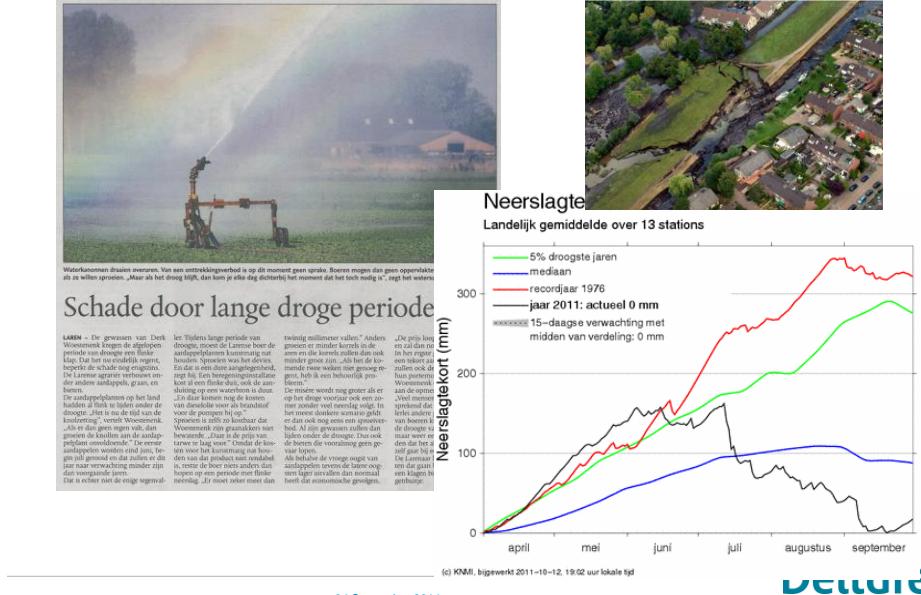


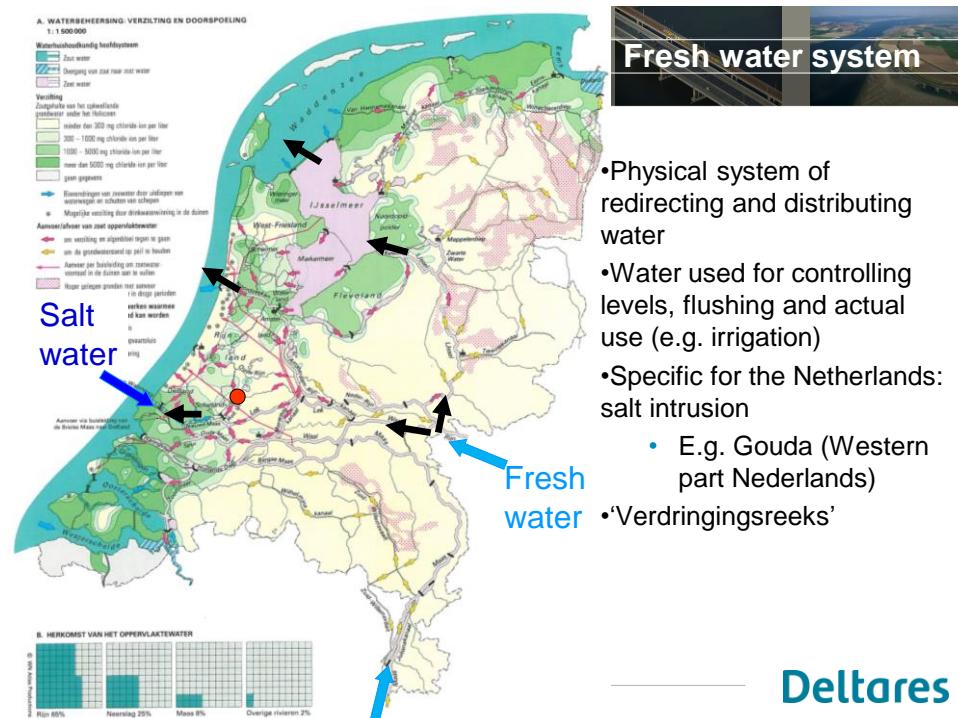
Future climate robust fresh water supply in the Netherlands

Upscaling detailed process study to regional effectiveness on water supply: Bubble plumes in the Rotterdam Waterway


Joachim Hunink, Deltares, The Netherlands

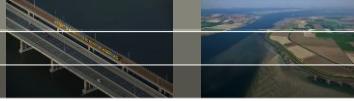
24 September 2014

Contents


1. Coping with current droughts and water scarcity in a water rich country?
2. Dutch Deltaprogramme: prepare for climate change
3. Case Western Netherlands, from detailed process to regional study. Sustainable measures and strategies to solve bottlenecks

Water scarcity in a water rich country?

24 September 2014


Deltares

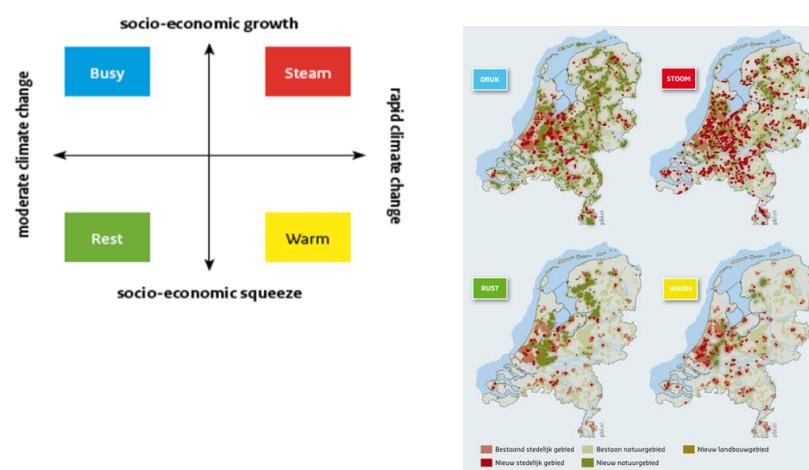
- Physical system of redirecting and distributing water
- Water used for controlling levels, flushing and actual use (e.g. irrigation)
- Specific for the Netherlands:
 - E.g. Gouda (Western part Nederlands)
 - 'Verdringingsreeks'

Deltares

Delta programme

The **Delta Programme** involves the long-term water safety of our country and its **freshwater supply**.

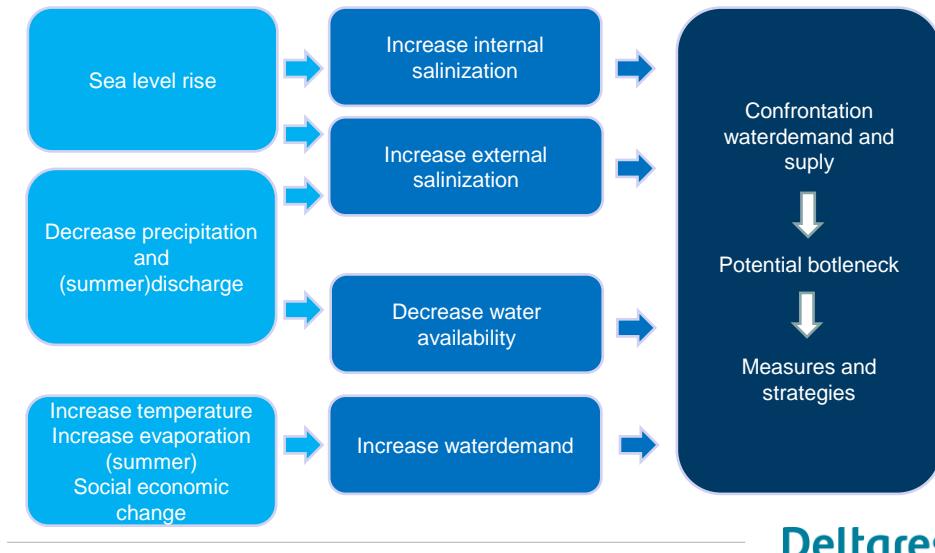
Delta programme is divided into 9 sub-programmes.


Three of the sub-programmes are of importance to the whole of the Netherlands:

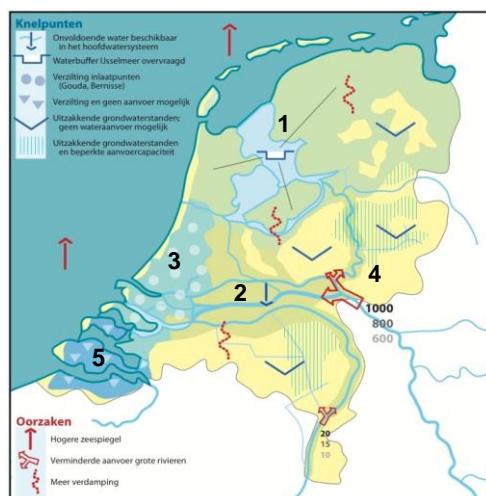
- Safety
- Fresh Water
- New construction and restructuring

Deltares

24 September 2014


Four Deltascenarios - for 2050 and 2100 situation

Deltares


24 September 2014

Deltaprogramme – Sub programme Fresh Water

Deltares

Identification of bottleneck areas

Bottlenecks in water demand and supply:

1. IJsselmeer storage
2. River and channel flow low
3. Risk salt water intrusion
4. Ground water level low, no or limited surface water supply
5. Combination of 3 and 4

Deltares

24 September 2014

Inventory of promising measures

Inventory of **promising measures** in main and regional water systems and water use(rs) to solve potential mismatch water demand and supply

Case study Western part of the Netherlands

From detailed study to regional effect

- Research on Bubble plumes against salt intrusion
- Promising measure for lowering salt concentration at inlet-locations (for example Gouda and other inlet locations for drinking water)
- Effect on salt concentrations is calculated with a 1D hydraulic model using changes in discharge. This method is derived from 3D calculations.
- Effect on fresh water supply and on long term regional scale modeled using a national hydrological modelling instrument (coupled hydrological model of groundwater, the unsaturated zone and the surface water models).

Deltares

24 September 2014

Types of external salinization

Four different causes of external salinization

- 0: external salinization because of low average discharge
- 1: external salinization caused by high sea levels during a storm
- 2: lag effect of type 1
- 3: salinization because of high salt concentrations in river water.

From: Ies de Vries (Deltares)

Deltares

24 September 2014

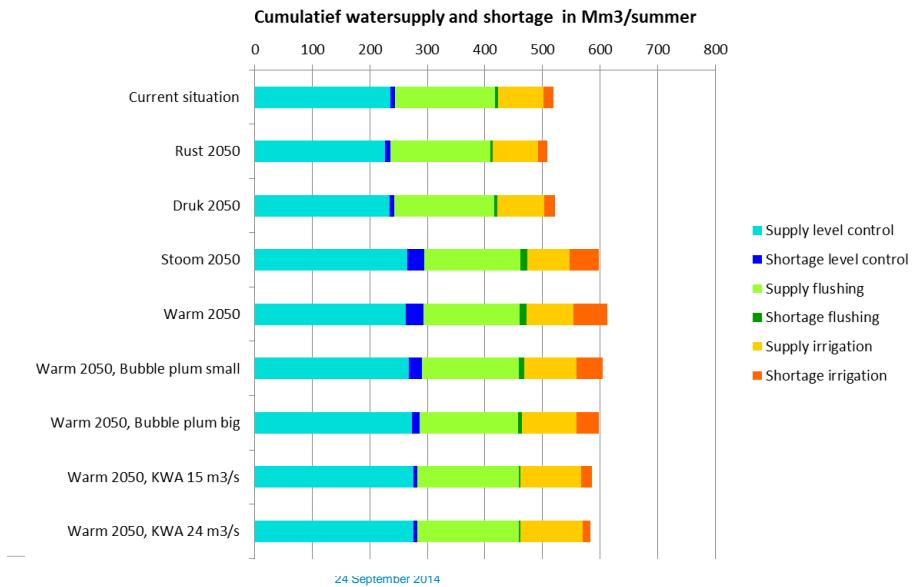
Measures increase water supply

		Kneipuntgebied	HZG zuid	HZG noord	Rivierengebied	IJsselmeergebied	Beneden Rivierengebied	ZWD zonder aanvoer
nr	Measures for reducing salt intrusion.							
9	Bubble plumes, small variant.				X	X		
10	Bubble plume, big variant.				X	X		
	Measure adaptation salt intrusion.							
11	Extent KWA to 15 m3/s				X	X		
12	Extent KWA to 24 m3/s				X	X		

Deltares

24 September 2014

Effect of measures on inlet points

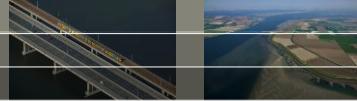

Number of closure days at inlet points

Locatie	G			W+		
	Average year	Dry year	Extreme dry year	Average year	Dry year	Extreme dry year
Gouda (norm 250 mg/l), summer period						
Current climate	0	0	46	0	0	46
2050 No measures	0	0	50	16	31	90
2050 Bubble plume small	0	0	45	15	27	88
2050 Bubble plume big	0	0	23	6	15	74
2050 KWA 24 m3/s	0	0	53	19	34	95
2100 No measures	0	0	50	72	95	131
2100 Bubble plume small	0	0	46	71	90	129
2100 Bubble plume big	0	0	23	32	59	111
2100 KWA 24 m3/s	0	0	52	72	97	131

Deltares

24 September 2014

Effect of measures on water shortage



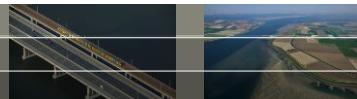
IS

Conclusions

- A bubble plume can be a solution for external salinization caused by low average discharge.
- Bubble plume small variant has limited effect.
- Bubble plume big variant reduce water shortage and closure days of inlet points for drinking water.
- However, the effect at Gouda is not enough to eliminate water shortage in dry years.
- An other supply route for fresh water (KWA) is more effective than the bubble plume

Follow up

This research is input for:


- Cost benefits analysis
- Delta decision on freshwater
 - Adaptation pathways by Dutch Ministry of Infrastructure and the Environment
 - Formulation preferred fresh water strategy

Deltares

24 September 2014

Acknowledgment

This project was commissioned by the Dutch Ministry of Infrastructure and the Environment

Acknowledgment for all colleagues who have contributed.

Judith ter Maat, Marnix van der Vat, Geert Prinsen, Martijn Visser, Ies de Vries, Yann Friocourt, Emiel van Velzen, Wim Werkman, Bas de Jong, and many others.....

Joachim Hunink

joachim.hunink@deltares.nl +316-41251677

Deltares

24 September 2014