door dat ik het proefschrift graag af wilde ronden maar daar, gezien een 

drukke baan bij MSD, te weinig tijd voor had. Dank voor jouw steun, de extra tijd die jij 

voor me regelde in onze tijd bij TCB was cruciaal voor de tot stand koming van dit 

proefschrift. 

 

En uiteraard - last but not least - mijn familie. Aan mijn ouders: ik wil jullie op deze plek 

graag bedanken voor de stimulans te gaan studeren en alle steun, vertrouwen en 

interesse tijdens mijn studie. Jullie uitspraak ’als het goed gaat en je wilt verder, dan ga je 

gewoon door’, gaf mij een goede stimulans zonder enige verplichting. Aan mijn broers 

Jeroen en Tjeerd: dank voor jullie interesse. Tjeerd, jou wil ik in het bijzonder bedanken 

voor het ontwerpen van de mooie kaft van dit proefschrift. 
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Training activities 

 

Discipline specific 

 

Courses 

Matlab (the Mathsoft corp., 2001) 

A unified approach to mass transfer (OSPT, 2002) 

Advanced statistics (PE&RC, 2003) 

Bio information technology (VLAG, 2004) 

 

Meetings 

Biohydrogen congress (process engineering, 2002) 

OSPT meeting (OSPT, 2002) 

Marine biotechnology: basics and applications (process engineering, 2003) 

Bio-H meeting (2003) 

International hydrogen energy congress and exhibition (IHEC, 2005) 

COST meeting (COST, 2005) 

 

General 

Scientific writing (WUR, 2001) 

Thesis supervision (WUR, 2001) 

VLAG PhD week (VLAG, 2002) 

Basic statistics (PE&RC, 2002) 

Career perspectives (VLAG, 2005) 

 

Optionals 

Preparing PhD research proposal (2001) 

PhD study trips to South Africa (2002) and Canada (2004) 
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Curriculum Vitae 

 

Sebastiaan Hoekema was born on the 4
th

 of May 1974 in The Hague. After spending his 

youth there, he got his diploma for secondary education in 1993. He started his BSc 

studies in environmental technology in Delft, for which he got his diploma in 1997. Right 

after that, he started on his MSc studies in bioprocess engineering at Wageningen 

University, for which he got his diploma in 2000. 

His first real job started in 2000, as an added researcher at the department of process 

engineering at Wageningen University. One year later he started his PhD research at the 

same department. 

 

Sebastiaan Hoekema werd op 4 mei 1974 geboren in Den Haag. Na zijn jeugd in Den Haag 

doorgebracht te hebben werd daar ook in 1993 het VWO diploma behaald. Hierna volgde 

de HBO studie milieutechnologie in Delft die hij in 1997 afrondde, waarna hij startte aan 

de studie bioprocestechnologie aan Wageningen Universiteit.  Deze studie werd in 2000 

afgerond. 

Zijn eerste echte baan volgde in 2000, als toegevoegd onderzoeker bij de vakgroep 

proceskunde aan Wageningen Universiteit. Een jaar later startte hij aan zijn 

promotieonderzoek bij dezelfde vakgroep. 
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