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Satellite Rainfall Retrieval
Over Coastal Zones
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Cyclone Sidr in November 2007

A snapshot of worst flood disasters in Bangladesh
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Nation's Worst Disasters

1970 Cyclone kills 300,000 to 500,000.

1988 Maonsoon floods kill 2,000
to 5,000.

1991 Cyclone kills 143,000,
1996 Tomado kills 600 in the narth,
1998 Floods kill 900.
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4.1 million affected
926,000 houses
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http://freshclick.wordpress.com/2009/03/27/causes-of-the-flooding-in-bangladesh/
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Human amplified effects of tropical storms in low-lying delta settings
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© Other cyclone-induced
embankment failures

Estimating Precipitation from Space: from TRMM to GPM
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New opportunities &
new challenges

in retrieval, fusion,
and downscaling

of precipitation

From TRMM to GPM:

TRMM
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GPM: A New Era of Global Precipitation Obsérvations
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Spaceborne Rainfall: form TRMM to GPM

Diagram of Swath Coverage by GPM Sensors. >
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Rainfall Estimation Problems

¢ Downscaling: Enhancing the resolution of a measured or modeled field

e Data Fusion: Produce an improved estimate of a field from a suite of
noisy observations at different scales

e Data Assimilation: Estimate the initial conditions in a predictive model
consistent with the available noisy observations and model dynamics

e Retrieval: Estimate rainfall from indirect noisy and lower resolution
observations of brightness temperature

Increasing challenges over heterogeneous surfaces and land-water interface
Emphasis on preserving multi-scale features, sharp fronts, and extremes
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Spatial Structure of Rainfall

TRMM PR and TMI

Typhoon Neoguri, Western Pacific, April, 2008, http://trmm.gsfc.nasa.gov
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Non-Gaussian PDF in the Gradient Domain
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“Sparsity”

Passive Microwave Retrieval: an Inverse Problem

Physics

Radiation regime

R | | e || pectrol Radiance
Emission

Scattering

T Land-surf emissivity 1

T2 Y2
X = . Yy =

L, Yn..

y=Fx) +v

Retrieval problem:
Giveny = x=F 1(y)+e

New ideas:

= Preserve sharp features in estimation by choosing the proper prior

= Learn patterns in a “smart way” from the data=> key to retrieval

= Explore Compressive sensing methodologies to retrieve from fewer observations
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NEW IDEAS for GPM Retrieval —1

1. Preserve unique features during estimation

-- Precipitation has an intermittent and multi-variable space-time structure =»
when projected in a derivative domain it displays “sparsity”
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Reconstructed image

-- Sparsity requires moving away from standard Least Squares (L2) estimation
paradigms and working with L1 norms (preserve a non-Gaussian prior)

-- Downscaling, Fusion, Variational Data Assimilation

. Ebtehaj A.M., G.Lerman, E Foufoula-Geogiou, JGR-A, 2012

. Ebtehaj, A.M. and E. Foufoula-Georgiou, WRR, 2013

Ebtehaj, A.M., M. Zupanski, G. Lerman, and E. Foufoula-Georgiou, Tellus A, 2014
Foufoula-Georgiou, E., A.M Ebtehaj, S. Zhang, A. Hou, Surveys in Geophysics, 2014 15

BwWN R

NEW IDEAS for GPM Retrieval —2

2. Learn patterns from data for retrieval

Spectral BT Rainfall Profiles ShARP: Shrunken
9-dim space ~ n-dim space Locally Linear
(each point is a (each pointisaz, Embeddlng for
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CONCEPTS AND RESULTS ON RETRIEVAL
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Overlapping measurements of TMI and PR

¢ Rainfall and Radiometric Observations:
Rainfall [mm/hr]
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Built by 25x10°
randomly chosen pixels
of spectral observations
+ rainfall
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ShARP: Locally linear embedding for rainfall retrieval

* A New Algorithm (concept):
— Concept of the locally linear embedding (supervised NL manifold learning):

radiometer c radar )
B = [by]...|by] € RXM ! R = [ri]...|ry] € RO

r ® raining
O non-raining

y;, e R™ reR”

— Search for the K-nearest neighbors to detect raining signatures

Bs = [by|...|by] € 9ok Rs = [ry]...|rx] € oK

— Estimate the representation coefficients and thus the rainfall profile
yi= Egzlca;bk v — s X = 2{.{:1%1'&-

Saul and Roweis, Science, 2000 0

ShARP: Algorithmic sketch

* Shrunken Locally Linear Embedding Algorithm for Precipitation Retrieval
— Detection step:

* K-nearest neighborhood search + a probabilistic voting rule for rain/no-rain

— Estimation Step:

* Estimation of the representation coefficients
1/2 2 2
minimize HW 2y — BSC)Hz + A1 lelly + Az [lell;
P .

subject to ¢ =0, 1'c =1, £y -norm: |l = i feslf

o,

Bs = [bi]..|[bioi|bi||.|[bj_1]bjl|...[bx] € MmexE

L1-L2 regularization for stability and reduced estimation error
¢ Rainfall estimates

% = Rgé
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ShARP methodology
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b e RY r € R™
From: coincidental - o (1)Prob. of voting
TMI. PR Obs - Spec’fra! Radiance Pr<?C|.p|tat|on —) (2)Channel weights
! ’ Dictionary: B Dictionary: R,
w = —CYi
© = max(CV;)

Detection Step:

(1) Find K-nearest neighbors of Y in B — B g (sub-dictionaries)
(2) Determine corresponding k-nninR, — Rg

(3) Determine if raining/non-raining on surface

Estimation Step:
(1) Estimate representation coefficients of Y in BB using a locally
linear model : y=Bsc+v

. 2 .
&; =minimize H\’v’”i (y — Bsc)|| + A lleill; + Az lleill
[ 2

subject to ¢; = 0, 1Te; =1,

(2) Estimate rainfall : %, = Rs¢;

Important Note: | =)
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Estimation of representation coefficients in ShARP

* Combined L1-L2 estimation

2 ‘
minicmizp HWUZ (v - BSC)HQ + Ai el + A2 HCHj

subject to ¢ =0, 1Te=1,

1) Some representation coefficients are very large and some very small (shrinkage due

to L1 regularization chooses the most important neighbors)

2) The L2 regularization stabilizes the inversion for efficient and stable solution
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ShARP spectral weights (W) and land surfaces

* Spectral weights denote relative importance of each channel
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TMI rain/non-rain spectral signatures
* Alocal estimation-detection model
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— Neighborhood Euclidean distance in a multi-spectral sense
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Cyclone Sidr, Nov. 2007

TRMM Precipitation Radar
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Retrieval of Tropical Cyclone Sidr
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Retrieval of Monthly Rain, May 2013
NASA GPROF
2A12-Rainfall [mm]
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Retrieval of Monthly Rain, May 2013
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Retrieval of Monthly Rain, May 2013
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Hurricane Danielle (2010)

— Approximate the entire posterior PDF of the ShARP
retrievals

— Probability of exceedance for the extreme rainfall
for risk analysis
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ShARP cumulative results

» Difference of the total rainfall in calendar year 2013 (1°-degree)

NASA GPROF product - “true”
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ShARP cumulative results

* Rainfall accumulation thought January, February and March in calendar year 2013 (0.5°-degree)

Coastal zones
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Take home message and future research

* GPM offers opportunities for accurate estimation of rainfall over coastal zones

* The proposed ShARP algorithm introduces two innovations: (1) smart selection of
estimation neighborhod and (2) advanced estimation within it (screens out irrelevant
spectral candidates and reduces the effects of land surface heterogeneity in emissivity)

* The superiority of the proposed algorithm, compared to the standard NASA retrieval
algorithm especially over coastal areas, was demonstrated

* Perform extensive testing over delta regions and examine improvement in retrieval,
early warning systems, and modeling of inundation and floods
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Co-authors: Mohammad Ebtehaj & Rafael Bras (Georgia Tech); Zach Tessler (CUNY)

Ebtehaj A.M., R. L. Bras, E. Foufoula-Georgiou (2014), Shrunken Locally Linear Embedding Algorithm for
Retrieval of Precipitation http://arxiv.org/abs/1405.0454

34

35

17


http://arxiv.org/abs/1405.0454
http://arxiv.org/abs/1405.0454

9/26/2014

Figure 2. Sample SMAP coverage for three orbits. Collection of radiometer data and low-resolution radar
data 1s shown in blue. Collection of high-resolution radar data is shown in yellow.
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Cyclone Alla in May 2009
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http://www.weather.com/news/weather-hurricanes/deadliest-cyclone-history-bangladesh-20130605
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