

Presentation Outline

- Introduction
- Why using an agent-based modelling approach?
- Model overview: SERA
- Example Case study areas Winterswijk and Noord Oost Groningen
- Results
- Conclusion
- Future work

Triggering CAP 1/3

- Environmental issues increasingly need to be addressed at the landscape or catchment scale, whereas so far policy addresses mainly individual farmers
- Implications of "CAP towards 2020"-reform (e.g. priority on water use and water quality)
- In the Netherlands, farmer groups get an official role in Agri-environment-climate schemes (AES), both as client and beneficiary

Triggering CAP 2/3

- Farmer groups may play a role in greening the CAP (1st pillar)
- Implementation of rule: 2016
- Question: (partly) collectively EFA and/or agrienvironment-climate measures
- Role for waterboards?

Triggering CAP 3/3

- Lack of knowledge assessment institutional aspect water schemes
- Quantitative tools needed that relate spatial conditions of water related goals
- Dynamics in land use and ownership

Objective

'The objective of this paper is to provide insight into the spatial, ecological and economic impact of applying collective approaches for both Pillar I greening measures and Pillar II agri-environment measures through experimentation with different scenarios using a spatially explicit agent-based

model.'

Why agent-based modelling?

- To capture heterogeneity between farmers
- To better understand non-linear, stochastic dynamics between farmers and the environment (water system) within agricultural landscapes (more is needed)
- To include dynamics in spatial explicit way
- To assist in the identification, design and evaluation of policy interventions

- A spatial explicit landscape represented by actual parcels containing several attributes: ownership, size, current land use, agricultural quality (including water resources)
- Decision rules farm agents following from
 - Keeping track of number of parcels in use
 - Age
 - Price expectations
 - Financial indicators
 - Nitrogen and feed production balances

Calculate parcels contribution to farm income (land rent)

WAGENINGEN<mark>UR</mark>

SERA: model overview 3/3

- A farm agent in SERA is an 'independently acting entity that decides autonomously on its organization and production to pursue a defined goal (e.g. to gain the highest profit)'.
- A farm agent reacts to changes in its environment and its factor endowments

- Land Market

Including conservation cohesion in the ABM

 Adjusted Reilly index: to calculate the impact of surrounding water conservation areas (= NCA) on the potential for water conservation by sites with AESs

• Adjusted Reilly-index for AES site $_{i}$ = $\sum_{j=1}^{J} \frac{\text{Size of NCA j (within radius) + size AES site i}}{(\text{distance of site i to NCA})_{ij}^{2}}$

Exchange: mechanism

- Fixed payment per hectare in initial situation
- Limited budget
- Collectieve implementation:

WAGENINGEN UNIVERSITY

 Bonus to simulate convincing power of collective of famers

WAGENINGEN UR

BONUS Fixed agrienvironmental payment/ha

Compensatory payment distributed by environmental cooperative

Spatial representations case studies in ABM

- Winterswijk / North eastern part Groningen
- 206 specialized dairy farmers / 564 arable farmers
- Agricultural area 7.000 ha / 39.000 ha
- Grassland / field margin

Results I

Area	Indicator	Unit of — analysis	Scenarios		
			Base (no policies)	Current EC proposal	Collective approach
Oost- Groningen	Contracted points	%	0	32.4	31.7
	Operational Profit	%	100	92.8	93.2
Winterswijk	Contracted points	%	0	53.0	52.0
	Operational Profit	%	100	98.2	98.4

Results II

Area	Indicator	Unit of – analysis	Scenarios		
			Base (no policies)	Current EC proposal	Collective approach
Oost- Groningen	Contracted points	%	0	52	93
	Operational Profit	%	100	101	102
Winterswijk	Contracted points	%	0	21	48
	Operational profit	%	100	115	111

WAGENINGEN UNIVERSITY WAGENINGENUR

Conclusions 1/2

- The approach is novel and holds promise as a way to explore the impact of environmental cooperative decision making on rural areas.
- Insight is gained
 - into the complex dynamics of rural areas
 - while imposing different types of policy instruments with different types of management regimes to the system.

WAGENINGEN UNIVERSITY WAGENINGEN

Conclusions 2/2

- Other means of coordination besides prices and hierarchy, such as reciprocity and trust will require further model development.
- Future developments of more sophisticated indicators could add to the informative use of the model for studying water system dynamics while different policy measures are implemented.

Questions?

Thanks for your attention!

© Wageningen UR

