A compensation mechanism for flood protection services on farmland

András Kis¹, Gábor Ungvári¹, Hans-Peter Weikard²

1 Corvinus University of Budapest, Regional Centre for Energy Policy Research

2 Wageningen University, Environmental Economics and Natural Resources Group

Aims and structure of the presentation

- Motivation from a case study
- Introduce a payment scheme for flood protection services
- Examine the microeconomic properties
 - efficiency
 - risk sharing
- Determine the key parameters for contract design
- Further research

Motivation

River Tisza, Hungary

River regulation from the mid 19th century shortened the river by 400 km

2850 km dikes protect 16000 km² (1/3 of the Hungarian part of the catchment)

Motivation

- A series of serious flood events (1998-2001) have triggered new flood protection measures
- Recent flood risk projections
 - More uncertainty
 - Higher peak flows
- Construction of 6 flood defence reservoirs
 - 4 completed, 2 still under construction

Key question

How should reservoirs be used and operated?

How should farmers be compensated?

Farmland as a retention area

The Hungarian case

- Currently: damage compensation after assessment
 - expensive assessment
 - inefficient crop choice
 - potentially inefficient use of the reservoir
- We suggest:
- A payment scheme consisting of
 - a fixed annual payment
 - a conditional payment if the retention area is used

The model

A contract design model to compensate for flood protection services

- A simplified hydrological model
- Farmers' crop choice
- River authorities' use of the reservoir

The hydrology (1)

Protection of a downstream city

- River peak flow (given)
- Damage from peak flows
- Reservoir reduces peak flows if flooded

River authorities must balance

- avoided damage downstream
- against
- Damage in the reservoir (social welfare perspective) or
- Compensation claims (public budget perspective)

The hydrology (2)

A simple representation of the hydrology

l river peak flow (water level)

g(l) distribution peak flows

l' critical water level

 $\ensuremath{\textit{p}}$ probability of an event causing damage

If flood gates are opened, the reservoir

- Iowers the river peak flow
- decreases the probability of a damaging event

The hydrology (3)

If flood gates are opened, the reservoir

- Iowers the river peak flow
- decreases the probability of a damaging event
- $\hfill\square$ The tail of the distribution shifts to the left

If flood gates are opened, the reservoir

- Iowers the river peak flow
- decreases the probability of a damaging event
- $\hfill\square$ The tail of the distribution shifts to the left

Farmers' crop choice: Two benchmarks (1)

x value of harvest c(x) cost of planting (assuming $\frac{dc}{dx} > 0$ and $\frac{d^2c}{dx^2} > 0$) M monetary compensation

Would a farmer plant a high value crop? Maximise

$$(1-p)x + pM(x) - c(x)$$

Farmers' crop choice: Two benchmarks (2)

Maximise

(1-p)x + pM(x) - c(x) **Full compensation** M(x) = xOptimality condition: $1 = \frac{dc}{dx}$

 $\hfill\square$ disregards of the risk of flooding

No compensation M(x) = 0

Optimality condition: $1 - p = \frac{dc}{dx}$

flood risk implies less intensive farming
 This hold even for risk neutral farmers.

WAGENINGEN UR For quality of life

The compensation scheme

Criteria for a compensation scheme

- Voluntary participation of farmers
- Efficient crop choice
- Efficient risk allocation when farmers are risk averse
- Efficient use of the reservoir when river authorities are concerned with their budget and "responsible" for downstream damage

The compensation scheme

The compensation contains

- an unconditional (fixed) component f and
- a conditional (variable) component v
 such that the expected compensation M = f + pv

Criteria 1 and 2

Voluntary participation of risk averse farmers

 $u[(1-p)x_L + pv - c(x_L) + f] \ge u[x_H - c(x_H)]$ \Box Farmers are happy to have land in the reservoir

Efficient crop choice

 $u[(1-p)x_L + pv - c(x_L) + f] \ge u[(1-p)x_H + pv - c(x_H) + f]$ \Box Farmers prefer to plant the low value crop

Criteria 3 and 4

Efficient risk allocation when farmers are risk averse

- Farmers should be fully insured, i.e. they receive the same income regardless of whether or not a flood occurs.
- Efficient use of the reservoir when river authorities are concerned with their budget
- Floodgates should be opened whenever avoided damage is higher than then variable compensation payment.

The compensation scheme

The compensation that meets the criteria

- uses $v = x_L$
- and *f* is set to compensate for the utility difference associated with obtaining *x_L* instead of *x_H*

Properties of the compensation scheme

Participation and risk allocation

 $u[(1-p)x_L + pv - c(x_L) + f] \ge u[x_H - c(x_H)]$

□ If $v = x_L$ farmers are fully insured. The fixed part f of the compensation is set to meet the participation constraint.

Efficient crop choice

Maximising u[(1-p)x + pv - c(x) + f]

□ we obtain x_L as a farmer's optimal crop choice because the compensation is independent of crop choice. At x_L the farmer is fully insured and risk aversion will therefore not impact crop choice.

WAGENINGEN UR For quality of life Properties of the compensation scheme

Efficient use of the reservoir

When river authorities are concerned with their budget

 Floodgates are opened when avoided damage exceeds the variable compensation payment v.
 Since v reflects the true damage the reservoir is used efficiently.

Some further properties and conclusions

- Low transaction costs
 - no monitoring, no damage assessments
 - no disputes
- Increasing probabilities of critical peak flows implies lower v and larger f. The river authorities budget requirements are increasing.
- The degree of risk aversion of farmers has no impact on the variable part of the compensation.

We propose a simple and easily implementable scheme.

Our next step is to assess its working in practice.

Thank you!

Tisza at Szeged Source: Encyclopedia Britannica

We are grateful for funding from the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement #265213 (EPI-WATER project).

