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Preface

Global Optimization Workshops are organized as light overhead meetings rather sponta-
neously by members of the Global Optimization scientific community. Without presidents
and committees in a flat organization, its aim is to stimulate discussion between senior and
junior researchers on the topic of Global Optimization in a one stream setting. The tradition
continues since its first meetings in Sopron (1985 and 1990) followed by Szeged (1995), Flo-
rence (GO’99, 1999), Hanmer Springs (NZ, Let’s GO, 2001), Santorini (2003), San José (GOO05,
2005), Mykonos (2007), Skukuza (SAGO, 2008), Toulouse (TOGO, 2010) and Natal (Br, NAGO,
2012) and now taking place in Mélaga (MAGO, 2014).

The lead was taken this time by a group of researchers of the High Performance Computing
-Algorithms group in southern Spain. More than 40 interested researchers sent in an extended
abstract which can be used as a discussion document describing a problem and/or an algo-
rithm to be deliberated during the meeting. In addition, Panos Pardalos was prepared to do
the kick-off for the workshop with an overview of research questions that have been dealt
with and topics that are still open for further research.

This proceedings book provides an overview of the questions discussed during the work-
shop. The idea is that researchers may continue their investigation inspired by the discussion
and successful papers can be submitted to a special issue of the Journal of Global optimization
dedicated to the workshop.

Eligius M.T. Hendrix (Malaga)
Inmaculada Garcia (Malaga)
Leocadio G. Casado (Almeria)

MAGO 2014 Co-chairs
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Proceedings of MAGO 2014, pp. 1 -2.

Introductory talk to the workshop MAGO 2014:
Progress and Challenging Problems in Global Optimization

by Panos M. Pardalos

Abstract

We are honoured to announce the talk of Panos M. Pardalos. Panos is a recognised scholar with
more than 350 published journal articles, 15 books and editor of numerous journals. After his thesis
and first book with J. Ben Rosen, he was one of the founding fathers of the global optimization
community and its journal in 1990; the Journal of Global Optimization founded with Reiner Horst.
The community is nearly as dynamic as Panos. By editing numerous journals and initiating book
series, he stimulated from the beginning the appearance of papers and books on the topic of global
optimization.

Outline of the talk

An overview of the state of global optimization was given by Panos in an invited plenary
talk [6] at the 15th International Symposium on Mathematical Programming (University of
Michigan, Aug. 15-19, 1994). Starting of from the quadratic viewpoint his talk handled rela-
tions with integer programming, semidefinite programming, fractional programming, etc. By
that time an interesting aspect was the lack of available software and codes for solving global
optimization problems.

In addition, it was acknowledged that global optimization had begun expanding in all di-
rections at an astonishing rate, and that new algorithmic and theoretical techniques had be-
gun development. The diffusion into other disciplines had proceeded at a rapid pace, and
our knowledge of all aspects of the field had grown even more profound. At the same time
one of the most striking trends in global optimization was the constantly increasing interdis-
ciplinary nature of the field. This makes our discusions very dynamic; we have to adapt to
new potential application fields.

In the initial stage of the discussion on global optimization [2], we tried to capture all knowl-
edge so far in teaching books [4, 8] and handbooks [3, 5, 7]. Space was given to new fields
interested in the global optimization aspects by starting book series and promoting a wide
variety of application fields in the Journal of Global Optimization.

We asked Panos in this talk to go back and reflect on the progress of the field, especially
some of the major developments and research directions and open questions in global opti-
mization. After two decades we have more efficient computational approaches accompanied
by the availability of several global optimization solvers. However, many outstanding open
questions remain and new ones arise in relation to specific applications. At the present there
is a huge interest in data driven applications and optimization with massive data sets [1].
New, challenging problems arise in connection to novel algorithmic approaches (e.g. exter-
nal memory algorithms) and new computing environments (e.g. cloud computing, quantum
computers etc.).
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On computing order quantities for perishable inventory
control with non-stationary demand”

A.G. Alcobal, EM.T. Hendrix!, I. Garcia!, K.G.J. Pauls-Worm?, and R. Haijema?

1 Computer Architecture, Universidad de Mdlaga, {agutierreza,eligius,igarciaff@uma.es

2Opemtions Research and Logistics, Wageningen University, {karin.pauls,rene.haijemaj@wur.nl

Abstract We study the global optimal solution for a planning problem of inventory control of perishable
products and non-stationary demand.

Keywords: Inventory control, Perishable products

1. Introduction

The basis of our study is a SP model published in [3] for a practical production planning
problem over a finite horizon of 1" periods of a perishable product with a fixed shelf life of J
periods. The demand is uncertain and non-stationary such that one produces to stock. To keep
waste due to out-dating low, one issues the oldest product first, i.e. FIFO issuance. Literature
provides many ways to deal with perishable products, order policies and backlogging, e.g.
[5, 1]. The model we investigate aims to guarantee an upper bound for the expected demand
that cannot be fulfilled for every period.

The solution for such a model is a so-called order policy. Given the inventory situation I at
the beginning of period moment ¢, an order policy should advice the decision maker on the
order quantity @);. For the decision maker, simple rules are preferred. We consider a policy
with a list of order periods Y with order quantities Q);.

2. Stochastic Programming Model

The stochastic demand implies that the model has random inventory variables I ;; apart from
the initial fixed levels Io. In the notation, P(.) denotes a probability to express the chance
constraints and E(.) is the expected value operator for the expected costs. Moreover, we use
't = max{x,0}. A formal description of the SP model from [2] is given.

Indices
t periodindex,t =1,...,T, with T the time horizon

j ageindex, j =1,...,J, with J the fixed shelf life

*This paper has been supported by The Spanish Ministry (projects TIN2008-01117, TIN2012-37483-C03-01) and Junta de An-
dalucia (P11-TIC-7176), in part financed by the European Regional Development Fund (ERDF). The study is co-funded by the
TIFN (project RE002).
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Data
d; Normally distributed demand with expectation y; > 0 and variance (cv x )?

where cv is a given coefficient of variation

fixed ordering cost, k > 0

unit procurement cost, ¢ > 0

unit inventory cost, h > 0

unit disposal cost, is negative when having a salvage value, w > —c
service level, 0 < 8 < 1

Variables

e >0 W

Q>0 ordered and delivered quantity at the beginning of period ¢

Y; € {0,1} setup of order

I Inventory of age j at end of period ¢, initial inventory fixed ;o = 0,
I;;>0forj=1,...,J

The total expected costs over the finite horizon is to be minimized.

T J—1
F@=>(C@Q)+E|r> Ii+wly|], (1)
t=1 Jj=1

where procurement cost is given by the function
C(x)=k+cx, if x>0, and C(0) =0. (2)
The FIFO dynamics of inventory of items of different age j starts by defining waste
Ijp=Tj 140 1—d)t, t=1,...,T, (3)

followed by the inventory of other ages that still can be used in the next period:

J-1 *
Ijt: Ij—l,t—l_(dt—ZIi,t—l)Jr ) t:177T>]:2>>J_1 (4)
i=

and finally the incoming and freshest products, with j = 1:

J-1 *
L= Qi —(di =) ILiy)" | ,t=1,....T (5)
j=1
Lost sales for period t is defined by
J—1 *
Xi=|d-> Iii1-Q . (6)
j=1
The service level constraint for every period is

Notice that the incoming products are the freshest product, j = 1. We consider a simple order
policy, where the decision maker is provided a list of order periods Y; and order quantities
Q¢ where Y; = 0 implies Q; = 0. This can be considered an MINLP problem to derive what
are the optimal values of the (continuous) order quantities (); and the corresponding optimal
(integer) order timing Y.
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Figure 1: One period loss function for d ~ N (1950, 0.25 - 1950) and corresponding basic order
quantity q.

3. Replenishment cycles and basic order quantities

We study several theoretical properties of the order quantities () and the list of order periods
Y. We first focus on the concept of replenishment cycles and determine in which cases a
so-called basic order quantity defines the optimal order quantity in Section 3.2.

3.1 Feasible replenishment cycles

Literature on inventory control e.g. [5] applies the concept of a replenishment cycle, i.e. the
length of the period R for which the order of size () is meant. For stationary demand, the
replenishment cycle is fixed, but for non-stationary demand the optimal replenishment cycle
R; may depend on the period.

Definition 1. Given list of order periods Y € {0,1}T and N = ZtT:1 Y;. The order timing vector
A(Y) € NV gives the order moments A; < A; i1 such that Y, = 1.

Definition 2. Given list of order periods Y € {0,1}7 and N = I, Y; Replenishment cycle
RZ(Y) :AiJr]__Ai, izl,...,N—lﬂﬂdRN:T—Rn'i‘l.

Notice that for the perishable case with a shelf life J, to fulfil the service level constraint,
practically the replenishment cycle can not be larger than the shelf life J; so R; < J.

Lemma 3. Let Y be an order timing vector of the SP model, i.e. Y; = 0 = Q¢ = 0. Y provides an
infeasible solution of the SP model, if it contains more than J — 1 consecutive zeros.

This means that a feasible order timing vector Y does not contain a consecutive series with
more than J — 1 zeros.

3.2 Basic order quantities

Consider a replenishment cycle of one period R = 1, zero inventory and the order quantity
g that minimizes the cost function such that the service level constraint (7) is fulfilled. The
expected lost sales L(q) is

L) = B(d - o)t = / (z — q)f(z)da ®)
q

where f is the density function of d. L is known as the loss function.



8 A.G. Alcoba, EM.T. Hendrix, I. Garcia, K.G.]. Pauls-Worm, and R. Haijema

The cost function is monotonously increasing in the order quantity (), so in order to mini-
mize it we need to find ¢ such that L(q) = (1 — B)p as illustrated in Figure 1. Since demand
is normally distributed, the solution has to be calculated numerically. Here there are several

q
ways to proceed. One can use the derivative of loss function L'(q) = [ f(z)dz—1= F(q)—1
to approximate ¢ using Newton Raphson. For the described model, the determination of ¢, only
has to be done once.

Lemma 4. Let d ~ N(u1, cv x p) and ¢ be the pdf and ® the cdf of the standard normal distribution.
The solution of Lq(q) = (1 — B)p fulfils ¢ = p(1+ cv x ¢) where § solves ¢ (¢§) — (1 — ®(¢)) ¢ = 1-5,

Ccv

Proof. Using the results in [4] for d ~ N (p, cv X p), the loss function can be expressed as

B q—p =K\ 4—H
Ld(Q)—C”X”<‘P<CUXM>_(1_¢<cvxu)>cvxﬂ>. ©

The equation L(q) = (1 — 5)u substituting ¢ = p(1 + cv x ¢) implies

w(““)—(l—@(““)) ZE g -(-s@)i=—L. o)

cv X p cv X [ cv X [ cv

0

The basic order quantity Q,; = (1 + cv x §) provides an upper bound on the order quan-
tity Q¢ if Ry = 1, because inventory may be available. The basic order quantities for longer
replenishment cycles are far more complicated; R; = 2 implies

E (dis1 — @y — d)) " = (1= Bpusa
and R; = 3 implies

E ((dera — (der1 — @ — de)) )" = (1= B)paza,

where we also have to take the constraint Q;; < Q, < Qg into account. These basic order
quantities can only be found by simulation.

4, Conclusions

An MINLP model has been presented to determine order quantities for a perishable product
inventory control problem. So far, basic order quantities can be determined that provide a
feasible policy of the model. The next question is how given this starting policy to find the
optimal order quantities and order timing for the problem.
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On Benchmarking
Stochastic Global Optimization Algorithms

Algirdas Lantinskas', Eligius M.T. Hendrix?, and Julius Zilinskas'
Unstitute of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania, algirdas.lancinskas@mii.vu.lt

2Department of Computer Architecture, Universidad de Mdlaga and
Operations Research and Logistics Group, Wageningen University, eligius.hendrix@wur.nl

Abstract A multitude of heuristic stochastic optimization algorithms with a plethora of fantasy names have
been published to obtain good solutions of the box-constrained global optimization problems often
with a limit on the used function evaluations. In the larger question of which algorithms behave well
on which type of instances, our focus is here on the benchmarking of the behavior of algorithms by
applying experiments on test instances. We argue that a good minimum performance benchmark
is due to pure random search; i.e. algorithms should do better. We introduce the concept of the
cumulative distribution function of the record value as a measure with the benchmark of pure ran-
dom search and the idea of algorithms being dominated by others and illustrate this with available
frequently used algorithms.

Keywords: Stochastic Global Optimization, Benchmark, Black-Box, Meta-Heuristic

1. Introduction

We consider the box-constrained global optimization problem

f* = min f(x), 1)

xeX

where f(x) is a continuous function, X C R" is a box constrained feasible region, and n is
the number of the problem variables. The idea of the black-box optimization is that function
evaluations imply running an external routine that may take minutes or hours to provide
the evaluated objective function value. Many times the question is to obtain a good, but not
necessarily optimal solution within a day, several days, or a week. The question translates to
obtaining a good solution with a limited number N (budget) of function evaluations.

For generating good solutions for such a problem, many stochastic heuristic algorithms
have been described in literature; e.g. [4]. Although concepts of simulated annealing and
population algorithms already existed for a long time, many algorithms have been developed
under the terminology of evolutionary algorithms or meta-heuristics after the appearance of
the work [5] on genetic algorithms. Mathematical statistical analysis of the speed of con-
vergence is hindered by complicated algorithm descriptions. Therefore, researchers rely on
numerical tests with a set of test problems that have evolved in books and on the Internet
after the first set described in [3].

The ultimate question is which types of algorithms perform well on which type of instances;
what defines the characteristics of the case to be solved such that one algorithm is more suc-
cessful than the other? This question requires to investigate for which instances a specific
algorithm does not perform well compared to simple benchmarks. We are aware, that in most
or all published numerical results of algorithms, the focus on worst case behavior is lacking.

The research question that keeps us busy in this research is how to evaluate the quality
of an algorithm for an individual test case. We argue that the performance of Pure Random
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Search (PRS) can be taken as a benchmark and focus on the statistical performance in order to
measure how much better (or worse) other algorithm performs.

2. Cumulative density of the best point found

In general, a stochastic optimization algorithm generates a series of points z;, that approximate
an (or the, or all) minimum point(s). According to the generic description of [8]:

Xp+1 = Alg(Xg, Xp—1, ..., X1,&), )

where £ is a random variable, and & is the iteration counter. Description (2) represents the idea
that a next point x4 ; is generated based on the information in all former points xx, Xx—1, ..., X1
and a random effect £ based on generated pseudo-random numbers. The final result of
running an algorithm with N function evaluations on a test function is the random record
function value Yy = ming—; _n f(xx). The quality of an algorithm A with N trials is de-
fined by the cumulative distribution function of the record Yy which we will denote by
C’DFRE‘\?] (y) = P{Yn < y}. This concept is three dimensional when we consider the proba-
bility, the level y and the budget on function evaluations N and therefore hard to capture in
an analysis.

What is done often is to focus simply on the expected value E(Y y) as function of the budget
N measured as a numerical average. It may be clear that this ignores the variation; for some
run (repetition), an algorithm may fail and for another not.

In order to understand the concept, let us first consider the starting point of stochastic global
optimization algorithms of sampling one trial point x uniformly drawn over the feasible re-

gion. Consider p(y) = P{f(x) < y} being the cumulative distribution function of random

variable y = f(x), where x is uniform over X. So, basically CDFREPRS} (y) is provided by the

function p(y) with domain [f*, maxx f(x)]. For PRS, the probability that a level y is reached

after generating N trial points is given by 1 — (1 — pu(y))"Y, which in fact defines CDFRESRS} (y)

of pure random search which we will call Py (y).
Py (y) provides a benchmark for all stochastic algorithms. For each function value y one

should at least reach the probability Py(y), i.e. what is the difference between CDFRE/\?} (y)
and Py(y) = 1 — (1 — u(y))" after having generated N points? One can compare algorithms
systematically for instances by comparing their C' DFRK?] (y) function.

Another extreme benchmark algorithm in stochastic optimization is Multistart (MS) [1]. It
requires a local (nonlinear) optimization routine LS(xg, Nis) as a procedure which given a
starting point xo and the limit on the number of function evaluations (/Vi,s) returns a point in
the domain that approximates a local minimum point. In contrast to PRS, numerical results

therefore depend on the LS routine applied. For reproducibility, we will apply a standard

MATLAB routine fmincon. It is useful to mention that the CDFREIG/IS] of MS has a typical step
shape where the objective values of the local minima reveal a certain probability mass.

Our idea is to have a measure for comparison of two algorithms A and B, to see whether
one is performing better on a certain problem instance. It may be clear that algorithm A is
doing better than B on an instance for effort V if Vy, CDFRKA,’] (y) > C’DFRR?} (y).

In numerical results, often the focus is on average behavior to determine whether

B(YY) > B (YY), 3)

This is typically a necessary but not sufficient condition to determine better performance. If
test cases (instances) can be classified into problem classes, the most interesting question is
whether the behavior of a particular algorithm B is dominated by that of another algorithm
A. It means one can take B out of consideration to solve problems from this class.
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Notice that for population based algorithms that initially start with a randomly generated
and evaluated population, the behavior of the record value is exactly the same as that of PRS
up to the population has been generated and the mechanism of “reproduction”, i.e. generating
new trial points on the base of the current population, has started. Very low budgets on
function evaluations are therefore not very interesting.

On the other hand, it is very well known from literature on stochastic global optimiza-
tion (e.g. [9]) that if the effort IV gets bigger, we are getting closer to the optimum f* and for
lower dimensional cases, the probability of not hitting a level set of level f* + § becomes very
small for tens of thousands of points. This means that the difference between algorithms van-
ishes if one keeps on sampling. We stress this, because we observed tables in literature where
two-dimensional instances were hit with tens of thousands of trial points. In the sequel, we
will attempt to find an interesting region of budget NV and test cases where well known algo-
rithms can be distinguished.

3. Numerical illustration of the new concepts

In order to illustrate the concepts of the cumulative distribution CDF Ry (y) of the record, we
elaborate numerical results obtained by solving the Six-Hump Camel Back test problem [4]
using Particle Swarm Optimization (PSO) [6], Genetic Algorithm (GA) [5, 2], and Controlled
Random Search (CRS) [7], and confront them with the benchmarks of PRS and MS. The al-
gorithms have been run for N = 200, 500, 1000 function evaluations with population size of
M = 50, and repeating each experiment 1000 times. The results are presented in Figure 1,
where the x-axis of the graphs is scaled by the maximum objective function value of PRS over
1000 repetitions using the corresponding number N of function evaluations.

One can see from the figure that visually for N = 1000 the performance of the population
algorithms cannot be distinguished. Results can be better distinguished for the small budget
N = 200. For this budget, MS can perform only 5 local searches with the MATLAB local search
solver; this is well visible in the sense that the global minimum is not always reached. Think-
ing in terms of “generations”, PSO and GA only refresh their population (swarm) four times.
Nevertheless, the GA algorithm dominates the others, i.e. its curves are highest for all tested
budgets N. None of the population algorithms is worse than PRS.

N=500 N=1000

0 1
PRS MS PSO GA CRS

Figure 1: Plots of CDFRK?] (y) obtained by running algorithms A =PRS, MS, PSO, GA, CRS on

the Six-Hump Camel Back test problem, N = 200 (left); N = 500 (middle); N = 1000 (right).
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4. Summary

Heuristics for the box-constrained global optimization problem are often tested on a test-bed
of instances. For the question of which algorithms behave well on which type of instances, we
showed that the Cumulative Distribution Function of the record value provides the answer on
domination. We argue that a good minimum performance benchmark is due to pure random
search; i.e. algorithms should do better. The concepts have been illustrated for several well-
known heuristic algorithms for global optimization.
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Abstract Support Vector Machines (SVM) is the state-of-the-art in Supervised Classification. A methodology
to reduce complexity of the classifier in SVM is proposed by clustering the categories of categorical
features. Four strategies are presented based on solving: the original SVM and two mathematical
optimization formulations we propose in this talk. An empirical comparison shows the performance
of the SVM classifier derived using the original data against that using the clustered data for the 2-
cluster case. In the tested datasets our methodology achieves comparable accuracy to that of the
SVM with the original data, while we illustrate the dramatic decrease in complexity by clustering
the categories.

Keywords: Support Vector Machines, Mixed Integer (Non)Linear Programming, Categorical features, Cluster-
ing

1. Introduction

In Supervised Classification, we are given a set of objects (2 partitioned into classes and the aim
is to build a procedure for classifying new objects when information about objects in (2 is only
available in the so-called training sample, with dimension n. In its simplest form, each object ¢ €
? has associated a vector (z;, x},y;), where the feature vector z; associated with J categorical
features takes values on a set X C {0, 1}23']:1 Ki, the feature vector 2/, associated with the
continuous features takes values on a set X’ C R”’, and y; € {—1, +1} is the class membership
of object i. As seen above, the common approach in the literature is to binarize the different
categories, obtaining for each categorical feature one binary feature for each category, that is,
categorical feature j that has K different categories is split into K; binary features. This can
lead to a loss of information and accuracy because the structure of the original categorical
features is disregarded.

In Section 2, the Cluster Support Vector Machines (CLSVM) methodology is introduced to-
gether with a Mixed Integer Nonlinear Programming problem (MINLP) formulation and a
Mixed Integer Quadratic Programming problem (MIQP) formulation. In Section 3 four strate-
gies are presented with the aim of reducing complexity in Support Vector Machines (SVM) by
clustering the categories of categorical features. Section 4 concludes.

2. The CLSVM methodology

In this section, the Cluster Support Vector Machines (CLSVM) methodology is introduced.
Then, an MINLP and an MIQP formulations are presented, based on the standard SVM and
exploiting the information provided by categorical features. Table 1 shows the used symbols
of the methodology.

A state-of-the-art method in Supervised Classification using a score function is the Support
Vector Machine (SVM), [6, 11, 12]. The SVM aims at separating both classes by means of a
hyperplane, w'z + w72’ + b = 0, found by minimizing the squared l;-norm of the weight
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Table 1: Notation for the CLSVM methodology

Notation Description

J Set of categorical features with cardinality J

J’ Set of non-categorical features with cardinality J’
Kj Set of categories for feature j with cardinality K;
L; Set of clusters for feature j with cardinality L;

vector (w,w’) and the so-called hinge loss, with a regularization paramater C, separating it
into two different sums, for .J categorical features and J’ non-categorical features. See [3] for a
recent review on Mathematical Optimization and the SVM, and [1, 2,4, 5, 7, 8, 9] for successful
applications of the SVM.

The methodology proposed, the Cluster Support Vector Machines (CLSVM) methodology,
is based on the SVM, but exploits the structure of categorical features. This methodology re-
ceives as input a dataset containing categorical features and as a first step, it performs a clus-
tering for each categorical feature, defined by an assignment vector z; ;. », equal to 1 if category
k from categorical feature j is assigned to cluster /. Then, the dataset is clustered according to
z as explained in Figure 1 and a separating hyperplane is obtained for the clustered dataset.
The pseudocode of the CLSVM methodology can be found in Figure 2. To avoid symmetry
between clustering solutions, the first category of each categorical feature is always assigned
to the first cluster.

Figure 1: Pseudocode for the clustered dataset defined by the assignment variable 2.
For each i €

Step 1. Input:
J /
original object (y;,zi,x}), m; € {0,1}=i=1 %Ki, 2/ c R’

J K
assignment variable z € {0,1}2i=1 LiKi

Step 2. Output:

J . ’
clustered object (y;,Z;,x;), Z; € {0, 1}2=1ts z, e R/
K;

where I; = (Lfi7171, - ,Lfi”],LJ) with z; ;¢ = E 25k 0%5 5.k
k=1

Figure 2: Pseudocode for the CLSVM methodology.
Given a dataset 2:

Step 1. Find the assignment vector z, defining a clustering for the
categorical features.

Step 2. Obtain the clustered dataset () as in Figure 1.

Step 3. Find a separating hyperplane for ().

Now, we introduce the Cluster Support Vector Machines (CL) formulation, a mixed integer
nonlinear problem (MINLP), [10]. It replaces w with w, which is the score vector associated
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with the clustered categorical features. For each categorical feature j, we have a subvector
(wje) € = 1,...,Lj, which is the score for the cluster ¢ of the categorical feature j. The CL is
formulated as follows:

J Lj 72% J 2 o
. Js J’
B DD Y 2k )
Jj=14=1 j'= =1
s.t. (CL)
J Lj K;
Yi Z wj,ézzj,k,zxi,j,k+wl—r SU;-l—b >1-¢; Vi=1,...,n 2
7j=1/=1 k=1
& >0 Vi=1,...,n 3)
L;
 zige=1 Vi=1,...,JiVk=1,...K; (4
=1
€ {0,1}25=1Li K )
o€ REi=1 L5 (6)
w e R ?)
beR. (8)

In order to obtain an MIQP formulation, one can relax the nonlinear term the product of
variables @; Zf; | Zj,k,0 Tijk iN constraint (2) by introducing new big M constraints. This
implies adding 23-]:1 L;K; continuous variables, @, and 4 - 23]:1 L;K; big M constraints, (11)-
(14).

J L; —92 J! 2 n
_min Zi(%)JFZWQJ/JF%Z@
’ j i=1

j=1¢=1 j'=1
s.t. (CL-big M)
J L
Y Z @j’k(i)’g—i-w’—r:c;—i—b >1-¢& Vi=1,...,n
j=1¢=1
& >0 Vi=1,...,n
Lj
d zige=1 Vk=1,..,K; Vji=1,..J (10)
(=1
(:}j,k’ggalj’g—i-M(l—Zj,k’g) Vk:L...,Kj, VfZL...,L]’, Vi=1,...,J (11)
L:)j7k7gzajj7g—M(1—Zj7k7g) Vk‘zl,...,Kj, VE:L...,Lj, ijl,,J (12)
L:)j7k7g§MZj’k7g Vk‘zl,...,Kj, VE:L...,Lj, ijl,,J (13)
Wik = —M 20 VE=1,...,K;, Yt=1,...,L;, Vj=1,...,J (14)
2 e {0, 1} 2= Ly K (15)
o e RE-1Ls (16)
5 e RE-1 LiK; 17)
W e R (18)

beR.
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3. Strategies

In this section, four different strategies are proposed based on the two mathematical pro-
gramming formulations, the CL and the CL-big M introduced in Section 2, and on the SVM
formulation.

Strategy 1 is based on the original SVM. First, an SVM is solved for the original database,
then each categorical feature j is clustered into L; clusters by clustering the SVM scores. Then,
the separating hyperplane is found by solving an SVM for the updated clustered database.
Strategy 2 is based on the randomized rounding of the partial solution z from the continuous
relaxation of the CL formulation. For each value of C, this strategy solves the continuous

relaxation of the CL formulation, where constraint (5) is relaxed to z € [0, 1]25:1 Liki A
randomized rounding procedure can be applied to derive the assignment variable z. Strategy
3isbased on solving the CL formulation. For each value of C, this strategy solves to optimality
the CL formulation or returns the current solution after a given time limit. The last strategy,
Strategy 4, tunes and trains the CL-big M formulation. For each value of C, this strategy solves
the CL-big M formulation or returns the current solution after a given time limit.

4. Summary

This talk describes a methodology, two mathematical optimization formulations and four
strategies for clustering categorical features in the SVM, and thus to reduce the complexity
of the SVM classifier. The strategies have been tested on a test set of benchmark datasets
publicly available. Results will be discussed in the talk.
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Abstract This study presents a new two-swarm cooperative fish intelligence algorithm for solving the bound
constrained global optimization problem. The master population is moved by a Lévy distribution
and cooperates with the training population that follows mainly the classical fish behaviors. Some
numerical experiments are reported.
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1. Introduction

In this study we are interested in solving the bound constrained global optimization (GO)
problem using a swarm intelligence algorithm that is able to converge to the globally best
point in the feasible region and requires a limited computational effort. The problem to be
addressed has the form

glob 151618 f(x), 1)

where f is a continuous nonlinear, possibly nonconvex function, and €2 is the hyperrectangle
{z € R" : I <z < u}. When solving complex optimization problems, like NP-hard problems,
metaheuristics are able to perform rather well and generate good quality solutions in less
time than the traditional optimization techniques [3]. Besides the variety of applications in
some engineering areas, the motivation for the present study is the pressing and ongoing
need to develop efficient algorithms for solving a sequence of problems, like (1), that emerge
from a penalty function technique or an augmented Lagrangian based multiplier algorithm
for constrained nonconvex global optimization, in reasonable time.

The artificial fish swarm (AFS) algorithm has been previously implemented within aug-
mented Lagrangian paradigms [2, 10], which in turn have been compared with other metaheuristic-
based penalty like algorithms to solving constrained GO problems. The numerical results
have been shown that the fish swarm intelligence is a promising metaheuristic but further
research is demanded so that efficiency can be improved.

2. Two-swarm cooperative paradigm

The present proposal for solving the problem (1) is a variant of the AFS algorithm. This meta-
heuristic relies on a swarm intelligence based paradigm to construct fish/point movements
over the search space while converging to the optimal solution [2, 9, 10]. The new algorithm
is termed two-swarm cooperative AFS (25-AFS) and the crucial idea is to use two swarms

*This work has been supported by FCT (Fundagdo para a Ciéncia e Tecnologia, Portugal) in the scope of the projects: PEst-
OE/MAT/UI0013/2014 and PEst-OE/EEI/UI0319/2014.
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(instead of just one) where each one has its own task and supplies information to the other
swarm, when attempting to converge to optimality. Other multi-swarm cooperative algo-
rithms based on a master-slave model can be found in [6, 7]. Hereafter, the terms “point” and
‘population” (of points) will be used to represent (the position of) a fish and the swarm re-
spectively. The position of a point in the space is represented by z; € R" (the jth point of a
population) and m is the number of points in the population. The component 7 of a point x;
is represented by (z;);.

21 Classical AFS algorithm

The initial procedure of AFS algorithm consists of randomly generating the points z;, j =
1,...,m, of the population, in 2. Then, each current point z; produces the trial point y;
according to the number of points inside its ‘“visual scope’ (VS). This is a closed neighborhood
centered at x; with a positive radius which varies with the maximum distance between z;
and the other points. When the VS is empty, a Random Behavior is performed, and when it is
crowded, one of the behaviors, Searching or Random, is performed. However, when the VS is
not crowded, one of the four following behaviors is selected: Chasing, Swarming, Searching
or Random. The selection depends on the objective function values of x; when compared
with the function value of the best point inside the VS, the central point inside the VS, or a
randomly chosen point of the VS. To choose the population for the next iteration, the current
xj and the trial y; are compared in terms of f. The pseudo-code for the AFS algorithm is
presented below.

AFS algorithm
{

randomly generate the population z; € 2, j = 1,...,m and select Tpest;
while stopping condition is not met {
foreachz;,j=1,...,m {
if ("visual scope’ is empty)
{compute y; by Random Behavior}
else if (‘“visual scope’ is crowded)
{compute y; by Searching/Random Behavior}
else
{compute y; by Chasing/Swarming/Searching/Random Behavior}.

if (f(y;) < f(x;)) {setz; =y;} }

select zpes: and perform random local search around it; }

2.2 Two-swarm cooperative AFS algorithm

In order to improve the capability of searching the space for promising regions where the
global minimizers lie, this study presents a new fish swarm-based proposal that defines two-
populations, each one with its task goal but always sharing information with the other: one
is the master and the other is the training population. The master population aims to explore
the search space more effectively, thus defining trial points from the current ones through-
out a stable stochastic distribution. Depending on the number of points inside the VS of z;
of the training population, the trial point is mainly produced by the classical AFS behaviors,
although in some cases — when the VS is empty and when it is crowded — the stochastic distri-
bution borrowed from the master population is used. The overall best point is shared between
both populations. The algorithm is called 2S-AFS. To be able to produce a trial y;, from the
current x;, ideas like those of Bare-bones particle swarm optimization in [4] and the model for
mutation in evolutionary programming [5], may be used:

(yj)i=v+0Y; ()
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where v represents the center of the distribution that may be given by (x;); or ((«;)i+(ztest)i)/2
(the average of (z;); and the best point (zpest)i), 0 may represent an adaptive mutation defined
by the distance between (x;); and (x4st);, and each Y; is an identically distributed random
variable from the Gaussian distribution with mean 0 and variance 1. We note that Y may
be the random variable of another probability distribution. The standard Lévy distribution
is used since it can search a wider area of the search space and generate more distinct val-
ues in the search space than the Gaussian distribution. The Lévy distribution, denoted by
Li(a, 8,7, 0), is characterized by four parameters. The parameter /5 gives the skewness (8 = 0
means that the shape is symmetric relative to the mean). The shape of the Lévy distribution
can be controlled with a. For o = 2 it is equivalent to the Gaussian distribution, whereas for
a = 1itis equivalent to the Cauchy distribution. The distribution is stable for a = 0.5 and
B = 1. o is the scale parameter and is used to describe the variation relative to the center of
the distribution. The location parameter 7 gives the center. When v = 0 and o = 1, we get the
standard form, simply denoted by L(c) when 3 = 0.

Hence, the proposal for further exploring the search space and improve efficiency is the
following. The points from the master population always move according to the Lévy distri-

bution, i.e., each trial point y; is generated component by componenti = 1, ..., n as follows:
(y;)i = (25)i + (0)iLi() if rand() <p -
I (@pest)i + (07)iLi(o)  otherwise

where (0;); = |(2;)i — (Tpest)i|, Li(a) is a random number generated for each i from the stan-
dard Lévy distribution with the parameter & = 0.5, rand() is a random number generated
uniformly from [0, 1] and p is a user specified probability value for sampling around the best
point to occur. On the other hand, each point in the training population either moves accord-
ing to classical AFS behaviors if its VS is not crowded, or it moves using a Lévy distribution,
as shown in (3), with p = 0 if the VS is empty, and p = 1 if the VS is crowded. Cooperation
from the master population is also required if the best point belongs to the master population.
The below presented algorithm is the pseudo-code for 2S-AFS algorithm.

2S-AFS algorithm

{
randomly generate z; € 2, j € P = {1,...,m} and select Zpess;
randomly choose z;,j € M C P, where #M = | % |, and move them according to (3) with p = 0;
while stopping condition is not met  {
foreachz;, j=1,....,m {
if (j € M — point in master population)
{compute y; according to (3) with p = 0.5}
else if (‘visual scope’ is empty)
{compute y; according to (3) with p = 0}
else if (‘visual scope’ is crowded)
{compute y; according to (3) with p = 1}
else
{compute y; by Chasing/Swarming/Searching/Random Behavior}.
if (f(y;) < f(z;)) {setz; =y;} }
select Zpes: and perform random local search around it;  }
}

The algorithm stops when | f(zpest) — f*| < 0.001 or N Feval > 20000 where f(zpes) is the
best solution found thus far, f* is the known optimal solution, and N Feval gives the number
of function evaluations.

3. Results and Conclusions

This section aims to compare the results of the proposed 2S-AFS with those of two AFS-based
algorithms on benchmark problems with acronyms BR, CB6, GP, H3, H6, SBT, S5, S7 and S10
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(with n ranging from 2 to 6) [1]. The algorithm was coded in C and the results were obtained
on a PC with a 2.8 GHz Core Duo Processor P9700 and 6 GB of memory. Each problem was
solved 30 times and m = 10n points are used. Table 1 summarizes the results obtained in
terms of the average number of function evaluations (‘N feq,,") required by the algorithms to
reach the optimal solution with the above defined accuracy. ‘DbAFS’ is a distribution-based
AFS algorithm with the random local search (RLS) (see in [8]) and “AFS’ is the classical AFS
with the same RLS (see also Figure 1). From the results we may conclude that 25-AFS is quite
efficient in converging to the optimal f* on six problems but reached the maximum number
of evaluations in some runs when solving problems S5, S7 and S10. These behaviors need
further investigation and new strategies to enforce convergence.

9000
f 25-AFS DDbAFS AFS w0 || LS
BR  0.39789 362 690 815
CB6  -1.0316 241 293 639
GP  3.00000 494 710 830
H3  -3.86278 206 911 1273
H6  -3.32237 657 3864 6534
SBT -186.731 415 1256 2803
S5 -10.1532 8382 1611 4568
S7  -10.4029 5793 1818 2931
S10  -10.5364 5837 1889 3067

BR CB6 GP H3 H6 SBT S5 S7 S10

Table 1: Comparison of AFS-based algo- Figure 1: Bars of N fegy,, for the tested algo-
rithms. rithms.
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Abstract The extended cutting plane algorithm (ECP) is a deterministic optimization method for solving con-
vex mixed-integer nonlinear programming (MINLP) problems to global optimality as a sequence
of mixed-integer linear programming (MILP) problems. The algorithm is based on Kelley’s cutting
plane method for continuous nonlinear programming (NLP) problems. In this paper, an extended
supporting hyperplane (ESH) algorithm is presented. It is based on similar principles as in the ECP
algorithm, however instead of utilizing cutting planes supporting hyperplanes are generated.

Keywords: Convex MINLP, Extended supporting hyperplane (ESH) algorithm, Extended cutting plane (ECP)
algorithm, Supporting hyperplanes, Cutting planes

1. Introduction

Solving convex MINLP problems efficiently may still be a difficult task even if there currently
are several versatile solution algorithms available, such as outer approximation [2, 4], general
Bender’s decomposition [6], branch and bound techniques using different NLP subsolvers [1,
9] and the ECP algorithm [13]. Extensions of these algorithms are also available, e.g., the ECP
algorithm has been extended to handle quasi- and pseudoconvex [14] and nondifferentiable
[3] MINLP problem classes. Various implementations of the algorithms exist and many are
available in modeling frameworks or optimization systems like GAMS (www. gams. com),
COIN-OR (www. coin-or. org) or the NEOS Server (www. neos-server. org). A review
of MINLP methods can be found in [7]. The stability and efficiency of MINLP solvers is of
paramount importance especially when utilized in real-world applications. Global solution
techniques for nonconvex MINLP problems may also require convex MINLP subsolvers [5,
10], and then the performance of the parent solver is largely dependent on that of its subsolver.

In this paper, a new convex MINLP solution technique — the ESH algorithm —is proposed.
It is loosely based on the ECP algorithm (itself an extension of Kelley’s method in [8]) and
has some similarities to the supporting hyperplane method in [12]. In the ECP algorithm
MILP problems are iteratively solved until all nonlinear constraints of the MINLP problem
are fulfilled to a given tolerance. In each iteration, the feasible region of the MILP problem
is reduced by adding cutting planes. Each MILP solution provides a lower bound on the
optimal solution of the MINLP problem. Important for the efficiency of cutting plane based
algorithms is how and where cutting planes are generated. In the ECP algorithm, the solution
point of the MILP problem is directly used, however, in the ESH algorithm only hyperplanes
on the boundary of the nonlinear feasible region are generated. Two preprocessing steps to
rapidly generate supporting hyperplanes, solving linear programming (LP) problems (instead
of MILP problems) together with a line search strategy for selecting the generation point, are
also used.
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2. The extended supporting hyperplane algorithm

The ESH algorithm, described in this section, has connections to the ECP method [13], how-
ever instead of cutting planes, it is based on generating supporting hyperplanes. It also uses
two preprocessing steps to efficiently get a tight linear approximation of the feasible region of
the convex MINLP problem to be solved and thereafter finally one or a few MILP problems
are solved to satisfy the integer requirements.

The ESH algorithm can be used to find the optimal solution z* to the convex MINLP prob-
lem

¥ = argmin ¢’z (P)
zeCNLNY
where 2 = [11,29,...,7x]" is a vector of variables in a bounded set
X={zl|z; <2 <7, i=1,...,N} 1)
and the feasible set L N C'NY is defined by
C = {z|gn(x)<0,m=1,....M,z€ X},
L = {z|Ax<a,Bxr=0b,x€ X}, ()
Y = {a|z;€Z,icly,zeX}.

X is a compact set of an N-dimensional Euclidean space X C R restricted by the variable
bounds. The sets L and C' are the convex regions satisfying the linear and (convex) nonlinear
constraints respectively. If the problem is a NLP problem, I7, = @ and Y = X. If the variable
vector x contains integer variables z; included in the index set Iz, then Y corresponds to
the nonrelaxed values these variables can assume. The objective function is written in linear
form. In case of a nonlinear convex objective function f, a new objective function constraint
f(z) —xn41 < 0isincluded in C and the objective is to minimize the auxiliary variable z 1.

2.1 NLP step
In the ESH algorithm an internal point Znp is first obtained from the convex NLP problem

ZnLp = argmin F'(x), where F(z) := max {gm(x)} (P-NLP)
zeX

using a suitable method [11]. Observe that F' is minimized within the region defined by vari-
able bounds only. Since F'is given by a max-function, it is convex if all constraint functions
gm are convex and generally quasiconvex if the functions g,, give rise to convex level sets.
Note that (P-NLP) may be a nonsmooth problem if M > 1 even if all functions g,, are smooth.
Assuming that (P) has a solution, there exists a solution to (P-NLP) such that F'(Znip) < 0.
After this step go to the first preprocessing step in Section 2.2. Note that it is not necessary to
solve (P-NLP) to optimality if a strict feasible solution F'(Znrp) < 0 is obtained easier.

2.2 LP1 step

After the solution to (P-NLP) is obtained, a first iterative preprocessing step is performed
where simple LP problems are solved (initially in X)) and a line search procedure is conducted
to obtain a tight overestimated set (2, of the convex set C'. Initially, the counters k£ =1, Jy =0,
the set 2y = X, and the following relaxation of (P), only considering the variable bounds, is
solved:

aEI]fP — argminc! z. (P-LP1)

Qg1

Assuming there exists a solution to (P), then F(ZF,) > 0 or F(F,) < 0. In the latter case,
stop iteration and go to the LP2 step in Section 2.3. Otherwise, i.e., if F(ifp) > 0, then the
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values F(Znrp) and F(#F,) have different signs (or F(Znrp) is already equal to zero) and it is
possible to obtain points to generate new supporting hyperplanes.

The set 2, where C' C ), is now defined as an ordered set defined by the Jj, first supporting
hyperplanes, i.e.,

Qk:{x\lj(x)g(),jzl,...,Jk,xeX}. 3)
After solving (P-LP1), a line search is performed between Znip and i]’fP, i.e., the equation
2" = Xince + (1 — N)ifp, 4)

is used to find the value of A = A\ € [0,1] for which F(z*) = 0. (In case F(Zxrp) = 0, then
Ar = 1). In the point 2* a supporting hyperplane

Iy = F(z") + &p(a®)(x — 2%) <0 )

is generated and added to . &r(2%)T is a gradient or subgradient of the corresponding
function F' at z*. The counter J; is increased by one if the line search is performed on F
and one supporting hyperplane thus only created for F. Supporting hyperplanes can also
be added for other constraints where gm(mk) > 0. From the line search, it can be observed
that for a violated constraint 0 < \,, < Ap. If supporting hyperplanes are generated for a
certain number of violated constraints (where g,,(Zfp) > 0), they can be selected based on
decreasing values of the \,,,-values (from equation (4)) starting from )\, < Ap. The number of
hyperplanes added at iteration & is Ji, — J;_1, where Jj, is the total number of hyperplanes in
Q.

The problem (P-LP1) is repeatedly resolved (increasing the counter k with one for the next
iteration) until a maximum number of iterations has been reached, i.e., & > Kipi, or until
F(#F,) < eLp1 or Q4 has reached a maximum number of supporting hyperplanes, i.e., J, >
Jrp1. Then continue to the LP2 step in Section 2.3.

2.3 LP2 step

In this preprocessing step, a corresponding problem to (P-LP1), with the linear constraints in
L included, is solved:
:Tc]kjp = argminc! z. (P-LP2)
Q_1NL

The solution #f; gives F(7F,) > 0 or F(&F,) < 0. In the latter case, #f, is an optimal so-
lution of (P) if it is a continuous problem. Otherwise ¥, is an integer-relaxed solution and
we continue to the MILP step in Section 2.4. If aEI’fP > 0, the same line search procedure and
supporting hyperplane generation strategy as in the LP1 step is performed. Then k and Jj, are
increased and (P-LP2) is resolved. This continues until a maximum number of iterations has
been reached, i.e., k¥ > Kipp, or until F(a?I’fP) < erp2 or € has reached a maximum number
of supporting hyperplanes, i.e., J, > Jipy. After the preprocessing steps LP1 and LP2 have
been performed, the set L N C is already tightly overestimated by 2. When solving a convex
MINLP problem, the integer requirements should be considered. This is finally done in the
MILP step. In case the original problem is continuous, terminate with Zf}, as the solution.

24 MILP step

In the final step of the ESH algorithm the integer requirements in (P) are considered by solving
MILP relaxations of (P) in 0, L and Y. The problems solved in this step are, thus, defined as
#Hyp= argmin ¢z (P-MILP)

Qr_1NLNY
Note that it is not necessary to solve the MILP problem to optimality in each iteration, the

final MILP iteration need however be solved to optimality to guarantee that the solution is the
global optimal one. Here the same MILP solution strategy as in [14] can be used.
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If the termination criterion F (51, p) < emiLp is not fulfilled, more supporting hyperplanes
are added to ), similarly to the LP1 and LP2 steps, and the counters k and J;, are increased.
If F(25yp) < emip and &%y p is a MILP optimal point, i.e., #§y p € Y, then &5y p is the global
solution of the original problem (P) (to a tolerance of ey p) in a finite number of steps.

3. Conclusions

In this paper, an ESH algorithm for convex MINLP problems was presented. It incorporates
two preprocessing steps utilizing LP to iteratively refine a set (2 including supporting hyper-
planes rendering a tighter linear overestimation g 2 2y D --- D Qp O C C C N L of the
convex sets C'and C'N L. A MINLP optimal solution is finally guaranteed by subsequentially
solving MILP relaxations including the integer restrictions and adding additional hyperplanes
to Q.
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Solution methods for expensive optimization problems
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Abstract We consider expensive optimization problems, that is to say problems, where each evaluation of the
objective function is expensive in terms of computing time, consumption of resources, or cost. This
often happens in situations where the objective function is not available in analytic form. Therefore
it is of central importance to use as few evaluations as possible within the optimization process. This
necessitates a sophisticated strategy to determine the evaluation points. We discuss response surface
methods that are tailored to the problems described above.

Keywords: black box optimization, global optimization, RBF-method

1. Introduction

In this talk we consider expensive optimization problems, that is to say problems where each
evaluation of the objective function is expensive in terms of computing time, consumption
of resources, or cost. This often happens in situations where the objective function is not
available in analytic form. In this context we will study the global optimization problem
min f(z) such that z € R. Here the continuous function f : R? — R is the expensive objective
function and R is a d-dimensional rectangle. These problems arise in:

= traffic planning,

m crash tests,

m best composition of chemicals,
» 50il contamination.

These examples show that we can generally see this ‘expensiveness’ as a lack of analytical
representation, which is why we also speak about 'black box functions’. Due to this expen-
sivness it is of central importance to use as few function evaluations as possible within the
optimization process. This necessitates a sophisticated strategy to determine the evaluation
points.

In such a situation the use of response surface methods is advisable. Here at each stage the
few already sampled points of the expensive function are used to create a model by a linear
combination of special basis functions, matching the already given points. See Figure 1 for
an example where the expensive function f is interpolated by the model function s, which is
based on four sample points.

Based on this interpolating model, the next point to be evaluated is chosen. A good survey
of response surface methods is [7]. Obviously, not only the surface model should be used
to determine the global optimum of the expensive function because it mainly supports the
local search within the optimization method. Instead, a further criterion is needed to improve
the global search as well. Here the so called ‘'measure of smoothness’ [11] provides a useful
quantity to determine the next iteration point. The following so called ‘radial basis functions’
were investigated intensively by several authors ([5],[8],[10],[14],[15]).



26 Christine Edman

11

NS

Figure 1: Expensive function f evaluated at four points and interpolating model s;4.

Let ¢ : Ry — R be one of the following functions, where w € N:

rh with odd « € N,

f lines: =
= surface splines: ¢(r) {r” logr witheven k € N,

= multiquadrics: ¢(r) = (r? + w?)® with k > 0 and & ¢ N,
= inverse multiquadrics: ¢(r) = (r? + w?)* with k < 0,
= Gaussians: ¢(r) = exp(—wr?).

These functions are called radial basis functions. It turns out that their properties with
respect to the above mentioned measure of smoothness are extremely helpful for the opti-
mization process. Figure 1 shows an example of an interpolating model constructed by radial
basis functions.

Using the advantageous properties of these functions, some authors developed efficient
algorithms (see [3],[12]) including radial basis functions, where in [3] the name "RBF-method’
was established. Radial basis functions were used for interpolating models (see [1],[2],[4],[9],
[12],[13]) as well as for approximation models (see [6]).

Algorithms based on the original RBF-method proposed by Gutmann [3], even Gutmann’s
method itself, often contain several subproblems. They depend on the optimization of the
‘measure of smoothness’ or ‘'measure of bumpiness’, whose global solutions are not necessary
for the convergence of the whole process. Therefore these subproblems, also called auxil-
iary problems, are usually solved heuristically or locally ([6],[9],[12],[13]). As the solution of
these auxiliary problems determine the choice of the next evaluation point of the expensive
function, we are increasingly interested in a deterministic solution method for calculating the
global optimum. The main drawback is that these subproblems in general have a huge num-
ber of local optima, which increases with the number of interpolation points. Nevertheless
global solutions of these subproblems are desirable ([1],[3]) in order to improve the overall
process.

2. Conclusions

We present a method to solve those subproblems considering the positive characteristics of
some of the radial basis functions mentioned above. Our talk includes the presentation of
lower bounds which can be used in a branch-and-bound algorithm. This algorithm converges
to the globlal optimum of the auxiliary problem and finally investigates a sophisticated choice
of evaluation points for the expensive function.
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Abstract The pooling problem is an extension of the minimum cost flow problem defined on a tripartite graph,
where quality constraints are introduced at each terminal node. Flow entering the network at the
source nodes has a given quality, at the internal nodes (pools) the entering flow is blended, and then
sent to the terminal nodes where all entering flow streams are blended again. The resulting flow
quality at the terminals has to satisfy given bounds. The objective is to find a cost-minimizing flow
assignment that satisfies network capacities and the terminals” quality specifications.

Recently, it was proved that the pooling problem is NP-hard, and that the hardness persists when
the network has a unique pool. In contrast, instances with only one source or only one terminal
can be formulated as compact linear programs, and thereby solved in polynomial time. In this
work, we study several important network classes, for which we prove that the pooling problem
remains NP-hard. We also give examples of special cases in which the problem is solvable by linear
programming. Finally, we point out some open problems that need to be addressed in order to
identify more closely the borderline between polynomially solvable and NP-hard variants of the
pooling problem.

Keywords: Pooling problem, NP-hard, Linear Programming

1. Introduction and definitions

The pooling problem is a network flow problem exhibiting linear relations that often confuse
practitioners to believe that it can be formulated as a linear program. Years of experience
with applications in e.g. oil refining, gas transportation and food production, have however
established a consensus that linear formulations are achievable only in very special cases. The
purpose of the current work is to identify conditions under which fast solution methods based
on linear programming exist, and to identify conditions that render the problem intractable.
To that end, we give theorems stating the NP-hardness of several special cases of the problem.

We consider the pooling problem as an extension of the minimum cost flow problem de-
fined on a tripartite graph, where quality constraints are introduced at each terminal node.
Flow entering the network has a given quality, which depends on the source node at which
the flow enters. At all internal nodes, referred to as pools, the flow received from the sources
is blended such that the resulting quality becomes a weighted average of the source qualities.
Likewise, the flow sent from pools to terminals is blended at the terminals, where bounds on
the resulting quality are specified. The objective is to find a cost-minimizing flow assignment
that satisfies network capacities and the terminals” quality specifications.

More formally, the problem is introduced as follows. Let D = (NN, A) be a directed graph,
where the node set N = .S U P UT consists of the sources .S, pools P and terminals 7', and the
arc set A C (S x P) U (P x T) links sources with pools and pools with terminals. We let K
be a finite set, and refer to its elements as quality parameters. The unit cost of arc (i,j) € A
and the capacity of node 7 € IV are denoted c;; and b;, respectively. Further, we let qf denote
the quality of parameter k € K of the flow entering source s, and we let u}' denote the upper
bound on the quality (small values indicate good quality) of the flow arriving at terminal ¢.

Introducing lower quality bounds does not lead to an extension of our problem. For all
parameters k € K subject to lower bounds /¥, we extend K by a new parameter &/, let ¢*' =
—q* for all s € S, and define the upper bounds u}" = —¢¥ for all t € T. We therefore refer to
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instances with lower quality bounds as pooling problem instances, but whenever counting of
the parameters is an issue, we count twice all parameters subject also to lower bounds. We
have assumed that there are no direct arcs from sources to terminals. This assumption can be
made without loss of generality, since any such arc can be replaced by a new pool along with
two arcs connecting the pool to the source and the terminal, respectively.

To simplify writing, we introduce the neighbor sets S, = {s€ S :(s,p) € A} and T,, =
{teT:(pt) e A}foreachp € P,alongwithPs ={pe P:sec Sytand P, ={pe P:tecT,}.

2. Bilinear programming formulations

Introducing the variables z;; and w}, denoting the flow on arc (i,j) € A and the quality of
parameter k at pool p, respectively, the problem is formulated as a bilinear program:

Problem 1.

b 2 ig)eA CisTis (1)
> pep, Tsp < b sesS )

Zsesp Tsp < bp pEP ©)

> pep, Tpt < by tet (4)

Esesp Tsp — ZteTp Tpt =0 peP (5)

Zsesp q§$5p - w]],f ZteTp =0 pePkeK (6)
ZpePf, wzl;xpt —uf Zpept <0 teT ke K (7)

T < Rf ®)

Constraints (2)-(4) reflect the node capacities, (5) ensure flow conservation at pools, (6) imply
ZSGSP qlscxsp f 1 .
e, @ | POOL p receives non-zero

> Wk,
&P of parameter k at ter-

that the quality variables w’; attain the correct value

flow, which in combination with (7) ensure that the quality o
pE Py

minal ¢ is within its bound u}.

Haverly [8] was the first to formulate the problem in terms of quality variables. Later, for-
mulations where quality variables are replaced by proportion variables have been suggested
[1, 4, 9]. A proportion variable represents the fraction of the flow through a pool that origi-
nates from a given source, or the fraction destined for a given terminal. Despite the linearity
of the blending operation at pools and terminals, all formulations mentioned here are bilinear.

In general, compact linear programs for the pooling problem exist only if P = NP [1].
The goal of the current work is to provide hardness theorems identifying special cases of
the problem that are provably NP-hard. We also point out some sufficient conditions under
which the problem is solvable in polynomial time, and we give some cases for which neither
hardness results nor polynomial time algorithms are known to date.

3. Exact solution methods

Exact algorithms with provable convergence to a global optimum were first given by Floudas
and Visweswaran [6, 10], who developed an approach based on Lagrangian relaxation. Later,
alternative Lagrangian-based techniques have been suggested [2, 3, 4]. Bilinear formulations
have been the basis of methods exploiting relaxations by convex and concave envelopes [1, 7,
9]. When using the strongest available formulations, such exact algorithms are able to solve
instances of moderate size quickly, but in line with what the complexity results predict, large
scale instances seem to be unsolvable.
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4. Hardness theorems
This section consists of theoretical results that will be proved in the full version of the paper.

4.1 Instances with a single source, pool or terminal
Proposition 1. The pooling problem with |P| = 1 is NP-hard.

The proof [1] is by a reduction from the independent vertex set problem, which for a graph
G = (V, E) asks for a vertex set V' C V' of maximum cardinality such that all pairs of vertices
in V' are non-neighbors in G. In the corresponding pooling problem instance, all sets S, T
and K have one element for each vertex v € V, such that there is a one-to-one correspondence
between sources and terminals, and between sources and quality parameters. Further, each
edge in E defines a pair (s, t) such that no flow received at ¢ should come from s. The unique
pool is connected to each source and to each terminal. The quality vectors at the sources
are distinct unit vectors, such that the quality of the flow leaving the pool tells from what
sources the flow originates. At each terminal ¢, the quality bounds dictate that some flow
must originate from its corresponding source, whereas no flow can originate from any source
s where (s,t) corresponds to an edge in F.

Proposition 2. For all tyax > 1, the pooling problem with |P| = 1 and |T| < tmax is solvable in
polynomial time.

The proof is simply to observe that if the set of terminals to receive non-zero flow is known,
the pooling problem with |P| = 1 is a compact linear program. Thus, the problem is solved by
applying a polynomial LP-algorithm no more than 2=+ times. A similar argument [1] is used
to prove that bounding the number of quality parameters has the same effect when |P| = 1.

Proposition 3. For all kyax > 1, the pooling problem with |P| = 1 and |K| < kmax is solvable in
polynomial time.

Open problem 1. Does there exist some integer Smax > 2, such that the pooling problem with |P| = 1
and |S| < smax is solvable in polynomial time?

Although the NP-hardness persists when there is only one pool, confining the digraph to
have only one source or only one terminal has a strong effect. Slightly more general cases can
be formulated as linear programs:

Proposition 4. The pooling problem with min {|S,|,|T},|} = 1 for all p € P is solvable in polynomial
time.

4.2 Instances with a single quality parameter

In this section, we answer positively the question, addressed by Dey and Gupte [5], whether
the pooling problem remains NP-hard when |K| = 1. It turns out that restricting the number
of quality parameters alleviates the computational challenge even less than allowing for only
one pool. By Proposition 3, the problem can be solved quickly when |P| = 1 and |K| = 2.
When the roles of P and K are swapped, the picture looks different.

Proposition 5. The pooling problem with |K| = 1 and either |P| = 2 or |S| = |T'| = 2 is NP-hard.

It follows from Proposition 5 that constraining the number of neighbors of the sources or the
terminals to any number above 1 leaves us with an NP-hard problem. Likewise, it follows
from the same proposition that the problem remains NP-hard for |K| = 1 even if the in- and
out-degrees of all pools are at most 2.
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4.3 Instances with bounded node degrees

While Proposition 5 covers instances with small node degrees at the pools, we can also prove
that the problem remains NP-hard even if there is no node with more than two entering arcs.
An analogous result holds for the out-degrees.

Proposition 6. The pooling problem with |S,| < 2 forallp € P and |P;| < 2 forall t € T is NP-hard.
Proposition 7. The pooling problem with |T),| < 2 forall p € P and |Ps| < 2 forall s € S is NP-hard.

Propositions 67 answer questions left open in [5]. Observe, however, that the propositions
consider the number of quality parameters as arbitrary.

Open problem 2. Does there exist an integer kuax > 1 such that the pooling problem with |S,| < 2

forallp € Pand |P| < 2 forallt € T is solvable in polynomial time when |K| < kpax?

Open problem 3. Does there exist an integer kymax > 1 such that the pooling problem with |T,| < 2

forallp € Pand |Ps| < 2 forall s € S is solvable in polynomial time when | K| < kpyax?

5. Summary

We have given instance classes for which the pooling problem is NP-hard. Notable among
these are the networks with only one pool and the instances with only one quality parameter.
In contrast, the problem can be solved in polynomial time if each pool is connected to only
one source or only one terminal.
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Abstract In this paper the global optimization problem of a multiextremal function satisfying the Lipschitz
condition over a hyperinterval is considered. To solve it we propose algorithms that use Peano-type
space-filling curves for reduction of dimensionality. The knowledge of the Lipschitz constant is not
required. Local tuning on the behavior of the objective function and a new technique, named local
improvement, are used in order to accelerate the search. Convergence condition are given. Numerical
experiments show quite promising performance of the new technique.

Keywords: Global Optimization, space-filling curves approximations, set of Lipschitz constants

1. Introduction

Let us consider the following global optimization problem:

min{F(y) : y € [a,b]}, (1)

where [a, b] is a hyperinterval in RY and F is a multiextremal function that satisfies the Lips-
chitz condition

\F(y') = F@")| < Llly — "], v, y" € la,b], )

with a constant L, 0 < L < oo, generally unknown. In the literature, there exist numerous
methods for solving the problems (1), (2), see, for example, [1], [5] [6], [11], [12], [13], [17], [18],
[22], [23], [24]. In this paper, we consider an approach that uses numerical approximations of
space-filling curves to reduce the original Lipschitz multidimensional problem to a univariate
one satisfying the Holder condition [10, 19]. These curves, first introduced by Peano (1890)
[14], fill in the hyperinterval [a,b] C RY, i.e., they pass through every point of [a,b]. It has
been shown by Strongin (see [20, 21]) that, by using space filling curves, the multidimensional
global minimization problem (1), (2) is turned into a one-dimensional problem. In particular,
Strongin has proved that finding the global minimum of the Lipschitz function F(y),y € RY,
over a hyperinterval is equivalent to determining the global minimum of the function f(z):

f(z) = F(p(x)), z € [0, 1], 3)
where p(z) is the Peano curve. Moreover, the Holder condition
[F) = f@")] < Hla! = 2"YN, ol € [0,1], (4)
holds for the function f with the constant

H=2LVN +3, (5)

*This research was partially supported by the INAAM-GNCS 2014 Research Project of the Italian National Group for Scientific
Computation of the National Institute for Advanced Mathematics “F. Severi”.
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where L is the Lipschitz constant of the multidimensional function F(y). Thus, we can solve
the problem (1), (2) by using algorithms proposed for minimizing functions in one dimension
but it is required to use Holder metric. Naturally, in order to realize the passage from the
multi-dimensional problem to the one-dimensional one, computable approximations to the
Peano curve should be employed in the numerical algorithms. In Fig. 1 we can see an approx-
imation of level 5 of the curve in dimension N = 2. It can be seen that the objective function
has been evaluated at points on the curve.

2. Geometric Methods

To solve the one-dimensional problem (3), (4), we propose several algorithms that use a ge-
ometrical approach [7, 19]. Using the Lipschitz condition these methods, at each iteration,
construct an auxiliary function that is a minorant for the objective function and select a point
at which the objective function is evaluated (trial point). At a generic iteration £, the search
interval has been already subdivided into k subintervals and k trials have been executed at
points z1, ..., 5. Then, for each subinterval [z;_1, z;], a so-called characteristic M; is defined
(this can be done in various ways, e.g., in certain cases M; is defined as the minimum of the
auxiliary function in the considered subinterval), and the next trial is executed at the point
Zk41 in that interval corresponding to the minimal value of the characteristic.

In Fig. 1 an example of convergence of the sequence of trial points generated by an al-
gorithm called MGAS [9] that uses the geometric approach in dimension N = 2 using the
approximation of the level M = 5 to the Peano curve is given. In this example a function
test generated by the GKLS-generator from [4] has been considered. We can see, in black, the
Peano curve in the domain [—1, 1]; the zone with the high density of the trial points corre-
sponds to the global minimizer.

One of the main issues regarding these methods is related to the treatment of the Lipschitz
constant L. We propose different techniques for acquiring the Lipschitz information that can
be distinguished with respect to the way the Lipschitz constant is estimated during the process
of optimization. In particular, in order to solve the problem (1), (2), we consider techniques
that use either a global estimate of the Lipschitz constant valid for the whole search region
[a, b], or local estimates L; valid only for some subregions [a;, b;] C [a, b]. Naturally, a balancing
between the local and global information must be performed in an appropriate way in order
to avoid the missing of the global solution. Moreover, we propose a new approach, called
“local improvement” [7, 8, 15] in oder to accelerate the convergence of the methods. This
new technique forces the global optimization method to make a local improvement of the best
approximation of the global minimum immediately after a new approximation better than the
current one was found.

We performed several series of numerical experiments, involving more than 800 test func-
tions. In particular, we compared our basic algorithm, named AG (see [7]), with the original
Direct algorithm proposed by Jones, Perttunen, and Stuckman (see [6]) and its recent locally
biased modification LBDirect introduced by Gablonsky and Kelley (see [2, 3]). Fig. 2-left
shows the behavior of the three methods on a classe of 100 test functions generated by the
GKLS-generator (see [4] for a detailed explanation, examples of its usage) in dimension N = 4:
it can be seen that after 10000 function evaluations the LBDirect has found the solution at 58
problems, Direct at 73 problems and the AG at 93 problems). Fig. 2-right illustrates the results
of the experiment on a class of 100 test functions in dimension NV = 2, by considering the basic
method AG with a method, named ALI (see [7]), in which we have used the local improve-
ment technique in order to accelerate the search. Note that after 500 iterations the stopping
rule in the ALI was verified for 84 functions and all the minima have been found, whereas the
algorithm AG stopped only at 2 functions.
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Figure 1: Trial points produced by the MGAS [9] and Peano curve approximation of level 5

(in black) while optimizing a function generated by the GKLS-generator [4].

No. of solved functions

Figure 2: Methods AG [7], Direct and LBDirect, N=4, left; methods AG and ALI [7], N=2, right.
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Abstract

The p-median problem is a model that partitions n objects into p clusters by minimizing the sum
of distances from each point to the center of its cluster using, as input, a single dissimilarity matrix
between the objects. This involves simultaneously selecting the p cluster centers (necessarily se-
lected among the n objects) and assigning objects to clusters. In some settings, multiple dissimilarity
matrices are available. Given that the p-median model uses only one matrix as input, researchers
typically aggregate their data into a single matrix resulting in p-median results that mask the true
nature of the data. The Heterogeneous P-Median Problem was recently proposed as an alternative
model to the classical p-median model for clustering. It consists of a three-way partitioning prob-
lem that identifies groups of individuals with similar category structures. In this work, we present
a Variable Neighborhood Search heuristic for the problem based on the exact exploration of large
neighborhoods modeled as mixed-integer programs. Preliminary computational experiments show
that the heuristic is very efficient for a set of synthetic instances.

Keywords: p-median, matheuristic, variable neighborhood search

1. Introduction

Let n individuals sort m objects such that a matrix data D = (d; ;) is obtained fori =1,...,n,
representing the dissimilarities between pairs of objects j and k as perceived by individual i,
and ¢, fori = 1,...,n as the number of categories individual i wants to classify the objects
in the dataset. Then, the Heterogeneous P-median Problem (HPM) proposed by [6] can be
formulated as:

n G . m—1 m .
Minimize Z szg Z Z d;-ke?k (1)
i=1 g=1 j=1 k=j+1
subject to
m
S L = e GG = 1 @
k=1
G .
dp¥=1Vi=1...,n (3)
g=1
m n 000G
. C'p
= D1 P

*This work has been partially supported by CNPq Brazilian agency
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e?kgeik,ngl,...,G,Vj,k:1,...,m,j7ék )
¢ €{0,1},Vg=1,...,GVj,k=1,...,m,j #k (6)
p9e{0,1},Yg=1,...,G,Vi=1,...,n @)

The n individuals must be partitioned into G groups. The decision variables p9 express the
assignment of individual 7 to the group g. Variables ej’ .. are equal to 1 if object j is linked to
object k in group g, 0 otherwise. The objective is to minimize (1), i.e., the sum of dissimilarities
between each object and its assigned category, conditional on (individual) group membership.
Constraints (2) impose that each object j must be assigned to exactly one median in each group
g. Constraints (3) ensure that each individual is assigned to exactly one group. Constraints
(4) ensure that the total number of medians for each group g must be smaller or equal to
the average number of medians expected by the individuals in that group. The optimization
process guarantee that ijl ef; is as big as possible since more medians in a group imply
lower values in the objective function.

The problem is nonconvex due to the objective function (1) and constraints (4). Besides,
the HPM is already NP-hard for G = 1 since, in this case, it is equivalent to the p-median
problem [4].

2. Variable Neighborhood Search algorithm for the HPM

Variable Neighborhood Search (VNS) is a metaheuristic developed to solve combinatorial and
global optimization problems by changing neighborhoods in its local descent step for intensi-
fication as well as in its shaking step for diversification (see [3] for a survey).

An initial solution is needed in the VNS framework. Our constructive algorithm first solves
the problem of partitioning, with the p-median model, the dissimilarity matrices made by
the individuals according to the Frobenius norm. Then, individual assignments to groups
are performed following the partition obtained, so that if a pair of individuals have their
dissimilarity matrices assigned to the same cluster in the partition then these individuals are
assigned to the same group in the solution of the HPM. Finally, a complete solution to HPM,
including objects assignments variables, is obtained through the solution of subproblems M,
forg=1,...,G, given by:

m—1 m
Minimize M, = Y~ > djiely ®)
j=1 k=j+1
subject to
Y el =1Yg=1,...,G¥j=1,....m )
k=1
J
e?j = [Q], (10)
j=1
egke{o,l},vgzl,...,G,Vj,k:1,...,m,j7ék (12)

- . I o
where d?k =L dj.pig, and Qg = %. Remark that problem (8)-(12) corresponds to

the p-median problem.

The shaking component is implemented by means of random moves in the swap neighbor-
hood, which encompasses all the moves of removing a individual from a group and adding it
to another one. Thus, if the second neighborhood is used for shaking, then two random swap
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moves are performed for two individuals; if the third one is used, then three swap moves are
performed, and so on.

Our local search is devised following the Variable Neighborhood Descent (VND) frame-
work, which generalizes the VNS principles to descent methods. The first explored neighbor-
hood N solves problem (8)-(12) for each group affected by the shaking procedure, thereby
trying to find the best medians given the current individuals assignments.

The second neighborhood structure N> considers the medians and objects assignments as
tixed, i.e. variables e, and looks for a better solution by optimizing individuals assignments
variables p over all groups. For that purpose, it solves the following binary program:

n G
Minimize W =Y~ " pigd:, (13)
i=1 g=1
subject to
> iz CiPig
= >w,Vg=1,...,G (14)
>iz1Pig !
G
Y pig=1Vi=1,...,n (15)
g=1
pig €{0,1},Vg=1,...,G,Vi=1,...,n, (16)

where dj§ =377 S e diy, and wg =371 el

Remark that the first two neighborhoods structures do not allow to modify the number of
medians in a group. With that in mind, a third neighborhood structure N3 was conceived. This
neighborhood explores neighbors for which the number of medians in a group is augmented
in one unity. Its exploration considers each group in turn. For a fixed p, the solution becomes
infeasible when the number of medians of a group ¢* is augmented. In spite of that, in its
first exploration phase, N3 solves the p-median subproblem M- with Q4 replaced by Q,+ +
1. Then, in a second phase, neighborhood exploration proceeds by solving problem (13)-
(16) with wgy+ replaced by wy+ + 1. If the latter is infeasible, it means that we are not able to
support the augmentation in the number of medians of group g* through the reassignments
of individuals.

The three neighborhood structures presented in this section are considered as large neigh-
borhoods in the sense of Ahuja et al. [1]. They are each explored within the VND local descent
by solving mixed-integer programs. Therefore, the proposed VNS method for the HPM prob-
lem can be seen as a matheuristic [5].

3. Preliminary results

We executed our VNS algorithm in a set of synthetic instances from [2]. The tests were per-
formed in a AMD Phenom II with a 800 MHz clock and 8 Gb of RAM memory. Exact solutions
were obtained through convexification of model (1)-(7) (cf. [6]) solved by CPLEX 12.2. Table 1
presents the computational results obtained by CPLEX and VNS. CPLEX was executed until
optimality was attained while the VNS heuristic was allowed to run for one minute of CPU
time. The first column contains the instance id. The second, third and fourth columns show
for each instance the number of individuals n, objects m and groups G, respectively. The fifth
column reports the optimal solution obtained by CPLEX whereas the CPU time (in seconds)
needed to obtain it is shown in the sixth column. Results regarding the constructive heuristic,
denoted CH, are presented in the seventh column. Finally, VNS results are presented in the
eighth column.

We note from Table 1 that the proposed VNS finds the optimal solution values for all tested
instances in less than one minute of CPU time.



40

Everton Santi, Daniel Aloise, and Simon J. Blanchard

Table 1: Computational results obtained by CPLEX, CH and VNS for a set of instances from [2]

4.

Id| n m G]CPLEX Time(s) CH VNS
1300 18 2 [2399.94 218357 | 2407.34 2399.94
2150 18 2|187498 19333 | 1877.65 1874.98
3300 18 2(2399.94 347222 | 240534 2399.94
4300 30 2|5760.00 2423899 | 5766.20 5760.00
5150 18 6| 1199.90 56562.94 | 1270.00 1199.90
6150 30 2|3645.00 25345.88 | 3648.00 3645.00
71150 18 6 |1199.90 18220.32 | 1453.00 1199.90
8150 18 2 |1874.98  247.84 | 1878.32 1874.98
Summary

In this abstract, we described the heterogeneous p-median problem which is a nonconvex
model that can be used to cluster heterogeneous data collected from different individuals.
In the sequel, we sketched a VNS matheuristic to the problem based on the exploration of
large neighborhoods formulated as mixed-integer problems. In the talk, we will present the
model and the method in more detail besides presenting further experiments for real-data
applications.
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Abstract A new method for the underestimation of multivariate nonconvex functions is presented in this arti-
cle. The method is based on a piecewise quadratic underestimator allowing to choose a better lower
bound close to the value of the objective which accelerates the convergence of the two sequences:
lower bounds and upper bounds to the optimum. which produces a set of convex piecewise un-
derestimator. The resulting underestimators are very tight, the enormous advantages resides in the
finest possible partitioning of the domain and also the problem of the lower bound uses local opti-
mizers, since it has explicit solutions. The method was applied to a series of test functions presented
previously in the literature and the results indicate that the method produces underestimators high
quality in terms of tightening.

Keywords: Global optimization , Branch and Bound, Alienor’s Method.

1. Introduction

Deterministic branch and bound methods for the solution of general nonlinear programs have
become increasingly popular during the last decade or two, with increasing computer speed,
algorithmic improvements, and multiprocessors. These methods are mostly based on the con-
struction of a convex underestimating problem which allows the generation of two converg-
ing sequences of upper and lower bounds. The computation of a good convex lower bound
function is very important in global optimization, since the tightness of the lower bound of
nonconvex functions has a strong influence on the amount of computation. Constant and
affine lower bound functions are extensively used in global optimization because of their sim-
plicity and ease of computation.In [6] they introduced a new class of convex underestimators
for twice continuously differentiable NLPs, studied their theoretical properties, and proved
that the resulting convex relaxation is improved compared to the a BB one. Furthermore,
they presented computational results of the new class of convex underestimators embedded
in a branch-and-bound framework for box-constrained NLPs [7].They also proposed a hy-
brid global optimization method that includes the random-linkage stochastic approach with
the aim at improving the computational performance. In [8] they proposed novel convex
underestimators for trigonometric functions which are trigonometric functions themselves.
The underestimation method can be applied to onedimensional as well as multi-dimensional
problems involving trigonometric polynomials, since the product of trigonometric functions
can always be decomposed into the sum of sin and cos functions with arguments that are
linear combinations of the problem variables. In [9] they proposed two new classes of con-
vex underestimators for general C2 NLPs which combine the o BB underestimators within
a piecewise quadratic perturbation, derived properties for the smoothness of the convex un-
derestimators, and showed the improvements over the classical « BB convex underestima-
tors for box-constrained optimization problems. Sherali et al. [10] proposed a new cutting
plane methodology that is based on the construction of a partial convex hull representation
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for a given 0— 1 mixedinteger programming problem by using the reformulation-linearization
technique (RLT). The cuts are generated by projecting the extended space of the RLT formu-
lation into the original space, and the authors investigated several variable selection rules for
performing this convexification in a computationally efficient manner. [11] developed tight
convex underestimators for univariate C2-continuous functions of arbitrary structure. These
are based on a piecewise application of the o B B underestimators and it is theoretically proven
that a finite number of pieces is sufficient for the method to yield the a priori unknown convex
envelope of the function. The methodology was extended to handle multivariate functions
[12], through appropriate projections of the function’s epigraph into select one-dimensional
spaces. Orthonormal transformations were also employed to improve the quality of the un-
derestimation. Unfortunately, they use the local minimizers to determine the upper bound,
while the authors proposed a quadratic underestimator whose minimum is explicitly calcu-
lated which can be used [5]:

1
a(s) = Lnf(s) = ;Kh* Vs € 8 (1)
to solve the problem of global optimization with simple constraints defined as follows:
(P) :a=min f(s), s € S =[a,b] (2)

we assume that f is twice differentiable on S on their second derivatives are bounded, ie
there are positive numbers K
|f”(s)| < K for all s € S. Such a K can be defined in several ways in practice: is it possible
to know a priori values, or they are estimated in a manner to course the algorithm. In our
approach, K are assumed to be known.
Let {s1,s2, ..., Sm } be a uniform discretization with mesh size h of S = [a,b] where s; = a
and s, = b.Let{w, wy, ..., wy, } be a finite sequence of functions defined as ([1], [3])
wi:{ e if sic1 < s < s 3)

Si41—S8 . .
Sit1—5: ’Lf Si < s< Si—1

where sp = s; and $;,+1 = sp,. We have ([3], [5])

m

Z%‘(S) =1,Vs e S. 4)

i=1
o[ Oifi#g
wilsj) = { 1 otherwise ()

Let Ly, f be the piecewise linear interpolant to f at points sy, ...s,, ([2],[3])

Lif = wi(s)f(si)- (6)
i=1

Our contribution consists in providing a better lower bound in a short period of time, while
preserving the advantage of the explicit solution.

2. Tightness of proposed underestimation

Let f(s) be a univariate function that needs to be underestimated in S = [a, b]. We select an
integer NV > 1 and partition the complete domain in N segments of equal length. Thus, the i"
subdomain would be defined as D; = [s;, si+1];¢ = 0,..., N — 1, where : s;, = a + (b_T“) 1,1 =
0,...,N. For every subdomain D;,7 = 0,..., N — 1, we construct the corresponding PQQBB
(piecewise quadratic branch and bound) underestimator:
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Pi(s) = K; w +Li(s),
with Li{s) = 555555 fsp01) + 2250 f(s) )

such as K > K; > |f"(s)]

where K is a upper bound of the second derivative that is valid for the entire subdomain
D;. Note that although an underestimator P;(s) can be defined outside its respective subdo-
main, its convexity is only guaranteed for s € [s;, s;11].To calculate the upper bound K;, we
need of some definitions.

Theorem 1. [Tightness of proposed underestimation] We define P(s), s € [a,b] to be the following
piecewise function:

P(s) = P;(s),Vs; < s < si41, i = 0,..., N — 1, )

this function is a piecewise convex valid underestimator of f(s) for all s € [a,b], and it is tighter
than the quadratic underestimator q(x) introduced in [4].

q(s) <p(s) < f(s), Vs e la,b] )

Forall s € [s;, siy1], i =0, ..., N — 1, the lower bounds are computed explicitly

{ p=5(si+siv1) — 1= (f(siv1) = f(80) if p € [56,8i11]
s; = 8 if p<s; (10)
Sit1 if p>sit

Now, we compare the P;(s}) for the best

C=miry(s; ), 1t =0,..., N —
LBF =minP(s}), i=0,..,N —1 11

The upper bound is calculated by the following comparisons and maitain the best ever.the
objective function is evaluated quite different point which has to determine the upper bound:

UB* = min{f(s}), f(s:),i=0,..,N — 1} (12)
21 Branch and bound algorithm

Initialization a,b, N,e,k =0
Compute U By, = min{ f(a), f(b), f(s)}
LBk - Q(S)a
M = {[a’7 b]}
While (UBy, — LBy, > ¢) Do
a < Tz
b+— x;—i-l
Compute z; = a + (%52) 4,
foralli =0,.....N
If f(z;) <UBy
Compute K; and S; foralli=0,...., N —1
and min {min f(s;),UB}
If f(s;) < UBg
UBk — f(sl)
LB;
IfUBy, — qi(si) > €
integrate [x;, x;y1] in M
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foralli =0,...,N —1
fUB;, — qk(si) <eg
[, zi+1] will remove from M
min gy (s:)
N=E(§)+1
kE=k+1
s* is the optimal solution corresponding to the best U By,

Theorem 2. [Convergence of the algorithm]
Either the algorithm is finite or it generates a bounded sequence{sy}. Any accumulation point of the
sequence is a global optimal solution of (P).We have U Bk ~\, a,LBk /" cv.

3. Conclusion

Our contribution helps build lower bounds piecewise functions that give more information
about the optimal solution and it also provides better initial solutions and lower bounds that
make it the quickest and the most effective method. The Theoretical and algorithmic exten-
sions of the method for application on multivariate functions is developed and without loss
of the required benefits.

References

[1] Casado, L.G., Martinez, J.A., Garcia, I. and Sergeyev, Ya.D. New Interval Analysis Support Functions Using
Gradient Information in a Global Minimization Algorithm, Journal of Global Optimization, 2003.

[2] Ciarlet, P.G. The Finite Element Method for Elliptic Problems Studies in Math.and its Appl., 1979.

[3] De Boor, C. A Practical Guide to Splines, Applied Mathematical Sciences, Springer Verlag, 1978.

[4] Le Thi, H.A. and Pham Dinh Tao. A Branch-and-Bound method via D.C. Optimization Algorithm and El-
lipsoidal technique for Box Constrained Nonconvex Quadratic Programming Problems, Journal of Global
Optimization, 13 (1998), pp. 171-206.

[5] Le Thi, H.A. and Ouanes, M. Convex quadratic underestimation and Branch and Bound for univariate global
optimization with one nonconvex constraint, RAIRO Operations Research 40(2006) 285-302.

[6] Akrotirianakis, I.G. and Floudas, C.A. A new class of improved convex underestimators for twice continu-
ously differentiable constrained NLPs. J. Glob. Optim. 30(4), 367-390 (2004)

[7] Akrotirianakis, I.G. and Floudas, C.A. Computational experience with a new class of convex underestimators:
box-constrained NLP problems. J. Glob. Optim. 29(3), 249-264 (2004)

[8] Caratzoulas, S. and Floudas, C.A. A trigonometric convex underestimator for the base functions in Fouri-
erspace. ]. Optim. Theory Appl. 124(2), 339-362 (2005)

[9] Meyer, C.A. and Floudas, C.A. Convex underestimation of twice continuously differentiable functions by
piecewise quadratic perturbation: spline « B B underestimators. J. Glob. Optim. 32, 221-258 (2005)

[10] Sherali, H.D., Lee, Y. and Kim, Y. Partial convexification cuts for 0-1 mixed-integer programs. Eur. J. Oper.Res.
165(3), 625-648 (2005)

[11] Gounaris, C.E. and Floudas, C.A. Tight convex underestimators for C2-continuous problems: I. Univariate
functions.]. Glob. Optim. 42(1), 51-67 (2008)

[12] Gounaris, C.E. and Floudas, C.A. Tight convex underestimators for C2-continuous problems: II. Multivariate
functions. J. Glob. Optim. 42(1), 69-89 (2008)



Proceedings of MAGO 2014, pp. 45 —48.

Lipschitz Global Optimization with Derivatives”

Dmitri E. Kvasov!? and Yaroslav D. Sergeyev!+?
1DIMES, University of Calabria, Via P. Bucci, 42C — 87036, Rende (CS), Italy

2Software Department, N. I. Lobachevsky State University, Nizhni Novgorod, Russia

{kvadim, yaro}@si.dimes.unical.it

Abstract In this work, a global optimization problem is considered where both the objective function f(x)
and its gradient f’(z) are black-box multiextremal functions. It is supposed that f’(z) satisfies the
Lipschitz condition over the search hyperinterval with an unknown Lipschitz constant K. A number
of geometric Lipschitz global optimization methods based on constructing auxiliary functions with
the usage of different estimates of the Lipschitz constant K are presented in this communication.
Results of their systematic experimental investigation are also given.

Keywords: Black-box global optimization, Lipschitz derivatives, Diagonal algorithms, Numerical comparison

1. Problem statement

A global optimization problem is considered where the objective function f(z) is a multidi-
mensional multiextremal and hard to evaluate function and its gradient f’(z) satisfies the Lip-
schitz condition over a hyperinterval D with an unknown Lipschitz constant K, 0 < K < oo:

f* = f(iﬁ*) :minf(:v), D CR”) (1)
€D
and
1 (@) = fWll < Klz—yl, z,y€eD. (3)

A number of methods for solving this problem has been proposed (see, e.g., [3,4, 5,9, 12,
18, 19, 20, 21, 22]). They can be distinguished either by the mode in which information about
the Lipschitz constant K from (3) is obtained or by the strategy of exploration of the search
hyperinterval D from (2).

In particular, several ways to specify the Lipschitz constant K can be considered: this con-
stant can be given a priori (see, e.g., [1, 2, 3]); its adaptive estimates (local or global) can be
obtained during the search (see, e.g., [5, 7, 10, 11, 16, 18, 20, 22]); multiple estimates of the
Lipschitz constant can be also used (see, e. g., [8, 9]).

In exploring the multidimensional search domain, various adaptive partitioning strategies
can be applied. For example, one-point-based algorithms subsequently subdivide the search
region in smaller ones and evaluate the objective function and its gradient at one point within
each subregion (see, e. g., [3, 9]). Diagonal partitions that evaluate f(z) and f'(x) at two points
within each subregion are very interesting for practical applications with expensive black-
box functions (see, e.g., [14, 17, 18]). More complex partitions, based on simplices, auxiliary
functions of various nature, and so on, can be also used (see, e.g., [4,7, 12, 13, 21, 23]).

*This research was partially supported by the INAAM-GNCS 2014 Research Project of the Italian National Group for Scientific
Computation of the National Institute for Advanced Mathematics “F. Severi”.
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Figure 1: Obtaining the lower bound f;* for the objective function f(x) with the Lipschitz
gradient f'(x) over hyperinterval D; = [a;, b;] by using smooth auxiliary function ¢;(z) along
the main diagonal [a;, b;] of D;.

2. New geometric global optimization methods
using derivatives

The Lipschitz condition (3) is used in this work to obtain the lower bound of the global
minimum value (1) of the objective function f(z) at each iteration of a Lipschitz global op-
timization algorithm, thus allowing one to construct global optimization algorithms and to
prove their convergence in a unified manner. The methods of this type form the class of geo-
metric algorithms that are based on constructing, updating, and improving auxiliary piece-
wise functions built by using an estimate of the Lipschitz constant K from (3) (see, e.g.,
[1,2,8,9,10, 11, 20, 21]). It should be noted in this connection, that similar ideas are used
in many other surrogate-based optimization methods (see, e.g.,[4]).

Since at each point € D from (2) it is possible to evaluate both the objective function f(x)
and its gradient f/(x), more information about the problem is available (especially, regarding
its local properties expressed by the gradient values). The usage of this information allows
one to construct auxiliary functions that fit closely the objective function and to accelerate the
global search.

Different geometric Lipschitz global optimization methods based on constructing auxiliary
functions with the usage of various estimates of the Lipschitz constant K from (3) are pre-
sented in this communication. A particular attention is given to the local tuning approach
(see [16, 17, 20]) and a recently proposed technique (see [8, 9]) for using multiple estimates
of K.

These methods use either the one-point-based partition strategy or the diagonal one (see,
e.g., [14, 18]). In both the cases, the initial hyperinterval D from (2) is partitioned into a set of
smaller hyperintervals D;, the objective function and its gradient are evaluated only at one or
two vertices corresponding to the main diagonal of hyperintervals of the current partition of D
(see points a; and b; of a hyperinterval D; in Figure 1 for the case of a diagonal algorithm), and
the results of these evaluations are used to select a hyperinterval for the further subdivisions.
The diagonal approach has a number of attractive theoretical properties and has proved to be
efficient in solving applied problems (see, e. g., [14, 17, 18, 20]).

Particularly, the diagonal approach allows one to easily perform an extension of efficient
univariate global optimization algorithms to the multidimensional case (see, e.g., [11, 15, 16,
17, 18, 19, 20]), as in both the cases of the local tuning approach (with the construction of
smooth auxiliary functions, see [16, 20]) and of the usage of multiple estimates of K (see
[8, 9]). In fact, in order to estimate the lower bound of f(z) over a multidimensional sub-
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region D;, some one-dimensional bounds can be used as prototypes. After an appropriate
transformation they can be applied to the one-dimensional segment being the main diagonal
of the hyperinterval D; (see a Lipschitz-based smooth auxiliary function ¢;(z) in Figure 1,
under investigation in [20]).

3. Numerical comparison

A special attention in the talk is dedicated to testing the proposed methods and to comparing
them with some well-known Lipschitz global optimization algorithms (see, e. g., [4]) with the
usage of the GKLS-generator [6]. This generator constructs three types (non-differentiable,
continuously differentiable, and twice continuously differentiable) of classes of multidimen-
sional and multiextremal test functions with known local and global minima. The generation
procedure consists of defining a convex quadratic function systematically distorted by poly-
nomials. Each test class provided by the generator consists of 100 functions and is defined
by the following parameters: (i) problem dimension, (ii) number of local minima, (iii) global
minimum value, (iv) radius of the attraction region of the global minimizer, (v) distance from
the global minimizer to the quadratic function vertex. The other necessary parameters are
chosen randomly by the generator for each test function of the class. More information can be
found at: http://wwwinfo.dimes.unical.it/~yaro.

Table 1: Number of trials performed by the methods for solving 800 GKLS test problems.

n € Class Trials Improvement
DIRECT DIRECT! MuLrK w.rt. DIRECT w.urt. DIRECTI

2 107" simple 1159 2318 335 3.46 6.92

2 100" hard 3201 3414 1075 2.98 3.18

3 107% simple 12507 13309 2043 6.12 6.51

3 107° hard >1000000 (4) 29233 2352 >425.17 12.43

4 107% simple  >1000000 (4) 118744 16976 >58.91 6.99

4 107°  hard >1000000 (7) 287857 20866 >47.92 13.80

5 1077 simple 1000000 (1) 178217 16300 >61.35 10.93

5 1077 hard  >1000000 (16) >1000000 (4) 88459 >11.30 >11.30

For the sake of example, let us report some numerical results obtained by using the Lip-
schitz global optimization method from [9]. This method (let us call it MULTK) is based on
an efficient one-point-sampling diagonal partition strategy and uses multiple estimates of
the Lipschitz constant K. In [9], this algorithm has been compared on the GKLS-generator
with two algorithms belonging to the same class of methods for solving problem (1)-(3) —
the DIRECT algorithm and its locally-biased modification DIRECTI (see, e.g. [4]). Continu-
ously differentiable GKLS-classes of dimensions n = 2, 3, 4, and 5 were considered; for each
particular problem dimension n a ‘simple” and a ‘hard” classes have been taken for the com-
parison (see [4] for a detailed description of the classes). Numbers of trials (evaluations of
both f(z) and f/(x)) required for a given method to solve (in terms of obtaining a relative
g-approximation of the global minimizer x* from (1), see [9] for details) all 100 functions of a
particular test class are given in Table 1. The notation > 1000000 (j)" in Table 1 means that
after 1000 000 evaluations the method under consideration was not able to solve j problems.
The last two columns of this Table represent the ratio between the maximal number of trials
performed by DIRECT and DIRECT! with respect to the corresponding number of trials
performed by the MULTK algorithm.
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According to these results, the MULTK algorithm requires (on a given set of 800 test prob-
lems) much fewer trials than the other two methods to ensure a thorough examination of the
search domain. Moreover, the advantage of the proposed method becomes even more pro-
nounced as the problem dimension grows or the problem complexity increases.
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Abstract We discuss the problem of computing optimal linearisation parameters for the first order loss func-
tion of a family of arbitrarily distributed random variable. We demonstrate that, in contrast to the
problem in which parameters must be determined for the loss function of a single random variable,
this problem is nonlinear and features several local optima and plateaus. We introduce a simple and
yet effective heuristic for determining these parameters and we demonstrate its effectiveness via a
numerical analysis carried out on a well known stochastic lot sizing problem.

Keywords: First order loss function, piecewise linear bounds, Jensen, Edmundson-Madanski, lot sizing

1. Introduction

Consider a random variable w with expected value i and density function g,,, and a scalar
variable z. The first order loss function is defined as £, (z) = E,[max(w — z,0)], where E
denotes the expected value. The complementary first order loss function is defined as £,,(z) =
E,[max(z — w,0)]. Note that £, (z) = u — z + L,(x). The first order loss function £, (x) and
its complementary function £, (z) are extensively used in several application domains, such
as inventory control [8] and finance (see e.g. [5]).

In general, £, (z) does not admit a closed form and cannot be evaluated without resort-
ing to numerical approximations (see e.g. [1]). L, (x) and its numerical approximations are
nonlinear in x and cannot directly be embedded in mixed integer linear programming (MILP)
models.

In [7] the authors discuss piecewise linear upper and lower bounds for the first order loss
function, which can be immediately embedded in MILP models. These bounds are partic-
ularly convenient for a number of reasons: they rely on constant parameters that are inde-
pendent of the mean and standard deviation of the normal distribution of interest; it is easy
to obtain bounds for generic, i.e. non standard, normally distributed random variables via a
simple linear transformation. Optimal linearisation parameters are derived following an ap-
proach similar to the one discussed in [2, 3], which minimise the maximum approximation
error.

In this work, we extend the approach in [7] to the case of generic, i.e. non normal, distri-
butions and we discuss how to embed into a MILP model piecewise linear upper and lower
bounds of the first order loss function for a predefined family of generic random variables
wi,ws,...,wy. These bounds are computed in such a way as to minimise the maximum
approximation error over the given family of random variables. We demonstrate the effec-
tiveness of this technique to address a well known stochastic lot sizing problem. Because of
the relation that exists between the function £, () and its complement £, (z), the following
discussion will be limited to the complementary first order loss function £, ().
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Figure 1: Probability density function (PDF) of w; (left) and ws (right).

2. Piecewise linear upper and lower bounds

The complementary first order loss function function £, (z) is convex in = regardless of the
distribution of w. For this reason, both Jensen’s lower bound and Edmundson-Madanski
upper bound are applicable [4]. Consider a partition of the support €2 of w into W disjoint
compact subregions €2y, ..., Q. We define, forall i =1,..., W

pi = Pr{w € Q;} = /Q gu(t)dt and E[w|Q;] = ]%/Q tg.(t) dt. (1)

Lemma 1. Let Qy,...,Qw be a partition of the support Q of random variable w, p; and Elw|<Y;]
defined by (1) and lower bounding function Al(z) = x> 4_ Pk — O p—q PkE[w|Q%]. Then lower
bounding function

Au(z) = max (mzax Al (z), o> < Lo(z)

is a piecewise linear function with W + 1 segments.

This lower bound is a direct application of Jensen’s inequality. Let us then consider the
maximum approximation error ey = max, (L, (z) — A, (z)) for the lower bound in Lemma
1 associated with a given partition. A piecewise linear upper bound, i.e. the Edmundson-
Madanski bound, is A,,(z) + ey, which is obtained by shifting up the lower bound in Lemma
1 by a value ey. These lower and upper bounds for any random variable w can directly be
used in an MILP model.

Having established this results, the question is how to partition the support €2 in order to
obtain good bounds. A number of works discussed how to obtain an optimal partitioning of
the support under a framework that minimises the maximum approximation error [2, 3]. In
short, these works demonstrate that, in order to minimise the maximum approximation error,
one must find parameters ensuring approximation errors at piecewise function breakpoints
are all equal. This result unfortunately does not hold when optimal linearisation parameters
must be found for complementary first order loss functions of a family of generic random
variables.

Consider the complementary first order loss functions for a family of generic random vari-
ableswi,...,wy,...,wn. From (1) it is clear that E[w|€;] is uniquely determined by the choice
of p;. From this choice of the coefficients p; follows for each w,, the function A, (x). Within an
MILP model, one can select the desired bounding function via a binary selector variable y,,:

N i i
Ax) = Z max (max <x Zpk — Yn ZpkE[wn|Qk]> ,0)
n=1 ’ k=1 k=1

adding SV | y,, = 1. These expressions generalise those discussed in [7], which only hold for
normally distributed random variables.
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The challenge is, of course, to compute an optimal partition of random variable supports
into W disjoint compact subregions with probability masses p1,...,p;,...,pw. We shall first
demonstrate that this is a nonconvex optimisation problem in contrast to computing optimal
linearisation parameters for a single loss function. To do so, we consider a simple instance
involving two random variables w; and w» with probability density function as shown in Fig.
1.

We split the support of w; and wy into five regions with probability mass p1, ..., ps, respec-
tively. In Fig. 2 we plot the maximum approximation error

ew = max (m:?,x(ﬁ_wl (%) = Ay (2)), max( Lo (2) — Ac (x))) ,

when p; and py are free to vary, p» = 0.3, ps = 0.1 and p5s = 1 — p; — p2 — p3 — p4; note that this
is a standard 2-simplex in R projected in R? and coloured to reflect the value of ey . It is clear
that this function has a number of local minima. In fact, the function is also constant in some
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Figure 2: Maximum approximation error
of our piecewise linear lower bound when
p1 + pa+ ps < 1 — pa — ps; the x axis rep-
resents p, i.e. the slope of segment 1, the
y axis represents p; + p2 + p3 + p4, i.e. the

Segments

Figure 3: Optimality gap trend as a func-
tion of the number of segments used in the
linearisation. The optimality gap is pre-
sented as a percentage of the optimal solu-
tion obtained with the model embedding
a piecewise linear upper bound.

slope of segment 4; darker regions mean
lower error.

regions, i.e. it has wide plateaus. It is intuitive to observe this, if one considers the fact that
the slope of the i-th linear segment is given by >_¥ | p; and that by varying the slope of one or
more segments the maximum approximation error — attained at one or more breakpoints —
may easily remain the same. Finding a global optimum of this function is a challenge.
Therefore we developed a metaheuristic to find good, but not necessarily optimal param-
eter values. The heuristic is a combination of simple random sampling (SRS) and coordinate
descent (CD) from the best solution produced by the SRS. For the above example, this strategy
produced the following partitioning: p; = 0.24, ps = 0.18, p3 = 0.215, py = 0.175, p5 = 0.19,
with associated maximum approximation error of 0.639. This approximation error amounts
to 1.5% of the expected value of w; and to 1.3% of the expected value of wy. As we will
demonstrate, this strategy produced fairly good outcomes in practical applications.
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3. An application to stochastic lot-sizing

We applied the metaheuristic to compute near optimal linearisation parameters for the stochas-
tic lot sizing problem discussed in [6]. We tested the approach over a test bed discussed in [6]
comprising 270 instances. In our experiments, in contrast to the original test bed in which
demand is normally distributed, demand follows different distributions in different periods:
normal, Poisson, exponential and uniform. All instances took just a few seconds to be solved.
Note that each of these instances comprises N = 15 periods in which demand is observed.
Consequently, there are N (N + 1)/2 loss functions in the family for which optimal lineari-
sation parameters must be computed; these parameters must be computed for each instance
separately, this is why a lightweight heuristic is desirable. The average optimality gap trend
— the difference between the optimal solution of the model embedding our piecewise lin-
ear upper bound and that of the model embedding our piecewise linear lower bound — as a
function of the number of segments used in the linearisation is shown in Fig. 3. As we see,
the gap drops initially with the number of segments and it is well below 1% of the optimal
cost even when just four segments are employed. For higher number of segments the gap
fluctuates. This is due to the fact that the simple heuristic here proposed gets stuck in local
minima for high dimensional spaces. Future research should therefore investigate more effec-
tive approaches to comput optimal parameters for linearisations involving a large number of
segments.

4, Conclusions

We have shown that finding optimal linearisation parameters to approximate loss functions
when several non-normal random variables are considered, is a challenging global optimi-
sation problem. We discuss how to handle this in a practical setting to generate reasonable
results that can be used in MILP models for inventory control.
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Abstract In this paper, we study general nonlinear and nonconvex robust optimization problems. This leads
us to create a Branch and Bound algorithm based on interval arithmetic. This algorithm can provide
the exact global solution of such difficult problems arising in many real life applications. A code
was developed in MatLab and was used to solve some small robust nonconvex problems with a
few number of variables. This first numerical study showed the interest of this approach providing
global optimum of such difficult robust nonconvex optimization problems.
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1. Introduction

While most papers in the literature on robust optimization address the fully convex case, some
efforts have been made to cope with the more realistic situation in which nonconvexities ap-
pear. For instance, [5] addresses nonconvex problems, for which a first-order approximate
robust model is proposed, and thus applicable when a good approximate of the uncertain pa-
rameters are known. Robust local-search procedures for problems in which the objective may
be evaluated via simulations are described in [2, 3]. See [1, 4] for recent references containing
an updated review of models, algorithmic tools and applications fields. In summary, research
efforts on the theory of robust optimization have focused on creating and analyzing distribu-
tionally robust approaches as well as developing connections between uncertainty sets and
risk theory.

In this paper, we develop a new algorithm based on a Branch and Bound scheme to provide
the global solution of a general class of robust nonlinear and nonconvex problems. Some
properties are first studied in the following section and the algorithm is then provided. In
this paper, just the main steps of the algorithm are presented. An example will validate our
approach by solving a difficult robust nonlinear and nonconvex optimization problem.

2. Problem statement and properties

Given a function f, consider the nominal problem of optimizing f over the box X C R" as

min f(z). (1)
zeX
The robust counterpart of (1) is obtained when each solution z € X is perturbed by a vector
y € Y, and a worst-case analysis is performed. This leads us to the following optimization
problem:

minmax f(z + y). 2)
zeX yey

*This work of F. Messine has been funded by Junta de Andalucia (P11-TIC7176)
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The set Y of perturbations, called the uncertainty set, is assumed here to be a box in R"
(compare e.g. with [2, 3], in which an Euclidean ball is used as uncertainty set), and f is
assumed to be continuous on X + Y.

Defining 2 : X — R as

z(x) = max f(z +y), 3)
yey

we write our problem as the one of maximizing z on X :

min z(x). 4)
zeX

In the following part of this section, some properties are derived on problem (4).

Proposition 1. If f is convex on X + Y, then z is convex on X , and thus any local optimum of (4) is
a global optimum.

Here we are interested in the nonconvex case, for which global optimization tools are
needed. In particular, a branch and bound algorithm is proposed here to find a global op-
timum of (4). We assume in what follows that we have available an inclusion function F* for f.
Foranybox I C X+Y, letubF(I) (respectively [bF'(I)) denotes the upper bound (respectively
the lower bound) of the interval F(I).

Lower and upper bounds of min,c x z(x) are easily obtained from the inclusion function F,
as shown in the following properties.

Proposition 2. Given the box X C X, one has

min z(z) > bF(X +y*)  Vy" € Y. (5)
xE

Proposition 3. Given the box X C X, suppose Y',... Y* C Y are boxes known to satisfy

z(x) = max f(zr+vy) Vo e X.
yeU?:l Yi

Then '
min z(z) < max ubF(z* +Y7) Vot e X

zeX 1<j<k
Proposition 4. Given boxes X C X,Y C Y, ifubF(X +Y) < IbF(X + yo) for some yo € Y , then
flz+y) < z(x) Vz e X.

In other words, the box Y is useless in order to compute z at points in the box X, and can thus be
eliminated from the list of boxes to be inspected.

Proposition 5. Let f be differentiable in X +Y , and let FY denote an inclusion function for its partial
derivative with respect to the j-th coordinate. Given boxes X € X,Y = [[;-,Y; C Y = J Y;,
Suppose x* € X and y* € Y exist such that x* is an optimal solution to (4) and z(x*) = f(x* + y*).
IfubFj(X +Y) <0, then one has

1. IbY = IbY
2. IbX = IbX

Proof. We have by assumption that f}(2*+y*) < 0, and then, the functiont +— f(z* +y" +
te;) is decreasing in a neighborhood of 0. This implies that f(z*+y* —te;) > f(z*+y*) = 2(z*)

for some ¢ close to 0. Hence no such ¢ > 0 makes y* — te; € Y, which implies condition 1, and
no such ¢ > 0 makes z* — te; € X, which implies condition 2.
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In the same way one obtains the counterpart for [bF7 (X + V).

Proposition 6. Let f be differentiable in X +Y , and let F denote an inclusion function for its partial
derivative with respect to the j-th coordinate. Given boxes X C X,Y = [[-.Y; C Y = | Y.
Suppose x* € X and y* € Y exist such that x* is an optimal solution to (4) and z(z*) = f(x* + y*).
IfIbF{(X +Y) > 0, then one has

1. ubY = ubY
2. ubX = ubX

Propositions 5-6 are key for the following test: Given the pair (X,Y) if ubFj(X +Y) < 0,
then the pair (X,Y) = ([1;_; Xk, [[;_; Yx) can be replaced in the list by the degenerate pair
(ITe=y X5 TTr=y Yi), with

B wbX;, ifk=j B wby;, ifk=3

if ubX ; = ubXj and if ub?j = ubY}, and otherwise the pair (X,Y’) can be eliminated from
further consideration, since it is then known that either Y is useless to evaluate z at points
in z € X, or points in X cannot be optimal to (4). Similarly, if (bF/(X + Y) > 0, then the
j-th component of (X,Y") can be replaced by the degenerate interval consisting of the lower
bounds, or eliminated.

When a box X is small enough, it can be replaced by its midpoint, since z cannot oscillate
too much between X. This is formalized in the following.

Proposition 7. Given the box X = H?Zl X, C X, suppose Y1, ..., YF C Y are boxes known to
satisfy
z(x) = max f(z+vy) Vo e X.
yeU?:l Y7
Let x,, denote the midpoint of X and, for i = 1,2,...,k, let y', denote the midpoint of the box
Y. Suppose f be continuously differentiable in X +Y , and let F denote an inclusion function for its
partial derivative with respect to the j-th coordinate. Fori = 1,...,k, define " as

n n
€' =max § > ublF{(X + yp)lub(|m; — Xj1), Y ub|Fj(wm + Y7 ub(lyy, — Y/])
j=1 j=1

Then

< max &', (6)

max f(x,, +y.,) — min z(z) nuax

1<i<k zeX

Hence, as soon as a box X is such that all associated boxes Y are small enough so that
the length of the largest interval side is smaller than a given value, then we can replace X
by its midpoint z,,, and z(X) by the expression max;<;<j f (= + y.,), and stopping further
branching of X.

3. Branch and Bound Algorithm

The main idea of the code is that a list of element has a box X, a list of boxes Y* and a list
of points inside UY. Then, from the above properties, we can develop a Branch and Bound
algorithm. However, even if this algorithm is based on a standard interval Branch and Bound
code, it differs in some points inside the main loop:
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An element of the list is constituted by: (i) a box X which is an interval vector; (ii) a list
of boxes Y*; (iii) a list of points inside UY"; (iv) a lower bound of f over X x (UY’).

The element Z of the list with the lowest lower bound is taking first.

In Z, the box X is bisected by the middle of its largest edge. In both cases the same lists
of Y and of points inside UY" have to be kept.

In Z, the largest box of boxes Y (belonging in the list) the bisected following its largest
edge if the length of this edge is greater than a fixed constant M. The midpoint of the
two sub boxes of Y are inserted in the list of points inside UY".

Monotonicity test on y: For all, sub boxes Y in the list associated to box X, check if in
one direction on y, f(z,y) is monotonous over all the box X. In that case, eliminate Y in
the list corresponding to box X or reduce Y to the side of the initial box Y. Moreover,
if no sub boxes Y’ remains in the list, eliminate the box X of the main list. If the list of
Y has changed then update the list of points associated to box X by inserting inserting
new points generated by the middle of each new Y and by discarding points belonging
in removed boxes.

Monotonicity test on x: check the monotonicity about z if all the sub boxes in the list of
Y are points.

The computations of lower and upper bounds follow the proposition defined in the
previous section.

In order to validate our algorithm, we solved the following robust optimization problem:

min

2
_ ‘ ) _ 9)6 . )2
re[o10.10)2 ye[r—%ﬁfa.u flz,y) = ; ((xz +yi) —2)° + 0'2) In (1 + (i + yi) ) : 7)

A global robust minimum (1.5222,1.5271) was obtained in 530 iterations corresponding to
12 minutes of CPU-time on a standard laptop. The value of the minimum is 0.52466 and is
certified via interval arithmetic computations at 1073.

4.

Conclusion

In this paper, we propose an exact algorithm to solve global robust nonconvex optimization
problems. This algorithm is derived from some properties previously established. A first
code was developed in MatLab and provides first solutions on these difficult problems. An
example is described here in the last section showing the efficiency of our method.
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Abstract We present in this article a new strategy for selecting the current node in an interval Branch and
Bound algorithm for constrained global optimization. The standard best-first strategy selects the
node with the lowest lower bound of the objective estimate. We propose in this article new node
selection policies where an upper bound of each node/box is also taken into account. These new
strategies obtain better experimental results than classical best-first search on difficult instances.
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1. Introduction

The paper deals with continuous global optimization (nonlinear programming) deterministi-
cally handled by interval branch and bound (B&B). Several works have been performed for
finding good branching heuristics [3], but very little work for the node selection itself. The
solvers generally follow a best first search strategy (BFS), with some studies for limiting its
exponential memory growth [1, 6]. Different variants of BFS have been proposed for discrete
problems, such as K-Best-First Search [4].

To our knowledge, only Casado et al. in [1] and Csendes in [2] proposed node selection
heuristics for interval B&Bs. One criterion to maximize, called Cj in [5], and suitable for
unconstrained global optimization is:

=1

ub—1b
where [Ib, ub] = [f]n([z]) is the interval obtained by the natural interval evaluation of the real-
valued objective function f in the current box [z]: [Ib, ub] is a range interval including all real
images of any point in [z] by f. f* is the optimum. When f* is not known, f, the cost of the
best feasible point found so far can be used as an approximation of f*. This criterion favors
small boxes (i.e., a small interval width (ub — [b)) and nodes with good [b. For constrained
optimization, another criterion (to maximize) called Cj is equal to C3 x fr. It takes into account
a feasibility ratio fr computed from all the inequality constraints. The criterion C7 proposes
to minimize é—bS

This paper proposes two other policies taking into account an accurate upper bound of the
optimum cost.

2. Standard Interval B&B

An interval [z;] = [z;,%;] defines the set of reals z; s.t. z; < z; < 7;. A box [z] is a Cartesian
product of intervals [x1] x ... X [x;] X ... X [zy].

The paper deals with continuous global optimization under inequality constraints defined
by: min, [, f(7) subject to g(z) < 0, where f : R" — R is the real-valued objective function
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and g : R" — R™ is a vector-valued function. = = {z1,...,z;,...z,,} is a vector of variables
varying in a domain/box [z].  is said to be feasible if it satisfies the constraints.

A standard interval (or spatial) B&B scheme for continuous constrained global optimization
(also known as nonlinear programming) is described in algorithms below. The B&B maintains
two main types of information during search: f, which is the cost of the best feasible point
found so far, and f,,i, the minimum value of the lower bounds [b([z]) of the boxes/nodes [z]
to explore. In other terms, in every box [z], there is a guarantee that no feasible point exists
with a cost lower than /b([x]).

Let us first ignore the bold-faced instructions corresponding to the new strategy and de-
tailed in Section 3. The algorithm is launched with the set g of constraints, the objective func-
tion f and with the initial box put into a list B of boxes to be handled. ¢.,; is the required
precision on the objective cost and is used as stopping criterion. We add a variable z; in the
system (the vector « of variables) corresponding to the image (cost) of the objective function,
and a constraint f(x) = x.;. The criterion generally used in existing interval B&Bs is denoted

Contract&Bound([z], g, f) {

IntervalBranch&Bound(B, g, f) { UBBoX := f — €0 + 0.1€obj
While (B # 0 and f — fonin > €obj) { g :=gU{xop; <UBBox }
criterion := criterionChoice(LBBox, UBBox, UBProb) [z] := contraction([z], ¢’, f)
[x] := bestBox (B, criterion); B := B\ [z] if ([z] #0){
([x]1, [x]2) := bisect ([z]) (Tus, cost):= FeasibleSearch([z],g")
[x]1 := Contract&Bound([z]1, g, f) if (cost < ) {
[x]2 := Contract&Bound([x]2, g, f) f = cost
B:= B U {[z]:} U {[z]2) ub([x]) := f — €ob;
fmin = minmeB lb([x]) }
} }
} Return [z]
}

in this paper by LBBox. It consists in selecting a node/box [z] with a minimum lower bound
estimate of the objective function (I6([z])). The selected box [z] is then split into two sub-boxes
[]; and [z]2 along one dimension (selected by another and more studied branching heuristic).
Both sub-boxes are then handled by the Contract&Bound procedure.

A constraint z,,; < UBBox is first added to the system for decreasing the upperbound
of the objective function in the box. This aims at finding a solution better than the current
best feasible point. The procedure then contracts the handled box without loss of feasible
part. In other words, some infeasible parts at the bounds of the domain are discarded by
constraint programming (CP) and convexification algorithms. Since this contraction works
on the extended box including the objective variable x;, it may improve both bounds of the
objective on the current box.

The last part of the procedure carries out upperbounding. FeasibleSearch calls one or several
heuristics searching for a feasible point that improves the best cost found so far.

Note that the search tree is traversed in best-first order so that an exponential memory may
be required to store the nodes to handle.

3. New Strategies Using Upper Bounds

In optimization, the selection of the next node to expand is crucial for obtaining a good perfor-
mance. The best node we can choose is such that it will improve the most the upperbound. In-
deed, the upperbound improvement reduces globally the feasible space due to the constraint:
Top; < f. There exist two phases in a branch and bound: a phase where we try to find the
optimal solution, and a second phase where we prove that this solution is optimal, which re-
quires us expand all the remaining nodes. Therefore the node selection matters only in the
first phase.
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We define new strategies aggregating two criteria for selecting the current box:

1. LBBox: The well known criterion used by BFS and minimizing /b([z]) (for all boxes [x]
in the set B). This criterion is optimistic since we hope to find a solution with cost
fmin, in which case the search would end. For each box, {b(]z]) is computed by the
Contract&Bound procedure and the computed value labels the node stored into the set
B of boxes.

2. UBBox: This criterion selects the node having the smallest goal upperbound. Thus, if
a feasible point was found inside this box, it would more likely improve the best cost
found so far.

The UBBox criterion is symmetric to the LBBox one: for every box, ub([z]) is computed by
the Contract&Bound procedure and labels the node before storing it in the set B of boxes. In
particular, constraint programming techniques like 3BCID [7] can improve ub([z]) by discard-
ing small slices at the upper bound of [z;] (shaving process).

We think that a key of success of the UBBox criterion is that it evaluates more accurately
the objective upperbound than the natural interval evaluation would do (i.e., ub computed by
b, ub] = [f]([a])).

We propose two main ways to aggregate these two criteria.

LB+UBBox. This strategy selects the node [z] with the lowest value of the sum (b([z]) +
ub([z]). This corresponds to minimizing both criteria with the same weight, i.e. minimizing
the middle of the interval of the objective estimate in the box.

Alternating both criteria.  In this second strategy, the next box to handle is chosen using
one of the two criteria. A random choice is made by the criterionChoice function at each node
selection, with a probability UBProb of choosing UBBox. If UBBox (resp. LBBox) is chosen
and several nodes have the same cost ub([z]) (resp. (b([z])), then we use the other criterion
LBBox (resp. UBBox) to tie breaks.

Experiments showed that the performance is not sensitive to a fine tuning of the UBProb
parameter provided it remains between 0.2 and 0.8, so that the parameter has been fixed to 0.5.
The experiments in Section 5 highlight the positive impact of this criterion on performance.

These results suggest that it is important to invest both in intensification (UBBox) and di-
versification (LBBox). In other words, the use of a second criterion allows the search to avoid
the drawback of using one criterion alone, i.e. (for LBBox) choosing promising boxes with
no feasible point and (for UBBox) going deeply in the search tree where only slightly better
solutions will be found trapped inside a local minimum.

3.1 Details on the criterion UBBox

All candidate boxes in the set B, have a UB label depending on the best cost found so far (f)
when the boxes were handled by Contract&Bound. All labels fall in four main cost ranges cat-

egories given by fand explaining with which priority the boxes are chosen using the UBBox
criterion. The label is:

1. lower than f— €ovj if the contraction procedure reduced the maximum estimate of the
objective in the box,

2. equal to f— €obj, if the box is a descendant of the box containing the current best feasible
point f,

3. equal to f—009 €ovj if the box was handled after the last update of best cost,

4. greater than f—09 €opj in the remaining case.

As shown in the Contract&Bound pseudocode, the additional term 0.1¢4,; allows penal-

izing the boxes that are not issued by a bisection from boxes where the current best feasible
point was found.
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4. Implementation of the Set B of Boxes

The set B was initially implemented by a heap structure ordered on the LBBox criterion. The
implementation s1-05 keeps this unique data structure for taking into account the two criteria
in the randomized strategy, but the node selection using UBBox comes at a linear cost in the
number N of nodes. In practice, this takes about 10% of the total cost when N exceeds 50,000.
We have then built a variant s1-05-01 changing dynamically the probability UBProb in the
following way: UBProb = 0.5 if N < 50,000 and UBProb = 0.1 if V > 50, 000.

Finally, we tried a cleaner implementation, s2-nodiv, with two heaps, one for each crite-
rion. All the operations are then in loga(IN), except for the heap filtering process launched
occasionnally during search. (This “garbage collector” is performed in all our implementa-
tions and removes from B all the nodes with Ib([z]) > f.)

The s2-nodiv implementation brings less diversification than the first one which recon-
structs the heap at each criterion change. Indeed, there often exist several nodes with the same
UBBox and LBBox values, so it is useful to periodically rebuild the data structures randomly
for breaking the ties. So we propose variants that use a second parameter corresponding to
a diversification period. We obtained good results by fixing it to 50 in the s2-50 variant or
100 in the s2-100 variant, the first parameter UBProb being still fixed to 0.5. To be fair, we
also applied the first strategy with the minUB+LB aggregative criterion running heap filtering
every 100 nodes (s0-100).

5. Experiments

We have run experiments on 82 problems, issued from the series 1 and 2 of the Coconut bench-
mark. The best strategies s2-50 and s2-100 obtain a gain of about 40% w.r.t. the total time
and 23% on average, meaning that greater gains are obtained on difficult problems.

6. Summary

The node selection policy is a promising line of research to improve performance of interval
B&B. We have obtained good results by taking into account for each node a lower bound but
also an upper bound, provided that this upper bound is made accurate by box contraction op-
erations, by a random selection between both criteria and by a work on heap data structures.
In a short term, we are going to investigate how relevant components of criteria proposed by
Markot and al. in [5] can improve the current policies, especially the feasibility ratio.
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Abstract Many important classes of decision models give rise to the problem of finding a global minimum of
a concave function over a convex set. Since such a function may have many local minima, finding
the global minimum is a computationally difficult problem, where standard nonlinear programming
procedures fail. The two proposed methods are simple and quick, using the largest inscribed ball
and the minimal enclosing box as approximation for cutting-plane method.
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1. Introduction

In certain classes of nonlinear problems the local solution is always the global one. For exam-
ple, in minimization problems with a convex (or quasi-convex) objective function subject to
convex constraints the local minimum is the global solution. For non-convex functions there
may be many local minima so that no local criteria will give information about the global
minimum.

In this article, we consider the non-convex optimization problem, also known as concave
minimization, concave programming or convex maximization:

{ maximize f(x), (1)

subject to x € D

where f : R" — R is a convex continuous function and D is a nonempty, convex compact in
R", a polytope defined by

D={zcR"|Ar <b} ={z e R" | {a',x) < b, i=1,...,m}.

For the state-of-the-art in convex maximization including various algorithms and abundant
applications, we refer to the textbooks [9, 10] and to survey [1].

An important property of convex functions is that every local and global maximum is
achieved at some extreme point of the feasible domain [13]. Several interesting necessary
and sufficient global optimality conditions characterizing a point z € D satisfying f(z) >
f(z), Vo € D have been proposed [2, 6, 7, 15, 16].

An obvious way to solve the concave programming problem is a complete enumeration
of the extreme points. Although most of the algorithms in the worst case will degenerate to
complete inspection of all vertices of the polytope, this approach is computationally infeasible
for large problems [12].

In this article, algorithms are specialized for solving the following problem, maximization
of distance to the origin, a quadratic problem:

maximize |z?, @)
subject to x € D
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where D is a full dimensional polytope.

2. Optimization methods

Firstly, let us concentrate on the local search and the cutting plane method. A local search with
starting point x for (1) is relatively easy due to the method [4, 14]:

2" = argmaz{(V f(z¥),z) | z € D}.

When 2#*! = 2%, then 2 is a local maximum of D.

Let a local maximum y € D be a vertex of the full dimensional polytope D. Following n
edges at y, we find n points y', 9%, ...,y", which are the intersections of the edges with level set
{z | f(z) = f(y)}. Then, hyper-plane {x | (c,z) = v} that contain the points are built [9].

By the convexity of the objective function f(-) problem (2) is equivalent to:

maximize |z]|?,
subjecttox € D, (c,z) >~

In other words, one cuts off a part of D, where values of function f(-) are less or equal than
f(y). The same procedure is then applied to the remaining part of the feasible set whenever
this part is not empty.

However, despite such nice theoretical idea, this approach suffers, in practice, from the
tailing off effect, i.e. cutting planes become closer or nearly parallel due to rounding errors
so that they generate more and more local maxima. It remains the challenge in global search
step: how to escape from a local maximum area?

Proposed methods are based on two sub-problems. The first one is the maximum value of
(2) where D is a ball, noted. The second one is the maximum value of (2) where D is a box.

Lemma 1.
maximize ||x||?,
subject to ||z — w|? < r?

(3)

The optimal solution is u = (1 + Tl ) w.

The largest ball inscribed into the polytope D is based on Murty et al. research works
[11]. The radius of an inner ball is the minimal distance from its center = to the constraints
of the feasibility domain. The center of the largest ball inscribed into D is the solution of the

maximum value of the minimum radius of a point z € D, with |a’|| = 1:
maximize Tp4i, (@)
subject to <a’,x> 421 <bj,i=1,...,n
The second sub-problem is the maximum value of (2) where D is a box.
Lemma 2.
maximize ||x|?, (5)
subjectto L; < x; < Uj,i=1,...,n

The global optimum is v = ( maz{| L; |,| U; |} ),i=1,...,n.

In order to calculate the outer approximation, let U and L be the upper and lower bounds
for each dimension for D. The domain is convex, so foralli =1,...,n:

Ui:argma:c{<ei,x> : A:Uﬁb}, L,;:argmin{<ei,a:> : Axgb}, e =(0,...,1,...,0T

Both methods have the same process. One method uses an inner approximation (IA) with
the largest inscribed ball. The second one is based on an inner and outer approximation (IOA)
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using largest inscribed ball and minimal enclosed box. We expose the main step of the two
methods:

1. Find a candidate: IA resolves (4) then (3). IOA resolves (4) then (3), and (5).
2. Find a local maximum from the candidate.
3. Use cutting-plane until the domain is empty.

4. Return global maximum.

temp constraint

ball maximum

box maximum

+
ball center
14
054
T T

T T i
1 2 a 2 8

\ Amm\%m\.mm
I T B LS

IA algorithm IAO algorithm

Figure 1: One iteration of IA and IOA algorithm.

3. Results and discussions

The IA and IAO algorithms have been tested on a bunch of convex maximization problems
taken from "A collection of test problems for constrained global optimization algorithms" [5]
(noted: TP plus the chapter of the test) and "An algorithm for maximizing a convex function
over a simple set" [3] (noted: P plus the number of the test).

We present the numerical results in the table below and the meanings for all columns in the
table follow: number of variables; number of local searches for IA; number of local searches
for IOA; the best value found; the global optimal known value; the average computing time
for IA in seconds; the average computing time for IOA in seconds.

Problem n | IALS | IOALS | the best value | optimal value | time IA | time IOA
TP2.1 5 3 3 -17 -17 0.1 0.2
TP2.6 | 10 2 4 -39 -39 0.3 0.7

TP2.71 | 20 3 2 -394.7506 -394.7506 1.5 1.0
TP2.7.3 | 20 3 2 -8695.01193 -8695.01193 1.5 1.0
P4 2 1 1 42.0976 42.0976 0.1 0.1

P6 2 2 1 162 162 0.1 0.1

P11 | 100 2 1 1541089 1541089 6 2.5
P11 | 200 2 1 4150.41013 4150.41013 35 14.7

The best known solutions are found for all test problems considered in few local searches.
Average computing time is calculated in the case of all conditions are checked at each iteration
(full dimensional, active constraints, normal cone, etc.).
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4, Conclusion

In this article, in order to find the global solution of a quadratic convex maximization problem,
two algorithms are described. They are based on using the largest inscribed ball and the
minimal enclosing box as an approximation for cutting-plane method. These methods are
simple, quick and provide the global optimum.

Currently, we use box built on the orthonormal basis. In future work, a box with an other
orthonormal set will be used (also named cuboid) thanks to Gram-Schmidt algorithm [8] in
order to build the minimal box enclosing the domain D.
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Abstract In simplicial based Global Optimization branch-and-bound methods on the unit n-simplex refine-
ment by bisecting the longest edge leads to a binary search tree. Irregular sub-simplices generated
in the refinement process may have more than one longest edge for a dimension higher than 3. The
question is how to choose the longest edge to be bisected such that the number of simplices appear-
ing in the binary tree is as small as possible.

The refinement usually selects the first longest edge and ends when the size of the sub-simplices
generated in the refinement is smaller than a given accuracy e. This research focuses on longest
edge selection heuristics that aim to minimize the number of generated simplices in such a binary
tree. New heuristics are presented which obtain the same or better results than previous studied
heuristics by the authors. Preliminary results show that the heuristic achieving the smallest number
of simplices depends on n.

Keywords: Regular Simplex, Longest Edge Bisection, Binary Tree

1. Introduction

Global Optimization deals with finding the minimum or maximum value of an objective func-
tion f on a closed set with a non-empty interior. We focus here on the so-called standard
n-simplex defined in the (n + 1)-dimensional space

n+1
S={zeR"™ Y aj=1La2;>0,. (1)
j=1

We study the binary tree implicitly generated by the refinement of the n-simplex where the
simplex division is defined by the Longest Edge Bisection rule (LEB) [1, 5]. We investigate the
effect of the LEB rule on the number of generated simplices. The question is how to generate
the smallest number of simplices in the binary tree by determining a new selection heuristic
for longest edge bisection. Some heuristics, so-called LEB;, LEB,, LEB¢- and LEBy, were
studied in [2]. Two new heuristics, LEBy, and LEB,,; are studied here. Their results are
compared with those obtained with preceding heuristics.

The paper is organized as follows. Section 2 shows the simplex refinement process based on
the longest edge bisection. Section 3 describes the compared longest edge selection heuristics.

*This work has been funded by grants from the Spanish Ministry (TIN2008-01117 and TIN2012-37483) and Junta de Andalucia
(P11-TIC-7176), in part financed by the European Regional Development Fund (ERDF), and also by the project ICT COST Action
TD1207 (EU).
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Preliminary results are provided in Section 4. Section 5 outlines an exhaustive longest edge
analysis method which can help in the development of better heuristics. Finally, Section 6
concludes.

2. Simplex refinement using longest edge bisection

Figure 1 is an illustrative example of the binary tree generated by the refinement of a 2-
simplex. The refinement ends when the width of the simplex S (w(S5)), as the length of the
longest edge, is smaller or equal than a given threshold e.

S1
Level 1

Level 4 w(Ss)ZO-EA w(Sg):()Xl ‘7w(510)=0.5hw(511)=0.5

Figure 1: Binary tree generated by the refinement of a 2-simplex with e = 0.5

The longest-edge bisection algorithm [4] is based on splitting a simplex using the hyper-
plane that connects the mid point of the longest edge of a simplex with the opposite vertices.
A 2-simplex is regular or it has just one longest edge.

Figure 2: First longest-edge bisection on a regular 3-simplex

As illustrated by Fig. 2, an irregular 3-simplex in the refinement may have more than one
longest edge.

The main purpose of the investigation is to select one of the longest edges making the binary
tree as small as possible.
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3. Heuristics for longest edge selection

The following heuristics are investigated, of which the last two are new.

First longest edge, LEB;: A simple way to select a longest edge is to take the first one found.
This rule is used as a benchmark in measuring performance.

Longest edge with the smallest angles, LEB,,: As described in [3], for each vertex in a longest
edge, the sum of the angles between edges at that vertex is determined and the longest
edge having the smallest sum of angles is selected. LEB,, tries to avoid division of the
smallest angles.

Longest edge with its midpoint furthest from the centroid, LEB: In this way the distance
of the new halved edge to the new centroid is reduced.

Longest edge with vertices fewest involved in division, LEByy: This heuristic, which works
with weights w;, tries to divide the longest edge with vertices participating in the small-
est number of divisions. Every vertex v; is given a weight w; € {0,...,n — 1} during
the refinement, which is increased if v; is connected to a halved edge. Initially, vertices
have weight 0. A new vertex obtains a weight of 1 because it is connected to the smallest
edge. The weight of v; is increased by one, if {v;,v;} is split for any v;. In that case, v;
obtains a value w; := (w; + 1) mod n. LEBy selects the longest edge of which the sum
of the weights of its vertices has the smallest value.

Combining LEBy with a second criterion, LEByy,: Here a second criteria is added to reduce
the cases where there are several longest edges matching the weight requirements. For
the first criterion, weights are calculated as in LEByy, but now the new vertex has the
weight of the vertex being substituted plus one. As second criterion the oldest longest
edge from those having the smallest sum of weights at its vertices is selected.

Longest edge with its midpoint furthest from the other vertices, LEB,,;. Edgesatanew ver-
tex will be the same for both sub-simplices. Therefore, this heuristic promotes more
compact sub-simplices.

There could be several longest edges with the same value for a given heuristic. In such cases,
the first longest edge with the best value is selected.

4. Preliminary Results

Table 1 shows the number of simplices generated by using each heuristic in the refinement for
different values of n. Values for ¢ are taken small enough from (1/2)* to have a representative
number of simplices in the binary tree and to have tractable problems.

Table 1: Number of simplices in a refinement using each heuristic.

n=3and e =0.015625 n=4ande=0.0625 n=>5ande=0.125

LEB; 2,114,687 1,577,047 2,510,297
LEB, 1,398,271 1,196,327 1,988,255
LEB¢ 1,398,271 1,189,213 1,968,215
LEBw 1,822,377 1,291,883 1,806,301
LEByy, 1,766,521 1,252,505 1,721,937
LEBs 1,398,271 1,185,751 1,928,615

LEB,, LEB¢ and LEB,, return the best result for n=3. Among them, the new proposed
LEBjs has the smallest computational requirements. LEB,; provides the best result for n=4
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as well. That is not the case for n=5, where the other new heuristic, LEByy,, is the best. The
ambiguity of the heuristics increases with n and the selection of the first longest edge from the
set satisfying the heuristic can produce the best results by coincidence. The reduction of the
ambiguity in the heuristics needs a further research.

5. Smallest Binary Tree determination algorithm

In order to know the sequence of longest edges to be bisected to produce the smallest binary
tree, an exhaustive search algorithm which tests every single longest edge bisection possibility
is needed. This combinatorial optimization problem may require the use of high performance
parallel computing due to its high computational cost. The search should avoid symmetries.
If there are two longest edges whose bisection results in similar subtrees, just one of the trees
should be calculated. Additionally, if the two descendants of a bisected simplex are similar,
just the subtree of one of them should be calculated and its size counts twice. The result of
this algorithm will be a set of sequences of indices indicating the selected longest edge at each
bisection to obtain the smallest binary tree in the refinement process of an n-simplex.

Based on the results of this algorithm, the main objective of future research is to develop a
new heuristic reproducing this longest edge selection criterion.

6. Conclusions

Selecting the first longest edge in the refinement of a regular n-simplex seems to be convenient,
but appears to generate a larger binary tree than other heuristics for longest edge selection.
New heuristics are investigated being the best ones in terms of computational complexity
and achieved results for different values of n. Reduction of the ambiguity of the heuristics
deserves further research. An algorithm to determine the optimal longest edge selection is
outlined. Its results will help in the development of more effective heuristics.
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Abstract We study the Celis-Dennis-Tapia (CDT) problem: minimize a non-convex quadratic function over the
intersection of two ellipsoids. In contrast to the well-studied trust region problem where the feasible
set is just one ellipsoid, the CDT problem is not yet fully understood. Our main objective here is to
narrow the difficulty gap that occurs when the Hessian of the Lagrangian is not positive-semidefinite
at all Karush-Kuhn-Tucker points. We prove new sufficient and necessary conditions both for local
and global optimality, based on copositivity, giving a complete characterization in the degenerate
case.

Keywords: copositive matrices, global optimality conditions, non-convex optimization,
polynomial optimization, trust region problem

1. Introduction

We study the Celis-Dennis-Tapia (CDT) problem [2]: minimize a non-convex quadratic function
over the intersection of two ellipsoids. This problem is a natural extension of the well-studied
trust region problem [3] in which there is just one ellipsoidal constraint. Such problems arise
quite naturally in iterative non-linear optimization procedures where in one iteration step,
the objective and the constraints are approximated by quadratic models. However, while
any trust region problem can be solved both in theory and in practice quite efficiently, the
additional constraint makes the CDT problem substantially more challenging. Many articles
have treated the analysis of this and related problems, for references see [1].

After scaling the constraints and an affine transformation, we can reduce any CDT problem
to the following form:

z* = min{f(x):r(x) <0 and s(x) <0}, with
f(x) = %XTQX—F q'x
LT M)
r(x) = 5(x'x—-1)<0 and
s(x) = s(x'AATx—2a"ATx+ al]* 1) <o0.

where Q is a real symmetric n x n matrix which is not positive-semidefinite (psd), A is an n xm
matrix with full row rank n while g € R" and a € R™.
The gradients at a point x feasible to the CDT-problem (1) read

g:=V/f(X)=Qx+q, x=Vr(x), and y:=Vs(x)=AATx—Aa,

To avoid cases where the feasible set is empty or consists only of a single point, we assume
Slater’s condition: there exists x € R" such that max {||X|,|[ATX —a||} < 1. This can be
checked by solving a convex trust region problem.

Consider the following two trust region problems:

min {f(x) : [x|| <1} and min{f(x) L ATx — al| < 1} . )
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Any global solution to either of the trust region problems (2) that is also feasible for the other
one constitutes a global solution to the CDT problem (1). Moreover, any local solution x to (1)
where at most one of the constraints is binding, i.e. which satisfies min {||x||, |A"x — a||} < 1,
is necessarily a local solution to one of the trust region problems (2), and we know that there
can be at most one local, non-global solution to a trust region problem [4].

This leaves us with only one problematic region of the feasible set, namely

Bi={xeR": x| = land |A"x — a] =1} = {x € R": r(x) = s(x) = 0}

where both constraints are binding. We focus on this case in what follows.

Our main objective in this study is to narrow the so-called difficulty gap. As long as the
Hessian H(%,7) := Q + @l, + v AAT of the Lagrangian is psd at some Karush-Kuhn-Tucker
(KKT) point x with multipliers (@, v), trust region problem methods can be employed, so these
cases are considered easy. However, it may happen that the Hessian of the Lagrangian is not
psd at all KKT points [5], and this phenomenon is usually called “difficulty gap".

2. Optimality conditions and copositivity

To discuss local and global optimality conditions, we first need the linearized tangent cone at a
(1)-feasible %, i.e.

{deR":x"d<0andy'd<0} ifxeB

C(x) {deR":x"d <0} if s(x) <r(x)=0
(%) := {deR":37d <0} if r(x) <s(x)=0
R™ if max {r(x),s(x)} <0

If x is locally optimal for the CDT problem (1), Slater’s condition implies the local first-order
condition
g'd>0 foralldeI'(x)

which is equivalent to x being a KKT point, i.e., a feasible point satisfying the KKT conditions
gtux+ovy =0 and ur(x)=10s(x)=0 3)

for some (not necessarily unique) multiplier pair (@, v) € R%. We refer to (x;1,v) as a KKT
triple. Clearly, the second condition in (3) holds automatically when x € B.

A KKT point x € B is nondegenerate if the constraint gradients are linearly independent and
therefore the multiplier pair is unique. In the degenerate case where y = ax for some a > 0,
we have g = —(u + av)x. Then (,0) := (||g||,0) and (0, ?) := (0, H%”) are both KKT multiplier
pairs for %, as are all pairs in their convex hull, which is a line segment in R? of the form

(@(t),o(t)) = (ti, (1 — t)d) : te|o,1]. (4)

Because of the nonnegativity condition, no other multiplier pairs for x exist. Interestingly
enough, the degenerate case allows for no difficulty gap, at least for some ¢ € [0, 1]; see below.

Next, we need to introduce the reduced polyhedral tangent cone comprising all feasible
directions along which no first-order change in the objective is possible:

Tod(X) = {d eT(%):g'd= o} .

An important property of symmetric matrices is that of copositivity. For a givenconeI' C R",
recall that a symmetric n x n matrix S is said to be I'-copositive if and only if

d'Sd >0 foralldel,
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i.e., if S generates a quadratic form taking no negative values over the cone I'. Therefore, any
psd matrix S is I'-copositive, regardless of I', but not conversely. A matrix S is said to be strictly
I'—copositive if and only if

d'Sd >0 foralldeI'\ {o}.

Any positive-definite matrix is strictly I'-copositive, but again, not conversely.

To formulate a hierarchy of global and local optimality conditions, it is convenient to denote
by 4(M) the number of negative eigenvalues of a symmetric matrix M, counting their multi-
plicities. Let (x;u,7) be a nondegenerate KKT triple for (1). Then the following implications
hold (all proofs can be found in [1, Section 2]):

H(u,v) is positive-semidefinite

= H(a,?)is I'(x)-copositive

=  xsolves CDT globally and ¢(H(u, 7)) < 1;
H(a, v) is strictly I;eq(X)-copositive

=  xsolves CDT locally

= H(a,?) is L}eq(X)-copositive

= Y(H(z,0)) < 2.

In general, checking I'-copositivity of a matrix H is NP-hard. However, for I' = I'(x) here,
this question can be solved in polynomial time even if H(z, v) fails to be psd [1, Section 3].
Therefore the difficulty gap is narrowed.

Still stronger results hold in the degenerate case. Let x be a degenerate KKT point for (1),
with the line segment of multiplier pairs in R? given in (4). Then the following equivalence
and implications hold (again, all proofs are in [1, Section 2]):

H(a(t),v(t)) is positive-semidefinite for some t € [0, 1]
& xsolves CDT globally;

H(a(t),o(t)) is strictly Leq(X)-copositive for some ¢ € [0, 1]

4

x solves CDT locally

4

H(a(t),v(t)) is Lea(X)-copositive for some ¢ € [0, 1]
= (H(a(t),v(t))) <1 forsomet € [0,1].

3. Experiments

We conducted some numerical experiments to observe how often the various cases occurred
on randomly generated CDT problems. The entries of Q, A, g and a were independently
generated from the normal distribution, and Q was replaced by its real symmetric part; then
a vector X was generated in the same way, normalized to have length one, and then A and
a were scaled by 1/||ATx — al|, guaranteeing the existence of at least one feasible point and
therefore, generically, that the Slater condition holds. The vector x was then discarded and
a candidate x for the global solution of each problem obtained by using BFGS to minimize
the exact penalty function p(x) = f(x) + pmax(r(x),0) + pmax(s(x),0), for some p > 0 that
was increased as needed to ensure feasibility, in a (tenfold) multistart fashion. In by far the
majority of cases, global optimality was confirmed, and in all except one of 70,000 tests at least
local optimality was confirmed. Details are given in Table 1.
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#binding | 2 2 2 1 1 0

condition | psd | I'-copos | Leq-copos | psd | Leq-copos | psd
n=2 2591 56 215 6455 488 194
n=23 3618 50 448 5572 296 16
n=4 4214 39 418 5151 178 0
n=>5 4396 40 409 5043 112 0
n=>0 4582 26 361 4954 77 0
n="7 4646 18 291 4985 60 0
n =38 4688 14 244 5007 47 0

Table 1: Number of times the psd and copositivity conditions on H(#, ) occur at computed
minimizers x of 10,000 randomly generated instances of feasible CDT problems for each n
from 2 to 8, categorized by the number of binding constraints at x. By randomness, no degen-
eracy occurred.

4, Conclusion

We provide new copositivity-based optimality conditions for the CDT-problem, thereby re-
ducing the difficulty gap. Table 1 shows that by far the most common scenario is that H(, v)
is psd, but with positive probability it is I'(X)-copositive but not psd. The second most likely
scenario with two binding constraints is that neither condition holds, indicating that there is
still scope for further work to close the difficulty gap in characterizing global optimality.
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Abstract Most industrial optimization problems are sparse, and can be reformulated by smaller sub-problem:s,
which are linked by coupling constraints. Typical examples are planning, control and design prob-
lems. In practice, parallel decomposition methods are sometimes the only possibility to compute
high-quality solutions of large-scale optimization problems. However, efficient implementations
may require expert knowledge and problem-specific tricks. Recently, there is renewed interest in
making these methods accessible to general users by developing generic decomposition frameworks
and modeling support. These efforts are still early in the development stages, and there is much
room for improvements.

The purpose of this paper is two-fold. On one hand we show how nonconvex airline planning
and control problems with several hundred millions of variables and constraints can be solved in
reasonable time by parallel decomposition methods. On the other hand, we present a novel de-
composition approach for nonconvex programming with large duality gaps based on a nonconvex
master (global approximation) problem. The method can be applied to general nonconvex optimiza-
tion problems since an arbitrary sub-solver can be used. In particular, it can be applied to black-box
simulation-based design optimization problems if a derivative free optimization method is used as
a sub-problem solver.

Keywords: decomposition, nonconvex optimization

1. Introduction

Parallel Decomposition (in short PD) is the process of taking a model and breaking it into smaller
sub-problems, which are solved in parallel. Parallel computing is getting more and more
important, since clock speed is improving very slowly and in the future computers will have
a huge number of cores [4].

PD is a very general approach that can be applied to convex optimization, as well as non-
convex optimization and discrete optimization. It can take place along a number of dimen-
sions, like time-windows, resources or system components. Preliminary experiments with
decomposition methods for MINLPs were performed in [6] using the solver LaGO, which was
partly integrated into SCIP/MINLP in [7]. A decomposition algorithm for nonconvex MINLPs
is presented in [3].

2. Decomposition algorithms for convex relaxations

We consider a block-separable nonconvex optimization problem of the form

minc(z), h(x) =0, z € X, (1)

where x = (zp)kex, v € R™, ¢ : R" — R, h : R — R™ are linear functions, and X =
[I1cx Xx with Xj, € R™. It is well-known that general sparse optimization problems can be
re-formulated as block-separable problems by introducing auxiliary variables and additional
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constraints. A convex relaxation of (1) is defined by
minc(x), h(x) =0, z; € conv (Xi), k € K, ()

Problem (2) can be solved by four different decomposition algorithms: (i) column generation,
(ii) Lagrange decomposition, (iii) cutting plane methods or (iv) Frank-Wolfe decomposition. All algo-
rithms solve sub-problems of the form

min sgxk, xr € X, 3)

where s;, € R" is a search direction. In order to be efficient, a fast sub-solver for these sub-
problems is necessary. Examples for fast sub-solvers are dynamic programming, shortest path,
(truncated) branch-and-cut or local search.

The solution of (2) can be used as a starting point for solving (1). The quality of this starting
point depends strongly on the duality gap I' := val (1) — val (2).

3. Decomposition methods for airline planning&control

A simplified arc-based formulation of an airline scheduling problem is given by problem (1),
where the feasible set X}, consists of all paths of a sub-network N, fulfilling resource con-
straints. Most of the resource constraints are linear, but some of them are nonlinear. For the
crew roster or pairing problem k represent a crew member or a group of crew members and z;,
represents a roster or a pairing consisting of duties and transports (typically for one month).

Table 1 shows the size of two crew scheduling instances, which were presented in [5]. The
biggest problem is a roster optimization problem with more than 700 million arc-variables,
which was solved in less than 24 hours. In this case, a single sub-problem has more than
200.000 arc-variables. In both cases no transports were considered. Scheduling problems with
transports are even much bigger.

Table 1: Size of crew scheduling instances

instance subproblems nodes arcs vertical constraints
pairing 2 180.882 1.909.212 30.822
roster 3.012 62.607.432 772.927.392 ~500.000

An airline scheduling problem (1) is solved by column generation. The algorithm updates
in each iteration a set of trial points X;, C X}, by alternately solving a restricted (inner approx-
imation) master problem and sub-problems (3) regarding reduced cost directions. The master
problem can be formulated as (Dantzig-Wolfe reformulation)

min c¢(z(z)), h(x(z)) =0, 2z € Ak, k€K, 4)

where x(2) = (wx(2k)))kex With zg(z) == 32 %, k0 - vand Ap C RIXl is the standard sim-
plex. The sub-problems (3) are solved by a dynamic programming based constrained shortest
path solver. Because of the huge problem size, the search space is dynamically reduced [5].
The approach is called reduce-and-generate, since the main difficulty is the efficient search space
reduction. Furthermore, in order to avoid many branching operations, rapid branching is
used for solving the integer master problem. The idea of this method is to find a near-optimal
solution of (1) by successively solving the perturbed master problem (4), in order to move the
solution of the convex relaxation (2) towards the feasible set. The costs of columns (or con-
straints) of the perturbed master problem is reduced by const - zi,v regarding to fractional
solutions (2),c ¢, Of (4) such that the objective value is changed as less as possible. Rapid
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branching works well if the duality gap is small, see [2] for details. A simplified version of the
reduce-and-generate approach is described by the following algorithm:

Reduce-and-generate:
1. Initialize the search space by reducing the network and adding pruning constraints.

. Find trial points Xy, k € K, in the reduced search space.
. Compute a dual solution of the master problem (4) using the bundle algorithm.
. Generate columns by solving (3) regarding reduced cost directions.
. Add the columns to X,k € K.
. If new columns have been generated, goto 3.
. If the search space is not completely open, increase the search space, and goto 2.
. For all time-windows:

Fix some binary variables by rapid branching and

generate columns by repeating steps 3 - 5, if neccessary.

N0 =W

4. A new decomposition approach for design optimization
problems with large duality gaps

The reduce-and-generate approach outlined in the previous section can only be applied if the
duality gap is small. Experiments with MINLPs in [6] and with MIPs in [1] indicate that the
duality gap is often not small, and closing the gap with a branch-cut-and-price algorithm may
lead to many branching operations.

In this section we describe some ideas for a new decomposition approach which uses a non-
convex piecewise quadratic master problem, instead of a linear master problem. We consider
a block-separable reformulation of a design optimization problem (with a large duality gap):

min F(z), h(z) =0, =, € Xk, k € K, 5)

where F(z) := Y ;o Fr(zx) and Fi(zy) := min{f(2r, yx) | yx € Ya(zr)}, Xp C R"XF is the
feasible set of design variables and Y}, (z) C R™* is the feasible set of state variables. For many
engineering design problems defined by partial differential equations we have ny ; >> nx.

Let Dy, := {Dy;};es, be a polyhedral partition of Xj, i.e. X; C UjeJk Dy,;. Define a piece-
wise quadratic global approximation (or response surface) F,? * of F}, which interpolates (or ap-
proximates) Fj, on a set of trial points X, C X k» k € K, by quadratic functions over Dy, j € Jj.

The following decomposition algorithm computes solutions of (5) by alternately solving
sub-problems and computing solutions of the nonconvex master problem

min FP(z), h(z) =0, z € X}, k€K, (6)

where D := {Dy }rex and FP(z) := 3, o FP*(xp).

Approximate-and-generate:
1. Initialize the sets X}, k € K, of trial points by a start heuristic.
2. Compute D and FP regarding X}, k € K.
3. Compute a set X of solutions of (6) and (5).
4. Update the sets X}, k € K, using X and sub-problem solutions.
5. If the stopping criterion is not fulfilled, go to 2.

A set X' of solutions of (6) and (5) can be computed by the following dynamic programming
approach. Denote by G(N,.A) the component graph (meta-structure) of (5) where the nodes N
of the graph are the sub-regions {Dy;};c., rcx and the arcs A are defined by the support of
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the coupling constraints h(xz) = 0. Let S = {Dy;, }rek be a pathin G(NV, A) and let S* be the
set of all non-dominated paths of G(N, A), which can be computed by implicit enumeration
using dynamic programming. Then for all S € §* a local solution &g of (6) can be computed
by minimizing F” over S. A local solution of (5) can be computed by local search starting
from Zg.

Step 4 of the algorithm can be performed by a deterministic global optimization approach:
Generate a polyhedral outer-approximation (OA) of (6) with as few cuts F,f Hag) > sfjxk + by
over Dy as possible using a branch-and-cut algorithm, as shown in Figure 1. Then correct the
cuts of the OA by solving

sz = min{Fk(ﬂfk) — ngxk | TR € Xg N ij}7 (7)

using a branch-and-cut algorithm, e.g. by SCIP/MINLP [7].
Another possibility for solving sub-problems (7) is to use a global search heuristic, e.g. a
derivative free optimization method.

\Y

w2

Ax+b=0

wl

Figure 1: A nonconvex polyhedral outer-approximation conv ({wl, v}) Uconv ({v, w2}) with
zero duality gap, where z is the solution of the convex relaxation (2).

5. Summary

This paper describes a parallel decomposition approach for solving huge nonconvex opti-
mization problems with hundred millions of variables. Furthermore, a new decomposition
algorithm for general nonconvex design problems with large duality gaps is proposed.
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Abstract In this paper, we will present a general pattern based on contractor programming for designing
a global optimization solver. This approach allows to solve problems with a wide variety of con-
straints. The complexity and the performance of the algorithm rely on the construction of contractors
which characterize the feasible region.
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1. Introduction

Considering sets in place of single points is not a common point of view in the Mathemat-
ical Programming communities. In contrast, this interpretation is the key concept in global
optimization based on interval arithmetic and in constraint programming.

Faced to complexity and diversity of real-life problemes, it is hard to find a general pattern or
unique algorithm for solving all of them. Some algorithms deal with disjunctive constraints,
others with dynamic constraints, others with uncertainties. Furthermore, when real-life prob-
lems merge different kinds of constraints, we often need to remove a part of the model just
because our solvers do not accept it. Unfortunately, these cases are not rare.

In this talk, we will present a general pattern based on contractor programming that allows
to handle a wide variety of problems. In Section 2, we recall the definitions related to interval
arithmetic and contractor programming. Then, we present a short subset of some standard
contractors and how we can combine and merge them. In Section 4, a global optimization
algorithm based on contractors is detailed.

2. Definitions

Since the book of Moore in 1966 [9], many techniques have been developed based on interval
arithmetic. More generally, all these techniques can be considered as Set-Membership Meth-
ods. These methods and algorithms do not consider single numerical values, or floating-point
numbers, but manipulate sets. The interval arithmetic offers a solid theoretical basis to repre-
sent and to calculate with subsets of R".

An interval is a closed connected subset of R. A non-empty interval [x] can be represented
by its endpoints: [x] = [z,Z] = {z : z <z < T} wherez € RU{—0},7 € RU{+o0}and z < T.
The set of intervals will be denoted by IR, and the set of n-dimensional interval vectors, also
called boxes, will be denoted by IR™.

Definition 1. Let X C R" be a feasible region.
The operator Cx : IR™ — IR" is a contractor for X if:

Cx([x]) C [«], (contraction)

V[x] € IR", { Cx([x])) NX D [x] NX. (completeness)
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The concept of contractor is very broad for integrating and interfacing mixed techniques
[6]. Contractors are directly inspired form constraint programming. A contractor is defined
for a feasible region X and its purpose is to eliminate a part of a domain which is not in X.

Proposition 2. The operator C : IR"™ — IR™ is a contractor for the equation f(z) = 0, if:

C([x]) < [,

V] € mm{ va € [, f(2) = 0 — = € C([x]).

The basic implementation of a contractor for a numerical constraint is the forward-backward
algorithm, also called constraint propagation technique or FBBT or HC4-Revise [4, 8, 11]. This
algorithm is the basic block of contractor programming.

All set operators can be extended to contractors. For example, the intersection of two con-
tractors creates a contractor for the intersection of these two sets. In the same way, the hull of
two contractors creates a contractor for the disjunction of these constraints.

Definition 3. Let X and Y C R" be two feasible regions.

Intersection:  (Cx N Cy)([x]) = Cx([x]) N Cy(]x])
Union: (Cx UCy)([x]) = Cx([x]) UCy([x])
Composition:  (Cx o Cy)([x]) = Cx(Cy([x]))
Fixed Point: C*° =CoCoCo...

Many known techniques can be cast into contractors. All linear relaxation techniques can be
considered as contractors. Such a contractor is constructed by intersecting the input box with
the polyhedral hull created by the linear relaxation. This intersection is obtained by solving at
most 2n linear programs, see [2, 10] for details.

3. Non-conventional Contractors

The main interest of contractors is the ability to deal with constraints that are difficult to com-
bine or to formulate mathematically. For example, if the variable corresponds to a position on
a map, it is very simple to make the intersection of a given box with an area of a map, while it
would have been cumbersome to describe this area by a mathematical equation.

Another common case is the possibility of corrupted data. If a set of constraints are based
on physical data, it is not uncommon that some of this data are wrong. For example, only 80
% of constraints are acceptable, without knowing which ones. In this situation, the g-relaxed
intersection of contractors can be applied to this problem:

Definition 4. The g-relaxed intersection of m subsets Xy, ..., X,, of R™ is the set of all x € R™ which
{a}
belong to at least (m — q) X;. We denote it by X149 = ﬂ Xi.

Since the g-relaxed intersection is a set operator, we can extend this notion to contractors:
{a}
(ﬂ{q} C&-) (x) = m (Cx,([x])). This contractor allows to model the possibility of invalid

constraints: it can also be used for robust optimization.

In [5], Carbonnel et al. found an algorithm with a complexity 6(nm?) to compute a box
which contains the g-relaxed intersection of m boxes of R™. This algorithm can be interpreted
as an implementation of the g-relaxed intersection of m contractors.

Another possibility is to project a subset of R over one or more dimensions. For example,
if a constraint needs to be satisfied for all values of a parameter in a given set, such as {z €
R™ : VvVt € X C R™, g(z,t) < 0}, few solvers are available to deal with it. Another example
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is when a constraint needs to be satisfied for at least one value of the parameter, such as
{z eR” : e XCR™ g(x,t) <0}

Two operators are defined on contractors. The first one is the projection-intersection and the
second one is the projection-union.

Definition 5. Let X C R", Y C R™, Z C RP, with Z = X x Y. Let C be a contractor for the set Z.
We define C™Y the Projection Intersection of Z over X and C-Y its Projection Union by:

C¥ () = Myew 7 (€] x ().

e { i) ZUPos e el )

with m, the projection of Z over X.

Proposition 6. Let C be a contractor for a set Z. C"Y is a contractor for the set X = {z : Vy €
Y, (x,y) € Z} and CYY is a contractor for the set X = {x : Iy € Y, (z,y) € Z}.

The Projection-Intersection contractor contracts each part of [x] which are contracted by
C([x] x {y}) for any y € Y. Indeed, each part [a] of [x], such as Jy € Y, ([a],y) ¢ Z, can be
removed. Thus, each part [b] of [x], such as Vy € Y, ([b],y) € Z, is kept. A similar argument
proves Proposition 6 for the Projection-Union contractor.

4. Global Optimization Algorithm

The implementations of all the previous contractors are available in our library IBEX [1, 3].
Thus, given a physical problem, the user can construct a contractor for the feasible region
X of his problem. We denote this contractor C,,:. Moreover, using the counterparts of set-
membership operators for contractors (cf. Definition 3), we can construct in the same way
a contractor for the negation of X. This contractor is denoted by C,,;. The only required
mathematical expression is the objective function, f.os:.

Given a box [x] € R", Cout([x]) removes from [x] a part that does not contain a feasi-
ble solution. In the same way, C;,([x]) removes from [x]| parts which are entire feasible; i.e.
([x]/Cin([x])) € X. Thus, ([x]/Cin(]x])) is a feasible subset and we can perform a global opti-
mization without constraint on it. If this step succeeds, this set can be discarded: indeed, if
a new best current solution is found, we save it and it is proved that this set does not con-
tain a better solution; else it is directly proved that no better solution can be found in this set
(IX)/Cin([]))-

The following algorithm describes a simple implementation pattern for a global optimiza-
tion solver based on contractors. This algorithm is inspired from the SIVIA Algorithm (Set-
Inversion Via Interval Analysis), which is used to compute the feasible set in a domain [7].

The inputs are an initial domain [x] € IR", C,,,; a contractor for X, C;,, a contractor for X and
feost an objective function. The outputs are f , the global minimum value found and z, a global
minimum. A boolean variable b is added for each element of £ to indicate if the element is
included in the feasible region.

(j/ j) = OPtiCtC ([X]/ Cout/ Cin/ fcost):

[ := 400, denotes the current upper bound for the global minimum;
L := {([x], false)}, initialization of the data structure of the stored elements;
Let Cy a contractor based on the constraint {z : feou(z) < f};
Repeat until a stopping criterion is fulfilled:

Extract from L an element ([y],b),

Bisect the considered box [y]: [y1], [y2],

forj=1to2:

if (b = false) then
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Contract [y;| with Co. N Cy,

]
Yimp) = [yil;
Contract [y;] with C;y,,
Add ([y;]false) in L.

[thp] . [thp]/[ ]

else
Contract [y;| with Cy,
[thp] = [yz]7

Try to find the global optimum without constraint in [y,,,. |,
if the search succeeds in a limited time then
Update f and Z.
else
Add ([y,,,,,], true) in L.
end.

Further refinements can improve the behavior of the algorithm, but we must keep in mind
that most of time, the performances depend of the problem itself. With this algorithm, the
improvements which can have a real and direct impact are in the implementation of the con-
tractors and in the relevance of the model.

5. Summary

This paper introduces the use of the contractors for designing a global optimization algorithm.
These concepts will be illustrated to minimize the consumption of two robots following non-
linear parametric trajectories and subject to two constraints: conflict avoidance and validation
of at least 80% checkpoints.
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Abstract A franchise wants to enlarge its presence in a given geographical region by opening one new facility.
There are already some existing facilities (both of the franchise and not) offering the same service
in the region. Both the franchisor (the owner of the franchise) and the franchisee (the actual owner
of the new facility to be opened) have the same objective: maximize their own profit. However,
the maximization of the profit obtained by the franchisor is in conflict with the maximization of the
profit obtained by the franchisee. In addition to this, there is a third player to be taken into account,
the existing franchise’s facilities, which do not want to lose the market share they already have:
they want the cannibalization to be minimized. In the model the demand is supposed to be fixed
and concentrated in a discrete set of demand points, which split their buying power among all the
facilities proportionally to the attraction they feel for them. The attraction (or utility) function of a
customer towards a given facility depends on the distance between the customer and the facility,
as well as on other characteristics of the facility which determine its quality. The location and the
quality of the new facility are the variables of the problem. An evolutionary algorithm is proposed
to obtain a discrete approximation of the efficient set (and the corresponding Pareto-front) of the
resulting nonlinear tri-objective optimization problem. Some computational results are reported.

Keywords: Competitive location, Franchise, Cannibalization, Nonlinear multi-objective optimization, Evolu-
tionary algorithm

1. Introduction

Competitive location deals with the problem of locating facilities to provide a service (or
goods) to the customers (or consumers) of a given geographical area where other compet-
ing facilities offering the same service are already present (or will enter to the market in the
near future). Many competitive location models are available in the literature, see for instance
the survey [4, 5]. However, the literature on multiobjective competitive location models is
rather scarce. This is in part due to the fact that single-objective competitive location prob-
lems are difficult to solve, and considering more than one objective makes the problem near
intractable. In this paper, a continuous nonlinear tri-objective optimization problem is intro-
duced; each objective function alone leads to a single-objective global optimization problem.
To our knowledge, this is the first tri-objective model ever proposed for the location of a com-
petitive facility.

In particular we study the case of a franchise which wants to enlarge its presence in a given
geographical region by opening one new facility. Both the franchisor (the owner of the fran-
chise) and the franchisee (the actual owner of the new facility to be opened) have the same
objective: maximize their own profit. However, those two objectives are in conflict. But there
is a third player which complicates things even more. The existing franchise’s facilities in
the region do not want to lose the market share they capture before the expansion. Notice
that the entrance of the new facility may also have a detrimental effect on the market shares
of the existing facilities, and this cannibalization should also be minimized. This suggests to
use a tri-objective model to obtain the efficient solutions for this problem, so that later on the
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franchisor, the new franchisee, and the franchisees of the existing facilities can agree in both
location and design for the new facility, taking the corresponding economical implications of
their selection into account.

2. The tri-objective model

In the model the demand is supposed to be fixed and concentrated at n demand points, whose

locations p; and buying power w; are known. The location f; and quality of the existing fa-

cilities is also known. Following Huff [3], we consider that demand points split their buying

power among all the facilities proportionally to the attraction they feel for them. The attraction

function of a customer towards a given facility depends on the distance between the customer

and the facility, as well as on other characteristics of the facility which determine its quality.
The following notation will be used throughout this paper:

Indices
¢ index of demand points,i =1,...,n.

J index of existing facilities, j = 1,...,m.

Variables
x location of the new facility, x = (x1, z2).

a quality of the new facility (o > 0).

Data
Di location of the i-th demand point.
w; demand (or buying power) at p;.
1 location of the j-th existing facility.
dij distance between p; and f;.
Qi quality of f; as perceived by p;.
gi(+) a non-negative non-decreasing function.
a;j/gi(dij) attraction that p; feels for f;.
Vi weight for the quality of the new facility as perceived by p;.
k number of existing facilities that are part of the franchise (the first k of the m facilities
are assumed in this category, 0 < k& < m).
Miscellaneous
diz distance between p; and the new facility x.

via/gi(diz) attraction that p; feels for x.

From the previous assumptions, the total market share attracted by the franchisor is

k
Vi 4 Z Qi
n gi(diz) = 9i(dij)
M(z,a) = Z w; — .
i=1 i i Z Qi
9i(diz) = 9i(dij)

We assume that the operating costs for the franchisor due to the new facility are fixed. In this
way, the profit obtained by the franchisor is an increasing function of the market share that it
captures. Thus, maximizing the profit obtained by the franchisor is equivalent to maximizing
the market share that it captures. This will be the first objective of the problem.

The second objective of the problem is the maximization of the profit obtained by the fran-
chisee, to be understood as the difference between the revenues obtained from the market
share captured by the new facility minus its operational costs. The market share captured by



A tri-objective model for franchise expansion 83

the new facility (franchisee) is given by

and the profit is given by the following expression,
m(z, Oé) = F(m(x,a)) - G(.’IJ, CE)

where F(-) is a strictly increasing function which determines the expected sales (i.e., income
generated) for a given market share m and G(z,«) is a function which gives the operating
cost of a facility located at = with quality a. In our computational studies we have considered
F to be linear and G to be separable, of the form G(z,a) = Gi(x) + G2(a), where G;(z) =
S @i(dig), with @;(diz) = wi/((diz)?® + ¢i1), G0, di1 > 0 and Ga(a) = v T _ o1 with
ap > 0 and «; given values (other possible expressions for G(z, a) can be found in [2]).

The owner of the chain should also take into account that some form of competition also
exists within the franchise, as expressed by the so-called cannibalization. When the new facility
enters the market, the existing franchise’s facilities might see a decrease of their own market
share. To avoid this, the minimization of the cannibalization suffered by those facilities will
be considered a third objective of the problem.

The market share captured by the existing facility ¢/ € {1,...,k}, before the new facility
enters the market is given by

(877
msb(f) = Zwi mgi(dw)
i=1 Qij
jzl gz(dza)

which is easily seen to be strictly greater than its market share after entry given by
Qg
msa(l, (v, a)) = Zwi gildic)

m
i=1 Vi Qij
_|_
adn T

~

The cannibalization suffered by ¢ is the difference between these market shares
Can(¢, (z,a)) = msb(f) — msa(?, (z, a))

and our third objective is to minimize the sum of the cannibalizations suffered by all existing
members of the chain,

k
min Can(z, o) = Z Can(¥, (z,a)).
(=1

The problem considered is

([ max M(z,q)
max 7(z,q)
min  Can(z, @) 1)
st dig > dM Vi
Qe [amina amax]
z€RCR?
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where the parameters d;nin > 0 and amin, > 0 are given thresholds, which guarantee that the
new facility is not located over a demand point and that it has a minimum level of quality,
respectively. The parameter oy, ax is the maximum value that the quality of a facility may take
in practice. By R we denote the region of the plane where the new facility can be located.

3. Obtaining a discrete approximation of the efficient set

For a majority of multi-objective problems, including location problem:s, it is not easy to obtain
an exact description of the efficient set or Pareto-front, since those sets typically include an
infinite number of points (usually a continuum set). That is why authors usually propose
to present to the decision-maker a good ‘representative set’” of non-dominated points which
suitably represents the whole Pareto-front. By a good representative set we mean a discrete
set of points covering the complete Pareto-front and evenly distributed over it.

There is a plethora of metaheuristic methods with that purpose in literature. Nonetheless,
the most common approaches utilized in literature is the use of multi-objective evolutionary
algorithms (MOEAs). This is due to their ability to find multiple efficient solutions in one
single simulation run. The numerous proposed variants have been surveyed, for instance, in
[1]. Among them, the algorithms NSGA-II and SPEA2 have been the reference algorithms
in the multi-objective evolutionary computation community for years. However, during the
last five years, the multi-objective evolutionary algorithm based on decomposition MOEA /D
has proved to be superior to other state-of-the-art algorithms (including both NSGA-II and
SPEA2) when applied to a wide variety of multi-objective benchmark problems [7].

4. Summary

This paper describes a new tri-objective competitive facility location and design model. The
efficiency of the algorithms MOEA /D and FEMOEA [6] (a recent evolutionary algorithm
which has been successfully applied to other bi-objective location problems) to generate an
effective approximation of the efficient set (and its corresponding Pareto-front) is investigated.
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Abstract Simplicial partitions are suitable to divide a bounded area in branch and bound. In the iterative
refinement process, a popular strategy is to divide simplices by their longest edge, thus avoiding
needle-shaped simplices. A range of possibilities arises when the number of longest edges in a
simplex is greater than one. The behaviour of the search is different depending on the selected
longest edge. In this work, we investigate the importance of the rule to select an edge.

Keywords: longest edge bisection, branching rule, branch and bound, simplex

1. Introduction

Global Optimization pursuits the search of the global optima. Several methods can be used to
find the solution. Within deterministic methods, the branch and bound method (B&B) guar-
antees to find a global minimum point up to a guaranteed accuracy e. This method iteratively
divides the search space discards subsets that are proven not to contain an e global solution.
Generally, five rules define the method:

Branching rule: determines how to divide a subproblem into subproblems.

Bounding rule: defines how to obtain upper and/or lower bounds of the subproblem’s
solution.

Selection rule: chooses a subproblem among all subproblems stored in a working set.
Rejection rule: discards subproblems which are proven not to contain a global solution.
Termination rule: defines when the given accuracy has been reached. Once a subprob-
lem meets this criterion, it is not further divided. Otherwise, it is stored in the working
set.

Every B&B rule plays an important role in the efficiency of the algorithm. Careless decisions
in one of the rules may lead to inefficient algorithms. This work focuses in the efficiency of
the branching rule using longest edge bisection within simplicial B&B optimization methods.

For some problems like mixture design, the search space is a regular simplex. Here, we fo-
cus on box-constrained problems, where the search space is an n-dimensional hyper-rectangle
that can be partitioned into a set of non-overlapping n-simplices. An n-simplex is a convex
hull of n + 1 affinely independent vertices.

A recent study shows how the number of generated sub-simplices varies when different
heuristics are applied in the iterative bisection of a regular n-simplex [1]. In that study, the
complete binary tree is built by bisecting the heuristically-selected longest edge of a sub-
simplex until the width, determined by the length of their longest edge, is smaller or equal to a
given accuracy e. A large reduction in the number of generated sub-simplices can be achieved
when heuristics, different from bisecting the first longest edge in terms of vertex indexation
(the default method), were used.

*This work has been funded by grants from the Spanish Ministry (TIN2008-01117 and TIN2012-37483) and Junta de Andalucia
(P11-TIC-7176), in part financed by the European Regional Development Fund (ERDF). ] ER. Herrera is a fellow of the Spanish
FPU program.
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In this context, we specifically study whether the reduction factor of the search tree is still
large when longest-edge selection heuristics are applied to a simplicial B&B optimization
method on box-constrained problems, where the initial search region is not a regular simplex
and the termination criterion is based on the bounding rule.

Section 2 briefly explains the main features of the used simplicial B&B algorithm. Section 3
describes the studied division heuristics and Section 4 concludes.

2. Simplicial branch and bound method

In this section we cover both the initial space and the rules that define the simplicial B&B
method to solve multidimensional global optimization problems.

Initial space

Most B&B methods use hyper-rectangular partitions. However, other types of partitions may
be more suitable for some optimization problems. For the use of simplicial partitions, the
feasible region is partitioned into simplices. The most preferable initial covering is face-to-
face vertex triangulation. It involves partitioning the feasible region into a finite number of n-
dimensional simplices with vertices that are also the vertices of the feasible region. A standard
method [5] is triangulation into n! simplices. All simplices share the diagonal of the feasible
region and have the same hyper-volume. Figure 1 depicts a hypercube of dimension three
partitioned into six irregular simplices.

DL

Figure 1: Division of a hypercube into six irregular simplices

Bounding and rejection rules

Consider the objective function f with a global minimum f* on box-constrained area X. The
function f is not required to be differentiable or (Lipschitz) continuous. Given a global mini-
mum point z*, let scalar K be such that

K> max L& =1 (1)

zeX |z —x*||

where || - || denotes the Euclidean norm. The function f* + K|z — «*|| is an upper fitting
according to [2]. For any z € X and therefore a subset of evaluated points x; € X, the area
below

p(r) = max{f; — Kz — [} ()

cannot contain the global minimum (z*, f*). Let fV = min; f; be an upper bound of f* then
the area {r € X : p(x) > fU} cannot contain the global minimum point z*. To determine
if a simplex S with vertices vy, vy, ..., v, contains or not an e-optimal solution, the objective
function is evaluated at each vertex v;, obtaining the cutting cones:

pi(z) = f(vi) = Kllz — vif. €)
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Let ® be defined by
®(S) = min max p;(z). 4)
€S 1
Simplex S cannot contain the global minimum point z*, and therefore S is rejected, if fU <
®(S). Notice that ®(.5) is a lower bound of f* if S contains the minimum point z*.

Selection and termination rules

The algorithm performs a depth-first search by selecting the sub-simlex with the smallest
®(S) value among those generated in the last division, until the final accuracy is reached
or both new sub-simlices are rejected. In general, depth-first search minimizes the memory
requirement of the algorithm. A simplex S is not divided anymore when ®(5) + ¢ > fU.

3. Longest edge bisection

In the literature we can find many methods to divide a simplex [4]. One of them is the Longest
Edge Bisection (LEB), which is a popular way of iterative division in the finite element method,
since it is very simple and can easily be applied in higher dimensions [3]. This method consists
of splitting a simplex using the hyperplane that connects the middle point of the longest edge
of a simplex with the opposite vertices. The most common LEB division rule is the following;:

LEB; The natural way to select a longest edge is to take the first one found. The sequence
depends on the coding and storing of the vertices and edges, i.e. the index number as-
signed to each vertex of the simplex. When a simplex is split into two new sub-simplices,
the new vertex of each sub-simplex has the same index as the one it substitutes.

Our preliminary studies show the existence of many sub-simplices having more than one
longest edge when LEB; is used as iterative partition rule in a simplicial B&B algorithm.

In order to reduce the search tree size, other heuristics used for selecting the longest edge
in the division of a regular n-simplex will be applied here to simplicial B&B algorithms. They
are summarized below:

LEB,: For each vertex in a longest edge, the sum of the angles between edges ending at that
vertex is determined and the longest edge that obtains the smallest sum is selected.

LEBc: Bisects the longest edge with the largest distance from its middle point to the centroid
of the simplex.

LEByy: Selects an edge that has not been involved in many bisections yet via a weight system.
A new vertex v; is initiated with weight w; := 1. Each time vertex v; is involved in a
divided edge, the weight is updated to w; := w; +1 mod n.

LEB);: Longest edge with its furthest midpoint from the other vertices is selected.

The research goal is to determine a LEB rule that minimizes the search tree produced by a
simplicial B&B algorithm.

4. Summary

This contribution sketches a simplicial branch-and-bound algorithm where the infeasible area
is cut away via the concept of an upper fitting. It is illustrated that, in higher dimensional
space, an appropriate decision must be taken in the selection of the edge to be bisected. In the
talk, results of the investigation of several rules influencing the development of the algorithm
are presented.
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Abstract The scenario considered in this work is the following. Several firms are present in the market and
customers split their demand among the firms by patronizing only one facility from each firm, the
one with the highest utility, and the demand is split among those facilities proportionally with their
attraction. To solve this location problem, a heuristic evolutionary algorithm has been proposed,
which includes a Weiszfeld-like method as local optimization procedure. A comprehensive com-
putational study has been carried out to compare the heuristic algorithm with an exact interval
Branch-and-Bound method. Additionally, in order to prove that the solutions offered by the heuris-
tic method are not a consequence of randomness, but of the evolutionary procedures implemented, a
multi-start algorithm based on the same Weiszfeld-like local procedure has been also implemented.
Results show that the heuristic evolutionary algorithm is a good alternative to deal with this prob-
lem.

Keywords: Competitive location, multi-deterministic model, evolutionary algorithm, local optimizer, compari-
son

1. Introducction

Location science deals with the location of one or more facilities in a way that optimizes a cer-
tain objective (minimization of transportation costs, minimization of social costs, maximiza-
tion of the market share, etc.). All location problems share several components, which leads
to different models. The mathematical formulations and methods used to solve the problems
vary substantially depending on the type of model [1]. An important question to take into
account when modeling a location problem is if customers are free to choose the facility from
which they are served. If so, knowing how customers buy goods among the existing facilities
helps to estimate the market share captured by each facility. The patronizing behavior of the
customers is usually considered in literature either as deterministic, i.e. the full demand of the
customer is served by the facility to which he/she is attracted most (leading to Hotelling-type
models [5]), or as probabilistic, i.e. the customer splits his/her demand among all the existing
facilities (leading to Huff-type models [6, 3]).

In order to give a mathematical formulation, consider the following notation. Let i be the
index of demand points, i = 1,...,imax; ¢ the index of competing chains, ¢ = 1,..., cmax-
Chain ¢ = 1 is the locating chain. Let j denote the index of existing facilities, j = 1,. .., jmax-
We assume that from j = jl. (= 1) to jl,, the facilities belong to chain ¢ = 1 (0 < jL.. <
Jmaz), fromj = j2. (= jl. +1)to j2,, belong tochain ¢ = 2,..., from j = jouax (= jémax—14 1)
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to j5max (= jmax) to chain ¢ = ¢pax. The variables of the problem are the coordinates giving the

max

location of the new facility, = (21, x2).
Let p; be the location of demand point i (i = 1,...,7ax) and w; the buying power at p;.
Let f; denote the location of existing facility j (j = 1,..., jmax) and d;; the distance between

demand point p; and facility f;. If the attraction that p; feels for f; is denoted by u;;, then
the maximum attraction that p; feels for any of the existing facilities of chain c, v, is given
by u§ = max{ui; : j € {jSins- -+ Jax )} Finally, let d;(x) be to the distance between demand
point p; and the new facility (see [2]), uio(x) the attraction that p; feels for the new facility, and
M (x) the market share captured by the locating chain.

Based on these assumptions the market share captured by the chain when a deterministic

rule is used is
M(z) = Z w.

i€{1,...,n}:max{u}l uio(z)} >max{uf:c=2,....cmax }

In the previous formula we have assumed that, in case of ties in the attraction, customers
choose the locating chain. Notice that in the deterministic rule it is assumed that the attraction
of the customers at p; towards a chain is determined only by the facility to which they are
attracted most. The rest of the facilities do not play any role.

When a probabilistic rule is used, the market share captured by the chain is given by

n uZO( ) ijzx u’L_]
M(.CE) = w; ‘ Jm::n
i=1 uo(z) + Z =1 Wij

In the probabilistic rule the attraction of the customers at p; towards a chain is determined by
all the facilities belonging to the chain. As we can see, it is assumed that the utility is additive:

-1
the utility for the first chain is given by U} (z) = wo(z) + er:;xl U
In some cases, in order to have a better estimation of the market share captured by each
facility or chain, new customer choice rules which model customer behaviour closer to reality
are needed. In this work, a new rule will be considered, which is described next. This new

rule has not been addressed in the literature before, and the aim is to set out and solve a new
location model in the plane when this new rule is used.

2. Multi-deterministic rule

The scenario considered in this problem is the following. Several firms are present in the mar-
ket and customers split their demand among the firms by patronising only one facility from
each firm, the one with the highest utility. Then, the demand is split among those facilities
proportionally with their attraction. Hakimi already proposed something similar in [4] (see
Section 10.4 in that paper; Hakimi named it ‘partially binary rule’).

In order to give a mathematical formulation, let us consider the case in which there are cyax
competing chains in the market. Then, the market share captured by the locating chain (the
first one) is

max4 U;0\T Ul

— “max{uio (), ul } + Soma g

As it can be seen in the formula, it is assumed here that the attraction of the customers at
p; towards a chain is determined only by the facility of the chain to which they are attracted
most. The rest of the facilities of the chain do not play any role. But unlike the deterministic
rule, now all the chains capture part of the demand at p;.
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3. A competitive location problem with multi-deterministic
rule

Let o;; be the quality of facility j as perceived by demand point ¢, o the quality of the new
facility and +; a weight for the quality of the new facility as perceived demand point i. Let
us assume that u;; = oy;/9i(di;) and wio(x) = v;a/gi(di(x)), where « is also a variable in the
problem and g;(-) is a given nondecreasing function. The planar competitive facility loca-
tion and design problem with multi-deterministic patronizing behavior of customer for profit
maximization is given by

max Il(z,a) = F(M(z,a)) — G(z, @)
s.t. diac Z dmin Vi

[OAS [amina amax]

reSCR?

(2)

where M(z,a) is given by formula (1), F(-) is a strictly increasing differentiable function
which transforms the market share into expected sales, G(z,«) is a differentiable function
which gives the operating cost of a facility located at = with quality «, and II(x, «) is the profit
obtained by the chain. Note that this profit disregards the operating costs of the existing facil-
ities of the locating chain, since these are considered to be constant. The parameters dp,in > 0
and amin > 0 are given thresholds, which guarantee that the new facility is not located over
a demand point and that it has a minimum level of quality, respectively. The parameter cyax
is the maximum value that the quality of a facility may take in practice. By S we denote the
region of the plane where the new facility can be located.

The function F' will often be linear, F(M (z, «)) = ¢- M (x, o), where c is the income per unit
of good sold. Of course, other functions can be more suitable depending on the real problem
considered (see [3]).

The function G(x, o) should increase as x approaches to one of the demand points, since it
is rather likely that around those locations the operational cost of the facility will be higher
(due to the value of land and premises, which will make the cost of buying or renting the
location higher). On the other hand, G should be a nondecreasing and convex function in the
variable o, since the more quality we require of the facility, the higher the costs will be, at an
increasing rate. We will assume G to be separable, i.e. of the form G(z,a) = Gi(x) + Ga2(«)
(see [3]).

Figure 1 gives the graph of the objective function in the location domain for a problem
with setting (imaz = 71, jmaz = 5,¢ = 2,500 = 2,24 = 3) when the quality is fixed. The
white holes in the graphs correspond to the forbidden regions around the demand points. As
can be seen, this problem is a highly nonlinear optimization problem which requires global
optimization techniques to be solved.

4. Solving the multi-deterministic location problem

In this work, we analyze three approaches to solve the previous problem. The first one is
a simple multi-start algorithm in which a local search procedure (namely, a Weiszfeld-like
algorithm) is repeated from different starting points. The second one is a evolutionary algo-
rithm, which applies the same Weiszfeld-like algorithm as local optimizer. Finally, an interval
branch-and-bound algorithm is also proposed. A comprehensive computational study has
been carried out to compare the efficiency and the effectiveness of the proposed methods.



92 A.G. Arrondo, ].L.Redondo, ].Ferndndez, B.G. Téth, and P.M. Ortigosa

Hinninni
il

Figure 1: Objective function (on the left) and contour projected in the 2-dimensional location
space (on the right) of the instance with setting (imaz = 71, jmaz = 5,¢ = 2, it 00 = 2, jas = 3)
when o = 0.5.

5. Summary

Analizing the computational results, we can infer that using the same computational resources
and CPU time, the solutions obtained by the evolutionary algorithm are better than those ob-
tained by the multistart heuristic, for both the objective value and the solution point. Further-
more, with a suitable parameter setting, the evolutionary algorithm is always able to obtain
the global optimum, taking less time than the reliable interval branch-and-bound method.
Additionally, it can handle much larger problems than the interval method.
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Abstract A natural way to define branching in Branch-and-Bound for blending problem is to do bisection. The
disadvantage of bisectioning is that partition sets are in general irregular. A regular simplex with
fixed orientation can be determined by its center and size, allowing storage savings in a Branch-
and-Bound algorithm from computational perspective. Unfortunately for dimension n>3 a regular
simplex cannot be covered by regular subsimplices without overlapping. The possible difficulties of
the refinement by regular simplices are studied here. The main challenge is to find a refinement with
a good convergence ratio which facilitates the discarding of simplices in an overlapped and already
evaluated region.

Keywords: unit simplex, subdivision, partition, covering

1. Introduction

A formulation of a mixture design problem consists of identifying mixture products, each
represented by a vector z € R", which meet certain requirements. The set of possible mixtures
is mathematically defined by the unit simplex

n
S={zeR"|> ;=10 0<z; <1}, 1)
7=1

where the variables x; represent the fraction of the components in a product x. In mixture de-
sign (blending) problems, the objective is to minimize the cost of the material. As discussed by
[3], quadratic quality requirements, minimum dose constraints, looking for robust solutions
etc. may complicate the search for the best mixture design. Therefore Branch-and-Bound
approaches are described in [3] and specific tests are introduced in [1].

In the Branch-and-Bound method, the initial problem is subsequently partitioned in more
and more refined subproblems (branching) over which bounds of an objective function value,
or on the constraint functions can be determined (bounding). The search is reduced by elim-
inating subproblems. One of the elimination rules used is based on defining a global upper
bound fY as the objective function value of the best e-robust solution found so far. Subsets
with a lower bound f{ of the objective function larger than the upper bound can be discarded,
because they cannot contain an optimal solution.

The method starts with a set C; = S as the first element of a list A of subsets (partition sets)
and stops when the list A is empty. A generated subset is not stored on A, if it can be proved
that it is infeasible and /or cannot contain a solution. The size of a simplex (Size(C)) is given
by the Euclidean length of its largest edge. To force theoretical convergence, the termination
rule establishes that the search does not continue on partition sets smaller in size than o < e.

*This work has been funded by grants from the Spanish Ministry (TIN2008-01117 and TIN2012-37483) and Junta de Andalucia
(P11-TIC-7176), in part financed by the European Regional Development Fund (ERDF), and also by the project ICT COST Action
TD1207 (EU).
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Figure 1: Bisection process. 2-dimensional projection.

The branching concerns the further refinement of the partition. This means that one of
the subsets is selected to be split into new subsets. The use of simplicial sets in Branch-and-
Bound and several ways of splitting them has been studied extensively in [2, 4]. Bisection of
the longest edge of the selected simplex has the advantage that the sets never get a needle
shape. Starting with the unit simplex, for all the generated simplices the length of the longest
edge is at most twice the size of the shortest edge. Figure 1 sketches the idea of the bisection
algorithm. It can be observed that points on a regular grid are generated, but that the bisection
also generates edges (dotted lines) in at least one additional direction other than the facets of
the unit simplex. The values of all generated points are a multiple of (1/2)¥, where K is an
integer representing the depth of the search tree.

The storage requirements of the Branch-and-Bound search depends on the used search
strategy. Depth-first has the smallest memory requirement. In order to know the feasible
region, all final simplices has to be stored. This increases the memory requirements. Nowa-
days computers consume a lot of time when data do not fit in caches. Therefore it is desirable
to use less storage even when it requires more computation, in order to reduce the overall
time.

Dividing regular simplices by smaller regular simplices with fixed orientation reduces the
stored information in the refinement process, because only the centre and the size of the sub-
simplices are needed to determine all the other information of a simplex, as the position of its
vertices. This saving increases with the dimension. Unfortunately, it is not possible to divide
the regular simplex in regular sub-simplices without overlapping for n>3.

The question to answer is if there exists a regular refinement which outperforms other usual
partition schemes as the longest edge division, in terms of the number of simplices and ver-
tices evaluations. Here we study a possible candidate.

2. Regular subdivision

In general, a simplicial set can be written as

{z=) N, N =1,%52>0j=1,..n}={z=VAXe S}, )

where S is the unit simplex defined in (1) and the vertices v; in matrix V' are affine indepen-
dent. Alternatively, one can write a simplicial set as the convex hull of the vertex set, conv(V).
The viewpoint of writing a simplex as in (2) gives that from a subdivision perspective we can
focus simply on the unit simplex. A subdivision of S can be translated into partitioning of any
simplicial set by multiplication with the vertex matrix V.

Our question is how one can partition set S apart from the usual bisection method. There-
fore, we introduce the Uniform Simplex Cover (USC) where the simplex is covered by equally
sized, equally oriented overlapping subsimplices and we analyze its characteristics. To ex-
press the idea of equally sized and oriented simplices, we introduce the following concepts.
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Each simplex C' has a base vector b and a radius r where its vertices are described by walking
from b a step r in direction d; := e; — ey, with e; the j-th unit vector:

C = conv({b,b+rda,b+rds,...,b+rd,}). 3)
A subdivision of the unit simplex S is a collection
R={Cy,...Cp} suchthat ScU_ C;. (4)

In this work we investigate how to choose m base vertices per axis distributed in a regular
way, such that we get a subdivision R that covers S. We call this m-Uniform Simplex Cover,
shortly mUSC.

2.1 Simplex covering by n simplices, 2USC

We first investigate 2USC and define its base vectors and radius. In 2USC, subdivision R
consists of n subsimplices C;, ¢ = 1, ..., n with base points

1
bi = €1 + —di. (5)
n

So they have the shape (1,0, ...,0)", ((n—1)/n,1/n,0,...,0)T, ((n—1)/n,0,1/n,0,...,0)%, ...,
((n —1)/n,0,...,0,1/n)T. For the radius we use (n — 1)/n;
n—1 n—1 n

-1
dy,b; + do,...,b; + dn}), (6)

i = b;
C; = conv({b; + - - -

where of course b; + ”T_ldl = b;. The simplex is covered by 2USC when using these choices.
As 2USC has only n subsimplices, their vertex set can also be written by turning the orien-
tation: .
C; = conv({e; + n

(ej —ei)}). 7)

This way of writing shows that covering of S by R is done when each subsimplex C of R
covers the centroid of S. Therefore, the smallest reduction ratio allowing the covering of S is
rs=(n-1)/n and the overlap between C; and S in terms of relative volume is:

Vol(C) <n - 1>"—1.

n

(8)

Vol(S)
The total overlap between Rand Sisn ("Tfl)nfl. The following table summarizes the smallest
reduction ratio 7, and the relative overlap varying n. Results in terms of convergence are not
promising as n increases.

n 2 3 4 5 6 7
rs 05 06 075 08 083 0.875
overlap 0 03 069 105 142 178

To facilitate discarding of simplices in an overlapped and already evaluated region, the
refinement should promote the sharing of vertices as much as possible. What should the
reduction ratio be? A possible solution is the Golden ratio. Given a unit edge and a reduction
ratio of r for the new sub-simplices, after d divisions the new simplices will have size r¢. They
will use the vertices of the first division, if 1 — r, the other vertex on our edge equals to r¢. The
following table shows the , values as solutions of (1 — r) — r¢ = 0 and the values of n where
they can be applied taking into account that r, cannot be smaller than r.

d 1 2 3 4 5 6 7
rg 05 0.618 0.682 0.724 0.755 0.778 0.797
n 2 3 3 3 4 4 4
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For instance, to use r, = 0.618 instead of the smallest reduction ratio r, = 0.6 forn = 3 space
seems to be better in terms of sharing vertices, because vertices are shared at every second
division levels.

A so-called 73, solution can be to force the vertices of the simplex to be in the regular grid at
(1/2)* pace for some k, with r;, > 7.

To avoid redundant computation, a simplex in an already evaluated region can be dis-
carded. This will require the development of appropriate computational routines. From a
Branch-and-Bound perspective, three sets of simplices are needed:

The set of active simplices, those needing further processing.
The set of final simplices, which already reached the required precision, thus do not
need refinement.

= The set of simplices determining the already examined regions, in order to discard a
simplex because it is in the rejected or final region, or in a simplex already subdivided
further.

In our investigation we also found covers that show less overlap, but where we have to relax
the property of having equally oriented subsimplices. The subsimplices, I'; have a vertex set
{ei,e; + Z—j(ej —¢;),j # i. The union of I'; leaves a "hole" I';, ;1 in S which has an "upside
down" orientation and is defined by vertices w; = 13, 2j€kJ = 1...n, which are the
centroids of the facets of S. Subdivision P = {I';,...T',, 1} now just covers S with n + 1
simplices of smaller size than C;. To use this subdivision, one has an upside down orientation.

For storage purposes, one should store this orientation in a clever way.

3. Conclusions

This work studies possible ways to refine a regular simplex by regular subsimplices, challeng-
ing in the development of efficient algorithms. According to the presented results, the n = 4
case seems to be the most promising to study in order to outperform previous partitioning
methods. We will first tackle it.
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Abstract We propose a set of formulations and reformulations of the Distance Geometry Problem, which
we evaluate computationally with both local and global off-the-shelf solvers. The local solvers are
cast in a global optimization metaheuristic (Variable Neighbourhood Search) since the problem is
nonconvex and non-global optima are usually of limited practical interest.

Keywords: nonlinear programming, protein conformation, sensor networks

1. Introduction

Roughly every decade, it is useful to assess how generic off-the-shelf solvers perform on math-
ematical programming formulations of any sufficiently important problem. We commented
on computational experiments of the Distance Geometry Problem (DGP) in [7]: although the
paper appeared in 2006, the experiments were conducted between 2004 and 2005, so it is high
time to re-evaluate the current state of the art.

The DGP requires to “draw” a given weighted graph in R¥ in such a way that the Euclidean
distances of the segments between pairs of vertices match the given edge weights. More
formally, given a simple undirected graph G' = (V, E), an integer K > 0, and an edge weight
function d : E — R, the DGP asks to establish or deny the existence of a vertex realization
function z : V' — R¥ such that:

V{u,v} € E |y — x|z = dyw- (1)

Notationwise, we let n = |V| and m = | E|. More information can be found in [10].

In the following, we briefly summarize the results of [7] in Sect. 2, then proceed to list the
DGP formulations we shall consider (Sect. 3), the evaluation framework (Sect. 4), and the test
set (in Sect. 5). The computational results will be presented at the conference.

2. The computational set-up in [7]

Our testbed for [7] was simple (way too simple, in fact): three cubic grid instances taken
from [12], and six “protein-like” instances generated randomly according to [6]. We solved
these instances using three global optimization solvers: a deterministic, e-approximate spa-
tial Branch-and-Bound (sBB) algorithm [8], a stochastic Multi-Start (MS) algorithm based on
Sobol” sequences [5], and a Variable Neighbourhood Search (VNS) solver for nonconvex Non-
linear Programs (NLP) [9].

*V. Ky is sponsored by a Microsoft Research Ph.D. grant
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The solvers were launched in their default configurations to solve the following uncon-
strained NLP formulation of the DGP:

Imin Z (qu - SUng - d12w)2 (2)

on each instance. All cubic grid instances were solved at global optimality by all solvers, as
well as four out of six protein-like instances. The remaining two instances were solved by
the stochastic solvers (MS and VNS), whereas the sBB was terminated because of the CPU
time threshold (1hr of user time). Only one instance failed to be solved to global optimality
(i.e. within e = 1073), but came nonetheless pretty close. The best overall solver was the VNS.

3. The DGP formulation zoo

First off, all formulations we consider are box-constrained (this makes life simpler for cer-
tain solvers) to x € [~ M, M]X™ where M = % > {uv}eE duw: We do not write these bounds
explicitly below. Every formulation comes with variants; a variant which holds for every for-
mulation is the following: replace ||z, — x,||3 by |7y — 2u|]2 and d2, by dy,. In such variants,

because of floating point issues, /a is implemented as v/a + §, where § is O(10719). Notation-
wise, M = [—M, M]™.

3.1 Exact formulations
1. Eq. (2). Variant: replace )  with max.

2. This formulation minimizes slacks and tries to satisfy Eq. (1):

min o83,
T8 {u,v}eFE (3)
Vw0l €E Jau—zall} = &+ su
Variants: (i) replace s2, with s}, + s, and sy, with s, — s, where sT, s~ > 0; (ii)

replace ) | with max.

3. This formulation exploits the convexity and concavity of the equations in Eq. (1) sepa-

rately:
max > llew — 3
z {uv}eFE (4)
V{u,v} € E lzw — 20l < d3,
4. This is a Nonlinear Complementarity Problem (NCP) formulation:
max Zuw
ZE,yGM,ZG[O,l}m {u,%EE
Vu} €E ow—2l} = Yue ®)
V{u,v} €E  (Yuv — d2,)2u0 = O.
5. This exploits ||z, — 7|3 = (24 — 24) (24 — 7):
min Z (quk - Tuvk)2
z,0€(2M)K re(2M)K {un}eB k<K
V{u, v} € B,k < K Tuk — Tok = Ouy (6)

V{’LL,’U} eFE Z OuwvkTuvk = d%v
h<K
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6. This is a nonsmooth version of Eq. (2):
min Y [llzy — zol3 — i @)
{u,v}eFE

Variant: replace ) | with max.

3.2 Pointwise exact reformulations

These are formulations which are only exact for a specific set of values assigned to certain
parameters; they can be used in a stochastic search setting (such as MS or VNS) where the
global search occurs over the parameter values. The advantage is that they describe convex
problems, so they are solved efficiently.

1. We use formulation 4 and rewrite the norm terms as per Item 5 in Sect. 3.2. This yields:

max = Z Z Ouok (xuk: - ka)
z {uv}eE k<K 8)
V{U,U} ek Hmu - vaz < d12w

(it can be shown that there exist values of § for which (8) is an exact formulation for the
DGP).

2. Every formulation in Sect. 3.1 which involves the term ||z, — =, |3 gives rise to a point-
wise exact convex reformulation, apart from Eq. (5) which gives rise to a Linear Com-
plementarity Problem (LCP).

3. Eq. (7) canitself be interpreted as a pointwise exact convex reformulation if T are taken as
parameters rather than decision variables. It can be further reformulated as a pointwise

exact linear reformulation by replacing the objective functionby min > |oyuk — Tuvkl-
L0 {uw}eE
k<K

4. The computational evaluation framework

There is an obvious evaluation framework which consists of gathering computational mea-
sures about quality and efficiency of each solver on each formulation for each instance, and
compare them on various indices: one may thus answer empirical questions such as, “what
is the best solver+formulation combination for a given instance?”, or “I need to find the con-
formation of a set of proteins given some distance data: what solver should I buy and what
formulation should I use?” Of course one may also fail to answer such questions, whenever
there is no clear winner.

Aless trivial evaluation framework is given by the Multiplicative Weights Algorithm (MWA)
[1]: each of the N solver+formulation combinations (indexed by i = (s, f)) is assigned a
weight, which is initially set to 1. We decide an order < for the instance set, and then solve
each instance ¢ in the set using every solver+formulation ¢ in the order <. At the ¢-th iteration,
we record a non-negative cost 1;; of the pair (i, ¢), which is a convex combination of the solu-
tion error and the CPU time (both scaled to the respective maxima). These costs are used to
update the weights w; ;11 = wir (1 — % wit). After all instances have been looked at, the result is
a multivariate distribution p = (w;;/®);; where ® = Y., w;;. The marginal distributions give
an idea of the relative success and failures of the different methods and instances. This whole
computation can be repeated for different orders <, chosen e.g. to always cluster instances of
the same type. An interesting feature of the MWA is that it provides a relative bound on its

total error: 5
zt: Z pitpie < 2In N + 3 Hliiﬂ Zt: it )
(A



100 Claudia D’ Ambrosio, Vu Khac Ky, Carlile Lavor, Leo Liberti, and Nelson Maculan

which is a direct consequence of [1, Thm. 2.1] when the costs are nonnegative. In other words,
the total weighted error made by all solvers+formulations over all instances is bounded above
by a linear function of the best combination.

For a candidate solution ' € RX™", the average and maximum solution error definitions
are:

1
Me@) = = 3 el =l - du
{u,v}eFr

max ||, — 2 ll2 = duv|-

/
nmax(x ) {u,v}eFE

5. The test set

We test the whole formulation zoo (with variants) with the following solvers (for now!):
SNOPT [4] (local), IpopT [2] (local), FILTER [3] (local), COUENNE (global). Local solvers and
pointwise exact reformulations are tested in a Variable Neighbourhood Search framework as
in [9] (i.e. with hyper-rectangular neighbourhoods centered around the current iterate). All
solvers will be given the same maximum CPU time.

We shall consider DGP instances for K = 1 (application to clock synchronization [13]),
K = 2 (application to sensor networks [11]), K = 3 (application to protein conformation from
NMR data [10]). The MWA evaluation framework will be run on every order on {1, 2, 3}.

References

[1] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm and applica-
tions. Theory of Computing, 8:121-164, 2012.

[2] COIN-OR. Introduction to IPOPT: A tutorial for downloading, installing, and using IPOPT, 2006.

[3] R. Fletcher and S. Leyffer. User manual for FILTER. Technical report, University of Dundee, UK, March
1999.

[4] PE. Gill. User’s guide for SNOPT version 7.2. Systems Optimization Laboratory, Stanford University, Califor-
nia, 2006.

[5] S. Kucherenko and Yu. Sytsko. Application of deterministic low-discrepancy sequences in global optimiza-
tion. Computational Optimization and Applications, 30(3):297-318, 2004.

[6] C.Lavor. On generating instances for the molecular distance geometry problem. In L. Liberti and N. Macu-
lan, editors, Global Optimization: from Theory to Implementation, pages 405—414. Springer, Berlin, 2006.

[7] C.Lavor, L. Liberti, and N. Maculan. Computational experience with the molecular distance geometry prob-
lem. In J. Pintér, editor, Global Optimization: Scientific and Engineering Case Studies, pages 213-225. Springer,
Berlin, 2006.

[8] L.Liberti. Reformulation and Convex Relaxation Techniques for Global Optimization. PhD thesis, Imperial College
London, UK, March 2004.

[9] L. Liberti and M. Drazic. Variable neighbourhood search for the global optimization of constrained NLPs.
In Proceedings of GO Workshop, Almeria, Spain, 2005.

[10] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino. Euclidean distance geometry and applications. SIAM
Review, 56(1):3-69, 2014.

[11] A.Man-Cho So and Y. Ye. Theory of semidefinite programming for sensor network localization. Mathematical
Programming B, 109:367-384, 2007.

[12] J. Moré and Z. Wu. Global continuation for distance geometry problems. SIAM Journal of Optimization,
7(3):814-846, 1997.

[13] A. Singer. Angular synchronization by eigenvectors and semidefinite programming. Applied and Computa-
tional Harmonic Analysis, 30:20-36, 2011.

I These are preliminary results.



Proceedings of MAGO 2014, pp. 101 - 103.

Localization on smart grids”

Pierre-Louis Poirion', Sonia Toubaline!, Claudia D’Ambrosio?, and Leo Liberti'-?

LCNRS LIX Ecole Polytechnique, Palaiseau 91128, France {poirion,toubaline,dambrosio,liberti}@lix.polytechnique.fr

2IBM “T.J. Watson"” Research Center, Yorktown Heights, 10598 NY, USA leoliberti@us.iom.com

Abstract We formalize the problem of localizing monitoring equipment on electrical networks. Each moni-
toring device can be installed on any link of the network. Various constraints must be taken into
account, including topological constraints and Euclidean distance constraints. This yields a Mixed-
Integer Nonlinear Program (MINLP) with combinatorial as well as Euclidean distance constraints.
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1. Introduction

An electrical network is a distribution network for the electricity commodity. Some nodes are
production nodes, some nodes are demand nodes, there may be intermediate nodes, and the
links are usually cables. The technical constraints which regulate the electrical flow involve
the physics of alternating currents, and include frequency and phase terms [1, 2, 3]. Although
the definition of a smart grid is somewhat fuzzy, there is a general agreement that a smart grid
should be:

= accountable as regards cost, capacity and resilience down to a very precise detail (e.g. at
each second, at each node, and so on);

m robust to failures;

= make use of very different energy sources (hopefully environmentally friendlier than
burning coal and gas).

Of course these properties are not independent: the network can be robust if it is continuously
and precisely monitored, and, in the case of failures, alternative sources of energy are readily
available. In this work, we focus on the first of the above properties, i.e. accountability.

For an electrical network to be fully accountable, many monitoring devices have to be in-
stalled on its nodes and links (more precisely, the device could be localized anywhere along
any link). Also, the information collected by these devices has to be sent to centralization
servers which are supposed to store and/or perform computation on these data. Data com-
munication can be achieved by using the power lines or wirelessly. The main objective is to
install as few devices as possible subject to the network being satisfactorily monitored.

2. Formulation

2.1 Parameters, variables, objective

Let G = (V, E) be the graph representation of the power network, with node set V' and link
set E. Each link is a pair {4, j} of nodes. The network G is embedded in R%: for each i € V let

*Financial support from the ADEME SO-grid project is gratefully acknowledged.
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v; = (vi1,vi2) € R? be the position of node i, and for each {i, j} € E let;; : [0,1] — R? be the
closed-form description of the embedding of the link {i, j} in the plane, such that v;;(0) = v;
and 'Yij(l) =V, and Yij (t) = ('Yijl(t)a 'YijZ(t)) foreacht € [07 1]

For each i € V let z; = 1 iff a node device is installed at i, and 0 otherwise. For each
{i,j} € E let y;; = 1 iff a link device is installed on {4, j}, and 0 otherwise. Let z;; € R2
be the position of the link device on {7,j}, and t;; € [0, 1] be such that v;;(t;;) = x;; if the
corresponding link is active:

i, j} € B xij = yijvij(tis) (1)

Cost minimization yields:

min) st ) i @
1€

Extending this function to different unit costs for different equipment is very easy.

2.2 Covering constraints

Next, there are covering constraints on nodes and links:

VieV s+ Y oz > 1 3)
JEV
{i,j}EE

Vi, iy €E > ym > 1L (4)

{h,k}eE
h=iVh=j

These constraints ensure that for each node/link neighbourhood at least one monitoring de-
vice is installed.

2.3 Communication extent constraints

The communication extent constraints concern the ability of the communication devices to
perform their function. If the communication occurs on the power lines, then the constraints
are technical (being on either side of a voltage drop barrier, making sure that frequencies and
phase overlap nondestructively) and largely depend on the specific properties of the network
and the device, so they are difficult to generalize. If the communication is wireless, then it is
either anchor-based or point-to-point.

In the first case, it means that every communication device sends its data to a wired hub,
commonly located at each node, which has to be within a distance threshold p of the device:

Wi, i} € B yijllwiy — zivi — 25(1 = z)villa < p. (5)

Eq. (5) makes sure that every communication device on a link is close enough to a hub on a
nearby node.

In the second case, we need to ensure connectivity with additional flow variables on the
completion of the line graph G, i.e. the complete graph G having E as vertex set: for each
e, f,g,h € Elet wg? = 1if the communication devices on links g and h use the communication
devices on links e, f as intermediate hops because they are within the distance threshold p, and
0 otherwise. We use these variables in a multicommodity flow setting, where the sources and
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targets are the links which have a communication device installed.

Vg#he# feE yeysllze —xslla < wZ;}p (6)
Vg£heE > ye(wil —wd) = ygun 7)

ecE
e#g

h h
Vg#heE,e€ E~{g,h} ny(wgf—w?e) = 0. 8)
feE
e
Eq. (6) enforces w = 1 on those link pairs having installed communication devices, Eq. (7) are
the multicommodity flow constraints at the source nodes, and Eq. (8) are the flow conservation
equations.

2.4 Reformulation

The above formulation is a nonconvex MINLP. By assuming box bounds on all continuous
variables, however, it can be reformulated exactly to a MINLP where the only nonconvexity is
given by Eq. (1) in case the v functions are nonlinear. First, reformulate Eq. (5) and Eq. (6) by
means of the standard “big M” technique. Second, all of the remaining products only involve
binary variables, and can therefore be linearized using Fortet’s reformulation [4, 5].

2.5 Validation

The hub model (with Eq. (5)) was validated with randomly generated neworks with up to 100
nodes and around 1500 links, using straight line segments as arcs.

Figure 1: Two 2D instances with 10 vertices and edge probability 0.5: linear segments (left),
quadratic curve segments (right).
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Abstract The classical aBB method is a global optimization method the important step of which is to deter-
mine a convex underestimator of an objective function on an interval domain. Its particular point
is to enclose the range of a Hessian matrix in an interval matrix. To have a tighter estimation of the
Hessian matrices, we investigate a linear parametric form enclosure in this paper. We also show that
one way to obtain this form is by using a slope extension of the Hessian entries.

Keywords: interval matrix, convex underestimator

1. Introduction

Most of the global optimization methods are based on exhaustive splitting of a search space
into smaller parts, usually boxes, and using interval computation to obtain rigorous lower and
upper estimations on the global optimal value and to remove boxes certainly not containing
any global minimizer. In this context, it is important to be able to compute a tight lower bound
of an objective function on a box. The well-known BB method [2, 3, 12] constructs a convex
underestimator, which touches the objective function at the vertices of the box. To describe
the method, we have to introduce some notation first.
An interval matrix is defined as

A:={AcR™" A< A< A},
where A and A, A < A, are given matrices and the inequality is understood entrywise. The
midpoint and radius matrices are defined as

A %(A+Z), AB %(Z—A).

The set of all interval m x n matrices is denoted by IR™*". The magnitue of A € IR™*" is
|A| := max{|A|, A|}. Intervals and interval vectors are considered as special cases of interval
matrices. For interval arithmetic, see e.g. [10, 11].

Let f : R® — R be a twice-differentiable function and = € IR" an interval vector rep-
resenting domains of the variables. The problem is to construct an underestimator function
g : R™ — R satisfying two conditions:

1. f(x) > g(x) forevery z € x,
2. g(z)is convexon z € .

The classical aBB method constructs the convex underestimator in the form of
n
g(x) = flx) = Y (@ — zi) (s — x;),
i=1

where a; > 0,7 =1,...,n, are determined such that g(z) is convex.



106 Milan Hladik

The Hessian of g(x) reads
Vig(z) = V2 f(z) + 2diag (o),

where diag («) is the diagonal matrix with entries o, ..., a,. The parameters «;-s may be
calculated it the following way. Let H be an interval matrix enclosing the image of V2 f(z)
over z € . Now, to achieve convexity of g(x), it is sufficient to choose a such that each matrix
in H + 2diag («) is positive semidefinite, i.e., its eigenvalues are non-negative. Eigenvalues
of interval matrices were investigated e.g. in [2, 6, 9]. For the purpose of the aBB method, it
seems that the most convenient method for bounding eigenvalues of interval matrices is the
scaled Gerschgorin inclusion [2, 12]. Its benefits are that it is easy to compute and eliminate
the unknowns «;, i = 1, ... ,n, and it is also usually sufficiently tight. For any positive d € R",
we can put

oy = max{(),—% (ﬁ” - Zj;éz |hzj‘d]/dz)}, 1= 1,... , .

To reflect the range of the variable domains, it is frequently used d := z®. In [8], it was
shown that this choice is optimal under some assumptions. The author also proposed a local
improvement method to compute a more convenient scaling vector d in the general case.

The efficiency of symbolic computation of the Hessian matrix was studied in [7]. Symbolic
evaluation has a big potential in determining much tighter underestimators, however, it is
very difficult to implement symbolic expression simplifications automatically by a computer
program.

2. Hessians in linear parametric forms

Traditionally, one encloses the range of the Hessian matrix in an interval matrix H such that
F(z):=V?f(x) €e H, Vrcuw. (1)

Such an enclosure is, however, often very coarse and overestimates the true range. Herein, we
approach to a more gentle enclosure by considering an interval matrix in a parametric form

K
H(p) =Y H®p,
k=1

where HD .. HE) ¢ R™™ are fixed matrices and p,...,px are parameters varying re-
spectively in py, ..., px € IR. Such parametric forms are nowadays frequently used to model
dependencies between parameters in interval linear equation solving [5, 13].

Suppose that we have such a parametric form satisfying the basic enclosure property

Veex,Ipep: F(x)=H(p).

This model is more general than (1), and it enables to derive tighter underestimators. In
principle, we can evaluate

K
H:=H(p)=>» H"p,
k=1

by using interval arithmetic and apply the standard underestimator on the interval matrix H,
but this simplification does not utilize the linear parametric form, and the results are unnec-
essarily overestimated.

Let d € R". In order that o, . .., o, are admissible, they must be nonnegative and satisfy

—2041' < H(p)” — Z];ﬁz |H(p)7,]‘d]/d7,, Vp € p, Vi = 1, R (8 (2)
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Fixi € {1,...,n} and define
J*={j #i H(p),, > 0},

T={j¢JTuli}y H(P)@j <0},
JO={1,... .03\ (JTUJ Ui

Then we can simplify (2) to
—20; <Hp)ii— Y Hp)yy=+ > H ”d¢ = > H )yl 3)
jes+ jeJ- ‘ jeJo

To get rid of the absolute value, we estimate it from above by the linear function [1] and write

|H (p)ij| < vi;H(p)ij + Bij,

where
Hp),| - |H @), H(p) { - Hp), |[HP),
Yij = —— and f;; = — '
H(p);; — H(p),, H(p);; — H(p),,

Using these estimations and (3), we obtain
d;
—2a; < H(p Z H(p ”d |+ Z z]d - Z(’Yin(p)ij +/Bij)d_]
jeJ+ jeJ— jEJTO ‘

K
d;
Z ZHz(Jkd ZH Z Vi zg d_] pk_ZBijj-

k=1 jeg+ jeg- jEJO jeJo ‘
This inequality must be satisfied for each p € p, so to get the smallest «;, we take

Q; ‘= max {0, —%hi} ,

where
[ (k) (M4
:Z ;i ZHUd Z wd Z ZJHZJd k_zﬂlﬂd'
k=1 jeJ* jeJ~ jeJo jeJo
3. Linear parametric Hessians by slope expansion

In the previous section, we generalized the interval Hessian matrix to a linear parametric one.
Now, we utilize slope expansion [4, 10, 11] of Hessian matrix entries to get a linear parametric-
like form and apply the above method to calculate o, i = 1,...,n.

Let

fij(x) € fij(a) + Sij(z,a)" (x — a)

be a slope expansion of the Hessian entries, where S;;(x,a) € IR", and let us adapt the ap-
proach from Section 2. We take = € x as parameters p € p and associate the absolute term
fij(a) with the degenerate interval [1, 1]. Even though the coefficients S;;(x, a) are intervals
now, the results are directly applicable to this case. Therefore, we compute

Q; = max {0, —%ﬁi} ,



108 Milan Hladik
where
T
d
h;:= | Si(xz,a) — Z Sij(w,a + Z Sij(x,a) Z vijSij(x, a) @ (x —a)
jeJt jeJ— jeJo
d;
+ fila) = Y fijla + > Fi(@) 2 = (vigfila) + Bij)d_]
jEJ*T JES~ JETO !
4. Conclusion
We generalized the classical BB method to utilize linear parametric structure of an enclosure

of the Hessian matrix, and we applied this approach by using slope extensions of the Hessian
entries. Since the slope form depends on the center of linearization a, we plan to discuss
different choices and their effect on the underestimator. We will also present some numerical
examples showing that the linear parametric form can sometimes significantly reduce the

ove

Ac

restimation of the lower bound of the objective function.
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Abstract We propose a new algorithm for the solution of minimum infinity solution of under-determined
systems. It is a primal method like the one exists in the current literature but it is decidedly more in
the spirit of a dual method. It is geometrically and conceptually clear and provides important new
insight into the nature of the problem. The method is premised on the observation that at minimum
there are at least n — (m — 1) elements equal in absolute value and that these elements are maximal.
The algorithm is thus logically divided into two parts; firstly a solution with n — (m — 1) elements
equal is absolute value and maximal is obtained, and secondly the location of those elements is
changed in such a way as to reduce the infinity norm at each step. Heuristics are used to identify an
index set corresponding to the initial solution.

Keywords: Path following algorithm, Directed acyclic graph, primal formulation, Index set, Line search proce-
dure, Heuristics

1. Introduction

It goes without saying that the solutions to system of linear equations are of paramount im-
portance in almost every field of science, engineering and management. Throughout the text
we will consider the following linear system

Ar =b,z € R", Ac R™" bec R™. (1)

In practice, it is common to encounter systems that do not admit a unique solution, rather
the system is consistent where the number of variables exceeds the number of equations -
in which case an infinite number of solutions exist, or the system is inconsistent and no so-
lutions exist. In the former case the system is called under-determined and in the latter the
system is called over-determined. When the system is under-determined we have in general
m < n, and practitioners seek to pick the solution that is best suited to their needs. Mini-
mum infinity norm solutions are often chosen for various practical problems. For example,
control theoreticians have found application for the minimum infinity norm solution in terms
of kinematically redundant robots. This describes the situation in which robotic manipulators
have an excess number of degrees of freedom and thus an infinity number of possible solution
paths. The path that the control theoreticians would like to choose is the one that minimizes
the maximum dependence on any one joint. This is formulated mathematically as

minimize |z|s subjectto Az =b. ()

The problem is to minimize the maximum value of elements in the solution vector. Such a
solution is chosen when one seeks to minimize the maximum load on any node of a given
system. In particular, such solutions are sought in control theory when the limitations of any
individual component of a system cannot be breached.

The current best algorithms for the solution to problem (2) are given in [1, 2, 3, 4]. These are
the path following algorithm was proposed by Cadzow [1] in which the polyhedral structure
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of the objective function of the dual was exploited. The algorithm is premised on the ob-
servation that an optimum solution to the augmented dual problem must contain a minimum
number of element equal to zero. Abdelmalek [2] some years later proposed a linear program-
ming formulation of the dual problem in which a modified simplex method was applied to a
reduced tableu - this being made possible by the strong symmetries present in the constraint
matrix. Shim and Yoon [3] almost two decades later proposed a primal method which they
claim is conceptually and geometrically clear at the cost of computational inferiority to both of
the methods already mentioned. Their method is based on geometrical consideration of when
the level curves of the objective function first touch the solution space [3]. The polyhedral
nature of the objective function is exploited in the above methods. The fundamental ideas of
the path following method were later replicated in a 2002 paper by Ha and Lee [4] in which
a computationally inferior but geometrically clearer algorithm was presented. We propose a
primal path following method to deal with the problem (2). Unlike the dual approach sug-
gested in [1], our method is based on the primal formulation and yet conceptually different
from the primal method in [3].

2. Solution procedure of the primal method

The basic features of the proposed solution method for problem (2) will be now presented.
It is a primal method like that of the Shim-Yoon method [3] but it is decidedly more in the
spirit of Cadzow’s path following algorithm [1]. It is geometrically and conceptually clear
and provides important new insight into the nature of the problem. The method is premised
on the observation that at the minimum at least n — (m — 1) elements of the solution vector
are equal in absolute value and that these elements are also maximal. This assertion may be
deduced from the alignment criteria between the solution to the primal and the dual problem,
as previously described in Cadzow’s method, and the fact that an optimal solution to the dual
problem contains at least m — 1 zeros [1]. An alternative proof is given in [4], although this
result has long been known.

The algorithm is thus logically divided into two parts; in Part 1 a solution with n — (m — 1)
elements equal is absolute value and maximal is obtained, and in Part 2 the location of those
elements is changed in such a way as to reduce the infinity norm at each step. We shall
frequently refer to the set of equal maximal elements, the following definition establishes some
useful notation in this regard. The index set, which we will denote as A, is the set of all
elements of a vector that are maximal in absolute valuei.e. A = {i : |z;| = ||z]~}. Also then
we have the compliment as, A° = {i : ¢ ¢ A}.

Part 1 iteratively generates the required solution using a number of heuristics procedures.
The second part of the method iteratively minimizes the infinity norm in such a way that
25| < ||2*||o0 by bringing new element(s) into the index set A taking out element(s) from
the index set into its complement A°. Part 2 of the method also uses two heuristics procedure
to reach the desired optimal.

An element previously in A¢ is brought into the index set by means of a line search proce-
dure; 2"t = 2% + ofd* where d* denotes the direction vector at iteration k and o* the step
length. The direction vector is chosen so as to maintain the elements in A while reducing their
absolute value, || < |z¥| Vi € A. We shall henceforth understand z to the set of all ele-

(3
ment of z in the index set A, xp = {; : |2;] = ||2| o}, similarly for . The process by which
elements in A€ are brought into A is fundamentally the same regardless of whether we are in
Part 1 or Part 2 of the algorithm.

We have proposed criteria for the descent condition and hence the stopping condition of
the algorithm. A probabilistic scheme is suggested which allows more than one heuristic to

be employed in an iteration of the algorithm.
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In particular, our method employs novel heuristics coupled with ideas that have been ex-
ploited for the over-determined system. Heuristics at both parts are integrated probabilisti-
cally showing much improved results against when individual heuristics are employed. Re-
sults and comparisons with the existing method will also be shown.
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Abstract Constrained Fractional Quadratic Problems consists in the minimization of the ratio of two quadratic
functions, over a set of constrains. In this paper we address the particular case of linear constraint
and so the problem we are dealing with is the minimization of a fractional quadratic function over a
polytope. This problem has important applications such as the the correction of inconsistent linear
systems and the eigenvalue complementarity problems. The nonconvexity of the objective function
poses difficulties in finding global optimal solutions. In this paper we will present some results that
contribute to the development of global optimization methods, including Completely Positive and
Copositive formulations. Some preliminary ideas for addressing the Standard Fractional Quadratic
Problem are also presented.
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1. Introduction
Consider
. 2T Cx
s.t. Axr=a @)
x>0

The difficulty in the minimization CFQP arises from the nonconvexity of the objective func-
tion. The interest is due to the many applications, such as the Constrained Total Least Squares
Problem (CTLSP) in which context some valid approaches have been presented.

Data fitting, the adjustment of a function to a set of points minimizing the squares of the
errors, and approximation solutions to overdetermined linear systems are defined as Least
Squares Problem (LSP). These problems are well studied and efficient methods are known.
However, if additional assumptions or constraints are introduced then solving these problems
is more difficult. Total Least Squares Problem (TLSP) is a LSP with additional assumption of
corruptness of the data as well as the output. This problem is still manageable but the intro-
duction, in addition, of further constraints such non negativity constraints, turns the problem
into a constrained TLSP (CTLSP) which is a difficult optimization problem.

There are some important subclasses of the CTLSP, such as the Regularized Total Least
Squares Problem (RTLSP), where an additional quadratic constraint (Tikhonov regularization)
is considered to ensure solution stability, [1], [2], [3], [4], [5].

Another generalization of the TLSP is related with the minimal correction of inconsistent
linear systems, in presence of inequality constraints, and the minimal correction is defined
by the minimization of the Frobenius norm of the perturbations of the matrix of coefficients
and the independent term. In [6] the proof that this problem can be formulated as a frac-
tional quadratic program (FQP) is presented. If we consider only equality constraints then the
problem is equivalent to the TLSP [7]. The introduction of inequalities in the linear system

*CMA FCT UNL
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makes the problem much harder [8], and in [6] a branch-and-bound approach based on the
Reformulation Linearization Technique (RLT) for finding lower bounds was used.

Another interesting application of the FQP is the Eigenvalue Complementary Problem
(EiCP) with symmetric real matrices. Finding a complementary eigenvalue reduces to finding
a stationary point of the Rayleigh quotient on the simplex [9]. This problem has several ap-
plications in engineering and physics, as for instance, in the study of resonance frequency of
structures and stability of dynamical systems [10].

For the general quadratic fractional problem for small-scale problems a method that com-
bines the classical Dinkelbach method and a branch-and-bound approach for the nonconvex
quadratic problem is presented in Konno [11] and Yamamoto and Konno [12] proposed an
exact algorithm combining the classical Dinkelbach approach and an integer optimization
formulation.

Quadratically constrained quadratic problems [13], [14], [15], [16] are equivalent to a par-
ticular subclass of constrained fractional quadratic problems [13], when the linear constraints
are homogeneous. However, it seems that departure from homogeneity yields more compli-
cations, at least if there are more than just one constraints.

2. Copositivity and constrained fractional quadratic problems

Let
M, = {Aann x n matrix : AT :A}

be the cone of symmetric matrices. With respect to duality, the dual cone of the copositive
matrices
C={C €My :xCx>0forallx € R} |

is the cone of completely positive matrices
C, = {D EM,:D=YY" Y ann x k matrix with Y > O} .

Let P, C M,, be cone of symmetric psd n x n matrices and N,, C M,, be the cone of
nonnegative symmetric matrices. It is known that Ky = P,, + N, provides a approximation of
the copositive cone C,, in the sense of Ky C C,,. Since P,, and N,, are self-dual cones we have

C:C KL= (Pn+Np)* =PunN,.

The latter matrix cone is also called the cone of doubly nonnegative matrices, and sometimes
denoted by D,,.

Preisig’s article [13], in to the best of our knowledge, is the only reference where copositiv-
ity is explicitly used for finding the global solution to the FQP, where an iterative procedure
for which convergence to a KKT point of the StFQP can be proved, provided that B is both
positive-semidefinite (psd) and strictly copositive. However, no information was provided on
the quality of the solution found by this algorithm, and thus even for StFQP this method can-
not be considered complete from a global optimization perspective.

In [17] strong lower bounds based on SDP relaxations for the CFQP were presented. First
constructing matrices

— ala -—-a'A — 0 0" — 0 0"
A= _ATa ATA}’B_[O B}’C_[O 0}' @

and considering that

Ax=a <<= Az=[-a,Alz= <+= 1z Az=0,
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wherez = [1, x"]T € R, (1) was rephrased as
ZTaz
ZTEZ

, rewriting z' Az = A e Z, with A psd and observing that Z;; = 2% and

Qb—min{

T

1z € RT‘I, 7z, =1,z Az = 0} . (3)

Then putting Z = zz
z € R, we have

ez B
w:min{%:anLAOZ:O,rank(Z)zl,ZGCT*H_I}. 4)

By homogeneity, for any Z feasible to (4), constraint Z;; = 1 can be replace the by Z;; > 0.

Defining X = ﬁ Z € C;, 1 which also has rank one with X1; > 0 and satisfies BeX =1,in

[17], the following equivalent problem was obtained:
Yp=min {CeX:BeX=1 AeX=0,rank(X)=1,X1>0,X€Ci}. (5

It was also proved that the strict linear inequality and the (non-convex) rank-one constraint
could be dropped to obtain the equivalent problem

min{CeX:BeX=1AeX=0X€eC,,}. (6)
In conclusion, in [17] it was proved that,
. xOx n
w = mln{f(X)—m.AX—ELXERJF} (7)
= mn{CeX:BeX=1AeX=0,X€eC,}. 8)

Checking condition X € C;,; is (co-)NP-hard but exploiting (7) and using the inclusion
Cri1 €Dpy1=Ppi1N N1 alower bound for the CFQP was proposed by solving

Yeop=min{CeX :BeX =1 A0X=0X€Dpy1}. )
3. Standard Fractional Quadratic Program

In the section we will present some preliminary ideas for the construction of method for the
global optimization of the Standard Fractional Quadratic Program

i 2T'Cx

SFQP' min m
st. elz=1 (10)

x> 0.

Let A = {z € R":efz =1,2 > 0} be the ordinary simplex. Then the global minimum of
SFQP is the complementary eigenvector = associated with maximum complementary eigen-
value A of EiCP(B,—A) . So SFQP can be solved by a modification of an algorithm for finding
all the complementarity eigenvalues with increasing values. Based on this property it is possi-
ble to develop methods for the global optimization of (10) but this is currently under research.

4, Conclusions

In this paper we present copositive exact formulations for the CFQP. The practical interest in
these problems is discussed, with emphasis on the correction of inconsistent linear systems.
Based on these formulations SDP relaxations are proposed providing good lower bounds.
Theoretical results presented in this paper have important implications in the computation
of lower bounds for the CFQP and in the development global optimization approaches, for
instance Branch and Bound methods.
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Abstract In this work we present a novel MILP based heuristic for computing nonstationary (s,S) policy
parameters. This approach presents advantages with respect to other existing methods, since it is
easy to implement and features narrower optimality gaps.
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1. Introduction

The stochastic lot sizing problem consists in controlling an inventory system facing random
demand over a given planning horizon. The decision maker faces inventory holding costs,
if she orders too much; and backorder penalty costs, if she orders too little and demand ful-
filment is delayed until the next replenishment arrives. Each time production runs there are
fixed and variable production/ordering costs that must be accounted for while controlling
the system. The structure of the optimal control policy to this problem has been characterised
— under very mild assumptions — over fifty years ago [8]. This control policy, named (s,S5),
is surprisingly simple; this policy monitors the inventory position, i.e. on hand stock minus
backorders plus incoming orders, and issues an order to bring the inventory position up to S
whenever the inventory position falls below s.

As pointed out by [4] incorporating more realistic assumptions about product demand con-
stitutes an important research direction in inventory theory. The ability to model and control
a nonstationary demand process is essential in practical settings, since only very few busi-
nesses actually face stationary demand, while most products are subject to demand processes
that evolve over time with frequent changes in their directions and rates of growth or decline.

When demand is nonstationary an (s,S) policy is still cost optimal. However, computing
optimal control parameters for this policy constitutes a hard combinatorial task. Standard
pseudo-polynomial dynamic programming (DP) algorithms can only tackle small instances.
This motivates the investigation of effective heuristics. To date, there are only two estab-
lished heuristics for computing optimal control policy parameters under nonstationary de-
mand [1, 2]. Unfortunately, these heuristics present a number of drawbacks. They are not
easy to implement, since they require dedicated code. Furthermore, in a recent study [3],
their respective optimality gap on a large test bed has been found to average 4% to 5%. The
same work also demonstrated that approaches such as [9, 6], despite implementing heuristics
for control policies that are theoretically inferior to a nonstationary (s,S) policy, feature much
lower optimality gaps, i.e. around 1.5%, on the same test bed. This demonstrates that fur-
ther research is needed to develop more effective heuristics for computing nonstationary (s,.S)
control policy parameters.

In this work we develop an MILP based heuristic for computing nonstationary (s,S) policy
parameters. The key insight upon which sour approach is based comes from the study in [3],
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which showed that a nonstationary (R,S) policy often performs very close to optimal. The idea
is then to use an existing MILP model for computing nonstationary (R,S5) policy parameters
[5] as a proxy to determine near optimal (s,S) policy parameters. Our heuristic is easy to
implement, since it is based solely on a standard MILP model and on a simple binary search
procedure. It performs better than other existing approaches, featuring an average optimality
gap of 0.2% on our preliminary tests.

2. The stochastic lot sizing problem

The finite-horizon single-item single-stocking location nonstationary stochastic lot sizing prob-
lem as introduced in [8] can be formalised as follows. We consider a finite planning horizon of
n periods. Customer demand d; in each period ¢t = 1,...,n is a random variable with known
probability distribution. There are three types of costs: a nonlinear purchasing or ordering
cost ¢(z), where z is the amount purchased, which takes the general form

(2) = K+wvz if 2>0
)= 0 otherwise

where K and v denote the fixed and variable purchasing/ordering cost components, respec-
tively; a holding cost of h is paid of each unit of inventory carried from one period to the
next; and a shortage cost p which is paid for each unit of demand backordered at the end of
a period. Holding and shortage costs are charged at the end of a period. Ordering costs are
charged when a purchase is made. Without loss of generality, see [8], delivery of an order is
immediate.

Let y denote the stock level immediately after purchases are delivered, the expected holding
and shortage cost for a generic period are given by

/y h(y — w)g(w)dw + /Oop(w —y)g(w)dw y >0
0 Y

/0 p(w —y)g(w)dw y<0

where g;(-) denotes the probability density function of the demand in period ¢. If the initial
inventory at the beginning of the planning horizon is « and C,,(z) represents the expected
total cost over the n-periods planning horizon if provisioning is done optimally then C,(x)
satisfies

Cate) =min {cly =) + L) + [ Coaly - whon(w)as

y>z

If y,(z) is the argument minimising the above functional equation, then y,,(z) — « denotes the
optimal initial purchase.

3. (s,S) policy

As shown in [8], the optimal control policy for the problem introduced in Section 2 takes a
surprisingly simple form. The result stems from the study of the following function

Gn(y) = cy + Ln(y) + /OOO Cn-1(y — w)gn(w)dw

More specifically, Scarf proved that G,,(y) is K-convex.
Definition 1. Let K > 0, and let f(x) be a differentiable function, f(x) is K-convex if

K+ flatz)— f(z)—af(z) 20
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for all positive a and all x. This definition can be extended to a non differentiable function.

It follows that, under general nonstationary settings, the optimal policy can be described
via n pairs (s;,5;), where s; denotes the reorder point and S; the order-up-to-level for period i.
In practice, S,, denotes the absolute minimum of G,,(y) and s, < S, is the unique value such
that K + G,,(Sy,) = Gy (sp). The fact that G, (y) is K-convex ensures that ripples in the above
nonlinear function do not affect the existence of a unique reorder point s,, < S, since their
height will never exceed K.

We shall now illustrate graphically the notion of K-convexity on a simple numerical exam-
ple. Consider a planning horizon of n = 4 period and a demand d; normally distributed in
each period ¢ with mean p; € {20,40, 60,40}, for period t = 1,...,n respectively. The stan-
dard deviation o; of the demand in period ¢ is equal to 0.25.;. Other problem parameters are
K =100, h =1 and p = 10; to better conceptualise the example we let v = 0. In Fig. 1 we plot
G (y) for an initial inventory y € (0,200). In period one, when the opening inventory level y

Expected total cost Expected total cost
1 i Gn(y)
45077} Gnly), 450 7} _
/ Gn(y)
N e \
30+ 1\ e 350+ 1\
PN K = 100 ‘
| \ % |
I / I
I \ 4 I
i 262,52 Opening inventory level i Opening inventory level
250 — t — t t t t t 250 — t — t t t t t
0 ! 25 50 \75 100 125 150 175 200 0 ! 25 50 \75 100 125 150 175 200
I I
n =147 S =701 sn =140 S, =701
Figure 1: Plot of G,,(y) Figure 2: G,,(y) vs G (v)

falls below 14 it is convenient to pay the fixed ordering cost K to increase available inventory
to Sy, ie. K+ G,(Sn) = Gp(sn) < Gy,(y). Comparable graphs can be produced for all other
periods.

4. (R,S) policy

A widely adopted control policy, alternative to the (s,S5) policy, is the (R,S) policy. In this
policy, all replenishment periods must be fixed at the beginning of the planning horizon;
however, the decision maker can decide upon the actual order quantity just before issuing
a replenishment. Under a nonstationary settings this policy takes the form (é;,.5;), where §;
is a binary variable that is set to 1 if a replenishment is scheduled in period ¢ and S; denotes
the order-up-to-level associated with a replenishment that occurs in period . [5] developed
a mixed integer linear programming model to compute near-optimal (R,S) policy parame-
ters. To model nonlinear expected holding and shortage costs the authors exploit piecewise
linear upper and lower bounds of the first order loss function [7]. An interesting feature of
the model in [5] is the fact that, despited being explicitly developed for the (R,S) policy, it
can nevertheless be used as a “proxy” to the expected total cost of an (s,S) policy, i.e. G, (y).
In fact, we can first observe that the optimal expected total cost and the order-up-to-level for
period one returned by the model for an initial stock level of = units are tight approximation
to Cy,(z) and y,(x) = Sy, respectively. Furthermore, if we set 6; = 0 — i.e. we do not sched-
ule any replenishment at the beginning of the planning horizon — since G,,(y) is K-convex,
there is a unique reorder point s,, < S, such that K + G, (S,,) = Gy(s,). We can therefore
exploit a binary search on y < Sj, to find s,,. In the binary search procedure, the cost associated

with a given opening inventory level y can be approximated using G, (), the solution of the
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Table 1: Optimal policy for the numerical example; expected total cost (ETC) estimated at 95%
confidence.

SDP — ETC: (362.2,362.9) MILP — ETC: (363.0,363.1)
t St St St St
1 70.0 14.0 70.2 15.0
2 141 29.5 53.9 29.0
3 113 58.0 116 58.1
4 53.5 28.5 53.9 29.0

MILP model. We then repeat this procedure to find S; and s; for each period ¢ = 1,...,n, by
analysing GCn(), Gn1(v), - - ..

In Fig. 2, for the numerical example previously discussed, we plot Gn(y), obtained via
the MILP model in [5], when we vary y, i.e. the opening inventory level at the beginning of
the planning horizon. We also compare it to the plot of G, (y) obtained via a standard DP
approach. The optimal policy found via DP for the above example is contrasted in Table 1
against the policy obtained via the MILP heuristic.

5. Summary

In this paper we presented an MILP based heuristic for computing nonstationary (s,S) policy
parameters. Preliminary computational results over a large set of instances reveal that the
average optimality gap observed for our approach is 0.2%. In contrast, on the same test bed
[1, 2] feature optimality gaps of 2.09% and 3.52%, respectively; however, these latter heuristics
are faster than ours. A complete analysis of these results will be discussed in the full paper.
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Abstract In this work, an exact Branch and Bound algorithm has been applied to a practical problem. This
optimization problem arising in the design of space thrusters, is hard to solve mainly because the
objective function to be minimized is implicit and must be computed by using a finite element code.
In a previous paper, we implement a method based on local search algorithms and we then proved
that this problem is non convex yielding a strong dependence on the starting points. In this paper
by posing an hypothesis of monotonicity that we validated numerically, we provided properties
making it possible the computation of lower bounds and some improvements of the convergence of
such a Branch and Bound code. Two numerical examples show the efficiency of the approach.

Keywords: Maxwell’s PDE, Topology Optimization, SIMP method, Branch and Bound.

1. Introduction

In the field of space propulsion, the electric propulsion constitutes an interesting technology
compared to the chemical one. Indeed, the weight and volume of the total system including
the thruster and its corresponding fuel is considerably decreased. Among the electric propul-
sion systems, the Hall effect thrusters are more and more used on board of telecommunication
satellites, mainly for keeping some geostationary positions. This technology seems to be not
studied so far since the seventies in Russian laboratories.

In this work, we try to find the structure of some zones which can provide an imposed mag-
netic field inside an objective zone; in Figure 1, 2, corresponds to the variable area and Q7 is
the zone where the magnetic field must be approximate, yielding a least square optimization
problem. Thus, the design of spatial plasma thrusters can be understood and formulated as
a topology optimization problem where the variable areas will be discretized in small subdo-
mains where the value will take 0 for void and 1 for iron providing a large scale non linear
discrete optimization problem.

The difficulty of this problem is that the objective function is not explicit but as to be com-
puted via the resolution of Maxwell’s partial derivative equations (PDE). And so, that consti-
tutes one of the main difficulty of our optimization problem. In [1], we first solved this topol-
ogy optimization problem by associating a penalization method (SIMP approach [2]) with
local optimization based algorithms. This first code was developed in MatLab using fmincon
subroutine and FEMM software to solve the PDE. We validate this approach on numerous ex-
amples reaching problems with 800 variables.

Nevertheless, as we shown in [1] this optimization problem is non-convex and therefore
the optimal solutions depend strongly to the starting point given to the local solver fmincon.
Thus, it becomes interesting to study this global optimization problem. The idea of this work
is to develop a Branch and Bound code to solve exactly this least square problem. The main
difficulty here is to deal with an implicit objective function which has to be computed via
a finite element code to solve the Maxwell’s PDE. This approach is based on an hypothesis
which seems to be verified in our examples.
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In Section 2, the problem formulation is detailed. The Maxwell’s PDE are then presented.
In Section 3, some properties are discussed in order to make it possible the use of a standard
Branch and Bound code. In Section 4, some numerical results are presented by using a Branch
and Bound code that we developed in MatLab. These results validate our approach and the
hypothesis that we provide. Section 5 concludes.

2. Problem formulations

We consider the design domain depicted in Figure 1, the purpose is to minimize the discrep-
ancy between the expected magnetic flux distribution By and a computed value B in the target
region {)1. The subsets €)1 and )y, of the considered domain (2 are the variable areas. The
design goal is then to distribute optimally the ferromagnetic material inside them. In order to
impose more specifications on the expected results, a limited material quantity is fixed. This
constraint is formulated in term of allowed volume 1}, of the design variable region. The de-
sign parameter is the magnetic permeability (1) of the considered ferromagnetic material (here
the iron). The computed magnetic field induction B is the curl of the vector potential A. This
vector potential is called the state variable indeed it is solution of a Maxwell equation consid-
ered in the literature as state equation. The power source of the device to be manufactured is
supplied from a fixed current density J. The density current J is provided by coill and coil2
(see Figure 1). Thus, our topology optimization problem can be formulated as follows:

min F(u, 4) = ||B(4) - Boll?,
w, A

(KJ) s.t.: 1AA ) 1
—4AA=J, inQ, and A € H(), (I)

p€Pi={pe€L®N : fimin < < fmaxs Jo #dQ=Vo}, (II)

where: B(4) = (33,-%3). v A e H}(Q).

For designing a structure, in particular a magnetic circuit with topological optimization
method, we are interested in the determination of the optimal placement of a given isotropic
material in space; i.e., we should determine which points of space should be material points
and which points should remain void (no material). It follows that the problem becomes a "0-
1problem" indeed we can set 1 for material points and 0 for void ones. A new variable denoted
by p and called material density function in the literature is introduced to parameterize the
distribution of the material in the design domain such that p equals to 1 for material points
and 0 elsewhere. Then an interpolation scheme is used to express the magnetic permeability
v in function of the density function by the relation below:

1(p) = fmin + (Hmax — Hmin)p, With p € {0,1}, )

where fimin and pmax are the permeability of void and the predefined ferromagnetic material
respectively.

A typical approach to solve numerically problem (p), is to discretize the problem using
finite element. We use a finite element method software FEMM to solve the PDE (I) in (p)
to have the values of A in function of the density p. Thus, problem (p) can be formulated
depending on p thanks to equation (1) (note that iz depends also on p). The variable areas 2,1
and (2, are meshed coarsely. This mesh of the variable areas remains fixed throughout all
the optimization process. Each cell of that mesh grid is associated to a design variable and
corresponds to a component of p , thus inside each cell one must determine the material prop-
erties (ferromagnetic or void). Finally our topology optimization problem can be rewritten
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depending on the material density function under the following form:
min F(p) = |1B(p) — Boll",
s.t.:

where: equation (¢) is the equivalent of the state equation by using material density function;
equation (4i) is the volume constraint. NV is the number of cells provided by discretizing the
design variable domain. Note that since the mesh is regular and uniform each cell has the
same volume and we put v that elementary volume and vy= Vy/v. And B(p) := B(A), with A
solution of Equation (I) for a given p.

3. A Branch and Bound Algorithm for Designing a Space
Thruster

We solve the problem (gp,) with a global optimization technique based on Branch and Bound
method. But it is well known that the complexity of that method is 2V (V is the number of
variables see problem (p,)). Hence, it is very difficult to deal with large scale problems. In
our study, we have to use a hypothesis by observing some monotonicity of the magnetic flux
distribution in the design domain.

Hypothesis 1. Let X be a subset of [0, 1] For all p, we have:
peX = |[B(p)l € [IBX.inf)], | B(X.sup)]], ()
The standard vectorial interval arithmetic notations are used for .inf and .sup.

Remark 1. This hypothesis owns a physical sense. Indeed it means that in the design domain the
density of the module of the magnetic flux B increase with the presence of the ferromagnetic material in
the variable areas. Moreover, a lot of numerical tests were performed and they confirmed that hypothe-
sis 1 holds (at least for all the configurations that we studied so far). Nevertheless, actually we cannot
provide an entire proof of hypothesis 1.

Using hypothesis 1, it is possible to construct efficient lower bounds, as follows:
Proposition 2. Let X be a subset of [0, 1]. If hypothesis 1 holds, we have:
F(p) z |B(X.inf)|[* — 2| B(X sup)||l| Boll + 1 Bo|I*, ¥p € X. 3)
Proof. With hypothesis 1 the proof is direct by expanding the expression of F(p). O
By using again hypothesis 1, we obtain the following two following properties:
Proposition 3. ||B(X.inf)|| > || Bo|| + 1/ f and | B(X.sup)|| < || Bol — \/}, where f is a current
solution obtained during the iterations of the Branch and Bound algorithm.

Proof. By considering the objective function and f and by denoting p* a global minimizer,
we have that f(p*) < f. This yields that we are only interested by points p € X such that
f(p) = lIB(p) — Boll* < f. By remarking that [|B(p) — Bo[l* = ([IB(p)Il — [ Boll)?, the result
follows. -

Remark 4. Proposition 3 yields two constraints that can be used inside our Branch and Bound algo-
rithm. These particular added constraints make much more efficient the Branch and Bound code that
we developed here.
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4, Numerical Results

Our approach was tested with success on some examples. We present here two results: the
first one owns 6 variables where the global solution is obtained in 15 iterations (< 26 = 64) and
the second one with 20 variables is much more difficult and the global optimum is proveded
in 4750 iterations (instead of 1 048 576 iterations), see Figures 2 and 3. These numerical results
were performed with: J; = —2-10° A/m? (in coill), Jo = +2-10° A/m? (in coil2), pmin =
po = 47-1077 H/m and pimax = 1000p0. In Figures 2 and 3, we just plot the design variable
areas ({2y; on the left and {2y, on the right) where the blue cells are for void regions and the
red ones are for iron parts.

Q, Ko e -

Q,n Qr Q1 o -

® — i1 e e

Hmax - e

. () —— coit2 =
iron

Figure 1: Design domain Figure 2: Global optimal de-  Figure 3: Global optimal de-

subdivision for topological sign for the problem with sign for the problem with 20

optimization. 6 variables (in 15 iterations variables (in 4676 iterations
and about 2.5 seconds). and about 17 hours).

5. Conclusion

In this paper, we present a way to solve a difficult optimal design problem where the objective
function has to be computed via a finite element code. Remarking that hypothesis 1 holds in
our cases, we derive properties which makes it possible the computation of bounds of the
objective function as well as the addition of constraints. Thus, a Branch and Bound code is
provided and validated on two examples. This will be not possible to use this exact global
optimization method to solve large scale topology optimization such as those encounter in
real-life applications. However, this method has two main interests: (i) it permits to construct
small difficult problems with a known solution which makes it possible to validate some other
local approaches; (ii) it permits to construct starting points for a local solver which will work
on a more discretized domain.
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Abstract This paper describes branching strategies for n-variable m-constraint 0-1 programs with dense con-
flict graphs. The main idea is to branch on the variable that causes the most conflicts in the conflict
graph. It leads to an algorithm whose runtime is parameterized by compatibility-degeneracy d (de-
fined in the paper). The algorithm runs in time O(n” log n +n>m + nTy ) where Ty, is the time to
solve a subproblem of the 0-1 program that has d unfixed variables and m constraints. A simple ex-
tension lists all feasible solutions in time O (n”(logn + m2d)) which is worst-case optimal to within
a polynomial factor. A second approach, which branches on pairs of variables, achieves a smaller
exponent at the cost of a larger polynomial factor. Both approaches are easy to parallelize. The
branching strategies apply to a variety of 0-1 programs—not necessarily integer linear programs.
The analysis can provide one explanation for why integer programs can be extremely difficult to
solve in the worst-case, but can be tractable in practice.

Keywords: Integer Programming, Conflict Graphs, Fixed-parameter Tractability

1. Introduction

Many important problems are A'P-hard and do not even admit good approximation algo-
rithms under reasonable complexity assumptions. For example it is A'P-hard to approxi-
mate the maximum clique problem within n!~¢ for any € > 0 [15, 25], yet picking any single
vertex gives an n-approximation. Surely this is not satisfactory. Difficulties such as NP-
completeness and inapproximability lead to a growing interest in the study of fixed-parameter
tractability and exact exponential algorithms. The reader is referred to the texts of [10] and [12]
for more information about these growing fields.

A parameterized problem is said to be fixed-parameter tractable if instances with size n and
parameter p admit an algorithm running in time f(p)n®(), where f(-) is a function that may
grow exponentially in p (or worse) yet is independent of n [10]. For example, our previous
paper [7] provides an algorithm for solving the maximum clique problem in d-degenerate n-
vertex graphs in time O*(2%4/), thus replacing n with d in the O(2"/*) algorithm of [22]. (The
O™ notation suppresses polynomial factors.) Our work in this paper generalizes this approach
for 0-1 programs using properties of an associated conflict graph to parameterize the runtime.
Conflict graphs are well-studied in the integer programming literature [4] and are used in
commercial solvers.

Fixed-parameter tractability provides one explanation for why problems can be extremely
difficult in theory, yet tractable in practice. When problems are parameterized only by the size
n of the problem, a running time of ©(2") is prohibitive for all but the smallest instances.

However, if the instances encountered in practice exhibit relatively small values of the pa-
rameter p, an algorithm running time 2Pn°(!) can be useful. In this sense, our approach can
provide one explanation for why integer programming can be extremely hard in the worst-
case, yet can appear much easier in practice.
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We consider the canonical 0-1 programming problem:

maximize ¢’ x (1)
subject to Az < b 2
x € {0,1}". (3)

We assume that a conflict graph G = (V, E) is given. Conflict graphs represent logical im-
plications between the variables. For each binary variable z; there is a vertex z;; representing
z; = 1 and a vertex z;o representing x; = 0. We denote the vertex set by V = {x; : i €
{1,...,n},t € {0,1}}. Thus G has 2n vertices. An edge {x;,,xj;} in G represents a conflict en-
countered when simultaneously setting x; = s and x; = t. This conflict either gives rise to an
infeasibility or to a suboptimal solution. For more information about conflict graphs and on
typical procedures to create them, see [4]. Note that this type of a conflict graph expresses the
same information as an implication graph [3], but it is different from the conflict graphs [1].

In this paper, it is often easier to work with the complement of the conflict graph. This
graph, which we will call a compatibility graph, will be sparse whenever the conflict graph is
dense. An optimal solution to the 0-1 program corresponds to a clique in the compatibility
graph. The converse is not true.

2. Degeneracy, Its Extensions, and the Algorithms

The notion of compatibility-degeneracy is inspired by degeneracy. The degeneracy of a graph
is a common measure of its sparsity and is within a constant factor of other measures of spar-
sity such as arboricity and thickness and is bounded above by pathwidth, treewidth, and the
h-index [11]. It has been used to parameterize a variety of algorithms [7, 11, 2]. Degeneracy
is also known as width and linkage, and an algorithm with some similarities to our approach
was defined in these terms [13, 14]. However this approach uses a constraint graph, which has
two major differences with conflict graphs. First, a constraint graph has only one vertex per
variable, and variables need not be binary. Second, an edge between two vertices in a con-
straint graph denotes that the two associated variables appear in the same constraint. Thus,
constraint graphs convey different information. They also have fewer vertices and typically
have more edges than conflict graphs.

Definition 1 (degeneracy). A graph is said to be d-degenerate if every (non-empty) subgraph has
a vertex of degree at most d. The degeneracy of a graph is the smallest value of d such that it is d-
degenerate.

By [19], every d-degenerate n-vertex graph admits an ordering of its vertices (v1,...,vy)
such that each vertex v; has at most d neighbors after it in the ordering, i.e., | N (v;)N{v;, ..., vp }|
d. In fact, admitting such an ordering is equivalent to being d-degenerate [19]. The degener-
acy, as well as such an ordering, can be found in linear time by iteratively removing a vertex
of minimum degree [21].

Given a compatibility graph one may ask if there is a binary assignment to the variables
that avoids all conflicts. This is an instance of 25AT, which can be solved in linear time [3]
(possibly quadratic with respect to n). We will say that a compatibility graph is feasible if
such an assignment exists. This can be generalized for subgraphs of compatibility graphs,
and feasibility can still be determined in linear time.

Definition 2 (feasible subgraph). A subgraph G' = (V', E') of a compatibility graph G = (V, E)
is said to be feasible if and only if there exists a mutually compatible subset S C V' of n vertices, i.e.,
for every pair of distinct vertices u,v € S, we have {u,v} € E'. Otherwise, G' is said to be infeasible.

We remark that the class of infeasible subgraphs of a compatibility graph is closed under
taking induced subgraphs. This is easy to see because the n "mutually compatible" vertices
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are a clique. Note that a feasible 0-1 program implies a feasible subgraph, but the converse
may not be true.

For simple undirected graphs the open (closed) neighborhood of a vertex is denoted by
N(-) (N[-]). A similar notion, specifically for compatibility graphs, is denoted by N ().

Definition 3 (compatibility-neighborhood). Given a feasible subgraph G' = (V', E') of a compat-
ibility graph G, the compatibility-neighborhood of a vertex x € V' in G’ is denoted by N/ (xi) =
{7 :{zi,zjo} € E' and {xy,xj1} € E'}, which is the set of indices of variables that remain free when
fixing x; = t.

Definition 4 (compatibility-degeneracy). A compatibility graph is said to be d-compatibility-degenerate
if for every feasible subgraph G' = (V', E') there exists a vertex x;; € V' with compatibility-degree
Ner(xi)| < d. The compatibility-degeneracy is the smallest value of d such that the graph is d-
compatibility-degenerate.

Just as a d-degenerate graph admits a degeneracy-ordering, a d-compatibility-degenerate
graph admits a compatibility-degeneracy ordering. We will see that a compatibility-degeneracy
ordering can also be computed in polynomial time.

Proposition 5. A compatibility graph G is d-compatibility-degenerate if and only if it admits an
ordering (T ¢y, - - -, Tiy,t,, ) Of its vertices such that for every vertex x;,; either G[S;] is infeasible or
‘NG[Sj](xijtj)| < d, where Sj = {iL‘Z'jtj, . ,xi%t%}.

Thus, if we have fixed z;, = t;, there are at most d variables whose vertices occur later in
the ordering, i.e., at most d variables remain undetermined. This is the main idea that will be
exploited in the algorithm that is based on compatibility-degeneracy.

Now we describe a different parameter related to the compatibility graph that is based on
pairs of adjacent vertices. This results in the notion of bicompatibility-degeneracy d’, which
is a generalization of community-degeneracy introduced in our previous paper [7]. We note
that the bicompatibility-degeneracy can be found in polynomial time, and provide such an
algorithm.

Definition 6 (bicompatibility-degeneracy). A compatibility graph is said to be d-bicompatibility-
degenerate if for every feasible subgraph G' = (V', E') there exists an edge {z;s,x;;} € E' with
\Ner (zis) NN (x4¢)| < d. The bicompatibility-degeneracy d' is the smallest value of d such that the
graph is d-bicompatibility-degenerate.

Given a graph G = (V. E), the edge-induced subgraph of E’, denoted G[E'] = (V',E’),
includes those vertices V' that are an endpoint of an edge in E’.

Proposition 7. A compatibility graph G is d-bicompatibility-degenerate if and only if it admits an
ordering (e1,...,en) of its edges such that for every edge e, = {u,v} either G[E}] is infeasible or
‘NG[Ek] (u) N NG[Ek] (v)| < d, where Ey, = {eg,...,em}.

We propose polynomial-time algorithms for computing compatibility-degeneracy d and
bicompatibility-degeneracy d’. Two algorithms for solving 0-1 programs are developed whose
runtimes are parameterized by d or d’. The first algorithm solves 0-1 programs with d-compatibility-
degenerate graphs in time O(n?logn + n?m + nT,,,) = O*(2%). Using ¢ = O(n) processors,
this reduces to time O(n?logn + nm + Ty, ). The following result holds.

Theorem 8. All feasible solutions of d-compatibility-degenerate 0-1 programs can be listed in time
O(n%(logn + m2%)) = O*(2%). Any such algorithm requires Q(n(n — d)2%) time, so the approach is
optimal to within a polynomial factor.

The second algorithm solves 0-1 programs with d’-bicompatibility-degenerate graphs G =
(V,E) in time O (nlogn + |E|(n|E| + nm + Ty ) = 0*(2%). Using ¢ = O(|E|) processors,
this reduces to time O (n|E|* + n?logn + nm + Ty ,,)). The following result holds.
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Theorem 9. All feasible solutions of d-compatibility-degenerate 0-1 programs can be listed in time
0*(2%). Any such algorithm requires Q(n(n — d')?2%) time, so the approach is optimal to within a
polynomial factor.

In the talk, we will also report some sample values of d for instances in literature.
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Abstract We propose a model for the maximization of the number of aircraft conflicts that can be solved by
performing velocity regulation. The model is mixed-integer as binary variables are used to count
solved conflicts and to model alternative choices, while nonlinearities appear in the aircraft sep-
aration conditions. The main nonlinearities can however be relaxed by standard reformulations.
Numerical results show that the model can be satisfactorly applied at least as a preprocessing step
in a conflict avoidance procedure in a given airspace.

Keywords: Aircraft conflict avoidance, mixed-integer nonlinear optimization (MINLO), mathematical mod-
elling, Air Traffic Management applications

1. Introduction

The growth of air traffic on the world scale leads to an increasing need for automatic decision-
support tools able to integrate the work of air traffic controllers to guarantee flight safety. In
this context, we focus on a crucial problem arising in Air Traffic Management, that of aircraft
conflict detection and resolution.

Aircraft are said to be potentially in conflict when their horizontal or altitude distances are
less than given standard separation distances (SNM, where 1 NM (nautical mile)= 1852 m, and
1000 ft). Thus, when a loss of separation occurs, aircraft have to be separated. Aircraft con-
flict avoidance can be performed by different strategies aimed to separate aircraft, including
aircraft trajectory (heading angle) changes, flight level changes or aircraft velocity regulation.
Corresponding mathematical models can be developed, leading to optimization or optimal
control problems. A review is provided in [5]. In recent years, mixed-integer linear and non-
linear optimization (MILO, MINLO) have been proposed for aircraft conflict detection and
resolution, with interesting results. See for example [1], [4], [6], [7]. In previous work [4], we
proposed MINLO models for conflict avoidance based on velocity regulation, aiming at solv-
ing all the conflicts occurring in a given air sector observed during a time horizon (in a tactical
flight phase). These models are quite complex and computationally challenging.

In this paper, we propose a mixed-integer nonlinear programming problem for maximizing
the number of conflicts that are solved, in a time horizon, when only a velocity regulation is
performed. The model can be easily relaxed using standard reformulations. The interest of the
proposed model is twofold. First, it allows to easily discriminate between conflicts that can be
solved by velocity changes and those that require the application of another separation strat-
egy. Second, it can provide a starting point, and a corresponding feasible solution, for more
complex models like those in [4], eventually simplifying the branch-and-bound procedure for
their solution.

*Financial support under grant ANR 12-JS02-009-01 “ATOMIC" is gratefully acknowledged.
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The paper is organized as follows. In Sect. 2 we present the proposed mixed-integer op-
timization model. In Sect. 3 we discuss the results of some numerical experiments. Sect. 4
concludes the paper.

2. Model: maximizing the number of solved conflicts

We model conflict avoidance in such a way to achieve aircraft separation by performing a
speed change maneuver. This means that a conflict involving a pair of aircraft is solved by air-
craft acceleration or deceleration, so that aircraft pass through the points of potential conflict
at a different time with respect to what would occur if no maneuvers were performed. There
are however a few situations where velocity regulation cannot solve all conflicts of a given
aircraft configuration, that corresponds to infeasible optimization problems. In such a case,
speed change maneuvers can be performed, leaving potentially some conflicts unsolved and
needing the application of another separation maneuver, like heading angle changes.

In the present work we propose an optimization problem where the number of aircraft
conflicts that can be solved by speed changes is maximized. The proposed model can then be
used as a preprocessing step in a conflict resolution procedure in a target airspace.

Let A be the set of n aircraft. For all i, j € A, let z;; be binary decision variables defined as

~_J 1 ifiand j are separated (no conflict)
1 0 otherwise

The other decision (continuous) variables of the problem are represented by the aircraft ve-
locities, which are eventually modified with respect to the original ones (that are data of the
problem) to solve conflicts:

Umin < Ui < Umae Vi€ A,

where the bounds v, and v,,., are imposed to allow aircraft only small speed changes,
following the idea of subliminal control of velocities suggested in the context of the aeronautic
project ERASMUS [3], such that speeds can vary between -6% and +3% of the original speed.
We obtain a mixed-integer model because of the presence of binary as well as continuous
variables.

The objective function, to be maximized, is the sum of solved conflicts:

Z Zig-
ijEA, i<]
The constraints are given by the integrality constraints on z variables, the bounds on v
variables, and the separation constraint on pairs of aircraft.
Let us assume that aircraft fly at the same flight level and are identified by 2-dimensional
points on a plane. We know their initial position, their trajectory (heading) and their velocity.
The aircraft separation between two aircraft < and j at time ¢ is expressed by the condition

||z (O = d, (1)

where d is the minimum required separation distance (usually, 5 NM) and z7; (t) = z;(t) —z;(t)
is a vector representing the relative distance between aircraft i and j.

We assume that uniform motion laws apply, so the relative distance of aircraft i and j is ex-
pressed as the sum of their relative initial position and the product of their relative speed v;;
by the time:

ol (t) =af) ot e,
that, substituting into (1) and squaring, gives

(Ufj)g t* + 2(11;7]%;-) t+ ((33:]0)2 —d?*) >0. @)
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Notice that the associated equation is an equation of second degree in one unknown ¢ (its

graph is a parabola that, as (7], ) > 0, has a minimum point and opens upward), that has no

solutions if the discriminant A= (27f07;)? = (07;)?((x7])? — d?) is negative. The solutions of this

equation, if they exist, are the times at which the aircraft are not separated. So, we consider
A < 0 as a first condition of separation of aircraft ¢ and j. In the case when this condition is not
satisfied, and so aircraft 7 and j can potentially be in conflict, we look at the form of trajectories.
In this work, we assume that trajectories are straight lines intersecting in one point. As per the
geometric interpretation of the scalar product, we can look at the sign of the scalar product
xfjo v;; to infer if the vectors form an acute or an obtuse angle. In particular, when the scalar
product z7)v7; is negative, then the aircraft are converging, potentially generating a conflict,
while they are separated when the product is positive.

Finally, we impose aircraft separation imposing that A < 0 or :cfjo v;; > Oforalli,j, i <j.
Using again the z binary variables, the two constraints are written as

((@75)° = (@)*((@)* = d*)) (225 — 1) <0

ie.
(27707, (2235 — 1) < (05;)°((])? — d*) (2255 — 1) 3)
and, respectively,
(70];) (2235 — 1) 2 0. @)

Notice that the left hand sides of the two conditions differ only for a square. The same binary
variable z;; can be used to model the or condition:

(@3 07)* 225 — 1) < (0)*((2}})? — d°)(223; — 1) )
(@) (1 = 25) > 0 (6)

then using an additional variable to account for a separated pair of aircraft when the second
condition is satisfied.

The nonlinear terms appearing in the constraints come mainly from the products between
continuous and binary variables, that can be easily relaxed using the Fortet linearization. This
is commonly implemented in the most of the MINLO solvers.

3. Numerical experiments

We tested our model on instances built placing n aircraft on a circle of a given radius r, in
2-dimensional space, with speed v and a heading angle such that their trajectory is toward the
center of the circle (or slightly deviated with respect to such direction). The zone of conflict
is around the center of the circle where aircraft are placed, and each aircraft is in conflict with
each other. We solve the problem using COUENNE [2], which implements a spatial Branch-and-
Bound based on convex relaxations and provides the global optimal solution.

As an example of solution, let us consider an instance of the conflict avoidance problem
with n = 5 aircraft having speed v = 400 NM/h (equal for all aircraft). There are 10 potential
conflicts, that are all solved.

The ratio of the new speeds over the original ones for the 5 aircraft is shown in Table 1.

We see that 2 aircraft are accelerated and 3 of them are decelerated. The speed variation are in
the small range [-6%, +3%] around the original velocity for a subliminal control as suggested
by ERASMUS.

The global optimal solution is obtained in 0.16 seconds.
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4.

Table 1: Ratio of the aircraft velocities in the optimal solution over the original ones.

aircraft Uratio
1 1.00814
2 1.02809
3 0.941877
4 0.981939
5 0.962551

Summary

We proposed a mathematical model for the maximization of the number of aircraft conflicts
that can be solved by velocity changes. The model gives a mixed-integer nonlinear optimiza-
tion problem that can be efficiently solved by standard solvers for MINLO.
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Abstract A hybrid dynamical system is a dynamical system that shows both continuous and discrete state
and behavior. In our talk we will discuss the usage of global optimization techniques for solving
the problem of finding a trajectory that leaves a given set of states considered to be safe. Unlike
other known methods, we do not restrict our search to trajectories of a certain bounded length. The
algorithm combines local with global search for achieving both efficiency and global convergence,
and exploits derivatives for efficient computation.

Keywords:
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1. Introduction

A hybrid dynamical system combines the continuous state and behavior of ordinary differen-
tial equations with some discrete state and behavior. The importance of such systems stems
from their suitability for modeling embedded systems, where a discrete controller interacts
with its continuous environment. In our talk we will discuss the application of global opti-
mization techniques to the problem of falsification of hybrid systems, that is, to the following
problem:

Given:

» A hybrid system H,
m a set of states I (considered to be initial),

= and a set of states U (considered to be unsafe).

Find: A trajectory of H that starts in the set of initial states I and reaches the set of unsafe
states U (we will call such a trajectory an error trajectory).

Existing methods for falsification of hybrid systems roughly fall into the following two
categories:

» Local search [1, 9]: Such methods use local optimization to incrementally bring a start-
ing trajectory closer to an error trajectory. The advantage of local search is its relative
efficiency. The disadvantage is that for convergence it needs to be started close enough
to an error trajectory. Here the partially discrete nature of hybrid system brings an ad-
ditional difficulty, since there is no natural concept of “discrete closeness” which makes
the search for starting trajectories for local search a difficult problem.

*This work was supported by the Czech Science Foundation (GACR) grant number P202/12/J060 with institutional support
RVO:67985807.
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= Black-box global search [2, 6]: Such methods search for error trajectories globally, but
use black box optimization techniques [4, 7] that do not exploit the structure specific
to hybrid systems. This may be desired in some applications (e.g., for being able to
handle Simulink models), but this may also result in a loss of efficiency. Moreover, it
only searches for error-trajectories up to a user-specified upper bound on their length.

In our contribution we will present an algorithm that combines the advantage of both ap-
proaches:

= [t aims at quickly finding starting points for local search that can then directly converge
to an error trajectory.

»  Unlike methods based on black-box global search, the algorithm will be able to handle
the fact that trajectories of dynamical systems can have arbitrary length. It will not
assume a user-provided upper bound on the length of error trajectories, but will search
for error trajectories of arbitrary length.

» The algorithm will fulfill some global convergence properties.

However, the current goal is not to come up with an algorithm that is—on its own—as
efficient as possible. Instead, we want to present an algorithm that fulfills the properties above
and, in addition, gives an as-simple-as-possible starting point for studying properties of the
algorithm, for incorporating more sophisticated global optimization techniques [5], and for
experimenting with implementations of specific, efficient variants of the algorithm.

The starting point for our approach are standard techniques from global optimization for
combining local with global search, so called two-phase methods [8]. But we adapt those
methods to the situation that we have here: A direct application of two-phase methods would
use a search space that is spanned by variables of two kinds:

» the initial point of trajectories, and

» the trajectory length (wrt. time).
However, trajectory length is special, since it

®m is unbounded, and

= computing a trajectory of the given length from a given initial point also computes all
trajectories from that initial point with shorter length.

Moreover, hybrid systems combine continuous with discrete behavior and local search can
exploit derivatives for searching the continuous part of the states space, but no such deriva-
tives are available for discrete search which is another obstacle to the direct application of
two-phase methods.

Hence, our approach modifies two-phase methods in such a way that —instead of treating
trajectory length as a problem variable— they build trajectories incrementally from trajectory
segments, and use derivative based continuous local search to glue together those segments
based on continuous search (cf. the notion of “multiple shooting” [3, 9] in the literature on
numerical algorithms for solving boundary value problems).
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2. Problem Formulation

We will now formalize the problem under consideration:

Definition 1. A hybrid system is a quintuple H = (Q, 2, F, G, R), where
» () is a finite set (often called the modes of H)
n (2 C Q x R" (often called the state space of H)

» Fis a function that assigns to each mode q € Q a system of ordinary differential equations
Fy(xz,&) = 0, where (¢, z) € §

m G C Q (often called the guards of H)
R :Q— Q(often called the reset function of H)

Definition 2. A trajectory of a hybrid dynamical system H is a sequence of the form

((q1,71), (g2, 2), - - - (qrs Tk))

where forall i = 1,...,k, ¢; € Q and z; : [0,t;] — R™ is a continuous trajectory of the system of
differential equations given by F(q;), such that for all t € [0,;], (gi, 7i(t)) € Q. We call t; € R0 the
length of x;.

We denote by (q;,x5) € € the starting point of a trajectory (q;, x;) and (g;,x) € §Q its end-
point. Whenever (¢;,z5) € G(q;), a discrete jump between two consecutive segments occurs and
(qi+1,xf+1) =R((g;,xzf)),i=1,...,k—1

Note that —up to now— we did not fix a certain set of initial states. Instead, we allow
trajectories to start in arbitrary states of the state space. Note also, that this definition results
in trajectories that —from a given initial state— have a unique evolution (this is usually called
a deterministic hybrid system).

Now we are ready to formulate the problem of falsification of hybrid dynamical systems.

Problem 1. Let H be a hybrid dynamical system and Init C ), Unsafe C Q be two sets. The set
Init is called the set of initial states and the set Unsafe is called the set of unsafe states. The problem of
falsification of H is to find any trajectory ((q1,x1), (¢2,%2), - - . (qr, z)) of H such that (qi, z7) € Init
and (qy, x§,) € Unsafe. Such a trajectory is called an error trajectory of H.

3. Key Ideas of Algorithm

The algorithm that we will present, is based on the following key ideas:

» Instead of immediately computing candidates for error trajectories in one piece, we com-
pute trajectories that are only intended to be pieces of the final error trajectory (we will
call them trajectory segments in the following). By forming sequences of such trajectory
segments we will get candidates for error trajectories.

»  We reformulate the hybrid systems falsification problem into an optimization problem
using an objective function that measures the distance of a sequence of trajectory seg-
ments to being an error trajectory.

= We allow various strategies for computing the trajectory segments (e.g., random global
search). In order to handle the lack of a natural distance measure that can be used for
local optimization over the discrete modes we connect the discrete modes by trajectory
segments.
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= We use continuous local search to minimize the distance of a sequence of trajectory seg-
ments to being an error trajectory. This glues together the trajectory segments and moves
the first and last point toward the set of initial and unsafe states. Note that here we do
not only move the trajectory segments, but we also optimize their length.

= We initialize the set of computed trajectory segments in such a way that we can use
continuous local search from the beginning.

The algorithm can be instantiated with a variety of heuristics and strategies. In the talk we
will present some variants of the algorithm and the results of computational experiments with
them. We will also discuss conditions under which we succeeded to prove global convergence
of the algorithm.

4, Conclusion

We use techniques from global optimization to solve the problem of falsification of hybrid
dynamical systems. In general, the application of global optimization techniques to hybrid
systems promises to be highly fruitful.
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Abstract Since 2001, the Mixed-Integer Nonlinear Programming Library (MINLPLib)! [1] and the GLOBAL
Library (GLOBALLib)* have provided algorithm developers with a varied set of both theoretical
and practical (MI)NLP test models. In this presentation, we report on recent progress on extending,
updating, and categorizing MINLPLib and GLOBALLib. We hope that the updated library can be a
starting point to define a widely accepted test set to evaluate the performance of NLP and MINLP
solving software.

Keywords: mixed-integer nonlinear programming, nonlinear programming, global optimization, instance li-
brary, benchmarking

1. Introduction

Collection of instantiations of mathematical programming models play an important rule for
solver software developers. The task of such collections is to provide access to a wide set
of interesting problem instances with different characteristics. Especially commercial solver
vendors test their solver on thousands of test problems before releasing a new software ver-
sion. Additionally, the evaluation of algorithmic improvements (in terms of robustness and
efficiency) requires well-balanced test sets of significantly many real-world instances.

The Netlib collection® [3] had an important impact on the field of Linear Programming. Still
today, developers of LP solvers test and compare their implementations on this collection. By
allowing for independent comparisons of Linear Programming solvers, this collection con-
tributed to make Linear Programming solvers as reliable and efficient at they are today. Later,
the MIPLIB collection* with its regular updates [5] has become the standard test set to compare
the performance of Mixed-Integer Linear Programming solvers.

In the area of Global Optimization for (Mixed-Integer) Nonlinear Programming, several
collections of model instances have been made available in various formats. In 2001, the
MINLPLib collection was released [1], which integrated instances from the GAMS Model Li-
brary5, MacMINLP?, the MINOPT library7, and [2]® in a single collection using one common
format (GAMS). Additionally, the CONVERT tool to translate GAMS models into other for-
mats, including AMPL, BARON, and LINGO, was created. Initially, MINLPLib consisted of
136 instances, most of them originating from different applications. The size of the instances
varied from tiny (e.g., 1 equation and 5 variables) to huge (e.g., 24972 equations and 23827
variables of which 10920 are binary). Over the years, additional instances were contributed
from various sources, so that the MINLPLib consisted of ~ 270 instances by the beginning of
2013. Similarly, the GLOBALLIb collection of nonlinear programming (NLP) instances was

Thttp:/ /www.gamsworld.org/minlp /minlplib.htm
Zhttp:/ /www.gamsworld.org/global / globallib.htm
3http: / /www.netlib.org/lp/index.html

4http: //miplib.zib.de/

5 http:/ /www.gams.com/modlib/modlib.htm

6http: / /www-unix.mes.anl.gov/ leyffer/MacMINLP/
7http: / /titan.princeton.edu/MINOPT /modlib/Tests/
Shttp:/ /titan.princeton.edu/ TestProblems /
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Figure 1: Source of Instances in MINLPLib at the beginning of 2013 (left) and now (right).

released in 2001. It originally consisted of 256 instances from [2] and the GAMS Model library.
Today, it comprises 392 instances.

Even though MINLPLib and GLOBALLib have been extremely useful as test sets for solver
developers, the inclusion of many very easy instances, many very hard instances, and large
homogeneous test sets makes these collections unsuited as a benchmark set to compare global
or local solvers. On the other hand, the success of Netlib and the MIPLIB collections raises
the hope that a commonly accepted benchmark set of NLP and MINLP instances could enor-
mously contribute to the development of efficient and reliable global NLP and MINLP solvers.

As a first step towards this direction, we have started in 2013 with a renovation of the
MINLPLib infrastructure and instance collection. In the following, we highlight some of these
developments.

2. New Instances

New MINLP Instances have been harvested from several sources. The largest portion are in-
stances taken from the CMU-IBM Cyber-Infrastructure for MINLP? [4], the CMU-IBM Open
source MINLP Project!'?, and the library for polynomially constrained mixed-integer program-
ming POLIP!M. Figure 1 shows the number of instances from various sources at the beginning
of 2013 and now. Figure 2a shows the size of all MINLPLib instances in a scatter plot.

As there exists no generally accepted free format for nonlinear programs, most instances
are available in various formats now. While all instances are available in GAMS format, most
of them are also available in AMPL and Optimization Services Instance Language (OSiL) for-
mat'?. Additionally, instances are available in PIP format, if nonlinearities are at most polyno-
mial, and in CPLEX LP format, if nonlinearities are at most quadratic (= half of the instances).
The formats OSiL, LP, and PIP have the advantage that they can be processed without a com-
mercial modeling system like AMPL or GAMS.

http:/ /www.minlp.org

Ohttp:/ /egon.cheme.cmu.edu/ibm /page.htm

http:/ /polip.zib.de/

12In a few cases, the presence of certain nonlinear functions like errorf or signpower in the GAMS formulation prohibits a
conversion into AMPL or OSiL.
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Figure 3: Sparsity pattern of Objective Gradient (first row) and Jacobian for instances
dens itymod (Density modification based on single-crystal X-ray diffraction data) (tOp) , Lop97ic (Rail Line Opti-
mization) (middle), dosemin2d (Radiation Therapy) (bottom left), johnall (Asset Management) (bottom,
middle left), mbtd (bottom, middle right), and qapw (Quadratic Assignment) (bottom right). Linear
terms are black, nonlinear are red.

3. Instance Properties

While for the original MINLPLib, only statistics on number of variables, equations, and nonze-
ros were available, we have now started to include many more information on the instances
itself. These include sparsity pattern (see Figure 3), coefficient ranges (as an indicator for
numerical difficulty) (see Figure 2b), and distinction into linear, quadratic, polynomial, signo-
mial, and generally nonlinear functions.

For the original MINLPLib, convexity information of instances was frequently requested.
Therefor, we now attempt to automatically prove or disprove convexity and concavity of ob-
jective and constraint functions. For quadratic functions, we use LAPACK to compute min-
imal and maximal eigenvalues of the Hessian Matrix. For general nonlinear functions, we
also investigate the spectrum of the Hessian Matrix in one random point, which allows to dis-
prove convexity in many cases. For the remaining instances, we apply the symbolic convexity
checker that is implemented in the solver SCIP. This method applies some simple rules for the
propagation of curvature information in an expression graph [7, Chapter 7.3.3] to prove “evi-
dent” convexity or concavity of functions. Finally, we applied an approach based on quantifier
elimination to prove convexity of rational functions [6]. With these methods, we can disprove
convexity for 57% of the instances and prove convexity for 31%.
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4, Solution Information

Traditionally, the MINLPLib includes also solution points, i.e., known feasible solutions. For
the current renovation, we corrected small infeasibilities in the existing points and added
new points that improve incumbent solutions for some difficult instances. For each point, we
now make the maximal constraint violation and coefficient ranges of the instance in this point
available. Next to a representation in GAMS Data Exchange (GDX) binary format, solutions
are now also available in text files.

While an incumbent solution provides a verifiable primal bound on the optimal value of
an instance, providing a dual bound® in verifiable form (e.g., as branching tree with LP re-
laxations and their dual solution) is not feasible. To be still able to provide somewhat reliable
information on the quality of a known primal bound, we collect the dual bounds that are pro-
vided by various MINLP solvers. If the bound that is reported by one solver is verified by at
least two other solvers, we decide to trust this bound. Using this information, we can verify
optimality of the incumbent solution for approximately half of the current instances.

5. Future Work

The here reported status constitutes a snap-shot (taken on 15th March 2014) of ongoing work
on extending and updating the MINLPLib. We are currently in the process of adding further
instances from publicly available sources and transmitted contributions. While so far only
feasible (or not yet proven to be infeasible) instances were added, we hope to add also infea-
sible instances in the future. Additionally, we want to improve our tools to decide convexity
and to recognize duplicates. Finally, we plan to extend our efforts to nonlinear programming
problems (i.e., GLOBALLib) soon.
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Abstract Benchmarking optimization methods and meaningful characterization of optimization problems
have been the focal points of many research projects done in the field of global optimization. Our
approach aims at investigating this topic with the usage of the computational and mathematical
tools of network science. For a particular test problem a network formed by all the minima found
by an optimization method can be constructed. Given these networks the analysis of their partic-
ular properties (e.g. degree distribution, path lengths, centrality measures, etc.) can lead to novel
characterization of optimization problems and methods.

Keywords: benchmarking, network science

1. Introduction

Let f : D C R" — R be continuously differentiable. This work deals with optimization
problems of the type
min f(z)

together with optimization methods belonging to the class of incomplete and asymptotically
complete methods [1]. Several benchmarking techniques have been proposed already (see,
e.g. [2, 3]) with the goal of giving hints on which optimization methods should be used in
order to solve certain type of optimization problems in an efficient way. Our method comple-
ments these works with the help of the emerging field of network science.

2. Methodology

The proposed methodology takes inspirations from the early work of Stillinger and Weber
[4], in which potential energy landscapes of some atomic clusters were formed into networks.
The idea was that these landscapes can be divided into basins of attractions surrounding each
locally minimal energy level. This approach was later successfully applied to the analysis of
network topology of the potential function of small Lennard-Jones clusters [5]. In this case the
so-called inherent structure network can be built in which nodes correspond to the minima
and the edges link those minimum which are directly connected by a transition state. The
same idea can be used for combinatorial optimization problems [6]. We give here a possible
extension of these ideas to the space of continuous optimization problems and methods.
Given an optimization test problem, define a reasonable fine grid in its search space. Let
zg be a point on this grid. We take zg as the starting point of the investigated optimization
method. For each and every starting point the results of the optimization methods (i.e. the
stationary points found from that starting point) is recorded. Now the stationary point net-
work (SPN) can be constructed: the vertices of this graph are the stationary points found by
the optimization method, and two vertices are connected if they were found from the same
starting point. Note that in case of a deterministic solver this definition would never produce
any edge, so in that case the definition needs to be modified. A simple example is given in
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Section 3. Similar construction is used in [5] (and called inherent structure network) and in [6]
(called local optima network).

Once these SPN graphs are constructed for each method and for each test functions, their
properties could be used as comparison of the methods and problems in question.

Graph measures In the following we give an incomplete list of graph measures, taken from
network science, together with their interpretations in the local optima networks context.

Size of the network is defined as the number of nodes. Clearly, this represents the number
of local minima found by the optimizer.

Node degree is the number of edges a node has to other nodes. In our case this measures the
number of adjacent stationary points. Related to this, it is worth considering the nodes
degree distribution.

Average path length is defined as the average value of all shortest paths in the network. This
measure indicates that how many non-local jumps should be taken, on average, from
one basin to another to reach the one representing the global optimum value.

Diameter is the size of the longest of all shortest paths. This gives a worst-case scenario
regarding the number of non-local jumps to reach the global minimum.

Betweenness centrality for a given node is calculated as the fraction of paths connecting all
pairs of nodes and containing the node of interest. We hypothesize that the global op-
tima have the highest betweenness centrality value.

3. Preliminary results

Currently we have a prototype framework in which two methods (a simple steepest decent
(SD), and Differential Evolution (DE) [7]) are implemented along with some standard opti-
mization tests from the classical Dixon-Szeg6 problem sets. We choose these two methods
because their application in the proposed methodology must be clarified.

Firstly, SD is a simple example of the deterministic methods, i.e. it always produces the
same result if it is started from a single point. Thus, the corresponding SPN does not contain
any edge. In order to override this issue we propose here that upon starting from zg it is
checked if V f(zg) = 0, e.g. whether we start from a stationary point. (Practically, this is tested
by checking if ||V f(zg)|| < €.) If zg is a stationary point then the following ‘multistart” type
procedure is applied: give a small perturbation to x5 and start SD from there; repeat this for,
say, 10 times. The resulting graph is shown on Figure 1. Note that for better visualization we
do not show all the different points found by SD, only with those with positive degree.

Secondly, DE is a population based method, i.e. it uses more than one point during its
run. Our proposed solution here is that the starting point x5 is always included in the first
population (and obviously the other points in the population are selected randomly, as it
is done in the standard DE). Regarding the result, the connected component of the graph
produced by DE contains 665 nodes and 3848 edges. This case shows that the resulting graph
contains much more vertices than the number of local/global minima of the function, which
indicates the need for the introduction of further properties in the SPN, for example node
weights.

Finally, we notice that the whole approach has particular relevance for problems with mul-
tiple local minima. In that case the resulting graph is expected to be large enough for the
analysis by the network science tools. Detailed results will be given in the full version of the

paper.
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Figure 1: Stationary point network of SHCB using Steepest Decent method. Larger nodes
represents higher betweenness centrality value.
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Abstract A new treatment of oncological diseases is brachytherapy that means the insertion of low level ra-
diation isotopes into the organ to be healed. This cure has much less side effects than traditional
radiation therapy, while being as much effective. The problem is to determine how to position the
40-90 capsules in such a way that the tissue to be healed should obtain at least a given level of dose,
while the surrounding other organs should absorb a dose less than a prescribed level. The related
nonlinear optimization problem is of medium dimensionality (120-270). The global optimization
problem is very redundant, and it has several forms of symmetries as well. The present work aims
to speed up the optimization, to allow different intensity radiation capsules, and to decrease the cost
of the treatment. The first test results obtained for artificial models are reported.

Keywords: Operation design, Sphere packing

1. Introduction

Some cancers can be treated by a new method, by inserting low radiation level material into
the given organ. This technique, called brachytherapy has been accepted by the Hungarian
authorities a few years ago, and is used in the developed world since a decade.

Usually 40-80 pieces of small capsules (called seeds, see Figure 1) are inserted that contain
the radiating material. The operation requires local anesthesia, and can be carried out in
an ambulant way. Brachytherapy has minimal side effects compared to traditional radiation
therapy, while it is at least as effective.
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Figure 1: Seeds to be inserted containing the isotopes, and the structure of the seeds.

Brachytherapy costs around 5,000 Euros per patient. The remained pieces of the ordered
set of seeds are now handled as dangerous waste requiring expensive handling.

Brachytherapy is used for cancers in the brain, thyroid gland, neck, breast, and prostate.
The healing effect is based on the fact that tumor cells are less effective in repairing errors
in the genes. The obtained radiation dose is comparable with that of the diagnostic imaging
procedures such as CT and xray.

The optimization method to be presented can help in answering the following questions:
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= How to place a given number of seeds with known common radiation intensity in such
a way, that gives the required radiation dose to the tissues with tumors, while the sur-
rounding other tissues receive minimal radiation only?

= Which setting of the seeds allows to reach the therapy aims with a minimal number of
seeds?

» The present surgical operation design method requires 0.5-1.5 hours of computation,
while the patient waits anesthetized. Can this part of the therapy be speeded up?

» s it possible to provide an acceptable solution for seeds of different radiation intensity
(saving much money)?

We applied the following simple model for the computational tests: The tumorous tissue to
be treated is a sphere with center at the origin, and radius 3. The tissues to be saved from the
radiation are outside the sphere, and a vertical cylinder around the axe z with a diameter of
1. The radiation dose is assumed to be the same within each cube of side length 0.3, and the
dose is calculated in its center. Only those cubes were considered that belong exclusively to
one of the mentioned two tissues. A surgical operation design is regarded to be acceptable, if
at least 90% the tumorous tissue obtains radiation dose of 110 units, and at least 90% of the
tissues to be saved gets at most 90 units of radiation.

Y

P(r. &)

Figure 2: Dose calculation for a not point-like source.

Dose calculation details are from the paper of Tibor Major and Jend Julow [3] (Figure 2).
The half life of the isotope iodine-125 is 60 days, the average energy density is 35,5 keV, and it
emits gamma-radiation. The half life of the isotope iridium-192 is 74 days, the average energy
density is 370 keV, and it emits beta-radiation. In our simplified model we do not calculate
with the anisotropy (see Figure 3) of the radiation sources.

2. Optimization model

Let S;, = {(x, 9, 2) | 22 +y?+22 < 32,22 > 1} be the tissue to be treated, and Sy,; = [—3, 33\ Sin
that to be saved. Then the optimization problem is
(vol({s € Sin | D(s) > 110}) 4+ vol({s € Sout | D(s) < 90}))

max )

Z4,Yi,2i€[—3,3]3 (VOI(SWL) + VOl(Sout))

where D(s) is the cumulative dose obtained at point s from all seeds, and vol(S) is the vol-
ume of the set S. The function D(s) that calculates the summed up dose from the point-like
radiation sources, is proportional with the reciprocal of the square of the distance to the seed.
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Figure 3: Curves with equivalent dose values for the isotopes iodine-125 and iridium-192, and
illustration of anisotrophy.

The cumulative dose constraints mean basically a kind of generalization of sphere covering
of bounded bodies. In this way the optimal surgery operation design problem belongs to
discrete geometrical optimization.

The algorithm development was made in a Matlab environment. The final implementation
is planed to be in a high level programming language like C. The GLOBAL algorithm [1], a
multistart method was used for optimization. Due to the high dimensionality of the problem,
the random walk type local search technique, UNIRANDI was applied, instead of the BFGS
quasi-Newton algorithm. Since the problem is highly symmetric, such as the circle packing
problem, similar tricks should be used to have an efficient and effective algorithm.

3. First results

A representative Matlab setting of the computational testing without the trics utilizing the
symmetries and redundancies:

>> LB = [-3; -3; ... -3];

> UB = [3; 3; ... 3];

>> OPTS.N100 = 50;

>> 0OPTS.NGO = 2;

>> OPTS.NSIG = 6;

>> 0OPTS.MAXNLM = 3;

>> OPTS.METHOD = ’unirandi’;

>> FUN =Q@brachy;

>> [X0,F0,NC,NFE] = GLOBAL(FUN, LB, UB, OPTS);

A typical result when the algorithm settings were: resolution 0.2, 10 seeds, number of sam-
ple points: 500, tolerance value 10~%. At most 3 local minima was allowed, the local search
method was UNIRAND, and the running time up to 25 seconds.

>> [X0,FO0,NC,NFE] = GLOBAL(FUN, LB, UB, OPTS);
*%% TOO MANY CLUSTERS ***
NORMAL TERMINATION AFTER 1414 FUNCTION EVALUATIONS

LOCAL MINIMA FOUND: 3
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FO =
-0.8023
-0.6991
-0.6976

X0 =
0.2743 -0.8013 2.3628
1.2200 0.7336 0.3030
-0.4384 1.2329 -0.1015

The next step of algorithm development is to utilize the known sparsest covering structure
of spheres in the space, reduce the dimensionality of the optimization problem, and force a
unique identification of the seeds. This would be in accordance with what we have learned
in the determination of optimal circle packing [4, 5]. Also other global optimization methods
can help, such as the Multilevel Coordinate Search [2].

4. Summary

We have achieved an 80% quality solution for the oversimplified model (10 seeds, point-like
radiation source) with minimal computation time. The solution quality got worse with in-
creasing the dimensionality — possibly due to the decreasing relative size of the set of feasible
solutions. The computation times experienced are promising (taking into account that the in-
terpreter mode functioning of Matlab results in a ca. 500 times slower execution than a high
level language implementation). The resolution of the search space influences the CPU time
in a cubic way.
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Abstract We consider a nonlinear version of the Uncapacitated Facility Location Problem (UFLP). The to-
tal cost, to be minimized, has two parts: the transportation costs, supposed to be linear in the
(client,plant) allocations, and the operation costs, which are here assumed to be given by a con-
cave nondecreasing function of the demand served by each open facility. Thus we call the problem
Uncapacitated Facility Location Problem with Concave Operating Cost (UFLPCOC). The problem is
modeled and an exact solution approach is presented. This approach is mainly based on obtaining
efficient lower and upper bounds for UFLPCOC. Lower bounds are obtained by solving a UFLP
with extra linear constraints. To find an upper bound, we present a heuristic which is based on a
neighborhood search over the location set from the solution to the previous Integer Linear Program.
The exact approach is based on successive lower and upper bound improvements for UFLPCOC
until convergence is obtained. Computational results are presented.
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1. Introduction

In this work we consider a nonlinear version of the Uncapacitated Facility Location Problem
(UFLP), see [2], in which the total cost, to be minimized, has two parts: the transportation
costs, supposed to be linear in the (client,plant) allocations, and the operation costs, which are
here assumed to be given by a concave nondecreasing function of the demand served by each
open facility. Thus we call the problem Uncapacitated Facility Location Problem with Con-
cave Operating Cost (UFLPCOC). The problem is modeled in Section 2 and an exact solution
approach is presented in Section 3. This approach is mainly based on obtaining efficient lower
and upper bounds for UFLPCOC. Lower bounds are obtained by solving a UFLP with extra
linear constraints. To find an upper bound, we present a heuristic which is based on a neigh-
borhood search over the location set from the solution to the previous Integer Linear Program,
which follows the methodology used in [1]. The exact approach is based on successive lower
and upper bound improvements for UFLPCOC until convergence is obtained. Computational
results are presented.

2. Problem statement

Let N(|N| = n) be the set of customer demand aggregation points and M (|M| = m) be the set
of candidate locations for the facilities. We denote demand rate at node i as \; for each i € N.
For each facility at node j € M, denote by f; > 0 the fixed cost to locate a facility at node j
and by F'(A;) the variable cost to allocate a capacity of A; at facility at node j. Assume that
F(A;) is a concave function in A;. Let ¢;; be the access cost of one unit of demand from node
i at a facility located at node j. We will use S C M to denote the set of facilities selected. If
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a facility is located at site j, we call it facility j. Like UFLP each customer is assumed to be
served by the closest open facility.

Let us write the problem as an Integer Nonlinear Program. Let x; be a binary variable which
is one if we open a facility at j and zero otherwise. Let y;; be a binary variable which is one if
facility j is assigned to customers at ¢ and zero otherwise. Given the above definitions, the Un-
capacitated Facility Location Problem with Concave Operating Cost problem (UFLPCOC) is
formulated as:

min Z <fj£L'j + Z F(/\Z-yij)> + Z Z NiCijYij @)

jeM i€EN iEN jEM
s.t.

JEM

yij <x;Vie N, je M, 3)

Z cnyix < (cij — L)xj+ L, Vi€ N, j € M, (4)

keM

zj,y5 €{0, 1}, Vie N, j € M. )

The objective function (1) is the sum of the transportation costs and the facilty fixed and
variable costs. Constraints (2) ensure that each customer is assigned to just one facility, while
constraints (3) enforce the customers to be only assigned to the open facilities. Constraints (4)
are to ensure that each customer is served by the least access cost open facility. In constraints
(4) L is a large-enough positive number (e.g. L = maxcarien{cij}).

Note that UFLPCOC is an integer nonlinear program which is large-scale in nature. To
efficiently solve this problem we propose an exact solution approach.

3. Algorithms for UFLPCOC

Our exact solution approach is mainly based on obtaining efficient lower and upper bounds
for UFLPCOC. In Section 3.1, we develop an MIP, for which the objective function value
of its optimal solution provides a lower bound for UFLPCOC. In Section 3.2, we present a
heuristic, which is based on a neighborhood search over the location set from the solution to
the MIP. It is used to find an upper bound for UFLPCOC'. The exact approach presented in
3.3 is based on successive lower and upper bound improvements for U F LPCOC.

3.1 A lower bound for UFLPCOC

In order to determine a lower bound for UF LPCOC, the concave function F'(A;) is replaced
by a linear function FL(A;) such that F£(A;) < F(A;) for A;nin < A; < AP*Vj e M. Since
F(A;) is concave, every chord lies below the graph of F'. Thus, the condition required above
is satisfied if a chord is taken as F'”.

Thus, being FL(A;) = a;A; + bj a chord of F(A;), j = 1,..., M and by replacing F(A;)
with FZ(A;) in UFLPCOC will result the following mixed integer program, which we call
LBMIP:
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min Z (fj +bj)z; + Z Z Ailaj + cij)yig
JjEM i€EN jeM
s.t

2)-0©)
g';jE{O, 1}, yijzo, V’iEN,jEM.

3.2 An upper bound for UFLPCOC

We note that any feasible location vector x including the one produced by solving LBMIP
generates a feasible solution to UF LPCOC. This is achieved by first defining the assignment
vector y(x) using the assumption that customers are assigned to open facilities level by level
in an increasing order of shipping cost. Then, the resulting value of the objective function (1),
provides an upper bound for UFLPCOC.

Denote by S the set of facility locations, which are open given location vector x. To find an
improved upper bound, the heuristic uses a descent approach in a neighborhood search for
Sx— the location set produced by solving LBM I P. The distance-k neighborhood of S C M is
defined as

Ni(S)={S'"CM:|S-5|+|8 -S| <k}

i.e., S’ is in the distance-k neighborhood of S if the number of non-overlapping elements in
the two sets does not exceed k.

Once the neighborhood is well defined, the descent algorithm is straightforward: use the
solution to LBMIP as a starting subset Sx; evaluate the change in the value of the objective
function (1) for all the subsets in the neighborhood; if an improved subset exists in the neigh-
borhood, move the search to the best vector in the neighborhood. Repeat the process with
the new subset until no improved vector exists in the neighborhood. The last subset is the
solution.

Denote by Sx (the set of facility locations under vector X) the solution subset to the descent
approach, and let y(X) be the assignment vector where customers are assigned to least access
cost open facilities at Sx. The resulting value of the objective function (1) is our new upper
bound and the solution to the descent approach X and y(X) is the solution to our heuristic.

3.3 An exact approach for UFLPCOC

The exact approach presented is based on successive improvements on lower and upper
bounds on UFLPCOC in each step of the algorithm. In this approach, we first find initial
lower and upper bounds for UF LPCOC by solving the heuristic proposed in Section 3.2. In
the next step, we find an improved lower bound by solving an improved LBMIP. An im-
proved LBMIP is LBMIP with additional cuts, which exclude the pre-examined location
vectors from the feasible region (at the first step LBMIP is solved without any cuts), and
with a tighten objective function, which is found by solving 2M integer programs. After find-
ing an improved lower bound, the location set produced by solving the improved LBMIP
is used as a starting location set in a neighborhood search to find an improved upper bound
using the descent approach named in Section 3.2. The procedure continues until the lower
bound is greater than the upper bound, so that it is evident that the unexamined location sets
are unable to improve the current upper bound.

4, Conclusions

An efficient approach for solving uncapacitated facility location models with concave operat-
ing costs is presented. Preliminary computational results are being carried out on a PC Intel®
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Core " i7-2600K, 16GB of RAM. We use the optimization engine CPLEX v12.4 (CPLEX 2012)
for solving all optimization problems.
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Abstract This lecture deals with the global optimization problems where the objective function can be "black
box", multiextremal, and possibly non-differentiable. It is also assumed that evaluation of the ob-
jective function at a point is a time-consuming operation. Two statements of the problem are taken
into consideration: (i) the objective function satisfies the Lipschitz condition; (ii) the gradient of the
objective function satisfies the Lipschitz condition. Two cases are considered for both problems: the
Lipschitz constant is either known a priori or unknown (in this case it should be estimated). Local
tuning on the behavior of the objective function and a new technique, named local improvement, are
used in order to accelerate the search. Convergence condition are given and extensive numerical
experiments are presented.

Keywords: Lipschitz global optimization, Numerical methods, Partition strategies, Peano-Hilbert space-filling
curves

1. Introduction

Global optimization is a thriving branch of applied mathematics and an extensive literature
has been dedicated to this field (see, e. g., [1-27]). In this lecture, the global optimization prob-
lem of a multidimensional function satisfying the Lipschitz condition over a hyperinterval
with an unknown Lipschitz constant is considered:

f*=f(z") = min f(z), (1)
zeD
|f(2) = f(@")] < L2’ = "], a',2" € D, 2
where L, 0 < L < 00, is called the Lipschitz constant,
D =la,b] = {w € B" : a(j) < 2(j) < b(5)}, ©)
and || - || denotes, usually, the Euclidean norm (however, other norms can be also used). It is

supposed that the objective function can be "black box", multiextremal, and non-differentiable.
It is also assumed that evaluation of the objective function at a point is a time-consuming
operation. Two statements are considered: the Lipschitz constant L is either known a priori
or unknown (in this case it should be estimated).

A particular class of the Lipschitz global optimization problems is also discussed in this lec-
ture, namely, the class of problems with differentiable objective functions having the Lipschitz
gradient f'(z), i.e.,

If/ (@) - /@) < Klle' =], «',a" €D, 0<K < oo, (4)
Again, similarly to the situation regarding the constant L, the constant K can be either known
a priori or unknown and, therefore, should be estimated in a way:.

*This research was partially supported by the INAAM-GNCS 2014 Research Project of the Italian National Group for Scientific
Computation of the National Institute for Advanced Mathematics “F. Severi”.
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2. One-dimensional techniques

Numerous algorithms for solving problems (1) — (4) have been discussed in the literature.
They can be distinguished, for example, by the way of obtaining information about the Lip-
schitz constant and by the strategy of exploration of the search domain. Due to importance
of the one-dimensional methods for constructing multi-dimensional generalizations we give
an illustration how 12 one-dimensional methods work on the function no. 38 from the set
of test functions from [15]. Fig. 1 shows the graph of the function and the points where the
objective function has been evaluated by the 12 methods while minimizing this function, with
accuracy ¢ = 107%(b — a). The global minimum of the function, f* = 0, is attained at the
point z* = 3.3611804993. The following methods (see [12] for their detailed description and
an extensive testing) have been used in this examples:

- PKC: the basic method, called hereinafter GS, constructing piece-wise linear auxiliary
functions, i.e., Piyavskii’s method with the a priori Known Constant L;

- GE: G'S using the Global Estimate of the Lipschitz constant L;
- LT: G S executing the Local Tuning on the local Lipschitz constants;

- PKC_LI: GS with the a priori Known Constant L enriched by the Local Improvement
technique;

- GE_LI: GS using the Global Estimate of L enriched by the Local Improvement technique;

- LT_LI: GS executing the Local Tuning on the local Lipschitz constants enriched by the
Local Improvement technique;

- DKC: the basic method from [17], called hereinafter GS_D, constructing smooth piece-
wise quadratic auxiliary functions using the first Derivatives and the a priori Known
Lipschitz Constant K;

- DGE: GS_D using the first Derivatives and the Global Estimate of the constant K;
- DLT: GS_D using the first Derivatives and the Local Tuning;

- DKC_LI: GS_D using the first Derivatives, the a priori Known Lipschitz Constant K, and
the Local Improvement technique;

- DGE_LI: GS_D using the first Derivatives, the Global Estimate of the Lipschitz constant
K, and the Local Improvement technique);

- DLT_LI: GS_D using the first Derivatives, the Local Tuning, and the Local Improvement.

3. Multi-dimensional generalizations

Different exploration techniques based on various adaptive partition strategies are analyzed.
The main attention is dedicated to two types of algorithms. The first of them is based on using
space-filling curves in global optimization. A family of derivative-free numerical algorithms
applying space-filling curves to reduce the dimensionality of the global optimization problem
is discussed. A number of unconventional ideas, such as adaptive strategies for estimating
Lipschitz constant, balancing global and local information to accelerate the search, etc. are
presented.

Diagonal global optimization algorithms is the second type of methods under considera-
tion. They have a number of attractive theoretical properties and have proved to be efficient
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Figure 1: Graph of the function number 38 from [15] and trial points generated by the 12 methods
tested.

in solving applied problems. In these algorithms, the search hyperinterval is adaptively parti-
tioned into smaller hyperintervals and the objective function is evaluated only at two vertices
corresponding to the main diagonal of the generated hyperintervals. It is demonstrated that
the traditional diagonal partition strategies do not fulfil the requirements of computational
efficiency because of executing many redundant evaluations of the objective function.

A new adaptive diagonal partition strategy that allows one to avoid such computational
redundancy is described. Some powerful multidimensional global optimization algorithms
based on the new strategy are introduced. Results of extensive numerical experiments per-
formed on the GKLS-generator (see [2]) to test the proposed methods demonstrate their ad-
vantages with respect to traditional diagonal algorithms in terms of both number of trials of
the objective function and qualitative analysis of the search domain, which is characterized by
the number of generated hyperintervals. A number of directions of possible developments is
discussed briefly. Among them we can mention problems with multiextremal partially gen-
erated constraints, the usage of parallel non-redundant computations, and theoretical results
on the possible speed-up.
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Abstract This work deals with a Huff-like Stackelberg problem, where the leader facility wants to decide its
location so that its profit is maximal after the competitor (the follower) also built its facility. It is
assumed that the follower makes a rational decision, maximizing their profit. The inelastic demand
is aggregated into the vertices of a graph, and facilities can be located along the edges.

This Stackelberg model is a bi-level problem that makes global solvability extremely hard. Even
though the problem is tackled by a Branch and Bound method, so that global optimality is provided.

Keywords: Branch&Bound, Stackelberg problem, facility location, Interval Analysis, DC decomposition, global
optimization, bi-level problem

1. Introduction

In competitive facility location the general aim is to locate one or more new facilities for an
existing or a newcomer chain maximizing its market share or profit. When competitors are
likely to react with their own expansion, the owner has to take that into account. This leads
to a bi-level optimization problem, where the optimal location of the first player, the leader,
has to be determined depending on the location of the second player, the follower, who de-
cides its location with the knowledge of the location of the leader. This problem is called the
Stackelberg problem, or the (r, p)-centroid problem when r leader and p follower facilities are
located.

The underlying location problem depends on many factors starting from the decision space,
through properties of the demand till costumer’s choices. In this work static competition with
inelastic demand is considered. Demand is concentrated in a discrete set of points, called
demand points. Costumers are assumed to follow the probabilistic choice for the facilities, i.e.
they split their demand proportionally to the attraction they feel to the facilities. Attraction
of a facility determined by its quality and the distances to it, through a gravitational or logit
type model. The objective function to be maximized is the profit obtained by the chain, to be
understood as the income due to the market share captured by the chain minus its operational
costs. The location space in our model is a network, with the vertices being demand points
and the facilities located on its edges.

Many papers dealing with Stackelberg problems assume binary costumer choice, that al-
lows to narrow the solution candidates to a discrete set of points, transforming it a combi-
natorial optimization problem [5], or already offering only a discrete set for the locations [2].
Continous problems on the plane with analogous objectives has been addressed by [1, 3] of-
fering heuristic methods. In [4] a similar problem was proposed and solved reliably, although
on a planar space for the maximization of the market share.

*This research has been supported by the Ministry of Economy and Competitiveness of Spain under the research project
EC02011-24927, in part financed by the European Regional Development Fund (ERDEF), and the Fundacion Séneca (The Agency
of Science and Technology of the Region of Murcia) under the research project 15254/PI/10 and by Junta de Andalucia (P11-
TIC7176.)
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2. Problem Formulation

Let us now introduce formally the problem under consideration. Let us given a network

= (V, E), where each ¢;; € E refers to the edge with end points a; and a; € V denoting
its length by /.. It allows us to talk about points in an edge: edge e;; is identified with the
interval [0, l¢;;], and we thus denote any z € [0,[,,,] by the point in the edge ¢;; at distance =
of a; and distance l.,; — z of a;.

The demand is concentrated at the vertices of N, where each a € V has associated its
buying power w,. The function d,(z) gives the distance between demand point a and facility
x. Assuming that x is located on edge e;;, it is calculated as follows

da(l') = min{x + d(aiaa)a lez’j —T+ d(ajva)}

where d(a;, a) is the length of the shortest path from demand point a; to a.

In a competitive environment it is usual to assume that both firms have preexisting facilities.
Considering m existing facilities, we refer to the leader’s facilities as ; « = 1...k and to
the follower owed ones as x; j = k + 1...m. Every facility is given its fixed quality ¢; for
i = 1,...m. The new facility of the leader and the follower is denoted by the index [ and f,
respectively, thus the location of the leader’s new facility is denoted by z; its quality by ¢,
similarly we have z; and ¢ for the follower.

The market share captured by the leader (with new facility at z;) after the follower locates
atxyis

Z QZ/SOa (da(xl» + Z?:l Qj/(pa(da(xj»

Miters) = acV U 2a(da(w) + 47/ Pa(da(w7)) + 27 43/ Pala(7))’

while the market share captured by the follower is

_ Y Qf/SDa( a(@5)) + 37 1 95/ Palda(2;))
@/ palda(x0) + a5/ %a(da(zy)) + 32701 45/ Palda(@;))

.%'l,.%'f
acV

The function ¢ is a positive nondecreasing function on non negative values. The usual choice
is p(t) = t*, where A = 2 gives the so called gravitational model. Both firms are assumed
to have renting and/or operational costs depending on the facility’s proximity to demand
points. Locations near highly populated areas likely to be more expensive, therefore

aeszawa w)’ aesz% z1)

are considered, where 1 is a similar function to ¢, though the two should not be the same.
Thus the profit of the two firms are

Fy(a,wp) = Mi(a,wp) = Gi(w),  Fle,ap) = My(a,ep) — Gp().
Using the previous functions we can formulate the objective of the leader problem as
max  Fj(z;, %)

r€E

s.t. 2} = argmax Fy(x, zy)
:EfEE

Naturally the objective of the follower problem for a given z; is

max Ff(a:l,xf)
zrel
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3. A Branch and Bound procedure

The defined model gives a very difficult bi-level optimization problem, where the second level
itself, the location of the follower is an NP-hard problem. Indeed, we aim to solve this problem
with a reliable method, the well-known Branch and Bound procedure using Interval Analysis
and DC decomposition for the bound calculations.

When solving the leader’s problem using a Branch and Bound method we need a reliable
way to estimate lower and upper bounds for both the leader’s and the follower’s profit func-
tions. These bounds for the follower’s profit can be easily calculated by interval arithmetic
or using DC decomposition when the leader is already located at a point, but we also need
bounds when the leader can be anywhere within an interval. In the latter case we can only
compute bounds by interval analysis, more specifically, by natural inclusion.

The DC bound is computed by the DC decomposition of F'y, for which let us first transform
the market share of a given demand point, m,(zy), to the following form

a(iy) = (Jf/d’\(%’f)*‘zzn ki1 45/ da () _
D= qd) @) + ap/dd (wg) + 5y 47 /d) ()
1
14 vad)(zy)

=a, + (1 — aq)

where o, and v, are constants depending on a € V and z; which can be considered a constant
since it is given at a certain point. A DC decomposition of this S-shaped function if o, < 1is

ma(xy) =mg (xf) —mg (xy)

mt(zp) = 4% T (1 — aq) [galca) + ghlca)(d)(zs) — ca)]  if d)(zf) < cq
a\tf Qg + (1 — aa)ga(dfl‘(:vf)) if dé(l‘f) > Cy

mg (zf) =

{aa + (11— aq) [Qa(ca) + gg(ca)(dé‘(:cf) —Ca) — ga(dé(xf))] if dé@‘f) < ¢Cq
0 if dé(a:f) > cq

where

< A—1 >X ) 1
Ca= | 75—\ ) a = T _ I\
(1 + A\ g T+ yat>
A similar decomposition can be formulated for the core of the build cost function, let us denote
that by go(zs) = g5 (zy) — g, (xf). Using these functions we have the DC decomposition of
the profit function

F(ay) = F+(33f) — P~ (xy)

=" wa (mf(xp) + g (xy)) , =) wa (mg (xp) + gf (xp))

acV aeV

which we can use to estimate a lower bound for the follower’s profit when the leader’s posi-
tion is given.

The computation of the leader’s bounds can be done similarly, but the bounds will be valid
only if the follower position is the optimal one corresponding to its profit function, or the
interval of the follower contains its global optimizer. We considered the same methods we
used for the follower but also running a few Branch and Bound steps for the follower problem
and then using the reduced intervals for estimating the leader’s bounds.

The main Branch and Bound method operates on a set of partial solutions. A partial solu-
tion constains a segment for leader placements, and a set of segments for the corresponding
follower location which could not be eliminated so far for non-optimality. The set of partial
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solutions is initialized by taking every edge of the network as a leader segment and for ev-
ery specific leader segment each edge as follower segments. Thus the whole location space is
taken into account.

The partial solutions are stored in a binary search tree with the order defined by the upper
bounds on the leader’s profit function, such that the selection rule selects the element with the
highest upper bound. The branching rule used for the main method splits the leader segment
of the partial solution along its midpoint and leaves the follower segments unchanged. A
global lower bound is maintained for the leader, this is used in the elimination step to elim-
inate non-optimal leader segments. A leader segment is non-optimal, i.e. cannot contain the
global optimum, if its upper bound is smaller than the global lower bound.

The follower segments must be refined throughout the algorithm as well, for this we consid-
ered two methods. The first and simpler method refines the follower segments to have equal
or smaller diameters than their leader segments. This way the number of follower segments
might get out of hand, but by using an elimination rule their amount can be kept controlled.
The elimination rule discards those segments whose upper bounds on the follower’s profit
function are smaller than the lower bound of the follower maximal profit associated with the
given partial solution.

The second method for the refinement of the follower’s segments uses a Branch and Bound
method on the follower problem. The partial solution gives one segment for the leader and the
list of segments for the follower. In this method the data structure, elimination, branching and
selection rules are the same as in the main Branch and Bound method, although maximizing
the follower’s profit function. This will not converge to a specific follower position unless the
leader’s segment is small enough, thus we only run it for a given number of iterations. The
difficulty in using this method is to find the optimal number of iterations needed to refine
the follower segments enough so that the leader problem converges and yet not refining the
follower segments unnecessarily.

4. Summary

We have addressed a Huff-like Stackelberg problem on a network maximizing the profit of
both the leader’s and the follower’s chain. A Branch and Bound procedure is designed to solve
the problem where bounds are computed by Interval Analysis and using DC decomposition.
Our preliminary results are very promising even for medium sized networks, thus we aim to
accelerate the method such that the problem can be solved for large networks as well.
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