

Satellite Rainfall Retrieval Over Coastal Zones

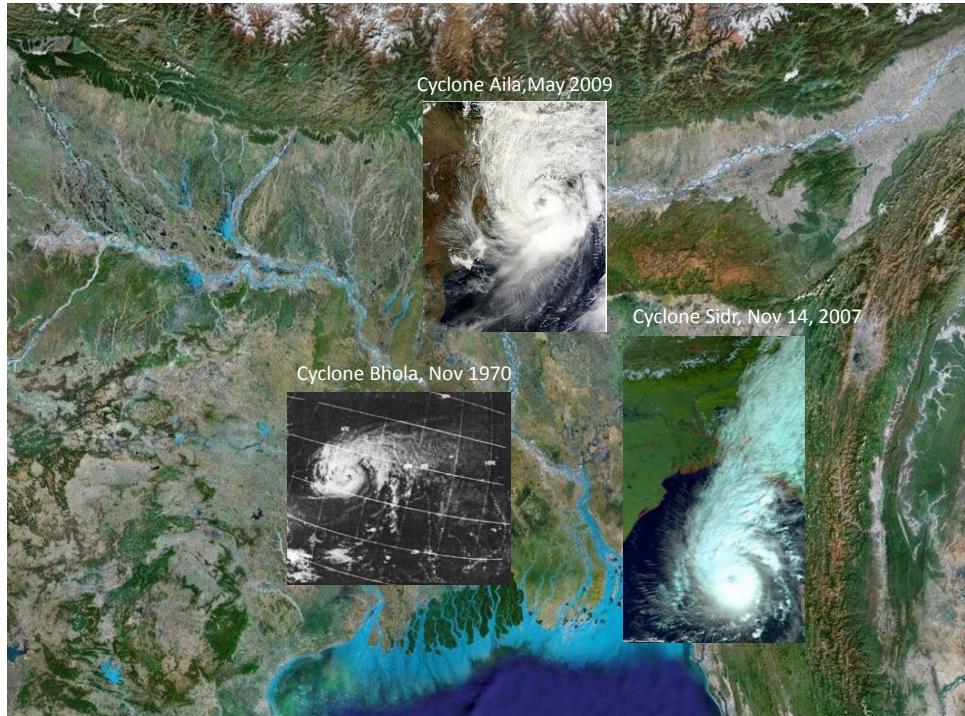
Deltas in Times of Climate Change II
Rotterdam. September 26, 2014

BELMONT
FORUM

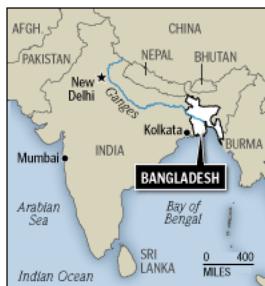
Efi Foufoula-Georgiou

University of Minnesota

Department of Civil, Environmental and Geo- Engineering

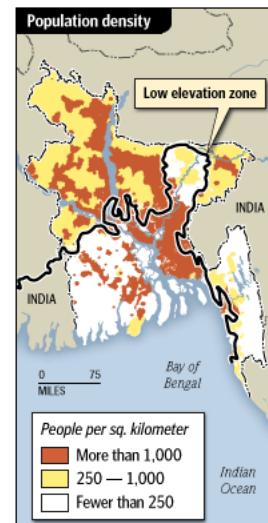


A snapshot of worst flood disasters in Bangladesh

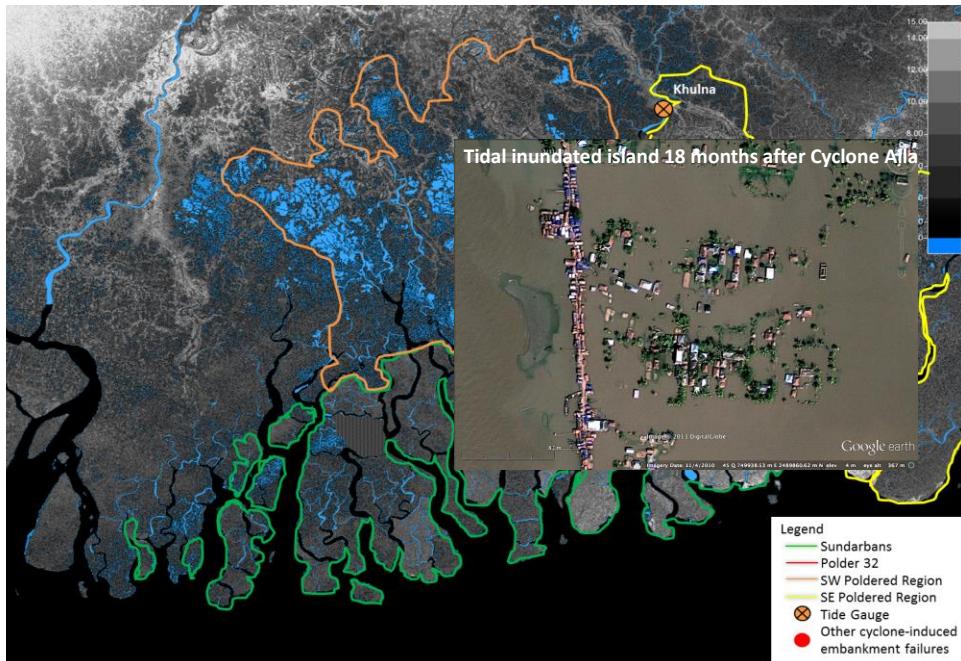


Nation's Worst Disasters

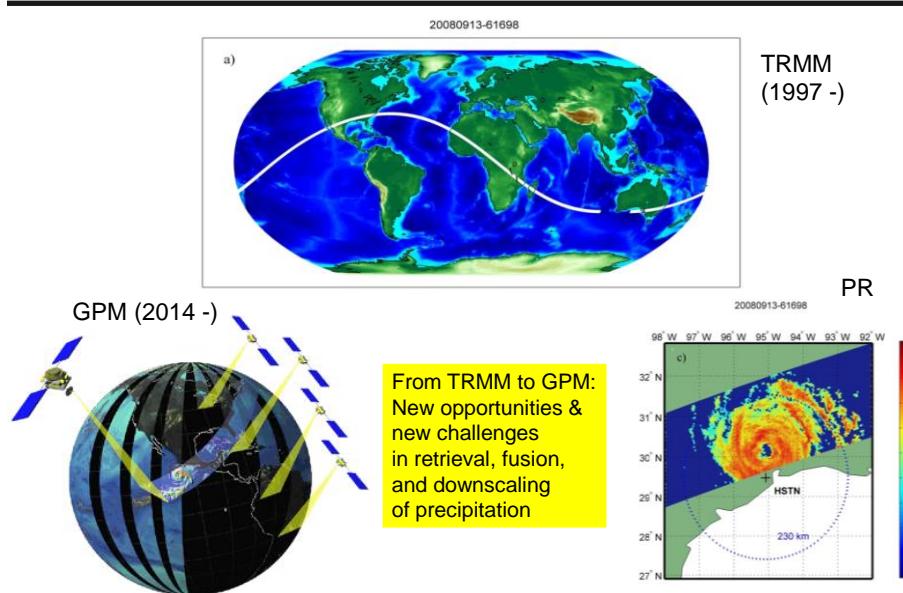
- 1970 Cyclone kills 300,000 to 500,000.
- 1988 Monsoon floods kill 2,000 to 5,000.
- 1991 Cyclone kills 143,000.
- 1996 Tornado kills 600 in the north.
- 1998 Floods kill 900.

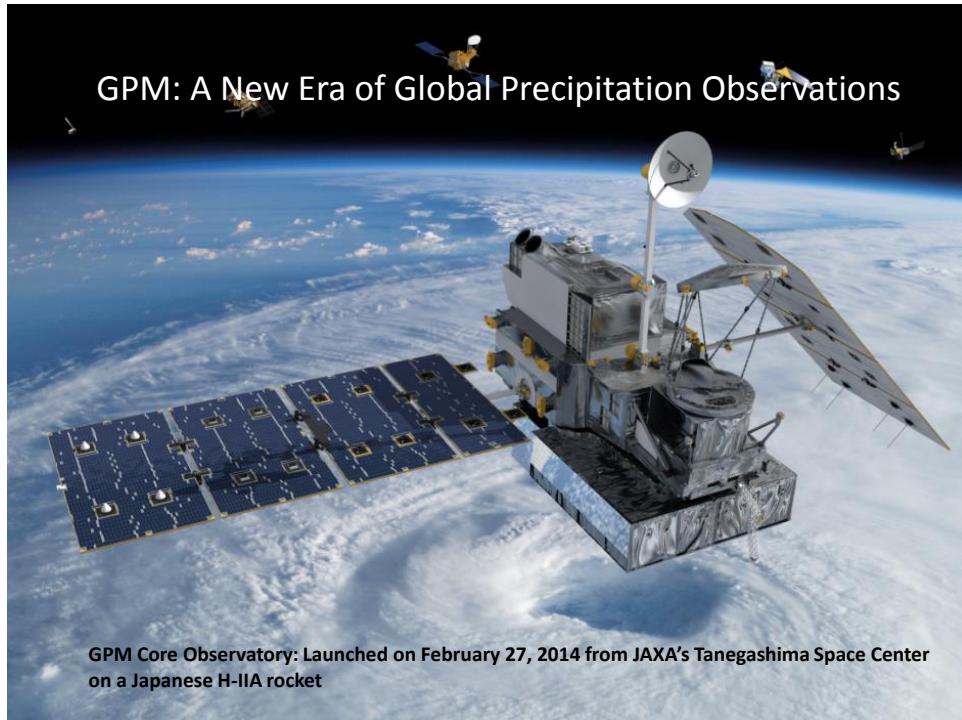


Human amplified effects of tropical storms in low-lying delta settings



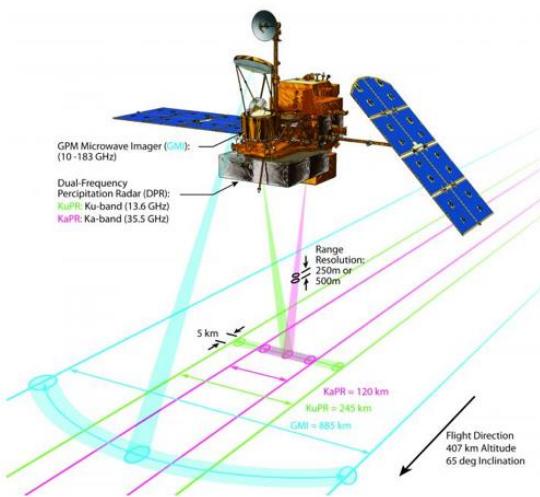
Estimating Precipitation from Space: from TRMM to GPM





Spaceborne Rainfall: from TRMM to GPM

Diagram of Swath Coverage by GPM Sensors.



DPR:

125 and 245 Km swaths
 Ka-band: 35.5 GHz
 Ku-band: 13.6 GHz

GMI:

885 Km swath
 13 channels 10 -183 GHz

Rainfall Estimation Problems

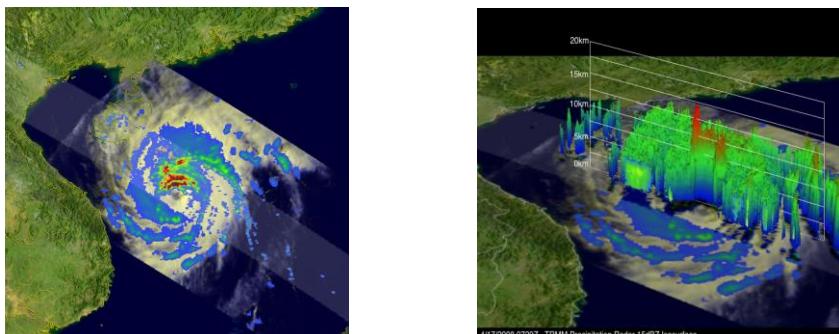
- **Downscaling:** Enhancing the resolution of a measured or modeled field
- **Data Fusion:** Produce an improved estimate of a field from a suite of noisy observations at different scales
- **Data Assimilation:** Estimate the initial conditions in a predictive model consistent with the available noisy observations and model dynamics
- **Retrieval:** Estimate rainfall from indirect noisy and lower resolution observations of brightness temperature

Increasing challenges over **heterogeneous surfaces and land-water interface**
 Emphasis on preserving multi-scale features, sharp fronts, and **extremes**

11

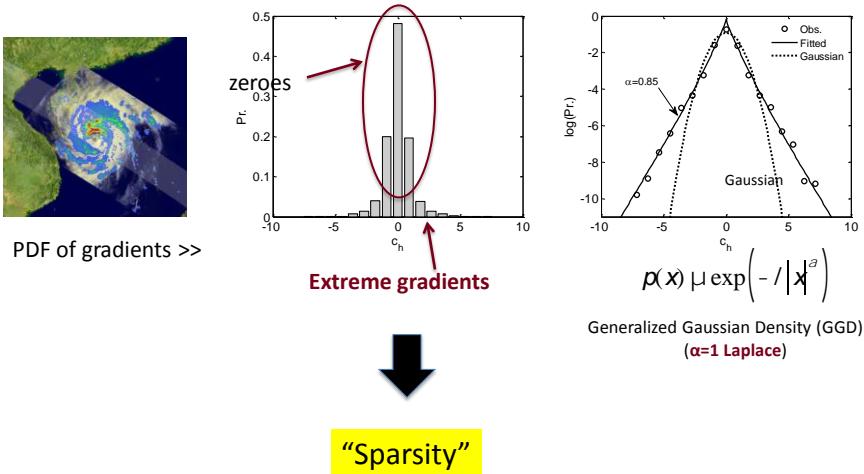
Spatial Structure of Rainfall

TRMM PR and TMI

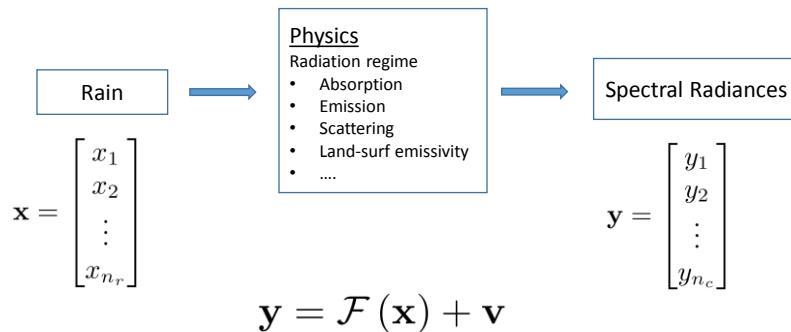


Typhoon Neoguri, Western Pacific, April, 2008, <http://trmm.gsfc.nasa.gov>

Non-Gaussian PDF in the Gradient Domain



Passive Microwave Retrieval: an Inverse Problem



Retrieval problem:

$$\text{Given } \mathbf{y} \implies \mathbf{x} = \mathcal{F}^{-1}(\mathbf{y}) + \epsilon$$

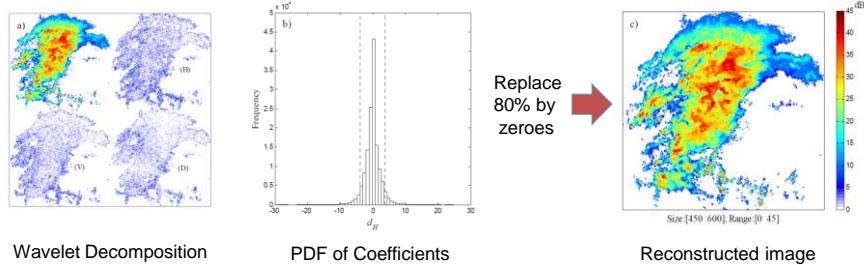
New ideas:

- Preserve sharp features in estimation by choosing the proper prior
- Learn patterns in a “smart way” from the data=> key to retrieval
- Explore Compressive sensing methodologies to retrieve from fewer observations

NEW IDEAS for GPM Retrieval —1

1. Preserve unique features during estimation

-- Precipitation has an intermittent and multi-variable space-time structure → when projected in a derivative domain it displays “sparsity”



-- Sparsity requires moving away from standard Least Squares (L2) estimation paradigms and working with L1 norms (preserve a non-Gaussian prior)

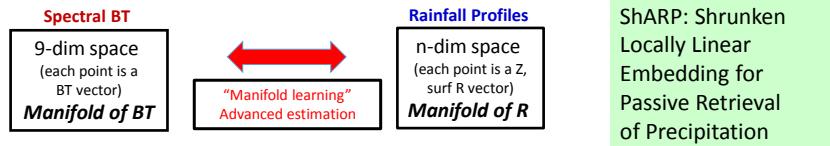
-- Downscaling, Fusion, Variational Data Assimilation

- 1. Ebtehaj A.M., G.Lerman, E Foufoula-Georgiou, *JGR-A*, 2012
- 2. Ebtehaj, A.M. and E. Foufoula-Georgiou, *WRR*, 2013
- 3. Ebtehaj, A.M., M. Zupanski, G. Lerman, and E. Foufoula-Georgiou, *Tellus A*, 2014
- 4. Foufoula-Georgiou, E., A.M Ebtehaj, S. Zhang, A. Hou, *Surveys in Geophysics*, 2014

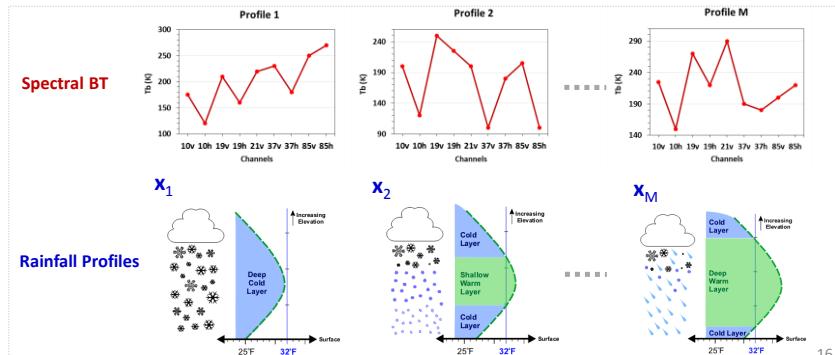
15

NEW IDEAS for GPM Retrieval —2

2. Learn patterns from data for retrieval



Database



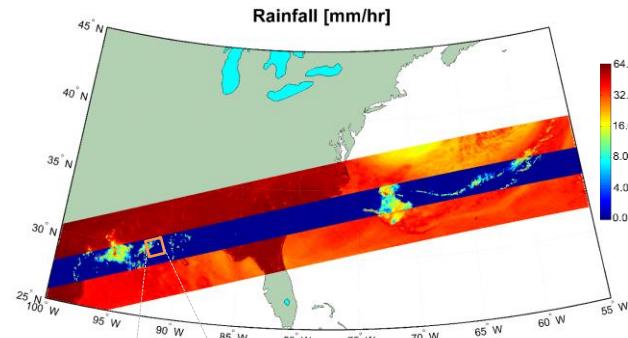
16

CONCEPTS AND RESULTS ON RETRIEVAL

18

Overlapping measurements of TMI and PR

- Rainfall and Radiometric Observations:



- Dictionaries

Built by 25×10^6
randomly chosen pixels
of spectral observations
+ rainfall

$$\mathbf{b}_i = \begin{bmatrix} b_{1i} \\ b_{2i} \\ \vdots \\ b_{n_r i} \end{bmatrix} \implies \mathbf{B} = [\mathbf{b}_1 | \dots | \mathbf{b}_M] \in \mathfrak{R}^{n_r \times M}$$

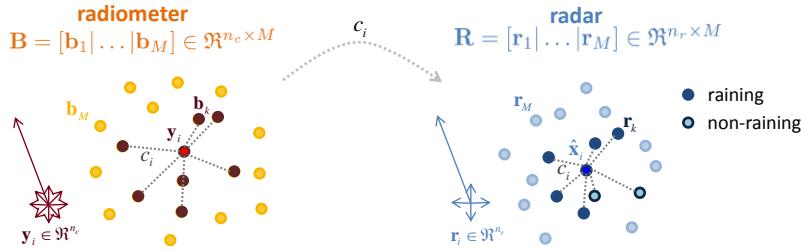
$$\mathbf{r}_i = \begin{bmatrix} r_{1i} \\ r_{2i} \\ \vdots \\ r_{n_r i} \end{bmatrix} \implies \mathbf{R} = [\mathbf{r}_1 | \dots | \mathbf{r}_M] \in \mathfrak{R}^{n_r \times M}$$

19

ShARP: Locally linear embedding for rainfall retrieval

- **A New Algorithm (concept):**

- Concept of the locally linear embedding (supervised NL manifold learning):



- Search for the **K-nearest neighbors** to detect raining signatures

$$\mathbf{B}_S = [\mathbf{b}_1 | \dots | \mathbf{b}_K] \in \mathfrak{R}^{n_c \times K}$$

$$\mathbf{R}_S = [\mathbf{r}_1 | \dots | \mathbf{r}_K] \in \mathfrak{R}^{n_r \times K}$$

- Estimate the **representation coefficients** and thus the rainfall profile

$$\mathbf{y}_i = \sum_{k=1}^K c_k \mathbf{b}_k + \mathbf{v}_k \quad \longrightarrow \quad \hat{\mathbf{x}}_i = \sum_{k=1}^K c_k \mathbf{r}_k$$

Saul and Roweis, Science, 2000

20

ShARP: Algorithmic sketch

- **Shrunken Locally Linear Embedding Algorithm for Precipitation Retrieval**

- **Detection step:**

- K-nearest neighborhood search + a probabilistic voting rule for rain/no-rain

- **Estimation Step:**

- Estimation of the representation coefficients

$$\underset{\mathbf{c}}{\text{minimize}} \quad \left\| \mathbf{W}^{1/2} (\mathbf{y} - \mathbf{B}_S \mathbf{c}) \right\|_2^2 + \lambda_1 \|\mathbf{c}\|_1 + \lambda_2 \|\mathbf{c}\|_2^2$$

$$\text{subject to} \quad \mathbf{c} \succeq 0, \quad \mathbf{1}^T \mathbf{c} = 1,$$

ℓ_p -norm: $\|\mathbf{c}\|_p^p = \sum_i |c_i|^p$
 $\lambda_1, \lambda_2 > 0$

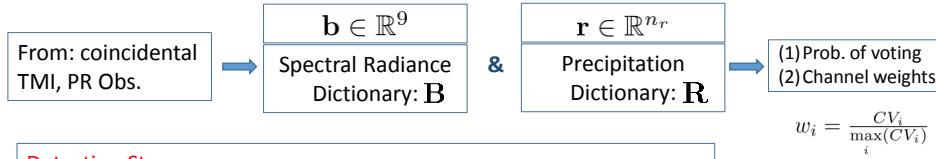
$$\mathbf{B}_S = [\mathbf{b}_1 | \dots | \boxed{\mathbf{b}_{i-1} | \mathbf{b}_i} | \dots | \boxed{\mathbf{b}_{j-1} | \mathbf{b}_j} | \dots | \mathbf{b}_K] \in \mathfrak{R}^{n_c \times K}$$

- Rainfall estimates

$$\hat{\mathbf{x}} = \mathbf{R}_S \hat{\mathbf{c}}$$

21

ShARP methodology



Detection Step:

- (1) Find K-nearest neighbors of \mathbf{y} in $\mathbf{B} \rightarrow \mathbf{B}_S$ (sub-dictionaries)
- (2) Determine corresponding k-nn in $\mathbf{R} \rightarrow \mathbf{R}_S$
- (3) Determine if raining/non-raining on surface

Estimation Step:

- (1) Estimate representation coefficients of \mathbf{y} in \mathbf{B} using a locally linear model : $\mathbf{y} = \mathbf{B}_S \mathbf{c} + \mathbf{v}$

$$\hat{\mathbf{c}}_i = \underset{\mathbf{c}_i}{\text{minimize}} \quad \left\| \mathbf{W}^{1/2} (\mathbf{y} - \mathbf{B}_S \mathbf{c}_i) \right\|_2^2 + \lambda_1 \|\mathbf{c}_i\|_1 + \lambda_2 \|\mathbf{c}_i\|_2^2$$

subject to $\mathbf{c}_i \succeq 0, \quad \mathbf{1}^T \mathbf{c}_i = 1,$

- (2) Estimate rainfall : $\hat{\mathbf{x}}_i = \mathbf{R}_S \hat{\mathbf{c}}_i$

Important Note:

22

Estimation of representation coefficients in ShARP

- Combined L1-L2 estimation

$$\underset{\mathbf{c}}{\text{minimize}} \quad \left\| \mathbf{W}^{1/2} (\mathbf{y} - \mathbf{B}_S \mathbf{c}) \right\|_2^2 + \lambda_1 \|\mathbf{c}\|_1 + \lambda_2 \|\mathbf{c}\|_2^2$$

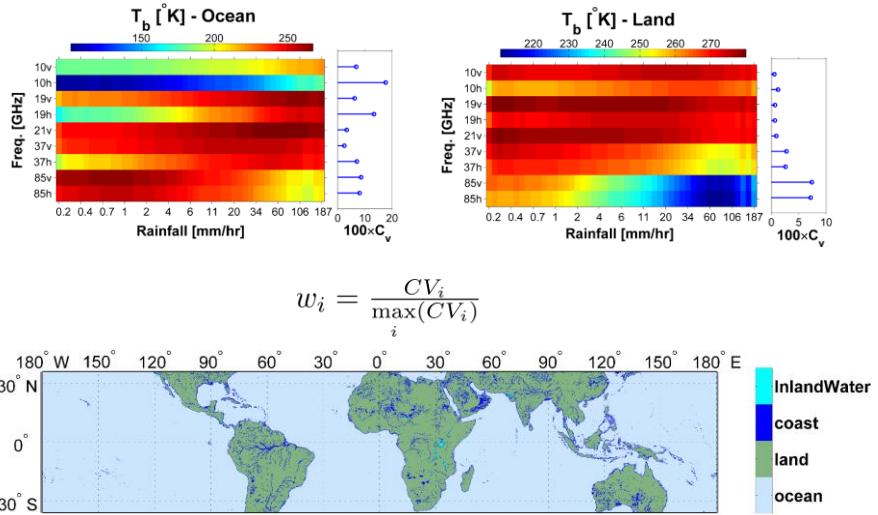
subject to $\mathbf{c} \succeq 0, \quad \mathbf{1}^T \mathbf{c} = 1,$

- 1) Some representation coefficients are very large and some very small (shrinkage due to L1 regularization chooses the most important neighbors)
- 2) The L2 regularization stabilizes the inversion for efficient and stable solution

23

ShARP spectral weights (W) and land surfaces

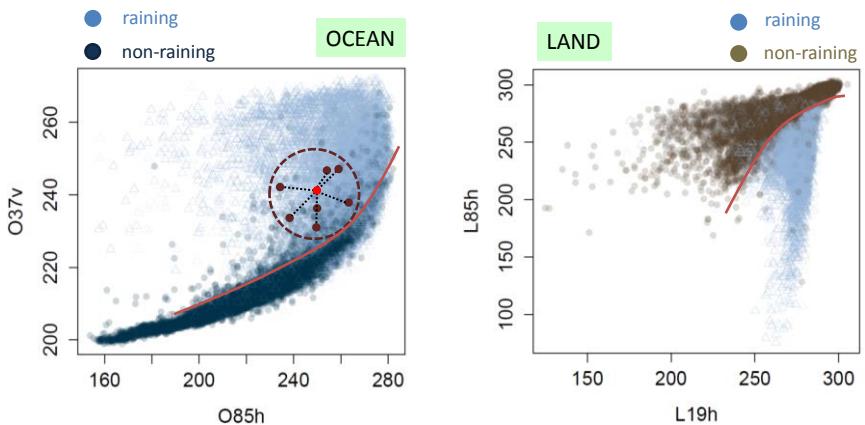
- Spectral weights denote relative importance of each channel



24

TMI rain/non-rain spectral signatures

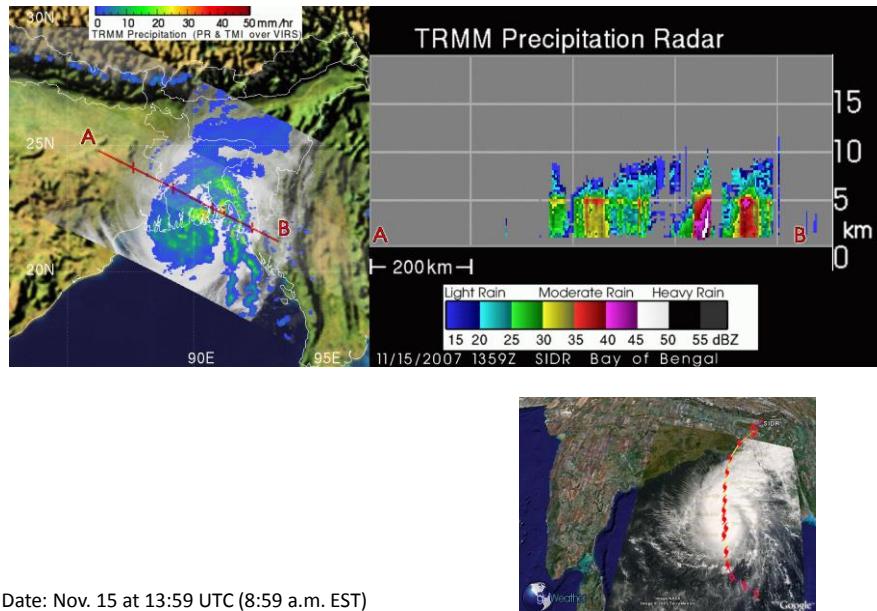
- A local estimation-detection model



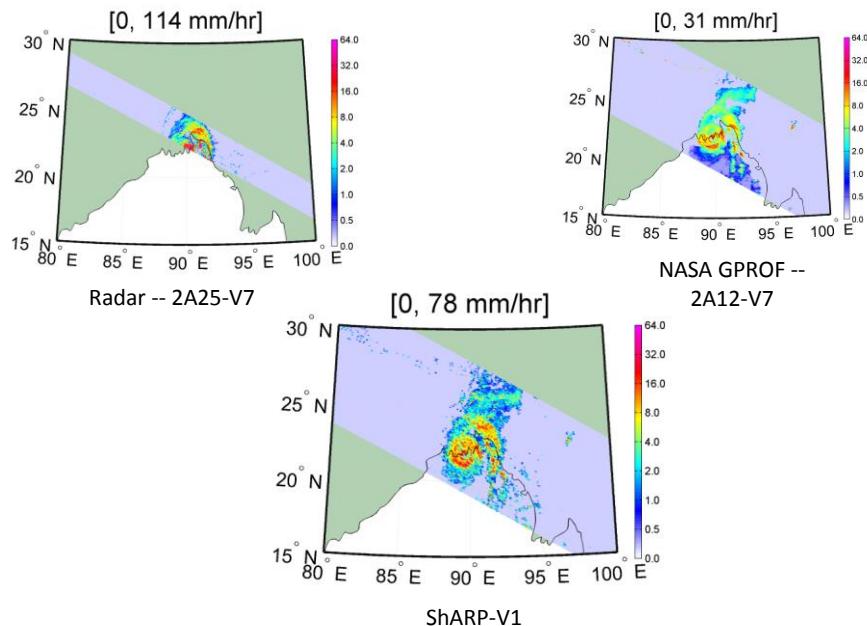
- Neighborhood Euclidean distance in a multi-spectral sense

25

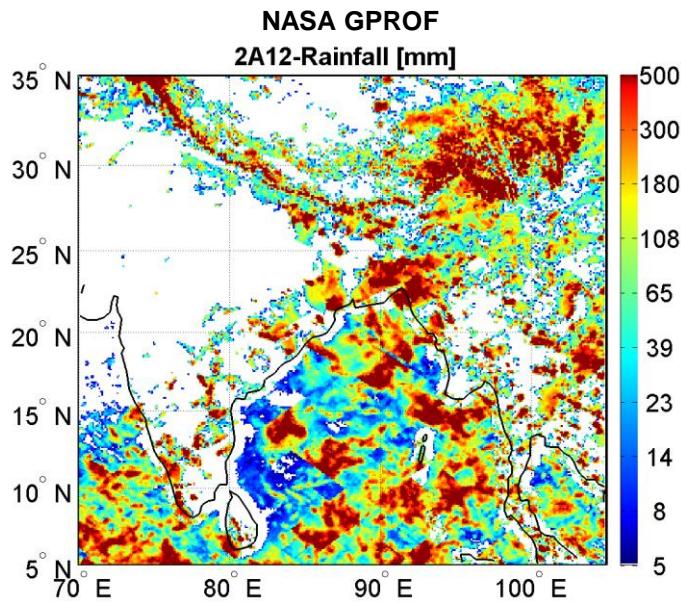
Cyclone Sidr, Nov. 2007



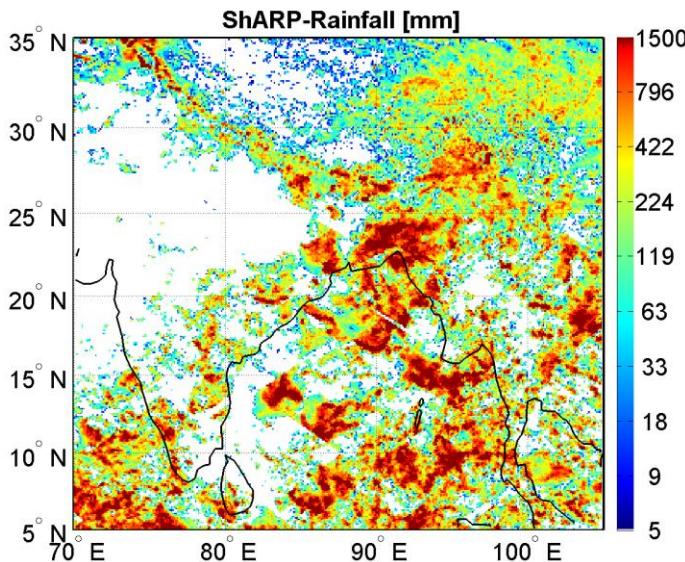
Retrieval of Tropical Cyclone Sidr



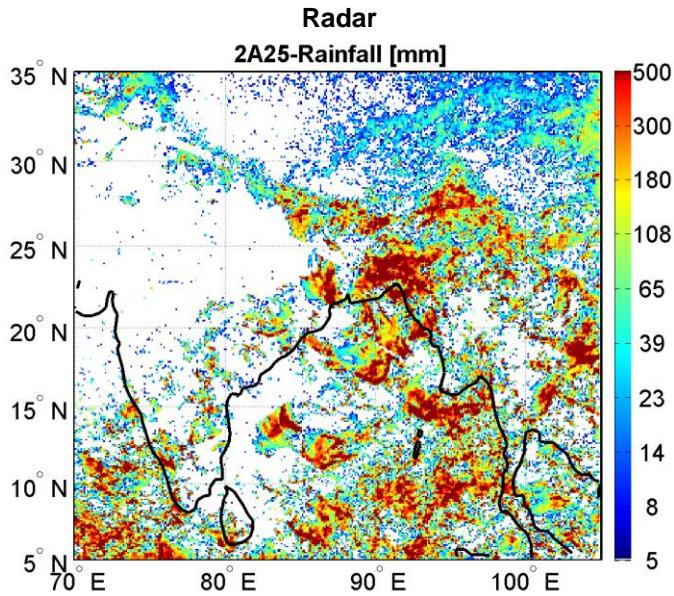
Retrieval of Monthly Rain, May 2013



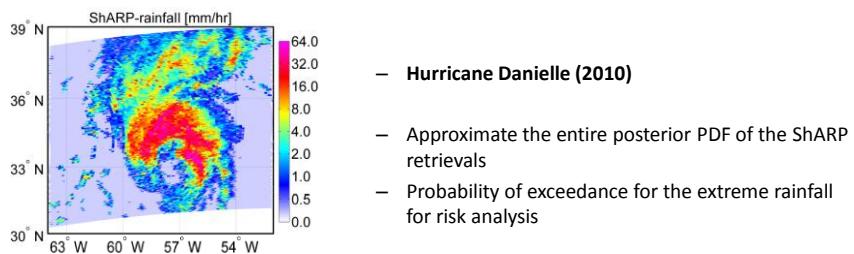
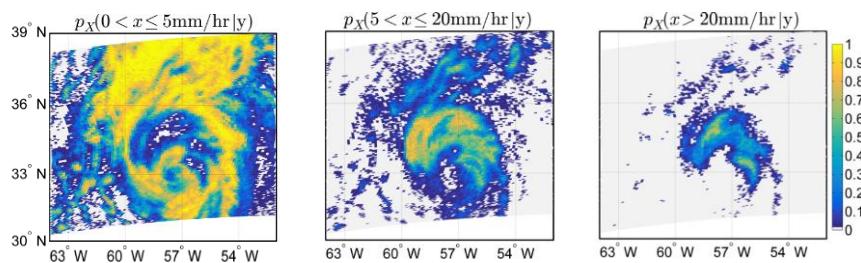
Retrieval of Monthly Rain, May 2013



Retrieval of Monthly Rain, May 2013

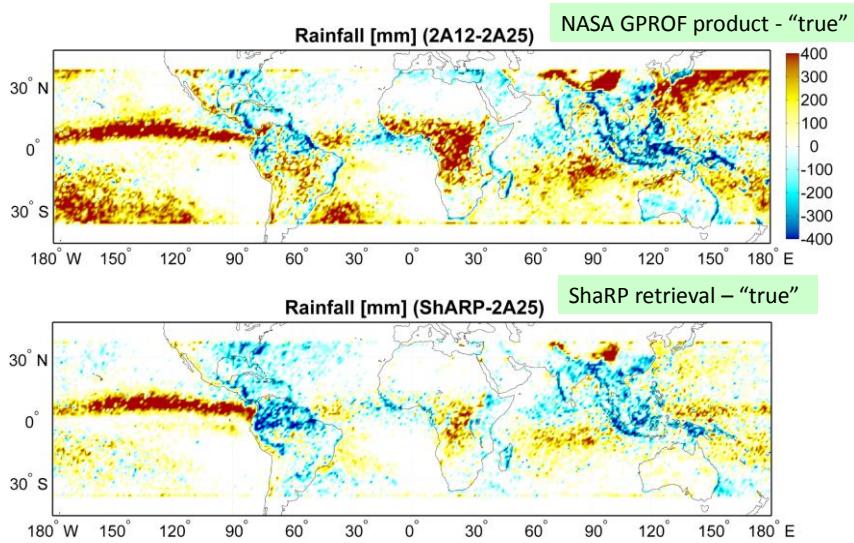


ShARP retrieval uncertainty



ShARP cumulative results

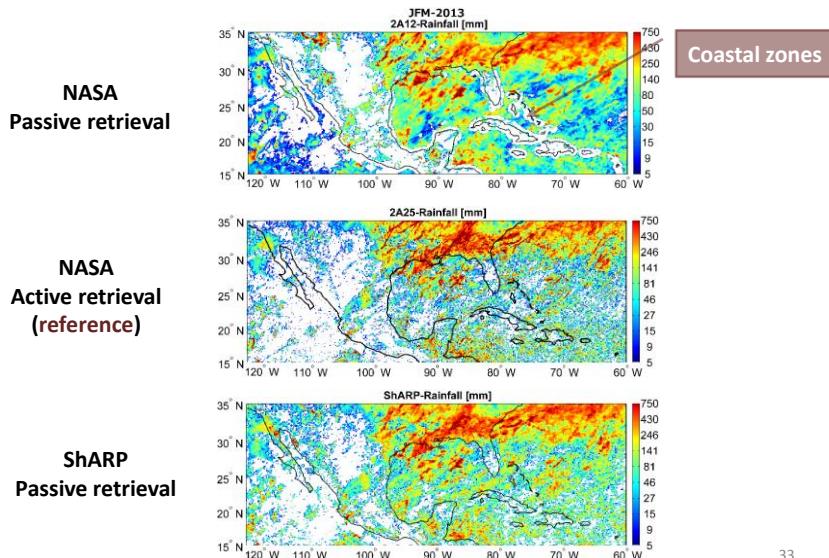
- Difference of the total rainfall in calendar year 2013 (1°-degree)



32

ShARP cumulative results

- Rainfall accumulation thought **January, February and March** in calendar year 2013 (0.5°-degree)



33

Take home message and future research

- GPM offers opportunities for accurate estimation of rainfall over coastal zones
- The proposed ShARP algorithm introduces two innovations: (1) smart selection of estimation neighborhod and (2) advanced estimation within it (screens out irrelevant spectral candidates and reduces the effects of land surface heterogeneity in emissivity)
- The superiority of the proposed algorithm, compared to the standard NASA retrieval algorithm especially over coastal areas, was demonstrated
- Perform extensive testing over delta regions and examine improvement in retrieval, early warning systems, and modeling of inundation and floods

Co-authors: Mohammad Ebtehaj & Rafael Bras (Georgia Tech); Zach Tessler (CUNY)

Ebtehaj A.M., R. L. Bras, E. Foufoula-Georgiou (2014), Shrunken Locally Linear Embedding Algorithm for Retrieval of Precipitation <http://arxiv.org/abs/1405.0454>

34

35

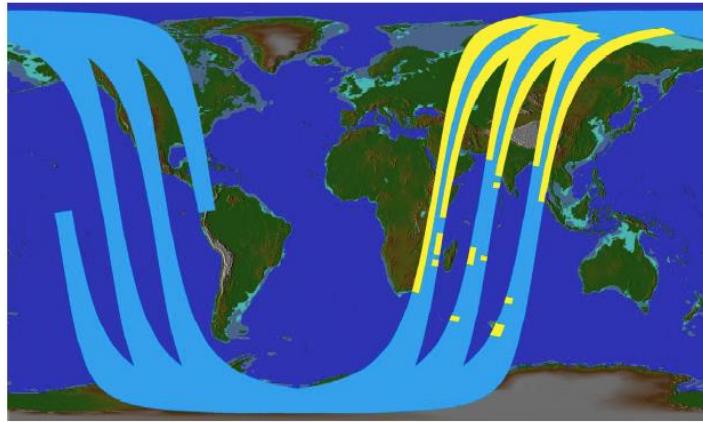
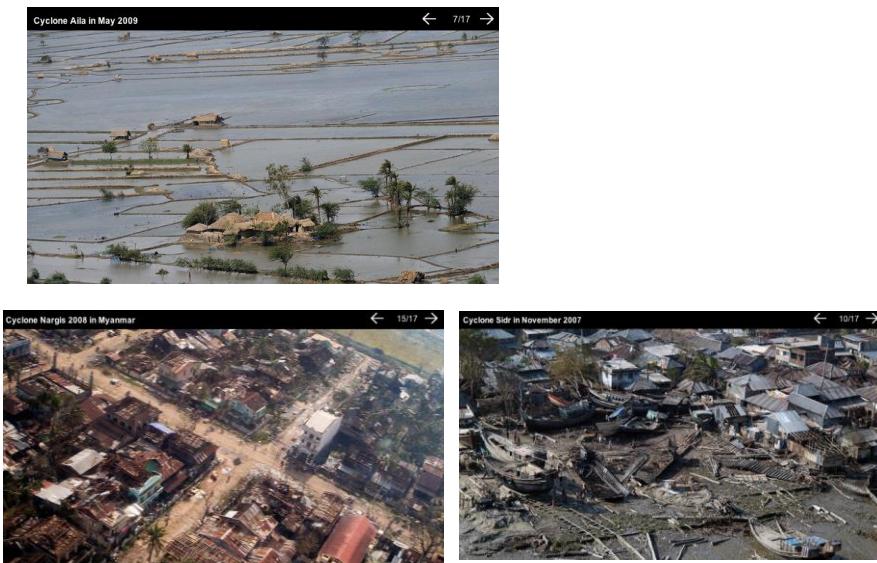


Figure 2. Sample SMAP coverage for three orbits. Collection of radiometer data and low-resolution radar data is shown in blue. Collection of high-resolution radar data is shown in yellow.

36



<http://www.weather.com/news/weather-hurricanes/deadliest-cyclone-history-bangladesh-20130605>