12 Nitrification and denitrification module NITDEN

Sjaak Conijn and Marius Heinen

12.1 Introduction

A subroutine has been added to FUSSIM2 that simulates NITrification and DENitrification (NITDEN). This subroutine was used to simulate the dynamics in conversion and production rates of ammonium and nitrate in the soil and the gaseous losses of N_2 and N_2O due to denitrification from grassland. Most of the underlying equations have been taken from Bril *et al.* (1994). Below the relevant aspects will be briefly described. The reader is referred to chapter 15 '*User's Guide*' to see the structure of the input file and some typical values and ranges for values of the parameters used below.

12.2 Nitrification

The conversion of ammonium through nitrification is given by

$$\frac{\mathrm{dNH}_{4}^{+}}{\mathrm{d}t} = f_{W,1} f_{T,1} f_{pH,1} f_{CEC} \frac{\mathrm{NH}_{4}^{+}}{n_{1} + \left(\frac{10^{3} \mathrm{NH}_{4}^{+}}{14 M_{WS}}\right)^{2}}$$
(12-1)

where

NH_4^+	ammonium concentration	mg cm ⁻³ (soil)
t	time	d
$M_{\scriptscriptstyle WS}$	mass of wet soil	g cm ⁻³ (soil)
14	molar mass of nitrogen	g mol ⁻¹
10 ³	conversion factor	g kg ⁻¹
n_1	parameter used to calculate a multiplication factor with	hich
	represents the effect of the NH ₄ concentration in the	e soil on
	nitrification rate	mmol ² kg ⁻² (wet soil)

The functional relationships f are explained below. The effect of soil water content via water filled pore space *WFPS* (-) on nitrification is given by the functional relationship $f_{W,1}$

$$f_{W,1} = \mathrm{MAX}\left[0, \left(\sin\left(p WFPS^{n_2}\right)\right)^{n_3}\right]$$
(12-2)

where

n_2	curve shape parameter for the effect of water filled pore
	space on nitrification rate that determines the value of the
	optimum WFPS, where $f_{W1} = 1$
	a share remains the offerst of motor filled

 n_3 curve shape parameter for the effect of water filled pore space on nitrification rate that determines the area underneath the optimum curve

The effect of soil temperature T (°C) on nitrification is given by the functional relationship $f_{T,1}$

$$f_{T,1} = \begin{cases} 0 & T < 0 \\ \frac{n_4 T^{n_5}}{1 + n_6 T^{n_7}} & T \ge 0 \end{cases}$$
(12-3)

where

 $n_{4,5,6,7}$ curve shape parameters

The effect of soil *pH* on nitrification is given by the functional relationship $f_{pH,1}$

$$f_{pH,1} = \frac{1}{1 + n_8 10^{-pH}} \tag{12-4}$$

where

 n_8 curve shape parameter for the effect of pH on nitrification rate, that determines the value of the pH, where $f_{pH,1} = 0.5$

The effect of cation exchange capacity of the soil CEC (cmol⁺ kg⁻¹) on nitrification is given by the functional relationship f_{CEC}

$$f_{CEC} = n_9 - n_{10} \log(CEC) \tag{12-5}$$

where

n_9	intercept of relationship between f_{CEC} and log	
-	(CEC)	mmol ² kg ⁻² (wet soil) d ⁻¹
<i>n</i> ₁₀	slope of relationship between f_{CEC} and log	-
	(CEC)	mmol ² kg ⁻² (wet soil) d ⁻¹

Nitrification of ammonium produces not only NO₃, but also N₂O. This has been modeled by using a dimensionless partitioning factor PF_1 , which is described as a function of soil *WFPS*:

$$PF_{1} = \begin{cases} n_{11} & WFPS < n_{13} \\ n_{11} + n_{12} \left(\frac{WFPS - n_{13}}{1 - n_{13}}\right)^{n_{14}} & WFPS \ge n_{13} \end{cases}$$
(12-6)

where		
<i>n</i> ₁₁	minimum fraction of total nitrification that is converted into N_2O	-
n_{12}	maximum fraction of total nitrification that is converted into N_2O	-
n_{13}	WFPS threshold value below which the effect of WFPS	
	on N_2O production	
	from nitrification equals zero	-
n_{14}	curve shape parameter that determines the steepness	
	of the curve relating the fraction converted into N_2O to WFPS	-

 PF_1 gives the part of the total nitrification of equation 12-1 that is converted into N₂O. The production of NO₃ from nitrification is then given by the product of total nitrification and (1 - PF_1).

In the above equations M_{ws} *WFPS* and *T* are dynamically computed by FUSSIM2. *pH*, *CEC* and n_1 through n_{14} are all assumed constant and taken from the input file.

12.3 Denitrification

Decay of organic matter in the soil by aerobic micro-organisms requires oxygen. At low O_2 levels in the soil, the oxygen can also be provided by NO_3 and N_2O . In this process electrons are transferred from the organic matter to NO_3 and N_2O . NO₃ is then denitrified to N_2O and N_2O is denitrified to N_2 . Total denitrification, expressed as total electron production accepted by either NO_3 or N_2O , is given by

$$\frac{\mathrm{de}_{\mathrm{p}}}{\mathrm{d}t} = f_{W,2} f_{T,2} DPR \frac{\left(0.8 \frac{\mathrm{NO}_{3}^{-}}{14M_{\mathrm{WS}}} + 0.4 \frac{\mathrm{N}_{2}\mathrm{O}}{28M_{\mathrm{WS}}}\right)}{d_{1} + \left(0.8 \frac{\mathrm{NO}_{3}^{-}}{14M_{\mathrm{WS}}} + 0.4 \frac{\mathrm{N}_{2}\mathrm{O}}{28M_{\mathrm{WS}}}\right)}$$
(12-7)

where

e _p	electrons produced	mmol electron cm ⁻³ (soil) d ⁻¹		
\dot{NO}_3	nitrate concentration	mg cm ⁻³ (soil)		
N_2O	total nitrous oxide concentration	$mg \text{ cm}^{-3}$ (soil)		
DPR	potential denitrification rate of the soil	mmol electron cm ⁻³ (soil) d ⁻¹		
14	molar mass of N	g mol ⁻¹		
28	= 2 * 14	g mol ⁻¹		
0.4	electron equivalent ratio of N ₂ O	-		
0.8	electron equivalent ratio of NO ₃	-		
d_1	amount of source in terms of both NO ₃ and	N ₂ O corrected		
	for their electron-equivalents, at which the denitrification rate			
	equals half its maximum rate at optimal cond	ditions for		
	denitrification (the half-value constant			
	in a Monod function)	mol N kg ⁻¹ (wet soil)		

DPR is defined as the maximum denitrification at a reference temperature of 20 $^{\circ}$ C in the absence of O₂ and unlimited supply of NO₃. It is thus strongly related to the decomposition rate of organic matter in the soil. Via a small adaptation of NITDEN CO₂ production from a module that simulates organic matter decay can be used instead of *DPR*. The dynamics in the soil organic matter, e.g. by using organic fertilizers, then also determines the denitrification rates.

The effect of soil water content via water filled pore space *WFPS* (-) on total denitrification is given by the functional relationship f_{W2}

$$f_{W,2} = \begin{cases} 0 & WFPS < d_2 \\ \left(\frac{WFPS - d_2}{1 - d_2}\right)^{d_3} & WFPS \ge d_2 \end{cases}$$
(12-8)

where

d_2	WFPS threshold value below which the denitrification rate	
	equals zero	_
d_3	curve shape parameter that determines the steepness of the	
	curve for the effect of <i>WFPS</i> on denitrification rate	_

The effect of soil temperature $T(^{0}C)$ on total denitrification is given by the functional relationship $f_{T,2}$

$$f_{T,2} = \begin{cases} 0 & T < 0 \\ \frac{d_4 T^{d_5}}{\left(1 + d_6 T^{d_7}\right) f_{T=20,2}} & T \ge 0 \end{cases}$$
(12-9)

where

 $d_{4.5.6.7}$ curve shape parameters

In the denitrifcation process NO_3 and N_2O compete for the electrons produced during decay of organic matter. Reduction of NO_3 is given by

$$\frac{\mathrm{dNO}_{3}^{-}}{\mathrm{d}t} = \frac{\mathrm{NO}_{3}^{-}}{\left(\frac{4\mathrm{NO}_{3}^{-}}{14} + \frac{2\mathrm{N}_{2}\mathrm{O}}{28}d_{8}f_{pH,2}\right)}\frac{\mathrm{d}e_{\mathrm{p}}}{\mathrm{d}t}$$
(12-10)

where

and reduction of N₂O is given by

$$\left(\frac{\mathrm{dN}_{2}\mathrm{O}}{\mathrm{d}t}\right)_{R} = \frac{\mathrm{N}_{2}\mathrm{O}\,d_{8}\,f_{pH,2}}{\left(\frac{4\mathrm{NO}_{3}^{-}}{14} + \frac{2\mathrm{N}_{2}\mathrm{O}}{28}\,d_{8}\,f_{pH,2}\right)}\frac{\mathrm{d}\mathbf{e}_{\mathrm{p}}}{\mathrm{d}t} \tag{12-11}$$

The effect of soil *pH* on reduction of NO₃ and N₂O is given by the functional relationship $f_{pH,2}$

$$f_{pH,2} = MAX \left[d_{11}, 10^{\frac{pH-d_9}{d_{10}}} \right]$$
(12-12)

where

d_9	pH value at which the factor for the sink strength of N_2O in
	consuming electrons relative to that of NO ₃ equals d_8
d_{10}	curve shape parameter
d_{11}	minimum value for the multiplication factor for the effect of
	pH on the sink strength of N_2O in consuming electrons relative
	to that of NO ₃

The N₂O production from denitrification of NO₃ is given by dNO_3/dt and the N₂ production equals $(dN_2O/dt)_R$

In the above equations M_{ws} *WFPS* and *T* are used as in the equations for nitrification. *DPR*, *pH* and *d*₁ through *d*₁₁ are all assumed constant and taken from the input file.

12.4 N₂O emission

As gas transport is not modelled, emission of N_2O from the soil surface towards the atmosphere is estimated as follows

$$\left(\frac{\mathrm{dN}_{2}\mathrm{O}}{\mathrm{d}t}\right)_{E} = EF\left(\frac{\left(1 - WFPS^{e_{1}}\right)}{f_{a}}\mathrm{N}_{2}\mathrm{O} - \mathrm{N}_{2}\mathrm{O}_{air}\right)$$
(12-13)

where

N_2O_{air}	N ₂ O concentration of the atmosphere	mg cm ³ (air)
\boldsymbol{f}_{a}	volumetric gas content	cm ³ cm ⁻³ (soil)
e_1	parameter used in calculating the N ₂ O concentration in	
	soil air by partitioning of total N ₂ O between soil water	
	and soil air as a function of water filled pore space	-

No intrusion from atmosphere to the soil has been considered in NITDEN. The emission factor $EF(d^{-1})$ is given by a sigmoidal function

$$EF = \frac{e_4}{1 + \left(\frac{WFPS}{e_2}\right)^{e_3}} \tag{12-14}$$

where

WFPS at which EF equals half of its maximum value e_4	-
curve shape parameter for the function relating <i>EF</i> to <i>WFPS</i>	-
maximum fraction of the difference in N ₂ O concentration	
between soil air and atmosphere that leaves the soil as N_2O	
emission at $WFPS = 0$	\mathbf{d}^{-1}
	<i>WFPS</i> at which <i>EF</i> equals half of its maximum value e_4 curve shape parameter for the function relating <i>EF</i> to <i>WFPS</i> maximum fraction of the difference in N ₂ O concentration between soil air and atmosphere that leaves the soil as N ₂ O emission at <i>WFPS</i> = 0

 f_a and *WFPS* are dynamically computed by FUSSIM2. N₂O_{*air*} and e_1 through e_4 are all assumed constant and taken from the input file.

12.5 N₂O dynamics in the soil

The governing N_2O equation describes the net N_2O rate of change in the soil as the sum of two N_2O production processes minus the sum of two N_2O consumption processes. The production processes are nitrification of NH_4 to N_2O and reduction of NO_3 to N_2O , and the two consumption processes are N_2O reduction to N_2 and N_2O emission. The governing equation reads

$$\frac{dN_2O}{dt}_{\text{net N}_2O \text{ production}} = \underbrace{PF_1 \frac{dNH_4^+}{dt}}_{\text{nitrificat ion}} + \underbrace{\frac{dNO_3^-}{dt}}_{NO_3 \text{ reduction}} - \underbrace{\left(\frac{dN_2O}{dt}\right)_R}_{N_2O \text{ reduction}} - \underbrace{\left(\frac{dN_2O}{dt}\right)_E}_{N_2O \text{ reduction}} - \underbrace{\left(\frac{dN_2O}{dt}\right)_E}_{N_2O \text{ reduction}} + \underbrace{\left(\frac{dN_2O}{dt}\right)_E}_{N$$

12.6 Numerical solution

Equation (12-15) is solved numerically using a semi-implicit Euler scheme. Our experience is that using explicit Euler resulted in very small time-step requirements. The semi-implicit Euler scheme reads (Press *et al*, 1992; their Eq. (16.6.17))

$$y^{t+\Delta t} = y^{t} + \frac{\Delta t \frac{\mathrm{d}y^{t}}{\mathrm{d}t}}{1 - \Delta t \frac{\mathrm{d}y^{t}/\mathrm{d}t}{\mathrm{d}y^{t}}}$$
(12-16)

The derivative dy/dt is computed according to Eqs. (12-1)-(12-15), where *y* represents the N₂O concentration in the soil. The derivative of dy/dt to *y* is numerically estimated by computing dy/dt for two values of N₂O, one somewhat less than current N₂O and one somewhat larger than current N₂O:

$$\frac{dy^{t}/dt}{dy^{t}} = \frac{(dy/dt)\Big|_{N_{2}O(1+a)} - (dy/dt)\Big|_{N_{2}O(1-a)}}{2aN_{2}O}$$
(12-17)

A typical value for α equals 0.01.

12.7 The input file NITDENIN.DAT

In chapter 15 (section 15.4.17) an example of the input file NITDENIN.DAT is presented. Here we indicate which parameter of the Eqs. (12-1) through (12-14) corresponds to which variable in this file (Table 12-1).

Table 12-1 Correspondence between variables used in text and the parameter names as occurring in the data file NITDENIN.DAT. For completeness, the units of the variables are given as well.

Variable	Name in	Units	Variable	Name in	Units
in text	NITDENIN.DAT		in text	NITDENIN.DAT	
<i>n</i> ₁	NitSourceParam1	mmol ² kg- ²	d_1	DenSourceParam1	mol kg ⁻¹ (wet soil)
		(wet soil)			Ū.
n_2	NitWaterParam1	-	d_2	DenWaterParam1	-
<i>n</i> ₃	NitWaterParam2	-	d_3	DenWaterParam2	-
<i>n</i> ₄	NitTempParam1	-	d_4	DenTempParam1	-
n_5	NitTempParam2	-	d_5	DenTempParam2	-
<i>n</i> ₆	NitTempParam3	-	d_6	DenTempParam3	-
<i>n</i> ₇	NitTempParam4	-	d7	DenTempParam4	-
<i>n</i> ₈	NitpHParam1	-	d_8	DenElectrParam1	-
<i>n</i> 9	NitCECParam1	mmol ² kg ⁻²	d_9	DenpHParam1	-
		(wet soil) d ⁻¹			
<i>n</i> ₁₀	NitCECParam2	mmol² kg-2	d_{10}	DenpHParam2	-
		(wet soil) d ⁻¹			
<i>n</i> ₁₁	NitPartParam1	-	d_{11}	DenpHParam3	-
<i>n</i> ₁₂	NitPartParam2	-	<i>e</i> ₁	DenEmisParam4	-
<i>n</i> ₁₃	NitPartParam3	-	<i>е</i> 2	DenEmisParam1	-
<i>n</i> ₁₄	NitPartParam4	-	<i>e</i> 3	DenEmisParam2	-
			<i>е</i> 4	DenEmisParam3	d-1

12.8 Acknowledgements

This module was developed with financial support from the COGANOG project (EU FAIR3 CT96-1920).

12.9 References

- Bril J., H.G. van Faassen and H.Klein Gunnewiek, 1994. Modelling N₂O emission from grazed grassland. Report 24, DLO Research Institute for Agrobiology and Soil Fertility, Haren, The Netherlands, 45 p.
- Press W.H., S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, 1992. Numerical recipes in Fortran 77. Second edition. The art of scientific computing. Cambridge University Press.