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Abstract 

STOL, PH. TH. (1975) A contribution to theory and practice of nonlinear parameter optimization. 
Agric. Res. Rep. (Vers!, landbouwk. Onderz.) 835, ISBN 9022005623, 197 p., 19 tables, 47 figs, 
56 refs, 2 appendices, summary. 
Also: Doctoral thesis, Wageningen. 

Nonlinear parameter optimization in least squares was studied from a point of view of differential 
geometry. Properties of curvilinear coordinates, scale factors and curvature were investigated. Param­
eters of the condition function were expressed as functions of algorithm parameters to generalize 
the formulas. The analysis of the convergence process cumulated in the development of procedures 
that accelerate convergence. Scale factors were used as weights to the differential correction vector to 
improve the direction of search. A method to correct for curvature, called back projection method, 
was developed. Use was made of the tangent plane on which the path of search on the fitting surface 
was projected. Deviations from the original direction were corrected by optimizing the angle of 
deviation and the step factor. The correspondence between rate of convergence and curvature of the 
path of search was illustrated with an example. A small geodesic curvature at the starting point indi­
cates fast convergence. Curvature properties of the parametric curves appeared to be of more in­
fluence than those of the fitting surface. To avoid heavy oscillation of intermediate parameter values a 
method was developed that required the intermediate points to be the foot of a perpendicular from 
the terminal point of intermediate observation vectors thus producing paths of controlled approach. 
Since condition functions may have a complicated structure in that they can be implicit functions, 
sequential functions or can consist of mathematical models involving alternative functions, it was 
treated how first derivatives can be calculated and programmed systematically for these functions. 
Methods introduced were made operational by means of a FORTRAN program. A description of the 
use of the subprograms and instructions to modify the main program to suit the various algorithms 
and procedures developed are given in the Appendices. 

UDC 519.281.2:518.62:516.8:681.32.06 and 513.736.7:513.735.43:518.5 
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1 Introduction 

1.1 General 

Research workers who describe their problems with mathematical formulas in 
which variables and unknown parameters occur, have need for testing their working 
hypothesis with the aid of observations. But then they face a new problem, that of 
rinding the best value of the parameters in their models. 

With the aid of a test criterion the term 'best' can be made operational. The problem 
that now arises is a complicated one since most models consist of functions that are 
nonlinear in the parameters and iterative methods have to be employed to find 'best' or 
optimal values for them. Although computers work so fast that execution of some 100 
iteration steps is acceptable for rather small-scale problems, there still are reasons to 
search for faster techniques. Execution of series of data on routine basis is one of them. 
Application of complicated models, with many variables and parameters, to a large 
number of observations requiring a manifold of a reasonable number of iterations, is a 
second. 

These practical reasons necessitate a theoretical treatment to gain insight in opti­
mization processes. Therefore, in the present study a theoretical approach has been 
made leading to a computer program in which newly developed optimization algo­
rithms are incorporated. 

Simplifying a complicated optimization procedure by plotting the test criterion or 
response as contour curves in a graph with two parameters as variables, apparently 
gives an indication of how to find the extremum starting from an arbitrarily chosen 
initial point. For most fitting problems this way of representation is inadequate, how­
ever. Least squares techniques have the advantage that except for the above indicated 
parameter space, use can be made of the space in which observed and calculated func- -
tion values are plotted. In this observation space the function to be fitted is represented 
by a surface covered with a curvilinear coordinate system. The mathematical tools to 
investigate such surfaces are treated in Chapter 2. Analysis of the curvilinear coordi­
nate system and its role in the search for more efficient paths on the fitting surface 
leads to new algorithms (Chapter 5), that produce paths closer to the final solution 
(Fig. 1). Other techniques that serve the same purpose are more empirically based on 
intermediate results in the tangent plane to the fitting surface and on results obtained 
along the axes of the parameter space (Chapter 6 and 10). 

Main notions that are of importance in optimization techniques are briefly reviewed 
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Fig. 1. Perspective drawing of an optimization problem with three directions of search. Given the con­
dition function y — a exp (-bx2) it is asked to optimize 0 = (a,b)T given the observation matrix 
X = (y,x) where y = (2.50, 3.80,1.50)r and x = (0.3,0.1,0.5)T. The starting value is 0<°> = (3,10)T. 
In the figure three gradient directions are drawn. The steepest descent (rig) decreases the objective 
function (sum of squares) fromS(0(O>) = 4.39 to S = 1.69 with step factor A* = 1.0 in the figure 
denoted by an asterisk on the path. The modified Gauss-Newton method, operating with differential 
corrections rf, decreases the response 5 to a lower value, viz. S = 0.23 taking the step factor in this 
direction X* = 0.6. Finally the path produced by weights assigned to d has been drawn. The weights 
w° are obtained from differentials of scale factors (Chapter 5) with the aid of equation (5.3.3) and taken 
independent of X. Along this path of search the response is reduced to S = 0.06, with step factor 
X* = 1.2. This path proceeds close to the final solution 0* = (3.87, 4.09)T with S(0*) = 0.05. 

in Chapter 3. Stress is laid on least squares methods since they are used in this study as 
the test criterion. 

In Chapter 4 it is shown that the function subject to such fitting procedures not nec­
essarily need be explicit but that the algorithms that use first derivatives can also be 
applied to a variety of functions including branched models of sequential functions, as 
those used for the analysis of time series with deterministic models. 

The efficiency of iterative methods can be improved by choosing good starting ap­
proximations to the solution of the parameter values. It is reasonable to require these 
starting values from the research worker who developed the condition function. Opti­
mization techniques, however, can lead to paths of progress in the convergence pro­
cess that swing over the fitting surface before the terminal point is reached. The research 
worker then may require that intermediate solutions will not move to undesirable 
directions. For this reason in Chapter 11 an algorithm is developed that produces a fit 
along controlled paths to avoid heavy oscillation of intermediate solutions. 
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A subproblem is the determination of the minimum response in a given direction ojf 
search. Algorithms can fail when this subproblem is not adequately solved. Compli­
cations that arise from the special structure of the condition function often are detected 
during the execution phase of this subproblem. Special attention has therefore been 
given to the determination of the minimum response in one-dimensional search (Chap­
ter 9). 

To meet the demands of practice, a computer program has been developed that 
consists of subroutine subprograms that can be linked by a main program whose de­
fault deck structure can be modified to perform specific procedures, as for example the 
investigation of the properties of the function to be fitted (Chapters 8 and 12), as well 
as for the investigation of the properties of the applied algorithm and of the conver* 
gence process itself. This according to the field of interest of the user of the program 
(Chapter 13). To avoid time consuming programming of new parameter optimization 
problems the program is set up in such a manner that in principle only the new con­
dition function and its derivatives with respect to the parameters, need be program­
med (Chapter 7 and Appendix 1.4.1). 

Some examples illustrate the developed algorithms. Examples of a hypothetical 
nature elucidate specific properties of fitting procedures. Formulas and data from re­
search practice serve the same goal, without giving an opinion on their value. 

The Appendices contain the complete program, a technical description to it, an ex­
ample of the default output and the most important update instructions. 

1.2 Objective 

We are concerned with a function F, the condition function, of m real variables x 
ordered in a 1 x m row vector of variables 

* — (Xi,...,Xj,...,Xm) 

and of/7 real parameters 0 ordered in a/7 x 1 column vector of parameters 

0 — (01,...,04,...,0p) 

which has to be optimized - in a numerical sense - or estimated - in a statistical sense -
on basis of v (v > p) observations ordered in a v x m matrix of observations 

x = M vW vM vK 
•* l >•••»•*,ƒ -»m 

ylv] V M „ W 
,At ,...,A,j , . . . , .*„ , 
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We assume that at least one of the parameters occurs nonlinearly in the condition 
function Fand write 

F(x,0) = FCx!, . . .^! , - . .^ , ) 

If F = 0 can be solved with respect to xJy 1 tij^m, producing function values y}, it 
is asked to fit the observed values Xj, requiring the objective function S, giving the 
response 

S/0):= ilxjm-/Pm2 (1-2.1) 
1=1 

to be minimized with respect to 0, so it is asked to find 

min [S/0)] 
0 

which is supposed to be solved at 0 — : 0*. 

1.3 Conditions 

It is assumed that the condition function F has continuous first and second deriva­
tives with respect to Qk, k = 1(1)/?, for xlp,...,x^], i = l(l)v. 

The condition function may be either explicit or implicit and can be determined for 
all feasible choices of 0, F being subject to constraints of this type only. Because of 
(1.2.1) the same conditions hold for the objective function Sj. 

Vectors of observed or calculated function values are elements of the v-dimensional 
Euclidean space, the observation space. Parameter vectors are elements of the p-
dimensional Euclidean parameter space s o x e F and 0 e E". The norm in these spaces 
is defined by the Euclidean norm ||x|| = (xrx)* and ||0|| = (0T0)i respectively. 

1.4 Terminology 

The optimization process is an iterative process. Once n fitting cycles have been 
produced, the next updating of the parameter vector 0 can be obtained from the itera­
tion 

0("+1>(A) = 0(n)+ As(B) (1.4.1) 

where X is a step factor and s&p x I vector that produces a direction of search in the 
parameter space. The step length is given by A||*||. If k is determined such that 

S/0*c>) := min[S/0(n+1)(A))] 
X 

the updating is called optimal for 0<n+1) = 0*(n>. The vector s is obtained by applica­
tion of a particular algorithm. The process (1.4.1) terminates under control of stopping 
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( Stort ) 

c 
c 

Set initial value (o 
the parameter veetor S 

Update 6 

Apply required algorithm 
to determine a 

direction of search S 

Apply required algorithm 
to solve the step factor X 
to obtain the subminimum of 
the sum of squares S in the 

direction of search S 

stopping criteria for 
fitting cycles on 6 fulfilled 

"Jyes 
( Stop ) 

stopping criteria for 
iteration steps on X fulfilled 

| yes 

>. Fig. 2. Typical flowchart of an algorithm for one-
dimensional optimal search in nonlinear optimiza­
tion. 

criteria at 9m := the 0 for which all stopping criteria in the numerical process are ful­
filled. 

Convergence of the algorithm takes place if 

lim0w - 0* 
« - • C O 

Because the entire process consists of several iterative procedures, a distinction is 
made between algorithm fitting cycles and iteration steps as given in Fig. 2. 
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2 Functions, vectors and spaces 

2.1 Fonctions and vectors 

Functions to be considered can generally be written in the implicit form 

F(x,0) = 0 (2.1.1) 

The variables x are supposed to represent observable quantities. The matrix of ob­
servations X is to be interpreted as v row vectors of observed values, each with respect 
to m variables, where superscripts refer to observations, so 

X = (xI11,...,*ra,...,»M)T 

It is convenient to consider A" occasionally to be composed of column vectors 

X = (x1,...,Xp...,x^) 

F(x,0) is particularized for the observed values of the variables and for specified param­
eter values, e.g. 

a " = (x?1 , . . . ,^,..,*«) (2.1.2) 

and 

0(B) = (flS,>,...,e?), ...,0<ry (2.1.3) 

Sequences of parameter values up to a terminal vector obtained in a sequence of 
fitting cycles, are represented by (2.1.3) where n — 1(1)/. This superscript will also be 
used for other vectors, matrices and scalars when referring to a particular fitting cycle. 

For the ith vector of observations to the m variables and the wth vector of p param­
eter values we define 

i*i](0(B)) := F C W 0 ) , i = l(l)v (2.1.4) 

In general, the condition of zero function value is not met by inserting (2.1.2) and 
(2.1.3) in (2.1.1). However, in all cases to be dealt with it is assumed that (2.1.1) can be 
solved with respect to they'th variable, now denoted by y)t to obtain roots of F that can 
be represented by v condition equations 

i^'W»00) := F&P 'F-iJjjflu-jŒJP*) = 0 (2.1.5) 
For any 0 the relationship between implicit and explicit functions can thus be given by 

Fv\yj,0) = 0+->yp= :ff (0) (2.1.6) 
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It is assumed that solutions ylf, i = l(l)v, can be obtained from (2.1.6) by either 
iterative methods or by simple evaluation. Numerical solutions ylp are components of 
a new v X 1 solution vector 

y s =/}(ö) (2.1.7) 

A v x 1 vector of function values depends according to (2.1.4) on all observable 
magnitudes and is given by 

F(X,0) := [FOccl],0),...,F(xM,0)]r 

where, in general, F(X,0) # 0. From this definition it can be seen that the components 
of F do not depend on all observations simultaneously. Consequently the solution 
vector is obtained from 

F(yP0) = [.Fll\yl
J
l\0),...,Flv\y}v\0)-] T = 0 (2.1.8) 

where the ith component, i = l(l)v, is a function of the ith component of the vector X; 
alone. 

Definition 2.1.1. : A vector function »(H) is called a strict function of H if ot ~ ot(ut) for 
all i. 

Instead of the parameter vector 0 itself, functions of algorithm parameters will often 
be used to obtain the appropriate parameter values. These functions will be called 
parameter functions. They consist of scalars and vectors. Frequently use will be made 
of the scalar A and the vector s. A parameter function in its general form reads 

0(X):=[_e1(X,s),...,ep(k,s)y 

A strict parameter function is given by 

0(A) = [01(A,s1),...,0p(A)Sp)]
T 

A further special case is the linear and strict parameter function 

0(A) = 0(n) + Asw (2.1.9) 

which is sketched in Fig. 3. The locus of the terminal point of the vector 0 in this case 
is a straight line in the parameter space. Exploration of the response surface (Fig. 5) 
along such a locus is called exploration along a one-dimensional path of search. 

Solutions of (2.1.6) when subtraced from the corresponding observations produce 
the v x 1 difference vector f0 

*J - yj = --fo0) = tfiiïV),->/[o^)]r (2-1.10) 

Without loss of generality the chosen variable can be designated byj = 1. 
The/» x 1 differential vector d0 is defined by 

d0:=(dOu...,dek,...,d6p)
T 
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PARAMETER SPACE E2 

L * - /S" 
I 

y* 

rgù 

\ 
- x ^ 

81 

Fig. 3. Parameter space with a linear 
and strict parameter function 0(A) = 

Differentiation with respect to each of the parameters is denoted by the vector differen­
tial operator V, defined as the/? x 1 vector 

which acts on functions only. Using (2.1.6) without subscript j , we have for i — l(l)v 

vryfa = 0JB1 5t/ra>...,ap/y]) (2.1.11) 

which will be written 

V T / W = ( / W ^ ^ ( 2 1 1 2 ) 

The total differential of/™ reads 

dflt\0) ^ffddt + ... +^d0p 

= V7/1'1^ (2.1.13) 

In expressions as df(0M)/dOk the order of operation is: differentiate the function ƒ 
with respect to the kth parameter and then insert the particular value 6 = 0<n> in the 
result. 

The square of the length of a vector, say », will be denoted by any of the expressions 
II » II2» (»»») or vTv. The cosine of the angle between the directions given by u and v is 
written cos(v,o), the inner product of these vectors is denoted by («,») or uTv. 

Finally we define vectors and matrices consisting of numbers only, by e.g. 3 := 
(3,...,3)r and 3 := || 3 ||, dimensions being defined such that vector and matrix 
operations can be performed. A unit vector in the direction of the kth coordinate of an 
orthogonal reference system is denoted by 2*. Obviously l\t = ok and for any matrix 
A we have l\Alt = Au. A unit matrix is denoted by I. 

To clarify the structure of arguments of vector functions the right-hand side of 
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(2.1.9) is sometimes used in full, e.g. u(0w + Xsw). Composite functions like «(0(A)) 
will often be abbreviated to u(X). 

2.2 Spaces and curvilinear coordinates 

The geometric representation of the vector function 

y =f(0) (2.2.1) 

where from now on we drop the subscript j , is a/»-dimensional surface in the v-dimen-
sional Euclidean observation space E" (p < v). This surface will be called the fitting 
surface. Its properties depend on the form of the condition function ƒ and on the ob­
served values. 

The function 

where 9k
(0) is kept constant, is the locus of a subsurface of the fitting surface. It is the 

coordinate surface to be enumerated with 0t
(O). 

The function 

y =/(ö/0>,...,e)
1A4°+

)
1,...,ö

(
p

0)) (2-2.2) 
where components with superscripts are kept constant, is briefly denoted by ƒ(#*). It is 
the locus of a space curve in Ev satisfying (2.2.1) and so a curve on the fitting surface. 

Each of the parameters produce a space curve according to (2.2.2). These paramet­
ric curves can be considered a curvilinear coordinate system on the fitting surface (cf. 
Struik, 1961). The implicit form reads 

F (y,0k) = 0, k = l(l)p 

A geometric representation is given in Fig. 4, where the Ev (v = 3) space is sketched. 
Values of j [ n are plotted on an orthogonal v-dimensional reference system of unit 
vectors of the v x v unit matrix /. 

Vectors in Ev having their terminal point on the fitting surface are called position 
vectors, e.g. y given by (2.2.1). Position vectors depend on the value of the components 
of the/» X 1 parameter vector 0. This vector is an element of a/»-dimensional Euclid­
ean space E" considering the values 6k, k = 1(1)/», coordinates of an orthogonal 
/» X /» reference system /. Instead of the fitting surface the parameter space E" will 
frequently be used, an example is given in Fig. 3. 

An arbitrary curve on the fitting surface is given by the vector f(6(A)) with parame­
ter A. This can also be considered a one-dimensional subspace that can be plotted on 
an E1 parameter space for the algorithm parameter A. 

The sum of squares of deviations x-y according to (1.2.1) can be written with 
(2.1.10) as 

S =/0
r/o (2-2.3) 
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OBSERVATION SPACE E3 

direction 
vector 

parametric curve 
for e2 constant 

y.f(e„92
<0>) 

fitting surface 
y-fce> 

Fig. 4. Observation space and fitting surface, with vectors defined in Sections 2.1 and 2.2 evaluated at 
0<O) on the fitting surface. 

and so the problem is the minimization of the square of the Euclidean norm offa. 
Values of S can be assigned to the terminal point of the appropriate vectors 6. 

Plotting these values on a further coordinate the function S = S(0) can be drawn in a 
(/> + l)-dimensional Euclidean space Ep+1, the response space, giving the response 
surface (Fig. 5). The objective function S generally cannot be considered a quadratic 
function. It is quadratic in the parameters only if the condition function is linear. 

The projection of 5(0) = constant on the parameter space E" produces contours in 
this space. The/» x 1 gradient vector g{6) = VS(0) represents the slope of the (p + 1)-
dimensional response surface giving the direction of the greatest rate of change of S in 
the point 9, with magnitude \\ g\\. The gradient in 0 is perpendicular to contour S — 
constant in space E" (cf. Struik, 1961). Parameter functions depending on a single 
algorithm parameter X produce an E2 response subspace in Ep+1. The steepest descent 
response subspace along N = - \g can be obtained from coordinate axes for 5" and X 
(Fig. 5). 

Evaluated for all observations, that means for all functions fm, i = l(l)v, equation 
(2.1.12) leads to the v x p Jacobian matrix 
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RESPONSE SPACE E3 

contour curve 
S»constant 

Fig. 5. Response space, response surface and parameter space with the gradient g and the normal N — 
-kg at 0<o> as defined in Section 2.2. The response space is an extension of the parameter space, see 
Fig. 3. In a response subspace E2 with coordinate system (A, 5(A)) a subminimum can be determined. 

r r t i ] f [ i ] /-tili 
J\ '•••'Jk '•••vp 

* -
ƒ!«] f t ' ! fl •to ftl] 

fin fin f rtv] 

: ƒ (2.2.4) 

Sf m 
where an arbitrary element is given by J '̂1 = —— 

The matrix /consists of all partial derivatives off with respect to the parameters, 
evaluated for all observations. So (2.2.4) is the matrix of column vectors 

•» — ( / l v> /k>- - -Jp) (2.2.5) 

where fk is a v x 1 dimensional direction vector in Ev tangent to the parametric curve 
for 0k in the terminal point of the position vector/(0). See Fig. 4. On the other hand J 
will sometimes be referred to as a matrix of row vectors of gradients of/™, viz., see 
(2.1.11), 
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/ - [ V r / 1 1 1 , . . . , V 7 r a . - , V 7 w ] T (2.2.6) 

The length of the fcth direction vector will be denoted by 

hM : = II W ) II = (AJk>*> fc - K«P (2-2.7) 

the scale factor. Scale factors are considered components of the p x 1 vector 

m = [>*i(0) hk{0),...,h/eyf (2.2.8) 

The squares of these scale factors are the diagonal elements of the square symmetric 
p x /»matrix/7-/. 

Definition 2.2.1. : Let £7 be a/> x /» matrix with elements i/w = 0 if i &j and £/j> = 
Bf / 0 if i' = j , then tf will be denoted by 

vD:=(v1,...,vp)
D=:U 

and the inverse matrix by 

»1 Op 

From this definition we observe that v*v = 1 so v = »fl/ and » lV = ƒ. 
Unit vectors in the direction of the derivatives are now obtained by 

1(0)^(6) (2.2.9) 

with dimensions v x p and/» x p giving for the product v x p again. 
As the cosine of the angle between two vectors is given by the inner product of unit 

vectors in their directions, the cosine matrix of the direction vectors of / is conse­
quently given by the square of (2.2.9) giving the p x p cosine matrix 

C:=hdJTJhä (2.2.10) 

The/» x 1 cosine vector c which consists of the cosines off0 with each direction vector 
(Fig. 4) is equal to 

c ^ A W o l l / o i r 1 (2.2.11) 

and will be called the vector of partial cosines. 

2.3 Linear approximation to the fitting surface 

If it is required to approximate/(&") starting from the position vector f(6i0)), we 
can define the/» x 1 difference vector A (0) in the parameter space by 

0<D = 0<°> + Am (2.3.1) 

which is a linear and strict parameter function. 
Taylor expansion of the position vector f(0(0) + d<0)) gives for any component the 

expression 
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df(Om) df(9w) 
f(0^) = /(0<°>) + ^ AT + - + ^ ~ 4 0 ) + ^ ( 0 ) ) (2-3.2) 

where the remainder Ô(AW) is defined by (2.3.2). Obviously from (2.3.2) and (2.3.1) 
<5(0) = 0. Using (2.1.11), equation (2.3.2) can be written 

f(0M) = /(0(O)) + \Tf(0m)Am + ô(Am) 

Evaluated for all observations, so for all functions/, this becomes - making use of 
(2.2.6)-

/(0(D) =/(0(o)) + J(0m)Aw + S(Am) (2.3.3) 

The tangent plane to the fitting surface evaluated at 0(O) is spanned by the (column) 
direction vectors of/and is given by the linear expression 

1(A) : = /(0<O)) + J(6(0))A 

where A is an arbitrary vector producing on the right-hand side linear combinations 
of the column vectors of / . The vector / is the v x 1 position vector of the tangent 
plane. 

Equation (2.3.3) expresses that without the remainder ö(Am) the position vector 
f(0(1)) can be approximated by/(0<O)) and a linear combination of the direction vec­
tors. 

Linear approximation with the aid of a tangent plane concerns three important 
properties of the fitting surface. They are: 

- the fitting surface is replaced by a plane, 
- the parametric curves are replaced by straight lines having zero curvature, the 

directions being fixed at their value at 0<O), 
- the scale factors are fixed at their value at 0(O). 

Consequently linear approximation produces in general a nonorthogonal linear 
coordinate system on the tangent plane. If the condition function itself is linear in 9k, 
k = 1(1)/?, the Jacobian / is constant and 

y = JO (2.3.4) 

2.4 Optimization condition and normal equations 

We consider the optimization problem solved at 0* = 0<o when S(0) according to 
(2.2.3) is minimum. So, using (2.1.10) and (2.1.7), 

S(ff) = \_x- /(0)] r[x - f (9)2 (2.4.1) 

has to be minimum, hence the gradient of S must vanish to obtain a stationary point 
0, for which it is required that 

g(0) = VS(0) = 0 (2.4.2) 
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This gradient (Section 2.2) is a/> x 1 vector whose Mi component reads 

i * - / ( C ) 3 T [ x - / ( 9 ) ] = 
oVk 

l-mYl* - f(9)1 + [* - fW\Tl-fM\, k = l(l)p (2.4.3) 

which is equal to 

g*(0) = -2[/*(0)]T|> -ƒ(»)] , fc = 1(1)/» (2.4.4) 

Worked out for all parameters the gradient becomes in virtue of (2.2.5) 

g(0) = -2[/(0)]T/o(0) (2.4.5) 

The terminal 0(,) of a sequence of parameter vectors 0(B) producing the desired 
solution is conditioned by (2.4.5) and (2.4.2) so by 

VQWTlx - / (Ö ( , ) ) ] =0 
The argument of the position vector can be replaced by 0U-1 ) , hence with (2.3.1) and 
(2.3.3) producing the condition 

[7(0(,))]r[x - ƒ(«<'-iy) - /(0 ( '_ ' V ~ x ) - * ( J ( ' - ' ^ = 0 

Defining the/> x/> matrix 

M(0W,0('-1}) : = [7(0('-» +d( '~ ̂ f / ^ ' - " ) (2.4.6) 

we arrive finally at an implicit expression for Au~1}, viz. 

J ( ," 1 )= A T 1 ^ " 1 ' + ^ - " X T r / o ^ " 0 ) - ^ ( , _ 1 ) ) ] (2.4.7) 

Under the assumption that in the arguments of (2.4.6) and (2.4.7) the contribution 
of J ( t - 1 ) to the function values can be neglected, (2.4.7) gives the solution for d ( f -1), 
which reads 

where 6(A) Ä £(0) = 0, leaving it understood that evaluation of the right-hand side is 
with respect to 0(' " 1 \ 

In this and further expressions, Mis taken to be the square symmetric matrix 

M(0) = [/(0)]T/(0) (2.4.8) 

It will be convenient to introduce the/> x 1 vector 

AT(0) : = r/(0)]T/o(0) (2.4.9) 

which is called the normal. It is related to the gradient g by (2.4.5) so 

S(0) = VS(0) = -2iV(0) (2.4.10) 

hence giving the direction of greatest rate of change for decreasing function values of 
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S. TV gives the direction of steepest descent in the parameter space (see Fig. 5). 
Using the new symbols the normal equations are given by 

M4 ( , _ 1 ) = N 

where 

r(/i>/i)v..,(/i,/,)i rc/o./x)' 

(2.4.11) 

M = , W = 

Wo,fP) 

(2.4.12) 

\fp>fi)> • • -Afpitp). 

Because of (2.3.1) the solution of the normal equations is a direction of search to be in­
serted in (1.4.1) and to be applied according to the scheme in Fig. 2. In this case the al­
gorithm is the unmodified Gauss-Newton method for iterative solution of 0(t) with 
differential corrections das direction of search, obtained by 

d = MlN (2.4.13) 

With the cosine matrix C = hdMhd from (2.2.10) the solution reads 

«/ = AdC-1AdA^ 

The geometric meaning of this optimization procedure is given in Fig. 6. The response 
5 with respect to the fitting surface is given by (/0,/o). The length of the difference 
vector is minimum at 0<o if/0(ö

(<)) is perpendicular to all direction vectors at 0(r), so 

/O(0W) 1 J(0W) (0\ (2.4.14) 

As 0(O is essentially unknown, evaluation of (2.4.14) is with respect to a known param­
eter vector 0('~J) say. The exact condition then reads 

/o(e('_1)) - /(0 ( , _1V ( '" x) - 5(</(,_1)) 1 J(0(O) (2.4.15) 

where Jd is a linear combination of vectors that span the tangent plane A, producing 
the foot of the perpendicular from the terminal point of the observation vector x on A, 
see Fig. 6. The remainder vector Ô is the difference vector of the projection of x on A 
and on the fitting surface respectively. 

The vector Jd will be called the total tangent, the difference vector to the tangent 
plane A will be denoted by Af0. Analogous to (2.2.3) the sum of squares with respect to 
the tangent plane is defined by 

4s=:e/0m-o) (2.4.16) 

The cosine of the angle a between the observation vector x and the position vector y 
will be called the multiple cosine. The cosine of the angle ß between the difference 
vector ƒ> and the total tangent Jd will be called the total cosine. The cosine of the 
angles between the difference vector f0 and the direction vectors fk will be called partial 
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OBSERVATION SPACE E« 

fitting surfaea 

Fig. 6. Fitting surface and tangent plane A. The tangent plane is spanned by the column vectors of ƒ : 
the direction vectors / i and f2. The difference between the observation vector x and the position 
vector y - the difference vector f0 - is projected on the tangent plane giving the vector Jd, which is a 
linear combination of the direction vectors. The difference vector with respect to A is denoted by Af0. 

cosines. They are components of the vector e in (2.2.11). 
If the difference between the fitting surface and the linear approximation is sufficient» 

ly small, all vectors can be evaluated at 0<,_1) which yields instead of (2.4.15) 

/o(»('-1)) - /(*»• V _ 1 ) 1 J(0°~iy) 

and normal equations according to (2.4.11) through (2.4.13) are found again. 

In the linear case of (2.3.4), starting at 0 = 0, the normal is equal to N — fx and 
the minimization of ||x—y ||2 leads to 

e = M~xjrx 

which gives the solution in one step because the matrices on the right-hand side do not 
depend on 0. 
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2.5 Useful derivatives 

In further sections use will be made of first and second derivatives of functions of 
parameters and algorithm parameters. Basic formulas are derived in this Section. 

Let a.q X I vector of algorithm parameters be 

k : = (k!,...,kp...,kq)
T, q < p 

The parameter function 0(k) then is a function of q algorithm parameters. Now let 
the q x I vector differential operator with respect to each of these parameters be 

r:=(A,...,A,...,_ 
dki dkj dkq 

d ^T 

y (2.5.1) 

then the p X q Jacobian reads 

A-

•ee1 

0I7 

de, de, 
•dki dkg 

de 00 

^'""äv* (2.5.2) 

dO 
We observe that for one algorithm parameter this Jacobian reduces to Jx = — which 

dk 

for linear and strict parameter functions 0 = 0<O) + ks again reduces to 3\ = s. 

First derivatives of the position vector f(0(k)). An arbitrary element of / / reads 
3 f\9(k))=\Tf™ — 

dk dk, 
(2.5.3) 

Referring to (2.2.6) and (2.5.2) we notice that derivatives for all combinations of i andy' 
can be obtained from the chain rule 

J), — *9*X (2.5.4) 

Second derivatives of the position vector f(0). An arbitrary element of the Jacobian 
reads 

JF-
dfli\0) 

dek 

The second derivative with respect to the /th parameter is 
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The elements J$ for / = l(l)v, k = 1(1)/», l = 1(1)/» cannot be ordered in a matrix. 
However, only one special case will be involved in our considerations and therefore 
we define 

J2 : = vii>"-»yip»/22v>y2p>'"»yj>p) (2.5.6) 

which is a v x (P2x) matrix. The length of the vectors in (2.5.6) can be obtained from 
the ( I 1 ) x CJ1) matrix 

M 2 2 : = / J / 2 (2.5.7) 

It is assumed that the order of differentiation can be interchanged. 

First derivative of the difference vector fO(0(X) ). This derivative reads 

ak ak 

with (2.5.4) this becomes for a 1 x 1 algorithm parameter vector 

dO 
= -J— 

dl 
If the parameter function is linear and strict this reduces to 

-£/o(0W) = -Js 
ak 

which is the vector opposite to the total tangent vector in Fig. 6 if the direction of 
search is chosen by s = d. 

First derivative of the Jacobian J(0(X)) multiplied by f0. The kth column of (2.2.4) gives 
withtheaidof(2.1.13) 

Tx~VnTx *Rd~x snTx) 
The scalar product with f0 produces in the right-hand side 

Collecting terms that contain —-, k = 1(1)/», this becomes 
dX 

(2.5.8) 
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(/PA?+... +m1^ +... + (/TO3 +... +m\$ 

hence giving 

^ = [ ( / o , / « ) . - , ( / o ,Ap ) ] ^ 
dA aX 

Finally, applied to all columns k = l(l)/»of/we obtain the/» x 1 vector 

where 

Nnl: = 

(fo'fi i)>—Afo'fip) 

\fo>flp)>.">\fo>fpp)-

the symbol N02 being suggested by the form of the normal given in (2.4.12). 

(2.5.9) 

First derivatives of the square of the scale factors h\(0). These derivatives reads 

^ P = -i/Zfc = 2fk%, I = l(l)p 
d6t do, 

For all k and / the results can be collected in the/» X p matrix 

r ( / i / n ) . - . ( / i / i p ) l 

M 1 2 : = 

\Jp'Jpi)>—.>\jp>Jpp). 

(2.5.10) 

the symbol M12 being suggested by the form of the matrix Afin (2.4.12). This matrix 
is not symmetrical. 

Second derivatives of the response S(0). The p x p matrix with elements 

d2S(0) 
Gk, : = 

do.de. 
k = i(i)p, i = 1(1), (2.5.11) 

lvvk 

is called the Hessian matrix of S. Omitting arguments, the kth component of (2.4.3) 
gives 
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d9,ô0k 

For all k and / the results can be collected in the p x p matrix 

G = 2M-2N02 (2.5.12) 

In the linear case y = J6 the second derivatives vanish which causes N02 = 0 and so 

G = IM = 2JTJ 

This means that in this case the Hessian of the response equals two times the square of 
the Jacobian (cf. e.g. Fletcher, 1969b; Powell, 1972a). 

First derivatives of the response S(0(A)). The vector of first derivatives is obtained by 
application of (2.5.1) which yields 

rVTS(d6ldXJ\ 

VSWl)) = 

\Ts{dOidkt\ 

and, in virtue of (2.4.10) 

\g\deidxj 

LgT(MP\). 

rxrT, 

= - 2 

NT(d8ldXt) 

N\d6ldkq)\ 

(2.5.13) 

where g and N depend on 0(A). The expression (2.5.13) set equal t o a ç x 1 vector 0 
can be written 

gT4 = ö1 (2.5.14) 

This is the condition for a minimum in a ̂ -dimensional subspace of Ep {q 5* p). Mostly 
q—\ and the search one-dimensional. Then we have 

Td6 -2[iV(0(A))]1 ^ - 0 
dX 

(2.5.15) 

which means that the normal must be orthogonal to the direction of search at 0(X). 
For linear and strict parameter functions this reduces to the conditon 

N(6(X)) 1 s 
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Table 1. Summary of matrices containing scalar products of vectors 

Used symbol 

S 
N 
N02 

M 
M12 

M22 

Arbitrary 
element 

(fo,fo) 
(Jo, A) 
(f0,f>,) 
(ft.fi) 
(ƒ*,ƒ*,) 
(fkhfij) 

Type 

scalar 
vector 
symmetric matrix 
symmetric matrix 
matrix 
matrix 

Dimension 

1 x 1 
p x 1 
p xp 
P xp 
p X p 

CÏVCÏ 1 ) 

Second derivative of the response S(0(A)) for linear and strict parameter functions. First 

we consider — iV(0(A)). Analogous to (2.5.3) we have 
dk 

L N(ßW) = [VT(/o/i>,-,V r(/o/>]T (2.5.16) 
dA 

The derivative of an arbitrary component of iV reads, with/, = x — ƒ 

^ [(* - fffà = -fik + foÂi, I = 1(1)P 
OOi 

The first component of the vector in (2.5.16) becomes 

and finally with (2.5.15), (2.4.12) and (2.5.9) 

= 2sT(M - N02)s (2.5.17) 

and with the Hessian defined in (2.5.12) 

d ! S ^ = fG, (2.5.18) 
dA2 

A summary of matrices containing scalar products of vectors is given in Table 1. 

2.6 Quadratic approximation to the response surface 

We assume that the response surface in the neighbourhood of a stationary point 
can be approximated by a quadratic expression. The Taylor expansion of £(0) about 
0(A), where 0 is a linear and strict function of A, then gives 
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S(0 + XA)- S(ß) = XATg + \X2ATGA + o(X3) (2.6.1) 

The first derivatives are obtained from (2.5.13) and the second derivatives from (2.5.18) 
and so the expression in least squares problems reads 

= -2XATN + X2AT(M - N02)A + o(A3) (2.6.2) 

At a stationary point 0* we have g = 0 and the matrix G must at least be positive 
semidefinite to produce a minimum, hence for X sufficiently small (2.6.1) yields 

Sip* + XA) ^ S(0*) 

In the linear case y = JO, the response Sis a quadratic function of the parameters 
given by 

S(0 + XA) =f0% - 2XA TJTfo + *-2A TJTM (2.6.3) 

since N02 then equals 0. The Hessian is in this case positive definite because |<7 re­
duces to Mand ATMA is equal to || JA ||2, the square of the length of a vector that is 
a linear combination of the direction vectors. Equation (2.6.3) expresses that S = 
ll/> - XJA ||2, which is also clear from Fig. 6 where now the tangent plane is the 
linear fitting surface. 

2.7 Scale factors and arc length 

2.7.1 Scale factors 

In general the scale factors are functions of all/7 parameters. Their total differential 
is thus given by 

dhk =
 dJ±de1 + ... +

 d-hdop 

50x ddp
 P 

= VThkdO 

For all scale factors this leads to 

dh = J^de 

An arbitrary element (k,t) of this Jacobian reads 

giving 

WSQ"*2(/£r«) =% (2.7.1) 
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Using the notation defined in definition 2.2.1 and equation (2.5.10) the total differen­
tial of the scale factors is found to be 

dh = hdM12dO 

2.7.2 Arc length 

Regarding arc lengths, let s represent the arc length along the kth parametric curve, 
then the differential reads 

ds(6k) = U^-)2 + ... + fi—)2^ d9k y k Lyd9k'
 Kdek'

 J * 

= Ulfrfd6k = hk(0) ddk 

The arc length between 9k
l) and 9k

2) is given by 

0(2) 

s = / hk(9)d6k
 ( 2 , 7 , 2 ) 

If s(k) represents the arc length along an arbitrary curve on the fitting surface with 
parameter k, the differential is 

ds(k) = [ ( - - + - - . + - ?)2 + ... + 
Kd8t dk Ô9P dk' 

(- + ... + 1 iyy dk 
yd9t dk 89p dk' 

- [(vT/I1]52 +... + (yY^rfdk 
dk dk 

The sum of these squares can be written 

v 

i = l 
dk \Tk)T(yn(yni 

where the summation sign acts on the gradients only, thus giving a sum of v matrices 
with dimension p x p, which according to (2.4.12) equals M. Consequently the arc 
length between 9(k]) and 0(k2) is given by 

A, 
dö(A)H 

dk } 
s = ƒ ' { (*Wy M(A)^ |* dk 
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Using (2.4.8) the structure of this integral can be made lucid viz. 

X2 

S=(«'0 | dA (2-7.3) 

which again is a linear combination of the direction vectors at X. 
If the parameter function is linear and strict in an arbitrary linear direction of search 

s, (2.7.3) reduces to 

X2 

s=l \\J(X)s\\dX (2.7.4) 
X, 

Then, if the Jacobian is independent of X, which is the case in the tangent plane to 
the fitting surface, (2.7.3) becomes 

s = || ƒ* || (X2 - Xt) (2.7.5) 

which intuitively is also clear from Fig. 6. Equation (2.7.5) then expresses the fact that 
the arc length is equal to the step factor times the length of the total tangent when s is 
taken equal to d. 

If, finally, all parameters are kept constant, except the &th, by taking s = lk, (2.7.4) 
becomes 

X2 

«=ƒ ll/*(A)||<U (2.7.6) 
Ax 

which is in agreement with (2.7.2), the arc length along 0» on the fitting surface. 

2.7.3 Example 

The example, for which the formulas and data and calculations are given in Appen­
dix 2.1, can be used to demonstrate the application of (2.7.6). Fig. 7 shows that, 
starting at 0(O) = 1, the length of the total tangent Jd in the tangent plane equals 7.28 
in units of the metric / for the observation space E2. The arc length along the only 
existing parametric curve on the fitting surface is given by 

(i) (i) 
9 i« 
ƒ UiWdB = e" (0) - 7.28 
(0) I» 

0 

Since the initial value is 0(O) = 1, it is readily found that 0(1) = 2.30 which is the so­
lution 0*. Application of differential corrections produces 0(1) = 0<O) + d = 3.68 and 
overshooting on the fitting surface takes place (Fig. 7). 
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OBSERVATION SPACE E2 

y® 

10r 

,(0) (shifted) 
fitting surface tangent plane at 0 

9 [-23O3.0* | A ^ I ) 

arc length 

h(0)d0 
/to) 

Fig. 7. Use of arc length in the observation space E2 

to determine the optimal step length on the fitting 
surface which in this example is degenerated into a 
straight line. The scale factor h is the length of the 
direction vector / i which in this particular case 
coincides with the fitting surface and emanates 
from 9 = 1.0 with length 2.72 (after Stol, 1962a). 

2.8 Curvature 

Formulas for the curvature of curves are derived in differential geometry. The prin­
ciples of the theory will be discussed in short. Reference is made to Struik (1961). The 
derivation of formulas is for the &th parameter, leaving it understood that for the 
other parameters the results are identical. 

Iff—/(ok) represents the &th parametric curve, then an arc element ds is given by 

ds = m111)2 + - + (dpyy = \\df\\ 

From this it follows that the derivative with respect to 9k reads 

dOk d9k d9k dOk 
(2.8.1) 

This result gives the possibility to use the more convenient arc length s as a parameter 
along the Mi parametric curve. Consequently 

ds 
•f. EL A -1 

dOk dek
} K 

(2.8.2) 

Equation (2.8.2) represents a tangent vector to the kth parametric curve. The length 
of this vector does not depend on s because it is equal to 1. So we have 

^-flfs = 2/1/; = o 
ds 

hence fss ±fs. The vector/^ gives the rate of change of the tangent when we proceed 
along the curve. For this reason/^ is called the curvature vector whose length is the 
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curvature. The reciprocal of the curvature is called the radius of curvature. The cur­
vature is denoted by 

*:-l/J 
and can be determined as follows. By virtue of (2.8.2) we have 

Lf = É.Û. = (-Û.) (ÉL) -1 

ds ds hk d0k hk dOk 

hence, using (2.7.1) and (2.8.1) 

, _ / * A - ƒ»(ƒ*ƒ**) (h)~1
 nst^ 

'" öö» ( } 

The length of this vector can be written with a determinant, using hk
2 = (fkJi) 

,i 
(2.8.4) 1 

(ƒ*ƒ*)(ƒ*.ƒ«) 

\fkiftk)\fkkifltk) 

which is the curvature at 0 of the &th parametric curve. A zero second derivative pro­
duces zero curvature. The elements of the determinant can be found on the main 
diagonal of the matrices M, M12 and M22 (Table 1). 

The curvature K is a characteristic for space curves. For curves on surfaces, as para­
metric curves used in the present sence, another characteristic is of importance. This is 
the component of the curvature vector^, in the direction of the tangent plane, the 
geodesic curvature. This component is the ordinary curvature vector of the projection 
of the curve on the tangent plane to the surface at 6 (cf. Struik, 1961). 

The geodesic curvature vector is obtained as follows. The orthogonal projection of a 
vector on the tangent plane can be expressed by a linear combination of the basis 
vectors which are in the Jacobian / . According to (2.4.9) and (2.4.13) the components 
of this linear combination are given by M~ 1JTfss and so the geodesic curvature vector 
itself reads 

and the magnitude of the curvature is obtained from 

K2
9 : = IK/JJ 2 = f&M- 'JX (2.8.5) 

which can be considered the square of the length offss under the metric JM~ 1JT. 
A further component of the curvature vector is now obtained by 

Jss == \Jsvg "•" \Jss)r 

The second vector at the right-hand side is a remainder curvature in a (v — /^-dimen­
sional subspace of the observation space which is orthogonal to the fitting surface in 0. 
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The corresponding curvatures are connected by 

.2 , ..2\% K = (K2
g + KÏY 

The geodesic curvature in units of v S will be called the relative curvature and it is 
given by Kg\fs. 

Thus far attention was paid to curvature in the direction of a parametric curve. In 
the general case of curvature in an arbitrary direction of search s the formulas are to be 
generalized. Let an arbitrary curve on the fitting surface be given by y(k) =f(9(k)) 
where 0(A) = 0(O) + ks. Then, analogous to (2.8.1) we have, making use of the chain 
rule in (2.5.4) 

ds 
dk 

Jf de 
dk = ll/'ll 

and analogous to (2.8.2) 

/.-/»n/iir1 

This is a vector of unit length in the direction of the given linear combination of direc­
tion vectors. 

To determine dfjds we make use of (2.5.8) to obtain 

dk 
4°(ÖW)=(V r /^)=:^ i ] 

hence, by this definition 

d 
dk 

J(0(k))s = Ks 

and obviously Ks = {j{is,...,j{"s)s. The derivative of the length of Js reads 

d rTjTTA sTKTJs (Js,Ks) 
— Is J Js\ = = 
dk 11*11 11*11 

giving finally for (dfjdk) (ds/dk)'1 

Ks\\Js\\2 - Js(Js,Ks) 
Jss 

with length 

K == 
II/*«J 

ll/*ll4 

(Js,Js ) ( Js ,Ks) 

(Js,Ks) (Ks,Ks) 

i 
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Taking s = (O,.. .,OA,0,.. .,0)T these formulas reduce to (2.8.3) and (2.8.4) obtained 
for the kth parametric curve. 

2.9 Relationship between spaces 

The spaces distinguished merit further comment as regards their relationship. It is 
not adequate to use only the parameter space to illustrate the progress of search. The 
tangent space must be used as well. 

First we consider the observation space (Fig. 8). Vectors in the tangent plane are 
linear combinations of the direction vectors of J. The metric in the tangent plane is Af 
because for anyp x 1 vector u we have ||/»||2 = uTMu. Vectors u can be represented 
in the tangent space with ap x p metric /. This is done in Fig. 9 for « = //and u = t, 
respectively. 

The image of the path of search on the fitting surface is a curved line obtained by 

OBSERVATION SPACE Ev 

fitting surface 

Fig. 8. Observation space with application of differential corrections. On the fitting surface the path of 
search generated by s emanates from 0<o> in the direction of Jd. The orthogonal projection of this *-
path on the tangent plane A is denoted by Jft-locus. Contour curves for S — constant are denoted by 
C, the neighbourhood of the solution is indicated by C*. The metric of the tangent plane is F J = M. 
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INTERMEDIATE TANGENT SPACE E2 AT 

ye'0') 

Fig. 9. Intermediate tangent space at 0<m in 
Fig. 8 with differential vector d and image of 
the path of search, the 6-locus. Contour curves 
for S = constant are denoted by AC. The 
metric of the tangent space is /. 

orthogonal projection of this path on the tangent plane. In the Figs. 8 and 9 it is 
denoted by A-locus. Although the application of differential corrections is based on the 
fact that a direction d to a neighbourhood of the minimum (C*) can be found, the 
image of the actual path of search shows that only in A6(0} it is in the direction of d 
(Fig. 9), where the left superscript A refers to quantities with respect to the tangent 
plane. 

Next we consider the parameter space (Fig. 10). This space also has thep x p metric 
/ and consequently it has the same coordinates as the tangent space. However, there 
are differences that are essential. Contour curves for S(0) = constant form a fixed 
pattern in the parameter space. These contour curves change shape in a sequence of 
intermediate tangent spaces, they tend toward those in the parameter space when 
>i0(o) _> Ag* jjjg path 0f search o n ^ e fitting surface is curved but it is the locus of 
points 0 = 0(O) + ks, where s = d, which plots a straight line in the parameter space. 

From the representation in the intermediate tangent space it becomes clear that the 
curvature of the parametric curves on the fitting surface causes divergent shooting 
rather than overshooting. For this reason the method of back projection was developed 
in Chapter 6 to find paths that proceed towards the end point of the image of Jd'm. the 
parameter space (Fig. 10). 

PARAMETER SPACE E2 

Fig. 10. Parameter space with path of search 
0(A) = 0(O) + Xs, where s = d the vector of 
differential corrections which emanates from 
0<o). Along the j-path the normal N changes 
direction. Images of the vector Jd and to in the 
observation space are indicated as well. The 
metric of the parameter space is /. 
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3 Features of optimization 

3.1 General 

Methods that are available for unconstrained optimization have been reviewed by 
many authors (Brooks, 1959; Spang III, 1962; Fletcher, 1965; Box, 1966; Box, Davies 
& Swann, 1969; Fletcher, 1969b; Murray, 1972a; Powell, 1972a, Dixon, 1974). In 
general the optimization problem is to minimize an objective function F(x) subject to 
the constraints c/x) ^ 0,j = l(l)/w, where a vector xeEv that satisfies the con­
straints is called feasible. It is assumed that F(x) can numerically be evaluated for all 
feasible jr. 

Here the objective function S(0) is a sum of squared functions. This means that 
parameter optimization is a special case of mathematical programming techniques. In 
general S is not quadratic in 0 and then its optimization is not a special case of qua­
dratic programming. 

3.2 Constraints 

In the present case no constraints on the values of the parameters are involved. 
However, one or more parameters may be bounded to ensure numerical evaluation of 
the condition function F in Chapter 2. In case of overshooting during intermediate 
iteration steps, the vector 0 can enter the unfeasible region. Instead of keeping the 
violating parameter constant at its boundary value (Spendly, 1969), subprogram MIN 
iterates the parameter vector in the feasible region as close to the bound as predefined 
by program options. When oscillating may occur it should be tested in the next fitting 
cycle whether the same parameter violates the constraint again before to break down 
the parameter vector (Chapters 8 and 9). 

3.3 Sequential and nnseqnential search 

Unsequential search is employed in situations where function evaluation is expen­
sive or time consuming. Factorial methods or random experimentation can be used, 
although they are less efficient (Brooks, 1959). Since function values in mathematical 
models can be obtained by numerical evaluation, most methods for nonlinear opti­
mization of objective functions employ sequential search methods. This means that 
new parameter values are obtained from previous values by a fixed set of operations 
to update 0. For instance for any algorithm that produces a direction of search s — 

m 
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1. 0(A) = 0(B) + As(B) 

2/3. A(B) = A obtained by applied algorithm 

4 0(»+D =fl(2W) (3,3.1) 

5 gW ._ ß(»+i) 

6. s(B) : = s(0(B)), repeat from step 1 

This type of iteration is most common for various choices of s (Cauchy, 1847 ; Curry, 
1944; Crocket & Chernoff, 1955; Hartley, 1961 ; Spang III, 1962). 

The value of A(B) can be held constant, A(1) say, giving in each cycle the iteration 

0(»+i) = 0« + ^(iV-)] „ = !(1)f (3.3.2) 

In this case A(1) is sometimes called the damping factor (cf. Kowalik, 1967). When 
A(1) = 1 in each cycle, the method is a full step method (cf. Hayes, 1974). 

3.4 Direct and analytical search 

Direct search methods use evaluation of functions only. As a matter of fact they are 
heuristic methods or methods of empirical optimization, developed in the parameter 
space. A general introduction to these methods is given by Hooke and Jeeves (1961). 
The most simple direct search method is that of alternating parameters, each at a time. 
Other more complicated methods as Partan algorithms (Wilde, 1965), Simplex al­
gorithms (Neider & Mead, 1965) as also Rosenbrocks method (Rosenbrock, 1960) 
explore the pattern produced by contours of S = constant in the parameter space and 
are called methods of pattern search. Reviews of these methods are given by Spang III 
(1962), Fletcher (1969a), Fletcher (1969b), Powell (1972a), Swann (1972). Direct 
search methods are used in cases where no derivatives of the condition function are 
available. This means a loss of efficiency. It will be shown that derivatives can be 
found for least squares methods even for complicated models (Chapter 4). 

Analytical search methods make use of information about first and second deriva­
tives of the objective function with respect to the parameters to be optimized. Thus, 
these methods - also called gradient methods - use information of the direction to­
ward the minimum. 

One can distinguish between methods in which the derivatives are available and 
those in which they are approximated. In the last case they are obtained by difference 
techniques, evaluating the condition function for two different values of 6k to approx­
imate/^. 

The first derivative of the objective function results in the gradient g, giving a linear 
direction of search toward a minimum with s — —g. This method was proposed first 
by Cauchy (1847) and is called the method of steepest descent. Modifications have 
been proposed to improve the rate of convergence and to accelerate the numerical 
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process. Curry (1944) did show that convergence depends on the metric, B, used; when 
s = —B~ 1g. When the contours of the objective function are spherical in the param* 
eter space, the steepest descent converges in one step. In this case B = I. When the 
contours are elliptical, so with a quadratic objective function, conjugate gradient 
methods can be applied (Fletcher & Reeves, 1964). These type of methods recently 
have been reviewed by McCormick & Pearson (1969), Fletcher (1972a) and Dixon, 
(1974). 

If Taylor expansion of the objective function about the current approximation is 
employed, the first three terms of the series are used and the optimization method is a 
second order method called the Generalized Newton or Newton-Raphson method. 
When the objective function is quadratic in the parameters one step convergence is 
obtained by the Newton-Raphson algorithm using the Hessian as metric, no d = 

Linearization of a nonquadratic objective function results in methods where the 
metric G is applied and updated in each fitting cycle. This is called a variable metric 
method. If a minimum is determined in the current direction of search in each cycle, 
the method is an optimal gradient method. Otherwise the method is a fixed step factor 
method, that can be used when the decrease of values of the objective function for a 
number of fitting cycles according to (3.3.2) is pertinent. 

Algorithms where G~l is approximated by a matrix H, say, and updating of H oc­
curs each cycle (Davidon, 1959), are called Quasi Newton methods. The matrix H is 
taken positive definite to ensure reduction of the response S. Several of these methods 
have been compared and discussed by Fletcher (1969b). 

Mixed methods make use of both direct and analytical search as the polyalgorithm 
for global nonlinear least squares problems designed by Aird (1973). A further exam­
ple is the simulation of convergence of parameter values as developed in Chapter 10. 
After several cycles of analytical search, values obtained thus far for each parameter 
separately are extrapolated in an empirical way to accelerate convergence. 

3.5 Dimension of search, optimal search 

Nonlinear parameter optimization is employed by reducing the number of para­
meters in each fitting cycle using a q x 1 algorithm parameter vector X, q < p, in 
which case the search is ^-dimensional. In fitting practice the number of algorithm 
parameters is small, two at most, when applying techniques for finding an optimal 
value of X that gives a subminimum of 5. The condition to achieve optimal progress is 
given by (2.5.14). For one-dimensional search, that still can be either curved or linear, 
this condition reads 

, ' * £ > - 0 
B dX 

which for linear and strict parameter functions according to (2.1.9), reduces to (g,s) — 0. 
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In one-dimensional linear optimal search it is the minimum in the direction of 
search that is used to furnish a new starting value for the next fitting cycle to guaran­
tee convergence (e.g. Kowalik & Osborne, 1968). The update of 0 for an algorithm 
that produces a subminimum in the direction of search s = s(0) reads 

1. 0(A) = 0(B) + As(n) 

2. S(0(A*(n))) = min S(0(A)) 

A 

3- À - k (3.5.1) 

4 0(»+i> = 0(AW) 

5. 0(n) : = 0 ( " + 1 ) 

6. s w : = s(0(n)), repeat from step 1 

Since the minimization in step 2 is nonlinear, A is to be solved by iterative methods 
(see Chapter 9). 

One-dimensional nonlinear search can be carried out in several ways. Application 
of weights to the components of the search vector s as developed in Chapter 5 gives in 
step l in (3.5.1) 

0(A) = 0(n) + XwD(X)sw (3.5.2) 

where the weights in the diagonal matrix wD depend on the step factor A. 
One-dimensional nonlinear search can also be obtained by treating two directions 

of search with interpolation techniques. The Levenberg method (Levenberg, 1944), 
generalized by the Marquardt method (Marquardt, 1963) is an example of such a pro­
cedure. It can be shown that the search with these methods is curved (spiral) and is 
determined by the gradient and the differential correction vector (Jones, 1970). 

One-dimensional circular search is a special case which depends on two vectors say 
«and » with properties ||«|| = ||r|| and« 1 », then step 1 in (3.5.1) would read 

0(a) = 0(n) + u w cos a + v(n) sin a (3.5.3) 

where now the angle a is the algorithm parameter to be optimized. 
Extension to a two-dimensional circular search is obvious. Optimizing the direction 

of search and the step length in the new direction, the update of 0 is obtained with 

0(<x,ß) = 0 W + ß{u(n) cos a + t>(n) sin a) (3.5.4) 

where the algorithm parameter vector A = (a,ß)T is subject to optimization. 
The back projection method developed in Chapter 6 is an example of the practical 

use of (3.5.3) and (3.5.4). 
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3.6 Convergence of gradient methods 

The main problem in optimization is the choice of an efficient new direction of search 
and the application of a metric that guarantees fast convergence. 

Proofs of convergence for gradient methods are given in literature for various modi­
fications and for specific functions. Curry (1944) gives a proof for the sequential op­
timal steepest descent method. If there is only one stationary point in a region C the 
gradient method starting in C will converge to it. The process will anyway terminate in 
a stationary point that is in C. Crockett & Chernoff (1955) give a proof for 

s = -B~lg (3.6.1) 

using eigenvalues of the matrix B~1G, where G is the Hessian defined in (2.5.11). 
Hartley (1961) proves convergence for the sequential optimal differential correction 
method. 

The essentials of these proofs are that S(0*)> 0 and bounded. If in a convex region 
in the parameter space with boundary 0C a value 0U) can be found such that SCS11*) < 
S(8C) for any boundary value 9„ and if a direction of search s can be found that gives 
S(6>(2)) = S(fla) + A(1)*(1)) < SiP») the process will converge to a stationary point. 
Obviously a sufficient requirement to X that the mentioned inequality be satisfied 

(Spang III, 1962) reads— . _ < 0. Such solutions exist for gradient methods as the 

method of steepest descent, the Grauss-Newton and the Levenberg method (Tornheim, 
1963). Weight and metric of several gradient methods are listed in Table 2. 

While for gradient methods •S'(0<"+1)) < Sifl™) is obtained by optimizing the step 
length, the direct search methods achieve this by inspection. 

Table 2. Conspectus* of gradient search directions based on the general formula 
s =-W(A + <d)-lg. 

Method 

1. steepest descent 
2. general gradient 
3. differential correction 
4. scale factor weight 
5. damped differential correction 
6. second order, approximation 
7. second order 

Weight 

W 

I 
I 
I 

w> 
I 
I 
I 

Metric 

matrix 
A 

I 
B 
M 
M 
M,C 
H-1 

G 

scalar 
a 

0 
0 
0 
0 
a 
0 
0 

Search 

linear 
linear 
linear 
curved 
curved 
linear 
linear 

* The matrix Cis denned in Chapter 2, matrix w" will be defined in Chapter S, B denotes 
an arbitrary metric matrix. For least squares M = J7J and G = 2(M- N02). The matrix 
H stands for an approximation to G'1 according to Davidon's algorithm. Values for a 
and H are chosen to ensure the metric being positive definite (Davidon, 19S9 ; Marquardt, 
1963). 
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3.7 Local and global minima 

Optimization algorithms are designed to find the solution g* = 0, they thus find at 
least local minima. A necessary condition for a local minimum (cf. Fiacco & McCor-
mick, 1968) is that g* = 0 and G* a positive semi-definite matrix. A sufficient con­
dition is that g* = 0 and G* a positive definite matrix. For a global minimum it is re­
quired that for all 0 e E" we have a 0* that satisfies 

S(0*) g S(0) 

There is only little known about algorithms that furnish information on the type of 
minimum obtained for arbitrary functions (cf. Spang III, 1962; Murray, 1972b). 
Hartley (1961) suggests a grid search of the parameter space. One can also use different 
starting approximations and observe whether they converge on the same stationary 
point. The entire feasible region should be investigated in this way. Such a type of 
numerical analysis is a laborious method, however, even for a small number of 
parameters (Powell, 1972a). For least squares problems, paths of search can be found 
that avoid heavy oscillation of intermediate results. For the same starting point and 
the same algorithm different paths on the fitting surface can then be followed. A 
method to achieve this kind of exploration will be paid attention to in Chapter 11. 

3.8 Least squares 

Objective functions with the form of a sum of squares have special properties. While 
the general problem of optimization is in the parameter space, minimization of a sum 
of squares S can be studied in the observation space, where the problem is the deter­
mination of the foot of a perpendicular to the fitting surface. For this case Taylor ex­
pansion produces the normal equations (Sections 2.3 and 2.4). 

When the condition function is linear in the parameters, the objective function is 
quadratic giving G = 2JTJ for the Hessian. In nonlinear cases the Hessian reads G = 
2JTJ — 2N02 as derived in (2.5.12). The Gauss-Newton method for least squares uses 
a metric where the matrix N02 is considered to be absorbed in the remainder o(A3) of 
the Taylor expansion in (2.6.2) (Powell, 1972a). This means that only the first deriva­
tives of the condition function need to be evaluated. 

Since in most practical fitting problems M — JTJis positive definite, its use guaran­
tees a descent in the response space emanating from the starting approximation. To 
obtain convergence it is necessary to determine the next point in the parameter space 
according to the conditions discussed in Section 3.6. This means that determining a 
minimum in the direction of search producing a lower value for the sum of squares is 
efficient. This optimal step factor method is called the modified Gauss-Newton method 
which is given in (3.5.1) with s = d. 

Methods have been developed that improve the condition of M by adding a number 
to the diagonal terms of this matrix (Levenberg, 1944 and Marquardt, 1963), but Da-
vies & Whitting (1972) report the rate of convergence as being slow compared to the 
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Gauss-Newton algorithm because of the damping of the normal equations. 
A review of methods, which are mostly based on the efficient treatment of the Jaco-

bian and on interpolation techniques between the gradient and the differential cor­
rections, can be found in Jacoby et al., (1972). 

3.9 Evaluation of methods 

There is no general classification of optimization methods with respect to their 
efficiency for arbitrary condition functions. The applicability of an algorithm depends 
on the special properties of the functions to be minimized and the extent to which 
assumptions made, hold. The choice of an algorithm therefore depends on several 
considerations. Algorithms that ensure convergence may work so slow that applica­
tion without any modification is a waste of computer time. Therefore some algo­
rithms are designed in such a manner that updating of matrices is not carried out in 
each cycle but only after a predetermined number of them. 

The slow convergence of the method of steepest descent has been emphasized by 
many authors (Spang III, 1962; Marquardt, 1963; Fletcher, 1969b), although the first 
few steps may give an appreciable decrease of the response the rate of convergence is in 
general considered unpredictable. Steepest descent convergence will occur even from a 
poor initial approximation in the first cycle (Powell, 1972a), but the direction toward 
the minimum according to the Gauss-Newton algorithm is often found to be about 
perpendicular to the direction of steepest descent for the first fitting cycles (Marquardt, 
1963; Davidon, 1969; Powell, 1972b). 

The Gauss-Newton method is independent of scaling and although there is no de­
vice to force convergence from a poor approximation (Powell, 1972a) it converges 
rapidly when near a solution. 

Fletcher (1972b) points out that in his experience first derivatives are usually ex­
tremely valuable and that second derivatives do not furnish the same order of improve­
ment. In least squares methods updating of the matrix 2JTJ will usually be quite 
satisfactory. It will be shown in Chapter 5 that second derivatives are useful when ap­
plying scale factor differentials as weighting system for the differential correction 
vector. 

Methods which use a nonlinear search might have advantages over others. They 
may follow the natural valleys better, as the Levenberg method does (Curry, 1944). 
However, a practical drawback can be the numerical complexity of the method. In the 
Levenberg method the algorithm parameter occurs implicit in the metric (Table 2) 
which to find the parameter value has to be inverted for each step in the iterative 
process. Davies & Whitting (1972) derive a single prediction formula for this parameter 
to simplify arithmetics. 

Algorithms that use function values only, have the advantage that no further for­
mulas need be evaluated. The most simple of these algorithms, the alternating direc­
tion or univariate method, usually fails to give convergence in a reasonable number of 
fitting cycles (Fletcher, 1969b), especially in situations where contours of the response 
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Table 3. Classification of optimization methods in descending efficiency. 

Sequential methods Nonsequential methods 
Second order methods Factorial methods 
First order methods Random methods 

Gauss-Newton 
Quasi Newton 
Conjugate gradient 

Zero order methods 
Conjugate directions 
Direct search 

surface in the parameter space are inclined at about equal angles to the coordinate axes 
(Spang III, 1962). When using weak stopping criteria the obtained parameter values 
will deviate unpredictably from the required solution. 

Some authors, possibly in accordance with their experience, give a classification of 
methods in nonlinear optimization as regards their assumed efficiency. A combination 
of classifications given by Brooks (1959), Hartley (1961) and Murray (1972d) could 
read as given in Table 3. 

Classification of various modifications of the above mentioned methods according 
to 'standard' problems in unconstrained optimization are given by Kowalik & Os­
borne (1968), Sargent & Sebastian (1972), Himmelblau (1972), Davies & Whitting 
(1972), Aird (1973) and Dixon (1974) among others. 

3.10 Stopping criteria 

Stopping criteria are used to terminate the execution of an optimization problem 
for several practical reasons. 

To avoid waste of computer time tests are used in computer programs to stop the 
process after a predetermined number of cycles has been performed, so even if no 
convergence takes place the number of fitting cycles remains limited. For the same 
reasons the use of control cards in the input stream to define the maximum computer 
time in a single run, can be advocated. When convergence is apparent one can ter­
minate the numerical process when a required accuracy is obtained. 

Main criteria mostly used for the termination of the optimization process are 

- magnitude of the relative change of the response in consecutive cycles, 
- magnitude of the relative change of the parameter values in consecutive cycles, 
- length of the gradient. 

Stopping criteria for least squares methods will be discussed in more detail in Sec­
tion 7.4.2. 
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4 Extension of the condition fonction 

4.1 General 

Functions that occur in fitting practice have to be put in a suitable form before the 
theory discussed in Chapter 2 can be applied. In cases where the derivation and pro­
gramming of second derivatives gives complications it here is assumed that algorithms 
based on first derivatives still can be applied. It is then at least necessary to calculate 
the components of the vectors f0 and fk,k= l(l)/>, numerically. These vectors are 
essential when using gradient or differential correction methods. However, the deter­
mination of both vectors is not always achieved by simple numerical evaluation; some­
times an iterative solution of implicit functions and the solution of derivatives from 
simultaneous equations is required. 

To distinguish between functions of the same variables and parameters but of 
different form a left-superscript is introduced, e.g. 1F(x,0) and 2F(x,0). Particular 
functions will be defined in each section separately. Letter subscripts denote differen­
tiation with respect to the indicated parameter according to (2.1.11) and (2.1.12). 

4.2 Functions of différent form 

A vector of values defined by (2.1.5) reads 

Kjifi) -

•p/-Yci] v m v [ i ] Y [ i ] vt^flY 

,[v] ,,[v] v[v] rv-ylvj v[vj ,,[v] ivj [v] n\ [v] 

= 0 (4.2.1) 

It is not necessary that all functions Fin (4.2.1) have the same form. Generally, equa­
tions (4.2.1) are called the condition equations, where the function F represents the 
condition function, hence the observations are subject to v conditions which may be 
of different form (Deming, 1948). In this case (4.2.1) must be written 

F(yjf) = 

r(Xi ,...,Xy_j,Vj ,xj+i xm ,V) 

„[v] ,,tv] v[v] cy-rlv] [v] [v] [v] [v] a\ tv], 

= 0 (4.2.2) 
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to distinguish between v different condition functions. According to (2.1.8) this can be 
written 

F(yj,0) = [1i?cl](^1],0),..,vF[v](^ ï l
Jö)]r = 0 

which expresses that actually it is the adjusted value ylp, i = l(l)v, that is subject to v 
conditions. The vector of deviations from observed values xj-'1, i = l(l)v, is obtained 
by 

foj = xj - yj 

according to (2.1.10). 
If the equations (4.2.2) can be solved, giving^ = fjiß), the Jacobian reads 

With these expressions the theory developed in Chapter 2 can be applied. The subscript 
j will be omitted in further sections unless newly defined in the text. 

4.3 Implicit functions 

Derivatives required to evaluate the Jacobian can also be obtained from implicit 
functions F(y,0) = 0. See (2.1.8). 

The ith component differentiated with respect to the kth. parameter gives 

ôf'XO) dFm fdFm 
\ey) • F?' *'*" dek 89k 

Evaluated for all observations and all parameters this can be written 

r r f l ] - i - l r p t l ] E-U] rflh 
J. y 1 1 , . . . , 1 fr , . . . , 1 p 

0 

(4.3.1) 

/ / = 

F™ 

pin pin pin 

p[v] pfv] p[v] 

(4.3.2) 

The relationship between the Jacobian matrices for implicit and explicit functions can 
be expressed by means of Definition 2.2.1 as 

Jf — - FdJF (4.3.3) 
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4.4 Nested implicit fonctions 

In this section we are concerned with condition functions of the following type 

F(u,w,0) = 0 (4.4.1) 

where u = u(6) and w = w(0). Let calculated values that meet the condition (4.4.1) ber 

« and let the vector of observed function values be xu then we have to determine the 
components of the difference vector 

fo=xl-u (4.4.2) 

and of the direction vectors 

f' = ar» k -1(1)p 
cvk 

We assume that u can be solved from (4.4.1) iteratively which gives (4.4.2). To solve 
fk use is made of the total differential of (4.4.1) with respect to each parameter which 
reads for the Äth, 

,« SF du ,n ÔF ôw ,n ôF ,. 
dF(u,w,0) = ddk + d9k + — ddk = 0 

dudOk dwddk 39k 

from which we obtain with a 1 x 2 and a 2 x 1 dimensional vector of variables in the 
numerator, the solution 

_ (l.-FJ^wJ fc = 0 4 

which has to be evaluated for all /. This equation is a generalization of (4.3.1). An ar­
bitrary element of the Jacobian thus reads 

which is a generalization of (4.3.2). 

4.5 Simultaneous nested implicit fonctions 

A further extension of the use of implicit functions is given by the following simul­
taneous system of condition functions 

F(u,o,w,0)=O (4.5.1) 

G(u,D,z,e) = 0 

where u,v,w, and z are functions of 0 and the solution is with respect to u and v. The 
total differentials dF = 0 and dG = 0 applied to the kth parameter yield after dividing 
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them by ddk 

dF du OF do OF dw dF 
. + + + — = 0 
du 89k du ô9k dw d9k dOk 

ÔG du dG do ÔF dz dG _ 

düddk Hö~d9~k d~zdëk Wk 

from which the partial derivatives uk and ok have to be solved. The solution is obtained 
from 

VFU F J rukl[-Fwwk-Fkl 
[pu G J [»J ]_-Gzzk -Gk\ (4.5.2) 

and can be written with a 2 X 2 dimensional matrix and a 2 X 1 dimensional vector 
of variables at the right-hand side 

o*J 

- 1 

F„G„ — GUF, 

G„ -F„ Fk + Fwwk 

Gk + Gzzk. 

(4.5.3) 

which is a generalization of (4.4.3). 
Next we assume that (4.5.1) can be written in a special form to obtain mutual solv­

able equations, viz. 

F = u -f(o,w,0) = 0 

G = o - g(u,z,0) = 0 

then (4.5.3) takes the form 

" k 

1 

1 - gufv 

1 ƒ„ 

Lg« 1 

(4.5.4) 

'fk +fw">k 

gk + gz*k\ 

4.6 Sequential functions 

Sequential functions can be considered a series of multiple nested implicit functions 
of different form with respect to the argument. The vector of calculated function val­
ues of such a sequence can be written, given a starting value yl0\ in the following way 
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y = 

rytih 

„t'1 

L / v ] j 

/tl](v[01 ,e)l 
/ t 2 V 1 ] ,*) 

> (/'-",*) 

/[%c"-1],e). 

= 

rytl]«»)i 

'ƒra w 

.Vw(e). 

(4.6.1) 

We have to determine ƒ> and/i, A: = l(l)/>. Values of ym can be obtained by simple 
evaluation, the starting point for instance being / 0 1 = x1"3, which enables us to deter­
mine f$l = x[Q — yli\ i = l(l)v. The first, second,..., ith component of an arbitrary 
vector/J read 

dyw of111 

d0k d0k 

dym _df™dylli df™ 
d0t dy eek dok 

~Wk ~~dy~ 80k
 + Wk' 

i = 3(l)v 
(4.6.2) 

Sequential functions given by (4.6.1) can easily be reduced to functions defined in 
Section 2.1. We only need to replace the variable yin in the argument off by observed 

dfm 

values, sayxjf1, s o producing in the derivatives in (4.6.2) — = 0, i = l(l)v and so 
dym

 dy 
—— — ft1- The observation vector x2 is in this case defined by 
ddk 

*a:-(^°W", ;X [v- ihr 

The starting value for the sequence, viz. yt0] = xl°\ will generally not be an optimal 
choice. For this reason we can define yl0i = : dp+1 where 0^2i can be taken equal to 
x1!01. This new parameter can be used to extend the vector of parameters. To optimize 
9p+u partial derivatives with respect to this parameter have to be determined. 

In a computer program both possibilities can be built in, their choice being governed 
by a system parameter r. Using an auxiliary variable z, and renumbering the parameters 
such that now 9P defines yl0J, the series (4.6.1) can be set up as follows 
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yin 

ym 
= / t l ] 

= / t 2 ] 
(z[1] 

(z[2] 
,0) 
,0) 

z111 

z<23 

z [ 3 ] 

= r0p 

= r / 1 ] 

= ry
m 

+ d -
+ ( 1 -
+ ( 1 -

- r)x™ 
- r)x\" 
- r)x™ 

ym =fm ( zra >e) ^ i + u ^ ^ a + ( l _ r ) x m ( 4 - 6 > 3 ) 

3,1V-1] = / [ v - i ] ( z i v - i ] ) ö ) z w = r > , [ v - i ] + ( 1 _ r ) x [ v - i ] 

/ v ] = / v ] (ztv] ,9) 

where r = O means nonsequential treatment and r = 1 means sequential treatment. 
The derivatives of the auxiliary function for i = 1 are 

5z[1] 

^— = 0, fc = 1(1) (p - 1) 
d0* (4.6.4) 

<5ztl] 

= r 
eep 

The derivatives of the condition function for i = l ( l)v are obtained from 

dym dfi*dzm a/1'1 , , „ , fA£gx 

— = + —, k = l(l)p (4.6.5) 
50* dz 50* 30* 

The next component for the auxiliary function can now be prepared 

- 5 5 - = ri~> k = l(l)p' ' = 1 (1 ) (v - l) 
ddk d0k 

where the partial derivatives ôz/ô8k cancel out if the system parameter r = 0. As the 
functions z always occur in the same way in the functions/, the derivatives can be pro­
grammed efficiently on basis of the following scheme, [ denoting DO-loops 
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T T 

1 

2 

3 

4 

5 

6 

» = ï(l)v 

fe = l(l)p 

50» 8z 50» 

0 /a _ 5 /« fl™ 

50» 50» 50»' 

Tfc = l(l)j> 

5z [ ( + 1 ]_ 5 / ' 1 

50» 50» 

p equations 

where the particular partial derivatives ƒ* for all parameters have to be programmed 
separately in step 4 only. 

In fitting practice it will be helpful to choose r = 0 in the first few fitting cycles to 
obtain an improved starting value 0(O) before applying sequential functions with r — 1. 

If the new parameter that represents the starting value y101 of the series has to be ex­
cluded from the fitting procedure, this can be done by means of the parameter index 
cards in the main program to be discussed in Chapter 8. 

In case of time series it is custom to plot ym, i = 0(l)v, against i = time, connecting 
the points by polygons thus producing a broken line whose first derivative with respect 
to time is not continuous. Partial derivatives of the sequential condition function with 
respect to the parameters, however, are continuous since also in 'this case the con­
ditions laid down in Section 1.3 hold. 

4.7 Alternative functions 

A further generalization of the condition function occurs when the structure de­
pends on results obtained by function evaluation. In that case it is not known what the 
structure of the entire function is until all alternatives have been chosen. This type of 
function belongs to the class of nested implicit functions. An example is given in Fig. 
11 where the functions V"and 2f are supposed to have different forms. 

We define the row vector of variables x : = (x2 *„) where we assume that it is xt 

which in this model has to be compared with calculated values y to find the sum of 
squares S. Values for/&'J = xlP — ylts can be obtained by numerical evaluation. 

The derivatives in which %,j = 1,2, is involved read respectively 

if u™ < 0 

5yW = 3 ( ^ 5 i | W 5 ( 1 / P W ] aCf1'*) 
50» du 50» 5» 50» 50» 
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I 1 boxes defining the 
1 'condition function 
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:1(1)V •© 
u m = u(X^Q) 

^<Tf> àO 

Stopping criteria for 
fitting cycles on 0 

fulfilled 

yes 

( Stop ) 

Fig. 11. Flowchart for parameter optimization detailed for the calculation of the difference vector ƒ> 
of a composite alternative condition function. Particularization of 1fln;j = 1, 2; i = l(l)v, is caused 
by the value of um which can change for the same i at varying values of 0 in consecutive fitting cycles. 

if« c i ]kO 

dym _ dÇfm) dum d(2flil) Swin Ô(2fn) 
~ôÔ^ du ~d(^ ôw Ô9k d9k 

In the computer program the derivatives can be included in the subprogram for 
function evaluation. The advantage is that the program can be shortened since use can 
be made of auxiliary variables in function as well as derivative function statements. 
When the derivatives are written in their own subprogram, an array of integers must 
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Fig. 12. Part of flowchart for the calculation of the difference vector/) and of the first derivatives of a 
composite alternative condition function. Values of first derivatives are controlled by values of ifn. 
See Fig. 11 for completion. 

be produced that contains information on the step sequence at the ucn-decision for 
each i. 

If/is a function of both, » and w, these functions have to be defined for both choices. 
An example is given in Fig. 12 where ct and c2 denote constants. The calculation of the 
derivatives is indicated in the flowchart. 

The functions u, o, w and ƒ need not be functions of all components of 0. This means 
that for u, v and w only those derivatives have to be programmed whose parameters 
occur in the functions mentioned. The function/, which is a function of the parameters 
occurring in u, o, w and in its own argument, can be treated as follows. Let the function 
u depend on pu ^ p parameters taken from 0 and suppose when treating u that they are 
ordered by ku = l(l)pu, and all this analogous for », w and ƒ Numerical calculation of 
fk is then carried out by the following scheme 
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'k = l(l)p 

./E° = o 
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fk„ — fk„ + /w w*„> 

f£l] _ ftfl , 5 / ' 
Jk, -Jk, +T^-> 

O0k, 

K = i(i)p„ pu g p 

K = i(i)pw, pw ^ P 

Pf equations, Pf S P 

In Fig. 11 and in Fig. 12 it is assumed that the step sequence depends on the value of 
Mm. The foregoing procedure can also be used when the function choice is made to 
depend on the observation order number i. If for a first group of data, say v1( the right-
hand route is to be chosen, the argument in the decision statement on uin should read 
Vi - i-

4.8 Combinations of functions 

The functions discussed in Section 4.7 can be sequential functions. A flowchart for 
the application of such a combination is given in Fig. 13. 

Observed values of y and u are components of the (v + 1) x 1 vectors 

r . _ MO] Y [ l ] Y [v- l ] v [v]yT 

r . _ fY[0] Y [ l ] Y [v-1] Y[v]yT 

It is assumed that values of u are obtained by sequential functions too and that ob­
servations on u are components of the vector x4. We define the row vector of variables 
x = : (xs,.. .,xm) and use x^ for the determination of S = £(xi.,] ~ yin)2- The system 

i 

can be set up with system parameters rx and r2 as follows 
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Fig. 13. Part of flowchart for the calculation of the difference vector ƒ> and of the first derivatives (in­
dicated by letter subscripts) of a sequential alternative condition function. See Fig. 11 for completion. 

63 



/•j = O, nonsequential treatment of y 
rx = 1, sequential treatment of y 
r2 = 0, nonsequential treatment of « 
r2 = I, sequential treatment of « 

Auxiliary functions as used in Fig. 13 are 

zm = riyii-ii + ( 1 _ r i ) xw ,. = 1 ( 1 ) (v + 1} 

WW = r2u
li-n + (1 - r2)xf, i = 1(1) (v + 1) 

where y101 and w101 are starting values for function evaluation. The parameter vector 
is defined such that 

/ O ] = :0 p andu I O ] = :0 p _ i 

Observed values x̂ 0-1 and x^0] are assumed to be available and are to be used as starting 
values for parameter optimization. 

Two functions are distinguished, viz. 1u and 2D, to obtain values for v. Each function 
has its own subset of parameters. The appropriate derivatives for sequential functions 
are obtained automatically by the choice of rt and r2 respectively. The starting value 
z[1] depends on the parameter that represents the starting value xl°J. However, from 
i = 2 onward, the variable zin depends on all parameters because z is a function of y 
if A-! = 1. Analogous arguments hold for w and u. 

Permutation and partitioning of the components of the parameter vector furnishes 
the possibility of excluding either 6P_1 or 9P, or both, from the fitting procedure (See 
Chapter 8). 

4.9 Special properties of the fitting surface 

Application of sequential and alternative condition functions discussed in this 
chapter result in special properties of the fitting surface. This surface depends on both 
the form of the condition equations and the observed values assigned to the variables. 
For x := (x3,...,xj and* := (x3,...,xjlet 

Aß) =f{x2JC,0) (4.9.1) 

be a strict function of the vectors of variables, then ƒ is the position vector to the fitting 
surface. Fitting without sequential functions takes place on the fixed surface given by 
(4.9.1). 

For sequential functions we define the second observation vector to be used in the 
(n + l)th fitting cycle as follows (see 4.6.3) 

x2"\0):=[_6p
n\y^\9),...,ylv-1\e)r 

whereym, i = l(l)(v— 1), is found in the wth cycle, then 

yiß) =f(x2
n\6),X,e) (4.9.2) 
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OBSERVATION SPACE Ev 

X,(X)-|0CUS 

Fig. 14. Two members of a family of fitting surfaces for sequential condition functions. The lower 
surface is explored by keeping the vector of variables x2(X) constant at X = A00. 

Now y(0) is the position vector to another fitting surface (Fig. 14). Since x^ is a func­
tion of the parameters, fitting with sequential functions takes place on a family of sur­
faces; each iteration within a cycle producing a new member of it. Fitting along a 
(linear) direction of search in the parameter space can be regarded as fitting along loci 
which satisfy 

0(A) = 0(B) + As(B) 

xfm = ^(A),/1^),...,^-w 
XA) =f(x<;\X)x<KX)) 

(4.9.3) 

The nth intermediate fitting surface can be explored by putting A = A<B) = constant in 
the expression for x2 in (4.9.3) giving the position vector in Fig. 14, 

XA|Aw):=MB)(Aw)^0(A)) 

The program option to control this is the choice of the value of the system parameter 
r = 0 in the (n + l)th fitting cycle. An adequate value for A is in this case the optimal 
step factor A = A*<B), see (3.5.1). 

For alternative condition functions (see Fig. 11) the fitting surface does not change 
as long as for all i the same choice is made in the decision statement on um. A partic­
ular order of the functions y and 2/in the nth fitting cycle can be stored in a v x 1 
choice vector ,/(B). Components of this vector are j i n = — 1 if w[<1 < 0, fin — + 1 

65 



OBSERVATION SPACE E« 

f i t t ing surface 
forj«> 

f i tt ing surface 
f o r j « ) 

Fig. 15. Schematical illustration of a discrete fitting surface. Along the dotted line the value of one or 
more of the components of the integer choice vector j suddenly changes, causing a jump to a further 
fitting surface. 

otherwise. Assume a one-dimensional search to be carried out with step factor X then 
j = j(X). This vector will not vary continuously with k. It changes value when jumps to 
other fitting surfaces occur. 

Complications can arise as to the choice of a terminal point 0(O since this can be 
situated on a surface producing a greater value of the response S than that obtained in 
preceding cycles. Such a situation is sketched in Fig. 15. 
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5 Use of scale factors for accelerating convergence 

5.1 General 

Convergence in the fitting procedure can be accelerated by choosing directions in 
the parameter space that produce paths closer to the minimum of S(0). 

Stol (1962b) developed a method where use was made of ratios of scale factors to 
obtain weights to be applied to differential corrections d (Section 2.4) to find these 
better directions. Determination of weights that depend on the course of scale factors 
by varying the position vector y, involves evaluation of change of scale factor values 
when proceeding in the direction of search. Now it depends on the structure of the 
condition function whether differentials of the scale factors can easily be used to de­
scribe the scale factor course with second derivatives. Otherwise, when this structure is 
complicated, differences have to be applied. However, in that case numerical informa­
tion on two points on the fitting surface must be available. 

The problem of finding weighted corrections to accelerate convergence can be con­
sidered part of the problem of finding corrections for curvature of the fitting surface. 

5.2 Role of scale factors 

Scale factors were introduced in (2.2.7) and discussed in Section 2.7. Their role in 
parameter optimization will now be dealt with. 

Consider two points on the fitting surface, given by 0(1) and 0(2>, with scale factors 
A<" := A(0(1))andA<2) := *(«(2)) respectively. 

Assume 0<2) to be in the direction of differential corrections obtained from (2.4.13) 
so 0(2) = 0(1> + Xdw. It is noted that dliy is found by projection on the tangent plane 
to the fitting surface (Fig. 16). This means that the order of magnitude of the compo­
nents of <f(1) is based on units along the parametric curves at 0(1), being A*(0(1)), k = 
1(1)/», (Stol, 1962a and for a one-dimensional example Draper & Smith, 1967). 

In the nonlinear case this results in too rapid a progress in a divergent direction or in 
slow convergence. Fig. 16 and Fig. 17 show an instance of the first case on a two 
parameter fitting surface. The differential correction vector in this example is supposed 
to be rf(1) = (3,3)T expressed in units of Ai and h2 at 0(1) in the tangent plane. 

In the figure the scale factors are assumed to increase, each in its own way, along 
the path f rom/^") to/(0(2)). This means that the length of this path on the fitting 
surface is considerably longer than the length of the image of this path in the tangent 
plane, viz. the length of the total tangent Jd. To overcome the consequences of this 
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Fig. 16. Detail of tangent plane to fitting surface at 
0(1> with differential correction vector d = (3, 3)T 

measured in units of the scale factors Ax and h2. 
The terminal point of Jd is obtained by orthogonal 
projection as sketched in Fig. 6. 

Fig. 17. Detail of fitting surface where the dif­
ferential correction vector d — (3, 3)T is applied 
to 0(1> = (1, 1)T giving a linear path of search 
in the parameter space. The terminal point for 
step factor X = 1 is 0(2) = (4, 4)T. The course 
of the scale factors induces what mostly is 
called overshooting. 

situation we introduce weights w to act on dto produce paths closer to the solution 0*. 
Obviously the weights have to be chosen inversely proportional to the scale factors 

in newly obtained points 0(2) on the fitting surface along the direction of Jd, therefore 
we define the kih component of the p X 1 vector w by the ratio 

wil\X): = hk(0^) 
hk{6

w + Xdw) 
k = l(l)p 

hence, denoting the step factor in the weighted direction by A' 

0™' :=0w + XLw\A)-]wdw 

(5.2.1) 

(5.2.2) 

giving new paths on the fitting surface (see Fig. 18 path 2 and 3, and Fig. 1). 
In (5.2.2) values for X' and I have to be determined to make optimal progress. Solu­

tions can be obtained by taking differentials or differences of scale factors depending 
on the availability of second derivatives of the condition function. 

5.3 Differentials of scale factors 

5.3.1 Application 

Consider the fcth coordinate of the vector in the denominator of (5.2.1), viz. 

fct(0
(2>(Â)):=M0a) + ^ ( 1 ) ) (5.3.1) 

which can be expanded in a Taylor series with respect to the increment kd 
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hk
2\X) = Aj» + M.d(1YVhJßa)) + o(A2) (5.3.2) 

The scalar product can be written 

(dl V{wt ôëj 
in which the elaboration of the arbitrary Ith term of the second vector is given by 
(2.7.1) 

ÔA = (-MP, l=l(l)k 
V 

Using the matrix (2.5.10) the results can be collected as follows, for X sufficiently small 

A(2)(A) = A(1> + Xhd(1W»dw 

Finally the weights (5.2.1) can be given by the vector 

w(A) = (A + Xh"M12dYh (5.3.3) 

where vectors and matrices on the right-hand side have to be evaluated at 0 = 0(1). 
Relative to A the expression becomes 

w(X) = (1 + XhdhäM12dYl (5.3.4) 

5.3.2 Minimum response 

The response S in case of weighted corrections taking A = X' and dropping the 
prime can be obtained from 

S(X) = [/o(0(1) + XwD(X)d)Yf0(&
l) + XwD(X)d) (5.3.5) 

to be evaluated at 0(1). The general formula for the optimization condition is given in 
equation (2.5.14) and for one-dimensional search in (2.5.15). The derivative of the 
argument in (5.3.5) with respect to X becomes 

dX dX 

The kth component gives, using (5.3.3) and {.k.} to denote the kth component of 
M12d 

dej2)\x) 
dX 

hi j • d( hi , \ 
= -^ î dk + X — ( -, * dk ) 

hi + X{.k.} dX\hl + X{.k.} / 
which gives 

dtf\x>_( hi yrf 
dX \hl + X{.k.}) " 
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The optimization condition for a subminimum along (5.2.2) reads, differentiating 
(5.3.5) using (2.5.13), (2.4.12) and (2.5.15) 

dX Z-i \hl + X{.k.}J 

from which A has to be solved. This can be done by means of iterative methods as are 
discussed in Chapter 9. Since dO(X)/dX depends on A - see (5.3.6) - the path along which 
exploration of the parameter space takes place is curved, giving a one-dimensional 
nonlinear search in the parameter space. The derivative of 0(A) has to be evaluated for 
each iteration step in searching the subminimum. 

.</0(2)'(A) 
It will be noted that -

dX A = 0 
= : 0,(0) has the direction of «/because of (5.3.6). 

The properties of the weighting system for A = 0 and A 

wD(0) = 1, 0(2)'(O) = 0(1), 

oo are, referring to (5.3.3), 

0A(O) =</ 

**' H>D(GO) = 0, 0<2"(o>) - 0»> + -^L. dk, 
{.k.} 

1(1)J>, 0,(00) = 0 

so 6k
2)', fc = l(l)p, is bounded for M12 # 0 . If M12d — 0, for instance with a linear 

condition function, (5.3.3) gives w = 1 and the weights cancel out. 
Changing values of A will not change the sign of 0A(A) because of the square in 

(5.3.6). This means that, depending on the sign of dk the values of 0£2)', k = l(l)p, 
increase or decrease monotone although the search is nonlinear. In Fig. 18 three paths 
of search are sketched. Path 1 is valid for (3.5.1) with s = d, path 2 for (5.2.2) with 
A = constant and path 3 for (5.2.2) with A = A'. 

Fig. 1 gives an example of paths obtained in this way on an actual fitting surface. 

PARAMETER SPACE E2 

Fig. 18. Differential corrections applied in 
three algorithms. In path 1 given by 0(2) = 
0<O) + Xdm according to the modified 
Gauss-Newton algorithm. In path 2 given 
by 0(2>' = 0(D + X'fH^;*«»)]'1»*/'1» by 
weighting differential corrections with 
constant values of scale factor differentials. 
In path 3 given by 0 (2) ' = 0(1) + X'[w° 
(Xr)Y1)dil'> where the weights depend on the 
step factor A'. 
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5.4 Differences of scale factors 

5.4.1 Application 

To avoid the determination of second derivatives of the condition function a differ« 
ence method can be applied. We assume that a second point is known numerically 
which means that (5.2.1) can be calculated. Suppose this second point be optimal in 
the direction dw then, with A = A(A) 

ww{k*w) = [ A ^ A ^ W ^ O ) (5.4.1) 

which can be inserted in (5.2.2) giving, again dropping the prime for A, 

0<2)'(A) = #l) + A[M^(X*(1))](1V(1> (5.4.2) 

from which the optimal value of A is to be determined. 
Analogous to (5.3.4) we can write 

w « [/ + A"(1)(A(2) - A*1*)]'/ (5.4.3) 

where A(2) is supposed to be evaluated at 0*(1) (Fig. 18). In this case the scale factor at 
an optimal point in the weighted direction does not agree with that at 0*(1). To main­
tain correspondence between both, an alternative expression for (5.4.2) would read 
generalizing (5.4.1) 

e(2)'(A) = e(1> + X[w°w]wdw 

again giving a nonlinear direction of search. 

5.4.2 Minimum response 

In case of differences of scale factors the parameter function (5.4.2) is again a linear 
and strict function of d. This means that the direction along the path of search is given 
by 

dgC2V(A) = [»AA* (1))](1>rf(1> 
dk 

independent of the step factor A. Progress is made along a straight line in the param­
eter space. Optimal values of A can be obtained by methods given in Chapter 9. 

5.5 Example 

For the condition function and data given in Appendix 23 three methods have been 
compared (Fig. 19). The three methods converge on the same terminal point. The 
starting value gives £ = 976.40. The modified Gauss-Newton algorithm gives con­
vergence in 25 cycles under default accuracy options (Chapter 13). When using weights 
according to differences of scale factors in (5.4.3) with optimal first step length the 
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Fig. 19. Decrease of sum of squares for 
the problem in Appendix 2.3 according 
to three algorithms based on the dif­
ferential correction vector d. 1 modified 
Gauss-Newton; 2 and 3 differential cor­
rections weighted with the ratio of scale 
factors; 2 with use of differences, the 
number between parentheses includes 
full optimal search to obtain A(A*(n)) in 
each first direction; 3 with use of dif­
ferentials. 

response decreases in the first cycle to S = 71.59. Under the same options the number 
of cycles necessary for the same accuracy is 13. Differentials of scale factors produce 
weights by means of (5.3.4) that cause convergence in 11 cycles. 

As regards the approach to the terminal point, Fig. 19 shows that the modified 
Gauss-Newton algorithm gives a response S < 100 after 18 cycles. Weights based on 
differences of scale factors achieve this in the first cycle but it will be remembered that 
scale factors from two points must be available and so in each cycle two subminima 
have to be calculated, the first to obtain 0*(n), the second to obtain 0*w'. With weights 
based on differentials of scale factors 6 cycles are needed to obtain S < 100. Now only 
one subminimum has to be determined in each fitting cycle. The least sum of squares 
appears to be S(0(t)) = 1.83, which is found with all three methods. 

The results, depicted in Fig. 19, were obtained by the default main program NLV, 
the Modification 8.1 and the Modification 9.2, respectively. (See Appendix 1.5). 
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6 Correction for curvature by back projection 

6.1 General 

In Chapter 5 a method was developed to accelerate convergence. Use was made of 
the scale factors of the parametric curves. Because of their curvature the locus of the 
terminal point of the position vector, which proceeds on the fitting surface along a 
linear direction of search in the parameter space, can deviate in undesired directions. 

In the following sections a method is developed that measures and corrects for the 
departure from the desired direction of correction. This method consists of orthogonal 
projection of the path of search in the fitting surface on the tangent plane at the current 
starting point. Because of the fact that the direction of search, which in the present 
case is determined by differential corrections, is found with the aid of the same tangent 
plane, the method is called the back projection method. 

In this chapter the situation at 0(B) is considered and consequently the matrices /and 
M are to be evaluated at this point. 

Optimization iterations pertaining to back projection will be denoted by n'. 

6.2 Mathematical description 

Since the tangent plane is spanned by the column vectors of/, the projection of the 
vector ƒ„ on the tangent plane is /«/(Fig. 20), where rfis obtained by (2.4.13). 

An arbitrary point in the direction d in the parameter space is denoted by 0(B+1}(A) 
= 000 + Xd. In fitting practice 0<B+1) will be chosen to represent 0*(B), obtained with 
X = A*(B), and the orthogonal projection W+u of this point on the tangent plane at 
0(»> will 5 e considered. The normal for this case reads according to (2.4.9) 

N = /rcf(e(B+1}) - /(e(B))] (6.2.1) 

The projection of this difference vector on the tangent plane can be written as Jb, see 
Fig. 20. The solution of b is obtained from the inverse matrix M~1 (earlier stored in 
the computer memory) by 

b = M_1N (6.2.2) 

which is the vector of back projection. 
Now the situation is as follows. Emanating from 0<B), the direction of search on the 

fitting surface is along Jd in the tangent plane. On the fitting surface the path is curved 
and it terminates in the (optimal) point 0(B+1). Back projection furnishes the informa-
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OBSERVATION SPACE Ev 

f i tt ing surface 

Fig. 20. Illustration of the principle 
of the back projection method. The 
point 0("+1) on the fitting surface is 
projected on the tangent plane 
giving -<0<"+1> indicating that the 
vector Jb makes an angle <fi with the 
direction obtained with differential 
corrections. 

tion that the subminimum is found in the direction Jb in the tangent plane. Since the 
new direction is produced by the disturbing influence of the curvature of the para­
metric curves, corrections have to be applied to find a back projection that is closer to 
the vector Jd in the tangent plane. 

6.3 Two-dimensional linear search 

6.3.1 Correction for curvature 

In Fig. 20 the situation is sketched where back projection gives a direction Jb too 
far to the right of Jd. Correction for this can be made by starting in a direction 
to the left of the vector Jd for which we take Js (Fig. 21). The magnitude of the 
correction can be taken equal to the angle <j> between the vectors Jd and Jb. The new 
direction in the two-dimensional tangent subplane spanned by .Wand Jb can be written 
as the linear combination Js = aJd + ßJb. 

In this tangent subplane we have 

, dTJTJb dTMb ..... 
cos© = = —= ;—= (6.3.1) 

\\Jd\\ • \\Jb\\ {dTMd)\bTMbf 
From Fig. 22 we can derive the values for a and ß to obtain the desired correction, 

namely 

Js =2 cos é Jd - — Jb 
\\Jb\\ 

(6.3.2) 
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TWO-DIMENSIONAL TANOENT SUBPLANE 

»<n>_A«N ***42 Fig. 21. Starting in the direction Jd in the 
tangent plane a path of search on the fitting 
surface is produced whose image is denoted 
by curve 1. The tangent subplane is spanned 
by the vectors Jd and Jb. Curve 2 is the 
image of a path of search on the fitting 
surface when starting in the direction Js 
which is a linear combination of Jd and Jb. 

TWO-DIMENSIONAL TANGENT SUBPLANE 

Fig. 22. Construction of the vector Js in the 
two-dimensional tangent subplane as suggested 
by Fig. 21. 

The length of this vector is obtained from 

||/*||2 = 4cos2£ «.WH2 - 4COS0 MÉÏdTMb + \\Jd\\2 

In virtue of (6.3.1) the first two terms at the right-hand side vanish and so \\Js\\ = \\Jd\\. 
The solution of s can be obtained from (6.3.2) and reads 

s = 2cos<bd-^b 
|J»I 

(6.3.3) 

To avoid matrix calculation this solution can be approximated by one that would be 
obtained in the two-dimensional tangent subspace with M = ƒ which gives 

s = 2 cos <b a — — b (6.3.4) 
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where cos <Ê = («/,*)/(||rf||.||*||). 
The search according to (6.3.4) - and analogous for (6.3.3) - can be done by 

0<"'+1>(A) = 0W + Xs (6.3.5) 

where a first approximation to the step factor can be taken equal to A*00. 
Apart from the iteration to find A = A*(n/) in (6.3.5), the method of back projection 

itself can be considered an iterative process. Optimization can be employed for <j> and 
A both, considering them a pair of algorithm parameters. Defining c := 2 cos <f> the 
algorithm parameter vector becomes A : = (k,c)T and (6.3.5) then reads 

0<"'+1>(A) = 0(n) + As(c) (6.3.6) 

finally giving for the sum of squares the expression 

S(0(A)) = S(0W + 4 cd - M * |) (6.3.7) 

V m Y 

6.3.2 Directions of search 

The conditions for a minimum are given by (2.5.14) and read in the present case 

V ll*ll / 
Ô^ = lg(X)Y[cd-<^lb)=0 (6.3.8) 

~ = IgWfQ-d) = 0 (6.3.9) 
dc 

to be solved for A and c. 
The tangent subspace spanned by the vectors d and * is considered. The directions 

of search are given by differentiating the parameter function (6.3.6) and (6.3.4) 

^ = s(c) = c r f - M i (6.3.10) 
<5A ||*|| 

— = M (6.3.11) 
de 

which is also clear from (6.3.8) and (6.3.9). 
For a fixed value of c, c(B,) say, the vector (6.3.10) emanates from 0<n) as sketched in 

Fig. 23. This means that the gradient in (6.3.8) can be used to solve A iteratively, 
starting with A = A*(n>, producing the new optimal value A*("°. Keeping this value 
constant, c can be solved iteratively from the gradient in (6.3.9) to obtain c*("°. This is 
performed along A*(n/)</emanating from the point 

0(n) _ *̂(n/) M £ . _ AQ(n') 
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TWO-DIMENSIONAL TAN6ENT SUBSPACE 

Fig. 23. Relationship between direc­
tions of search as used in two-dimen­
sional search by back projection. 
The steps are: 1 back projection of 
0<"+ » producing the vector b in the 
tangent subspace ; 2 determination of 
a vector of length II d II in the direction 
of b; 3 reflection of this vector in d 
to produce s; 4 initial step along s 
with a vector of length 11*11; 5 deter­
mination of the optimal value of the 
step factor X to obtain A**''; 6 op­
timization of the angle <t> by means 
of the parameter c starting at A&*^ 
to obtain c*(n0. 

with initial step factor c(B/) as illustrated by point 5 in Fig. 23. 
The optimization in the directions distinguished can be carried out with methods 

described in Chapter 9. 

6.3.3 Properties of the algorithm parametric curves 

In contrast with parametric curves for the condition function, parametric curves 
for X = (X,(j>)T tend toward orthogonality when n -*• co. 

Consider the two-dimensional tangent plane spanned by Jd and Jb. The condition 
function reads 

fißW) = ƒ (0(B) + M cd - I^!l A , c - 2 cos (ß 
A \W\ / 

The direction vectors to the curvilinear coordinates of the (A,0)-system are given by 

\ \w\\ J 
f+ = -2Asin^ Jd 

where use was made of (2.5.4) with J{ = (f^) and of (6.3.6) and (6.3.4). 
The scalar product becomes 

flh = -2A sin * (cd - l*ü b\TMd 

which tends to zero for n -* oo because in the Gauss-Newton algorithm rf(B) -»• 0. 
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6.4 Two-dimensional circular search 

The method described in Section 6.3.2 gives linear search in two directions. The re­
flection of the vector Jb in the straight line given by the vector Jd in Fig. 21 can be 
replaced by a circular search when moving from point 2 to point 3 in Fig. 23, following 
the circular path that connects the terminal point of the vectors (||</||/||i||)A and s. 

6.4.1 Correction for curvature 

Correction formulas are derived for the metric M = JTJ. An orthogonal base for 
the two-dimensional tangent subplane is determined (see Fig. 24) by taking a vector 
perpendicular to Jd and of the same length 

Jz 
|sm0| \ 

rfco.*-Ä 

where 

and 

cos$ = 

«A« 

dTMb 

•) 

{dTMi)\bTMb)k 

zTMd = 0 

ll-fcll = II-«! 

The relationship between z, </and b is obtained from (6.4.1). 

(6.4.1) 

(6.4.2) 

(6.4.3) 

The metric can be taken unity (M = /) when applying the formulas (6.4.1) through 
(6.4.3) in the two-dimensional tangent subspace analogous to the conversion of (6.3.3) 
into (6.3.4). This is done in the remainder of this section. 

An arbitrary vector that is a linear combination of the base vectors z and d with prop­
erties analogous to (6.4.3), namely (z,rf) = 0 and ||z|| = \\d\\, is given by 

S0W = z sin \j/ + dcos ij/ (6.4.4) 

TWO-DIMENSIONAL TANGENT SUBPLANE 

Fig. 24. Construction of the vector Js in the two-dimen­
sional tangent subplane as a linear combination of the 
orthogonal vectors Jd and Jz. The particular case <// — $ 
is illustrated. 
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which has a length equal to that of d. Taking ifr = 4> equation (6.4.4) reduces to (6.3.4) 
using, see (6.4.1), 

IsinflV r IIÄII / 

With (6.4.4) a new parameter vector for two-dimensional circular search is, defining 
A := (X,$f, 

0 ("'+1>(jl) = fl<»> + Xsty) (6.4.5) 

giving for the sum of squares 

S(0(X)) = S(0(B) + Xz sin \ji + Xdcos ij/) 

6.4.2 Directions of search 

The directions of search in each point of the two-dimensional (A, ̂ -coordinate sys­
tem is given by formulas analogous to (6.3.10) and (6.3.11). In the present case they 
are 

BO 
— = z sin $ + d cos ty = *(tfO (6.4.6) 
dX 

— = A(zcos^-rfsin^r) 
d\jf (0.4.7) 

The optimization conditions are again 

w«r^)..-.iwtfg).. 
The value of $ can be determined from the second condition, keeping X constant. Then 
the first condition is used to solve X, keeping xjt constant. Optimization of each of the 
algorithm parameters can be achieved by methods described in Chapter 9. 

6.4.3 Properties of the algorithm parametric curves 

The directions of search in (6.4.6) and (6.4.7) are orthogonal since the scalar prod­
uct of the vectors dO/dX and dd/di/f is 

XzTz sin \ft cos ̂  — AzTrf(sinV — cosV) — XdTdsia ty cos ijf = 0 

This holds because z is perpendicular to d with equal length. 
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6.5 Example 

Results of optimization using back projection techniques are given for the condition 
function and data mentioned in Appendix 2.3. 

In Fig. 25 the decrease of the sum of squares is plotted against cycle number for 

16 20 24 28 
number of f itt ing cycle 

Fig. 25. Decrease of sum of squares for 
the problem in Appendix 2.3 according 
to five algorithms. 1 modified Gauss-
Newton; 2 through 5 methods of back 
projection; 2 noncircular search with 
metric / ; 3 circular search with metric I, 
after five cycles transfer was made to 
modified Gauss-Newton; 4 noncircular 
search with metric M; 5 circular search 
with metric M. The course of the partial 
cosines for algorithm 3 is plotted in 
Fig. 32. 

Fig. 26. Relationship between sum of 
squares S and angle y for the direction 
of circular search with metric I for 
various fitting cycles. After five cycles 
transfer was made to modified Gauss-
Newton. 
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four methods of back projection. In this example the use of the metric ƒ appears to be 
more efficient than that of the metric M. The curves in this figure can be compared 
with those given in Fig. 19, taking the unweighted modified Gauss-Newton algorithm 
as reference. 

A large area of the fitting surface is explored by back projection techniques as can 
be seen from Figures 26 and 27 for circular search. They give the relationship between 
the sum of squares obtained by rotating the vector s respectively Js about the starting 
point (see Fig. 24 and equation (6.4.4)). To avoid an extension of the search in direc­
tions that produce too large values for the sum of squares, a reduction to the angle 0 in 
(6.3.2) and (6.4.1) is applied as a starting value when cos </> is negative. In fitting prac­
tice it then appears to be efficient to change the sign of the vector of back projection b. 
However, in some of such cases the sign of the direction of search that is applied in 
subprogram MIN must also be changed to obtain a negative slope at the initial point, 
(cycle 2 and cycle 13 in Fig. 27). Since in the present case the search is nonlinear, the 
program statement that would change the sign was temporarily deleted, giving an op­
timal search for A alone at \j/ = 0. Otherwise execution would have been terminated 
after the second time a positive slope at the initial point was found in the same cycle. 

0 ytM Tt %K 
10 

2TL 

Fig. 27. Relationship between sum of 
squares S and angle y for the direction 
of circular search with metric M, for 
various fitting cycles. 
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The convergence to the final solution is slow after the sum of squares has decreased 
to values below S = 5, say. For circular search with metric /the algorithm was trans­
ferred to the Gauss-Newton method with optimal step length after the angle <f> de­
creased below 0.02 radians or cos <f> < 0.0008. 

The best result for the given example was obtained with a non-circular search with 
metric I. The number of cycles necessary to obtain default accuracy decreased from 24 
to 9 (Fig. 25). 
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II Special procedures 
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7 Structure of the program 

7.1 General 

The computer program is written in FORTRAN and was run on a CDC 6600 com­
puter using Scope 3.3 UPDATE features (Appendix 1.1). 

A program written for the application of different algorithms has to be compiled of 
subprograms that contain the statements of the subroutines of the entire procedure. 
Particular algorithms then can be employed by choosing the proper sequence of sub­
routines in the subprograms by calling them from the appropriately modified main 
program. Use is made of SUBROUTINE subprograms only. 

The program is divided into three parts. The first part consists of subprograms that 
have to be updated for each particular condition function that is to be optimized. The 
second and third part consist of subprograms that contain algorithm statements and 
that need no updating except for the dimensions of the arrays, if desired. Subprograms 
are called by the main program NLV (Appendix 1.2) which can be modified to suit 
various algorithms (Appendix 1.5). 

Variables that occur in different subprograms are linked by the appropriate argu­
ments or by COMMON statements. Variables that occur in COMMON statements 
are subdivided into two blocks. Those whose dimensions of arrays are condition 
function dependent are collected in *COMDECK DVAR, those whose dimensions 
are algorithm dependent are collected in *COMDECK DFIX together with nonsub-
scripted variables. Condition function dependent subscripted variables are updated 
with dimension comdecks as described in Appendix 1.1. See also example given in 
Appendix 1.4.1. 

To use the program for investigation either of the condition function and its prop­
erties or the convergence process, options are included that are not part of the al­
gorithm. Options can also be used to modify the main program NLV (Chapter 12 and 
Appendix 1.5). 

7.2 Condition function statements 

Subprograms written as a framework for new condition functions are contained in 
the first part of the entire program. They serve two purposes. 

Administration The SUBROUTINE INITL was written to produce the specific 
headings for problem identification, to initialize variables and counters and to govern 
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Table 4. Update »COMDECKs called by SUBPROGRAMS 
mentioned. See also Appendix 1.3 and Appendix 1.4.1. 

Contents of the comdecks 

Headings 
Dimensions 
READ instructions 
WRITE instructions 
Dimensions 
Function evaluation 
WRITE instruction 
Dimensions 
First derivatives 
Dimensions 
Second derivatives 
Data 

Comdeck name 

XINITL 
NDIMRD 
RDDATA 
WTDATA 
NDIMFN 
NFNCTN 
WFNCTN 
NDIMDF 
NDFDA 
NDIMD2 
ND2FDA 
DATA 

Called by 

INITL 
READ 
READ 
READ 
FNCTN 
FNCTN 
FNCTN 
DFDA 
DFDA 
D2FDA 
D2FDA 

Data to be copied to file MYDATA, see Section 7.6. 

the desired output. 
Function evaluation It is evident that for each new problem to be optimized, the con­
dition function and its derivatives with respect to the parameters is to be programmed. 
To be able to apply methods at the level of information available, separate subpro­
grams were written for the evaluation of the condition function (SUBROUTINE 
FNCTN), of the first derivatives (SUBROUTINE DFDA) and of the second deriva­
tives (SUBROUTINE D2FDA). 

A new function and its derivatives can be inserted in the framework of the program 
by means of update decks that are called by the subprograms during an update run 
before they are written to the compile file. Update decks to be inserted in the different 
subprograms are mentioned in Table 4. 

7.3 Algorithm statements 

Subroutines of gradient methods were written in separate subprograms which can 
be linked to obtain modifications of standard methods (Chapter 12). These subpro­
grams form the second part of the entire program. The third part consists of special 
procedure subprograms. They need not necessarily be loaded when using the default 
deck structure of the main program NLV. 

7.3.1 Gradient subroutines 

Algorithm partitioning The level at which an algorithm can be applied furnishes the 
criterion for partitioning in subprograms. Fig. 28 gives a conspectus of the compo-
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LEVEL OF 
AVAILABILITY 

CALCULATION 
COMPONENTS 

POSSIBLE 
USAGE 

Condition function 

Function evaluation 

First derivatives 

Gradient 
Normal equations 
Differential corrections 
Slope in one-dimensional 

search 

Second derivatives 

Curvature information 
Differentials of scale factors 
Step factor in one-dimensional 

search 

Second order improvement 

Gradient methods 

Methods of direct search 

Fig. 28. Conspectus of components of calculations and their possible usage following from the level of 
availability. 

nents of the calculations that are needed for further elaborations. Apart of the subpro­
grams mentioned in Table 4, subprograms were written for the determination of the 
gradient and the composition of the normal equations (NRMEQ), for their solution to 
produce differential corrections (SOLVE) and for one-dimensional optimal search 
(MIN). The determination of curvature and of differentials of scale factors are spread 
through some appropriate subprograms. 
Process continuation The convergence process is to be followed carefully in order to 
detect whether convergence occurs and to decide whether execution can be terminated. 
Decisions based on stopping criteria are taken in two steps. The first step is to in­
vestigate by means of subprogram HOWA the situation on the fitting surface at the 
initial point, point A say. When the decision is made to proceed with a fitting cycle at 
a new point B, the second step is to start the next cycle with the replacement of point A 
by point B which is carried out in the subprogram AISB. After this the first step is re­
peated, and so on, till the stoppig criterion is satisfied. 
Administration The output contains the main results of the calculations with respect 
to optimal parameter values and corresponding function values, as well as intermedi­
ate results concerning the applied algorithm and its properties. Subprogram LISTING 
controls the output and the listing of tables produced by the first and second parts of 
the program, according to the demands of the user. 

7.3.2 Particular subroutines 

Exclusion of parameters Parameters in condition functions can be kept constant, and , 
thus excluded from the optimization process, to particularize or simplify the func­
tion. Examples were given in Section 4.8, where a choice was made between sequential 
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and nonsequential use. Another possibility is a partitioning of the parameters into 
two groups, the first consisting of those that occur nonlinearly, the second of those 
that occur linearly in the condition function. Grouping and selective use of parameters 
once can be applied in the default deck structure of the main program. Grouping and 
partitioning can be saved, however, by means of the subprogram BLOCK that can 
contain 5 different groupings and governs their subsequential use. Details of grouping 
are given in Chapter 8. 
Additional subprograms The method of back projection developed in Chapter 6 is 
programmed in subprogram BACK. Two further subprograms are included in the 
third part of the program. A method of finding controlled paths on the fitting surface, 
given in Chapter 11, is made operational in subprogram TRACK. Possibilities to 
extrapolate intermediate parameter values, as developed in Chapter 10, are available 
in subprogram LIHYPEX. 

7.4 Convergence characteristics 

7.4.1 Type of convergence 

From personal experience it was found that in many least squares problems both 
the sum of squares with respect to the fitting surface S and the sum of squares with 
respect to the tangent plane AS decrease. To distinguish between this situation and the 
one where Sln+1) < Sw while at the same time Asin+iy > ASm, the latter situation 
will be called Type I convergence and the former Type II convergence. 

In Fig. 29 the principle of both types is sketched. An example is given in Section 
7.4.3. 

tangent plane 

fitting surface 

fitting surface 

tangent plane 

TYPE I TYPE! 

Fig. 29. Principle of the two types of convergence distinguished. Proceeding on the fitting surface in 
the direction of the arrow, the properties of Type I convergence are Sln+1) = ||/o("+1>ll2 < 5 0 0 = 
||/o(n)||2 and -*s<"+1> = ||Yo<"+1>H2 > AS™ = IW' I I 2 . Type II convergence is characterized by 
5 ( n + 1 ) < SWand^" 4 - 1 ' < ASm. 
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7.4.2 Stopping criteria 

Stopping criteria are used for economie reasons. They can be based on several 
quantities that give information on the state of the convergence process in consecutive 
fitting cycles. Quantities that converge to an unknown value, as the sum of squares and 
the parameter values, give this information in a relative sense. Quantities based on the 
orthogonality of the vector f0 on the fitting surface in the final solution, give this in­
formation in an absolute sense. 

A sequence of parameter values 000, n -» oo, is assumed to converge to 9*. Several 
criteria can be put forward to establish 0(O to be a terminal point of the sequence, 
where t < oo. The criterion 8 s for the sum of squares reads 

if \S(n) - S(B+1)| < ôs, ôs>0 (7.4.1) 

then e(,):=e("+1> 

For the parameters this becomes 

if \eï>-e£+1)\<ôk,ôk>o 
then 0£ ) :=0£ , + 1) (7.4.2) 

where k = l(l)p 

Both criteria can be made relative to the order of magnitude of the values of S and 0k 

respectively by dividing the expressions by the value obtained in the nth cycle, thus ex­
pressing Ô in fractions. These criteria do not make use of first derivatives of the con­
dition function, so the rules do not guarantee that a neighbourhood of 0* has been 
reached because (7.4.1) and (7.4.2) do not depend on the condition for a minimum. 

With the aid of first derivatives stronger criteria can be put forward. They depend 
on the consequences of VS = 0. For nonsingular M - 1 , equation (2.4.13) results in 
d = 0 for N(fi*) = 0. Application of (2.2.11), where JTf0 = N, produces a further 
criterion in that the components of the vector of partial cosines c have to be zero. From 
Fig. 6 it is obvious that at 0* the vector f0 and the vector Af0 coincide, hence giving 
zero difference in length when the iteration process terminates. 

The foregoing characteristics can also be expressed by the cosine of ß (Fig. 6), re­
quiring that the total cosine tends toward zero in consecutive fitting cycles, so 

cos/?= f°Jd ^ 0 „ „ „ 
ll/oll • II-«« < 7 A 3> 

In fitting practice the criterion (7.4.1) has often been found too weak; the criterion 
||iV|| < ^M, on > 0, appears to be one of the strongest. Experience learned that the 
above given criteria probably can be ordered according to the following sequence 
from weak to strong, see also (2.4.16), 

{lSM s ( . r + 1 ) | } / WS - V^l}* {e}» {cos /*}„ {||rf|}„ {IN®, (7.4.4) 
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where {u}3 stands for u(B) < ô, Ô > 0, Ô = S1^^ and Sk = <5„ & = l(l)p, I = l(l)p. 
n-»t 

It proved that the partial cosines provide the most efficient criterion even if their 
absolute values may show an increase in the early stages of the convergence process 
although the sum of squares is monotone decreasing. The partial cosines give informa­
tion on each parameter separately. They also give a direct geometrical interpretation 
in the observation space with known final values c = 0. This value does not depend on 
the step length in one-dimensional search, contrary to (7.4.2) which gives for linear 
and strict parameter functions with 0k

n+1) = 0k
n) + Xsk 

| ö ( » ) _ ö ( B + D | = A k | 

which will satisfy the criterion when 

A < SJ\sk\ 

The total cosine is related to the partial cosines since for an arbitrary direction s 
equation (7.4.3) can be written, with (2.2.11) in the form of the row vector 

cT=SlJhd\\f0\\-
1 

as 
TLD 

ens cos J? = 
ll/*ll 

giving for s = sklk the equality cos ß = ck. For nonsingular M 1 the total cosine 
tends toward zero when c -> 0 using the direction of differential corrections s = d = 

In the computer program cosine criteria are set for the partial cosines. The default 
value Ö = 0.001, in FORTRAN defined by COSCRIT = 3, requires that at least three 
leading zero decimals appear in the results for the partial cosines. On basis of this 
criterion it is decided in subprogram HOWA whether or not further fitting cycles are 
to be produced. The same criterion is used on the total cosine in an informative sense. 

7.4.3 Example 

For the condition function and the data mentioned in Appendix 2.3 results on the 
use of convergence characteristics are depicted in Figs 30 and 31. Fig. 30 illustrates 
that in this example the process has Type II convergence during the first 14 cycles of the 
modified Gauss-Newton algorithm. It has been found that in general this type of con­
vergence is slow. During the cycles 14 to 19 the convergence is of Type I. Fig. 31 
shows the course of the total and the partial cosines. They are not monotone decreas­
ing although the sum of squares, depicted in Fig. 30, does. Only during the last few 
cycles the partial cosines decrease simultaneously. A typical example of the behaviour 
of partial cosines is shown in Fig. 32, which gives cosines for the fitting process that 
was discussed in Section 6.5 (see Fig. 25, curve 3). 

90 



)• -'..n. i i ' " ''*- ' 

sum of squares 
1000 

100 

10 

as 

rT i , 

-/— 

I 

Vs 

^ s 

» I * 
r , l 

* r 

/ 

I 

1 o * 

J 
n 

1000 

100 

10 

1 

0.5 

' • ' • I I I ' ' • 
12 16 20 24 28 32 

number of fitting cycle 

Fig. 30. Decrease of sum of squares S with, 
respect to the fitting surface and of sum of 
squares AS with respect to the tangent plane, in 
subsequent fitting cycles. When S decreases 
and AS increases the convergence is of Type I ; 
when both sum of squares decrease the con­
vergence is of Type II (see also Fig. 29). 

20 24" 28 
number of fitting cycle 

Fig. 31. Relationship between cosines, 
total and partial, for the parameters D, A, 
B and C in the condition function of Ap­
pendix 2.3, and number of fitting cycle for' 
the modified Gauss-Newton algorithm. 
Although the sum of squares is monotone 
decreasing (Fig. 30 curve S) this is not the 
case for the cosines. During the last few 
fitting cycles they suddenly approach zero. 
The numbers I and II refer to the type of 
convergence as given in Figs. 29 and 30. 
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Fig. 32. Relationship between total cosine and partial cosines for the parameters D, A,B and C in the 
condition function of Appendix 2.3, and number of fitting cycle. During cycles indicated by BP back 
projection has been applied (circular search with metric I, see Fig. 25) ; during cycles indicated by 
G-N modified Gauss-Newton has been applied showing an increase of the partial cosines before they 
tend to zero. Sums of squares, S and AS respectively, for each fitting cycle are mentioned in the margin 
on the level of the ordinate values for the total cosine. 

7.5 Subroutine control 

The subprogram D2FDA for the evaluation of second derivatives is an example of a 
subprogram that needs not necessarily be called. Results obtained from D2FDA, 
however, are used in other subprograms and the corresponding statements must be by­
passed in case D2FDA was not called by the main program NLV. This is governed by 
the subscripted variable NRINSUB, the subroutine index that counts the number of 
entries in each subprogram. The first statement of subprogram INITL is to set the 
subroutine counters to zero. The first statement of the Ith subprogram reads 
NRINSUB(I) = NRINSUB(I) + 1. Since the subroutine index occurs in COMMON 
it is possible in every subprogram to test each number of entries. If no use is made of 
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subprogram D2FDA, for which I = 5, its counter remains zero. Second derivative 
application anywhere in the program can thus be skipped if NRINSUB(5) = 0 in 
appropriate IF-statements. 

A further advantage of the use of subroutine indices is that initial values to variables 
can be set to zero in the subprograms themselves. This can be done during the first 
entry, which is recognized by an appropriate IF-statement on the subroutine index. 

7.6 Program layout 

The arguments of the main program name, NLV, depend on the way the data are 
stored. If data have to be read from the input file, the first statement in the main pro-

Table 5. List of subprograms and their entries. 

Name of 
subprogram 

Alternative 
entry 

Part I Function subprograms 
1. INITL 

2. READ 

3. FNCTN 
4. DFDA 

5. D2FDA 

DEFAULT 
HEADING 

NEWZERO 

ORDER 

Main purpose is to 

- define initial values 
- define default values 
- produce headings 
- read data 
- perform univariate direct search 
- evaluate the condition function 
- evaluate first derivatives 
- perform optimal Gauss-Newton with parameter vectors 

partitioned according to ordered partial cosines 
- evaluate second derivatives 

Part II Gradient subprograms 
6. NRMEQ 

7. SOLVE 
8. HOWA 

9. MIN 

10. AISB 
11. LISTING 

12. SUMRY 
COMBIN 

13. PLOT 
PUNCH 

produce the gradient vector 
produce normal equations 
solve normal equations 
investigate the fitting result at point A, (0°") 
summarize results 
produce combinatorial search 
find the subminimum (point B, $*w) in the direction of 
search 
replace/* by B 
produce an output list of intermediate and final results 
plot sequential functions on the line printer 
punch (or print) intermediate parameter values 

Part III Particular subprograms 
14". BLOCK 
15. BACK BI, B2 
16. TRACK 
17. LIHYPEX 

store parameter groupings 
perform back projection 
perform procedures of controlled approach 
apply parameter value extrapolation formulas 
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gram reads 

PROGRAM NLV(INPUT,OUTPUT,TAPE2==INPUT,TAPE3=OUTPUT, 

TAPE7) 

If data are written onto a file MYDATA the first statement reads 

PROGRAM NLV(MYDATA,OUTPUT,TAPE2=MYDATA,TAPE3== 
OUTPUT.TAPE7) 

The use of the arguments of the subprogram names are explained in Chapter 13. 
The subprograms are listed in Table 5 according to the subdivision into three parts 
as explained in Sections 7.2 and 7.3. The main purpose of each subprogram is mention­
ed as well. In Appendix 1.5 the modifications of the main program NLV that call 
subprograms from the third part, as well as those that call alternative entries, can be 
found. 
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8 Grouping of parameters 

8.1 General 

For several reasons it is useful to create the possibility to change the parameter 
vector. 

The condition function can be extended for instance to a more general form. Then 
the research worker can decide to leave out of consideration particular parts of the 
function by keeping constant one or more of the parameters by giving them a trivial 
value, for example zero. The choice between sequential and nonsequential search 
(cf. Section 4.8) is another example where one might decide to keep constant one or 
more of the parameters in the condition function. One can also decide to partition the 
components of the parameter vector in two groups: the first consisting of those that 
are nonlinear in the condition function, the second consisting of those that are linear 
(Hayes, 1974). 

Another reason to advocate the possibility to have the disposal of a system for 
solving only part of an optimization problem is, that if bounds on parameter values 
are exceeded, the parameter vector has to be broken down and its components have 
to be rearranged (Chapter 9). 

Finally, in the first steps of the fitting procedure a group of parameters can be more 
efficient than the entire parameter vector. This means that fitting cycles then could be 
carried out with only px<p parameters and in a further stage either with the re­
maining/? — Pi parameters or the entire/» x 1 vector. 

In these cases only that part of the solution of the normal equations that furnishes 
the required corrections needs attention and only those parameters that remain in the 
parameter vector as to be fitted parameters are subject to alterations. 

It is obvious that it is not sufficient to develop a system with which the parameter 
vector can be truncated to a pt x 1 vector. It is also necessary to permute the com­
ponents of the parameter vector to generalize the procedure. 

Permutation and truncation of the components of the parameter vector can be 
controlled by the user of the program. He has at his disposal parameter index cards 
in the main program deck, as described in Section 8.3.1. for permuting and grouping 
the parameter vector. Since this grouping takes place before execution of the main 
program, it is unconditional. Permuting and grouping also can be performed automat­
ically during execution. This is unconditional in combinatorial search where all 
2" — 1 combinations of the components of the parameter vector are subsequentially 
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used in a one-dimensional optimal search (entry COMBIN in subprogram HOWA, 
see Chapters 12 and 13). Conditional grouping is applied in subprogram MIN 
(Chapter 9) when bounds are violated. Finally, in entry ORDER in subprogram 
DFDA grouping is based on the values of the partial cosines in the vector c. 

8.2 Partitioning the parameter vector 

The back solution of the complete p x p system of normal equations gives the 
possibility to preserve partitioned solutions for 1, 1(1)2,..., l(l)p1,..., 1(1)/? param­
eters, /?! < p, in order of occurrence in the parameter vector. Solutions beyond the 
required first px parameters can be useful. For example the length of the p x I cor­
rection vector d tends toward zero. In case only p± parameters are applied this holds 
for the Pi X I vector d', say. However, one may wish to remain informed on the 
behaviour of the length of the p x 1 vector d after each fitting cycle and so further 
solutions must then be available in an informative sense. Other examples are the 
partial cosines for those parameters that are not involved in a particular fitting cycle. 
As the coordinate system on the fitting surface generally is not an orthogonal one, 
so JTJ ^ hDhD, improvement of cosines with respect to parameters not used also may 
occur. It is of interest to remain informed on the values of these cosines as well. 

From a point of view of efficiency this may not always be satisfactory. Suppose 
py « p . In grouping, normal equations are evaluated for all/7 parameters, but only 
Pi are employed in the following fitting cycle. When the advantage of the availability 
of informative parameters is not great, it is not efficient to calculate all products and 
cross products of the matrix M = JTJ. To avoid time consuming unnecessary cal­
culating and printing, it is advisable to reduce the optimization problem to a smaller 

Table 6. Scheme of status in the program, denoted by x, of parameters after permutation. 

Use 

Parameter vector 
Evaluation of condition function 
Evaluation of first derivatives 
Evaluation of second derivatives 

Normal equations 
Partial cosines 
Correction to parameters 
Length of normal vector 
Length of differential vector 

Application of corrections 
Curvature of parametric curves 
Differentials of scale factors 
Optimal step factor 

Status 

to be fitted 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

informative 

X 

X 

X 

X 

X 

X 

X 

X 

X 

constant 

X 

X 

X 

X 
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size with a pt x p± matrix M. So parameters that are not involved in a particular 
fitting cycle then are taken constant for efficiency reasons. 

These considerations lead to the concept of tripartitioning the parameter vector 
into to be fitted, informative and constant parameters, see Table 6. 

Permutation and grouping are program options achieved by parameter index cards. 
As each parameter occurs subscripted in the condition function it must have a fixed 
place in the parameter vector. Hence permutation has to be carried out by indirect 
subscripting of the parameters. Grouping by the user is carried out by rearranging 
parameter index cards in the desired order in the main program deck. It then is auto­
matically employed throughout all subroutines. Alternative groupings can be saved 
in subprogram BLOCK, up to a number of five. The use of this subprogram is ex­
plained in Chapter 13. 

8.3 Application 

8.3.1 Main program NLV 

Permutation of parameters is a one-two-one mapping of the components of the 
original vector onto the components of the permuted vector. When permuting, each 
parameter obtaines a new subscript. The old and the new subscripts have to be kept 
in store to preserve the uniqueness of the permutation. This permutation is carried out 
by means of the parameter index cards. 

After parameter values have been defined, the main program therefore continues 
with for example the following statements 

K=0 
K=K+1 
K=K+1 

K=K+1 

K=K+1 

$ IP(K)=4 
$ IP(K)=2 

$ IP(K)=1 

$ IP(K)=3 

$ JP(4)=K 
$ JP(2)=K 

NPART=K 
$ JP(1)=K 

NPAR =K 
$ JP(3)=K 

MPAR =K 

(0) 

(1) 

(2) 

(3) 

In this case the order of the parameters 9lf 92, 93 and 04 has been changed into 
04, 02» 0i. 03- The old subscripts are indicated by IP(K), the new subscripts by JP(k) 
on the parameter index cards. The maximum number of parameters p is denoted by 
MPAR. For to be fitted and informative parameters truncation is achieved by NPAR, 
this is the total number of parameters to be included in the normal equations. Final­
ly NPART defines the first pt parameters that have to be fitted. 

The order of cards that define the grouping must be (0), (1), (2), and (3) respective­
ly, the first and last in fixed positions. The parameter index cards and the defining 
cards (1) and (2) - in that order - can be permuted, thus giving tripartitioning of the 
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parameter vector. The restrictions are 

1 g NPART ^ NPAR ^ MPAR = p 

causing MPAR to be fixed at the value p. 

8.3.2 Subprogram FNCTN 

The subroutine subprogram that calculates the function values uses the parameters, 
called by the subscripted variable C in the argument, in the original order, so : 

DO200I=l,NDATA 
200 YCLC(I)= function of X(I,J) and C(K) 

Calculated values YCLC are obtained from the independent variables X(I,J) and 
the parameter values C(K). In the function the jth independent variable for j — 
l(l)w, in FORTRAN J=1,NVEC, and the Mi parameter for k = 1(1)/?, or K=l, 
MPAR, take their own place and all parameters are needed. Therefore the compo­
nents of the parameter C are not subject to permutation, neither to grouping. 

Evaluation of the condition function is for all data i = l(l)v, or I=1,NDATA, 
thus producing the vector 

y =f(ß) 

according to (2.2.1). 

8.3.3 Subprogram DFDA 

In the general case the first derivatives with respect to the parameters are functions 
of all parameters. This means use of the unalteted parameter vector. However, in 
preparing the calculation of permuted normal equations, the vectors of first deriva­
tives themselves have to be permuted. This can be done using the JP indirect subscript 
as follows (Appendix 1.4.1) 

K1=JP(1) $ K2=JP(2) $ K3=JP(3) $ K4=JP(4) 

DO200I=l,NDATA 
FA(I,K1)= function of X(I,J) and C(K) 
FA(I,K2)= ibid 
FA(I,K3)= ibid 

200 FA(I,K4)= ibid 

The functions at the right-hand sides denote the derivatives f['\ fl^fs1 and f^ , 
respectively. The left-hand sides, evaluated for all data, produce for the example 
given in Section 8.3.1. the Jacobian 

according to (2.2.5). 
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8.3.4 Subprogram D?FDA 

The appropriate construction of permuted second derivatives is more complicated 
because cross derivatives occur. The total number of second derivatives equals (P2*) 
or in FORTRAN MT*MPAR/2. In the example given in Section 8.3.1 this number 
is equal to 10. The pairs of subscripts of the unpermuted parameters are replaced by 
a single subscript KL, in our example according to 

(K,L)= (1,1), (1,2), (1,3), (1,4); (2,2), (2,3), (2,4); (3,3), (3,4); (4,4) 
K L = 1 , 2 , 3 , 4 ; 5 , 6 , 7 ; 8 , 9 ; 10 

The subscripts IDGL of the diagonal (K=L) are computed by 

IDGL=(K-l)*(2*MPAR-K)/2+K for all K 

However, when permuting, K and L have to be replaced by the new subscripts 
JP(K) and JP(L), for shortness denoted by KV and LV respectively. In those cases 
where KV > LV the subscripts are exchanged before calculating their single sub­
script KL. This part of the program reads (Appendix 1.3 and 1.4.1) 

KL=0 
D0 4K=1,MPAR $ D04L=K,MPAR $ KL=KL+1 
KV=JP(K) $ LV=JP(L) 
IF(KV.LE.LV)GOT0 5 
KRES^KV $ KV=LV $ LV=KRES 

5 LV=LV-KV 
4 IL(KL)=(KV- lJ*(2*MPAR-KV)/2+KV+LV 

K1=IL(1) $ K2=IL(2) $ K3=IL(3) $ K4=IL(4) 
K5=IL(5) $ K6=IL(6) $ K7=IL(7) $ K8=IL(8) 
K9=IL(9) $ K10=IL(10) 

DO200I=l,NDATA 
FAA(I,K1)= function of X(I,J) and C(K) 
FAA(I,K2)= ibid 

200 FAA(I,K10)=ibid 

The new single subscripts are stored in IL(KL). For the example given in Section 
8.3.1, the relationship between pairs of permuted subscripts and the old and new 
single subscripts is 

(KV,LV)= (4,4), (4,2), (4,1), (4,3); (2,2), (2,1), (2,3); (1,1), (1,3); (3,3) 
KL = 10 , 7 , 4 , 9 ; 5 ,. 2 , 6 ; 1 , 3 ; 8 
IL(KL) = 1 , 2 , 3 , 4 ; 5 , 6 , 7 ; 8 , 9 ; 10 
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The indicated functions at the right-hand sides in the program text following the DO 
200 statement denote for our example the second derivatives fiufi2,---Ji'l> respective­
ly. The left-hand sides, evaluated for all data, produce the matrix J2 as defined in 
(2.5.6) now with permuted column vectors. 

FNCTN 

YOC(I) 

NDATA 

difference 
vector 

NPART : 2 
NPAR = 3 
NT = 4 

MPAR r 4 
MT = 5 

Dimension of 
array6 equals 
MPAR or MT 

DFDA 

F A ( I , J P ( K ) ) 

4 2 1 3 5 K before storage 

extended 
Jacobian 
of f i rs t 
derivatives 
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Fig. 33. Flow of first derivatives FA and of differences YOC through subroutines in the subprograms 
FNCTN, DFDA and NRMEQ. The Jacobian is extended with the difference vector. Scale factors are 
stored in HA, extended with the square root of the sum of squares stored in HA(MT). The normal 
and the sum of squares are stored in ANORM. 
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8.4 Consequences for first and second derivative flow 

Permutation of the parameter vector has consequences for the flow of the deriva­
tives through the subroutines. 

The example of Section 8.3.1 is used in Fig. 33 which schematically shows the 
flow of the first derivatives and the difference vector through subroutines of subpro­
grams FNCTN, DFDA and NRMEQ. The truncated normal is preserved in a vector 
ANORM extended with the sum of squares. The normal equations are solved for 
NPAR parameters of which the solution for NPART parameters is stored in the 
vector DELTA. The solutions for 1; 1,2; 1,2,3; . ..; 1(1)NPAR parameters obtained 
in the subprogram SOLVE are saved in the extended matrix M together with the 
inverse matrix. This is illustrated in Fig. 34. 

In subprogram MIN the solution stored in DELTA is applied to the relevant para­
meter values stored in A. In the equation for B the subscript K ranges from 1(1) 
NPART. The indirect subscripting causes the flow of the components of the parame­
ter vector as given in Fig. 35. Parameters that play the role of informative parame­
ters, in the present example 6lt and constants, in the example 03, are not altered by 
differential corrections DELTA. 
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Fig. 34. Storage of solutions (upper triangle) and of the inverse matrix (lower triangle) for the first 
NPAR permuted parameters in the matrix M and the vector of differential corrections DELTA for 
the to be fitted NPART parameters. 

Fig. 35. Flow of the components of the parameter vector to apply differential corrections DELTA to 
the parameter 0* and 02 stored in the initial parameter vector A. The new parameter vector is used in 
one-dimensional search. The step factor is denoted by EPS. 
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Fig. 36. Flow of first and second derivatives to obtain the matrix J2, stored in FAA, the diagonal 
terms of the matrix M22, stored in FAA2 and the matrix Ml2, stored in FAFAA. 

For the flow of second derivatives the cross second derivatives are stored in their 
new order of occurrence IL(KL) as illustrated by Fig. 36. To keep the possibility of 
using any number of parameters, all second derivatives are, for our example, stored 
in (|) columns. From these columns scalar products are calculated to obtain the diag­
onal of the matrix M22 (equation 2.5.7) and the entire matrix M12 (equation 2.5.10). 
The latter is stored in the NPART X NPART matrix FAFAA. 
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9 Finding the minimum response in a given direction 

9.1 General 

When in a certain fitting cycle a direction of search s is adopted, the subminimum 
of the response S in this direction can be determined. The fitting problem thus is 
reduced to the determination of the optimal step length A**10*00 in (3.5.1), which can 
be solved in the response subspace giving a subminimum (Fig. 5). The search then is 
called optimal search. 

Methods to be applied depend to a certain extent on the progress already made 
during the preceding fitting procedure. In a neighbourhood of the minimum of S, 
where linear approximation to the fitting surface is accurate enough, the entire cor­
rection vector obtained in the Gauss-Newton algorithm can be added to the parameter 
vector (cf. Deming, 1948; Hayes, 1974). In this situation the efforts to achieve a bet­
ter starting point by iteration procedures are superseded by the advantage of proceed­
ing at once with further fitting cycles. Before a neighbourhood of the minimum 
response is reached, the optimum rate of progress in the new direction is to be deter­
mined to ensure real improvement of the actual parameter values. 

In this chapter the parameter d("+ " is considered a linear and strict function of the 
direction of search sw. 

9.2 Review of methods 

In the response subspace (Fig. 5) we assume our problem solved for A* if 

dS(0(X))\ 
dX U=A' 

0 (9.2.1) 

which produces optimal search along s(B) in 0("+ " = 000 + As00. 
In case the fitting surface is linear the response surface is quadratic (Section 2.6) and 

the (A, S(A))-diagram will plot a parabola in any direction s. This can be derived 
from (2.6.3) where for any constant vector s, d2S/dX2 = 2sTJTJs > 0. When the 
fitting surface is nonlinear but is approximated by a quadratic surface, the (A, S(X))-
relationship is also represented by a parabola. 

To find the subminimum, several methods have been suggested. Hartley (1961) 
calculates three values of the response, viz. 

S(0),S(i),S(l) (9.2.2) 
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The optimal value of A where the approximating parabola through (9.2.2) attains 
its minimum then is given by the prediction 

A* = * + i 
S(0) - S(l) 

S(0) - 2S(J) + 5(1) 
(9.2.3) 

It is to be checked whether S(X*) < S{0) to be sure that an improvement is obtained. 
A method where only two response values are needed was mentioned by Rueden-

berg (Hartley, 1961). He uses S(0), S(l) and the slope dS/dX at A = 0 which is given 
by (2.5.15) which gives —2NTs and so the prediction is 

A* = 
NTs 

S(l) - S(0) + 2NTs 
(9.2.4) 

the vector N to be understood as evaluated at X = 0. In this case a check is also re­
quired. 

A method which tries to find the minimum by checking the results each time and 
that can be used where parabolic approximation is not allowed, is described by 
Booth and Peterson (1960). Their method (Fig. 37) works by halving or doubling the 
step factor X. When new calculated values of the response S(X) no longer decrease, 
the last three values are used to find the minimum by approximation according to 
(9.2.3). The method principally is based on the following ideas. If S($) > S(l) both 
points are assumed to be located to the left of the minimum on the (X, S^A -̂curve. 
If S(£) < £(1) both points are assumed to be located to the right of the minimum. In 
case this is not true it will only be detected after many further calculations have al­
ready been made. In fitting practice the (A, 5'(A))-relationship is often found to be 

S(0) 

S(1) 

so*-) 

yes - ^ S(-fr)SSfl)^-

s(J-) S (2) 

p ^ S ( j - ) § S ( j ) ) I £ j p < S(1)§S(2) > ^ 

S(-i-) STOP STOP I S(4) 

etc etc 

Fig. 37. Flowchart of mini­
mization by halving or dou­
bling the step factor (after 
Booth & Peterson, 1960). 
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highly asymmetric, so here also it is to be tested whether the value S(X*) actually 
is smaller than any of the other values of the response found thus far. 

The methods described above have no stopping criterion that depends on the 
condition for a subminimum. The test whether the value S(l*) is smaller than any of 
the other values found in the current direction, does not guarantee that the best value 
of the step factor is found. Techniques that for this reason use first and second 
derivatives of the response are discussed in Sections 9.3 and 9.4. 

9.3 Use of first derivatives 

9.3.1 Root finding 

In finding a subminimum of the response, use can be made of the actual function 
applied in (2.4.1). We transform the problem into the search for a root of the first 
derivative of the (A, S(A))-curve. 

The calculation of the first derivative of the condition function is then necessary, 
but the advantage of using it is the more complete information on the process of 
finding the subminimum and the possibility to apply a simple stopping criterion. 
The slope to the (A, ^(A^-curve in any arbitrary point is given by (2.5.15) and for any 
linear path of search with parameter A by 

S'(A) = — S(0(B) + As(B)) = -2[/V(A)]rs(B) (9.3.1) 
dk 

In the general case this is a nonlinear function of A and it is to be solved by iterative 
methods. The solution A* must meet the condition 

-2[JV(A*)]rs(B) = 0 (9.3.2) 

The component of the gradient g(A) = — 2N(X) in the direction of an arbitrary 
unit vector is called the directional derivative, which is the rate of change of S in the 
direction of this vector. Let s/||*|| be such a unit vector, then the directional derivative 
along this direction is given by 

teW]7"-^- (9.3.3) 
11*11 

Let 0(A) be the angle between the gradient and the direction of search s, then the 
scalar product (9.3.3) can be written ||#(A)|| • 1 • cos[0(0(B) + As(B))]. This expression 
takes its maximum for constant A when 4> — 0, so by taking s in the direction of the 
gradient itself. The greatest rate of change therefore is found in the direction of g 
and, consequently, the steepest descent takes place along N, cf. (2.4.10). The descent 
in the direction of s is zero if the directional derivative vanishes, so if for constant 
s the argument of the cosine becomes #(0<B) + X*siny) = n/2 and g(X*) and s00 are 
perpendicular (cf. Section 2.5 and equation (2.5.15)). This may be called optimal 
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PARAMETER SPACE E2 

Fig. 38. Path of search in the parameter 
space E2 for the subminimum of the re­
sponse S in an arbitrary direction s and in 
the direction of the steepest descent iV(0). 
The solution is obtained when the gradient 
at 0<"+1> is perpendicular to s or the gra­
dient at 0<n+ " ' is perpendicular to N(fi). 

gradient search (cf. Spang III, 1962). In Fig. 38 this is the case at 0("+1} in the direc­
tion of s, and at 0(n+ 1)r in the direction of the steepest descent at 0(n) taking s = N(0). 

Equation (9.3.1) can also be expressed as a cosine, viz. 

cos 4>{X) [g(A)]r 

ll[s(A)]r|| 
— , - 1 ^ cos 4> ^ + 1 (9.3.4) 

The minimum of S along s is obtained by setting (9.3.1), (9.3.3) or (9.3.4) equal 
to zero. These equations are spoken of as measures of slope. They all give the same 
solution for A. The measures of slope are indicated by numerical, directional and 
cosine tangent respectively. The choice is governed by the calling program NLV, by 
means of the argument of the subprogram name MIN. 

9.3.2 One-dimensional linear search 

The 'Regula Falsi' (see e.g. Stanton, 1961 and Fig. 39 for factor R = 1) can be 
applied succesfully when two points are known that enclose the desired solution. To 
obtain a pair of points with this property, the following procedure is employed in 
subprogram MIN. 

The first point of the (A, S(A))-curve, when A = 0, has a negative slope if s = N or 
s = d, because (9.3.1) and (2.4.13) produce —2NTN and —2NTM~1N which are 
always negative (cf. Kowalik & Osborne, 1968). A starting value X = Xi0) is applied. 
In case ds/dX at A=A(0) is positive, the location of the root is already enclosed. If 
S"(A(0)) is still negative a step factor X = 2A<0) is applied. The step factor is 
doubled until the first positive value of the (A, S"(A))-relationship is found. Now two 
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Fig. 39. Scheme of the order of calculation to en­
close the minimum response S with the aid of a 
measure of slope T. Function evaluation is per* 
formed from point 1 through 5. The 6th point is 
obtained by using the factor R. Indicated by t _ and 
t+ is the region for values of slope that satisfy the 
stopping criterion. With R = 1 the 'Regula Falsi' 
will be performed. 

approximations to the root are available. In Fig. 39 this is the case in the fifth itera­
tion step. The minimum is located somewhere in the interval (A_, A+), where A_ = 
last found abscissa with S' < 0 (point 4) and A+ = first found abscissa with S' > 0 
(point 5). 

As the (A, S'(A))-curve may deviate appreciably from a straight line, a modified 
'Regula Falsi' - illustrated by Fig. 39 - is an option in subprogram MIN. The arc 
between the points 4 and 5 is replaced by the chord. A new abscissa A e (A_, A+) is 
found by the update formula 

A, — A+ — / \ J + 

where 

A+ 

T+ - T_ 
(9.3.5) 

T= measure of slope according to (9.3.1), (9.3.3) or (9.3.4) 
R= reduction factor (0 < R ^ 1) 

—,+ = subscripts denoting location with respect to the minimum at A = A* 

In further iteration steps cross partitioning of the chord is employed. If T < 0 equa­
tion (9.3.5) is used, if at the current point T ^ 0 use is made of 

A = A_ - RT. 
A+ - A -
T+ - T_ 

(9.3.6) 
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Fig. 39 illustrates the advantage of using the reduction factor R in a special case. 
However, as the shape of the (X, iS"(A))-curve may be different in each special case, it 
should be investigated whether it makes sense to use other values than unity for R as 
a default value. Because of the application of cross partitioning, values of R greater 
than unity can cause unpredictable results in that the iteration takes place at one side 
of the minimum only. 

Obviously the 'Regula Falsi' works with R = 1. 

9.3.3 Stopping criteria 

Use of first derivatives makes it possible to introduce adequate stopping criteria. 
In the first place it is required that the positive value T{X+) be less than 
t+ := — p+T(0), in the second place that the negative value T(X_) be greater than 
/_ := p-T(0), see Fig. 39. Values can be assigned to p+ and p_ in the main program 
NLV, the default value is set to 0.1 (10 % of the slope at X = 0). Higher values can be 
efficient in the first number of fitting cycles since the {X, »S(A))-curve then often is 
needle-shaped. 

Stopping values for the step factor X and the absolute value of the numerical tan­
gent T given by (9.3.1) are built in in subprogram MIN. If doubling the step factor 
results in X > 10, the step factor is fixed at X = 10 and a last iteration with this value 
is performed. When | r | < 0.1 X 10~10 no further iterations are carried out. In 
both cases the step factor that produces the least value for the sum of squares is cho­
sen and a return to the main program NLV is made. 

The total number of iteration steps permitted is governed by the argument of 
SUBROUTINE MIN when greater than the default value 3. 

9.3.4 Example 

For the condition function and the data mentioned in Appendix 2.2, the number 
of iteration steps is determined for various values of the process parameters when 
applying the modified Gauss-Newton algorithm. The entries in Table 7 are the stop­
ping criteria p and the reduction factor R. The number of iteration steps is listed for 
the cycle that gives the first subminimum and for the one that gives the second sub-
minimum. 

The increase of the number of iterations necessary to fulfill a given accuracy de­
creases for high values of R. Numbers obtained at values of the reduction factor 
equal to 0.8, 0.9 and 0.95, are of the same order of magnitude as numbers found with 
the 'Regula Falsi' given in Table 8. Also in this case the number of iteration steps 
only decreases slighty when p takes smaller values. Values for the measure of slope 
denoted by numerical tangent and cosine tangent, as derived in (9.3.1) and (9.3.4), 
are headed by 1 and 2 respectively. The sum of squares S calculated for these cases 
do not differ much. The results obtained with the default algorithm (R = 1, p_ = p + 
= 0.1) are given in bold type. See also Table 9 where the number of iteration steps 
in further cycles are also mentioned. 
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Table 7. Number of iteration steps to obtain the subminimum according to the Gauss-Newton 
algorithm for various values of the reduction factor R and the measure of accuracy p, p- = p+, for 
condition function and data mentioned in Appendix 2.2. 

Reduction 
factorij 

0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.9999 

First subminimum, 
p fraction of slope 

0.6 

14 
14 
14 
14 
14 
14 
14 
14 

0.4 

14 
14 
14 
14 
14 
14 
14 
14 

0.2 

16 
16 
16 
16 
16 
16 
16 
19 

0.1 

18 
18 
16 
16 
16 
16 
16 
19 

0.05 

22 
20 
18 
18 
17 
16 
16 
19 

0.01 

28 
24 
22 
20 
19 
18 
17 
19 

Second subminimum, 
p fraction of slope 

0.6 

7 
7 
5 
5 
5 
6 
7 

14 

0.4 

11 
9 
7 
5 
6 
6 
7 

14 

0.2 

13 
11 
7 
7 
6 
6 
7 

14 

0.1 

17 
13 
9 
8 
8 
7 
7 

14 

0.05 

19 
15 
11 
9 
8 
7 
8 

14 

0.01 

25, 
19 
13 
12 
10 
9 
9 

14 

Table 8. Number of iteration steps to obtain the subminimum according to the Gauss-Newton 
algorithm for the 'Regula Falsi' for various values of the measure of accuracy p,p. — p+, and 
for the numerical tangent (1) and the cosine tangent (2), for condition function and data men­
tioned in Appendix 2.2. 

p 

0.6 
0.4 
0.2 
0.1 
0.05 
0.01 

First subminimum 

number of 
iterations 

1 

14 
14 
15 
16 
16 
17 

2 

16 
16 
19 
19 
20 
21 

S(0*(1>) 

1 

26.90 
26.90 
25.98 
25.97 
25.97 
25.97 

2 

26.07 
26.07 
25.97 
25.97 
25.97 
25.97 

Second subminimum 

number of 
iterations 

1 

6 
6 
7 
8 
9 

10 

2 

5 
5 
6 
7 
7 
8 

S(0*<2>) 

1 

13.87 
13.87 
13.85 
13.85 
13.85 
13.85 

2 

13.85 
13.85 
13.85 
13.85 
13.85 
13.85 

9.4 Use of second derivatives 

9.4.1 Root finding 

The 'Regula Falsi' convergence gives a linear approach to the root of a function. 
When certain conditions are met the Newton-Raphson algorithm can be used. It 
is faster because of a quadratic approach, since the number of correct decimals rough­
ly doubles with each iteration step (see e.g. Stanton, 1961). 

Application of the Newton-Raphson algorithm requires the evaluation of the 
derivative of the (X, S"(A))-relationship, so it requires the second derivative of the 
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response with respect to A, given in (2.5.17) and (2.5.18). Consequently the method 
requires the evaluation of C+

2 *) second derivatives and so the advantage of using it 
for searching a subminimum is to be weighed against this disadvantage. Application 
can be justifiable when the number of parameters/? and the number of data v is small. 

If it is asked to find the solution of f(x) — 0, the Newton-Raphson iteration re­
quires the evaluation of 

x<2> = x(1> - KQ. (9.4.1) 
f(*(1)) 

where 

xw = starting point of the iteration, near enough to the required root that the tan­
gent to f(x) at (x(1),/(;ca))) cuts the abscissa in a point nearer to the root than 

x(2) = point of intersection which meets this condition. 

Expressed in the symbols used in (9.3.1) and (2.5.17) the equation (9.4.1) becomes 
(cf. Davies & Whitting, 1972) 

;(2) _ ;(D , [Ntt )] * r o a n 
X -X + , W > ) - N02(X^s ( 9 A 2 ) 

As the direction of search s is chosen arbitrarily, (9.4.2) can be used for differential 
corrections d even if they are determined using first derivatives only, viz. d = M~ lN. 
The second term at the right-hand side of (9.4.2) is spoken of as the prediction formu­
la for the step factor. 

We restrict attention to a linear condition function. Then N02 vanishes and M does 
not depend on k, so for any vector s in (2.5.17) 

S"{X) = 2sTMs = constant (9.4.3) 

This expression is greater than zero for s ^ 0 (Section 2.6) which means that the 
(X, 5"(A))-curve has a minimum in the first quadrant because S"(0) < 0 and S(X) > 0. 
Now (9.4.2) reduces to 

A(2) = A( i) + [JV(A (1))]TJ ( 9 4 4 ) 

sTMs 

Using differential corrections, so s = d, the denominator in (9.4.4) becomes 
dTMM-1N(0) using (2.4.13) at A = 0. From (9.4.3) and (9.3.1) it now follows that 

S"(X) = -S'(0) = constant (9.4.5) 

where S"(0) < 0. Equation (9.4.5) expresses that the slope of the straight line for the 
(A, 5"(A))-relationship is equal to the negative value of its intercept on the ordinate. 
The equation of the line itself reads 
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S'(X) - -(A - 1)S'(0) (9.4.6) 

which has a root at X = 1, giving a full step in the direction of search. For nonlinear 
condition functions this result may be used in near-linear situations so when dTN02d 
now present, in (9.4.2), is sufficiently small. 

9.4.2 Initial step factor 

Second derivatives can be used to predict the step factor in a certain fitting cycle 
(see Davies & Whirling, 1972; and for a discussion in detail for variable metric 
algorithms Dixon, 1972). This prediction value can be used as an initial value for 
X to start the iteration process. Inserting AU) = 0 in (9.4.2) gives 

X» = T
 [ i V ( ° ) ] r ' (9.4.7) 
sT[M(0) - tf02(0)> 

The choice to use (9.4.7), only makes sense if the CALL D2FDA statement is present. 
Application then is possible by an appropriate modification of the main program 
NLV (Section 12.3). 

Without using second derivatives a starting value A(1) can be declared in the main 
program, the default value being 0.001. In further fitting cycles Xin+iy = A*00, 
n = 1(1)/ is automatically chosen as initial value in the next cycle. 

In fitting practice the solution A<2) obtained with second derivatives according to 
(9.4.2) can be compared with the solution by the iterative procedure to be described 
in Section 9.5.1 which gives the optimal value A*(1). When in preliminary cycles both 
values differ appreciably, one should prefer A*(1). When after several cycles it appears 
that Xin+1) is a good prediction for A*00, one should prefer A("+1) without further 
iterations. A criterion could for example be 0.5A*00 < A<B+1) < 1.5A*(B). 

Since the routine is to enclose the root of any of the expressions (9.3.1), (9.3.3) or 
(9.3.4), in subprogram MIN, the employed initial value is automatically reduced. The 
default value for this reduction is Xt = f. Assuming A*("+1) = A*00, this reduction 
gives 

2 x*w < A*(»+i) < A A*w < 2XW+» < |A*<*> 

thus producing intervals symmetric about the assumed new optimal value and a 
value twice as large. 

9.4.3 Information on curvature 

Second derivatives can be used to obtain information on the curvature of the direc­
tion of search on the fitting surface at the initial point (Section 2.8). Before proceeding 
with the proper minimization routine, subprogram MIN starts with the determina­
tion of the geodesic curvature in the chosen direction of search. 
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9.4.4 Example 

Initial values for the step factor obtained by the prediction formula (9.4.7) can be 
compared with optimal values obtained by the iteration process in subprogram MIN. 
This is done in Table 9 for the condition function and data given in Appendix 2.2 
and Appendix 2.3, example 1 and 2 respectively, by consequent use of the modified 
Gauss-Newton algorithm. For each cycle the corresponding prediction value of the 
step factor was also calculated. It is observed that in example 1 from cycle 4 on, there 
exists a good agreement between both values. In example 2 the values deviate from 
cycle 17 through 21. These are the fitting cycles where the partial cosines start to 
approach zero as was illustrated in Fig. 31. In Table 9 the number of iterations to 
obtain the subminimum in the cycles mentioned was determined for the 'Regula Falsi' 
and default accuracy options viz. p_ = p+ =0 .1 . The first subminimum is obtained 
after 16 respectively 15 iterations, then the number of iterations is found to be 6 in 
almost all cycles. In example 2 this number slightly increases in cycles where the 
course of the partial cosines is irregular (Fig. 31). 

The radius of geodesic curvature (K9)~
X is listed in Table 10 as absolute values 

and values relative to \S in each initial point of a fitting cycle. Fast progress is made 
in the cycles 18 through 22 where the radius of curvature is large and so the curvature 
in the direction of search is small. For a plot of the decrease of S in subsequent fitting 

Table 9. A comparison between predicted step factors obtained with formula (9.4.7) and optimal step 
factors as obtained with the 'Regula Falsi' to determine the subminimum in subsequent fitting cycles 
for example 1 (Appendix 2.2) and example 2 (Appendix 2.3) when applying Gauss-Newton. The 
number of iteration steps in each cycle is also given. 

Example 1 

Cycle Step factor 

pre­
dicted 

1 0.0 
2 0.8334 
3 0.9302 
4 0.9950 
5 1.0606 
6 0.9787 
7 1.0686 

iterated 

0.0 
1.0753 
0.4885 
1.0094 
0.9161 
1.0482 
1.0659 

Example 2 

Number Cycle Step factor 

0 
16 
8 
7 
6 
6 
6 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

pre­
dicted 

0.0 
0.3354 
0.0104 
0.0116 
0.0129 
0.0144 
0.0159 
0.0177 
0.0197 
0.0221 
0.0249 
0.0285 

iterated 

0.0 
1.2043 
0.0103 
0.0117 
0.0130 
0.0144 
0.0160 
0.0177 
0.0197 
0.0221 
0.0250 
0.0286 

Number Cycle Step factor 

0 
15 
7 
6 
6 
6 
6 
6 
6 
6 
6 
6 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

pre­
dicted 

0.0332 
0.0396 
0.0488 
0.0632 
0.0893 
0.1498 
0.3930 
0.3765 
0.5643 
0.9255 
0.9596 
1.0278 
1.1436 

iterated 

0.0333 
0.0397 
0.0491 
0.0641 
0.0918 
0.1615 
0.5458 
0.7294 
1.3269 
1.0399 
0.9808 
1.0309 
1.1416 

Number 

6 
6 
5 
5 
6 
7 
8 
6 
7 
6 
6 
6 
6 
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Table 10. Values of quantities at the initial point of each fitting cycle for example 2, see Appendix 2.3. 

Fitting 
cycle 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

S 

976.4 
327.2 
323.9 
320.3 
316.3 
311.8 
307.0 
301.6 
295.7 
289.3 
282.1 
274.0 
264.9 
254.4 
241.9 
226.4 
205.6 
172.9 
87.5 
38.1 
4.9 
1.8 
1.8 
1.8 
1.8 

Total 
cosine 

.9967 

.9808 

.9825 

.9843 

.9862 

.9882 

.9902 

.9922 

.9940 

.9956 

.9970 

.9980 

.9986 

.9988 

.9986 

.9979 

.9966 

.9944 

.9869 

.9751 

.7926 

.0338 

.0028 

.0002 

.0000 

N 

2966 
2400 
2267 
2133 
2000 
1869 
1742 
1617 
1445 
1376 
1261 
1148 
1037 
927 
818 
707 
592 
464 
273 
162 
78.5 
0.71 
0.13 
0.0026 
0.0007 

M 

6.1 
58.4 
52.3 
46.6 
41.6 
37.0 
32.8 
29.0 
25.6 
22.4 
19.5 
16.8 
14.3 
11.9 
9.4 
6.9 
4.1 
2.1 
4.2 
0.9 
0.12 
0.048 
0.0027 
0.0005 
0.0000 

Radius of geodesic 
curvature in direction d 

absolute 

27.39 
0.41 
0.45 
0.50 
0.56 
0.62 
0.69 
0.78 
0.88 
1.01 
1.17 
1.40 
1.72 
2.20 
3.03 
4.67 
9.14 

25.54 
16.33 
29.69 
31.21 
0.34 
3.90 
0.12 
-

relative to 

Vs 

0.88 
0.02 
0.03 
0.03 
0.03 
0.04 
0.04 
0.04 
0.05 
0.06 
0.07 
0.08 
0.11 
0.14 
0.19 
0.31 
0.64 
1.94 
1.74 
4.81 

14.08 
0.25 
2.88 
0.08 
-

cycles see Fig. 25. It is observed that the steep decrease of sum of squares S from cycle 
1 to cycle 2, occurs in an approximately linear direction of search with radius of 
curvature equal to 27.39 (Table 10). 

9.5 Subprogram MIN 

9.5.1 Finding the optimal step factor 

Subprogram MIN starts with setting to zero the indices IREQN and IREQP that 
save the state of the measure of slope T relative to the stopping criteria /_ and t+ 
(Fig. 40). An index ITO for the choice of the route through the program is set to 1. 
The first calculation of T is for X = 0. A starting value A(0) can be declared in the 
main program NLV, the default value being 0.001. For reasons explained in Section 
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Choose least value 
of S(X)out of those 
calculated In this 
cycle. Define the value 
of the argument as X*<n' 

X=X*(n) 

return to calling program 

© © ® © ® 

IREQN.1 yes 
< 

© 
no <Q \ io 

T_>t_ 

IREQPM 

• ^ T . S U yes 

< TV«t. 

IREO.P-1 

2 0 <0 N / yes 
IREQN.1 

yes 

X.X -R *T.*^t=Ar 
T,-T. 

<: 

- ^ ITO = 4 \ 
I no 
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<c tIREQN-1VIREQP-1)AR.1 > 

ITO»3 -

I T O - 4 -

*- ITO-2 -

* ITO.5 

Fig. 40. Flowchart for main statements in subprogram MIN to find the subminimum of the response 
in the direction of search *. 
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9.4.2 a reduction is employed taking A = X,À.t0) as the first step factor. 
The iteration process consists of the following procedures (Fig. 40). 

1st procedure With a given arbitrary correction vector s the sum of squares S and 
the desired measure of slope T to the (A, ,S(A))-curve at A = 0 is calculated. If T hap­
pens to be positive, the sign of s is changed. Next, S is evaluated at X = X,Xm. 
2nd procedure The step factor is doubled until a point is encountered where the 
slope is positive. 

£ # 1 

3rd procedure The chord between the two points (A_, TJ) and (A+, T+) last found is 
used to approximate the root of S'(X) = 0, until both the last found negative value 
T_ and the last found positive value T+ meet the required stopping criteria /_ and t+ 
at Ai and A+ respectively. 
4th procedure The mean value of Al and A+ is employed as a possible value for A*, 
with which the last iteration step is performed. 

R = 1, 'Regula Falsi' 

3rd procedure The chord between the two points (A_, 71) and (A+, T+) last found 
is used to approximate the root of S'(X) = 0, until either the last found negative value 
r_ or the last found positive value T+ meets the required stopping criteria f _ and f+ 

at Al and A+ respectively. 
4th procedure One further iteration is carried out, producing a possible value for X*. 

R*\,R = \ 

5th procedure The value of A which gives the least value for the response out of 
those calculated during the entire iteration process is finally employed as optimal 
step factor A*. The value A = A* is saved by means of the COMMON statements. 

9.5.2 Treatment of bounded parameters 

When doubling parameter values during the first stages of the iteration process to 
find the subminimum, predefined boundary values may be violated. In subprogram 
MIN this is detected by a separate routine. When boundary values are exceeded the 
routine iterates backwards in the direction of search to find a parameter vector whose 
terminal point is close to the boundary but inside the feasible region. The violating 
parameter is kept constant in further cycles, reducing the number of to be fitted param­
eters to p — 1, then grouping of parameters according to Section 8.2 automatically 
takes place. 

When no boundary values are defined in the main program deck, this routine is 
bypassed. 
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9.5.3 One-dimensional nonlinear search 

Subprogram MIN is suitable for linear and strict parameter functions.The correc­
tions to parameter values can be obtained by adding the components of the vector 
of direction of search to the corresponding components of the parameter vector. In 
FORTRAN statements 

DO 12K=1,NP $ IPK=IP(K) 
12 B(IPK)=A(IPK)+EPS*CRCTN(K) 

The direction of search is stored in CRCTN, and the step factor X in EPS. 

In nonlinear search formulas for the direction of search have to be derived by dif­
ferentiating the parameter function with respect to the step factor as algorithm param­
eter, see (2.5.15). This is done in the subprograms BACK and LIHYPEX for the 
special methods developed in Chapter 6 and Chapter 10. In these subprograms the 
direction of the nonlinear search is calculated and stored in CORR, the parameter 
values are calculated and stored in B, both being subscripted variables that occur in 
COMMON. Control then bypasses the above mentioned DO-loop in subprogram 
MIN. CORR is assigned to CRCTN by means of the SUBROUTINE MIN argu­
ment, for further use in the subprogram. 
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10 Convergence of parameter values by extrapolation 

10.1 General 

Extrapolation of intermediate results can be employed at various stages of the 
fitting process. In these cases it is often the response surface or a response subsurface 
that is described by means of lower degree polynomials. Examples are the minimiza­
tion in a direction of search by means of an approximating parabola and the approxi­
mation of the response surface by quadratic functions to assess the Hessian (Spend-
ley, 1969; Murray, 1972b). 

However, these techniques can also be used to simulate the convergence of param­
eter values. In many cases the path produced by the relationship between j and 
Q*u)>j = 1(1)«» shows only little curvature. Still, linear extrapolation of the terminal 
points of parameter vectors obtained in preceding fitting cycles is not satisfactory, 
because in nonlinear optimization final values for each parameter separately will 
generally not be obtained with the same step factor. So other functions must be tried. 

Values of 9*U), j = 1(1)«, can be plotted against the cycle number j or versus the 
cumulated values of A*0*, giving ordered pairs 

U,9îiJÏ) and (IA*(»,#Ü>) 

In the first case parameter values in subsequent cycles are equidistant for y = 1(1)«, 
in the second case their location is assumed to depend on the step factor. 

The constants occurring in the parameter function to be used for extrapolation have 
to be solved from results of previous fitting cycles. Although such constants have to 
be determined for each condition function parameter separately they are not sub­
scripted in this chapter, leaving it understood that they are collected in arrays ranging 

1(1)/»-
For convenience sake we define in this chapter the following auxiliary quantities, 

omitting the subscript k for an arbitrary component of 0 

0tJ : = 0*w - 8*a\ Xj : = £A*(0, Ay : = A, - kj (10.1.1) 

In Sections 10.3 and 10.4 it is required that 

0*(D ^ 0*(2) ^ 0*<3) Q r 0*(1) ^ 0*<2) ^ 0*(3) (10.1.2) 

and Xj ̂ 0 , j = 1(1)«. 
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10.2 Fourth degree extrapolation 

Simulation of convergence with a fourth degree polynomial was based on five 
equidistant fitting cycle numbers. After rescaling the parameter function becomes 
with A = -4(1)0 

0(A) = a + b(2 + A) + c(2 + A) 2+ d(2 + A) 3 + e(2 + A) 4 

where the solution for the constants is given by 

1 
24 

0 0 
2 -16 

- 1 16 
- 2 4 

1 - 4 

24 
0 

30 
0 
6 

0 
16 
16 

- 4 
- 4 

01 
- 2 
- 1 

2 
1. 

r0*(D-| 
0*(2) 
0 * ( 3 ) 

0*W 

[0*(5)J 
The direction of search in the parameter space for an arbitrary component of s is 
given by 

s(A) = 
dd{k) 
~dT 

= b + 2c(2 + A) + 3d(2 + A)2 + 4e(2 + A)3 

producing a nonlinear direction of search. The optimization of A can be achieved with 
subprogram MIN, see Section 9.5.3. A trivial starting value is the equidistant unit 
A = 1, which produces a prediction for 0*(6). 

10.3 Hyperbolic extrapolation 

In hyperbolic simulation (Fig. 41) it is assumed that 0*(r> tends toward 9* by means 
of a hyperbolic relationship. The general formula for each parameter then reads 

Fig. 41. Schematic illustration of using three inter­
mediate fitting results for hyperbolic extrapolation 
based on parameter values and cumulative step 
factors. 
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0 ( A ) = _ l _ + a, fc<At 
A - 6 

where a is an approximation to 0*. The three constants are solved from three not 
necessarily equidistant points. Simulation of convergence then is based on the points 

ß^O*«*), (A2,0*(2)) and (A3,0*<3)) (10.34) 

The first step to the solution of the constants is to eliminate a by taking the differences 
021 and 032. The next step is solving these differences for c. Equating gives 

, _ A21032A3 — A3202iAi 

A21Ö32 ~ A32W: 21^32 ~ A32O21 

SO 

— 032, (A 3 - b ) (A 2 -&) 
132 

and 

a = 0*(3> -
A3 - b 

Finally we use, relative to the point last mentioned in (10.3.1) 

0(A) - a + C- -, A è 0 (10.3.2) 
(A3 + A) - b 

with initial step factor A = X3 when entering subprogram MIN for the optimization 
of A. Terminal points are 0(0) = 0*<3) and 0(oo) = a. The direction of search in the 
parameter space is for an arbitrary component of« given by 

s(A) = d0(A)_ - c 

dx (A + A3 - by 

which gives a nonlinear direction of search. The solution is restricted by a number 
of conditions that have to be checked for each parameter separately. Reference is 
made to (10.1.1) and (10.1.2). 

The algorithm parameter A is valid for the entire vector 0 and so conditions on A 
hold for all k. We observe that there is no solution if A32 = 0. On the other hand if An 
= 0 the solution reads b = Alf which inserted in the equation for c gives c = 0 and 
the hyperbola degenerates into its asymptotes. In this case extrapolation is to be 
employed by 

a = 20*(3) - 0*(2), b m 0, c = -032A3 (10.3.3) 

to be inserted in (10.3.2). Terminal points of search in this case are 0(0) = 0*<M 

and 0(oo) = 0*<3) + 032. All other cases have the property At < A2 < A3. 
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If for a condition function parameter it is found that 032 = 0, the solution is 
b = At and c = 0 and so 0(A) = 0*(3) for any choice of A in (10.3.2). Finally if 021 = 
0 the solution given by (10.3.3) can be used. The particular parameter for which this 
solution holds is extrapolated linearly. 

The conditions can be summarized with 

IÖ21M21I > I032M32I (10.3.4) 

which can easily be interpreted geometrically. It covers the situations c > 0 and 
c < 0 (Fig. 41). 

10.4 Exponential extrapolation 

In exponential simulation (Fig. 42) it is assumed that 0*U) tends toward 0* by 
means of an exponential relationship. The general formula for each parameter reads 

/w»x — bk 

0(A) = ce + a 

where the constants are solved from a set of points according to (10.3.1). The first 
steps are analogous to those described in the former section. Then we arrive at a 
nonlinear equation for b which reads 

0 32 1 - exp(-bA32) 

02 J exp (6A21) - 1 

This can be written, introducing the auxiliary variables *i(ii) and t2{b2) requiring 
tt = t2 for bx = b2 and bt ^ 0 

Fig. 42. Schematic illustration of using three 
intermediate fitting results for exponential ex­
trapolation based on parameter values and 
cumulative step factors. 
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tM - 932(e' ,M21 _ 1X 
6 t=0 = Ajiö; 

*2(t2) = 021(l _ e — b*X 2A32 
). 

d r 
db~2\h=0 

21"32 

A32Ö2I 

(10.4.1) 

(10.4.2) 

which are monotone functions because of the conditions laid down in Section 10.1. 
In (10.4.1) we have ^(0) = 0, ̂ (oo) -• 00 ; in (10.4.2) this is t2(0) = 0, f2(oo) = 02 1 . 

The condition for a solution thus is A21032 < A3202i. The iteration procedure starts 
with the calculation of t2 for a given value of b2 ; equating t2 = tt the equation (10.4.1) 
is solved for ôx and the solution is put equal to b2 and so on. Elimination of / gives 
the iteration formula 

h = 
In [03 ! - 021 exp ( -M32)] - to 032 (10.4.3) 

"•21 

The first iteration step can conveniently be performed with b2 = 00. Back solution 
of c and a yield 

c = 
0 32 

- M . -bX, 

and 

a = 0*<3> - ce 
-bX, 

Parameter values relative to the point last mentioned in (10.3.1) now can be obtained 
from 

0(A) = a + ce 
-6(A3+A) 

X^O (10.4.4) 

with initial step factor X = X3 when entering subprogram MIN for the optimization 
of X. Terminal points are 0(0) = 0*(3) and 0(oo) = a. The direction of search in the 
parameter space is for an arbitrary component of* given by 

s ( A ) = ^ = -*ce-*<A3+A) 
dX 

giving a nonlinear direction of search. 
This solution also is restricted by a number of conditions, analogous to those for 

hyperbolic extrapolation. Again we have no solution if X32 = 0. Further, X2l = 0 
produces b -* 00 and the solution preferred under this condition reads 

a = 20*(3) - 0*(2), 6 - 1 , c = -e32e
h (10.4.5) 

to be inserted in (10.4.4). Terminal points of search are in this case 0(0) = 0*<3) and 

121 



0(oo) = ö*(3) + 632. For decreasing values of 9 slopes in (10.4.1) and (10.4.2) are 
negative. The condition for a solution then is A21032 > A32021. 

If for a condition function parameter it is found that 032 = 0 the solution for any 
choice of A in (10.4.4) gives 0(A) = 0*(3). Finally 021 = 0 requires a solution by (10.4. 
5). The particular parameter for which this solution holds is extrapolated linearly. 

The conditions can be summarized with (10.3.4) covering the situations c > 0 and 
c < 0 (Fig. 42). 

10.5 Program options 

The extrapolation procedures are programmed in subprogram LIHYPEX. Specific 
options are governed by the appropriate arguments of the subroutine and the calling 
programs. The statement reads 

SUBROUTINE LIHYPEX(LHE)N1,N2,N3,NCRIT,LIST) 

where the following choices can be made 

LHE = 1, fourth degree polynomial extrapolation. 
= 2, hyperbolic extrapolation. 
= 3, exponential extrapolation. 

N1,N2,N3, fitting cycle numbers that define the intermediate optimal points to be 
used. If LHE = 1 five equidistant points are chosen, the first and second being 
given by Nl and N2. 

NCRIT, critical number of significant figures to predetermine the required accuracy 
of the iteration process in (10.4.3). A suitable value is NCRIT=3. The 
number of iterations for each parameter is confined by a default value 
25 defined in the subroutine. 

LIST = 1, a list of intermediate results will be produced. 
= 0, listing is suppressed. 

In subprogram LIHYPEX it is tested whether the number of cycles is sufficiently 
large to perform the extrapolation with the points required by Nl, N2 and N3. The 
subprogram can be called by a modification of the main program NLV and then is 
automatically called by subprogram MIN. In the last case the statement reads CALL 
LIHYPEX (LPX + 10, 0, 0, 0, 0, 0) and it is used to jump to the calculation of 
0(A) and s(X) only, for optimizing A. In subprogram MIN the DO-loop that calculates 
parameter values 0 is bypassed, as explained in Section 9.5.3. 

10.6 Example 

For the condition function and data given in Appendix 2.3 exponential extrapo­
lation was applied. Intermediate parameter vectors chosen to be used for extrapolation 
were 0*(2), 0*(4) and 0*(6), obtained with the modified Gauss-Newton algorithm. 
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fW^^TfT*^** 

16 20 24 
number of fitting cycle 

Fig. 43. Decrease of sum of squares for the 
problem in Appendix 2.3 according to two 
algorithms. 1 modified Gauss-Newton; 2 modi­
fied Gauss-Newton with exponential extra­
polation of parameter values obtained in the 
2nd, 4th and 6th cycle. See also Figs. 19 and 25. 

For each parameter, exponential approximation was applied. The optimization of the 
algorithm parameter X gives a decrease of the sum of squares from 311.8 to 40.3 in 
the 6th fitting cycle which is illustrated in Fig. 43. The modified Gauss-Newton algo­
rithm needs 19 further cycles, but after exponential extrapolation only 7 further cycles 
were needed. 

Table 11. Parameter values obtained in the fitting cycles mentioned. In the 
upper part for the modified Gauss-Newton algorithm, in the lower part after 
in the 6th cycle exponential extrapolation was employed based on intermediate 
results in cycles 2,4 and 6. For condition function and data see Appendix 2.3. 

Fitting X, 

cycle 
n 

Gauss-Newton 
1 0.0 
2 1.204 
4 1.226 
6 1.254 

10 
15 
20 
25 

Parameters 

D 

38.40 
37.94 
38.10 
38.31 
38.93 
40.31 
37.81 
38.31 

Gauss-Newton and exponential 
1 0.0 
2 1.204 
4 1.226 
6 1.254 
6* 1.702 

10 
13 

38.40 
37.94 
38.10 
38.31 
40.42 
38.22 
38.31 

in condition function 

A 

1.3100 
0.8067 
0.8187 
0.8345 
0.8847 
1.0508 
2.2101 
2.1277 

1.3100 
0.8067 
0.8187 
0.8345 
1.2617 
2.1315 
2.1277 

B 

0.2746 
0.2117 
0.2365 
0.2674 
0.3529 
0.5392 
0.6662 
0.5474 

0.2746 
0.2117 
0.2365 
0.2674 
0.6144 
0.5509 
0.5474 

C 

3.489 
10.772 
9.570 
8.385 
6.167 
3.722 
2.117 
3.047 

3.489 
10.772 
9.570 
8.385 
4.468 
2.952 
3.047 

* Exponential extrapolation. 
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Table 12. Values of constants for exponential extrapolation. 
See Table 11. 

Condition 

function 
parameter 

D 
A 
B 
C 

Exponential 

a 

44.145 
2.018 
0.925 
4.413 

extrapolation constants 

b 

1.0 
1.0 
1.675 
9.537 

c 

-20.447 
- 4.147 

5.371 
0.619 x 10s 

The solutions converge to the same parameter values, but it is as if a number of 
intermediate results is skipped when using extrapolation. A summary of results is 
given in Table 11. The upper part of the table gives a sequence of results obtained 
with the modified Gauss-Newton algorithm. The lower part gives the results obtained 
with this algorithm, with in the 6th cycle application of exponential extrapolation. 

In Table 12 the constants used in exponential extrapolation are given for the param­
eters of the condition function. 
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11 Controlled approach by intermediate observation rectors 

11.1 General 

In parameter optimization the path on the fitting surface along which convergence 
is achieved depends on 

- the choice of the initial value of the condition function parameters, 
- the algorithm applied, 
- the strategy on step length. 

Appropriate choices can be made by the user of an optimization program, but by 
this no conditions are set to the path of search to be followed. It might be of interest 
to the research worker, however, to know that the minimum response was reached 
without heavy oscillation of the intermediate solutions in undesirable directions 
(see Section 1.1). 

In this chapter a method is developed that gives a controlled approach to 0* 
starting at 0(O) by gradually increasing the distance to the fitting surface from zero to 
the value at the terminal point of the observation vector. Although the procedure does 
not give an acceleration of the convergence process, the advantage is found in that 
it reduces the relative curvature of the fitting surface and the parametric curves (Sec­
tion 2.8) and produces on the fitting surface a locus of points that are closest to the 
terminal points of intermediate observation vectors. 

11.2 Procedure 

11.2.1 Reduction of the original difference vector 

Starting from the initial approximation 0<O) intermediate observation vectors x<° 
can be found with 

*(O>:=/(0<°>) 

* ( 0 : = * ( ' - 1 ) + ^ ( * - J C ( ' - 1 > ) 

ß = — - i ., * = 1(1)JV, N < oo 
N + 1 - i 

(11.2.1) 
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OBSERVATION SPACE EV 

2 i-1 I — N, —N 
fitting surface 

Fig. 44. Schematic illustration of methods 
of controlled approach by intermediate ob­
servation vectors whose terminal points des­
cribe loci in the observation space. 1 locus 
when using the original difference vector 
/o(0(o)) only ; 2 locus when using subsequent 
difference vectors fo(0w), i=l(l)N; 3 when 
using/o(ô(wl)) to start a new procedure 2 to 
proceed from Nx in again N steps for better 
control. 

when an approach to x = xm in N steps is employed. The locus of the terminal points 
of xm is illustrated in Fig. 44 by line 1. In this linear case the locus is the original 
difference vector fo(0

m) = x —f(0m). For the construction of these vectors x<0 no 
further points on the fitting surface are needed. 

Intermediate observation vectors are obtained by adding to the position vector 
at 0(O) the original difference vector reduced with a factor ß. The orthogonal projec­
tion of their terminal points on the fitting surface are determined, giving controlled 
approach to 0*. 

11.2.2 Reduction of sequential difference vectors 

The procedure can be repeated when as a result of fitting on x(1) the optimal param­
eter has be found, now using 0(1) as the starting point for a new difference vector. 
This results in a slower progress to the terminal point of the observation vector x in 
the first stages (curve 2 in Fig. 44). Intermediate observation vectors in this case are 
obtained by 

* ( O ) : = / (0 ( O ) ) 

(11.2.2) 

ß = 
N + 1 - i 

1(1)N, N < oo (11.2.3) 

where 0 ( ( -1 ) can be chosen to denote 0*<l-1). If the fitting surface is approximated by 
a straight line (Fig. 44), the terminal points of the intermediate observation vectors 
are obtained by the intersection of lines, expressed in a (H,o)-reference system, 

u = N - i 

and 
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m 

~ b u j . 1 

u = + b 
N + 1 - i 

where i 2 = S(0*) and i = l(l)iV. Elimination of /yields 

v(u + 1) = b 

Thus the locus of the terminal points of x (0 is a hyperbola with asymptotes u = — 1 
and Ü = 0. Also here the orthogonal projection of the terminal points on the fitting 
surface gives controlled approach to 0*. 

11.3 Application 

Since each step in the controlled approach method is subject to a fitting procedure 
to find the next value of 0, available optimization algorithms can be used. To obtain 
the intermediate results weaker stopping criteria than the default values (Section 13.4) 
could be employed. On the other hand, to ensure that the path on the fitting surface 
really is controlled, criteria that are too weak are in contradiction with the purpose 
of the method. The disadvantage of a relatively strong stopping criterion in the deter­
mination of intermediate results is partly compensated by increasing the number of 
steps on the fitting surface. For the chosen example the number of cycles in each step 
was found to decrease slightly in these situations (Section 11.4). 

The factor ß in (11.2.1) and (11.2.2) is defined such that the original observation 
vector x is reached in a predefined finite number of steps N. If required, from a cer­
tain step Ni on progress to this vector can be done in more steps by replacing the 
original difference vector byfo(0

iNJ). 
Such an approach is indicated in Fig. 44, curve 3, where at step Nj, the value of i* in 
(11.2.3) is set to 1 again. 

The method and its modifications are part of subprogram TRACK. 

11.4 Example 

For condition function, data and starting values mentioned in Appendix 2.2, con-; 
trolled approach was applied using the method developed in Section 11.2.1. For 
each parameter separately the results are plotted in Fig. 45. The numbers refer to the 
the number of steps that the original difference vector ƒ„ was divided in. For N — 1 
the full difference vector was used, the total number of fitting cycles using modified 
Gauss-Newton being 7. Then the value N = 4 was applied. The number of fitting' 
cycles for each step then was 5, 4, 4 and S respectively. In each step the deviations 
from the ultimate trend are damped. For N = 10 only the terminal points 0(n per 
step are given. For N = 50 these points constitute the heavily drawn curve. In the 
latter case 3 fitting cycles per step were needed. 

Although the intermediate parameter values, especially of the first and the last 
parameter, in controlled approach show the influence of the curvature of the para-
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Fig. 45. Example of controlled approach ap­
plied to condition function, data and initial 
values of Appendix 2.2 for each parameter. 
1 approach in 1 step with intermediate para­
meter values from seven fitting cycles; 2 ap­
proach in 4 steps with intermediate parameter 
values; 3 approach in 10 steps; 4 approach in 
50 steps, intermediate parameter values are 
points of the heavy line. 
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metric curves, a cross section through the fitting surface gives no indication that this 
surface is curved along the path used in this controlled approach. This is illustrated in 
Fig. 46 that gives the calculated distance of the fitting surface to the intermediate 
points of the original difference vector for N = 50. 

To gain a better insight a schematic view is given (Fig. 47) of parametric curves on 

32 <Js 

zo f0(e(t') 

10 20 30 
points on f i tt ing surface 

-5O:0 ( t ) 

Fig. 46. Cross section through the fitting 
surface (heavy dots) obtained by plotting 
calculated distances from the original dif­
ference vector /o(0<o>) to the fitting surface, 
when applying equation (11.2.1) with N = 
SO to condition function and data of Ap­
pendix 2.2. See also Fig. 45. 

FITTING SURFACE 

~~--*0 0.3741 

FITTING SURFACE 

^ . 3 .494 

0.2746 

curves fop parameter B 

3.489 - aso " 

curves for parameter C 

Fig. 47. Path of controlled approach on the fitting surface from 0<o) to 0*°, for two parameters, passing 
calculated intermediate parameter values as obtained by equation (11.2.1) with N = 50, for condition 
function and data of Appendix 2.2. Hypothetical parametric curves that could have produced these 
results are drawn. See also Figs. 45 and 46. 
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the fitting surface that could produce results analogous to those depicted in Figures 
45 and 46. For two parameters the path from 0(O) to 0W is given when passing the param­
eter values that form the intermediate results for N = 50 in controlled approach. 
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12 Application 

12.1 Testing the formulas for first and second derivatives 

Formulas for first and second derivatives can be tested for programming errors by 
a comparison of calculated function values and results empirically obtained (Murray, 
1972d). In order to test all derivatives the parameter index cards (Section 8.3.1) are 
arranged such that NPART = MPAR. The comparison proposed is valid in the 
neighbourhood of the solution. This can be simulated by using a vector of calculated 
function values, obtained with the initial parameter values, as new observation vector. 
To this purpose calculated values are rounded to numbers with five significant figures. 

First derivatives can be tested with the aid of the {X, S(A))-relationship. The slope 
to the curve at 0(1)(A) being given by (9.3.1), which with differential corrections reads, 
see (2.4.13) and (2.4.9) 

S'(A) = -2[/0(e
(1)(A))]r/(fl(1)(A))(/rJ)-1/7/-0 (12.1.1) 

where vectors and matrices without argument are to be evaluated at 0(O) and where 
ew(X) = 0<°> + A</<0>. 
In this expression the first derivatives occur evaluated at two points on the fitting sur­
face. Approximation to the slope is obtained by means of central differences at Xt given 
by 

S'(l,) m S (A*+l) ~ ^ ' - ^ 

where in this case, according to the program option, AJ+1 — A, = X( — Xi^1. Values 
obtained this way can be compared with those calculated with(12.1.1). They are printed 
on the same Une in the output list by appropriate statements in subprogram MIN. 

Second derivatives can be tested by means of the optimal step factor and the weights 
obtained with scale factors. The optimal step factor is found empirically in each 
fitting cycle in subprogram MIN and printed in a summary of the entire fitting pro­
cess by subprogram LISTING. On the same line of the output list, values calculated 
with (9.4.7) are mentioned. In this last mentioned equation use of second derivatives 
is essential. Empirically and analytically determined values can be compared as done 
in Table 9. 

Comparison can also be made for the course of the scale factors determined with 
formulas for differentials (Section 5.3) and for differences (Section 5.4). The first 
method requires the use of the matrix Af12, defined in (2.5.10), which is compiled of 
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second derivatives, the second method uses first derivatives only. Comparison is per­
formed best with results obtained in the second cycle. 

12.2 Default algorithm 

The default deck structure of the main program NLV, given in Appendix 1.2, pro­
duces the Gauss-Newton algorithm with step factor optimization. Under control of 
default options the output contains the following main items 

- Numerical analysis of the convergence process in which is involved the calculation 
of the partial cosines; the total cosine; the length of the vector of differential correc­
tions and the length of the normal vector for the first NPART and the first NPAR 
permuted parameters. 
- Numerical analysis of the fitting procedure by means of a list of intermediate and 
final results for parameter values; optimal values of the step factor; reduction of the 
sum of squares to the fitting surface; course of the sum of squares to the tangent 
plane; course of the multiple cosine and the multiple correlation. 
- Numerical information on scale factors. 
- Test on normality of the distribution of residuals (Fisher, 1958) and a 95% confi­
dence interval about the empirical frequency distribution of the residuals according 
to the Kolmogorov-Smirnov statistic (Siegel, 1956). 
- Determination of a linearized 95% confidence interval in the tangent plane about 
the final parameter values. 

The default deck can be modified to be suitable for various algorithms and proce­
dures developed in earlier chapters. 

12.3 Selective ose of main program NLV 

In Table 13 useful modifications are collected. Arguments of the subroutine sub­
programs are omitted unless their use is needed to perform a specific routine. In that 
case adequate values are listed in the arguments by replacement statements, it being 
understood that the right-hand side of the replacement statement has to be inserted 
only. Details on arguments are given in Chapter 13. 
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13 Description 

13.1 Function subprograms 

In this section subroutine subprograms that need updating for every new function 
to be optimized are briefly commented. 

SUBROUTINE INITL 

This subroutine initializes values of variables to produce a correct first fitting cycle. 
Summation fields are set zero, devisors are set 1. 

ENTRY DEFAULT Algorithm and process parameters are defined in this entry. 
The user can redefine the default values in the main program NLV, preferably after 
the CALL DEFAULT statement. 
ENTRY HEADING This entry produces a list of default values and values actually 
used, a list of initial parameter values and bounds to parameters if any. Appropriate 
values have to be defined in the main program NLV. 
*COMDECK XINITL Update deck for specific headings, comments and legends 
to formulas and symbols to be used. 

SUBROUTINE READ (IREADD, IWRITED, LAST1) 

IREADD index to read data. 
:g 0 specific read statements bypassed. 
> 0 data to be read in specific routine. 

IWRITED index to write data. 
= 0 output list of data is not produced. 
# 0 output list of data will be produced. 

LAST1 number of data to be listed if IWRITED # 0. 
= 1, = 2, . . . , = NDATA. 
Last data is listed for any value of LAST1 ̂  NDATA. 

*COMDECK RDDATA Update deck for specific statements to read data. 
*COMDECK WTDATA Update deck for specific statements to write data. 

Observations are stored in the matrix X and the vector YOBS. Working field for 
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observed function values X(I,1) = YOBS(I). If IREADD > 0 the specific routine 
to read and to count data is performed. Two lists of initial parameter values are pro­
duced. The first in the original order of occurrence, the second according to permuta­
tion and grouping as: to be fitted, informative or constants. 

ENTRY NEWZERO Arguments are transformed into the following variables. 

PROC correction in % of the value of the parameter to define step length in alternat­
ing directions according to the parameters. 

IREPT1 number of times to repeat the procedure for each parameter to be fitted. 
IREPT2 number of times the entire procedure is to be repeated. 

An alternating direction method (univariate direct search) is applied. To each param­
eter separately a step length is added as well as subtracted. If the central value has 
not the lowest sum of squares the procedure is extended for at most IREPT1 times 
in the direction of the lowest sum of squares. For all parameters the entire procedure 
is repeated IREPT2 times unless all parameters in order of search have their lowest 
sum of squares at the central value of the last three investigated values. 

SUBROUTINE FNCTN (C,LSTC,SQ,LSTSQ,ISTOP,YCLC,YOC,LISTY,LASTl) 

C parameter values for which the condition function is to be evaluated. 
LSTC index to list values of C. 

= 0 no list is produced. 
# 0 output list will be produced if INK3=3. 

SQ sum of squares. 
LSTSQ index to list observed function values, calculated function values, differences 

between them and SQ. 
^ 0 no list is produced. 
> 0 output list will be produced if INK3=3. 

ISTOP index to return to calling program after function has been evaluated. 
= 1 instant return takes place. 
# 1 no instant return, calculation of multiple cosine and multiple correlation be­
tween X(I,1) and YCLC(I) is performed. 

YCLC calculated function values. 
YOC differences between observed and calculated function values. 
LISTY index to list specific output, output to be programmed by the user. 

^ 0 no list is produced. 
> 0 output list will be produced. 

LAST1 see SUBROUTINE READ. 

* COMDECK NFNCTN Update deck for specific statements for function evalua­
tion. 
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"COMDECK WFNCTN Update deck for specific output list of function values. 

Function values calculated with the parameter vector C(K) are stored in YCLC(I). 
Differences between X(I,1) and YCLC(I) are stored in YOC(I) and their sum of 
squares in SQ. Informative results are the multiple cosine and the multiple correlation 
between the vectors X(I,1) and YCLC(I), which are stored in respectively XCRLMT 
and XCOSMT in COMMON. The sum of the YOC(I) values is calculated and printed 
unless LSTSQ ^ 0. 

SUBROUTINE DFDA (C.H.YCLCYOC.LSTH.LSTFA.LASTl) 

C parameter values for which the first derivatives are to be evaluated. 
H scale factors. 
YCLC calculated function values. 
YOC differences between observed and calculated function values to be stored in 

FA(I,MT). 
LSTH index to produce output list of scale factors. 

^ 0 no list is produced. 
> 0 output list will be produced if INK7=3. 

LSTFA index to produce output list of evaluated first derivatives. 
= 0 no list is produced. 
# 0 output list will be produced if INK7=3. 

LAST1 See SUBROUTINE READ. 

*COMDECK NDFDA Update deck for specific statements for first derivative 
evaluation. 

First derivatives evaluated with the parameter vector C(K) are stored in the matrix 
FA(I,K). The difference vector YOC(I) is stored in FA(I,MT). The square of the 
length of the derivative vectors are stored in FA2(K), the sum of squares in FA2(MT). 
Scale factor values are returned via the argument variable H(K), the square root of 
the sum of squares via H(NT). 

ENTRY ORDER The last argument is only used in a specific case. 

LAST1 if first derivatives are programmed in SUBROUTINE FNCTN define 
LAST1 =99999 

The first NPAR permuted parameters are ordered according decreasing partial 
cosines. Those parameters for which the absolute value of this cosine is greater than 
the mean of the absolute values for K=1,NPAR are selected as NPART to be fitted 
parameters. 
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SUBROUTINE D2FDA(C,SQ,H,YCLC,YOC,LSTD2,LASTl) 

LSTD2 index to produce output list of evaluated second derivatives (first 9 permuted 
parameters at most). 
^ 0 no list is produced. 
> 0 an output list will be produced if INK7=3. 

Other variables have already been defined. 

•COMDECK ND2FDA Update deck for specific statements for second derivative 
evaluation. 

Second derivatives evaluated with the parameter vector C(K) are stored in the 
matrix FAA. The square of the length of the derivative vectors are stored in FAA2(K). 
Scalar products that are elements of the matrix Mt 2 are stored in the matrix FAFAA 
(K,L), those of the matrix N02 in F0FAA(K,L). 

13.2 Gradient subprograms 

In this section subroutine subprograms that need no updating for new functions to 
be optimized are briefly commented. 

SUBROUTINE NRMEQ(YOC,CNORM,LSTNM,ISTOP,H,LSTEQ,KCOS,M02) 

YOC see SUBROUTINE FNCTN. 
CNORM normal. 
LSTNM index to produce output list of the normal. 

= 0 no list is produced. 
¥> 0 output list will be produced if INK7=3. 

ISTOP index for calculation of the normal and sum of squares only. 
# 0 no further calculations are performed. 
= 0 execution proceeds. 

H scale factors. 
LSTEQ index to produce output list of normal equations. 

= 0 no list is produced. 
# 0 output list will be produced if INK7=3. 

KCOS index to calculate the cosine matrix out of the normal equations and the 
normal. 
= 0 no cosines are calculated 
?* 0 cosines will be calculated and printed for first and last cycle only if LSUMRY 
= 1. 

M02 index to use the second derivatives of the condition function to obtain the 
Hessian G = 2(M — W02). 
= 0 no use is made of N02 

# 0 use is made of N02 unless no second derivatives are available. 
/ 
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Normal equations are calculated for the first NPAR permuted parameters. From 
these equations the cosine matrix of the cosines of the angles between FA(I,K) and 
FA(I,L) is calculated and the vector of the partial cosines of the angles between 
FA(I,MT) and FA(I,K). 

SUBROUTINE SOLVE(C,SOLN,NP) 

C parameter values for which the normal equations are to be compiled. 
SOLN solution of differential corrections for NP parameters. 
NP first NP permuted parameters for which the solution of the normal equations is 

stored in SOLN(NP). 

Normal equations are solved by means of the Choleski-algorithm. Partial solutions 
for 1, 1(1)2,..., 1(1)NPAR parameters according to their permutation and grouping 
are stored in the upper triangle of the matrix M. The inverse matrix M~1 (diagonal 
and upper triangle) is stored in the lower triangle of the extended matrix M. For the 
first and last cycle the cosine matrix of M~1 is calculated and printed if LSUMRY 
# 0. The standard deviation of the estimates of the parameters are stored in 
STDEV(K). 

SUBROUTINE HOWA 

This subroutine subprogram investigates how the situation of the fitting procedure 
is at the initial point A for each new cycle. Numerical results are collected, checked 
and printed in the first and last cycle. A summary of solutions of the normal equations 
is produced. Informative results on the relative rate of change of scale factors and the 
curvature are printed. The stopping criterion is tested. The test is performed on 
basis of a cosine criterion COSCRIT. The default value is 1000 which means that 
cosines with three zeros after the decimal point fulfill the criterion. A scheme of the 
complete test is given in Table 14. For NYS2=4Hbb** the fitting procedure is con­
sidered to be terminated and one more cycle is performed by defining NCYCLS= 
NC+1 which leads to NOCLC=NCYCLS in the main program NLV in the next 
cycle. 

Table 14. Variables that save the state of the cosine criterion. Initially four blanks (4Hbbbb) are 
assigned to all no-yes variables. These are changed in the following cases. 

Variable Cosine criterion fulfilled 

no yes 

Partial cosines for to be fitted parameters NYS1 = 4Hbb** NYS2 = 4Hbb** 
Partial cosines for informative parameters NOYES1 = 4Hbb** NOYES2 = 4Hbb** 
Total cosine for to be fitted parameters NYS3 = 4Hbb** NOYES3 = 4Hbb** 
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ENTRY SUMRY This entry is called by main program NLV if NOCLC ^ 
NCYCLS. This condition is fulfilled automatically if NYS2=4Hbb** (see Table 
14). A comprehensive summary of the numerical and statistical results will be pro­
duced (see Appendix 1.4.2). 

ENTRY COMBIN This entry produces a combinatorial search. The minimum 
value of the sum of squares after one cycle for ( ^ R ) to (mÄrr) parameters is 
calculated. The parameter vector is automatically permuted and reduced to the size 
of the best combination before the return to the main program takes place. Combina­
torial search can be performed for the first 14 permuted parameters at most. The 
parameter vector can be permuted and grouped in advance in main program NLV. 

SUBROUTINE MIN(CRCTN,LETLIST,ITAN,START,STEP,ITIMES,LPX, 
JUMP) 

CRCTN vector of direction of search defined in the calling program. 
= CORR for arbitrary direction of search. 
= DELTA for differential corrections. 
= NORMA for steepest descent at A. 

LETLIST index to produce output list. LETLIST options override INK3, INK7 and 
INK8 conditions 
= 0 no list is produced. 
= 1 list of iteration steps (EPS, SQ-relationship) will be produced. 
= 2 list of initital and optimal parameter values will be produced. 
= 3 complete output of the iteration process will be produced. 

ITAN index to define type of tangent to be used. 
= 0 (LETLIST=0 is required). No iteration takes place but a table of the (EPS, 
SQ)-relationship will be produced emanating from EPS=START, with step length 
STEP and number of steps equal to ITIMES ; 
= 1 numerical tangent is used. 
= 2 directional tangent is used. 
= 3 cosine tangent is used. 

START starting value if ITAN=0. 
STEP step length if ITAN=0. 
ITIMES total number of (iteration) steps that will be performed. At least 3 steps are 

done if ITAN > 0. In the last case, however, the iteration stops before the defined 
number is reached when the required accuracy conditions are fulfilled. 

LPX index to define the use of subprogram LIHYPEX. 
JUMP index to define a jump to a second branch of the (EPS,SQ)-relationship. 

= 0 no jump takes place. 
= 1 minimum of a second branch will be used. 

Since the direction of search is completely defined when entering this subroutine 
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the curvature in the direction of search is calculated here. The curvature in the direc­
tion of CRCTN is produced without determination of the minimum by taking 
ITIMES=0. Then the list parameter LETLIST is effective with 0 or 1. The geodesic 
curvature is stored in XGEO. 

SUBROUTINE MSB 

The statements to assign variables valid at B to variables valid at the initial point 
A are collected in this subroutine subprogram. The replacement is for A=B, YCLCA 
=YCLCB, YOCA=YOCB, HA=HB, ANORM=BNORM and SQA=SQB. In­
formation on the course of scale factors from A to B is produced if LSUMRY=2. 

SUBROUTINE LISTING (INDALL) 

INDALL index to reduce information to be listed. 
= 0 listing of partial cosines for each cycle. 
= 50 listing of parameter values obtained in each cycle. 
= 1 complete list of intermediate and final results obtained in each cycle. 

Independent of the value of INDALL a summary of the iteration to a subminimum 
in each cycle is given with respect to number of iterations, optimal step factor, sum 
of squares with respect to the fitting surface and to the tangent plane and lengths of 
NORMAL and DELTA vectors. 

ENTRY PLOT For sequential functions a plot of the curve against time can be pro­
duced on the line printer. An upper (TOP) and lower (BOTTOM) function value have 
to be defined in main program NLV. 

ENTRY PUNCH. Final parameter values are punched or printed, controlled by 
the argument INDALL. 

INDALL=1 final parameter values are punched on punch cards and can be used as 
input in further fitting cycles in main program NLV. 
= 0 final parameter values are printed on the line printer in a convenient layout 
suitable for instant punching on cards. These can be used as input in further fitting 
cycles. 

13.3 Particular subprograms 

In this section subroutine subprograms that need no updating and for which load­
ing is optional are briefly commented. 
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SUBROUTINE BLOCK(NBLOCK,NROTATE,NCYC,CCRTD 

NBLOCK index variable that governs the creation and use of permutation and 
grouping of parameters in blocks. 
= 1,..., = 5 sequential definition of at most 5 blocks. Further arguments equal to 
zero. Default number of blocks NBLOCK=l. In this case the subroutine need not 
be called by main program NLV. 
= 0 blocks are used in order of creation. Fitting procedures start with first BLOCK 
defined. 

NROTATE number of blocks that sequentially will be used. After block number 
NROTATE has been used, the first block will be used again. 

NCYC number of fitting cycles that the same block will at most be used. 
CCRIT cosine criterion with respect to the total cosine. This criterion overrides the 

criterion COSCRIT when blocks are being used. It acts analogous to COSCRIT. If 
the criterion is fulfilled the next cycle starts with the next block, whether or not the 
actual block in execution has already been used during NCYC cycles. If the crite­
rion CCRIT is fulfilled for all blocks defined, execution terminates in a normal way 
in NLV. 

The subroutine subprogram furnishes possibilities to make sequential use of dif­
ferent parameter permutation and grouping. Independent of the values in the argu­
ment, the fitting process terminates in a normal way if for all MPAR parameters the 
cosine criterion is fulfilled. A typical example of the use of blocks is two blocks with 
MPAR parameters among which some are bounded. If a parameter exceeds his bound 
in a certain fitting cycle and has to be deleted from the parameter vector, the remaining 
parameters may fulfill the cosine criterion. As oscillation of parameter values can 
occur, execution of the fitting procedure with the second block will automatically 
test whether the deleted parameter can be improved after all. In the affirmative the 
final result can be a fit for all MPAR parameters again. 

SUBROUTINE BACK(NPZ,LISTZ,JACBZ,ICIRCZ,LAST1Z) 

NPZ number of the first permuted parameters involved in this algorithm. 
A suitable value is NPZ=NPART. 

LISTZ index to produce output list. 
= 0 no list is produced. 
= 1, 2, 3 main results are printed and the value of LISTZ is assigned to LETLIST 
for output from subprogram MIN. 
^ 5 main results are printed without output from subprogram MIN. 

JACBZ index that controls the required metric. 
= 0 tangent space, metric /. 
= 1 observation space, metric JTJ. 
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ICIRCZ index to define the type of algorithm preferred. 
= 0 search according to two linear directions. 
= 1 circular search. 

LAST1Z number of data to be produced in output list. 

The subroutine subprogram is used to apply the back projection algorithm. Auxil­
iary vectors UDELT and VDELT are calculated. Optimization is for both step fac­
tor EPS1 = X and direction of search EPS2 = 2 cos (f> or EPS2 = <j>. 

ENTRY Bl, ENTRY B2 Used to perform two-dimensional circular search. 

SUBROUTINE TRACK(NTYPE,NP,START,NSTEP,KTIMES,NAUT,LIST) 

In this subroutine several procedures are collected that transform the observation 
vector YOBS or that determine the curvature empirically. Procedures are defined by 
the variable NTYPE. 

NTYPE=1 subdivision of the vector YOBS minus YCLCA to perform controlled 
approach. 
= 2 subdivision of the vector YOBS minus YCLCB proceeding in the direction of 
search to perform controlled approach. 
= 3 reflection of the terminal point of YOBS in the tangent plane before the mini­
mum is determined. 
= 4 reflection of the terminal point of YOBS in the terminal point 0<o. 
= 5 empirical determination of curvature of the fitting surface along intermediate 
fitting results by calculation of the distance perpendicular to the final tangent plane 
at 0<o, and the distance perpendicular to the YOCA vector at 0(O. 
= 6 as before, but along the direction given by 0(t) — 0(O) for 10 equal steps. 

Use of further arguments depend on the value of NTYPE. They are listed in Table 
15. 

SUBROUTINE LIHYPEX (LHE,N1,N2,N3,NCRIT,LIST) 

LHE index that defines the type of formula to be used. 
= 1 a fourth degree polynomial is applied. 
= 2 a hyperbolic function is applied. 
= 3 an exponential function is applied. 

N1,N2,N3 cycle numbers from which the results to be extrapolated are taken (Nl< 
<N2<N3). If LHE= 1 a fourth degree polynomial is calculated through the points 
obtained in cycle numbers N1+I*(N2—Nl), where 1=0(1)4. 

NCRIT criterion for the accuracy of the iteration process calculating the constants 
if LHE=3; e.g. NCRIT=3. 
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Table 15. Use of arguments in SUBROUTINE TRACK. 

NTYPE 

1 and 2 

3 through 6 

NP 

number of 
parameters 
used in 
fitting pro­
cedure (e.g. 
NP = 
NPART) 
not used 

START 

starting 
value on 
YOCAO;^ 
START < 
1.0 

not used 

NSTEP 

number of 
parts in 
which the 
remainder 
ofYOCAis 
divided 

not used 

KTTMES 

redefinition 
of number 
of fitting 
cycles (e.g. 
KTÏMES = 

not used 

NAUT 

not 
used 

5) 

= 0fora 
single out­
come only 

LIST 

= 1* 
gives 
list 
= 0 gives 
only 
main 
results 
= 1* 
gives 
list 

= 1 proceeds = 0 gives 
automat­
ically 

only 
main 
results 

* For min (NDATA, 10) a list is printed out of YOBS(I), X(I,1) and YCLCA(D to indicate the rela­
tionship between observed and used vectors. 

LIST index that defines whether an output list of intermediate results will be produced. 
= 0 no list is produced. 
= 1 an output list will be produced. 

The subroutine subprogram produces convergence of parameter values by extrap­
olation. When using this subroutine it is necessary to define in main program NLV the 
value for END greater than 1. 

13.4 Default values 

Values of algorithm and process parameters can be defined in main program NLV. 
Experience learned that several of them can be predefined for normal routines. There­
fore a default value has been assigned to these parameters. A list of parameters arid 
their default values is given in Table 16. 

The contents of tables of optimization results in the output can be chosen by the 
values assigned to the logical unit in formatted write statements. This is governed by 
the indices INK3, INK7 and INK8 which take the value 3 to produce an output list 
and the value 7 to write information onto a scratch file. Pertinent combinations of 
values are given in Table 17. If INKi options are equal to 7, they override output 
options in the argument of the subroutine subprograms, except for SUBROUTINE 
MIN. As the definition of INKi options can occur anywhere in the main program they 
can be used to serve a single subprogram by changing the value of the logical unit 
before the CALL statement and redefining it after use to its default value again. 
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Table 16. Algorithm and process parameters, their function, default value and possible alternative 
values. 

Parameter Function Default Alternative 

NCYCLES 
END 

INK3 
1NK7 
INK8 
LSUMRY 

NDATA 

NOUTRD 

NOUTFN 

NOUTDF 
NOUTD2F 
NOUTFL 

COSCRIT 

EPS 
EPSEST 

EQS 
RN 

RP 
R 

IC(1),..., 
IC(6) 

Number of fitting cycles to be produced at most. 
Number of times that NCYCLES 
cycles have to be repeated. 
Index to define desired output. 
Ibidem. 
Ibidem. 
Index to define desired output. 
= 0 output mainly based on the first part of 

SUBROUTINE HOWA. 
= 1 no restrictions. 
= 2 as = 0 with additional information on scale 

factors and curvature. 
Number of observations to be processed. If not 
defined in NLV, data will be counted in 
SUBROUTINE READ. 
Number of data in output list of SUBROUTINE 
READ, to avoid the production of long tables 
not necessary. If not defined in NLV the value 
of NOUTRD will automatically be equalled to 
min (NDATA, 50). 
Number of data in output list of 
SUBROUTINE FNCTN. 
Ibidem for SUBROUTINE DFD A. 
Ibidem for SUBROUTINE D2FDA. 
Number of data in output list of SUBROUTINE 
HOWA. If not defined in NLV the value of 
NOUTFL will automatically be equalled to 
min (NDATA, 50). 

Variable to define the cosine criterion that is to 
be fulfilled to terminate the fitting procedure. 
Logio (COSCRIT) furnishes number of leading 
zeros after the decimal point at least to be 
obtained. 
Initial step factor along direction of search. 
Step factor approximated by second derivatives 
if available. 
Step factor reduction. 
Fraction of the negative slope that is at least to be 
obtained in a given direction of search to conclude 
that a subminimum of S is reached. 
Ibidem for positive slope. 
Fraction of progress along the chord to assess the 
minimum in a given direction of search. 
R = 1 gives 'Regula Falsi' algorithm. 
Six variables available for additional comments 
to be defined in NLV and printed during 
execution of ENTRY HEADING. 

10 
1 

7 
7 
7 
1 

5HCOUNT 

1 
1 
5HNDATA 

1000. 

2,...,15 
> 1 

3 
3 
3 
0,2 

MAXDAT 

0 (NDATA) g NDATA 

g NDATA 

g NDATA 
g NDATA 
gNDATA 

10.", n > 0 

.001 

.001 

.66666 

.1 

.1 
1. 

10L(BLANK) 

> 0 . 
not used 

> 0 . 
> 0 . 

> 0 . 
.0 < R g 1. 

10 Hollerith 
characters, 
start with 10L 
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Table 16, Continued. 

Parameter 

REC1 
REC2 

N02 

Function 

Two parameters to be used to 
define whether sequential treatment 
should be employed. 
Index to be used to define whether the 
Hessian should be applied. 

Default 

0.0 
0.0 

0 

Alternative 

1.0 
1.0 

1 

Table 17. Values of the logical unit in formatted write statements defined by INKi (i = 3,7 or 8). 

To obtain Process parameter 

INK3 INK7 INK8 

Complete output 3 3 3 
Partial output of main results 3 7 3 
Information about scale factors and curvature only 7 7 3 
Output of intermediate results from special subroutines 7 3 7 
Default output 7 7 7 
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Summary 

Research workers who describe their problems with mathematical formulas in 
which variables and unknown parameters occur, have need for testing their working 
hypothesis with the aid of observations. Since most models consist of functions that 
are nonlinear in the parameters, iterative methods have to be employed to optimize 
the parameter values. The objective function to be minimized is the sum of squares 
of deviations of calculated function values from observed function values (Chapter 1). 

In the present study spaces and surfaces that play a role in least squares techniques 
were investigated. Main spaces to be considered are the observation space and the 
parameter space (Chapter 2). Vectors of calculated function values are position vectors 
to the fitting surface in the observation space. This surface is covered with curvilinear 
coordinates: the parametric curves. Elements of differential geometry were used to 
investigate the role of scale factors and of curvature, both being essential properties 
of curvilinear coordinate systems. Analytical treatment requires the derivation of 
first and second derivatives of condition and objective function with respect to the 
parameters. To generalize the analysis, parameters were expressed as functions in 
which vectors and algorithm parameters occur; condition and objective function con­
sidered to be functions of these algorithm parameters. In many methods a step factor 
that controls the progress in a direction of search is the only algorithm parameter 
that is applied. In this study the derivation of derivatives has been extended to make 
the formulas suit algorithm parameter vectors. The notion of linear and strict para­
meter functions was introduced to particularize general formulas. Formulas for first 
and second derivatives for several functions that play a role in gradient algorithms 
are given. Formulas for the curvature of parametric curves were derived as well as 
those for the curvature of a path in an arbitrary direction of search on the fitting 
surface. For a simple condition function the use of formulas for arc length is given 
to demonstrate that it makes sense to distinguish between three important proper­
ties of nonlinear fitting surfaces : the curvature of the surface, the curvature of the 
parametric curves and the course of the scale factors along a path of search. The 
relationship between parameter, observation and response space is discussed. Geo­
metrical interpretation gives insight in the slow convergence of normally used non­
linear curve fitting methods. This cumulated in the development of procedures that 
accelerate convergence. 

Least squares methods have their own place in nonlinear optimization techniques, 
and algorithms developed for more general situations can be applied. On the other 
hand more specific methods sometimes can be considered valid for least squares prob-
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lems. This for instance when second degree approximation to the fitting surface is 
accurate enough. Techniques that can be applied are briefly commented and main 
features that play a role in nonlinear optimization are discussed (Chapter 3). Gra* 
dient methods with step length optimization in each cycle use first derivatives of the 
condition function. Methods developed in this study make use of the gradient vector 
and the vector of differential corrections. It therefore was assumed that at least first 
derivatives of the condition function are available. Their availability gives the further 
advantage to be able to set stopping criteria based on the fact that it is an orthogonal 
projection of the terminal point of the observation vector on the fitting surface that 
is to be determined. 

Condition functions may have a complicated structure in that they can be implicit 
functions, sequential functions or can consist of models involving alternative func­
tions (Chapter 4). It was treated how a system can be set up with which the condition 
function and the first derivatives can be calculated systematically in these cases. A 
process parameter that governs the type of use of sequential functions was introduced. 
Flowcharts were given that illustrate the general treatment of the mentioned types of 
condition function. The special structure of some of these functions gives complica­
tions when exploring the fitting surface. Along a chosen direction of search jumps 
to additional fitting surfaces can occur and it was explained in which way results have 
to be interpreted in these cases. 

Analysis of the fitting surface and its coordinate system of parametric curves gave 
an indication on the cause of slow convergence. The concept of using scale factors as 
weights to the direction of search was worked out analytically (Chapter 5). Two types 
of weights were introduced using differences and differentials of scale factors respec­
tively. In the second case second derivatives of the condition function must be avail­
able. With an example the acceleration of convergence - expressed as decrease in num­
ber of new directions of search necessary to fulfill default stopping criteria - was dem­
onstrated. A reduction was found from 25 cycles for the modified Gauss-Newton to 
11 cycles for the scale factor differential correction method. Application of differences 
of scale factors has the disadvantage that two points in the direction of search must be 
calculated. However, the first stage of the approach to the final parameter values 
appeared to be faster than with the aid of differentials. 

The deviation of points on the path of search on the fitting surface from the direc­
tion of differential corrections in the tangent plane - caused by the curvature of the 
parametric curves and scale factor variations - was measured by orthogonal projec­
tion of the path of search in the fitting surface, on the tangent plane (Chapter 6). Sin­
ce this concerns the same tangent plane as the one used for the determination of the 
direction of search, this method was called the back projection method. To correct 
deviations from the required direction, the projection of an intermediate point found 
by back projection was reflected in the total tangent vector on the tangent plane. 
Paths found this way may still not be satisfactory because of the properties of the 
fitting surface. Therefore two algorithms were developed to produce in back projec­
tion a two-dimensional linear and nonlinear search respectively, to optimize both the 
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direction of search and the step length. The method appeared to be most effective 
when applied in the tangent space using relationships between parameter vectors 
rather than between vectors in the observation space. For the example chosen, back 
projection gave slightly better results in that less fitting cycles were required than when 
using scale factor corrections. 

Subdivision of the program makes it possible to link subprograms in specific ways. 
To make the program suitable for investigating the condition function as well as 
the convergence process, an analysis was made of the subroutines that occur in gra­
dient methods. Considerations that lead to the subdivision of the program in sub­
routine subprograms are discussed (Chapter 7). It appeared to be useful to divide 
the program into three groups of subprograms: subprograms that need updating for 
each new function to be fitted, subprograms that need no updating and contain the 
essential parts of gradient algorithms and finally subprograms that need not necessari­
ly be loaded since they consist of specific subroutines. The subprograms are linked 
by the main program NLV that can be modified to apply special procedures. Atten­
tion was paid to the problem of how and when to terminate the execution of an opti­
mization algorithm. Stopping criteria based on the geometric interpretation of the 
algorithm were introduced and compared. Although the value of some of these 
criteria - viz. criteria on the total cosine and on partial cosines - converges to zero 
in the optimal point on the fitting surface, this value is not reached by a monotone 
decrease of the absolute values of the cosines, not even when the objective function 
in subsequent fitting cycles is decreasing monotone. It is of importance to recognize 
this behaviour of the process to be able to judge on the basis of intermediate results 
whether or not execution is to be terminated. It appeared to make sense to distinguish 
two types of convergence. Type I was defined as the type for which in subsequent cy­
cles the sum of squares with respect to the fitting surface decreases and, at the same 
time, the sum of squares with respect to the tangent plane increases. Type II was de­
fined as the type for which both sums of squares decrease at the same time. Experience 
learned that Type II convergence indicates that progress will be slow. This was dem­
onstrated with an example where both types occur alternately. 

Condition functions can be given a particular form by choosing particular values 
for one or more of its parameters. The program thus must give the possibility to keep 
constant any of the parameters in order to omit parts of the condition function. In 
the program this is generalized by an option to permute the components of the param­
eter vector and to partition the parameters into three groups (Chapter 8). The 
first group consists of those parameters that have to be fitted, the second group of 
those that need not to be fitted but give additional information and the third group 
of those parameters that are kept constant. This partitioning is achieved by putting 
parameter index cards in the main program NLV in the required order. Permutation 
and partitioning then takes place automatically throughout all subroutines in the 
subprograms. For economic reasons the calculation of normal equations is confined 
to parameters occurring in the first two groups only. 

A central part of the entire optimization process is the determination of the mini-
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mum response in a given direction of search (Chapter 9). The search for such« sub-
minimum can be done by methods using first and second derivatives of the objective 
function. First derivatives are useful in setting efficient stopping criteria, second deriv­
atives can be used to give a prediction of the step factor. With second derivatives 
the geodesic curvature in the direction of search can be determined. From the curva­
ture the radius of curvature can be derived. In the given example fast convergence 
occurs when this radius is large and consequently the curvature of the path of search 
is small. Convergence is slow when the radius of curvature is small. Then the path of 
search deviates appreciably from the path as indicated by the total tangent vector, 
on the tangent plane. Scale factor correction and back projection method were 
developed to correct for this deviation. 

The search for a subminimum can be made more general by introducing nonlinear 
parameter functions. It then is necessary to determine separately the correction to the 
parameters and the direction of search, by differentiating the parameter update for­
mula with respect to the algorithm parameter. This generalization, already applied 
for the back projection method with two dimensional nonlinear search, can also be 
applied to an empirical approach (Chapter 10). Slow convergence sometimes seems 
to justify a linear extrapolation of intermediate parameter values. It appeared to be 
more efficient to extrapolate intermediate results for each parameter separately 
with simple nonlinear functions. With a few preliminary results available, this ex­
trapolation is useful because during the extrapolation procedure no fitting cycles 
need be executed. In the given example it seemed if about 10 cycles were skipped when 
using exponential extrapolation and only 7 further cycles were needed instead of 
the 19 further cycles required for optimization without intermediate extrapolation. 

The only restriction laid upon the intermediate results of the convergence process 
with methods thus far considered is that they be optimal with regard to moves into 
chosen directions. A method was developed where intermediate points were required 
to be the foot of a perpendicular from the terminal point of intermediate observation 
vectors to the fitting surface (Chapter 11). Heavy oscillation on the fitting surface of 
intermediate results thus is avoided, as was illustrated with an example. It also ap­
peared that the curvature properties of the parametric curves are of more importance 
than those of the fitting surface itself. For this reason scale factor correction and back 
projection are efficient methods. The parametric curves that are passed when follow­
ing the path of controlled approach can be sketched. In this way an insight can be 
obtained of the pattern of the parametric curves on the fitting surface. This was illus­
trated with an example. 

For the algorithms and methods developed, a generally applicable computer pro­
gram for nonlinear parameter optimization was written. Since several algorithms are 
programmed for analytical methods as well as difference or empirical methods, their 
results can be used to test the formulas for first and second derivatives (Chapter 12). 
Since difference methods work best in an approximately linear situation, rounded 
calculated function values are used as observation to simulate this situation in the 
neighbourhood of the initial point. When testing of first and second derivative formu-
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las gives a positive result, optimization algorithms can be applied. 
Methods introduced in this study can easily be made operational with the main 

program NLV. The default algorithm of the program is the modified Gauss-Newton 
algorithm. A short description of the subprograms and the use of their arguments is 
given (Chapter 13). The complete text of the program and the instructions to modify 
the main program NLV are given in Appendix 1. 
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Samenvatting 

Een bijdrage tot theorie en praktijk van niet-lineaire parameter-optimalisering 

Bij het leggen van een verband tussen variabele grootheden wordt aan de variabelen 
de voorwaarde van het moeten voldoen aan een mathematische betrekking opgelegd. 
Van een dergelijke betrekking wordt aangenomen dat daarin variabelen en parameters 
voorkomen en dat waarnemingsuitkomsten voor de variabelen kunnen worden inge­
vuld. Aan de parameters wordt de eis opgelegd dat ze een waarde moeten aannemen 
zodanig dat de berekende functiewaarden zo goed mogelijk aan de bijbehorende waar­
nemingen zijn aangepast. De doelstellingsfunctie waarmede de uitdrukking 'zo goed 
mogelijk' operationeel wordt gemaakt is in het hier beschreven onderzoek de som van 
kwadraten van afwijkingen tussen gemeten en berekende functiewaarden - ofwel het 
kwadraat van de lengte van de verschilvector - aangeduid als de respons. Kleinste 
kwadraten-technieken bestaan er uit deze respons te minimaliseren. Aangenomen 
wordt nu dat minstens één van de parameters niet-lineair in de voorwaardefunctie 
voorkomt. In het algemeen zal de aanpassing dan - beginnend met een beginschattmg 
- iteratiefin een aantal ronden moeten plaatsvinden - om de optimale parameterwaar­
den - de eindoplossing - te leren kennen (hoofdstuk 1). 

Eigenschappen van ruimten en oppervlakken die een rol spelen in kleinste kwadra­
ten-technieken werden onderzocht (hoofdstuk 2). De belangrijkste ruimten zijn de 
waarnemingsruimte en de parameterruimte. Vectoren waarvan de kentallen berekende 
waarden van de voorwaardefunctie zijn, zijn plaatsvectoren van het vereffeningsopper-
vlak dat in de waarnemingsruimte ligt. Dit oppervlak bevat een stelsel kromlijnige 
coördinaten: de parameterkrommen. Een baan waarlangs het vereffeningsoppervlak 
kan worden onderzocht - of: waarlangs de respons wordt bepaald - kan worden uit­
gedrukt in deze kromlijnige coördinaten. Met behulp van differentiaalmeetkunde 
werd de invloed van twee essentiële grootheden van kromlijnige coördinaten, de 
kromming en de schaalfactoren, op het convergentieproces onderzocht. Een analy­
tische behandeling van het hier geformuleerde probleem vereist het bepalen van eerste 
en tweede afgeleiden van de voorwaardefunctie en de doelstellingsfunctie naar elk van 
de parameters. Om tot een generalisatie te komen zijn parameters opgevat als functies 
van algorithmeparameters waarin ook vectoren en scalaire grootheden kunnen voor­
komen. Hiermede worden voorwaardefunctie en doelstellingsfunctie beschouwd als 
functies van deze algorithmeparameters. Afgeleiden werden bepaald voor het algeme­
ne geval dat de voorwaardefunctie een functie is van een algorithmevector. Het begrip 
lineaire en strikte parameterfunctie werd ingevoerd om weer tot speciale oplossingen 
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te komen aangezien veel methoden als enige - lineaire - algorithmeparameter een stap-
factor bevatten die de staplengte langs de baan van exploratie bepaalt. Formules voor 
eerste en tweede afgeleiden van functies die een rol spelen bij gradiëntmethoden wer­
den gegeven evenals de formules voor de kromming van parameterkrommen en van de 
geodetische kromming van de baan waarlangs het vereffeningsoppervlak wordt on­
derzocht. Voor een eenvoudige voorwaardefunctie werd een voorbeeld van toepassing 
gegeven van de formules voor het bepalen van booglengten onder meer om aan te 
geven dat het zinvol is drie belangrijke eigenschappen van niet-lineaire oppervlakken 
te onderscheiden : de kromming van het oppervlak, de kromming van de parameter-
krommen en het verloop van de schaalfactoren langs een gekozen baan. Het verband 
tussen de parameter-, waarnemings- en responsruimte werd besproken. 

Kleinste kwadraten-methoden nemen een eigen plaats in in niet-lineaire optimali­
seringstechnieken; methoden ontwikkeld voor meer algemene problemen kunnen ech­
ter worden toegepast. Meer specifieke methoden zoals die welke zijn ontwikkeld voor 
problemen waarbij de te optimaliseren grootheid kwadratisch in de voorwaardefunc­
tie voorkomt, kunnen worden toegepast wanneer een tweedegraads benadering van 
het vereffeningsoppervlak voldoende nauwkeurig is. Van de samenhang tussen optima­
liseringsmethoden werd een kort overzicht gegeven (hoofdstuk 3). Gradiëntmethoden 
maken gebruik van eerste afgeleiden en aangezien in het hier beschreven onderzoek 
gebruik wordt gemaakt van de gradiëntvector en van de differentiaalcorrectievector, 
werd aangenomen dat van voorwaardefuncties in ieder geval eerste afgeleiden beschik­
baar zijn. Hun beschikbaarheid heeft het verdere voordeel dat beëindigingscriteria 
kunnen worden geformuleerd die zijn gebaseerd op het feit dat het de loodrechte 
projectie van het eindpunt van de waarnemingsvector op het vereffeningsoppervlak is 
die moet worden bepaald. De theoretische waarde van het criterium is daarmee bekend. 

Voorwaardefuncties kunnen een gecompliceerde structuur hebben aangezien hier­
onder zowel implicite functies, sequentiële functies als modellen waarin keuzemoge­
lijkheden kunnen voorkomen, worden begrepen (hoofdstuk 4). Er werd aangegeven 
hoe een systeem kan worden opgezet waarmede ook in deze gevallen eerste afgeleiden 
systematisch kunnen worden bepaald en geprogrammeerd. Een procesparameter werd 
ingevoerd waarmede de keuze van het al of niet sequentieel gebruik van sequentiële 
functies kan worden bestuurd. Stroomdiagrammen werden gegeven ten einde de al­
gemene behandeling van de genoemde typen functies te illustreren. Door de bijzon­
dere structuur van sommige van deze functies kunnen complicaties ontstaan bij het 
onderzoek van de bijbehorende vereffeningsoppervlakken. In een gekozen zoekrich­
ting kunnen discontinuïteiten voorkomen die sprongen naar nevenoppervlakken ver­
oorzaken. Er werd uiteengezet hoe in deze gevallen verkregen uitkomsten moeten 
worden geïnterpreteerd. 

De meetkundige interpretatie van de eigenschappen van het vereffeningsoppervlak 
en het daarop gelegen coördinatensysteem geeft een inzicht in de reden van het voor­
komen van langzame convergentie bij niet-lineaire optimalisering. Dit leidde tot het 
ontwikkelen van methoden waarmede de convergentie naar de eindoplossing wordt 
versneld. Het gebruik van schaalfactoren - te weten de lengte van de raaklijnvector 
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aan de parameterkrommen - als wegingsfactoren voor toe te passen correcties op 
beginschattingen voor de parameters werd analytisch uitgewerkt (hoofdstuk 5). Twee 
manieren voor het vaststellen van deze gewichten werden geïntroduceerd, namelijk het 
gebruik van differenties en het gebruik van differentialen van schaalfactoren. In het 
laatste geval moeten tweede afgeleiden van de voorwaardefunctie beschikbaar zijn. De 
met deze methoden te bereiken versnelling in convergentie werd met een voorbeeld 
toegelicht. Voor voorwaardefunctie en gegevens vermeld in appendix 2.3, waarvoor bij 
het gebruik van de Gauss-Newton methode met staplengte-optimalisering 25 volledige 
berekeningsronden nodig waren, waren met gebruik van correcties door middel van 
differentialen van schaalfactoren nog slechts 11 ronden vereist. Het toepassen van dif­
ferenties heeft het nadeel dat eerst ook van een tweede punt op het vereffeningsopper­
vlak de schaalfactoren berekend moeten worden; het voordeel is dat geen tweede afge­
leiden behoeven te worden berekend. Voor het kiezen van een tweede punt werden \ 
algorithmen gegeven waaruit met een voorbeeld bleek dat de gewogen nieuwe correc­
ties het aantal banen benodigd om de eindoplossing te vinden sterk reduceerde, terwijl 
in de beginfase van het optimaliseringsproces een nog sterkere reductie van de kwa­
draatsom van afwijkingen werd bereikt dan met het toepassen van differentialen. 

Wanneer op het vereffeningsoppervlak een baan wordt gevolgd die start in de rich­
ting gegeven door de differentiaalcorrecties berekend in het raakvlak aan het opper­
vlak, dan zullen de punten van deze baan na terugprojecteren op het raakvlak niet op" -
de rechte liggen die opgespannen wordt door de vector gegeven door differentiaal­
correcties. Dit tengevolge van het feit dat op het vereffeningsoppervlak de baan ge­
kromd is door de krommingseigenschappen van de parameterkrommen (hoofdstuk 6). 
Dit feit werd geanalyseerd hetgeen resulteerde in een rekenwijze waarbij de afwijkin­
gen, hanteerbaar gemaakt in het raakvlak door middel van het terugprojecteren, wer­
den gecorrigeerd. Ten einde de methode zo efficiënt mogelijk te maken werden twee 
algorithmen ontwikkeld waarbij tweedimensionale lineaire respectievelijk niet-lineaire 
optimalisering werd toegepast om zowel de staplengte als de zoekrichting zo goed mo­
gelijk vast te stellen. De methode gaf voor het gegeven voorbeeld een versnelling van 
de convergentie die vergelijkbaar is met die welke verkregen werd met de methode 
waarbij schaalfactoren als gewichten werden gebruikt. 

Bij het schrijven van een programma voor niet-lineaire optimaliseringstechnieken 
vallen een aantal subroutines te onderscheiden die tevens kunnen dienen om de eigen­
schappen van de voorwaardefunctie zowel als die van het convergentieproces te on- 'f 
derzoeken (hoofdstuk 7). Overwegingen werden gegeven die leidden tot een indeling 
van het totale programma in subroutine subprogramma's die met behulp van het 
hoofdprogramma NLV al naar de gewenste berekeningswijze op de vereiste wijze, 
kunnen worden gekoppeld. De subprogramma's kunnen in drie groepen worden on­
dergebracht. De eerste groep bestaat uit de subprogramma's die voor elke nieuwe 
voorwaardefunctie moeten worden aangepast omdat daarin de functie en zijn afge­
leiden voorkomen, de tweede groep bestaat uit de subprogramma's die de essentiële 
onderdelen van gradiëntmethoden bevatten en verder geen aanpassing aan nieuwe 
voorwaardefuncties behoeven terwijl tenslotte de derde groep bestaat uit subprogram-
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ma's die geschreven zijn voor speciale algorithmen en procedures en die niet in de com­
puter ingelezen behoeven te worden wanneer deze speciale algorithmen niet worden 
toegepast. Aandacht werd besteed aan het probleem van het beëindigen van het itera­
tieproces. Hierbij werd vooral nadruk gelegd op het gebruik van de cosinus van de 
hoek die de verschilvector maakt met de raaklijnvector aan elk van de parameter-
krommen. Er werd op gewezen dat, hoewel het optimaliseringsproces dusdanig kan 
verlopen dat de kwadraatsom monotoon afneemt, dit niet het geval behoeft te zijn 
voor deze cosinussen. Deze kunnen in absolute waarde zelfs toenemen waarbij toch 
vorderingen worden geboekt in het convergentieproces. Twee typen van convergentie 
werden onderscheiden. Type I werd gedefinieerd als het type waarvoor de kwadraat­
som met betrekking tot het vereffeningsoppervlak afneemt terwijl de kwadraatsom 
met betrekking tot het raakvlak toeneemt. Type II werd gedefinieerd als het type waar­
voor deze beide kwadraatsommen tegelijkertijd afnemen. Uit ervaring bleek dat het 
optreden van Type II een aanwijzing inhoudt dat de convergentie naar de eindoplos­
sing traag zal verlopen. Dit werd met een voorbeeld gedemonstreerd. 

Voorwaardefuncties kunnen een specifieke gedaante worden gegeven door één of 
meer van de parameters constant te houden. Het computerprogramma moet dan de 
mogelijkheid bevatten deze parameters als constante te behandelen. Aangezien dit 
niet noodzakelijkerwijze de laatste parameters behoeven te zijn, dient het programma 
tevens de mogelijkheid te bevatten de kentallen van de parametervector te permuteren. 
Dit is in het programma algemeen gemaakt door een driedeling van de kentallen van 
de parametervector toe te passen (hoofdstuk 8). De eerste groep bestaat dan uit die 
parameters die moeten worden geoptimaliseerd, de tweede groep uit die parameters 
die aanvullende uitkomsten geven over het optimaliseringsproces alsof deze para­
meters daarin opgenomen zijn, de derde groep tenslotte bestaat uit die parameters die 
constant worden gehouden. De permutatie en driedeling wordt bereikt door parame­
terindexkaarten in het hoofdprogramma NLV in de vereiste volgorde te leggen. Per­
mutatie en driedeling komen dan automatisch tot stand in alle subprogramma's. Ten 
einde de berekeningen doelmatig te doen verlopen worden de normaalvergelijkingen 
alleen opgesteld en opgelost voor de parameters uit de eerste twee groepen. 

In het gehele optimaliseringsproces neemt het bepalen van een minimum in de rich­
ting waarin het vereffeningsoppervlak wordt onderzocht een centrale plaats in (hoofd­
stuk 9). Het zoeken naar zulk een subminimum kan worden gedaan met methoden 
waarbij zowel eerste als tweede afgeleiden van de doelstellingsfunctie worden gebruikt. 
Eerste afgeleiden werden gebruikt om de mate van nauwkeurigheid van het verkregen 
resultaat vast te stellen terwijl tweede afgeleiden, indien beschikbaar, kunnen dienen 
om de staplengte in de richting van exploratie vast te stellen. Met tweede afgeleiden 
kan bovendien de geodetische kromming worden bepaald van de baan waarin het ver­
effeningsoppervlak wordt onderzocht. Uit het gegeven voorbeeld valt op te maken 
dat de convergentie snel verloopt wanneer de kromming in het beginpunt gering is 
en de kromtestraal bijgevolg groot, terwijl de convergentie traag verloopt indien de 
geodetische kromming een grote waarde heeft. De methode waarbij gebruik wordt 
gemaakt van gewichten gebaseerd op het verloop van schaalfactoren en de methode 
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waarbij door afwijkingen terug te projecteren in het raakvlak correcties werden aan­
gebracht op de richting waarin het vereffeningsoppervlak wordt onderzocht, werden 
ontwikkeld om juist op deze kromming Ie corrigeren. 

Het bepalen van een subminimum werd gegeneraliseerd om het invoeren van niet-
lineaire parameterfuncties mogelijk te maken. In dit geval moeten de correctie aan te 
brengen aan de parametervector en de richting waarin het vereffeningsoppervlak 
wordt onderzocht afzonderlijk worden berekend, de laatste door de parameterfunctie 
te differentiëren naar de algorithmeparameter. Deze generalisatie werd reeds toegepast 
voor de methode van het terugprojecteren maar kan ook worden gebruikt voor een meer 
empirische benadering van het convergentieproces (hoofdstuk 10). Er werd een reken-
wijze opgesteld waarbij met behulp van reeds verkregen tussenresultaten de nadering 
naar de eindoplossing wordt gesimuleerd door voor elke parameter de tussenresultaten 
te extrapoleren. Voor deze extrapolatie werd zowel een aanpassing aan een vierde-
graads polynomium gebruikt als een aanpassing aan een hyperbolische en aan een 
exponentiële functie. Tijdens het extrapoleren behoeven geen volledige vereffenings-
ronden te worden berekend hetgeen de hoeveelheid uit te voeren rekenwerk gunstig 
beïnvloedt. In het gegeven voorbeeld bleken tijdens de extrapolatie als het ware 10 
ronden te zijn overgeslagen waardoor het eindresultaat na nog slechts 7 verdere ron­
den werd bereikt in plaats van de 19 ronden die nodig waren bij het consequent door­
voeren van de Gauss-Newton algorithme zonder extrapolatie van tussenresultaten. 

De enige restrictie die aan de tussenresultaten tot zover werd opgelegd was dat deze 
ieder in hun eigen richting een optimale deeloplossing moesten vormen. Aan de tussen­
resultaten werd een verdere voorwaarde opgelegd ten einde banen op het vereffenings­
oppervlak te verkrijgen die aan slechts geringe afwijkingen van een rechtstreekse na­
dering naar het eindpunt onderhevig zouden zijn (hoofdstuk 11). Een uitwerking werd 
gegeven voor de eis dat alle tussenresultaten op het vereffeningsoppervlak loodrechte 
projecties zijn van deelpunten van de verschilvector voor de beginschatting. Het bleek 
hierbij dat de krommingseigenschappen van de parameterkrommen een grotere in­
vloed op het verloop van het convergentieproces hebben dan de krommingseigen­
schappen van het vereffeningsoppervlak zelf. De ontwikkelde procedure heeft het 
voordeel dat een inzicht kan worden verkregen in het patroon van de parameterkrom­
men voor de toegepaste voorwaardefunctie en de daarbij gebruikte gegevens. 

De ontwikkelde algorithmen en methoden werden toepasbaar gemaakt in een com­
puterprogramma dat door middel van een hoofdprogramma kan worden bestuurd en 
waarmee de vereiste modificaties kunnen worden gerealiseerd (hoofdstuk 12). Aan­
gezien met het programma een aantal berekeningen zowel met analytische methoden 
kunnen worden uitgevoerd als met differentie en empirische methoden, biedt het pro­
gramma tevens de mogelijkheid om door het vergelijken van beide uitkomsten de pro­
grammering van eerste en tweede afgeleiden te testen. De benodigde modificaties in 
het programma kunnen met het hoofdprogramma NLV tot stand worden gebracht. 

Een korte beschrijving van de subprogramma's en het gebruik van hun argumenten 
is in een afzonderlijk hoofdstuk opgenomen (hoofdstuk 13). Voor de complete tekst van. 
het programma en nadere instructies voor het gebruik zij verwezen naar appendix 1. 
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1 PROGRAMS 1.1 Technical information 

Il THIS PROGRAM IS DEVELOPED BT PH.TK.STOL> HEAO SECTION MATHEMATICS» INSTITUTE 
FOR LAND AND MATER MANAGEMENT RESEARCH* 11 MARIJKEWEGt P.O.BOX 35. WABENINGEN 
THE NETHERLANDS. TEL. 08370 - 1910S, (.AST PRO«AM OPOATE 5 JANUARY 19T5 

»! THE PROGRAH IS WRITTEN IN FORTRAN EXTENDED As DESCRIBED IN CONTROL DATA-S 
FORTRAN EXTENOED REFERENCE MANUAL. PUBLICATION NO 6*176400 <|9TI) REVISION G 
BV CONTROL Q*TA CORPORATION. 215 MOTFETT PARK DRIVE. SUNNYVALE. CALIFORNIA 
9*086. USC IS MADE OF 7-CHARACTER VARIABLES. THE PROGRAM IS PUNCHED IN 026 
HOLLERITH COOC . OUTPUT IS FOR A 136 CHARACTER LINE PRINTER. 

» THE PROGRAM IS RIM ON THE COC-6600 COMPUTER OF CONTROL OATA NEDERLAND. DATA 
SERVICES 0IV1SION* 5 J.C.VAN MARKENLAAN. RIJSWIJK (ZHI . THE NETHERLANDS. BY 
MEANS OF THE MARC-II TERMINAL OF THE TECHNICAL AND SCIENTIFIC COMPUTER CENTER 
OF THE GOVERNMENT SERVICE FOR LAND AND HATER USE. 12 MALIESINOCL. UTRECHT. 

.1 PERFORMANCE OF THE PROGRAM IS UNDER SCOPE 3.3 (355.9 INSTALLED AT 08/08/73). 
AS DESCRIBEO IN CYBERNET SCOPE 3.3 REFERENCE MANUAL BATCH AND REMOTE BATCH 
OPERATING SYSTEM. PUBLICATION NO 86618000 (1973) BY CONTROL DATA CORPORATION 
MBW05F. P.O.BOX 0. MINNEAPOLIS. MINNESOTA 5S**0. 

>> THE PROGRAM IS SPLIT UP IN SEVERAL PARTS. ALL PROGRAM PARTS ARE ON FILES IN 
UPDATE CREATION MODE. THE ALGORITHM ROUTINES ARE FIXED EXCEPT FOR THE DIMEN­
SIONS OF THE SUBSCRIPTED VARIABLES. THE VARIABLE PROGRAH PARTS CONSIST OF THE 
CONOITION FUNCTION AND ITS DERIVATIVES KITH RESPECT TO THE PARAMETERS. 
VARIABLE PROGRAM PARTS ARE USED AS UPDATE COMDECKS. SCOPE 3.3 UPDATE SY5TEM 
PROGRAM IS USED TO MANIPULATE THE LIBRARY TILES TO LINN THE PRO«AM PARTS. 

.1 
ARRAY SIZES ARE DETERMINED WITH THE AID OF THE INTEGERS MENTIONED BELOW 

C-NUHBER USED. ELSE C-l 
P-MPAR 
N>NOATA 
MBMAXVEC 

NUMBER OF DIRECTIVE CONSTANTS IN NEW FUNCTION 
NUMBER OF PARAMETERS IN NEW FUNCTION 
NUMBER OF DATA 
NUMBER OF OBSERVED VARIABLES 
SECOND DERIVATIVES USED 
DEFINE PI»P. Nl-N. 81-B. CP1-CP. IF(T.EB.1H-I 
FROM THESE CALCULATE THE INTEGERS 

THERE ARE NO RESTRICTIONS IN THE PROGRAM WITH RESPECT TO THE NUMBERS C. P. N 
ANO M. HOWEVER. THE TABLEAU OF PARTIAL SOLUTIONS. PRODUCED IN SUBROUTINE 
LISTING (FORMATS 35» 37 ANO 25» AND THE PARAMETER PERMUTATION TABLES PRODUCED 
IN SUBROUTINES INITL «FORMATS 32. 33 AND 341 ANO BLOCK «FORMATS *l ANO *%1 
GIVE A PROPER LAYOUT FOR 30 PARAMETERS AT MOST. COMBINATORIAL SEARCH IS FOR 
THE FIRST 1* PERMUTED PARAMETERS AT MOST - DIMENSION KLAS-14 IN SUBROUTINE 
HOWA USED IN ENTRY COMBIN AND FORMAT 527 - . FORMATS 520. 521 AND 522 ARE 
FOR 30 PARAMETERS AT MOST. 

71 

ARRAY SIZES OF VARIABLE COMMON DIMENSIONS ARE (SEE APPENDIX l.A.I) 
•COMOECK OVAR 

COMMON A<P1.BIPI.HAHB(PI.NAHEIP>.C0RRIPI.DELTA(PI.STDEVIP1 1 
COMMON HA(ai.HBIG).ANORM(OI.BNORMI01.IP(BI.JP<«1 2 
COMMON YCLCA(N>.YCLCB(N1.YOCA(N).YOCB(NI.YOBS(NI 3 
COMMON KFUC(P)tAL8<PI.AUB(Pl.IB(Pl.FA(N<GI.FA2(Bl 4 
COMMON X(N.N1.KA(15.P).XHA(15.P1.XC0SN(1S.P>.IPX<I5.PI 5 
COMMON IPAR(Cl.M(QtQI.XM(O.Bl.FAA(Nl.CPl><FOFAA(Pl.Pl) 6 
COMMON FAFAA(P1.P1I.FFAAMH(P11.FSS(N1I.CURVTOT(P1I.CURV6EO(PI1 7 

ARRAY 
•COMDECK 
•COMDECK 
•COMDECK 
•COMDECK 
•COMDECK 
•COMDECK OIMSOLVE 
•COMDECK OIMHOHA 

•COMDECK DIMM IN 

' SUES OF 
< DIMINITL 
c DIMFNCTN 
( 01MDFDA 
( 01MOZFDA 
( DIM« 

•COMDECK 
•COMDECK 
•COMDECK 
•COMDECK 
•COMDECK 

0IML1ST 
OlMBLOCK 
OIHBACK 
OIMTRACK 
DIHLIPEX 

VARIABLE DIMENSIONS IN SUBPROGRAMS ARE 
DIMENSION ISTAR(P) 
DIMENSION C ( P 1 . Y C L C I N 1 . Y O C I N > 
DIMENSION C(PI.HIO>.VOC(N>.YCLC<N I .ORDEREDIP1.IPERMIP » 
DIMENSION C(P11.FAA21P1>.HIB1I . |L (CP11.YCLC(N11.Y0C(NI I 
DIMENSION H(01.CNORHI01.COSNIBI.YOC(N1 
DIMENSION C (P1 .S0LNIP1 .E (P I . IB (P I .CN(B1 .CDSINF(01 .D tO» 
DIMENSION D (P l .E (P» . I 5TARIP l .FCALC(N l .FOC»NI .TJF5S(P l l 
DIMENSION OCURVE(Pl) 
DIMENSION KS(P11»FKSIN11.FJS(N11.TJFSS(P11.DCURVE(P1» 
DIMENSION CRCTN(P).IBMIP) 
DIMENSION AZA1(P1.T0T21(PI. ITALLY(P1.TVALUE(P1 
DIMENSION IPB(5 .P1 .JPB(S .P I . ISTER(P1 
DIMENSION VOELT(P).UOELTIPI.O<G1.Y6A(NI 
OIMENSION XXA(PI .YCALCINI .Y0IF(N1 
DIMENSION A A ( P I . B B I P I . C C ( P I . D 0 ( P 1 , E E ( P I . 1 T E L ( P 1 

OTHER SUBSCRIPTED VARIABLES HAVE FIXED DIMENSIONS AND NEED NOT BE UPDATED. 

INSTRUCTIONS FOR USE OF VARIABLE AND PARAMETER NAMES WHICH ARE OBLIGATORY 

MAIN PROGRAM NLV 

SUBROUTINE READ 

SUBROUTINE FNCTN 

X ( I . l ) IS WORKING FIELD FOR 
YOBSII) AND CANNOT BE USED. 
WHEN DATA ARE PUNCHED ON K1INDATA 
PUNCH CARDS THE FOLLOWIN« ROUTINE 
CAN BE USED IN •COMDECK RDOATA 
•HERE FINALLY THE ACTUAL NUMBER 
OF DATA NDATA-MININDATA.I-1) 
1-0 

1000 1-1*1 S REAO(2.2l X ( I . 2 I . Y 0 B S ( I 1 
IFU.GT.NDATA1 GO TO 999 
I F I E O F I 2 I I 999.1000 

999 CONTINUE 

2 FORMAT<2F6.0l 
NOATAsI-1 

CALCULATED FUNCTION VALUES 
PARAMETERS TO BE FITTED 
INDEPENDENT OBSERVED VARIABLES 

I I . I - l . N B A T A 
l i l - t . N O A T A 

JX2.HAXVEC 

V C L C U l . I M . N O A T A 
C<KI.K-1.MPAR 
X U . J I . I - l . N B A T A 

J-2.HAXVEC 

SUBROUTINE DFDA 

SUBROUTINE D2FDA 

AND 
FOR WHICH THE INTEGER C IS 
TO BE DEFINED ( I F NOT USED. C - l ) 
FOR IMPLICIT FUNCTIONS X d . 1 1 CAI 
BE USED AS STARTING VALUE FOR 
ITERATION ON VCLCU1 

VALUES OF FIRST DERIVATIVES 

FOR NAMES OF PARAMETERS AND 
VARIABLES SEE SUB FNCTN 
FOR IMPLICIT FUNCTIONS USE 

VALUES OF SECOND DERIVATIVES 

FOR NAMES OF PARAMETERS AND 
VARIABLES SEE SUB FNCTN 
FOR IMPLICIT FUNCTIONS USE 

F A U . K I I . I - l . N D A T A 
K 1 . K 2 KP 
FOR P«MPAR FIRST 
DERIVATIVES 

YCLC4I I . IM .NBATA 

FAAfl.Kll.l-l.NDATA 
Kl.KZ KCP 
FOR CP»P«(P»ll/2 
SECOND DERIVATIVES 

YCLC(II»1*1.NBATA 

THE USE OF FIRST DERIVATIVES OF THE CONDITION FUNCTION IS OBLIGATORY AS THE 
ALGORITHMS IN THE PROGRAM ARE BASED ON THEIR AVAILABILITY. 
THE USE OF SECOND DERIVATIVES OF THE CONDITION FUNCTION IS OPTIONAL. THEIR 
USE THROUGH ALL SUBROUTINES IS GOVERNED MERELY BY THE CALL STATEMENT IN THE 
MAIN PROGRAM NLV. 

I)TOTAL TIME TO READ THE ENTIRE PROGRAM ON A HARC-II READER ABOUT ?S MINUTES 
TOTAL TIME FOR UPDATE ANO COMPILATION IOPT-2.L-0I ABOUT 75 DEC.SYSTEM SECONDS 
TOTAL TIME REQUIRED TO PRODUCE A LIST OF THE MAIN PROGRAM ANO ALL SUBPROGRAMS 
UNDER R-3 OPTION ABOUT 45 MINUTES ON THE MARC-II TERMINAL LINE PRINTER. 

|l PROGRAMS ARE COMPILED UNDER FORTRAN OPT-2 COMPILE MODE. DEFAULT FIELD LENGTH 
FOR LOADING CAN BE TAKEN 76000(OCTI. A REDUCTION OF FIELD LENGTH BY MEANS OF 
A REDUCTION CONTROL CARD WILL BE HONORED FOR MODERATE SIZEO PROBLEMS. 

>> SUBROUTINE SUBPROGRAMS ARE CALLED BY MAIN PROGRAM NLV. INSTRUCTIONS FOR 
APPLICATION ARE GIVEN IN STOL (1975. APPENDIX 1.51 THE DEFAULT ALGORITHM IS 
GAUSS-NEWTON WITH STEP LENGTH OPTIMIZATION. 

11 PARAMETERS PRESENT IN THE CONDITION FUNCTION CAN BE PERMUTED BY PARAMETER 
PERMUTATION CARDS IN THE MAIN PROGRAM NLV. GROUPING OF PARAMETERS IS ACHIEVED 
BY USING THE PARAMETER GROUPING CARDS IN NLV WHICH ARE FOR 

NPART - PARTIAL PARAMETER VECTOR TO OPTIMIZEO. 
NPAR * NUMBER OF PARAMETERS FOR WHICH NORMAL EQUATIONS WILL BE SOLVED. 

INFORMATION ABOUT THE NUMERICAL PROCESS IS OBTAINED . 
HPAR • TOTAL NUMBER OF PARAMETERS THAT OCCUR IN THE CONDITION FUNCTION. 

OUTPUT OF INTERMEDIATE RESULTS CAN BE 0BTA1NE0 BY CHANGING THE DEFAULT VALUES 
OF THE OUTPUT PARAMETERS. THIS CAN BE DONE IN MAIN PROGRAM NLV BY 
CHOOSING INK3«lNK7*INK8-3 AND CHANGING THE OUTPUT VARIABLES IN THE ARGUMENTS 
OF THE SUBROUTINES. UNDER CONTROL OF DEFAULT VALUES THE OUTPUT OF ARRAYS 
WHICH DEPEND ON THE NUMBER OF DATA IS AUTOMATICALLY REOUCEO TO MININOATA.501. 

EXECUTION TERMINATES IN THE FOLLOWING CASES BECAUSE OF AN ERROR) 

SUBROUTINE 1 

SUBROUTINE READ 

SUBROUTINE FNCTN 

SUBROUTINE OFDA 

SUBROUTINE SOLVE 

SUBROUTINE HUWA INFORMATIVE 

SUBROUTINE MlN 

SUBROUTINE I 

SUBROUTINE LIHYPEX 

COMMON STATEMENTS IN MAIN- ANO SUBPROGRAMS 
HAVE DIFFERENT DIMENSIONS OF ARRAYS. OR 
COMMON CARDS OUT OF ORDER. 

NUMBER OF DEGREES OF FREEDOM (NBATA-NPARTl 
LESS THAN ZERO. NUMBER OF DATA INOATA1 MAS TO 
BE CHECKED. 

INITIAL PARAMETER VALUES OUTSIDE BOUNDS. 
DEFINITION OF BOUNDS AND INITIAL PARAMETER 
VALUES IN NLV SHOULD BE CHECKED. 

LENGTH OF VECTOR OF DERIVATIVES ISCALE FAC­
TOR! EBUAL TO ZERO. CHECK FIRST DERIVATIVE 
FORMULAS IN SUB OFDA OR CHOOSE NEW INITIAL 
PARAMETER VALUES IN HAIN PROBRAM NLV. 

ZERO DIAGONAL ELEMENTS OCCUR IN THE MATRIX M 
OF NORMAL EQUATIONS. IT IS ALSO TESTED 
WHETHER ZEROS OCCUR DURING THE NUMERICAL 
REDUCTION IN SOLVING THE NORMAL EOUATIONS. 
MATRIX SINGULAR. PARAMETRIC CURVE DIRECTIONS 
PROBABLY DEPENDENT. SUPERFLUOUS PARAMETERS 
CAN BE PRESENT IN THE CONDITION FUNCTION. 

OPTIMAL STEP LENGTH IS FOUND TO BE ZERO IN 
THREE CONSECUTIVE CYCLES. CORRECTION VECTOR 
PROBABLY ZERO OR ALL PARAMETER VALUES TOO 
CLOSE TO PARAMETER BOUNDS. 
EXECUTION TERMINATES IN MAIN PR06RAM NLV AT 
5T0P 1 (SEE BELOWI. 
OER STOP 1 (SEE BELOWI. 

SUBROUTINE MIN TWO TIMES IN A ROW ENTERED 
WITH STEP FACTOR (EPSI E8UAL TO ZERO. MORE 
MINIMA IN DIRECTION OF SEARCH CAN OCCUR. USE 
A WRITE OPTION IN THE ARGUMENT OF SUB MIN TO 
INVESTIGATE THE (EPS-SQI RELATIONSHIP. 

IN TWO CONSECUTIVE ITERATIONS THE SIGN OF 
THE DIRECTION OF SEARCH CHANGED TO OBTAIN A 
NEGATIVE SLOPE AT EPS-.O. NO INDICATION FOR 
A SPECIAL ERROR. USE WRITE OPTION SEE STOP 60 

THE VALUE OF THE INTEGER ENO THAT DEFINES THE 
NUMBER OF REPETITIONS OF THE TOTAL FITTIN« 
PROCEDURE HAS TO BE GREATER THAN OR EQUAL TO 
2. REDEFINE ENO IN THE MAIN PROBRAM NLV. 

EXECUTION TERMINATES IN A NORMAL WAY IN THE MAIN PROGRAM NLV WHEN THE 
REQUIRED CONVERGENCE CONDITION IS FULFILLED OR WHEN THE DEFINED NUMBER OF 
CYCLES IS PERFORMED. THE ALTERNATIVES AREt 

PROGRAM NLV STOP 1 DEFINEO NUMBER OF CYCLES HAS BEEN PERFORMEB 
(DEFAULT NCYCLES-10. TO BE REPEATED EMD-1 
TIMES1 MAXIMUM NUMBER OF CYCLES THAT CAN BE 
DEFINED IN NLV NCYCLES»15. 

STOP 55 COSINE OF THE ANGLE BETWEEN THE DIRECTION 
OF THE PARAMETRIC CURVES AND THE RESIDUAL 
VECTOR FOR THE FIRST NPART PERMUTED 
PARAMETERS LESS THAN A PRE-OEFINED CRITERION 
(DEFAULT VALUE 0 . 0 0 1 . DEFINEO BY COSCRIT-
1 0 0 0 . 1 . FULFILLED CONVERGENCE CONDITION IS 
CARRIEO OVER THROUGH THE SUBROUTINES BY THE 
STATEMENT NYS2>4H • • . WHICH IS DEFINED IN 
SUBROUTINE HOWA. 

NUMBER OF STOP DEPENDS ON WHICH CONOITION IS FULFILLED F IRST. IN NLV SPECIAL 
PROCEDURES THAT HAVE TO BE CARRIED OUT WITH THE FINAL PARAMETER VALUES CAN 
BE INSERTED BEFORE THE STOP 55 STATEMENT. 

ri 
EXECUTION TERMINATES IN A NORMAL WAY IN 

SUBROUTINE BLOCK EXECUTION TERMINATES IN PROGRAM NLV IF THE 
COSINE CRITERION IN THE ARGUMENT OF SUB BLOCK 
(CCR1T1 IS FULFILLED FOR ALL BLOCKS DEFINE». 

181 
OUTPUT STARTS WITH SUBJECT HEADING PRINTED BELOW THE SECOND JOB SEQUENCE 
NUMBER IF OUTPUT OF PROGRAM TEXT IS SUPPRESSED . 

191 UNDER CONTROL OF DEFAULT VALUES STOP S5 TERMINATION PRODUCES A SUMMARY OF 
NUMERICAL AND STATISTICAL RESULTS OF THE FITTING PROCESS. UNOER STOP 1 
CONTROL THE PROCESS CANNOT BE REGARDED TO BE TERMINATED. HOWEVER. MOST 
PARTS OF THE INFORMATION ABOUT THE FITTING PROCESS IS GIVEN IN THIS CASE TOO. 

201 THIS PR06RAM CONTAINS ALGORITHMS AND METHODS OF WHICH THE UNOCRLYING THEORY 
IS GIVEN IN STOL. PHILIP TH. 1975. A CONTRIBUTION TO THEORY AND PRACTICE OF 
NONLINEAR PARAMETER OPTIMIZATION. PUDOC. WAGENINGEN, THE NETHERLANDS. 
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1.2 Default main program NLV 

OCFAULT DECK NAIN PROGRAM NLV KITH PARAMETER PERMUTATION CAWS fOKA FOUR 
PARAMETER CONDITION FUNCTION. CARDS THAT HAfC TO 8E REPLACCO ARE DENOTES 
•V > IN THE FIRST COLUMN. SEE EXPLANATION IN SECTION J» . 

M 
•••UNMODIFIED DEFAULT DECK FOR NAIN PROGRAM NLV**« 

NPAR> * S MAXVCC" 2 S NAXDAT' 20 S NMO S A U l - C K - I . 17 NLV 
CALL DEFAULT / N02-0 

•NCTCLES>ll/EN0>I/lNK3*T*a>T/LSUNRY>l/N0UTFN(DFi02F>ltRD-FL>N/C0SCRIT*O>/IC><0l 

•REDEFINE DEFAULT VALUES IF DESIRED 

• • • INITIAL VALUESi BOUNDS ANO PERMUTATION OF PARAMETERS * • • 

-INSERT PARAMETER VALUE CARDS FOR ALL HPAR PARAMETERS 
•INSERT PARAMETER BOUNDARY CARDS IF NECESSARV 

BLOCK 1 
K-A 
K"K*1 
K»K»1 
K«K*1 
K"K*1 

S 
S 
S 
s 

IPiM" I 
IPIK1- 2 
IfMKI« 3 
IPIKIa * 

NPART 
NPAR 

JPlIPIKIlaK 
JPIIPIK1IMC 
JPIIP(K)laK 
JP(IP4K>|aK 

HEADING* INITL* READ. NOCLC-1 THROUGH 2 FORMAT 

CALL HEADING 
CALL INITL 
CALL READ (l.l.NOUTROl 
IREP • • 

10 IREP > IREP*I S 13-3 S IFILSUHRV.NE.11 13*7 
NOCLC* I S MRITE(I3*2> MOCLC S 00 S K « 1*«PAR 

5 B<K)-XAtl.K>*AIKI 

2 F O R H A T t l H l * * » » « " " " « S T A R T Of CYCLE NO*l*P • • • * / / ! 

' ALGORITHM STATEMENTS 

NC-0 S NCVCLS-NCYCLES 

CALL FNCTN •A*1*SOA<1*0*YCLCA*VOCA*1(NOUTFN> 
CALL OFDAIAtHA.VCLCA.VOCAfl.l.NOUTDF) 
CALL D2FDAIAtS0A*HA*VCLCAtV0CAtl*N0UTD2F) 
CALL NRMEU1fOCA.ANORN*W0»HAiltl*N02t 
CALL SOLVEIA.OCLTA*NPART> 
CALL HONA 

I F I N O C L C . G E . N C Y C L S I 60 TO 30 S NOCLC-NOCLC*! 
CALL MINtOELTAiQ*!*.»*.0*20*0*0) 
CALL AISB 

IFINC.LT.NCYCLS) 00 TO 2» 

M CONTINUE 
CALL SUHRV*RETURNSI*9I 

IFI IREP .LT. END ) GO TO 10 
CALL PUNCHIOI LIST 
STOP 1 

4« CONTINUE 
STOP 55 
END 

31 
AN EXECUTABLE DEFAULT DCCK IS OBTAINED AS F O U M S . (SEE ALSO APPCNOIX t . l ) 

•INSERT CONOCK OVAR 
INSERT AT THIS PLACE »COMOCCK OVAR (SEE APPENDIX l .<t . l FOR COMPLETE EXAMPLE! 
A COMOCCK WITH THE SAME DIMENSIONS AS USED IN THE SUBPROGRAMS IS OBLIGATORY. 

•INSERT COMOCCK DFIX 
INSERT AT THIS PLACE »CONDECK DFIX (SEE APPENDIX l .A .1 FOR COMPLETE EXAMPLEI 

•REDEFINE DEFAULT VALUES 
IF DESIRED CHANGE DEFAULT VALUES HERE. 

•INSERT PARAMETER VALUES 
INSERT AT THIS PLACE CARDS THAI ASSIGN INITIAL VALUES TO ALL PARAMETERS 
PRESENT IN THE CONDITION FUNCTION. 

•INSERT PARAMETER BOUNDARY VALUES 
BOUNDS ON THE K-TH PARAMETER CAN BE DEFINED BY THE FOLLOWING STATEMENT! 

ALBIKI* - . 9 9 C * M S AUBIKM .99E*99 S NB-MB* 1 S IB(NBI> K 

ONLY THOSE FOR PARAMETERS WITH FINITE 60UNOS NECO BE USED* THE EXAMPLE GIVING 
OCFAULT VALUES. ANY ORDER AND ANY NUMBER FROM 0U1MPAR IS PERMITTED. 
PARAMETER BOUNDARY CARDS NEED NOT BE PERMUTATCD IN CASE THE PARAMETERS ARC. 
PARAMETER VALUES AND BOUNDS THAT DEPEND ON THE MAGNITUDES OP OBSERVED VALUES 
CAN BE DEFINED AFTER OBSERVED VALUES HAVE BEEN RCAO. AN EXAMPLE MOULD READ 

CALL RCAO (1*1*N0UTRDI 
A l l ) «YDBSID*! . 
ALB(ll*Y0ti5(l> S AUBUI* < 
IREP • • 

IF SECOND DERIVATIVES ARC PROGRAMM» AND USED* THE COMPLETE HESSIAN MATRIX 
6 /2 > (N-N02I CAN BE APPLIED BY REDEFINING NG2>1 (OCFAULT M02«G*. 
APART FROM THIS USE OF SECOND DERIVATIVES THE OCFAULT VALUE HG2-» PERMITS 
THE USE OF THE APPROXIMATION OF THE STEP FACTOR AS FOLLOWS 

IFtNOCLC.GE.NCYCLSI GO TO 30 S NOCLC-NOCLC*! 
NX-20 S lFtEPSEST.GT..5*£PS.AND.CPSEST.LT.2.*CPSl NK>3 
CALL HlNIOCLTA*0*l*.G*.0*NX*G*0> 
CALL AISB 
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1.3 Subprograms in UPDATE creation mode 

42 CONTINUE 

•CULL 
•CALL 
'CALL 

REAL N 
INTEGER END 
OlMINITL 
OVAR 

ENTRY DEFAULT 

IF DEFAULT VALUES ARE CHANCED CHECK OUTPUT FORMATS 12.11il6.18 

NOCLC"IREP"NC*NCYCLS«l 

IF(CK.EQ.AU)) GO TO SO 
•RITEO.55) S NRITEI3.56) Ad).CK 1 STOP 10 

> FORMATI///1H »CK.NE.AU). CHECK COMMON COMDECKS ON PROPER ORDER*/) 
i FORMATUH «n( l )*«E14.5« . BUT LAST COMMON VARIABLE ON COHHON CAR 
•0 NO lb CK«AU)««E14.5//1H «STOP 10 ( IN1TL)*) 

• CONTINUE 

00 0 I-ltMPAR 
ALBII I>-.1E*90 

t *uaui*'.iE")o 
N02-0 
NRINSUBU41-0 S NRINSUBC1W 
NCYCLES-10 S END»! t INK3-INK7-INKB-7 I LSUNHY-1 
NOUTRD-NOUTFN*NOUTOF-NOUT02F-NOUTFL>1 t NOATA-5HCOUNT 
NOUTFL-5HNDATA S NOUTRD-0 
COSCRIT'1000. f EPSEST-EPS-.001 S EOS".66666 
R - l . S RN"RP«.1 > RECl"REC2-.0 
00 I I 1-1.6 

1 ICU)*10L 
00 1 1=1,25 

1 CPARU)-.10101 
RETURN 

INITIAL VALUES ARE GENERATED IN THIS PART 

i CONTINUE 
MAXCYCL-0 
DO 6 1-1.25 

l> NRINSUBU>-EXTlHC(I>-0.0 
CPTlME-SECONOIST) S NRINSU8U)-NRINSUBU)*1 
NUMBRU>-EPMINU)>EPSNENU>-.0 
METHO-0 
NT-NPAR.1 
00 3 I-l.MAXVEC 

) BOTTOMU>-TOP(I>-.0 
DO 7 1 * 1 , IS 
X6ETAU>-1. 

r XCOSHT(I>-XCRLNTU>-0.0 
00 ID I-l.HPAR 
X A U . D - A I I I 
KF1XC(II< 

- H B U 1 - 1 . 
'XtJ)-NPART 

DO 10 J-l.NCYCLES 

I XHA(J.II-XALFA(J>-1. 

WRITE I 3,21 NPAR.NPAR.NPART.NDATA 
! FORHAT(/1HO«TOTAL NUMBER OF PARAHETERS HPAR -»14/LH «TOTAL NUMB 
•ER TO BE SOLVEO NPAR -«I4/1H »TOTAL NUMBER TO BE FITTE» NP 
•ART-«I4/1HO«TOTAL NUMBER OF DATA NDATA-»I4//1H «NUMBER OF 
• DATA MILL BE COUNTED IN SUBROUTINE READ IF NDATA-X«/! 

WRITE<3,20> 
I FORMATUH »•••INm XEOO«»«/) 

IF(NPART.GT.O) ÖO TO 119 
URITEI3.Z1) S STOP 11 

, FORMAT I///1H «NPART-0. IMPROVE ORDER OF PARAMETER PERMUTATION CARD 
•S IN MAIN PROGRAM NLV«//lH «STOP 11 U N I T D » ! 

-NRINSUBU)' 
ENTRY HEAOING 
CPTIHE-SECOND(ST) S NR INSUBI I 
ITEXT-1 S GO TO 43 

4 1TEXT-0 
«RITE(3. 12) N C Y C L E S . N 0 A T A , E P S . I C U > , E N ! > . E P S E S T . I C { 2 ) 
WRITE 13.14) NOUTR0.IC(3>,INK3.NOuTFN,EtS«ICI4l.INKT.NOUTDF,IC151 
WRITE 13.16) INKB.NOUT02F,»N.IC(6),NOUTFL.RP 
WRITE I 3. 18) LSUNRY.REC1»C0SC«IT.R.REC2 
NOT-3HNOT 
W.RITEI3.29) N02 S IF(NOZ.EB.O) WRITE<3.27> NOT 

9 FORMATUH*e5X*MATRlX N0e«5X*USEO«5X«(N02- 0 / » I2# )») 
T FORHATC1H* 96X,A3I 

2 FORMAT( //1H127X»VALUES OF SYSTEM PARAMETERS OEFAULT / USEO 
• IN THIS J0B«/1H 135<«-«>// lH «NCYCLES-10 /«14,9x«NDATA -5HC0UNT 
• /#I4.16X«EPS • .001 / *F10.6.9X*ICU)-10LIBLANK) /«2XA10/1H 
•»ENO = 1 /#I4.T66»EPSEST- .001 /»F10.6.9X«IC<2)-10L»9X«/«2X 
-AIO) 

4 FORMATUH T2B«NOUTRD -OINOATA) /« I4T 10I#IC 131 -10L«9X«/»2XA10/1H «I 
•NK3 * 7 /«I4,9x«N0UTFN - 1 /»14,16X.«€tS - .66*66 /»F10 
•.6,9X«IC(4)-10L*9X»/»2XA10 /1H «INKT - 7 /#I4,9X»NOUTDr a 1 
• /#I4,51X»IC<S)-10L»9X»/»2XA10> 

6 FORMATUH «INKS « 7 /»I4,9X*N0UTD2F- 1 /#14,16X»RN - . 
•1 /»F10.6,9X»IC(6>-10L»9X#/»2XA10/IH T280NOUTFL -5HNDATA /*I4 
••16X*RP « .1 /«F10.6) 

B FORMATUH «LSUMRY » 1 /«I4,T101*REC1 - 0.0 /»FIO.l/lH T28 
•»COSCRIT- 1000. /«E10.4,10X«R »1. /->F10-6,9X*REC2 • 0 
•.0 /»F10.1/1H 135<#-#)//lH0«IF NOATt - X DATA «ILL BE» # 
• COUNTED IN REA0«/1H «IF NOUTR0- 0 NOUTRO WILL AUTOMATICALLY BE 
•EQUALLED TO MININOATA.50>«/1H »IF NOUTFL- X NOUTFL «ILL AUTOMATI 
•CALLY BE EQUALLED TO MINCNDATA.50I«) 

IFINB.EO.0) WRITEI3.13) 

I FORMAT1//1H «NO BOUNOS HAVE BEEN OEFINED BEFORE CALL MEAOIN«*/) 
IFINB.EO.0) 60 TO 22 
WRITE(3,1T> 

' FORMAT1//1H « I«6X«NAHE«10X*LOMER B0UND«6X«STARTlN6 VALU£«5X«UPPER 
> BOUND*/1« 691* *» ) / ) 

00 19 1-l.MPAR 
WRITE 13.23) I .NAME<!),*(I> 
lF tAL8( l ) .GT. - . lE*90> HRITE<3.24> ALB 11 > 
IFIAUBU).LT.* .1E*90> WRITE<3.25> AUB111 

> CONTINUE 
I FORHATIlH I2,4K.A10,22X.E13.S> 
, F0ftMATUH*lBX.E15.5,« -«> 
i FORMATIIH'SIX,» - »E l * . 5 ) 
! CONTINUE 

IF<NRlNSUBU4>.EO.0> GO TO 40 

CALL BLOCKU0,0,0,,O> 

GO TO 42 
I WRITEI3.i l ) 
1 FORMAT(/1H 

WHEN-DATECTAUI 
HRITE13.S0) S 

50 FORMAT(1H11 
51 FORMATUH T9»SUBJECT«T45»DATE»T60*T1ME*T71»CP-SEC»TSS»USEO FOR»/) 
52 FORMATUH «NONLINEAR PARAMETER OPTIMIZATION«) 

WRITEI3.53) TAU),TAI2).TA<3) 
53 FORMATUH*40X.AIO.SX.A10.F10.3* COMPILATION/LOAOINW#> 

WRITEI3.100) f WRITEI3U03) IC S WRITEI3.101) S WRITEI3.102) 
103 FORMAT I/IH »••••«64X«»**«/1H **«*4X6(A10>4X»*»»/1H M ' " * U X M « < 

43 CONTINUE 
1FIITEXT.EO.0) GO TO 130 
WRITE (3, 197)-.WRITE! 3,198) SWRITE 13,1 
•RI TE 13.198(»WRITE 13.198)»WRITE(3.1 

1ST FORMATI///1" 9X68(«S»>) 
198 FORMATUH 9X«1»66X»SK) 
199 FORMATUH 9X6B (»S* )///) 
196 FORMATUH 9X#»«66X»»»/1H 9X»»«»5X# 

• FUNCTION. IF ANY «4x<»»n« /JH < 
CONTROL PARAMETERS USE» IN 

... 
•CALL 

... 
IN1TL 

HEADINGS. USE LABELS 200 T/M 300 

PROCEED WITH SUBROUTINE 

IISTAI 

130 CONTINUE 
IFUTEXT.EO.lt GO TO AA 
WRITE I 3.34) (1,1*1.NPAR) 1 WRITE(3.32) I IP I I I ,1 -1 .NPAR) 

34 FORMAT (/1H «PERMUTATION OF THE FIRST NPAR PARAHETERS«/1H0* K-«30I4 

32 FORMATUH 
DO 119 I=l< 

119 ISTARU)=4> 
WRITE(3.33) 

33 FORMATUH * 
118 CPTIHE=SECOND(FS> 

RETURN 
END 

REAL M 
•CALL NDIMRD 
•CALL OVAR 

. I ' l .NPART) 

; EXTIMEUI 

CPTIHE"SECOND(ST) S NRINSUB(2)«NRINSU8{2)< 
IF(NDATA.EO.SHCOUNT) NDATA-9999999 
ISTAR-1H» 
WRITE(3.30) 

30 FORMATUHl»««XEO READ«»»/) 
l FUREAODH0. l0 . i l 

11 CONTINUE 

) DATA TO YOBS M 

> . . . 
•CALL RDOATA 

X(l.l) IS WORKING FIELD FOR YOBSU) 
LABELS 300 T/M 400 * 

PROCEED WITH SUBROUTINE 

I NHELP"N( 
IFlf UTFL 

"(NOUTRD 
'(NOUTRU. 

IFINOATA.GE.NPAR' 
•RITEI3.2. 

21 FORMAT I 

1 CONTINUE 
Do 12 I-l.NOATA 

12 XU.ll-YOaSU) 

IF(NDATA.GT.50) NHELP-50 
E0.5HNOATA) NOUTFL-NOATA 
EO.0) NOUTRO-NHELP 
EO.0) NOUTR0-NDATA 

i 1 S NDF'NDATA-NPART 
NDATA.NPART.NOF I STOP 20 

H «NUMBER OF DEGREES OF FREEDOM < 0, NDATA-«IS» NPART 
.=«IS//lH «STOP 20 (REA01«) 

1 SUBROUTINE 

13 CONTINUE 

WRITEC3.44) 1 WRITEI3.40) 
44 F0RMAT(///1H « ,««l («-a)«*«9X«*«54(«-«)«>«) 
40 FORMATUH 4X» INITIAL VALUES PARAMETERS AND NAME«32X»PERMUTED« 

•12X»NAME*/1H 70X«ANO PARTIAL ( • )«/> 
WRITE I 3.4) t WRITE 13.41 ) 11 .XAU , I ) .NAME 111 • I , I P U I >XA ( 1 , IP< I ) I 

• ISTAR,NAHE UP U ) ) , IP U > , 1*1,NPART) 
4 FORMATUH 54X«T0 BE FITTEO«/) 

41 FORMATUH I3.ZX.E14.5.6X.A10.16, I22,E18.S,2X,A2,5X.A10,16) 
NPART1-NPARTU I IFINPART1 .GT .NPAR) GO TO 5 
WRITE 13,6) I WRITE 13,431 I I . XA 11.1} .NAME 11) • I . IP( 11 . X A U , I P U I ] 

• NAME UP I 1 ) ) . IP ( I ) . I-NPART1 .NPAR) 
43 FORMATUH I3 ,E16 .5 ,6X,A10, I6 , I22 .E18 .5 ,9X,A10t I6 ) 

6 FORMATUHOS5K»1NFORMATIVE»/I 
5 IFINT.GT.MPAR) GO TO 7 

• RITE (3.8) 1 WRITE 13,43) II. XAU, II .NAME 111 , I . IP( 11 .XA U , IP( I ) I 
• NAMEUPU) ).1P(I) .I-NT.MPARI 

8 FORMATUH0S6X«CONSTANTS«/) 
T WRITEI3.45» S WRITE<3,42) 

45 FORMATUH «'«41 (»-») #*«9X#**S4 («-») #•«) 
42 F0RMAT(//1H0«»»»READ XEtO"«««/) 

WRITE(3.S0) 
50 F0RMATUH,*3{»««)9X56(«»«)) 

CPTIME»SECONO<FS) S EXTIHE12)-EXTIME(2>*FS-ST 
RETURN 

ENTRY NEWZERO 

DIRECT ll> HVARIATE) SEARCH 

PROC-IREADD S IREPTl-IWRITEO t IREPT2-LAST1 

) BLOCKS HAVE BEEN DEFINED«/) 
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DETERMINATION OF BIK» SV PROPORTIONAL IMPROVEMENTS TO A «Kt 

NPRaNPAR S NPARal S EPSZaEPS 
DO «0 K'ltMPAR 

60 B(Kl>XAft<K)*A(Kt ' 

CALL FNCTN1B*0.SOl*0fl<YCLCA»VOCAfé*01 

DO 61 K"1.NPART S IKMP(K) 
61 CORR(lK>-A(JKt*PROC/l«0. 

URITEOtTB) PR0C.lREPTl*IREPt2*PR0C*S01 

78 F0RNATI//1H8*APPL1CAU0N OF RELATIVE CORRECTIONS IN DIRECT (UNIVAft 
•IATEt SEARCH BT NEUZEROIO/0 OF PAP,STEPS FOR HPART.MO OF ROUNDS)* 
•/IN T6XF8.1tI12*I14//1H04X*K IP*6X»NAME*6X*READV*4X»B»ax»FAC70R» 
•3X*STEPa*F4.0* 0/0 OF A*5X*B MIN A*8X»S8B*I0X*START MITH SOA>* 
•E12.5/I 

DO 6S IR2a|.IREPT2 S KXZ»0 S IR2W-IR2 

S CNTR-2. S IK*IPtKI 

REPEAT PROCEDURE AT HOST IREPT1 TIMES FOR EACH PARAMETER 

00 63 IR1M*IREPT1 
DO 66 KX>KXF*KXL 
EPSsFLOAT(KX t-CNTR 
8(IK)>AIIKI»EPS'CORR <IK) 
1F<8IIK).LE.ALBUK>> 60 TO 67 
IF IBt IK) .LT.AUBI IK) l 60 TO 62 

67 SBMlNfKX*tO>aO.99999£*90 S «0 TO 66 

62 CALL FNCTme.«.SOMINIKX*10).0.1»VCLCA.YOCA,0,OI 

66 CONTINUE 

5N*AHlNllS0MIN(ll>tS8NIN(l2l>S«MINI13ll 

00 68 KX>1*3 
IF(SM.EO.SQNIN(KX*10>> 00 TO 52 

68 CONTINUE 

i PROCEED KITH EQUAL STEPS* 

52 1FIIR1.E0.1REPT1) 60 TO 55 
IF IKX.NE. l l 00 TO S3 
5GNIN(13>aS0MIN(12> S SOMINOZI-SOMINUI) 
KXF>KXL*1 S CNTR*CNTR*1. 
GO TO 63 

53 1FIKX.NE.*3) 00 TO 55 
$0NIN(UI>SONINU2) S 5tMINI12>»S0nlNU3) 
KXF>KXL>3 S CNTR*CNTR-1. 

63 CONTINUE 

IF KX-2 THEN PARAMETER ENCLOSED AND REAOV 

55 KX2H-2H f IF(KX.Et.Z) KX2«KI2*1 S IFtKX.EO.2) KX2M"ZH** 

DELTA USED AS AUXILLIART FIELD FOR SONIN OUTPUT 

0ELTA4KlsSQMINIKX*10l 
K22*0 S KN»K 
EPS-FLOAT IKX)-CNTR 
B(IK)>AUK)*EPS*CORRfIK) 

69 BMlNAa8<IK>-XA(l*IK> 
EPSALL-BHINAyCORRUK) 
IF(J3.E0*3.0R.IR2.E0.IREPT2> 

•MITEt3>73>KN»IK»NAMEIIKt*KX2N*StIK)tEPSALL»CORR<IK>tBMINAi 
•DELTA(KNI 

73 FORMAT 11H 2I5t3X*A10t*>X(A2*E12<S*F8.1(E16.5*E17.5*E13.5) 
AI IK)aBl lK) 
1FIK.LT.NPART) 00 TO 66 
1FIKN.LT.NPART) 60 TO 71 
Sa2>SBMINIKX*10> S S*PR0C-S62*l«t./S01 S 501*502 
MRITEOtBZ) IR2.SQ2 

• 2 FORMATUH*lMx*ENO OF ROUND*I3* a#E12.5/> 
71 IF|KX2.NE*NPART) «0 TO 6* 

J3*3 S KN-«2»K22*I 
IF(K22.*t.NPARTI «0 TO 66 
1K>IPM22) S «0 TO 6 * 

• • V C > F ( X U . 2 ) * . . . t C t l > < . . . ) MHCRC YCLCUMVC 

• • • • AUXILIARY VARIABLES T*üVv*M*Q*D*E(F 
• • • • • LABELS 200 T/H 1080 

•CALL NFNCTN 

> • • PROCEED WITH SUBROUTINE 

LASTOAT»H|NO(LAST 1.MOATAI 
NOUTFN-MINO(NOUTFM.MDATA) 
NOUTDF-MINOINOUTDF.MDATAI 
NOUTD2F'NIN0<N0UTO2F>NDATA) 
NOUTFL*MIN0(NOUTFL.NDATA) 

C 
C VARIABLE METHD USEO IN SUB TRACK \ 
C 

IF IMETHO.EQ.10001 GO TO 30 
DO «1 I-l.NOATA 
VO-XI I .1) % VC-YCLCIII S P«VO-VC 
S0"S0*P»2 

c 
voctn-p 
lF(ISTOP.EO.l) GO TO 41 
GYO»GVO»YO S GYC"GYC»VC 
YO2»*O2*Y0«2 S YC2»VC2*YC»»2 S VOYC"Y0YC*Y0»YC 

41 CONTINUE 
IFfNOCLC.EQ.ll S0HIN(1)>S0 
KVO"Y02 S XYCBYC2 
1FII5T0P.E0.1) GO TO 30 

C 
FOATA'NDATA 
V0CaSORTIVO2*VC2) 
CO$MT>V0YC/VOC 
6Y0»6Y0/FDATA 
GYC>GVC/FDATA 
Y02>Y02-GY0*6YO*FDATA 
YC2«YC2-GYCtGYC»FDATA 
Y0YCaV0VC-GYO*GYC*FDATA 
Y02aS0RTfVD2) 
YC2BS0RTIYC2I 
RHLTBYOVC/Y02/VC2 
KCOSMTINOCLCIaCOSMT S XCRLMT(NOCLC)«RMLT 

1F(1NK3.E0.7) GO TO 30 
IF(LSTC.EO.O) GO TO 10 
>R1TE(1NK3.110> 

110 FORNATUM0*»«XEO FNCTN»«*V> 
*RlTEIlNK3tl l6> 

116 FORMATUH a K *8X*S<K)*BK*NAHEIK)*/> 
DO IS lal.MPAR > I l a l P ( I ) 

15 WtlTEUNK3*115) I I *C ( I I ) *NAME( I I1 
115 FORMAT UM I3*2X*E15.6*4X*A10> 

10 IF(LSTSB)20*20*21 
21 HRITEIINK3*112> < I$*J$* l t85) 

112 F0RMAT<//1M 8SA1I 
MRITE<INK3*U1» XBETAIEM» 

111 FORMATtlH027x»BETHAa*F9.5/lH0* I*10X*YOBS*12X*X1>Y USEOPlBXWCAL 
•C*12X*Xl-VCALC#18X»I*/> 
LAStDAT>MINO(LASTl»NDATAI 
1FILASTDAT.EO.0I GO TO 118 
*RITE<INK3t29l < I *V0BSI1 ) tX I l * l ) *VCLC( I ) *VOCI l l ( I * l 

29 FORMAT UM I4*4E1B.6»19> 
118 SOM-.O 

00 120 1*1*NDATA 
120 SOM>SON*TOC(II 

WRITE UMK3.113) SOM.NOATA 
113 FORMAT1/1H 58X»SUNa»E14.6*I9) 

WRITE<INK3*117) ( IS.JSal.BS) 
117 FORMATt/lHOSSAl//) 
20 1FCL1STYI30.30.31 
31 CONTINUE 

•RITE CALCULATED FUNCTION VALUES la l .LASTl 11 
LABELS 2080 T/M 3086 • 1 
NEXT TABLE 15 BUILT IN* IN ROUTINE • 1 
I T M S I I I X ( I . l ) VCLC(I) VOCUI I * talMNUTFL « 1 . 
14 £16.6 E18.6 E1B.6 E18.6 I * • 1] 
WITHOUT SPECIAL OUTPUT NTNCTN.2 REAM -CONTINUE- • 1) 

•CALL HFNCTN 

PROCEED WITH SUBROUTINE 

7* CONTINUE 
NPARaNPR S EPS-EPSZ S 
IF(NPART.LT.HPAR) WRITE(3.81> 

• 1 FORMATC1H »NOT USED«/) 
NPRTl-MPART»! 

IFtNPAIIT.LT.NPAR) *RITE(3tS9> IKtIP(N)*NANEIIPIK)) tAIIPIK)>«KaNPRTl 
•(NPAR) 

59 FORMAT(1H 2I5*3X*A18*6X*E12.$) 
HRITEC3.56I IREPT2.IREPT1.IR2H.NPART.KX2 

S8 FORMAT ( / / I M »REPEAT PROCEDURE»»» TIHES»1ZX*R£PCTITI0H3 PER PARAM 
•ETER AT MOST*It* TINCSP/1H 5X*ACTIML DONE*16* TIMES»//1« »NUMBER 
• OF PARAMETERS*I4/1H 18X*R£A0V*19* M*10X»TRANSPORT FROM B TO A AL 
•READY PROCESSED AUTOMATICALLY*) 

END 
•DCCK FNCTM 

SUBROUTINE FNCTNtCtLSTC* S8*LSTS0*IST0P>VCLC.T0C*LISTY*LAST1) 
C 

REAL M S INTEGER END 
•CALL DIHFNCTN 
•CALL NOINFN 
•CALL OVAR 
•CALL OFIX 

MITEtINKT.114) 
1 1 * FORMAT(1H8****FNCTN XED**D»** /> 
30 CPTINE «SECOND(FS) t EXTIMEI3l>EXTlNEOI*F$-$T 

RETURN 
END 

•DECK DFDA 
SUBROUTINE DFDAtCiHtYCLC*VOC*LSTH*LSTFA»LASTl) 

C 
REAL M 

•CALL DIMOFDA 
•CALL NDIMDF 
•CALL OVAR 
•CALL OFIX 
C 

* CPTlNE-SECONDISTI S N R I N S U B < 4 ) B M R I N S U B < 4 ) * 1 
NT>MPAR*1 S DO 30 JaltMT 

30 FA2<J)a.0 

NRINSUBOl-NRlNSUBO)*! CPT1ME-S£C0N0<ST 
IS-1H-
Sa>«YOa«YC>Y02>VC2>YOVC>.a 

CHECK ON BOUNDS ON PARAMETER-VALUES 

IFtNOCLC.GT.il GO TO S 
IFtNB.EQ.O) 60 TO S 
ISTOPMO 
DO 1 1*1*NB 
K-IBtl) 
IF(CIK).«E.ALeiK).AND.AU»(K).8C.CIKl)«« TO 1 
WIITEI3*«) NOCLC 

4 FORMAT (/1H UXPIN1TIAL PARAMETER OUTSIDE BOUNDS IN CYCLE» 13//1M 
•»STOP 38 (FNCTN»*///IM 24X6X*L0*ER#17X*UPPER»/I 
WRITE(3.3) K*C1K)»ALB(KI*AUBIKltKtCIK) 

3 FORMATUH *A(*I2#>*»Et2.5.10XE12.S*18XElZ*Stl6X#A<*I2*>*PE12.5l 
ISTOPBal 

1 CONTINUE 
IFUSTOPB.EO.11 STOP 38 

5 CONTINUE 

...FAU.KMPAR) MITH XtltZt., 

PROCEED MITH SUBROUTINE 

DO 42 I*1*NDATA 
FAII*NT)>YDC(I) 
FA2IHTI-rA2(MT)*FAtI*NT)**2 
DO 42 Jal.NPAR 

42 FA2 (J laFA2(J I *FA( I . J I «2 
DO 31 J*1.NPAR 

31 MIJIa50JIT(FA2(JI) 

CHECK ALL SCALE FACTORS ON VALUES GREATER THAN 2EM 

lFINOCLC.OT.l.OR.IREP.aT.1) GO TO 61 
KZERO*0 
NSTOPaO 
00 48 K-l.NPAR 
IF IH IK I .EO. .0 I GO TO 43 
GO TO 40 
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«RITE!INKT.50) 

O KZERO-KZEM*! 
IFlK.LE.NPMTI NSTOP-1 
IFIKZCR0.C0.il M I T E » * * * ) 

44 FORMAT l//lW#«»«rOLLOMING SCALE FACTORS ARC rOUNO TO K ZER0#/1H « 
•PARAMETERS PRODUCING IT SHOUIO NOT OCCUR BEFORE NPAR PERMUTATION 0 
•PTION IN MAIN PROGRAM NLV • • • # / l H 99X#••••»/!HO«CHECK FORMULAS OF 
• FIRST DERIVATIVES*/) 

HRITCI3.45I IP IKI t NAHEUPtKD.HtK) 
«5 FORMATClH » • • • AI #13* I . «AlOt« >*E14.8> 

1FIK.LC.NPMT) MRITEI3.4T1 
47 F0RMAT(1H»TSXM»«I 
40 CONTINUE 

IF(KZERO.NC.Q> URITE(3t46> 
46 FORMAT</IH 49I#M>) 

IF INSTOP.EO.0) 60 TO 49 
•RITE<3.48> 

46 FORMATC1H*60X*STOP. BECAUSE •** EVEN OCCURS BEFORE NPART»2TX«»" 
•*/IH 99X5(#*«>///1H «STOP 40 CDFDA>«I 

STOP 40 
49 HRIT£t3.5B> 
58 FORMATI///I 
41 CONTINUE 

HINT)asORT<FA2IMT>> 
IFINOCLC.GT.l.AND.LASTI.NE.-ll «0 TO 12 
00 33 J«I.NPAR 

33 XHAINOCLC.IPUH-HCJ) 
32 CONTINUE 

irtLSTFA.EQ.O) CO TO 10 S IF(INKT.EB.T) 00 TO 20 
HRITE(INKTtl21 

12 FORMATtlH0****KEO DFDA»««I 
NFST-1 S N8-8 

ST NLST-NPAR 
IFINPAR.GT.NB> NLST-NB 
WRITE(INKT.52) I IP(lt. lBNFST.NLST) 

52 FORMAT</lH01lX«DrDACOI«TX*DFOAC«I2«)«I9i 
WRITEUNKT.51) tNAMCUPCln.l-NFSTtNLST) 

51 FORMATClH 19X.Sl4XiA10>> 83 
50 FORMAT(1H 1 B4 

00 5(i I-1.LAST1 85 
56 WRITECINKT.S3> l.FACI,NTI.CFACI•J).J-NFST.NLSTI 86 
53 FORMAT«1H I3 .2X.9E14.5I 8T 
IS IFILSTMI20.20.21 B8 
21 WRITEIINKTtl3> 89 
13 FORNAT(V1H023I#SUM OF SBUARES ANO LENOTHS OF VECTORS«! 90 

WRITE(INKT.S2) CIPC1I.I-NFST.NLSTI 91 
HRITC1INKT.54) 92 

54 FORMAT C1H»« NT#/I 93 
WRITECINK 7.53>NT>FA2CHT J.CFA2CJI.J-NFST.NLSTI 94 
HRITECINKT.S3I NT.MCNTI.CHIJI.J-NFST.NLSTI 95 
IF<NPAR.LE.NBI GO TO 14 96 
NFST-NFST<8 S NB-N8*« S 60 TO 57 97 

14 WRITECINK7.55I 98 
55 FORMAT tlH0#»«»DFOA XEOMD"* * / ) 99 
20 CPT1NE-SEC0N0CFSI S EXTIME(4)«EXT INE(»I»PS-ST 100 

101 
RETURN 102 

103 
104 

ENTRY OROER 10S 
IFCNOCLC.E0.lt HRITEC3.9) 106 

9 FORMAT I/1H « • • • MEt ENTRY ORDER IN SUB OFOA « » « / / 1 H « FIRST 107 
•NPAR PARAMETERS PERMUTED ACCORDING DECREASING COSINES»/ 1H 1LX«-- 108 
• « / / IH «THOSE -GT. MEAN OF ABSICOSI ARE SELECTED AS NPART« 109 
• /1H 45X« * /> 110 
COSMEAN-.O 111 
90 1 K-l.NPAR 112 
JP(K)-IPCK) 113 
COSZERO-.O 1)4 
DO 2 I=1,NDATA 115 

2 C0SZERO-COSZER0*FACI.KI*FACI.NT) 116 
C0SZERO-COSZER0/HCK)/SORTCSBA> 117 
ORDERED CK >-COSZERO 11B 

1 COSMEAN-COSMEAN'ABSCCOSZERO) 119 
COSHEAN-COSMEAN/FLOATCNPAR) 120 
DO 60 K-l.NPAR 121 

IPERMCK) «0 122 
00 61 J-l.NPAR 123 
IF<ABS»ORDERED<K)>.LE.ABS(ORDERED(J)11 IPERMCK)-IPERHCKI*1 124 

61 CONTINUE 125 
IFCK.EQ.ll GO TO 65 t Kl-K-1 126 
DO 62 L-1.K1 127 
IF(IPERMCK).EB.IPERMCL)I IPERMCK!-IPERMCD-1 12B 

62 CONTINUE 129 
65 IPtIPERM(K))-JPIK> 130 
60 CONTINUE 131 

DO 66 K-l.NPAR 132 
66 JPCIPCK))-K 133 

KP-0 134 
00 63 K-l.NPAR 135 
IFCABSCORDEREDCKH.GT.COSMEAN! KP-KP'1 136 

63 CONTINUE 137 
NPART-KP 138 

139 
IN CASE FIRST DERIVATIVES ARE PROGRAMMED IN FNCTN. CHOOSE LAST1-99999 140 

141 
IFCLAST1.LT.99999) GO TO 4 142 
CALL FNCTNCA.O.SQA.Oil.YCLCA.YOCA.0.0) 143 
LASH-NOUTOF 144 
GO TO 4 145 

DO 10B I-l.NPART 
10GL-CI-1)»C2«MPAR-I)/2*I 
FAA2CD-.0 
DO 108 J-l.NPART 
IFCJ-I)100tl00.101 

i K«(J-1)»I2«MPAR-J»/2.| 
GOTO 102 

I MH-l)*(2»HPAft-ll/2*J 
Î DO 103 L-ltNDATA 

FAFAAII.Jl-FAFAAII.J|.FACL(I)*FAAlLfK> 
1FU.LT.I) GO TO 103 
FOFAAI1.JI«FOFAAI1.JI*TOCCL>»FAAIL.K> 

3 CONTINUE 
i CONTINUE 

00 120 K-ltNPART 
DO 120 L-KtNPART 

g FOFAAIL.KI-FOFAAIKiL) 
00 104 1*1.NPAR 
IOGL-C1-1)•C 2-MPAR-11/2*1 
DO 104 L-l.NDATA 

k FAA2CI)-FAA2II)*FAAIL<IDGL)**2 

INK-7 
IF1INK3.NE.3.AN0.INK8.NE.3) GO TO 25 I INK-3 
HRITECINK.B1) S WRITE I INK.821 CIP 111.1-1.NPART) 

I FORMATClH 2X.9 I14 / ) 
1 F0RMATC/1H «USEO FOR THE DETERMINATION OF THE COURSE OF SCALE FACT 
•ORS. FAFAAIK.L)»/) 

DO B3 I-l.NPART 
3 MRITECINK.67) IPC I ) . (FAFAA(I•J)tJ- l .NPART) 
T FORMATClH I3.3X>9E14.S) 

WRITECINK.54) 
. FORMATClH ) 

URITECINK.21) 1 
1 F0RMATC/1H «MATR1 

00 23 I-l.NPART 
3 WRITEIINK.67) IP 111 . CFOFAA11.JliJ-ltNPART) 

WRITEIINK.54) 
5 CONTINUE 

OUTPUT SECONO DERIVATIVES FOR THE FIRST 9 PERMUTED PARAMETERS 

1FILSTD2)70.70.71 
1 HRITEIINK7.72) 
2 FORMATClH # I *6X#D2FDAA«9X*D2FDAB*9X*02FDAC*/I 

NFAR-NPAR 
IF INPAR.GT.9) NFAR-9 
DO 12 J-l.NFAR 
JF5T-(J-1)"C2»HPAR-J|/2»J 
JLST-JFST*NFAR-J 
WRITE!INK 7.75) I IPCJl.IPC I ) . ] 

5 FORMATI 1H 1X,9C10X*I* I1* . *U> 
DO 11 L-1.LAST1 

1 WRITEIINK7.13) L.CFAA(L>KI.K> 
•RITECINK7.74) IP(J).FAA2(JI 
1FIJ.E0.1I WRITEI1NK7.731 

2 CONTINUE 
3 FORMATClH * I *6X#02FDBB»/I 
3 FORMATClH l4t2X.9E14.S> 
4 F0RMATC/1H I4.2X.E14.5//) 

-J.NFAR) 

JFST.JLST) 

) HRITE(INKB.U3> 
1 FORMAT ClHO«»«02FDA E X Q * * D " * * / I 

CPTIME-SECOND(FS) % EXTIMEC51-EXTIMEIS»«FS-ST 
RETURN 

•DECK NRMEO 

CALL 
CALL 
CALL 

6 

204 

206 

205 

SUBROUTINE NRMEO(YOC.CNORM.LSTNM. 

REAL M 
DIMNRMEO 
OVAR 
OF IX 

CPTIME-SECONDISTI S NRINSUBI6 
MT-MPAR'1 
DO b IM.NT 
CNORMC1>=.0 
1FCISTOP.EQ.0I GO TO 17 
DO 204 1=1.NPAR 
MCI.NT)-.Q 
DO £04 K-l.NDATA 
MCI.NT)-MCI.NTI*FACK.I>*FAIK.MTI 
MCNT.NT)=0.0 
DO 206 K-l.NOATA 
MCNT.NT)=HCNT.NT>*FACK.MT)«2 
DO 205 I-l.NPART 
CNORMII)=MCI.NT) 
CNORM(NTI-MCNT.NT) 

lSTOP,HtLSTE6.KC0S.M02> 

1FILSTNM.E0.0.OR.INK7.EB.T) GO TO 9( 
•RITE I INK7.504) S WRITECINKT.5051 

• F0RMATC/1H 4X*K«6X*NORMAL >/) 
ä FORMATClH 2I5.E1T.S) 

•RITECINK7.S06I 
) F0RMATC//I 

1FIISTOP.EQ.0) GO TO 90 

r HRITECINKT.5) 
5 FORMATIJH «•••NP.MEQ***«/! 

00 201 I - l .NT 
DO 201 J-l .NT 

IIPIIItCNORMCI 

REAL H 
ALL DIM02FDA 
ALL N0IMD2 
ALL OVAR 
ALL DFIX 

CPTIME-SECONOCST) S NRINSUBC5I-NRINSUBCSX1 
00 31 I-ltNPAR S FAA2CII-.0 S 00 31 J-l.MPAR 

31 FOFAACItJ)-FAFAAU.J)-.0 
HRITECINK7.10) 

10 FORMAT C1H0«***XE0 02F0A»««/) 
KL-0 
DO 4 K-l.MPAR S 00 4 L-K.NPAR S KL-KL*1 
KV-JPIK) S LV-JPCL) S IFCKV.LE.LV) BO TO 5 
KRES-KV S KV-LV $ LV-KRES 

5 LV«LV-KV 
4 lLCKL>-IKV-l)*C2*MPAR-KV>/2 • KV • LV 

..rAACI.KMPAR) 

!) C C I ) . . . . 
VARIABLES TtUtl 

I T/M 1000 

PROCEED WITH SUBROUTINE 

CALCULATION OF THE * 

166 

DO 21 I-ltNPAR 
NCI .NT)-HI I .NTI -
DO 21 J-l.NPAR 

ICNT.N1 
I I I . J f F A I K . 

r.NT) MT)»FA(H 
IFCMOa.EQ.0) GO TO 2S 
IFCNRINSUBC5I.EO.0) GO TO 25 
DO 23 I-l.NPAR 
DO 23 J-l.NPAR 

J MCI.J)-M1I.JI-F0FAACI,J) 
> CONTINUE 

G-.O 
DO 19 1-1,NPART 

-SORTi 
CN0RMI1I-HI1.NT) 

> 3 « Q » N I 1 . N T ) " 2 
XNRMINOCLCI=SORTCO> 
IFCNPART.EQ.NPAR) GO TO 18 
IFST-NPART*1 
00 20 1-JFST.NPAR 
MC1>-SQRTIM(1.I)) 

) 0«0»MCI.NT)»"2 
} CN0RMCNT1-HCNT.NT) 

XNORM CNOCLCI-0-SORTCI) 
HCNTI-SORTCMINT.NTI) 
IFCLSTEO.EQ.0.0R.INK7.EI.7) GO TO 80 

-RITECINK7.30) 
) FORMAT(/1H «NORMAL EQUATIONS«! 

NFST-1 S N9-10 
I NLST-NT 1 IFCNT.GT.N9)NRLST-NLST-N9 I IFINT.LE.NLSTINRLST-NPAR 

•RITECINK7.341 CIPC I).I-NFST.MRLST) 
b FORMATC1H0111.9U3) 

DO 35 I-ltNLST S IPNR-IPI I ) S IFCI.EO.NT) IPNR-HPAR*! 
> «RITEI1NK7.36I IPNR.CMCI.J).J-NFST.NLST> 
b FORMATClH I3.10E13.4) 
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60 TO 37 

. . . * » 8 IP-PI (»-»> 

ir iNT.LE.N9t M TO 3S 
NFST*MFST*10 S H9>M9* 

M M ITE ( INKT «321 
»2 FORHAfl / l t tO**—K»10I»-*»PHM(»-#I»* 

• » . . K*«<*-*>»PART.HORN--- • # / ! 
MRITEUNK7.31) ( IP<I )»Ht I I * IPUI*M( I .NT)»IPI I ) iCNORH<I I* I *> l tNPAR> 

31 FORMAT UH I5 *2X*E14. f . . I13*El$ .5 i i l2 *ClS.5> 
MITE(INKT*33I H(NT)*KMQRM(NOCLC)tXNRN(N0CLC> 

33 FORHATUM8»LENeTH5»TX#S6«SX#NORM#21X»PART.NORH#/lH TX.E14.5.13X. 
•C15 .5 t l2X.E lS .5 l 

I t 1FIKCOS.EO.0) CO TO SS5 
IFILSUNRY.NE.11 GO TO 555 
17-1NK7 S IMKT-3 
I F ( N O C L C . G E . N C Y C L S ) URITE(INKT*4S> NOCLC 

45 F0RMAT(1H1*13(»*»)»LA5T CYCLE« NO»I4» • • • » / / > 
I F I N O C L C . N E . I . A N O . N O C L C . N E . N C V C L S I SO TO 46 
WR1TE 11NK 7•42) WAR 

42 FORMAT(/1H 9X»C0S-MATR1X FOR »13» PARAMETERS AND PMTIAL COSINES 
• COStFOtFK)») 
NFSTal S N9-10 

44 NLST-NPAR 
1F(NT.0T.N9) NLST-N9 
MITE(INK7*43I (IP(I>*I-NFST»NLST> 
MITEI1NKT*47» <NAMEtIP(Itt»I*NFST.NL$TI 

43 FORMAT UHO U.10113) 
47 FORHATUH 4K*10(3X*A10I> 

00 SO J-NfST.NPA« 
LM*MINO(J*NLSTI 

00 60 I»NFST.IM 
60 CO$N(t>*M(l»J)/(H(I>*H(. l )> 

MRITEIlNKTtSlI IP(J>*(COSN(K>*K**lFST*LH> 
50 CONTINUE 

DO 62 I-NFST.LM 
62 COSNII)*>MlliNTI/(H(I)*H(HT>> 

HRITE<lNK7t$2) (COSN(K)*K>NFSTtLN> 
S2 FORMAT UH 3X#N0RH#F9.5*9F13.S) 

DO 61 J-NFSTtLH 
61 XCOSN(NOCLC<1P(J))>COSN(JI 
51 FORMAT UH I 3U0F13 .5 ) 

IFtMT.LE.N9) 60 TO 63 
NFST-NFSTUO S N 9 » H 9 * 1 0 S SO TO 44 

46 CONTINUE 
63 INKT«IT S MRlTEUNKT.il«) 

M(J,NT)/(M(J)>H(NTtl 

110 FORMAT (1HO»»*NRMEO XE0##O*»*»/» 
90 CPTlME*SECOMDIFSI S EXTIME(6)-exTlM£<6l*F5-ST 

RETURN 

REAL N 
•CALL DIHSOLVE 
•CALL OVAR 
•CALL OFIX 

CPTIME*SECONO(ST> 
KZERO-O 
MITEUNKT.IOOI 

100 FORMAT IIH0P*»»XEO SOLVE***»/) 
DO 8 I*1*M> % I F ( N I I . I ) . N E . O . O ) SO TO S 
KZERO>KZERO*l S IF(KZERO.ES. 1) MITE<3*4S) 
MUTE (3*42) I i I« IP( I I * IP( I ) *NAME(IPMI»*NOCt.C 

0 CONTINUE 
4$ FORMATI///IM »BEFORE REDUCTION OF-THE MATRIX M ITS 81 AGONAL CONTAI 

•NS ZEROS ON THE FOLLOMlNG PLACE5*///IH «STOP 50 (SOLVE)»///) 
42 FORMAT U H *M(»12»t»I2» » .0 THIS IS THE PERMUTED N(»I2***I2»>- .0 

• PARAMETER NAME- » A10# NOCLC* #13) 
IF(KZERO.EO.O) GO TO 1 

C 
4 CALL LISTINGI50) 

C 
»RITE43.21 

2 FORMAT(//1H »STOP SO (SOLVE)') 
STOP 50 

1 DO 7 I-liNP 
7 IPX(H0CLC*IP(IM-1HX 

NPARTX(NOCLC>-NP 
DO 3 I - l . N P t DO 3 J - I iNP 

3 XN(I*J)>N(I«J) 
C 
C REDUCTION OF MATRIX M 
C 

00 10 I-l.NPAR 
CN(I)*M(I*NT) 
DO 11 J-l.I 

11 M(I*1*JI".0 
10 N(1*1*II»>1. 

S-MINTtNT) 
C 

c 
DO IS W t N P A R 
11*1-1 
DO 14 J"I.NT 
DO 14 KM*11 
1F(M(K(K).E0.0.0.AND.K.U.NPI 00 TO 16 

14 M( I *J t -M( I *J ) -N IK* I ) *H<K*J I /M(«*KI 
00 TO 30 

16 MITE(3*41> K*K<IP(KI.1P(K).I*J*N0CLC 
CPTIHE*>SECOND<FSI S £XTiMC<T)-£XTINE(T>*FS-$T • SO TO 4 

41 F0RHATI//1H »STOP 50* OURINO REDUCTION OF THE MATRIX M THE CLEMENT 
• N (» I2»*» I2» t * . 0 * THIS IS THE PERMUTED M ( * I 2 * t # I 2 » W I M 0X»EXEC 
•UTION TERMINATES AT ROM* C0LUHM-(»I2»*#I2#»#/1H SXPNOCLC-PI3) 

30 CONTINUE 
C 

00 15 J » l t l l 
00 1$ K>J*I1 

15 H ( I * l t J ) * M ( l * l * J l - N < K * I ) * N ( K * l * J ) / M I K * N ) 

S MlNSU0(7l>NRINSue(TI*; 

SAVE D1AS0NAL 

DO 17 I>1«NPAR 
7 NtItll*MII*NT)*M(I*l*I>/D(I) 

SO*M(NT*NT> 

00 40 IM.Ml 
11*1*1 
DO 40 J« U.MP AR 

40 M(I>JI>>MII(J-11*H(J*NTI*H(J*1*I)/0(J) 

REDUCTION OF SOA 

H<l*NTt*M(NT*NT)-M(l*NT)*M(l*NT>/D(l) 
DO It K-2.NPAR 

IS MlK*NTl*NlK-l*NT>-M(KtNT)*N(K*NT)/0<KI 

INVERSE MATRIX* SAVED IN XM 

O>.0 
00 19 1*1.NP 
DO 19 J»1*NP 
00 20 K-J.NP 

20 Q*>0*M<K*1*I)*H(K*1*J>/0IKI / 
X N ( J * l * I ) * N ( J * l t I ) * a • . / 

19 0 - . 0 

OUTPUT PMTIAL SOLUTIONS AND TOTAL SOLUTION 

IF(IMCT.EO.T) 60 TO 71 
«RITE(INK7*S3> 

53 FORMATI/1H 9X»S0LUTI0N#t2X*S8F»llX»DECREAS£»/> 
M1TE(INKT*30) S 

30 FORMATUH 20RtEIT.8/ t 
Q*S-M(I*NT) 
DO 21 I-1*NPAR 
DO 22 J - l i I 

22 miTE(INKT*31) I P I J I * M ( J * I I 
31 FORMAT(1H I3 .E lT . l t ) 

M I T E ( I W T . 3 2 ) MU .NT I . 0 
32 F0RMAT(1H**20X*2E1T.B//1 
21 Q*M(I*NT)-N(1*1*NTI 

•KITE INVERSE MATRIX ' 

71 IF(INKT.EO.T) 60 TO 70 
*)RlTEt3*52) 

52 FORMAT1/1H »INVERSE MATRIX») 
NFST-1 * N8»fl 

70 NLST«NP 
IF(MP.OT.NS) NLST-NS 
WRITEUt55) ( lP IDt l 'NFSTiNLST) 

55 FORMAT(1M0113*S114) 
DO 23 I'NFSTtNP 

LH-MlNO(ltNLST) 
23 KR1TE(3*33I IP ( I>* (N( I * l iJ ) *J-NF5T*LN> 

1FINP.LE.NSI GO TO 69 
NFST*NFST*6 S N8*N6*8 t GO TO TO 

69 CONTINUE 
33 FORMATUH 13.2X.BE14.51 

COS-MATRIX OF INVERSEt NOT SAVED 

78 IFtNOCLC.NE.1.AND.NOCLC.LT.NCVCLS) 60 TO 79 
IF(LSUMRV.NE.il GO TO T9 
WRITE(3*82) NPART 

02 F0RMAT(////1H »CORRELATION MATRIX OF ESTIMATES* OBTAINED PMH. fHt 
•INVERSE OF Mt FOR NPART"*I3) 
NFST'1 S N8*10 l 

80 NLST*NP 
IF(NP.GT.lM) NLST'NS 
WRITE(3*S9) (IP(II*1>NFST*NLSTI 
»RITEI3.SSI (NAHE(IP(1))*I*NFST*NLSTI 

58 FORMAT(IM 4X*10(3XtA10)) 
59 FORMATUHOIX.101131 

00 84 1-NFST.NP 
L M » M I N 0 ( I * N L S T > 

00 83 J-NFST.LM 
83 C 0 5 l N F ( J ) - M ( l * l l J I / ( S 0 R T ( N ( J * l . J ) * H I I * l t l ) l ) 

«RITE(3.81) lP(l ) t (COSINF(J).JWFST*LN) 
84 CONTINUE 
01 FORMAT(1H I3.10F13.S) 

MITE(3*46> IM(K*1.KI*K*NFST*LN> 
46 FORMAT(/IM »DIAGONAL» E12.5*0£13.5.E12.41 

IF(NP.LE.N8I GO TO 72 
NFST*NFST*10 S N8*N8*10 S SO TO BO 

OUTPUT LINEAR REDUCTION WITH RESPECT TO PARAMETERS U t » IN »SLUT I OH 

72 rfRlTEO.54) S M ITE(3 .T6 ) 
76 FORMAT UM 12XPLINEAA REDUCTION OF SOB BY APPLICATION OF DELTA COM 

•ECTIONS TO L PARAMETERS*/ 1H0» K*tOX»A»llX»REDUC£B ffAMTKMNnHBTlO 
•N»TX»NAME»7X»K»4X»L»6X»REDUCTION/DELTA»/) 

•R1TEI3.8S) S 
OS FORMAT UM 20X.EIT.8I 

0*S-M(1*NT> 
00 73 K-l.MPART S 1K>IP<KI 
REDDELT»0/M(K*NPI 
«RITE(3*741 IK.A(IKl*H(K*NT>*OtNANE(IK)tIK*K*RCDDELT 

73 0>MIK*NTI-M(K*l*NTI 
74 FORMATUH 13<3E1T.6*2X<A10*2I$*E18.S) 

IF(NPART.GE.NPAR) GO TO 79 S NP1-NPARTU 
WRITEI3.TT) 

77 FORMAT ( IN ) " •" 
0-M(NPAftT*NT)-M(NPART*l*NTI 
DO 75 «.•NPl.NPAR S IK»IP(K) 
REDOELT>0/M(KtNPI 
•RITCI3i74) IK(A(IKI*N(K*NT)*a*NAME(IK)*IKtK*REOOELT 

76 0*>NlKtNTI-M<K*l.NTI 

79 1F(NR1N5UB(S).EQ.0> GO TO 65 

CALCULATION FOR COURSE OF SCALE FACTORS 

00 60 1*1.NP 
TOT-.O 
00 61 J"t.NP 

61 TOT*TOT*FAFAA(I*J)*M(J«NP) 
60 FFAAMH(1)*T0T/(HAI1)*HAII)I 

SOLUTION BV INVERSE MATRIX 

65 IFMNK3.EQ.7I GO TO 66 
DO 68 I-l.NPAR 

68 00(I)*.0 
DO 62 1*1.NP 
DO 62 J-ltNP 
IFII-J) 63*63*64 

64 OO(I)*00(I)*MUU.J)*CN(J> 
GOTO 62 

63 QQ(I)*00(II*N(J*1.I)*CN(J) 
62 CONTINUE 

OUTPUT PARTIAL SOLUTIONS 

66 DO SG I*1*NPAR 
EII>*SORT(Sa*H(I*l*l)/FLOAT<N0ATA-NPI) 

50 ST0EV(I)»SOLN(I)».0 ' 

TOTAL AND PARTIAL DELTA tXOELTA. XOELtl 

OLT'.O 
DO 49 I*1.NPAR 

49 8 L T " * L T * M U . N P A R I » » 2 
XDELTAIN0CLCI*SORT(0LT) 

OL-.O 
00 51 I»1*NP 
STDEV(I)>E(I) S SOLN(I)*N(I«HPI 

51 0L"0L*S0LN(I)**2 
X0CLT(N0CLC)-SORT(QLI 
IF( INK3.E0.7) GO TO 67 
MITE(INK3»54I 

54 FORMAT(//I 
MITE(INK3*S61 

S6 FORMATt/lH 2X*K»SXPN0RNAL #9X#0EITA-VECTOR»l«XPAP12X*4TAt*>MKV»0M 

M I T E ( I N K 3 ( S 7 M I P ( I ) * A N 0 R M I I > . S O L N t I t * C ( I P ( I l l * S T D E i r ( l ) * I a l | l * M < I 
• ) i I * l .HPAR) 

ST roMNATUH I3*2X*4E1T.S*I5*E1T.S) 
MITE(1NK3*43) RMRMtNOCLCl» X D C I T I N O C L C ) 

63 F0RMAT(lH0»LEHGTH»E16.«tElT.«) 
M1TCI1NK3*44) XNORM(N0CLC)tXDELTA(NOCLC> 

44 FORMAT 11H »TOTAL »C16.8.E1T.«) 
M1TC<IHK3*101I NP 

1« 
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101 F0RHAT4//1H ««««SOLVE XE8**D«««FOR NPART-*I4* PARAMETERS«*«*/) 
67 CPTIME-SECONO(FS) I EXTlME17>-£XT1NC(T).FS-ST 

RETURN 

• R£TURNS(A40) 

REAL M S INTEGER END 
DIMENSION CHIl(14>,FNd4).KLASd4),FCLSS(14> 
D I M E N S I O N S M 3 5 I . S N ( 1 5 > . S K U U 5 > . 5 K L ( 1 5 > 

ALL OINMOWA 
ALL OVAR 
ALL OF I K 

C P T I M E - S E C O N O ( S T ) S N R I N S U B I 8 > - N R I N S U « ( « ) > 1 
I F ( N 0 C L C . L T . 3 > CO TO 15 
1 F I E P H I N I N 0 C L C ) . N E . . O > 6 0 TO 1 5 
N O C L C l - N O C L C - 1 
I F ( E P M I N I N O C L C 1 ) . N E . . O > 6 0 TO 1 5 
N 0 C L C 2 - N 0 C L C - 2 
I F ( E P M I N ( N O C L C 2 I . N E . . 0 > 6 0 TO 15 
WHITE l i t 1 7 ) N 0 C L C 2 . N 0 C L C 1 . N 0 C L C . N 0 C L C 

I T F 0 R N A T I / / / 1 H »NOTE THAT E P S ( * I 2 * > . E P S ( * I 2 * > AND E P S ( * I 2 * > ALL ARC 
• Z E R 0 * / / 1 H »DETECTED I N SUB HOWA I N C Y C L E * I 4 / 1 H «CORRECTION VECTOR 
• PROBABLY A ZERO VECTOR. O R * / l H «PARAMETER VALUES TOO CLOSE TO SOU 
" N D S * / / 1 H » T H I S CAUSES STOP 1 T E R M I N A T I O N I N M A I N PROBRAM N L V * / / > 

NCYCLS-NOCLC 1 E N D - I R E P 
1 5 CONTINUE 

S O - . O 
S O F - . O 
S 8 A F - . 0 
DO 2 1 * 1 . N D A T A 
F C A L C C D - . O 
DO 3 J * 1 , NPART 

3 F C A L C ( I ) « F C A L C U ) * D £ L T A ( J ) « F A ( I . J ) 
S O « S 8 * Y 0 C A U ) « 2 
S O A F - S Q A F * F C A L C ( I > « « 2 
FOC f 11 -YOCA ( I ) - F C A L C 1 1 > 
S O F » S Q F * F 0 C ( I ) « 2 
O C 0 S A - S Û - SBF I I F U C O S A . L T . 0 . 0 1 O C O S A - . O 
QCOSA-SORT(QCOSA/SO> 
X C 0 S e i N O C L C ) - « C O S A 

2 CONTINUE 

CHECK D I R E C T I O N OF PERPENDICULAR TO TAN9CNT PLANE 

DO 2 1 1 - l . N P A R 

Ein- .o 
0 ( 1 ) . . 0 
DO 2 0 L - 1 . N Û A T A 
E d > - E ( I > * Y O C A I L 1 « F A ( L 1 1 ) 

2 0 D U > - D d > * F O C ( L > * F A ( L t I > 
E 1 1 > - E 1 1 ) / S O R T < S O ) / H A 1 1 ) 

2 1 D ( I ) - D d > / H S B F / H A ( I > 
T E S T - S Û - S Q F 

I F ( N O C L C . N E . 1 . A N D . N O C L C . L T 

I F ( N 0 C L C . E Q . 1 . A N D . I R E P . G T . 
. N C Y C L S ) 6 0 
1 . A N 0 . L 5 U M R 

T . N C Y C L S . A N 0 . N R 1 N S U « ( 5 ) . E O . 0 ) M TO 7 

I TO 6 3 

WRITE 13 tbO> N 0 C L C . X B £ T A ( E N D ) . I R £ P . K C R L M T ( N O C L C ) . E N D 
4 0 F 0 R M A T ( l H 1 1 3 4 ( » - * ) / l H # • • • HOW A • • • AFTER CYCLE N O * I * * • • • * 8 X * X 

• H i l l - Y A ( I ) . « F 8 . 5 » • Y O C d ) * B X * H O W A N O « * 1 3 * • • • * B X * M U L T . C O R R . - * 
• F 9 . 6 * » « » / Ï H 8 5 X * « » E N D - * 1 3 » • • • » / ) 

0 0 5 1 - l . N P A R 
5 I S T A R U I - 1 M 

I S T A R ( N P A R - N P A R T * 1 ) - 1 H « 
N F S T - 1 S N 1 4 * 1 4 

46 NLST-NPAR S IF(NPAR.GT.N14) NLST-N14 
NNN-NPAR-N14.14 t WRITE 13.47) 

47 FORMAT (1H » . . « » . . « I » / 1 H #1 SUMMARY OF SOLUTIONS« 
•/IM »I SOLVED**») 
WRITE(3.45) (ISTARdl.I-NFST.NLST) 

45 FORMAT (IH * — — > — « 4 X . 1 3 A 9 . A 2 ) 
00 «9 I-l.NNN 

LM-MIN0(14.(NNN*l-t)> 
WRITE I S . * * ) I P ( I ) . ( M d . N N N * l - J > . J - l . L N ) 

« 9 CONTINUE 
A4 FORMAT 11H « I » I 4 , 2 X . 1 4 ( 1 X . E 8 . 2 > > 

H R I T E ( 3 . 4 S > 
0 8 FORMAT I I H » * . = i = = = = = = » ) 

I F I N P A R . L E . N 1 4 ) GO TO 4 1 

N F S T » N f S T * 1 4 f N 1 4 - N 1 4 * 1 4 S 6 0 TO 4 6 
41 CONTINUE 

RTXTO-SQRT(XYO) S RTSBA-SIRT(S») I RTXYC«SÛRT(KYC> 
C0S0R*(XY0*XYC-S0)/(2."RTXY0»RTAYC> 
S E R R O R - S Q R T ( S O / F L O A T ( N O A T A - N P A R T I ) 
WRITE 1 3 * 5 0 ) S W R I T E ( 3 . 5 1 ) R T X Y O . S Q . S B F . C O S O R . R T S Q A . R T X Y C 

5 0 F 0 R M A T I / / 1 H 2 7 X * R E S U L T OF S O L V I N G N R M E t 5 * T » 0 * t E N 8 T H OF V E C T O R S * / ) 
5 1 F O R M A T ( I H 3 B X * Y 0 B S * / 1 H 3 9 X * « * T B 9 * / Y 0 « S / « * E 1 1 . 5 / 1 M 3 8 X * " * 

• / l H 3 T X * » • » / 1 H - 2 0 X » S O A « # E U . 5 * • • S » F - * E 1 1 . 5 . T 7 4 * M U L T . C O S I N E • * 
• F 7 . 5 . S X * / S 0 A / - * E 1 1 . 5 / 1 H 3 5 X * » « » / 1 H 3 4 X * " « * / l H 2 T X . 1 9 ( * * * > 
• * TANGENT P L A N E * T B 6 * / Y C A L C / - * E 1 1 . S / 1 H 3 3 X » A F « ) 

WRITE 1 3 . 5 2 ) S Q A F . T C S T i Q C O S A t S E R R O R . S a . M O C L C . N P A R T X ( N O C L C > 
5 2 F O R M A T d H 2 7 X * S « A F - * E 1 1 . S / 1 H 2 3 X * F C A L C * * 2 - * E 1 1 . 5 / / I M 1 B X * T 0 T A L COS 

• I N E « * F 7 . S i T 8 5 * S T A N 0 A R D E R R O R - * E l b . l O / l H T 9 0 C S « A - « E 1 6 . 1 0 / 1 H 
• T 8 6 * N P A R T X I * 1 3 * ) - * I 4 / ) 

6 3 C O S D N - C O S D 2 - C O S N 2 - . 0 
0 0 6 2 1 - 1 . N P A R T 
I F I D E L T A I I I . E 8 . 0 . 0 ) GO TO 6 2 
COSDN-COSDN*ANORN(11«DELT A ( 1 1 
C 0 S N 2 * C 0 S N 2 * A N 0 R H ( I ) « * 2 
C 0 S 0 2 > C 0 S D 2 * D E L T A ( I ) « « 2 

6 2 CONTINUE 
T A N A B S — 2 . »COSON 
C0SDN*C0SDN/SORT(COSD2)/5QRT(COSN2> 
IFIN02.EQ.0I GO TO 59 1 EP-.O I GO TO SB 

59 CONTINUE 
QRS-8RSN-.0 1 IF(NRlNSUB(5).E«.0> 60 TO 53 
EP-.O 
DO 54 L-l.NPART 
ED-.D 
DO 55 K-l.NPART 

55 ED-ED*DELTAI«)«FOFAA(R.L) 
54 EP-EP*ED«OELTA(L) 
58 QRSA-ABS(.5>TANABS) S 8RS-0RSA/TEST f ÖRSN-ORSA/(TEST-EP) 

EPSNEH(NOCLC*I)-EPSE5T-0RSN 
IF(NOCLC.NE.1.ANO.NOCLC.LT.NCYCLSI 00 TO T 

53 IF(NOCLC.EQ.l.ANO.IREP.GT.l.ANO.LSUMRY.NE.l) GO TO 7 
WRITE(3.134) C0S0N.TANABS.apSN.N02.ORS 

134 FORMAT UNO*»*** COS INORMAL.DELTAI FOR NPART -«Fll.7* •••• TAN( 
•EPS*0.SOA.l> -*E14.5* •••• EPSfPREOICTEO) -»E16.7* •••••/IN 
•90X*««<* (N02 -*I2* GIVES -AE16.7*) ••••«//1H 32XPPART1AL PARTIA 

WRITEO.32) 
32 FORMATdH 2X*K*10X*A(K>*0K*USED*4X*COS A*5X*C0S r*6X*DELTA-VECT0«* 

•8*»NORMAL *8X*HA«DELTA*6X*MA«N0RM*8X*HAIK)*TX*K#/> 

DO 33 I-l.NPAR 
OELHA-OELTA(I)«HA(I) I 
WRITE 13.34) IP(I).A(IP(I)).I 

• ANRMHA.HAd). 1P(I) 
IFtl.LE.NPAHT) WRITE(3.38) 

33 CONTINUE 

I.5.2E18.B.3E14.5.I5) 

IF(NRINSUB(5>.EQ.0I GO TO 16 

CURVATURE IN DIRECTION OF PARAMETRIC CURVES 

IF(LSUMRY.LE.l) GO TO 16 
DO 1B0 K J -
F S S 2 - . 0 
J 0 G L - ( K J - 1 
DO 1 8 1 I « l 
F S S ( 1 ) - F A A 
F S S ( 1 ) - F S S 

•NPART 

" ( 2 - M P A R - K J 
NOATA 
I . J O G L ) * H A ( 
I ) / ( H A I K J I * 

F S S 2 - F S 5 2 * F S S ( l ) " F S S d 
C U R V T 0 T 1 K J 

GEODESIC C 

DO 1 8 2 K « l 
T J - . O 
DO 1 6 3 1 > 1 
I J - T J . F A I 1 

- S 0 R T ( F S S 2 ) 

JRVATURE 

NPART 

NOATA 
K ) * F S S ( 1 > 

T J F S S I K ) * T J 
Do 1 9 S K » l 
D C - . Q 
DO 1 9 2 J - 1 
I F ( « - J ) 19 
D C - O C - X M I « 
<>0 TO 1 9 2 
D C » O C * X M I J 
CONTINUE 
O C U R V E I K I * 
CONTINUE 
F S S G d = . 0 
DO 1B4 1 - 1 

NPART 

NPART 
• 1 9 3 . 1 9 4 

1 . J ) » T J F S S ( 

l t « f " T J F S S l 

NDATA 

/2*C 

[•KJ)*FAFAA(KJ.KJ)/HAir 

FJO=.0 
•0 IBS K=l.NPART 

i FJD*FJ0'FA(I,K)»DCURVE1K) 
FSSG2»FSSG2*FjO«FJO 

> CONTINUE 
CURVGE0(KJ)»S0RT(FSSG2) 

) CONTINU£ 
wRITE(3.75)RTS0A S WRITE 13.76) t WRITE(3.77) 

i FORMAT( ///IH ^ANALYSIS OF CURVATURE OF PARAMETRIC CURVES IN AISOL 
•UTE ANO IN RELATIVE SENSE IWITH RESPECT TO /SBA/I, /S0A/-PE16.S 

; FORMATdH *«#1S 
•TIVE VALUES*15I 

r FORMATdH * K*6X#TOTAL*8X*GEO0ES 
•*T0TAL*ax»GE0DESIC*8X»REST*/) 

DO TB KM.NPART 
C V T - C U R V T O T ( K ) % CVG-CURVGEOIK) S 
C V T S - C V T - R T S O A S CVGS>CVG*RTSOA f 
I P K = I P ( K ) 

) n i R I T E ( 3 . 7 9 > I P K < C V T > C v O < C V R > N A M E ( l P K ) i 
) F O R M A T d H I 3 . 3 E 1 - . 5 . 6 X . A 1 0 . I 6 . 3 E 1 4 . S ) 

W R I T E ( 3 . 2 0 7 ) S W R I T E ( 3 . 2 0 7 ) 

»ABSOLUTE A L U E S ' I S I * - * ) - » » ^ » " * ^ ' 

* 8 X * R E S T # I 0 X * N A M E * B X « 

- * I « R E L A 

I P K . C V T S . C V 8 S . C V R S 

F ( N R I N S U B I 5 I . N E . 0 > W R I T E ( 3 . 2 0 3 > 

; F ( N R I N S U B ( 5 I . N E . 0 ) W R I T E ( 3 . 2 0 6 > 

16 1 F 1 N R I N S U B I 9 ) . E O . 0 . A N D . N R I N S U B 1 5 ) - E O . 0 ) GO TO < 

I F ( L S U M R Y . L E . l ) GO TO 6 
W R I T E I 3 . 2 0 1 ) 
I F J N C . N E . 1 ) • R 1 T E ( 3 . 2 0 2 ; 
WRITEO.204) 
I F ( N C . N E . l ) W R I T E ( 3 . 2 0 S : 
W R I T E I 3 . 2 0 T ) 
0 0 2 1 1 1 - l . N P A R 1 W R I T E O . 2 0 B ) I P I I I . H A ( t ) 
I F ( N C . N E . L ) W R I T E ( 3 . 2 0 9 ) X M A ( N 0 C L C - 1 , I P ( 1 1 1 , H A H S ( I ) 

1 F ( N R 1 N S U B ( 5 ) . N E . 0 . A N D . I . L E . N P A R T ) W R I T E O . 2 1 0 1 F F A A M H D 

2 1 1 C O N T I N U E 

2 0 1 F O R M A T ( / 1 H O * C O U R S E O F S C A L E F A C T O R S # 1 

2 0 2 F 0 R H A T I 1 H * 2 S X * ' - - A C C 0 R D 1 N 6 T O D I F F E R E N C E S — • * ) 

2 0 3 F O R M A T D H . 6 0 X * > — A C C O R D I N G T O D I F F E R E N T I A L S - - * * ) 

20t FORMAT I1H0* K-10XFHB«) 
205 F0RMAT(1H*32X*HA*8X*(HB-HA)/HA*) 
206 FORHAT(lH*67X*D(HA)DA/HA*9X*K*) 
207 FORMATdH I 
208 FORMATdH I3.E16.S) 
209 F0RMAT(lH*19X.E19.S.E14,5) 
210 FORMATdH.62*.£15.S,110) 

6 CONTINUE 

NRITEI3.43) NOCLC 
43 FORMATI/IHO*»»»ENO OF CYCLE N0*I4* •••*) 

•RITEI3.U2) 
42 FORMATdH 134(* = *)//1 

7 CONTINUE 

I F ( M A X C Y C L . E t . l O O O ) N T S 2 = 4 H 
I F ( N Y S 2 . E Q . 4 H • • ) GO TO 6 7 

6 7 CC=COSC«IT»QCOSA 
N 0 Y E S 2 - 4 r 

N Y S 3 ' 4 H * • S N 0 Y E S 3 = 4 H 
Î F I I F I X ( C C ) . N E . O ) GC 

N Y S 3 = 4 H S N 0 Y E S 3 i 4 H • • 
> DO 6 0 I C T ' l . N P A R T S CC-COSCRIT« 

I F < I F I X ( C C ) . N E . O ) GO TO 6 6 
I CONTINUE 

N Y S 1 - 4 M S N Y S 2 - 4 H • • 
I F I N R I N S u e ( l 4 ) . 6 T . 0 ) GO TO 6B 
I F I N C . L T . N C Y C L S ) N C Y C L S - N C * l 

I CONTINUE 
M - N P A R T ' 1 i I F ( N l . G T . N P A R ) GO TO 6 5 
QO 6 1 1 C T = N 1 . N P A R S C C * C 0 S C R I T * K C O S N ( N O C L C . I P ( I C I 

I F d F I X ( C C ) . N E . O ) GO TO 6 6 
[ CONTINUE 
i N 0 Y E S 1 = 4 H S N 0 Y E S 2 - 4 H • • 

> CPT IME = SECOND!FS) I E X T I M E I 8 ) - E X T I M E ( B W S - S T 
RETURN 

S M A X C Y C L - 0 

S N Y S 2 - 4 H ! 

TO 64 

• X C O S N ( N O C L C ] 

ENTRY SUMRY 

CALCULATION OF CONFIDENCE INTERVALS C I F ( B > . CALCULAI t OF T - V A L U e s 

TO 1 1 0 
F N D = F L O A T ( N D A T A ) 
I F ( L S U M R Y . N E . l ) Gl 
C P T I M E = S E C O N D ( S T ) 
I3-INK3 I 17-INK7 i INC 
W R I T E ( 3 . 9 0 > S W R I T E I 3 . 9 1 I 

9 0 F 0 R M A T ( 1 H 1 . 1 4 ( # » * ) 5 X . 6 ( * « # I 
9 1 F O R M A T d H »SUMMARY N O * 14 

• R I T E I 3 . 1 0 4 ) 
1 0 4 F 0 R M A Î C / / 1 M 9 X » I N I T I A L V A L U E * 6 X * D I F F E R E N C E * B X » f 

• 1 I X * B / A * 8 X * C O N T R O L L E O * / 1 H * K * U X * A ( K ) < 

• 1 2 X * 6 ( K I * 2 2 X * K * 3 6 X » K * / ) 
DO 1 0 5 I K - l . M P A R » I J - I P ( I K ) S B I J A I J - A U J I 

• E O . . 0 I 6 0 TO 1 0 5 

I I N 5 U 8 ( 1 2 ) - N R I N S U B ( 1 
3 - 3 I I N K 7 - 3 

I REP .END 

.5X*ENO-*I2//> 

L ( I J ) / ; d . I J ) 

• I J . a P > I 3 H . K F I X C ( I J ) < 

> I 5 . E 1 6 . 4 . 9 X . A 3 . I 3 . I 6 1 1 0 6 F O R M A T d H I 3 . 3 E l B . 6 . S X . A 1 0 i 
W R I T E ( 3 . 1 0 7 ) NDATA. NPART 

1 0 7 F O R M A T ( / / 1 H O * T O T A L NUMBER OF USED D A T A * 9 X * N 0 A T A - * 1 
• E R OF F I T T E D PARAMETERS N P A R T - * I 4 > 

4 «TOTAL NUMB 

i FINAL PARAMETER VALUES B(f 
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00 «S K»1.14 
6» KLAStK1*0 

I00T»1H- S JD0T»1H» 
IMITE(3.170> t J O O T t N I ' l t l » ) 
HRITE(3t l*9l t M I T £ l 3 t l 7 0 t (1D0T,MI*1,136> 

169 FORMAT(1H »ANALYSIS OF OBSERVED »NO CALCULATED FUNCTION VALUES 
•N.E.-SUN/NOATA S.E.»STANDARD ERROR X1 -YA.BETHA«V0C V-Xt-Y 
•CALC TaV/S.E.O) 

170 FORMAT(1H 136A1/I 
mlTE(3* |Tl lXBETAICN01i( IO0T*ni* l i26l*<IO0T*MI>l*2«)* I IOOTtNI- l»2D 

•>.<IDOT.HI»1.20> 
171 FORMAT UM l*X0BETHAa»F8.4.12X0« 0 /0 CONFIOCNCE INTERVAL FOU FttJO 

•24X0X1-YCALC ANALYSISP/IH $X0*026A10* .#20A1#»*28A1P*#*X 
• O R E N A I N D £ R O 5 X O * « 0 A 1 0 . O I 

MMTCUtlTZI 
172 FORMATflH 3XP10TX« X2 «7X0X1- V USE005XOY LONER B0UND05X0YCALC05X 

•OY UPPER BOUNO«*X0 »10X»V012XOT»5XOS.E(P(B>103X010/) 

SUHPLUS'SUMHIN".0 
NDFaOFaNDATA-NPARTX(NOCLC) S VARESTaS6MIN(N0CLC>/0F 
SERRORUSORTIVAREST) S SEVNCANaSORT(VAREST/FNDl 
INTVL-0 
Sl»S2-S3»S*-.0 

00 1*0 1-l.NOATÀ 
IGT-3H 
SIGMATa.0 
EXPFa.0 
DO 162 L-l.NPABT 
OPE-..0 
00 165 K»1»NPAHT 
IFIK.LT.L) 00 TO 163 
OPE>«PE<FA i I *K t *MIK *1.L) 
00 TO 165 

163 0PE-0.PE*FA(I.K)«N(L*1.K1 
165 CONTINUE 

S I G M A F B $ I G H A F * O P E * F A ( I . L > 
lF(NRINSUB(5l.EQ.0) 60 TO 662 

EXPF STANDS FOR F OF EXPECTATION B 

DO 600 J«l.NPART 
I F tL -J I 63* .63* .633 

633 K»(J-1I»(2»MPAR-J>/2.L 
634 K>tL- l l * (2»NPAR-L) /2*J 

EXPFa£XPF*FAA(I*K)*N(j*l.LI S 00 TO 600 
694 EXPFaEXPF*FAA(l.K)*M<L*l*Jl 
600 CONTINUE 
662 CONTINUE 
162 CONTINUE 

IF(SIGMAF.LE..0ISIGMAFa.0 
SIGMAFaS«RT(SlfiNAF»VAREST) 
X l»X ( I . l > S VOCaYOCAU) 
VNEAN*YCLC*(1I 
YLOMER»YHEAN-2.*SIGMAF 
VUPPERaYMEAN'2.»SIGMAF 
ERPF »0.5»VAREST»ÉXPF 
IF(NRINSUB(5).EQ.0> EXPF'.O 
IFIxl.GT.VUPPERIIST>3H>UB 
IF(Xl.LT.YLONER)IGT>3H«LB 
IFdGT.NE.3H IINTVL-INTVL*! 
TVALUE«VOC/SERROR1 

01SG1-41/SSI 

292 
293 
294 
295 
296 
297 
291 
299 

M-SI S 512*51 «SI » T2-S2-S12/FND 
G1-T1/FM0 t G2>T2/FN01 
SG1»G2/FND S SGl*SORT<SOir 
T2>S2 » G2*T2/FND1 
562*2.•IG2*«21/(FNO-1.> 
SG2'S0RT(SG2) S G2S62*IG2-1.I/SQ2 
T3-S3 S T4"S4 
(»3»FND*T3/ (FN01*FND2f 
&*• (FND* L t»T4-3.• (FND-1.1•52*S2/FND 
G*»FND»G*/IFNOl•FND2»FND31 
FN01aFN0-l. S FND2*FND-2. t 'FH03"FMO-3. 

SG3'SQRT(SG3) S SG*»SQRT(SG4) 
G3SG3a03/Sfi3 » G*SG*aG*/SG4 
aRITE(3.313) NDATA % «R|TE(3t314l 

313 FORMATt/lH «ANALYSIS OF TaV/S.E. lEXPECfATlONS ARE USED I N HI6MER 
•MOMENTS» N0ATA»»I4/1H ?6(0-P>3XPCHARACT£RISTICS0) 

314 FORMAT(IM 22X0EXPECTATI0N0 4KPESTIMATE05X05TAND.ERROR05»<tt-ER)/S 

*2T 
42« 
4X9 

«35 
4 » 
437 
43 * 
439 

•MOMENTS* IOHNQMML 

315 
316 
317 
3 U 

S GO TO 694 

1F<NVS2.NE.4H 

S1»S1*TVALUE 
S2*S2*TV2 
S3«S3*TV3 
S**S»*TV4 

i GO TO 8 5 

TV2aTVALUE* TVALUE 
TV3aTVALUE»T« 
TV*»TV2»TV2 

DETERMINATION OF ENPERICAL FREQUENCIES OF T 

IF(TVALUE.LT.O) GO TO 62 

DO 01 ICLS$>1.6 
FTESTaFLOATIICLSSI/2. 
lF(TVALUE.GT.FTEST) GO TO 81 
KLASI7*ICLSSlaKLAS(7*ICLSSI*1 
GO TO 85 

01 CONTINUE 
KLAS(1*)»KLAS(1*>*1 S GO TO OS 

02 00 83 1CL$S>1.6 
FTEST—FLOAT 11CLSSI / 2 . 
lF(TVALUE.LT.FTEST) 00 TO 83 
KLAs<8-ICLSS>aKLAS(8-ICLSSI*l 
GO TO 65 

83 CONTINUE 
KLAS(1I»KLAS(1)»1 

8$ CONTINUE 
IF(I.LE.N0UTFLlBftlTE(3.1T3)l.Xd*2>tXl.I6TtVL0«ERtYNEANiVUPPER* 

•EXPF.VOC.TVALUE.SIGMAF.I 
173 FORMAT(IM I4 .2E l * .5 .A3 .E13 .5 t2£ l * .S tE16 .3*E IT .S .F9 .Z*E13 .4 t I4> 

IFIVOC.LT..01 SUMMIN»SUHMIN*YOC 
1FIVOC.GE..0) SUHPLU5aSUMPLUS*V0C 

16« CONTINUE 

PIN.TVL»FLOATdNTVL>/FLOAT (NDATA) »100. 
SUNTOTaSUHHlN*SUNPLUS * VN£AN*SUNTOT/FN0 
$UNAB5alSUNPLUS-SUNHINI/FND 
HRlTEI3*lT41N0ATA*INTtfL.PlNTVL*SUNPLU5tM>AltT*SUNNIN.NDF*SUNT0Tt 

•dD0T.MI- l*6BI*S£RR0fl l 
174 F0RNATI/1H BXONOATAaOI4tl5XO*—-OUO (aOFS.10 0 /0) BATA OUT HOE IN 

•TERVAL*T960* »#£12.5/1H BXONPART>*I4T960- «#E12.5/1H 0X«O.F. "#I4T 
•95«SUM»PE12.5/1H #.068A1».#T11?#S.E.»#E13.6T7*#TO BE NEAR ZERO«) 

TVALUEaVMEAH/SEVNEAN 
HR1TEI3.177) VMEAN.SEVNEAN*TVALUE«SUHABS 

ITT FORMAT(IM a M.E.»0£12.5.4X0$.E.IM.E.)»#EI2.S.SX# RATIO»»?«.*. 
•0 < MEAN/V/a»El?.5) 

MRITEO.ITD) (JOOT,NI»1.136) 
WUTE(3.1T8> 

178 FORMAT(/1H 88X»ESTIMATE F(8t - YCALC») 
IF<N02.EO.0> WRITEI3.1T5) 
IF(N02.E0.1> WI1E13.1T6) 

ITS FORMAT(IH 0SECOND DERIVATIVE MATRIX N02 NOT USED IN G/2XM-N02MI 
176 FORMATUH «USE IS MADE OF SECOND DERIVATIVE MATRIX * /2-(N-N02>»t 

M)lTE(3t676l 
676 F0RMAT(1H*B8X#2N0 ORDER TERM 

a / lH 108X0« REMAINDER* 
• /1H SSKOSTANO.ERROR F<8> 

353 
354 
355 

•EOI 
MOMENTlalOHZERO $NOMENT2-10HUN1TV 
MOMEN T » *1OHNORMAL 
IFIG1SG1.GE.2.) MOMENTlalQKPOSITIVE 
lF<fil5Gl.LE.-2.IMOMENTIalOHNEGATIVE 
iF(G3SG3.GE.2.) MOMENT3»IOHRIQHT SK£» 
IF<G3SG3.LE.-Z.»MOMENT3alOHLEFT SKEN 
1FI&*SG*.G£.2.) MOMENT*alOHTOO STEEP 
lF(G*SG*.LE.-2.>MOMENT4alOHTOO FLAT 
•RITE13.3151 Gl,SGItGlSGl.MOMENTIt6Z.Sfl2.G2S62tN0NENT2.83tSft3.03S6 

•3•MOMENT 3•G* * SO* f 0*SG*.MOMENT* 
315 FORMAT(1H OMEAN»23X0004X»2E14.5tFl*.2tBX.A10/lH 0VARIANCC#19««1#4X 

•JE1*.5.F1*.2,8X.A10/1H OSKENNESS*GAMMAtl)#10X*0# 4R 2C14.StFI4.2t 
•6X.A10/1H OKURTOSlStOAMNA(2)010X0004K2E14.5tri4.2.«XAlB/lM » ! # - ' ) 
•/i 

316 CONTIfMIE 

FN(l>aFNIl4>a. lsFNf2laFN<13)a.5fFN(3)*FN(12lal .7SFN<4laFN(l | )>* .4 
FNI5|aFMI10)a9.2SFNI6|aFNt9)alS.OSFN(7|aFN|a)al9.1 
DO 1*5 1 * 1 . 1 * 

145 CHIKIlaFNflt 'FLOAT (NDATAI/100. 
DO 8* I C L S S ' l . t * 

8 * FCLSSIICLSSIaFLOAT(KLA5IICLSSI)*100./FLOAT(NTMTA) 
•RITEC3tl70t tjOOT.MI-1.1361 
HRITE(3.H6I (KL»S)I I .1«1.1*) .<FCLSS<U.1«1.14I 

86 FORMAT<1H»14X1S(» I 0 I /1H OHlSTOGRAM OF T * l K * 1 4 l W l H * 
•1*K1S(0 >*>/lH »RELATIVE TO 100 0/0 #14FS.t/ lH*14XlS<# 
• (» I /1H 14X1SI0 )01> 

WRITE 13.87) NDATA.(CHIl(Iltl«ltl*> 
BT FORMAT(IH OCLASS LIMITS»I5*0-3.0#*XO-2.50**0-2.004XO-1.50*M-1.0* 

• 4X0-0.504X0 -0* ' *X0*0.5*4X0*1.004X0>1.5*4X0*2.0#4X**2*SMK#O.«»/ 
• 1H»UX0 .0104X0 .0/1H 14X15(0 101 / ' 
•IH »NORMAL DISTRIBUTION06X00.105X#0.505XA1.TOSX«4.4#SX*)9.2«41W15.0 
•0*X019.10*X019.10*X01S.OOSX09.2»5X04.405XP1.7*5X#0.5#5X#«.1»/1H* 
•14X15(0 (0 I /1H OFOR NOATA-#l* .SX. l *F6.0 / lH* l *Xl5t# )#) 
• / I H 14X15(0 (Otl 

WRITEI3.170I (JOOT.MI.1.136) 

SK(1) ».9Tb * SK(2) » .8*2 S SK13I a.708 % SKI4I «.624 S SK1S)".56S 
SKI6I • • 5 * 1 S SK(7I > . W i S SKI8I «.*ST % 5KI9) >.432 S*Kt!0)>.4lO 
S K ( l l t - . 3 9 1 % SK(12)a.37S % SK(13>».361 S SK(14)>.349 St«( lS>a.338 
SK(16)a.32B a SKI171».316 S SK(18)».309 % 5K(19I>.381 *SKf2«>>.29* 
SK(21t- .267 S SK(22>a.281 % SK(23)».2T5 % SK(24la.269 $ S K l H ) a U * 4 
SK(26)-.259 % SK(27I>.254 S SK(28)a.250 % $K(2«I>.24« SSKtMI«*242 
5K(31)a.23» t SK(32>».Z34 s SK(33)».231 « SK(341>.227 SSK<3SI*.2M 

SKAal36./S0RT(FL0AT(NDATA)> S 1 F I N 0 A T A . L E . 3 5 I SKAalM.*tK(NOATA> 

SNU) a.ODOOOlS SN(2) »00.135 S SNI3I »00.62I S SNI4I «82.275 
SN(S) aQ6.682 S SN(6) »15.866 S SNI7) »34.854 S 5NI01 - H - M O 
SN(9> »69.1*6 S SN(10|a8*.135 S SNI11l»93.319 S 5N(12>a*T.T2S 
SN(13|a«9.379 S SN<l*>-99.865 S SN(lS)*100.O08 

463 
464 
465 
466 
* * 7 
468 
469 

47« 
«73 
«74 
«75 
« 7 * 

Si 
«79 

ANALYSIS OF T-VALUES 

KOLMOGOROV-SMlRNOV TE5T 

a FAA*lNV(M)*VAR/20 

a S*RT(FAMNV(MI**A»VM)*> 

IFINVS2.NE.4H • • ) 00 TO 88 

TESTS ON NORMALIT» OF T 
TEST ESTIMATES OF MOMENTS 
IN 2ND ANO HIGHER MOMENTS Ml IS TAKEN EOUAL TO ITS TRUE VALUE 0 
IN 3RD AND HIGHER MOMENTS M2 IS TAKEN EOUAL TO ITS TRUE VALUE 1 

FNDlaOF S F N O Z - F N D I - 1 . S FND3>*N02-1. 
IF1FND3.LE..05) aDITEOtSlO) NDATA, NPART**N03 

310 FORMAT(/IH PN0ATAMI40 • NPART-0I40 . DEOREES OF FREEDOM FOR 3RD 
• ANO 4TH MOMENT »014/1H ONO DETERMINATION OF HIGHER HONENTt*/) 

1FIFN03.LE..OS1 00 TO 316 

483 
404 
405 
406 
407 ' 
40B 
409 
410 
411 
412 
413 
414 
415 
416 
417 
« I I 
• 19 
«2« 

•RITE(3.300) NDATAtSKA S HRIT£(3*307) 
300 FORMAT ( / I H 0K0LM0G0R0V-5H1RN0V ONE-SAMPLE 95 0 /0 TWO-TAlkO T i l t 

•FOR CUMULATIVE DISTRIBUTION OF T»V/S.E.» N»ATA-OI*.0. CRITICAL 
• VALI>e»0F7.1/> 

SKUtllaSKA S FCLSSOB.0 S SKL( l l» .0 ' 
DO 301 1*2. IS S t F l t . O T . * ! FCLSS(l- l larCLSS<l- l )*FCLSS(I-2) 
SKU<IlaFCLS5(I-ll*5KA S IFiSKUl I I . 6 T . 1 0 0 . I S K U ( I l > l H . f f M t l l 
SKL(I)-FCLSS(I-1I-SKA S I F t S K L U I . L T . . 0 ISKLt l l« • • 

301 CONTINUE 
NRITE(3.3Q2HSKU(I>t lal . l5 l tFCLSS0*(FCLS$(I ) . ia j l< l4l 

302 FORMAT(IH oUPPER 60UN0P5K1SF8.2 / I N #01STR. OF T 02X1ST8.2» 
• R I T E ( 3 . 3 0 3 1 ( S K L ( I > * I a l * l 5 > t l S N I I I t l a l . 1 5 ) 

303 FORMAT ( IH OLOWER B0UND05X1SF8.2 /1HO0NORNAL O I S T I I I » . 0 U | l F f » 2 / l 
ISN-lH» S I50-1H S lSK-9 

DO 305 l a i . i s S ISK»ISK*e 
IF (SN( I I .LE.SKL(1) .0R.SKU( I ) .LE.SN( I I I WR1TE<3.306)(ISOtJaltlBKI* 

• ISN 
305 CONTINUE S -R1TEO.30T) 
306 F0RNAT(IH*13X123A1I 
307 FORMAT! IH 1 4 ( 0 - 0 ) . 1 S ( 0 » — — - M 1 . 0 - - • * ! 

MRITEI3.304I 
304 FORMAT(IH OOUTSIOE INTERVAL a «01 

FCPLBlOO.-FCLSStT) S MR1TEO.308I FCLSS(7).FCPL 
308 FORMAT(/lH 0NE0AT1VE T VALUES »#F7.1# 0 /00 / IH OPOSITIVC 7 VALUtt , 

• -#FT.10 0/001 

88 CONTINUE 

HRITE(3.108) NOCLCtlREP.CNO.TAdl % M l lTCf3«109l . 
10B FORMAT (1H1 0*««COLLECTtON OF RESULTS AFTER0I40 CYCLES • * • SUM 

•Y NO0I3P • • • TOTAL NO OF SUNRIES TO BE PRO0UCCO#I3O • * • MTE M l 
•00 • • • • • # ) 

109 FORHATdH 32Xi 7(0a0| , 19X.5(#aOI .38X,5(0-0) .8X.12I#»0M 

CALL L ISTINGdl 

110 lF(LSUMRV.EQ.l) GO TO 119 
IFINYS2.E0.4H • • ! HAXCYCL*1000 
IF(NOCLC.EO.NCYCLS.AND.IREP.ES.ENO) 80 TO 119 
1F(MAXCYCL.NE.10001 GO TO 118 
HRITE(3.20T) S MRITE(3.42I 

119 NCRlTaALOOUICOSCRITI * 0 .5 
HRITE(3*U6I NCRIT.N0ATA,NPAflT*NYSl*NYS2*NYS3*N0VBS3 

116 rORMAT(/lH 13R0C0S CRITERIUM FULFILLED HITH#13# ZEROS FOR / # 1 2 l 
•ONO YESO T1010NUHBER OF DATA« 17/ lH *2X0***0|lX#NPAR1>0>13t2XtA4t 
•£X.A*/1H 49X0TOTAL COSINE 03X.2X.A4.2X.A4> 

HRITE(3*117)NPARt N0YES1.N0VES2.NC.NCYCLES 
117 FORMAT«IH 56X0NPAR »# I3 .2 (2X .A* I# / IN CYCLE N0#I4# OUT 0FPI40 

> CYCLESOI 
IFILSUHRY.EO.il GO TO 126 
IF(MAXCYCL.NE.IOOO) GO To 118 
CALL PUNCH(O) S RETURN A40 

126 CONTINUE 

00 120 I»1.MPAR S 00 120 jaltNCVCLES 
120 IPX (J . I I »1H . 

HHEN>0ATE(TA(1>) S CLOCK-TIME ITAI4H S CPTIME»SCCONOITAISI I 
TA5TA3aTA(5l-TA(3> 
VRITEO.1241 

124 FORMAT(/ / / iHoosTATiSTicso6i(oao)/ ) 
HRITE(3.112> S WRITEO.U3I TA(1) tTA(2) «TA(3I 

510 
511 
512 

515 
5 1 * 
517 

5 2 * 
527 
525 
529 
530 
531 
532 
5 3 3 
534 
935 
5 3 * 
537 
531 
539 
540 

545 

169 
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T I M E * A 1 0 # 
' A U ) , T A ( * | , T » l 

C P - S C O F 1 2 . 3 ) 

1 1 2 F O R M A T U H «FROM«) 
113 FORMAT (1H«11X* DATE »MO* 

•RITE(3.11*> S WRITE<3.113> I*(l 
11* FORMATUH »TILL») 
115 F0RMAT</1M 33X*USED FOR THIS JOB 

INK3-13 S INKT-I7 
NCYC-NCYCI.ES» 1IREP-D «NOCLC 
W R I T E n . l 2 1 > N t t I N S U B I 3 l t N f l 1 N S U B < * ) * M ) I N S U B ( 5 > > M R I N S U e ( T > . N R I N 5 U « ( 9 

1 2 1 F O R M A T C / 1 H »TOTAL NO OF E N T R I E S I N FNCTN DFOA 02FDA SOLVE M 
• N # / 1 H 2 3 A . 2 1 6 . 2 I T . I 5 ) 

W R I T E ( 3 . 1 2 2 ) E N O U R E P . N C Y C L E S . N O C L C . N C Y C 
1 2 2 FORMAT 1 / 1 H » O C F I N C O NO OF S U M M A R I E S . PRODUCED. C Y C L E S / 5 U M R Y . PI 

•OOUCED I N LAST O N E . TOTAL NO OF C Y C L E S * / ! « 1 2 X . 2 I 1 1 . 1 I S . 1 2 3 . 1 2 1 / 
I 9 3 (» / J 

I F I M A K C Y C L . N E . 1 0 0 0 > GO TÜ 1 1 8 
• R I T E C 3 . 1 2 3 ) 

1 2 3 F O R M A T M H * 105XAREOU1RED C O N D I T I O N F U L F I L L E D * / 1 H 1 0 5 « 
• R M l N A T E S A T - S T O P 5 5 - » / l H J 0 S X . # I N NLV FRON HOHA ENTRY 
* / l H 1 0 S X . 3 O I * - ' ) ) 

< H R I T E ( 3 . 1 2 5 I 
1 2 5 F O R M A T I / / 1 H 5 3 X 1 8 1 * - » ) / 

RETURN ADO 
1 1 6 CPT IME«SECOND(FS> » 

RETURN 

» » E N D OF JOB""*/1H 

I12)«EXTIME<12)*FS-ST 

ENTRY COMBlN 
C 
CALCULATION FOR (NPAR COMBINATOfiIAL 1) 
c 

IFINC.GE.3> RETURN 
N0CLC=2 S NC"1 
CALL MIN(DELTA,0.1..0..0.30.0.0) 
DO 501 K-l.MPAR 

501 dIKI'MK) 
IFINRINSUBI20).GT.OI 00 TO 51« 
SOR£SM.SOR£S=SOA 
NCOMB«NPART 
NP-NPAR * IF(NPAR.GT.1*) NP" 
00 500 K-l.NP 

500 ISTAR(K)«IP(K) 
NRlNSUB < 20)«NRINSUB(20)* 1 
»RITEI3.S20) IK.K-l.MPAR) 
•RITE (3.521) UP(K).K-l.MPAR) 
«RITEI3.52»> SQA.NP.NP.NPART 
•RITE(3.*2I 

520 F0RMATUH1* « »«301*1 
521 FORMATUH * IPIK)=«30I*) 
522 FORMAT!1H BX30A*) 
5 2 4 F O R M A T ( l H O I 8 K « S Q A . * E l ( ! . 5 « WHICH 

• A R , N P A R T ) ARE TAKEN OUT OF THE F 

CNPAR COMB, NPART) PARAMETERS 

N C Y C L S - * 

N E « U A L " * H « > = 
W R 1 T E I 3 . 5 2 2 ) 
W R I T E ( 3 . 5 2 5 > 

525 FOflNi (NPAR )«9X»NlN IN»5X«SUM OF StUARES* 
:T> NPART ... IT«5X«StB»8X*Q/0» 10X «EPS* 11X »NAME* f 
URE*5X»PASAMETERS USED TO OBTAIN SOB*/) 

00 502 NCNB-1.NC0MB 
NUSED*0 
00 503 K.l.NP 

503 KLAS(K1«0 
NPART«NCMB 
NCB-1 S KC6-I ! 
00 50b I'l.NCMB 
NC6>NCa>(NPl-I> 

0 0 5 0 6 I T H ' l . N C B 
5 0 7 0 0 SOB K 1 « J . N P 

I F ( K L * S < K I . E 0 . 1 > t 
K L A S I K L 1 

5 0 8 N U S E D ' N U S E O ' 1 
GO TO 5 1 0 

5 0 9 K L A S I K L O 
N U S E D * N U S E 0 - 1 

5 1 0 I F ( N U S E O . N E . N C M B ) 1 5 0 7 

l N S E R T - 0 
DO 5 1 1 K = l i 
I F I K L A S ( K ) . 
N S D ' N S O ' 1 
J P U P I K i*NSD 

NSD-NUSED 

01 GO TO 512 

TO 511 
5 1 2 i N S E R T M N S E R T ' l 

J P I I P ( K ) ) = I N 5 E R T 
5 1 1 CONTINUE 

DO 5 1 3 K=1 .MPAR 
5 1 3 I P ( J P ( K ) ) = K 

RETURN 

S i t S Q M N ' S Q M I N ( N O C L C ) 

S Q O O » 1 0 0 . » S Q H N / S Q R E S 
W R I T E ! 3 . 5 2 7 ) N P A R T . N R I N S U B 1 2 5 ) • S 9 M N . S Q 0 0 . E P S . ( I P ( J ) . J i 

5 2 7 F O R M A T U H * X . 2 I B . E 1 * . S . F 8 . 3 . E I 5 . * . 3 2 x 1 * 1 3 ) 
1 F I S O M N . G E . S O R E S H ) GO TO 5 3 0 
SORESM.SOMN S NPSAVE-NPART % NCSAVE-NCB 1 S O 0 0 S V S O O 0 
0 0 5 3 1 J - l . N P 

5 3 1 1 P X C 1 5 . J ) ' I P ( J ) 

N A H E ( I P U ) ) 

XGEOM 

H R I T E I 3 . 5 3 5 ; 
5 3 5 F O R M A T ( 1 H . * 3 X * * « * 6 X » > » ) 
5 3 0 CONTINUE 

I F U T H . E Q . l l W R 1 T E < 3 . 5 3 6 
5 3 6 F O R N A T t l H ' I * ) 

I F l N C M B . E Q . 1 ) W R I T E ( 3 , 5 2 ' 
S2B FORMAT(1M*62XA10> 

1F1NRINSUBI5).GT.0) WRITE(3.539 
529 F0RMAT(lH*7*XE12.3) 

DO 516 K.l.NP 
516 1PIK)>ISTAR(K> 
506 CONTINUE 

•RITE(3.523) 
523 FORMATUH ) 
502 CONTINUE 

0 0 5 3 2 J - l . N P 
5 3 2 I P I J ) > l P x l l 5 . J ) 

0 0 5 3 b J « 1 . M P A R 
5 3 0 J P U P ( J > > 0 

W R I T £ ( 3 . * 2 > 
WRITE(3.5331 NCSAVE.NPSAVEfStRESM.SOOOSV 

533 FORMAT» 1H *BEST SOLUTION FOUND IN«/1H01*> IB.BXEH.5.F8.3* •••*) 
NPART-NPSAVË 
NC>2 » NOCLC3 
N U M B R ( N O C L C ) - 0 S E P M I N f N O C L C I ' . O 
H R I T E ( 3 < 5 1 5 ) 

5 1 5 F O R M A K / / 1 H «NEW I N I T I A L P O I N T OBTAINED BY COMBINATORIAL SEARCH CO 
• U L D B E « / / 1 H 2 X * K * 1 0 X * A ( K ) * B X * T O BE U S E D * / ) 

0 0 5 1 7 K ' l . M P A R S I j . I P ( K ) 
W R I T E ( 3 . 5 1 8 ) I J . A ( I J ) 
I F ( K . L E . N P A R T ) W R I T E ( 3 . S 1 9 ) 

5 1 7 CONTINUE 
5 1 9 F O R M A T U H . 2 9 X * « * ) 
5 1 8 F O R M A T U H I 3 . E 2 0 . 1 0 ) 

RETURN 

END 
•DECK H I N 

SUBROUTINE M i l 

REAL M 
• C A L L O I M M I N 
• C A L L DVAR 
• C A L L O F I X 

L E T L I S T . I T A N . S T A R T . S T E P . I T I M E S . L P X . J U M P ) 

INTEGER END 

CURVATURE I N 0 1 S E C T I O N OF CRCTN 

I F I N R I N S U B ( S ) . E Q . O ) GO TO 5 0 0 0 
0 0 130 U l t N D A T A 

I F K S I 1 ) = F J S U ) " . 0 

00 1 3 2 J - l 
I F ( J - L ) 13 
K « ( J - 1 ) « ( 2 
CO TO 1 3 2 
K * ( L - 1 ) M 2 
K S I J L K 

0 0 1 3 5 1 - 1 
F r t S S U M - . O 
0 0 1 3 b J . 1 
K » K S ( J ) 

.NPART 
3 . 1 3 3 . 1 3 * 
• M P A R - J ) / 2 » L 

• M P A R - L ) / 2 * J 

NDATA 

NPART 

F K S S U M > F K S S U M * F A A ( I . K > » C R C 
F K S S U M > F K 5 S U H * C R C T N ( L ) 
F K S U L F K S 

CONTINUE 
DO 1 3 7 I « l 
F J S S U N - . O 

[>0 1 3 8 J . 1 

D ' F K S S U M 

N O * TA 

•NPART 
F J S S U M . F J 5 S U M . F A ( 1 . J ) » C R C T 
F J S U l ' F J S S U M 
CONTINUE 

F J S J S * F J S « S - . 0 
DO 1 3 9 1 - 1 
F J S J S - F J S J 

•NDATA 
b * F J S ( I ) « 2 

F J S K S . F J S K S ' F J S I D ' F K S U ) 
0 0 U O 1 * 1 
F S S U 1 - F K S 
F S S ( I ) = F S S 
DO 1 * 2 K » l 
F J = . 0 
ÙO 1 * 1 1 - 1 
F J = F j . F A I I 
T j F S S I K L F 

0 0 1 9 5 K * l 

0 0 1 9 2 J = l 

•NDATA 
( I ) » F J S J S - F J S ( I ) 
( 1 ) / F J S J S « » 2 
•NPART 

•NDATA 
. K ) » F S S I I ) 

.NPART 

•NPART 
I F ( K - J ) 1 9 3 , 1 9 3 . 1 9 * 
D C - D C - M O O 
GO TO 1 9 2 
D C = O C ' M ( J * 
CONTINUE 
D C U R V E ( K ) = 
CONTINUE 
F S 5 G 2 = . 0 
0 0 I B * 1=1 
T j D i . 0 
0 0 I B S K-l 
T J O H J O ' F A 

1 . J H T J F S S U ) 

1 . K ) * T J F S S ( J ) 

DC 

•NDATA 

.NPART 
l . K I ' O C W V E I K ) 

F S S G 2 « F S S G 2 ' T J 0 » T J D 
CONTINUE 
X G E 0 ( N C ) = S Û R T ( F S S Ô 2 1 

I F I I T I M E S . 
I F ( L E T L I S T 

0 0 2 0 0 K = l 

N E . O ) GO TO 5 0 0 0 
. t O . 0 1 RETURN 

HPAR 

E ( 3 . 1 * S ) XGEOINC) 

6 . I 7 . 3 X A 1 I 

W R I T E ( 3 > l * b ) 
b F O R M A T I / 1 H f G E O D E S I C C U R V A T U R E / I N D I R E C T I O N OF SEARCH/EMANATING ' 

• 0 M * * X * K * 7 X * N A M E * / ) 
0 0 1 * 3 K ' l . M P A R 
K P - I P ( K ) 
• R I T E ( 3 . 1 ' 
I F ( K . E Q . 1 

) CONTINUE 
. FORMAT U M 1 5 X E 2 l . e < E l l 
i F O R M A T U H . E 1 5 . 6 ) 

W R I T E ( 3 . 1 * 7 ) 
I ) R I T E < 3 > 1 9 9 ) 

) F O R M A T U H (PARAMETER 1 
f F O R M A T U H 7 * ( * - * ) / / l 

) CONTINUE 

I F ( N R I N S U B ( 9 ) . G T . 0 ) GC 

NEPSO IS USEC 
WHICH MEANS 1 
NBREAK SAVES 

TO DETECT WHETHER SUB MIN WAS ENTERED WITH EPS-.0> 
AT NO PROGRESS CAN BE MAOE. SEE LABEL 300 
HE HREAK OOWN CONDITION OF THE PARAMETER VECTOR. 

NOWXHA CONTROLS WRITE OFDA VECTORS Br 
LA5T ARGUMENT VARIABLE OF SUBPROGRAM OFDA 
12OO0 FOR LISTING SOB-EPS RELATIONSHIP U S AUTOMATICALLY 

NEPSO»-! 1 NBREAK-3HN0 1 NPWAS'NPART 

LIST-LETLIST 
I33-INK3 1 !77«INr 

) CONTINUE 
KFIX=ITCON0=EPSLB»0.0 
NPOO'NPART » IFCn 

--PARAMETER CONDITIONS. 

NRINSUB( ' 
(LIST.LE.1) GO 

JK7 1 INKS^II 

-NR1NSUB( 91-

LIST-L1ST-2 

(Y. TO BE PERMUTED. ELSE 60 TO 300---

TO 300 

320 CONTINUE 

> ROUTINE MIN1MUM-- N 1 T I A L \ •LUES--

} CONTINUE 
IFZERO=0 
IFlEPS.GT.10.) EPSSE-EPS-10. 
HOWE=EPS % IFIHOKE.GT..O) GO TO t 
WRITEO.IB) HOWE.EPSBE.NOCLC 
NEPSO-NOCLC 

) FORMAT(/IH0*EPS WAS*E13.5* EPS IS N0H*E13.5* 
IF(NOCLC-NEPSO.NE.l) GO TO 8 S HRITE(3.28) NEPSO. NOCLC 

i FORMATI//1H *SUB MlN ENTERED WITH EPS- 0*//lM «CORRECTION VECTOR P 
•HOBABLY A ZERO VECTOR*//!« *OR*//l« «PARAMETER VALUES TOO CLOSE TO 
• B0UN0S*//1H »STOP 60 IM1N)* 
•///1H «FIRST TIME WAS IN CYCLE N0*I3*. SECOND TIME IN CYCLE NO*I3) 

STOP 60 

E P S B E - E P S = . 0 5 

* C Y C L E * I 5 / ) 

CONTINUE S 
I 2 O O O - 0 S 
S O T N N - S O T N P - S 
I F I I T A N . N E . O ) 

I 3 3 - I N K 3 $ 
I X - 3 4 I F 

E P S U e = £ P S * E # S - E P S 
I N E G = 0 

GO TO 5 
I 7 7 = I N K 7 t I N K 3 - I N 

I T l M E S . G T . I X ) I x - I T I M E S 
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. MRITEUNK3*15I S «MTEIINK3.1««) NOCLC • MRITCUNKStOll EPSM 
1$ FORMATUH1.39(#-PI) 

I M FORMAT <IMM«*»xEO M1N»»STMT OP CYCLE N0PI6P • * • • / > 
• i FORMAT U M « P S I N I T I A L « * E I 2 . 6 I 

N50»1R£ON»IREOP-EPSN»EPSP«TNSOP-.0 
IRNLOM-IRPLOtf-0 

SQLM-50A 
SAVERN>RN 
EPST-EPS 
EPS-.O 
IFIITAN.Eo.O) EPS-START 

10 IT0-1 S GO 10 1000 

S «EPS-EPS t IFI ITAN.4T.01 «O TO 3 

- I F 80UNOS DO 3000—ELSE 00 TO 4000» 

3000 lFHNBL.EO.O.OR.NSfl.EO.ll.AND.ITAN.NE.OI M TO «000 
C 
C KFIX COUNTS USE OF O.S*IEPSLB*EPSUBI> TO K .LE. ?0 
C KFlXClKl IN'COMMON COUNTS THIS POR EACH PARAMETER 
C EPSDIF-EPSUB-EPSLB NHICH SHOULD K .LE. .05-EPSU8 
C ITCOND-XFIX IF .GT. 0 THAN PARAMETER VECTOR FOR NPART MILL M 
C BROKEN DOWN UNLESS ON RISING «RANCH KITH 
C POSITIVE SLOPE 
C NBREAK IS USED TO SAVE THE USE THAT 15 MADE OF BREAK DOW* OPTION 
C THEN NO ITAN-0 OPTION IS HONOURED 
C KDELETE IS THE INDEX OF THE PARAMETER TO BE DELETED 

1FI1TAN.EO.0.AND.HBL.EO.0I SO TO 4000 

—IF OUTSIDE RANGE* 60 INSIDE 

Kit GO TO 326 

INSIDE - 1 
00 325 1M*NBL S K-IBI 
IFIBIKI.LT.AL6IKI.0R.AUBII 

325 CONTINUE 
1FIKF1K.6T.01 K-KOELETE 

C 
IFIKFIX.EO.OI GO TO «000 S GO TO 32T 

326 IFIITAN.EO.OI 60 TO 399« 
IF(KFIX.E0.0.ANO.LIST.NE.01 rtRITE(INK3*306) 
IF(KFIX.E0.0.AND.LIST.E«.1) MRITE<3.*> 

306 FORMATI//1H 4XPPAR N0*4X*EPS INSIDE»5X*»-LOWER BOUND—«PAR.VALUE-
•-.-UPPER BOUNO-»#4X«PS OUTSIDE«** INSIDE ITER/PMPSXPNEXT EPSP5X 
•#N0-0F-CHTR1ES*I 

INSIOE-0 
KDELETE »K 
IFIKFIX.GT.OI GO TO 327 

EPSLB-CPSM S EPSUB-CPS S M TO 32« 
327 IFIINSIDE.EO.1) EPSLB-EPS 

1FUNSI0E.EO.OI EPSUB-EPS 
32« EPS*0.5*IEPSLB*EPSUBI S KFIX-KFIK*1 S KFIXC(K>-KFIIC(Kt*l 

EPSDIF-EPSUB-EPSLB 
IFILIST.NE.OI HR1TEI3.324) K*EPSLB>ALBIKI*BIKl*AU«(K>*EPSU«*INtIOE 

•*KFIXC(K).EPS*KFIX 
326 FORMAT(1H I « )C17 .6 tE17 .6 t2E l * *6>E17 .6 . I 6 * I « *E lB .6 . I I 0 l 

I F I K F I X . L T . 2 0 . A N D . C P S O I F . G T . . 0 5 « E P S U O I «0 TO 2000 
EPS-CPSLB S ITCOND-KF1K S KFIX-0 S IF tL ISTtEO. I I WRITE!3.*) 

6 FORMAT I / I 
60 TO 2000 

3999 IFIEPS.GE..OI GO TO 399B 
EPS«CPS*STEP S GO TO 101 

399« U-NSO-1 S ITCOND-1 S 

202 
203 
206 

- 6000 ROUTINE MINIMUM -CALCUATION OF FUNCTION VALUES— 

6000 CONTINUE 
C 

NR1NSUSI25I-NSO 

CALL FNCTN1B*0*SOB*0*1*VCLCB*VOCB*0*01 
CALL DFOA(B*HB*TCLCe*yOCB*0t0tNOMXHAI 
CALL NRMEO(VOCB*BNORH.O*I*HB*0t0>N02l 

IF412000.6E. i l GO TO 2001 
IF(SM.LT.SOLOV) EPSLOM-EPS 
IFfSOB.LT.SOLOW) 5OL0M-SM 

C————CALCULATION OF TANGENT TO <CPS*SQBI-RELATIONSHIP— 
C 

HMORM-HCRCT-TNSOB-.0 
C 

SG-BNORNINTI 
DO 205 I*)*NPART 
BN>t-2.l«BNORNIII 
TNSaB-TNSOB*BN*CRCTNIII S HNORM-HNORM*«N»2 

20$ HCRCT»HCRCT«CRCTNIII«2 
HNORM-SMTIHNORHI 
HCRCT-SORTIHCRCTl 

C 
U S E T N B - T N S M 
TN2-TNSOB/HCRCT 

IFUTAN.EO.21 USETNB-TN2 S I F I ITAN.CO.31 USETNB-TN3 
IFISM.LE.SOLOMI TANLOM-USETNB 

C 
IF(ITCON0.6T.0.AND.USETNB.ST..0l ITCOND-0 

C 
IFINSB.GT.l l GO TO 206 
IF(A8SITNS0BI.LT..1E-10I WHTEt3*203> TNSM.NOCLC 
IF<AB5ITMSOBI.LT..1E-101 GO TO M 

203 FORMATI//IH #TNS0B-«£14.$# .LT . .1E-10* GO TO BS IN MlNt 
• 1 5 / ) 

RNK$-RN«*RN*USETNB S RPHtS-RP-1-RpMUSETNB 
IFIRNRES.GT.fr.lE-OOII RNftCS-RN—. 1E-0* 
1FIRPRES.LT..1E-0BI RPRCS-RPv.lE-H 

C 
206 GOTO f l t2 *3*2>3 l * ITO 

L IFIINK3.EO.T.AND.LIST.EB.11 URITE(3tl6l 
1FUNK3.E0.T.AHD.LIST.EO.1I WRITEOtlOO) NOCLC 
irtUSCTNB.LC.O.O.M.ITMI.E«.«> «0 TO 120 
IME6-INEG*1 
00 121 I«1*NPART 

I CRCTNIII—CRCTNIll 
*RITEI3*1221 MOCLCtUSETMBtEPStSOB 

227 
22« 

3999229 
230 

399S231 
232 

— 233 
236 
235 

6000236 
237 
23* 

262 
263 
264 
245 
266 

253 
256 
2SS 
256 
297 
250 
259 
260 

MITE(3*129> 
129 FORMATt/lH «IF THIS OCCURS TWO TINES IN THE SAME CYCLE« O M N I U M 

•TERMINATES At STOP 61 IMINI tV/ t 
1 2 2 FORMATI1H0PCORRECTION S I G N HAS SEEN CHANGED« I « W I N C T O £ # F V | H « K 

•CAUSE T A N - P E 1 6 . S « AT E P S - P C 1 4 . 9 / 1 H « X » $ « B - * C 1 6 . S / I 
NSO-0 S 1 F I I N E G . E 0 . 2 I S 1 0 P » 1 S RH-SAVERN S RPÂ*AVCRP S « O F 0 , 1 « « « 

1 2 0 1 F I 1 N K 3 . E 0 . 7 I GO TO 1 0 2 S VERSCHL-SOB-S« 
PQ-CP$BE*EOS 
MRITEItMK3*101l EOS*SQB.SO*VCftSCHL*PO S WHITE f INKS* 1 « » 

101 FORMATdH »REDUCTION -PE I2 .6 * X P 9 » ( S M IN F«CTI0J«E12.t»*l 
•«JNORM.NTI IN NRNEO>«E12.5*3X«DIFFER£NCe>PE12.» IP/1M O P t P l W lp 
•E12.4I 

103 FORMATI1H0* I #TXMII)#I|X#CRCTHlII«7X«CPt*CRCTMtIIP«IIPT«tAAL*A 
•X*NORMAAL»9X0DELTAiVI 

DO 106 I-ltNPAR S 01-PO*CftCTH(I> S « 2 - A < ! P t I I I * « l 
106 WRITE<INK3*104) IPUI*AUPUII*CRCTNCI)t01*W«AN0RHfl>*«<(.Tftti> 
104 FORMATdH I3*6E17.6I 

IFIITAN.EO.O! MRITE(3*U3) START.STCPtlTINCS 
123 F0RMATI//1H »START -AT EPS-0E16.6P* STEP LCMTH-PC16.G«* N» OF STEP 

•S«#I3I 
•RITEI1NK3.14I S HRITElINOtlOBI S MITE.1NK3*1I1 

14 FORMAT(/l 
10B FORMATdH S5<M-«>> 

11 FORMATdH 29X#t»9K*T A N 6 E N T*I61»I09X*L E N • T H#t 
-R ITEI INK3.U1I S UR1TEIINK3.112I 

111 FORMATdH ftXWPSM0X*5QA*7X*l#5A»A«S.MOIPOIKCT.PMPCOS«UPttMHt 
M NORMIPH1)FSX«CORR.VECT*I 

112 FORMATdH 29X*t»44X*>» 
»R1TEIINK3.113I EPS*SO.TNSM*TN2*TN3*HM0RN*HCRCT 

113 FORMATdH 2E14.6* l»3£14.6« IP2E16.61 
«RITE<1NK3*112I S WRITE dNKS.lOOI 

109 FORMATIlH 551»- #1) 
102 IFIINKT.EO.T.OR.LIST.EO.O.M.ITAN.EO.OI GO TO 105 

•RITEIINK7.14I S MRITCIINKT.61 
6 FORMATdH ÏOX'NEGATIVE SIDEM3XPP0SITIVE SIOEPI 

-RITEdNKT.161 S W R I T C U N K 7 « 7 I S MRITCIIHKT.TOI 
16 FORMATdh*S2X*101 

7 FORMATdH 6X»EPS#25X*SO»«X>W0U5X*EPS*25XPSQ#MP«C0«l 
70 F 0 R M A T U H * 2 1 X « T A N # 5 3 X » T A M < ) 

«IRlTEtIMK7*lTI 
17 FORNATdH*52X*)*/l 

105 IFUTAN.NE.OI GO TO 107 

—PRINT (EPS.S«)-RELATIONSHIP 

IFIITCOND.GT.OI GO TO 116 
IF (NSO.EO.21 MRITEdNK3,125l 

125 FORMAT<1H»78X#SL0PE FROM 1ST TO 3RD P0INTP12X 

IF(NSO.EO.2) $02«SQ 

S 
S 
n« 

•?! 
M« 
M l 

% 
M * 
« 7 
31« 
31« 

3 » 
316 
3 » 

"S* 
l AT 1 

IFlNSO.EO.il SOl'SO S 
1FINS0.LT.3I 6D TO 126 
SQ3*SQ S CHORD>IS03-S01l/f2.*STEP) 
HRlTEdNK3>127) CHORO 

127 FORMAT(1H*62XE14.SI 
SOI«502 S 502-503 

126 CONTINUE 
•RITEdNK3*124l NS0>EPS.S0*TNS«BtTN2*TN3 

12« FORMATdH I3*E12.SiEI3.5*> l#3E14.S0 (#1 
IFINS0.GT*1> MRITE(1NK3.12«I NSO.SO 

12« FORMATdH*100X.I10*E25.151 
IFINSO.LE.IXI GO TO 1000 

116 HRlTEIINK3ilOS> 
IFtlTCONO.GT.OI HR1TE13.114I K.BIKI.NS« 

114 F0RMATI/1H «PARAMETERS HAVE «EEN CONTR0LLED»5XM<*I3P » « f l * * * * * 
• DUT OF RANGE AT NSO"*!*//> 

NPH A 5-NPAR T 
R'SAVER S RN*SAVERN 1 RP«SAVERP S INK3-133 S INKT*IfT 
EPS»EPMIN(NDCLC) S 12000-2 S NOMMA—I S HBL«0 S BO TO « « M 

C _ — UNTIL THE FIRST TIME A POSITIVE TANGENT 1$ 

107 ÎF(USETNB) 20.21*21 
20 ËPSN*EP5 

TNSON-USETNB 
SOTNN-SO 
IF(TNSON.OT.RN) I R E O N - 1 
lFtSOB.LE.SOLOtll IRNLOM-IREON 
IF IL ISTI 22*22*23 

23 WRITEO*220I EP5N*TNS0NtSOTNN*IRE«N*NS« 
220 FORMATdH 3C14.6*15 I I6 I 

tZ IF(lTCOND.GE.l) GO TO 67 
IF(EPS)25*25.26 

25 EPS-EPST 
GOTO 10 

& 

26 EPS-I2.)*EPS 
IFIEPS-10.01 10*27*27 
EPSP- 10. 
ÜPSN- 10. 
NSO-NSO-2 
OEPSaEPS 
60 TO 3 

"TANGENT FIRST TIME POSITIVE— 

I EPSP-EPS 
TNSOP-USETNB 
SOTNP-50 
IFfTNSQP.LE.RPI 1REOP-1 
IFtSOB.LE.SOLOMI IRPL0M-1RECP 
IF ILISTI 51*51*24 

. -RITEI3.221) N$e*EPSPtTNSOPtSOTNP*lRC«P 
1 FORMATdH 47X*I6*3X*3E14.6.1SI 
I EPS-EPSP-R"TNSOP»IEPSP-EPSNI/ITNS«P-TNS«NI 

—CHECK BOTH CONDITIONS FOR POSITIVE ANO NEGATIVE 1 

IN CYCLE* 

262 
263 
266 
265 
266 
267 
26B 
269 
270 
271 
272 
273 
276 
275 
276 
277 
27B 
279 
200 
201 
212 
203 
204 
» S 
*B6 
2BT 
2 M 
» 9 
290 
291 

C 

C 

C 

c 
c 

2 

40 

50 

33 
32 
36 

41 

43 

53 

V 

ITO-2 S GO TO 1000 

CONTINUE 
IFlUSETNBI 40*40*41 

EPSN-EPS 
TNSON-USETNB 
SOTNN-SO 
IF(TNSON-RNI33.33.50 
IRCON-1 
IFfSOO.LE.SQLOMI IRNLOM-IREON 
IF IL ISTI 34*34*32 
MRITEI3*220I EPSN*TNSQN*SOTNN*IREGM*NS« 
IFIITO.EO.41 GO TO 30 
GO TO SI 

EPSP-EPS 
TNSOP-USETNB 
SOTNP-SO 
I F I T N S O P - R P I 43*43*53 
IREOP-1 
IFISOB.LE.SOLOMI IRPLOM-1REBP 
IF ILISTI 30*30*52 
MR|TE(3*221I NSO*EPSP*TNSOP*SOTNP*1M«P 

S. 

» 

•II 
«13 
• ! • 

«it 
*IT 
*U 
. 1 * . 
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30 EPS-EPSN-R*TNSON»(EPSP-EPSI«»/(TNSBP-TNS*.> 
lfllT0.EQ.4J GO TO M 
GOTO 42 

TERMINATION OF PROCEDURE OF FIN0IN6 THE MINIMUM— 

62 QEP5*EPS-0.5*(EPSP*£PSNI 
ITO-3 S GO TO 1000 

65 I TO-* S GO TO 1000 
66 ITO-5 S GO TO 1000 

434 
435 
«36 
437 

••438 
6001 

•DEC« 

CIRCULA» SEARCH FOR PHI AND LAMBDA« 

CALL BACK(NPART.0.0*0.0) 
GO TO 3000 
END 
At sa 
SUBROUTINE AISB 

3 CONTINUE 
C 
C CHOOSE SECOND BRANCHE OR THE FIRST ONE IF THE SECOND HAS NO MINIMUM 
C FINAL CHOICE IS NOW FOR LOWEST VALUE OF TAN IN STEAD OF THAT FOR SO» 
C THIS HILL BE ACHIEVED BT JUMP PARAMETER IN ARGUMENT OF MIN BT 0 

IF(JUMP.EO.O) GO TO ST S 
IF(IRNLOW.EQ.l) GO TO 6T 
IF(NSQ.GE.ITIMES) 00 TO 67 

SO IF(IRPLOW.EO.l) GO TO 6T 
1F(NS0.GE.ITIHES> 00 TO 67 

C 
C — —PROCEED WITH ROUTINE — 
C 

87 CONTINUE 
IF<0EPS.E0.EPSLOW> GO TO SB 

67 EPS'EPSLOW S SO-SOLOW 1 
IF(EPS.NCO) GO TO 88 
IFUTCOND.GT.O) GO TO 88 

IFIEPSLOW.BT.EPS> GO TO BO 

USETNB*TANLOW 

IFZERO*IFZERO*I 
tPSBE-0.1»HO»£ 
•RITE<3<86> HOWE.N0CLC.EPS.IFZERO*SO.NSB.EPSBE 

i FORMATI////1H05SX* I*11X*1*/1H 55X* I*/1M 49I#**)6X* I*I3X***9X 
•*2*/lH *«*5X*EPS3#E15.8.5X*N0CLC »#14. 7X**#6X* I*/1H *• EPSMIN-
•*E15.8.5X*IFZER0»*I4.TX#**6X.' 1*1 SX*« "*/lM **#5X*SQB-*E15.8 
•>SX*NS0 »*I4*7X***6X* [*7X***9X*3*/1H *• FUNCTION PROBABLY NOT 
• CONTINUOUS NEAR EPS=0 **6X» 0*/lH ***3X*REP£AT SU8 MIN WITH 0.1 
••EPS IF IFZERO Ï 5 **6X# I • »»/IM *• PROCEED WITH EPS •* 
•E12.5.15X***6X* 1 **/lH 49<***16X* I - - - . _ . 
•*/lH 55X* +*17X***/iM S5x*LOWEST*5X*N0T ACCEPTED AS MlNlMUH#/lH 
•e.5X*N0 JUMP HAS BEEN PERFORMED*/) 

(IFZERO.GT.31 NCYCLS'NOCLC 
' END-IREP 
< GO TO 88 

RN=SAVERN S RP-SAVERP S R-SAVFR 

IFUFZERO.GT.: 
1FUFZERO.GT.3) 
HOWE=EPS-EPSeE 

I TO ( 

COLLECTION OF RESULTS— 

i SOMIN<N0CLC)«SO 
EPMIN(NOCLC)-EPS 
NUMBR<NOCLC)*NSQ 
12000e! * NOWXHA" 

2001 NOWXHA"! IF( I2000.EQ.2) RETURN 
GO TO 2000 

IFUNK7.EÛ.7) GO TO 89 
WRITEIINK7.14) S WRITE«INK7.109) 

B9 JNK3>INK3 I IFILIST.EO.1.OR.LPX.QT.0) JMK3>3 
•RITEUNK3.90) NSO % WRITE (JNK3.91 ) 

90 FORMATUHO<!9X»»««MIN1MUM FOUND IM* I5* ITERATIONS****/) 
91 FORMAT 11H 6X*EPS*11X*TAN»11X*SM12X*R*12X*BP*14X*USE0 TANOENT« 

•UX*S0B*) 
WRITE<JNK3t7B) EPS.USETNS*SB*R*RP*ITAN.SQ S WRITE(JNK3*1081 

78 FORMAT UM 5E14.6*8X*N0*I6*e24,12) 

I F I I <5Q.LE.SBA). AND.(SB.LE.SOTNN).AHO.ISB.LE.SOTNP)) 
•.OR.(RN.EQ.0.1*RNR£S).OR.EPSP.GE.10.) »0 TO 63 

IRNLOW-IRPLOW-0 
IREQN"1REOP»0 I RN-0.1*RMRES I RP-0.1*RPRES I 80 TO 2 

63 RN'RNRES S RP-RPRE5 

WRIT£(1NK3*B2I 
82 FORMAT</1H04X*K*9X*AIK>*11X*CORR>CRCTN*SX*EPS(OPT>*CORR*BX*B(K>* /> 

DO 83 I-ltNPAR 
CORRUI-CRCTNU) 
QaB( IP<l>) -A<IP( I ) ) 
•RITEUNK3.S4) IP ( I > .A ( IP M ) ) *CORR< 11 *B*B( IP( I > > 
IF(INK3.E0.3.ANO.KFIXCI1P<I)).GT.O) WRITE(INK3.85) I P U ) 

B3 CONTINUE 
84 FORMAI(1H 1S.OE17.61 
65 F0RMAT(lM*84Xi*CONTROLLED PARAMETER WI* I3* l*> 

IF<JU«P.GT.0.AND.SO.GT.$QA)WRITEI3.92)JUMP.NOCLC>SQtSQA 
92 FORMAT(//lH 10X*JUMP-*I2*i SQMlN ON 2NO BRANCH I N CYCLE*13* EQUA 

"LS*E1».6*. S0A-*E14.6* - • • • < * / / ) 

9 WRITEIINK3.H0) 
110 FORMAT(1HO*»*»MIN XE«*»0**** / ) 

RN'SAVERN S RP-SAVERP S NBREAKOHNO 
IF(LETLIST.LE.I) GO TO 115 I 1NK3-I33 S 1NK7-I77 

115 1FIITCON0.EQ.0) GO TO 305 

; BREAK DOWN NPART 
POLICY FOR BREAKING DOWN NPART OR NOT 

SEE ALSO CALCULATION OF TANGENT 
IF ON RISING BRANCH (TAN.GT.0) NO BREAK DOWN TAKES PLACE 

NPARTX TO BE OEFINED I «EXT SOLVE 

NBREAKOHYES 
IF$T-JPIKDELETE>*1 
IFIIFST.GT.NPART» GO TO 303 
DO 302 I-IFST.NPART 
J P ( I P ( I ) ) * I - 1 

302 1P(I-1)-IP(I> 
303 NPWAS'NPART S NPART-NPART-1 
307 IP(NPART*1)'K0ELETE 

JP(KDELETE)«NPART»1 
IPX(N0CLC*ltKOELETE>*lH. 
EMINE'EPSUB-EPSLB 
•RITE 13*304) EPSLB.KFIXC<K0£L£TEI*K0£LETE.EP$UB.N3Q>ENINE.SO.NPART 

• • N O C L C > K D E L E T E . K O C L E T E I B ( K D E L E T E ) I N A M £ ( K O E L E T E > . K D C L E T E 
304 FORMAT(//1H *EP5 INSIDE MEI4.6.5X**«* ITER »*I3» X FOR PAR*13 

*/lH *EPS OUTSIDE -»E14.6.5X**** NSA «*I3 
•/1H «DIFFERENCE **E14.6*5X*****/1H 33X»«» S M »*E16.10 
•/1H *NPART NOW- *14* IN CYCLE NO*14* •••«/IN «PARAMCTER NO*13* HA 
•S BEEN DELETED ••• B<*12*1>*E16.10*$X'NEU CONSTANT PARAMETER 
• > *A10* » NO*I3/> 

IFIEPS.EO..0) EPS-EPSLB 
IFINPART.EO.0) CALL INITL 

EXTIME( 9)"EXTIHE( »)*FS-ST 

iMIAL. HYPERBOLIC OR EXPONENTIAL EXTRAPOLATION— 

547 
548 
54» 

3001 CALL LlHYPEX(LPX*10.0*0.0.0.0) 
1FI1NEG.EO.0) GO TO 3000 
00 3002 I»1.NPART 

3002 C R C T N U ) - - C R C T N 1 1 > * GO TO 3000 

. ÜF1X 

IFINRINSUBUOI .EQ.OI INXPCT-0 
CPT1ME-SEC0NDIST) 1 NRINSUS<10)"N 
1FIINK3.EÜ.7) GO TO 15 
«R1TEIINK3.6) 

b FORMAT (1M0***«NEW POINT*»«*/) 
Q"SQB/SQA«100. 
WRITE(INK3>43> 0 

3 FOflMAT(lH0*SQB«*Fl0.3.2X*PERCENT OF • 

NRITCI3.50) 
0 FORMAT(1H 23X*PARAMETER VALUES*/1H 4J 

•9X*C0RR."9X*EPS*/) 
DO 51 I«l.NPAfi 

IINSUBUO)*! 

t«0LD*9X*»-AI 

IF(CORRII)160.61.60 
I QZ'.Q 

GOTO 51 
) 02'Ql/CORRII) 
i MRITEI3.52) IV.AIÏV1i01.Ö(IV).CORR111.tZ 
! F0RMATI1H I5.5El4.5l 

i 00 72 I=liNPAR 
! HAHB(I) = (MBU)-MA(II 1/HA(I) 

IF(INK3.NE.3.AN0.INKB.NE.3.AN0.N0CLC.NE.2> GO TO |6 
IF(LSUMRY.LE.l) GO TO 16 
WRITEO.eOl) 
IFINRlNSUBi 9).NE.0)WQITE(3.2O2) S IFINRINSUB<5).NC.OIWRITE(3*203) 
•RITEI3.«4) 
IF(NfllNSuei 9 ) . N E . 0 ) W R I T E ( 3 . 2 0 5 ) S IF(NRlNSUB(S).NE.0)WR1TEO.206) 
•RITEO.20T) 
00 211 I H . MP AR l NRITE(3>20B) IP ( I ) ,HB<I ) 
IF(NHINSUBI 91.NE.0) WRITEI3.209) HA(I)tHAH8<I) 
IF(WINSUB(5).NE.0.AN0.I.LE.NPART) WRITEC3.210) FFAAMH11)•IP(I> 

1 CONTINUE 
[ FORMATI/1MO*COURSE OF SCALE FACTORS *) 
! F0RMATI1H*2SX*.--ACCQRDING TO DIFFERENCES—**) 
) FORMAT(1H.60X**—ACCORDING TO DIFFERENTIALS--**) 
. FORMATUMO* K*10X*HB*) 
i F0RMATI1H*32X*MA*8X*IHB-HA)/MA<) 
> F0RMATllH*6TX*D(MA)0A/HA*9X*K*) 
t FORMAT(1H ) 
I FORMAT UH I3.E16.5) 
) F0RMAT(lH*19X.E19.5.E14.b) 
) F0RMATUH*62X.E15.5.110) 

> DO 30 1=1.NDATA 
YCLCAI1)=YCLC8II> 

) Y 0 C A I 1 ) K Y 0 C B < I ) 
5QA>SOB 

DO 20 1*1.NT 
HA(I)-HBM) 

> ANORMIIXBNORM(I) 
DO 10 I»1>NPAR 

) XA(NOCLC.IV)-A(IV) 
IF(NT.OT.MPAR) GO T 
00 ZZ I-NT.MPAH 

I XA(N0CLC.1V)-A{IV) 
1 WRITEdNKSiS) 
i FORMAT(1H0****A IS 

CPTIHE-SECOND(FS) 
RETURN 
END 

EXTIME(10>>EXTIME(10>*FS-ST 

523 
524 
525 
526 

«CALL 
•CALL 

REAL M S INTEGER END 
U1MLIST 
DIMENSION ISYMB0L<4).YPLOTI4),ISCALEI6> 
DIMENSION IFRMT(6).JFRMT(2).BOUNO<3) 
OVAR 
OF IX 

CPTIHE>SECOND(5T> S NR1NSUBC1II»NRINSUBC11)•1 
IFIINDALL.EO.O.OR.INDALL.EO.SO) WRITE(3*1) 

1 FORMAT(1H1) 
NRITE(3.20) 

D F0RMAK///1H 31X*INIT1AL PARAMCTER VALUES*6X*NAMC*/I 
WRITE(J.13) 

) FORMAT(lH 2BXt4^l** * l ) 
NRITEC3.12) 

î FORMATI1H 2BX***40X*«*) 
WRITE«3.11) ( IP<I)*XA<1.IPI1)) .NAMEUPCI))* I -1(NPAR) 

1 FORMAT UM <!BX***15*E20.10*3K*A10i' * * ) 
WRITE(3.12) 
IF(NT.LE.MPARIWRITE(3.11)(IP<I)*XA(1,IP 11)|.NAMEI IP)11).I»NT.MPARI 
IF(NT.LE.MPAR) WRITE(3.12> 
WRITE(3*13> 
WRITE(3.14) 

. FORMATI//I 
•RITE<3.4) 

. FORMAT UM * - - - - - _ _ !_ . _ . _ . . • _ . , • •-!-__ _, ._ , . . ..._-_. 
* I* ) 

•RITE(3tt>> 
i FORMAT UH 4X*EPS*6X*CYCLE MIN*T29*I*T6O*I*44X*I*30X*I*/1^1 * TO 0 
•6TAIN*5X*N0 F0UND*T29*1*6X*S«UARES TO BE £QUAL*T60*I*6X«L E N G 
• T M S T O B E Z E R O I T O T A L L E N B T H S I * /1H 
• * NEXT CYCLE*9X*IN..X*T29*I*7X*SBA*llX*S«F*T60*I*6X*Nr»HtAL*9X*DEL 
•TA*6X*V(S0A-S0F) I*6X*N0RMAL*9X*DELTA I * ) 

HRITE(3*4) 
INKX<0 
00 15 I>l*NOCLC 
1NXX>1NXX*NUMBR(I> 
0-SOHIN(I)-XS0F(I) 
IF(0) 18(19*19 

!0>,9 
60 TO IS 

) O-SQRT(O) 
i WRITE13>7IEPMIN(I).I>NUMBR(I>.StMIN(I)*XS«F(I)*XNRM(I).XDELT11).0 
•.XNORM<l).XDCLTA(l) 

T FORMATUH E12.S.15.17* I*2E14.S* I*3E14.5* I»2E14.5* 1*1 
WRITEI3.4) 
•RITE(3.B) INXX 

» FORMATdM 14X*T0TAL*I5> 

WRITEO.3) % IF(IREP.EO.l) EPTOT-.O 
) FORHAT</1HO) 

IF(NRINSUB(S).6T.0) WRITE<3.5) 
i F0RMAT(1H**EPSIPREDICTED)*) 
f FORMAT(1H*23X*EPS*BX*EPS(0PT)*> 
! FORMAT(1H*.48X*RESULT OF FITTING PROCEDURE*S1*STANOARD ERROR OF 

I ITC(3.47) IRITE(3.2T> 
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•ESTIMATE* SX* N TOTAL COSINE * / I M 4BX#CVCLE-NO MULT.CGRR H 
•ULT.COS*SX*NO NDATA O.P. STAND.ERROR* 7XPCVCLE-NO*«»* COSlNE*T17* 
•N0*T22P<OPTlMUM)*T3T*TOtAAL*/> / 

DO 60 I>1*N0CLC 
EPT0T-EPT0T*EPMINU> 
NDF>DF-NOATA*NRARTX(I> 
SERROft-SORT(SOMIN(I)/DF> 
QCOS«$QMIN(I>-XSOF(I> S IFIOCOS.LT.O.O) OCOS-.O 
QCOS-30RT(OCO$/SOMIH(I>> 
WRITE (3.2«) l*EPMIN(I>*EPTOT.I.XCRLMT(I)*XCOSHT(II.I.NDATA.NBF*SE1tR 

•OR*I.«COS 
IF(NRlNSUB(5).GT.t> WRITE(3.2) EPSNEWU) 

60 CONTINUE 
20 FORMAT UN 12X* I 5 . 2 E 1 3 . 5 . I 1 0 . F 1 2 . 4 . F I 1 . 4 . IS ' * IS, I6 .F13.S. I12*F14.6» 

2 FORMAT(1H«E12.5I 
M I TE (3*261 

26 FORMAT<lH043l*s#l5X60<*-*l5X22(*-*)) 
IFIlNOALL.EQ.OI 00 TO 65 S IF(INDALL.EQ.50) «0 TO 66 

WRITEI3.21I 
MRITE(3.3*1 

36 FORMAT(/1H 13X4TABLEAU OF PARTIAL SOLUTIONS OUT OF CTCLE NO I*/l 
MR1TEI3.3S) U.I-l.MPAR) 

35 FORMAT(JH *CYCLE PART»I*.3DI*) 
MRITE(3*291 

29 FORMAT(IH * NO SOLN*/> 

00 39 K-I.HPAR 
39 ITALLY(K>«0 

DO 36 I-l.NOCLC 
1X>1HX 
DO 38 J-l.MPAR 
I F t l P X ( l . J ) . E O . l X ) ITALLY(J>-ITALLY(JW 

30 CONTINUE 
36 WRITE(3.37) I.NPARTXI It • 11PX<I* Jl • J>1*NPAR) 
37 FORMAT(1H I3*16*4X.30A4> 

WRITE 13*2511ITALLY(111I-l*HPARI 
25 FORMAT«/AH »OCCURRENCE*!4*301*1 

— — — OUTPUT PARAMETER VALUES 

66 WRITE(3*21> 
21 FORMATI///I 

HR I TE (3*221 
22 FORMAT(IH TX* PARAMETER VALUES * / l 

NFST-1 S N8-6 
23 NLST-NPAR 

IFINPAR.GT.N8) NLST>N0 
•RITE(3 .9) (NAMEUPtlM.l-NFST.NLST) 

9 FORMAT(/IM 3X.8(4X.A10>> 
IFtMB.EB.O) 60 TO 00 
JFRNT(11>9H(1H*.000X 
JFRMT(2>"7H*E14.5l 
HRITE(3.641 

60 FORMAT(1H *B0UNDS*/1H «UPPER*) 
DO 69 K-NFST*NL5T 
lFIAUatIPIK>l.GT..90E*«S> M TO 69 
ISKIP-14* IK-1)*3 
ENCODEI«*70*JFRMTfl>) I SKIP 

TO F0rWAT<5H<lH*.*I3*lHX> 
MRITEUtjrRHT) AUB(IF(K>> 

69 CONTINUE 
IMITE(3*70t 

76 FORMAT(IH *LOWCR*> 
DO 79 K-NF5T.NLST 
IF(-.90E*«S.6T.ALB(IP(K)>> GO TO 79 
ISKIP-14*(K-1I*3 
ENC00EI9.70*JFRNTfl>> ISKIP 
NRITEI3.JFRMT) ALB<IP(K11 

79 CONTINUE 
• 0 CONTINUE 

HRITE(3*16) ( IPtDtl-MFST.MLST) 
16 FORMAT (/1H *CVCLE*16*7114./I 

DO 24 I*l.MOCLC 
2 * *RITE(3.17I 1.(XA(1.IP(J1).J-MFST.NLSTI 
17 FORMAT (1H |3*BE14.5> 

IFfNPAR.LE.NBl 00 TO 61 
NFST-NFST*« S N6-N8*6 S WRITE(3.14) f M TO 23 

61 CONTINUE 
lFIINOALL.EO.S«) GO TO 320 

— - — _ — — OUTPUT DIFFERENCES— — 

1FIN0CLC.E0.1) GO TO 62 
DO 45 I-l.NPAR 

45 TOT21I I I - .0 
WRITE(3*21> S 

40 FORMAT(1H TX* 
•O I * / ) 
NFST-l S N0>8 

41 NL5T-NPAR 
IFINPAR.GT.M) NLST-NB 
HRITE(3.16> ( lPtI I»I-NFST*NLSTI 
DO 42 I-2.N0CLC 
00 * 3 J-l.NPAR 
J V - I P O ) S A2A11J1»KA(1.JV1-XAII.1.JV) 

43 T0T21(J>-T0T21(JI*A2AM.f> 
42 WRITE(3.IT) I.(A2AUJI*J-NFST*NLST> 

WRITE(3*44) (TOT21(J>.J-**fST.NLST) 
«4 FORMAT(/1H *TOTAL*E12.5*7E14.5l 

IF(NPAR.LE.H8t «0 TO 62 
NFST-NFST*« 8 M»N8*S 8 Wf)ITE(3*14) S 00 TO 41 

62 CONTINUE 

; — - — _ _ _ — - — O U T P U T SCALE F A C T O R S — — — 

WRITE!3*591 
SCALE FACTORS 
N0>0 

WRITE<3'*21> 8 
50 FORMAT(1H 7X* 

NfST-I S 
51 NLST'NPAR 

1F(NPAR.GT.M> NLST-M« 
WRITE(3.16) ( IP(I1.I«NFST.NLST) 
DO 52 1-l.HOCLC 

52 WRITE(3*17) I . I X H A U . I P U ) ) *J-NFST.NL$T> 
IFINPAR.LE.N«! GO TO 03 
NFSTBNTST*« S NB-MB*« S WRITEI3.I4I S GO TO SI 

63 CONTINUE 

lFINRINSUB(51.ca.0t GO TO 73 

„ — — „ „ „ „ — — . - O U T P U T GEODESIC CURVATURE 

WRITE(3*21) S HRITE(3.7S) S WRITE(3*71) 
7S FORMATI1H 7X*RADIU5 OF GEODESIC CURVATURE IN DIRECTION OP SEARCH* 

• / I N TX***51<*-*>***> 
71 FORMAT U N *CTCLE*9X*ABSOLUTE**X*REL*TIVE TO /SOA/« 9X*T01AL COSINE 

•*BR*/SOA/*9X*/DELTA(NPART)/*5X*IN..X*/> 
NOCLCl-NOCLC-1 
00 72 I-1.NOCLC1 
R0C0CV-R0COCM>9999.999 
IF lXGEOdt.EG..«) GO TO 72 
R6E0CV-1./KGE0U) S SBM-SGftTtSOMINIIII 
RKOCM"RSCOCV/SOM 

72 WRITE(3*74) I.RGEOCV.RGEOCSG.XCOSGtII.SGHtXOELTUt.NUMWd) 
73 CONTINUE 
74 FORMAT<1H 14 .4X .F13 .3 .F17 .3*7X .F ia .6 .E l« .5 *7X .E12 ,S . I I l> 

• • — - — — — — O U T P U T COSINES OF NORMAL—— 

65 CONTINUE 
WRITE(3.21) S WRITE(3.36) 

M FORMAT(IM TXPPAHTIAL COSINES*/) 

NFST-1 S NS>8 
31 NLST-NPAR 

IF(NPAR.GT.NS) NL$T>NG 
*RITE(3*16> (IPdl.I-NTST.NLST) 
00 32 I-l.NOCLC 

32 WRITE(3.33) I. (XCOSNU.IPU) ).J-NFST.NLSTÏ 
WRITE(3*6T) N0CLC.<XCOSN(NOCLCiIPIJ)).J>NFST*NLSTI 

67 FORMAT(/IH I3.E15.4*7E14.4) 
. 33 FORMAT(1H I3.F12.S.7F14.5) ' 

IF(NPAR.LE.NS) GO TO 64 / 
NFST-NFST«« S N6-NB*« S WRITE(3*14) S GO 70 31 

64 CONTINUE 
IF(INDALL.EO.O) GO TO 320 

C 
C— - —-OUTPUT FINAL PARAMETER VALUES— 
C 

00 114 I-ltNPAR 
TVALUE(I>-.0 S IF<STDEV(t>.E«.0.O> GO TO 114 
TVALUE(I)-A<IPfI)>/STDEV<II 

114 CONTINUE 
WRITE(3*10) 

10 FORNAT(/1H1*3X*NAME*10X*FINAL PARAMETER VALUES* 1 SX PST ANBAM SCVI 
•AT10N*27X*T-VALUE*/) 

•RITE(3.113) 
113 FORMAT<1M 10(»**>*4X.30<*** ) • 9X*30 ( * * * I *9X*30 ( *«» I I 

WRITEI3.112) 
112 FORMAT I IM l*X**>«8X*»*9X*»*2«X»«*9X#«*2SX*»*l 

WRITE(3. I l l ) <NAME<IP (m* IP I I ) »A I IP I I> l * lP l l l tSTOEVI I> * l *M I> * 
•TVALUE(I).I-l .MPAR) 

111 FORMAT(IM A10»4X***15*E20.10* •*9X*«*IT.E15.5.6X1M>*9X*«#IT«*i3.2 
•tSNMP) 

MR1TE(3.112> 
WR1TEI3.U3I 
HR1TEI3*U5) SOMlN(HOCLC).SERROR.0C0S.XCRLMT(H0CLC) 

115 FORMAT ( / lM #MULT.C0RR.#TX*StA-#E19*l*t14K*STAMD.ERftOR-«£16.«*t2X*T 
•OTAL C0S1NE>*E14.6/1H F 8 .S . / / 1 H 54XPL1NEARIZED IN TANGENT PLANS*) 

WRITEI3.312>SWRITEf3*313)SWRITE(3*314ISWRITE(3*3I$ISWRIT£<3i31*» 
312 FORMAT( IH 3GX***13(* - *>* 95 0/0 CONFIDENCE INTERVAL * » ( * - * ) •***/! 
313 FORMAT(1H 10 ( * * * )3X .109 ( *» *1 I 
314 FORMAT(1H 13X****107X*>*) 
315 FORMAT<1H 13X.M K*1SX*L0WER B0UND*24X*MEAN VALUE*23X#UPPE« BGUND 

•*«X*K • * ! 
IFRMT(ll> 8H(IH*T21t 
1FRMT(2I»I0H 9X.F20.9. 
IFRMT(31•10HT52*-*T55* 
IFRMT(5)>10HT86*-*T69. 
1FRMTI6I-10H 9X.F20.9) 
DO 300 I 'l.NPAR S I V - I P ( I ) S WRITC0.3M) IVt IV 
1F(ST0EV(I>> 300*300*302 

311 FORMAT(1H 13X** * * * I3 *99X* I4 * • * ) 
302 WRITE<3*316) NAME(IV) 
316 FORMAT(lM*A10) 

ALNSTD'ALOG10(STOEV(1>> 5 lFtALNSTO.LT.0.01 ALH3T0«AU«STG>1* 
NLOG*ALNSTD S TEN>10.*' l l -NLO6l 
1FMT-I-W.06 S IF(IFMT.LT.O) IFMT«0 8 IFtIFMT.GT.91 IFNT-9 

BOUND(l)>A(IP(I))-2.«STDEVUI 
BOUND(2)>A(IP(D) 
BOUND<3)aA(IP(I))*2.*ST0EVIll 
DO 304 J 2 * l * 3 S eOUNDIJ2l*>TEN*BOUND<j2) 

IF(B0UNOIJ2l) 305*305*306 
305 BOUN0(J2»IFIX(B0UND<J2l-0.5) 

GO TO 304 
306 eOUND(J2)-IFIXIBOUND(J2)*0.5) 
304 a0UN0<J2>>t0UN0(J2)/TEN 

ENCODE(10.309.IFRNT(2))IFMT.IFMT 
309 FORMAT OH .11.6HX.F20. . I1 .1H.> 

ENC0DEU0.310.IFRNT(6>) IFMT.IFMT 
310 FORMAT 11H * I 1 . 6 H X . F 2 0 . . U ( l H t l 

1FRMT(41>IFRHT(2I 

WRITEO.IFRMT) (BOUND(J3).J3«1.3) 
300 CONTINUE 

HRITE(3*314I S WRITEO.313) 
C 

320 IF(NVS2.E0>4H • • ! NAXCTCL'1000 
CPTIHE-SECONO(FS) S E*TIME(II)-EXTIME(11)*FS-ST 
RETURN 

; . — — — . - . PLOT C U R V E — — — — — — 

CPT1NE*SEC0ND(ST) S NRINSUBI13)sNRlNSUB(13)*l 
IMAP«l 
KB-1H S ISVMBOLUt'lH* t ISVHB0L(2»1H0 
RANOExTOPIIHAPI-BOTTOMtlNAP) S SCALE*10«./RANGE S 
BTO-GOTTOMUMAPI-UNIT 
DO 205 U I . 6 
BT0-fljT0*UNIT 

205 ISCALE(I)"BTO 

WRITE<3*201) 8 WRITEO.2021 
201 FORHATtlHl//) 
202 FORMAT(IM «SCALE VALUE*T2G*.*4I|*X*.*>t 

WRITE(3.2031 (ISCALE(I).I-1*6> 
203 FORMAT(1H 16*5112011 

WRITE (3*2041 S WRITE(3.2*4> S WftITEO.264) 
204 FORMAT(IH 4 X * . * 5 I1 9 X * . * ) 1 

WRITE 13*2*61 
206 FORMAT(IH p MR * * ! * < * . . . . * * ) 

• * NR*5X*V08S"a*7X*YCALC*>0* 

IPLOTM S LAATST>NDATA*11 
DO 230 1-1.LAATST 
J - I - ( I / 1 0 ) * 1 0 8 I F (J .EO. t ) 210*211 

210 WRITE(3*212) S GO TO 220 
212 FORMATUH 4X* * *10 ( * . . . . • * ! ! 
2 U J » I - ( I / S ) » 5 S I F I J . E t . 0 ) 297*208 
207 WRITEO.2091 S GO TO 22« 
209 FORMAT ( IH 4 X * * * 5 U 9 X * * * I ) 
20« WRITE 13*2041 
22« lF I IPLOt .GT. i l GO TO 25« 

»PLOT 11 » - X I I . 1 I 8 TPL0T(2)—TCLCA(I) 
WRITE(3.214) I*I*1PL0TI11*TPL0T(21 

214 FORNAT(lH«I3*T10T*I3iF11.0*F13.2) 

00 251 J - l . 2 
YPLOT(J)»(YPLOT(J)-BOTT0M(IMAP))«SCALE 
i r tVPLOTIJI .LT.0.0) VPLOTtJ)>VPLOT(JI-1.0 
VPL0T1J)«VPL0T<JI*«.5 
NBLANOVPLOT f J l «4. 
IF4NM.ANC.LT.3) NBLANC-3 S IFINBLANC.GT.105) 
MRITE(3*2S4) (KB.IJK*1*HBLANCI.ISVNS0L(JI 

» 4 FORMAT(1M*UOA1) 
251 CONTINUE 

IFIt.EQ.NOATAI IPLOT-2 
250 CONTINUE 

WRITE 13*2551 
2S5 FORMAT I / /1M * • • • £ ! » OF PLOT»^*l 

CPT IKE-SECOND (FSI S EXTINEU3l>CKTIHEI13l*rs>ST 
RETURN 

266 
207 
I H 

212 
213 
214 
215 
216 
217 
21« 
»19 

221 
222 
« 3 
2*4 
22S 
22 * 

S 
229 

232 
2 » 
236 

2*1 

m 
26* 
24« 

2 5 * 

25« 

s: 

272 
273 

m 
27* 
277 
27« 
279 
22« 

S U 

212 
» 3 »* 
31S 
3 1 * , 

3*3 
3 » 
a » 
32 * 
327 
3 » 
32« 
339 
331 
332 
333' 

33 * 
337 
33« 
33« 
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-O NtANS PRINT--

•CALL 
•CALL 
•CALL 

ENTRY PUNCH 
INOALL*! KANS PUNCM. 

JFUNOALL.EQ.l) 60 TO 405 
IF<LSW*Y.EQ.1I MRITEI3t404l S MRITEO.401» 

t FORMAT U H U 
1 FORMAT ( / / / 1 H 100XPLAST PARAMETER VALUES TO 8E PUNCH*»« 
• / I M 9 3 X « * » . * . . . . . . . « • « • — — — • • — — . . » . . . . . - # , / / l M 1001 «C 
•QLUMNS 7 10 IS ARE NARKED«//1M I12X«* * *«) 

MR]TE 13**001 ( I . N A M E i n . l . A U l t l - l . M P A f t ) 
I FORMAT UH .BSX.I10.2x>A10t5X.«A(*l2#l»i iEl7.10/lM I21X# * * * * * • «> 

RETURN 

S KLOCK-TIMEITKl S DECODE(9.403.TK> IN t . IN2 . IN3 
1 FORMAT(3<lX.I2ll 

NTIJO>10QO0*lNl*100*IN2*IN3 
PUNCH 402 . t I tAMI . IREPtNTUD. I - l .MPAR) 

E FORMAT(6X.*A<#I2«i-«E20.10.5K*IREP*«I3.5X«TIME-«I101 
RETURN 
ENO 

( »LOCK 
SUBROUTINE BLOCK(NbLOCK.NROTATE.NCTC.CCRITI 

DIMENSION N P A R T B < S ) , N P A R B [ 5 ) , N C R I T 1 ( 5 ) 
01M8LOCK 
DVAR 

00 1 IM.NDATA 
1 YBAUl-YCLCBIII-YCLCAU) 

IF<LASTl.EO.0l 00 TO S 
MRlTEtINKT.411 

L FORMATI/1H « I«11X*YCLCB«UX*VCLCA«1U«VBA*11X*YMS*1ZX»V0CB)>12X 
•«T0CA«9X«I«/> 

WRITE(INKT.401U.YCLCBI I > .TCLCA< I l .YBA ( I» .TOBSt I I .VOCBt I > .YOCAII > • 
• I . I - l t L A S T l ) 

) FORMATdH I3 .2X.6E16.5 . IT ) 

i DO 2 J- l .NP 
GIJ I - .O 
00 2 1*1.NÜ*TA 

î e ( j ) - G i j ) * T a A ( i i * F A ( i . j > 

00 12 I - l .NP 
VDELTID-.O 
U 0 E L T < I ) * 0 E L T A ( I I 
DO 12 J- l .NP 
I f ( I - J ) 13.13.1» 

3 V 0 E L T < I 1 - V D £ L T ( I I * X M ( J * 1 . I ) » G ( J I 
GO TO 12 

k V0ELT(])-VD£LT<I>*XM(I*1.JI«G<JI 
l CONTINUE 

NRINSU6(14 >-NR1NSU6 < 1 4 I * 1 
IF(NBLOCK.EQ.0> GO TO 10 
IFINBLOCK.EO.10> GO TO '•O 

DEFINITION OF BLOCKS 

00 20 I'l.MPAR 
IPBINBLOCK.Il-IPU) 

) JPB(NBLOCK.I)-JPtl) 
00 21 1-1.5 

1 NCRITB(tl-0 S 
NPARTBINBL0CK1-NPART 
NPARBINBLOCKl-NPAR 
KTIMES-1 S NOtt-1 
NBL0CK5-NBL0CK 
RETURN 

10 IF<NRINSUBI6I.EO.0> RETURN 
IF<NCRBT.EQ.1I RETURN 
QCOSA-KCOSOINOCLC-11 f NCC-IFIXICCRIT'QCOSA) 
NCR1TB1NOMI-0 
IFINCC.EQ.0) NCRITB<N0H)-1 
KTIHES-KTINES*1 
IFINCC.NE.O.AND.KTIMES.LE.NCYC) RETURN 
1FIN0YE52.EQ.4H ••.AND.NPAR.EO.MPA«) BO TO 14 

00 11 l-lfNROTATE 
IF(NCRITBIIl.NE.l) 60 TO 12 

11 CONTINUE 
1 * IFINC.LT.NCYCLSl NCYCLS"NC 

NCRBT-1 
WRITE<3.13) 

13 F0RMAT<///1H ««»COSINE CRITERIUM CCRIT 1 
•INE BLOCK FOR ALL USEO BLOCKS FULFILLED«« 
RETURN 

12 CONTINUE 
IF(KTIMES.GT.NCYC) KTINES-1 

;F<N0>>.GT.NROTATE) NOM-NOW.1 S 
00 30 I-l.NPAR 
IPUl - IPBINOMi I l 

30 JPU>«JPBINO¥.II 
NPART-NPARTBINOMI 
NPAR-NPARBINOMI 
NT-NPAR*1 

RETURN 
C 
C LIST OF DEFINED BLOCKS. START WITH BLOCK 1 
C 

40 WRITEC3.41) I I . I - l .MPAR) 
41 F0RNAT1///1H «PARAMETER SEQUENCES AS DEFINED BY BLOCKS < X - TO BE 

• FITTED. . - INFORMATtVE)«/)H «0 <«=«) / / I « 9X3014) 
WRITE<3>45> 

45 FORMAT(1H > 
00 42 NX-l.NBLOCKS 
DO 43 I-l.MPAR 
ISTER<I)-4H S JS-JPBINX.11 
IFUS.LE.NPARBINX) I ISTERID-4H 
1FIJS.LE.NPARTBINXII ISTERIII-4H X 

43 CONTINUE 
MR1TE 13.44) NX. USTERU) . I-l.NPAR) 

44 FORMAT(1H «BL0ÇK«I2« -«30A4I 
42 CONTINUE 

DO 46 I-l.MPAR 
I P U I - I P B I l . l l 

46 J P ( l ) - J P B I l . t ) 
NPART-NPART6U1 % NPAR«NPARB<1) % NT»NPAR*1 
END 

•DECK BACK 
SUBROUTINE BACMNPZ.LISTZ.JACBZ.ICIRCZ.LASTIZI 

C 
REAL M 
DIMENSION CONFUO). IASTC5) 

•CALL DIMBACK 
•CALL OVAR 
•CALL OFIX 
C 

IF<NRlNSUBU5).GT.6000) GO TO 6001 
IFINRINSUBI151.EO.S000) RETURN 
NP-NPZ S LIST-LISTZ f JACB-JACBZ » ICIRC-ICIRCZ S LA3T1-LASTII 
IREST-INKT S IF(LIST.GT.O) INKT-3 
IF(LIST.GE.S) LIST«0 
EPSSAVE-EPS 
WRI TE (INKT.20 > S MR1TEI INKT.TO) NOCLC.SOMIN(NOCLC) 

TO FORMATdH «CYCLE NO «14« SOB BEFORE BACK PROJECTIONS 14.5/1 
20 F0RNATI//1H «-«XE« BACK-PROJECTION««*/! 

IF(NRINSUB(15).EQ.0.AN0.JACB.EB.0> MRITE<3.6) 
6 FORMAT</lH «BACK PROJECTION FOR VECTORS IN PARAMETER SPACE0T1OSPH'. 

•TRIC USED IS UNITY • • •#> 
IFtNRINSUB(lS).EO.0.ANO.JACB.EI.l> MRITEO. 7) 

T FORMAT(/IM «BACK PROJECTION FOR VECTORS IN OBSERVATION SPACE«T10S 
•«METRIC USED IS JJ • • • • ! 

1FIICIRC.EO.0) WRITE13.8) 

8 F0RMAT(1H*65X«T«0-DIMENS1DNAL SEARCH«/! 
1FIICIRC.E0.1) WRITEI3.9I 

9 F0RMAT<1H»65X«TH0-DIMENS10NAL CIRCULAR SEARCH*/) 
NRINSUBUS)-1 
EPS1-EPS2-EPS 

GO TO 4 

3 DO 15 1=1.NP 
UV-UVUOELT ( I > «VOELT ( 1 ) 
UU"UU*UDELTII)«£ 

S VV-VV.V0ELTII )«2 
i UU-SORT(UU) S VV-SORTIVVI 

DO 16 1*1.NP 
t> VDELT<I)»VDELT(IJ«UU/VV 

COSPMI-UV/tUU"VVI 
IFtCQSPHI.GE.O.) GO TO IT 
C0SPHI=-C0SPM1 
00 11 I - l .NP 

1 VDELTU)=-VDELTU> 
WRITEIINKTilO) 

) F0RMATC//1M »"COS (PHI) SIGN *• 
F IF( ICIRC.NE.l ) GO TO 19 

»•CIRCULA« SEARCH««« 

EPS 1-PHI EPS2-LAM80A 

C-COSPHI 
SINMOD-SQRT ( 1. -C«2 ) 
IF<*BS<SINHO0).GT.-00 
RETURN 

) F0«MAT(/1H «SINPMI BETWEEN DELTA AND B-VECTOR EtUAL T0PEIS.5/1H 
•«NO IMPROVEMENT BY BACKPROJECTION HILL BE OBTAINED. RETURN«/) 

••• CIRCULAR SEARCH ••• 
) DO 61 K-l.NP 
L VDELT(KI-(C*UDELT(K)-VDELT<K))/SINMOO 

UU-WW-UW-.O 

»S BEEN CHANOED-i 

> TO 69 S WRITE(3.60>SINMO0 S INKT-IREST 

)-UU*UD£LT(f 
f-WW»VDELT<f 
J-S4RKUU) 

00 62 NSACK-1.2 DELETED 

CC-.O S C-COS(EPSl) 

COSPSI-UM/(UU*VM) 

SC-SINCEPS1! 

IF(JACe.NE.l) GO TO 164 
DO 16S I-l.NDATA 
CJ-.O 
DO 166 K-l.NP 

• CJ»CJ*FAU.K)»CORR<K) 
; cc-cccj«»2 

GO TO 167 

. DO 129 K=1.NP 
I CC»CC*C0RRtK>«2 
I CC-SOBT(CC) 

HRITE(INK7.121) COSPSI 
I FORMAT(/1HO«ORTHOGON*L BASE SPANNED BY DELTA AND Z-VECTOR. COSIDEL 
•TA.Z-VECTOR)**E15.6/1 

KRITE(INK7,122) 
> FORMATI///1H «OPTIMALIZATION FOR PHI BY LINEAR COMBINATIONS OF DEL 
•TA AND Z-VECTOR« //1H « K«14K« DELTA *5X# Z-VECTOR S-VECTOR 
•#4X#r /I 

WRITEUNKT.22) ( IP ( I ) .UOELT 111 . VDELT 11 ) .CORR 11 » . IP! 11 .1-1.NP) 
WRITEriNKT.23)UU.HH.CC.VV 
EPSE0S=.66666«EPS1 % EPSEQS2-.66666*EPS2 
•RITE(INKT.124) EPS1.EPSE0S.C.SC.EPS2.EPSEOS2 

, F0RHATI/1H «DIRECTION BETWEEN DELTA ANO S-VECT0R*>6X*PHI -«F11.6.4X 
•« RADIANS. I-EPS1» I • 2 /3 -«EI3.6« »«/1H 3BX«C0S<PH1I•#F11.6/1M 
•3aX«SINIPHI)>*F11.6/lH02TX«STEP FACTOR LAMBDA -*E15.6tlOX«OEPS2> 
• t • 2 /3 -«E13.6« ! * / ) 

1FIEPS1.LT..02I NRINSUB<1S)-5D00 
IF(EPS1.LT..D2) INK7-IRES7 
IF(EPS1.LT..02) RETURN 

••BACK PROJECTION EXOD«««* 

EPS-EPS 1 S NRINSUBtlS)-M01 
RETURN 
ENTRY SI 
WRlTEIlNKT.71) NOCLC. SBHIN(NOCLC) 
EPS1-EPS 
IGOTO - I S GO TO 350 

6 FORMAT(/1H « TANGENT(EPS.SOSI 
•AMBDA -«£17.6/) 

2 WRITE<INKT>206) CN1.CN2 

FOR PHI 
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MftlTCI INKT* J l »EPS 

C«****XEO BSTAR***** 
c 

WR1TEWNKT.35) 

•R17EIIMKT.3*> 

C*****BSTAR XEOD***** 

EPS*£PS2 S NRINSUS(l5l*6Q02 
RETURN 
ENTRY 82 
•RITEIIMCT.TI) NOCLC* S«HlNINOCLC> 
EPS2*EPS 
1GOTO * 2 I M TO 350 

20* MITEUMKT.206) CN1.CN2 

NRINSUBIlSI-l 

••END OF CIRCULAR SEARCH***«* 
ALTERNATIVE 

••TWO DIMENSIONAL SEARCH"*** 

EPS1*LAMBDA EPS2*2*COSIPHI> 

00 42 NBACK*1*3 DELETED 
NBACKM 
00 1« I - l .NP 

U CORR(I>-C*UD£LT<I)-V0€LT(I) 
« • « • - . 0 

i r iJACS.NE.i l GO TO 30 
DO 27 WtNOATA 
«JaCja.0 
00 28 K'ltNP 
CJ*CJ*FA11»K>*C0RR(K) 

2« NJ>HJ*rA(I*K)*VDELTIKt 
CC*CC*CJ**2 

27 M*Ja«W*MJ»2 
GO TO 26 

3a 00 29 KM.NP 
CC*CC*C0RR(K>**2 

2« HM>HH*VDELT(K1**2 
26 ««-SORTI««) S CC-SQRTtCCI 

«R1TEI1NKT*21> 
21 FORMAT(///IH MEM DIRECTION OT SEARCH OBTAINED rRON CORR(X)aS(K>» 

• / / I H » K*1*X« DELTA «5K« «-VECTOR S-VCCTORaCQRR«*X«K«/> 
«RITEUHK7.22) t IP<I>*UOELTII>tVDCLTtI)*CORR(I>*IPtI>tlal.NP} 

22 FORMAT(IH I3*BX3£l* .St I7> 
"VRITE(lHKT.23> UU.««.CC.¥V 

23 FORMAT(/IH «LCNGTH«SX*3E1*.5/1H »B£F0Re«IVX*Cl*.5> 
«RITEUMKT.2*) CQSPHI.C 

2 * FORMATI/1H »COSIDELTA . B-VECT0R>*#F10.5/1H 1*X#C-2*C0S-*FI*.5I 
IFIMBACK.EO.1) GO TO 105 
IGOTO*1 S 00 TO SO 

101 CNl*CN12 
HRITEUNKT1IO6) CN1«CN2 

106 FORMAT(/1H » TANGCNTIEPS.SM) FOR LAMBO» »« C17.6/1M ZSXPFOR C 
*-2*C0S*«17.6/) 

105 CONTINUE 
•RITEIINKT.29) 

25 FORMAT I/1M »»»BACK-PROJECTION XE«0»«»//l 

EPS-EPS1 
CALL MINlCORRtLlST.1..0*.0*20*0*0> 
•RITEMNKT.T1) NOCLC. SMIN1N0CLC) 

71 FORMAT U H »CYCLE NO»I*» S«B AFTER THIS PART OF SACK PROJECTION« 
•El*.5/1 

IGOTO-2 * 00 TO SO 

102 CN1*CN12 
EPS1-EPS 

HRITEIINKTtSS) 
35 F0RMATI//1H »»»XEO BSTAR2*»*»/) 

•RITEIINK7.31) EPS 
31 FORMAT1lH0»EPSl IN MINIMUM - EPS(OPT) -*E15.6> 

•RITEI1NK7.36) 
36 F0RMATC/1H0» K»9X» A »9X»CPStOPT)*B-VECTOR*3)t»NEW POINT AP*K«CO 

•RR*EPSI OPTI*OELTA«7X«K«/I 
CCC*.0 
DO 30 I>1*NP 
B R I T E I I N K 7 > 3 2 > 1PI1»*AIIPI I>> 
E$TAR*CP51*V0CLTI1) 
A ( IP ( I ) ) *A I IP I IH -CSTAR 
C0RR(I>*£PS1*UDELTII> 
•RIT£(INK7*37) £STAR*AIIPII) > *COMI 1) * I P I 11 

30 CCC*CCC*C0RRII»"2 
32 FORMAT I I H I5 .E1T.6) 
37 F0RNAT(1H*23X*E1T.6*2E19.6*I12) 

CCC*50RT(CCC> 
EP$*C S EPSE05*.6666**EP$ 
MITEIINKT*33> CCCiC.EPS.EPSEOS 

33 FORMAT(/IH #LENGTH«SSXElT.6/lH0#C*«F10.S*10XPEPS*C-PF12.5<l«XP2/3 
• • EPS**E12.5) 

IG0T0*3 % GO TO SO 
103 CN2*CN12 

HRITEtINKT.106) CN1*CN2 
WRITE IINKT•3*1 

3* FORMAT I / I H »***BSTAR2 XE«D»*»«//> 

CALL M1NICORR.LIST.1. .0. .0.20.0.0) 
MR1TEUNKT.T1) NOCLC. SAMININOCLC) 
1G0T0«* * GO TO SO 

10* CN2*CN12 S C-CPS 
00 107 K*1*NP 

107 AtIPtK>|aA<IP<Kl)*£PSl*VDELT(K> 

C * 2 CONTINUE DELETED 
EPS*EPS$AVE 
INK7>IRES7 S RETURN 

212 
213 
214 
215 
216 
217 
218 
219 
220 
22) 
222 
223 
22* 
225 
226 
227 

235 
236 
23T 
238 
23« 

2*5 
2*6 
2*7 
2*8 
2*9 
25« 

272 
273 
27* 
275 
276 

C*****END OF T M DIMENSIONAL SEARCH**»* 

5« CONTINUE 
CN12*.0 
DO 108 K*1*NP 

1«8 CN12BCN12*«N0RM(K>*C0RR(K> 
CN12>CN12*(-2*> 
GO TO 11*1*1*2*103*10*1 IMTO 

8001 IFtNRIHSU8U5l.Ea.6002) GO TO 6*02 
CPS1*CPS 
ClaCOSICPSl) S $la$lNIEPSl> S SIM—SI 
DO 6*11 (t-l.NPART 
IPK'IPIK) 
BtIPKIaAtIPKI*EPS2*lCl*UOELT<KI*Sl*VKLT(KI) 

M i l COPittKlaCPS2*4SlM*UOCLT(KI*Cl*VOELTtKII 
RETURN 

6002 EPS2*£PS 
C1*C0S(EP$1) S $1*S1NIEP$1) 
DO 6012 K-l.NPART • , 
IPKMPIK) , 
CORRIK)»C1*UOELTIK)«S1*VDELTIK> 

6012 BIIPKI>A(IPK)*CP52*C0RRIKI 
RETURN 

350 CONTINUE 

So1»! ** c «" ' ° » ci-cosiEPsii s si-smtepsi) s tup»-»i 
CN1>CN1*SN0RMIKI*EPS2*IS1M*UDELTIK)*C1*VDELT(K»IV 

351 CN2*CNZ*8N0RHtK)*ICl*UDELT<K)*Sl*V0ELTIKII 
CN1*-2.*CN1 S CW*-2.*CNZ 
GO TO (202.20*» IGOTO 

END 
•DECK TRACK 

SUBROUTINE TRACKINTVPE.NP.START•NSTEP.KTIMES.NAUTtLISTf 

MEAL M 
REAL LENGTH S INTEGER END 

•CALL DINTRACK 
•CALL OVAR 
•CALL Drix 

CPTtME-SECONDIST) S N»NRINSUB(16l»NRINSUBt161*1 
IREST'INKT S IFIL1ST.EB.1) INK7*3 
IFlN.EO.l.AND.INTYPE.EQ.1.0R.NTVPE.E0.2II IRCPaCNOal 
JNKTalNKT 
IF INTYPE.E0.5.0R.NTYPE.E«.*) IHK7-3 
1FINTVPE.E0.5.QR.NTYPE.E0.6) «RITE(3.9) '.-

9 FORMAT(iHl) 
IFIN.GT.1) GO TO 11 
«RITE 13*6*1 NTVPE 
1FINTVPE.E0.1I «R1TCI3.12I 5TART.NSTCP 
1FINTVPE.E0.2) «RITE(3,221 START.NSTEP 
HETHAB.O 
1FINTVPE.E0.3) B R I T E < 3 > 7 » > 
IF INTYPE.EQ.*> «RITEO.661 

6* FORMAT(IM «»»EXECUTION OF TRACK<»I2# ) • • • # / ) 
! FORMAT(IH 'VECTOR VOCACI) AT A-1NI1 
•T START-»FB.Z » OF ITS LENGTH* 
•NTO NSTEP»»I3» EQUAL PARTS*/) 

22 FORMAT(IM «EACH NE« VECTOR VOCAII) IS SUBD1VI0C0 STARTIN« «? * 
• »START*»F8.2 * OF ITS LENGTH« / I M «INE RCNA1NKR IS 0 1 * 1 8 » I 
•MTO NSTEP*»13» EOUAL PARTS»/) 

66 FORMAT ( IH 'TERMINAL POINT OF OBSERVATION VECTOR X U t l t-VCLC«(t)««C 
• THA*VOCA(I) REFLECTED «ITH RESPECT TO THE TERMINAL POINT «T M P 
• / I H »CONVERGENCE PROCESS. ENTIRE PROCESS TO BE HCPCATCO M M THIS 
•REFLECTED VECTOR.*/) 

76 FORMAT(IH »TERMINAL POINT OF OBSERVATION VECTOR X( l * l>aYCkC*l l l *8C 
•THA'VOCAII) BEFORE EACH CYCLE REFLECTEO ABOUT THE TANGENT Pt*NE AT 
* * / l H »A*6 TO PROOUCE A NEW X ( I . l ) VECTOR»/! 

11 GO TO <1.1*3***S*$I NTYPE 

1 Nl«M-l S N2*N-2 
IFIN.GT.1) GO TO 20 
MDATaNDATA S IF(MOAT.GT.10) MOAT*10 
KSUMRT*LSUMRV S RNRES>RN S RPRES*RP 1 
LSUNRV*0 t RN>RP*.S S COSCRIT'10. 
•RITE(3*29) KSUMRV.LSUMRT.RNREStRN.RPRES.RP*COSRC«*COM«ITtMnCLt* 

••NCYCLS 
2« FORMAT ( / I H «FOLLOWING PROCESS PARAMETERS AM REMF1NC0 BtMHBl E I IC 

•UTION OF SUBROUTINE TRACK*/1H 9XP0CFINED ASP4XPBCHPINC« AB*V|tl 
•« LSUHRV»IT.I1S/IH » RN0FlO.3*r i$ .3 / lH * R P W I « . l * r i f * 3 
• / I H *COSCRIT*F10.3*F1S.3/|H #NCVCLES«I7.I15//1H PAFTf« f ' 
•F SUBROUTINE TRACK LSUMRV REMAINS OP/ / / ) 
BETHA-START t IFIBETHA.E8..0I BETHA>.*l/FLOATtNSTCPI 
XBETAIENQI-BETHA 
GO TO 28 

20 B E T H A * 1 . / F L O A T I N S T E P - N 2 ) 
XBETAIEND)»START*(1.-START >*FLOATINII/FLOAT INSTEP) 
1FIN.GT.1.AND.MTVPE.E0.1) 60 TO 27 

28 METHO-1000 
CALL FNCTNIA 
METHO-0 

00 21 I-l.NOATA 
21 XII*l)aXB£TAIENO)*TOBSII)< 

GO TO 26 

27 DO 23 lal.NOATA 
23 X( I t l |a8ETHA*T0BS(I ) * ( l . -BETHA)«Kt I * l ) 
26 CONTINUE 

IFIBETHA.LT.1.) ENO*ENO*l 
IFIBETMA.LT.1.1 KBETAIEND)*XBETAIEM0-1) 
IFILIST.EO.0) GO TO 85 
NRITEI3*B0) ( I . I * l .MOAT> 
URITEI3.B1) (YOBS1I).l*l.MDAT) 
«RITEI3.82) IX(1*1I* I*1*H0AT) 
•R ITEO.83) IYCALC1I).I«1.NDATI 
«RITEI3.8*) XBETA(END) 

BO FORMATI//1H »NO. OF DATA»3K»a»ia*9I12) 

81 FORMAT(IH »V 0BS£RVC0**X»>*1OE12.SI 
82 FORMAT(IH »X( I .1)>Y USED **1«C12.5) 
83 FORMAT(IH »Y CALCULATED >*10C12.5) 
8* FORMAT 11H0FHHERE X I I *1 ) *YCLCAU)*BETHA* i rOBSI I I -YCLCAI I IU 

• B « F 1 0 . * / 1 H 12X»*VCLCAII)*BETHA*YOCA(I)«) 
86 FORMAT I I H 1 
85 IFIBETHA.LT.1.) GO TO 25 

RNBRNRES S RP*RPRES S COSCRIT*COSRES 
NCYCLS>NCTCLES 

2S 1F(EN0.LT.15) GO TO 50 S HRITCI3.2*) S «O TO S« 
2 * FORMAT ( / IH »•••END>«I3». MAXIMUM NUHBCR OF ENTRIES IN TMtCN tS M A 

•CHEO»*»»/) 

5 CONTINUE 
IF INTYPE.EO.5) HRITEI1NKT.90) 

9« FORMAT I I H SOX»0»/1H*50X»1 TERMINAL POINT OF OBSCWVATION VCCÎWP 
1/1H * * X * * I« /1H 25XPY OBSEAVEO» «P l lXPI * 
2/1H 32X»*»12X»*MX»1 $BA*»/1H Z6XP*«23KPI<——P/lH 13XPMMCN • « 
3/ lH*2«X»0«29X«I»/lH 3 * X » — » •0*Â*l*/lH 21X»*P12XP«OA P l t l # t « 
* / l H 50XPI A*»/1H 6Xt6l*-#M*#12(*-#t#*#13(«-«>P**MP40<P-P) 
5« TANGENT PLANE»/ 1H*50X*0P/1H 39X»>»I*XPIP12XP>P/1H BXPT CBLC4M.ATC 
6D-> * » H X » a * l * | * I * i a X » > » / I N 30KP* >#17XPI HCIBNTI->»I3XM» , v 

T/1H 2*X#* a*20X«I<- — — * 1 T X * » # / 1 H 2TX«-»22K»I»3*XP*«' ' 
B/1H 23X»A *<»22l»-»)»>l«33X»>»/lH*25x»0»2*XPOP/lH 2*4»«*tft»fX*T*MG, 
9E»BX»I»35X»a FITTING SURFACE»////1H 29K*T0CAU)aroni l ) -vetJ I f t t I t 
1 /Y0CA/**2*$QA*//1H »COMPLETE GRAPH BY CONNECT IN« • A M • POMTS 
2 » / / ) 

IF(NTYPE.Ca.5.AN0.NAUT.E«.l> miTEIlHK7*53) 
IFINTTPE.E0.6.ANO.NAUT.E«.!) MRITEUNK7.561 
lF(NAUT.EQ.O) WRITEIINKTtST) 

S3 FORMATI/IHOPAPPROACH IN FITTING OROER»/) 
56 F0RMATI/1H0PL1NEAR APPROACH FROM INITIAL TO TERMINAL POINT«/» 
57 F0RMATI/1H0PAPPR0ACH NOT AUTOMATIC BUT BY MEANS OP A PR£0f#l««J« IN 

•1T1AL PARAMETER VECTOR«/) 
«RITE!INK7.5*1 

5* FORMAT 11H0 »CVCLE«6*X»EXPRES$E0 IN 0/0 OF /YOCA/P4MCVCLCP/IM P/ST 
•EP«7x«SOA«10X«SOA*»12x«0ISTANCC«HPMEI«NT* TTS «OltTANCIWTIPHtlONT 
*«T103»/STEPS«/) 

DO 30 l*l*MPAR 
3« XXAII)aXAINOCLC*I) 

SI 
3 » 

,O.$OA.0.l.YCALC.Y0CA.0.0» 

[1.-XBETAIEND)I«VCALCI11 

«1 

Ä 
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CALL FNCTNlXXA.O.SflSAVe.O.l.VCALC.VDIf.OiOI 

00 40 K-l.NOO 
IF(NAUT.EO.O) 60 TO 46 
IFINTYPE.E0.5) GO TO 39 
AA-AA'.l 
00 3a I-l.MPAR 

) XXA(I)*AA*XA(NOCLC.II*<l.-AA)*XA(ltI> 
IF(K.EQ.11.0R.K.EQ.12) WRITE UNKT.86) 
GO TO 47 

39 
41 

46 

48 

4T 

00 Ol I-l.MPAR 
XXAfll-XAfK.I) 
GO TO 4T 

AA-AA».1 
00 46 I-l.MPAR 
XXA(I)»AA*XA<NOCLC,U 
IF(K.EQ.11.0R.ft.EQ.12 

CONTINUE 

CALL FNCTNIXXA.O.SOA. 

WRITEUMK7.B6) 

.l.YCLCA.YOCA.O.I 

S1-S2-S12-.0 
DO 43 1-L.NDATA 
Y C C A - Y C A L C I i ) - Y C L C A ( i » 
S1»S1*YDIF(I)**2 
S2«S2»YCCA**2 

43 S12>S12*YDIF(I>*YCCA 
DH-S12/S1 
H£IGHT".0 
00 44 l-l.NDATA 

44 HeiGHT«MEI&HT*(<l.*DH)*Y0IF(I)>**2 
SHEIGHT*SORT(HEIGHT) 
AB0VE*SQRT(S8SAVE> 
BELOW-ABOVE-SHEIGHT 
BEL0W2>BEL0W**2 
LENGTH-S2-BEL0W2 
SLENGTH-SQRT(LENGTH) 
PROC"100.«BELOW/ABOVE 
IF(LENGTH.NE..O) GO TO 52 
RATIO».0 * GO TO 66 

52 RATIO'100.*SLENGTH/AëOVE 

6B BB-AA-1. 
IFINTYPE.EQ.5) WRITElINKT,55) 

•RATIO.WROOK 
IFINTYPE.EÜ.6) WRITEUNK7.58IB 

•RATIO.CROC.BB 
40 CONTINUE 
55 FORMAT(1H 14,1X2E14.5.E1T.S.E1S.5.2F14.2.1121 
58 FORNATUM F5.2,2E14.5,E17.S.E15.5.2F14.2,F13.21 

NRlNSUä<16)-0 
IFINTYPE.EQ.5) GO TO 50 
WRITEIINK7.91) 

91 F0RMAT(//1H 23X*USE HAS BEEN HADE OF THE FOLLOWING VALU£S*/1H * 
•K«8X«NAH£«11X«INITIAL P0lNT«5X«TERMlNAL POINT*10X*DIFrER£NCE#6X*K# 

00 92 K-l.MPAR 
IF<NAUT.£Q.1> AIT=XA(NOCLC.KI-XA(l,K> 
IF(NAUT.EO.D) AIT-XA(NOCLC.K)-AIK) 
IFINAUT.EO.1) WRITE!IN«?.931 K.NAME(K>.XA(1.K>.XA(NOCLC.K).AIT.K 
IF(NAUT.EG.O) WRITEIINK7.93I K,NAHE IK).A(K).XA«NOCLCKI.AIT.K 

92 CONTINUE 
93 F O R M A T U H I4.5XA10,2X2E19.B.E20.5,17) 

GO TO 50 

4 IF(N.GT. l ) RETURN 
WRITEI3.63) SQMINtNOCLO.NOCLC 

63 F0RMATI/1H *S0>-*E14.5« IN CYCLE NO.#13/I 
CALL FNCTN<A,Q.SOA.0.1.YCLCA,YOCA.O.OI 
DO 62 I=1.NDATA 

62 X<Itl)-2.*TCLCA(I)-X(I,l> 
00 65 K-l.MPAR 

t.SaA.SOSAVE.SLENGTH.BELOW. 

).SOA.5Q5AVE.SLENGTH.BELOW. 

65 I 
IREP-END-1 

50 CONTINUE 
INK7-JNK7 

CPTlME-SECONDfFS) S EXTIME(16)'EXT I ME(161 
INKT=IRES7 % RETURN 

DECK LIHYPEX 
SUBROUTINE LIHYPEXILHE.N] 
INTEGER END 

CALL DIHLIPEX 
DIMENSION U(5.S),AIVEC(5] 

CALL OVAR 
CALL O F U 

•N2.N3,NCRIT. 

FOR APPLICATION USE ENO.GE.2 
THE C0RRI1) VECTORS USED 
THE PARAMETER FUNCTIONS WI 
THESE VECTORS ARE TESTED 1 
FOR NEW CONVERGENCE SIMUL' 
SQA, AND A(K> MUST BE DEFI 

200 AND 1300 ARE FIRST DERIVATIVES OF 
TH RESPECT TO THE STEP fACTOR. 
N SUBROUTINE MIN ON ZERO LENGTH. 
H O N FORMULAS IT IS RECALLED THAT EPS. 
NED BEFORE * RETURN TO NLV TAKES PLACE 

• 2.«/lH «REDEFINE END IN MAI 

1F1LHE.GE.10) GO TO 1099 
I F I E N D . G E . 2 ) GO TO 7 I WRITE<3.8) 

I F0RMATI//1H #END«»I3« THIS SHOULD 8E '. 
•N PROGRAM NLV.#//1H «STOP TO (LIHYPEX)*) 

STOP TO 
F CONTINUE 

INK>7 S IF(INKT.El.3.0R.LIST.E8.il INK-3 S WRITE(3tl) 
I FORMATI//1H ««»UEO LIHYPEX CONVERGENCE SIMULATION*'**) 

IF(LHE.EO.l) GO TO 1100 S IFINCYCLS.GE.N3) GO TO 9 

S WRITE<3.2) NCYCLS.NN I STOP Tl 
! FORMAT(/1H «NCYCLES*«I3« BUT IT SHOULD BE«I3//1H «INCREASE THE 1 
•UE OF NCYCLES IN THE MAIN PROGRAM NLV#//1H «STOP 71 ILlHYPCXI«) 

9 E1-EPN1NIN1) t E2-.0 » Il-NLl 
00 3 1*11.N2 

3 E2-E2.EPNIN<II 1 E2»E2*C1 1 E21-E2-EI 
E3».0 > I1*N2*1 
DO 4 I-I1.N3 

4 E 3 * E 3 * E P M I N U ) 1 E3-E3.E2 S E32-C3-E2 
IF<C21.NE..0.ANO.E32.NE..O> GO TO 1000 
W R I T E O . 5 ) N1.E1.N2.E2.N3.E3.E21.E32 S STOP 72 

5 F0RMAT(/1H * N1«8K«E1>6X*N2*BX«E2»6X*N3*8X«E3»7X*E2I'12X*E32«/1H 
-3(I3.E15.5I.2(E1S.5I* POINTS ARE COLLINEAR SO E2I A W / O R E32 • 0* 
•//1H «STOP 72 (LIHYPEX)«! 

1000 GO TO (1100,1200.13001,LHE 
1099 1LHE"LHE-10 ( GO TO (1199.1299,1399).ILHE 

1100 CONTINUE 
•RITE(3.101> 

101 FORHAT<1H*50X** POLYNOMIAL BINI I"A»8*NI*C*NI 
•--•«/1H blx*. WHERE NI-CYCLE NUMBER •*/! 

N21-N2-N1 ï N5=o*N21*Nl S N40-N5-N21 
IF(NCYCLS.LT.NS) NN*N5 
IFINCYCLS.LT.N5) GO TO 6 
U ( l . l ) - U ( 1 . 2 t * U ( l , 4 l * U ( l . 5 ) « U I 2 , 3 ) « U ( 4 , 3 ) - . 0 
U(5.1)=U15.5>*1. S U ( 3 . 1 ) - U ( 3 . S I — 1 . 
U ( 2 , l ) * U ( * . S ) = 

N30*N40-N21 

ute.' M3.2)=UI 
1 (5 .21 ' MS.41' 

M2.2) i -16. 

WRITE!INK,121 I 1P I I ) . (A IVEC(K) . ' 
AA(11=88(I I=CC(I)=U0(1) *EE(I I *.0 

l=CC(D' 
l=DD(l 

(3.JJ< 11VECI. 
11VECI. 

=EEU)-UI5,J>*A1VECIJI 
AA( I )=AAU) /24. I BB(I )»BB(I>/24. 

•ÛQ( 11/24. % EE(11»EE(I) /24. 
i CONTINUE 

IFCINK.EQ.7) GO TO 122 
WR!TE([NK,120> N5 

I FORHAK/1H «BACKSOLUTION.NO«I3.13X« 
•ARE«/) 

00 117 1-l.NPART 

1 CC(I)"CC(II/24. 

IXT FOUR EQUIDISTANT POINTS 

1 AIVECIK1 = 
I «RITE (INI 
I FORMAT (II 

WRITE (I NI 
I*.E16.5,*E2I 

(II , (A1VECO 

.1311 H . I ' 
1,8811).CCI I I.DOU).EE<I>tl-l.NPART> 

I FORHATI/1M «POLYNOMIAL PARAMETERS OF DE8REE«/1H )4X*O«.4I20l 
! F0RMATI1H I4.E18.T.OE20.7) 
• EPS-1. 1 SOA-SOMIN(NS) 

ÛO 130 I-l.MPAR 
) A(I)iXAINS.I) 

•RITEIINK.123) N5.SOA.EPS 
J F0RHAT1/1H «SOA-S0MIN(«I3« )=«E15.S« NEW EPS VALUE »«E1S.5/) 

GO TO 399 

QO 151 
1 J M P I I 

COBR(11 
RETURN 

I-l.NPABT 
) $ FN«2.*EPS 

A A ( I ) * F N * < B B ( I ) * F N » ( C C < I I * F N 
» BB(I)-FN*(2.»CC(II*FN*(3. 

HYPERBOLIC SIMULATION 

•(00(1 
•ODII) 

WRITE<3.202) " 

I FORMATIIH'SQX»* HYPERBOLIC B O 
) F0RHAT11H 40X#' WHERE TEPS(N) 
•N FITTING CYCLES **/) 

> F0RMATI/1H « K«21X#TEPS(HINIMAI 
• 4X#CYCLE*«IS.2I15,22X»CYCLE**IS.2I1! 

DO 215 Ul.NPART 
A1>KA(N1.IP(II) I A2>XA(N2,IP<1>) 
A32=A3-A2 S A21=A2-AI 
IF(INK.EO.T) GO TO 203 
WRITE I INK.2041 IP(I).E1,E2.E3.A1.A2.I 

• FORMAT11H I3.2X.3E15.S.18x.3Elb.5) 
» IF(A32.EO..0.OR.A21.EO..0) GO TO 216 

öNïE21*A32-E3ï*A£l 
IFIABSIA32/E32I.GE.ABS(A21/E21)I GO 
HB(II=E21*A32*£3-EJ2*A21»E1 
BB(I)=BB(II/dN 
CCII)=-A32*IE3-aeiI))*(E2-BB(I)I/E32 
IF(CCII).EO..0I GO TO 216 
AA 111=A3-CC(11/(E3-BB(1)1 
GO TO 21S 

b AA(I)>A3*DELTA(I) f BB(I)>.0 » 
5 CONTINUE 

IFHNK.EO.7) GO TO 220 

LVALUES OF PARAMETERS USED«/1H 

CCII)«-OELTA(I)*E3 

ifilTEd K.20t RIIE<INK,208) N3 
> FORMAT 
• X«BACK SOLUTI' 

I FORMATilH dix 
•3-N2«) 

00 230 I*1.NPART 
AAA"AA(l ) *CC(I ) / { -dBl I ) 'E3) 
d88iAA( I )>CCI I ) / ( -BB( l ) .E3*E32) 
CCCiAA( I ) •CC( l ) / ( -88 I I ) *E3«2. *E32 

I HRITEIINK.207) I P ( I ) . X A ( N 3 . I P ( I I ) 
' FORMAT!lH IJ.2X.OE15.5. 3K.3E15.S 
I EPS=E32 S SOA'SOMIN(N3> 

00 231 1=1.MPAR 
KN3.1 

USEO«12X«HYPER80LIC PARAMETERS» 21 

ll>«e«14X*C#3x.I15.10X«NEXT TWO ON DISTANCE t 

,CC(1).AAA.888,CCC 

WRITE I 
GO TO 399 

.1231 I.EPS 
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1299 00 251 I»1»NPART 154 
I J - I P U I ISS 
Ö l IJ>-CC( I ) /<E3*£P5-öB( I>>•* * ( ! ) IS« 

251 COM f 11"-CC111/1<E3*EPS»BB(II)«2> 1ST 
RETURN |Se 

C I S * 
C EXPONENTIAL SIMULATION I M 
C 161 

1300 »R1TE(3 (301) S MITEO>200> 162 
altlTC(3(2<l2l Nl*N2iN3*Nl*N2*N3 163 

301 FORMATIlH*50X#»---EXPONENTIAL B(N>>AILIN1 *C*CXP(.-B*TEPSfN> > - - - * * l 164 
C 16S 

NCRTT"NCR1T-1 S DO 315 1*1.NPART 166 
I T E L I I I ' 0 167 
A l a X A I N l ( l P I I I ) S A2xXA(NZ*IPII I I % A3aXA<N3*IP(I>I U S 
A38-A3-A2 S A21-A2-A1 S A31-A3~A| 169 
IFItNK.EO.T) GO TO 303 IT« 
•RITEUNK.<04) I P U i t E l r E 2 > E 3 l A I . A 2 . A 3 171 

309 I F I A 3 2 . E 0 . . 0 . O R . A 2 1 . E 0 . . 0 ) 00 TO 316 IT2 
IFIABS(A32/E32I.6£.ABSIA21/E21>> 00 TO 316 173 

C 174 
C ITERATIVE SOLUTION 17$ 
C I T * 

181*61«9999999999. 177 
C 176 

US UT»EXPt-Bl*£32> 179 
BT-ALOG(<A31-A21*8TI/A32) IB« 
D2>8T/E21 1B1 
1TELU)*1TELI I ) *1 182 
POMEH*10.**IF1K(ALOG10(B2M 183 
IF1P0MER.LT..0) POU£R>POUER-t. 184 
IB2*IFIXtt»2/POMER)M0.**NCRTTI 185 
IFUB2-IB1.EO.0.OR.ITELUI.EO.2S) 60 TO 327 186 
81*B2 S IB1'IB2 1B7 
00 TO 325 186 

C 169 
32T BBID-B2 190 

CN>EXP(-BBU)OE3>-EXPt-BB<I><»E2> 191 
CC(I1*A32/CN 192 
AA(I)»A3-CCCI> *EXP(-BB11)*E3) 193 
GO TO 315 194 

316 AA(I)»A3*DELTA<I> S 8 B ) l l « l . S CCI!)«-DELTA)1)*EXP<E3) 19$ 
315 CONTINUE 196 

C 197 
IFtlNK.EO.7l GO TO 320 198 
MRITEUNK.306) S HRITEI INK.2081 N3 « WRITE ( INK.319) WRIT 199 

306 FORMATI//1H * K LAST AtKt USE0*1IXFEXPONENTIAL PARAMETERS* 29 206 
•X'BACK SOLUTION B IKl f ) 201 

319 F0RMATI1H*U5X*ITERAT10NS I N C R I W I 2 * ! * ) 202 
DO 330 W.NPART 203 
AAA>AA<II*CC(I>*EXP<-BB<II*£3t 204 
BBB3AAIII*CC(1)*EX»I-BB<I)«(E3*E32)> 20S 
CCC*AAIII+CCtI>*EXPI-6BIIIa<E3*2.*E321> 206 

330 WRlTE(lNK,307l 1P(1).XA1N3.IP1I1).AAI I I .B8(I).CCII>tAAA.BBB.CCC. 207 
• ITELI1) 208 

307 FORHATtlH 13 (2X.4E15.5t3X.3E15.5.1101 209 
320 EPS-E32 f SUA>S0MINtN3> 210 

DO 331 I»1.MPAR 211 
331 AU)>XA(N3.1I 212 

HRITE(INK«123) N3tSQA.EPS 213 
GO TO 399 214 

C 21S 
1399 00 3S1 UltNPART 216 

I J - I P ( i ) 217 
AUX«CC(I)«EXP(-BB(1)•IE3*EPS> > 218 
BIIJI'AUX*AA(I) 219 

3S1 CORR<I)"-BB11)»AUX 226 
RETURN 221 

C 222 
C 223 

399 NRITEIINK*400I 224 
*00 FORMATI//1H »««LIHYPEX XQD*»*/t 225 

RETURN 226 

CREATION RUN DECK LIST AS WITTEN. IF NEKPL UPDATE V I . 2 01/1T/TS 13 .46 ,3« . 

DECKS ARE LISTED IN THE ORDER OF THEIR OCCURRENCE ON A NEM PROGRAM LIBRARY IF ONE IS CREATED BY THIS UPOA1E 

NftHEO SOLVE 
TRACK LIHVPEX 
0IM02TOA OIHMWCO 
DIMTRACK DIW.1PEH 
NPNCTN NFNCTN 

THIS UPDATE REQUIRED 336008 HOROS OF CORE* 

TANKS«« 

NDIMDF 

INITL 

XINITL 
NOFDA 

REAO 
AI SB 
OF IX 
OIHMIN 
NDIHRO 
N0IMD2 

FNCTN 
LISTING 
DtHINITL 
DIMLIST 
ROOATA 
N02F0A 

0FÛA 

DINFNCTN 
OINBLOCK 
WTOATA 

D2TDA 

DlMOrOA 
DlHSACK 
NDINTN 
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1.4 Condition function dependent parts 1.4.1 statements 

NLV 

COMDECKS TO BE CAL LEO BT SI MALE SUBPROGRAMS 

HI.NAME« 4).C0RR( 4 ».DELTA! 4>.ST0€V( 4» 
NI 5).•NORN f S l i I P I 5 ) ,JP( 5) 

.VCLCBI 20).V0CA< Z0).VOCB( 201.VMSI 20) 
ALBI 4)>AUB( 41 . IS I * )>FAI 20. 5>.FA2< 5) 
XA<15. 4) .XMAU5. 4(,XC0SNUS, 4> , IPXUS. 4> 
HI 5. 5>tlM( 5t 5).FAA4 20t10).F0FAA< 4 . 4> 
41.FFAAMHC 4>>FSS( 30>iCURVTOTi 4ltCURVGE0< 4) 

•DECK AB4/B2»* 
•COMHICK OVAR 

COMMON A f » 
COMMON MA( 
COMMON TCLCAI 20>I 
COMMON PIF1KCI 4 ) . 
COMMON X< 20i 2>< 
COMMON IPAfM 1)< 
COMMON FAFAAI 4 . 

•COMOECK OFIX 
COMMON £PKlNU5),SQMIN(lS>.XStFU5»,X0£LT(15>,XNORM<lS>tNUM»R(15> 
COMMON ANRM<15liXDELTA(15>.XALFAII5).Jl«ETA(15).X»AMNAU5I.X«EO(15». 
COMMON NPARTXU$)tXC0S«ll5».XC0SMT(15>.XCRLHTU5>tEPSNEM<16>.ICl6> 
COMMON NPART.NPAR.NT.NPAR.NOATA.MAXDAT.MAXVEC.NB.BOTTOM(5).TOPIS» 
COMMON XY0.XYC.S8A.Sae»EPSEST.NRINSUBl25).EXTINE(25).CPAR(2S>.N02 
COMMON EPStEOS.RNtRP.RtCOSCRir.NOYESl)NOYES2.NOYES3.NYSltNT52.NVS3 
COMMON N0CLCtNCTCLES.NCYCLStNC.MAXCTCL*IRER«EN0.LSUMRT.RECI>REC2 
COMMON [W3tINK7iINK0.NOUTRDtNOUTFN.MOUTOF.MOUTD2F.NOUTrL.METHO.CK 
COMMON TA 15» 

COMOECKS TO BE CALLED ST SINGLE SUBPROGRAMS 

•COMOECK DINlNlTL 
DIMENSION ISTAR< 4) 

•COMOECK DIMFNCTN 
DIMENSION C< 4).YCLC( 20».TOC( 20) 

•COMOECK DIMOFDA 
DIMENSION C( 4 ) tH i 5I,Y0C( 20).TCLC(20)<ORDEREO( 4>.IP£RM( 4) 

•COMOECK 0IMD2FDA 
DIMENSION C( 4),FAA2< 4 ) . H I 5 ) . I L (10 I.YCLC( 20)tYOC< 20) 

•COMOECK DIHMRMEQ 
01MENS ION HI 5).CN0RMI 5).COSN( SI.YOCI 20) 

•COHDECK DlMSOLVE 
01HENSION CI 4).S0LNI 4).E< 4 ) .OK 4).CNI 5).COS INF( 5 ) .D( S> 

•COHDECK DIMHOHA 
DIMENSION D< 4 ) . E l 4).ISTAfi( 4>.FCALCI 201.FOCI 20).TJTSS( 4) 
DIMENSION OCURVEI 41 

•COMDECK OIMHIN 
DIMENSION KSt 4),FKS< 2 0 ) . FJS( 20 ) . TJFSSt 4>,0CURVE( 4) 
DIMENSION CRCTNI 4) . IBM( 4> 

•COMDECK DIML1ST 
DIMENSION A2A1I 4 ) ,T0T2M 4I.ITALLYI 4I.TVALUCI 41 

•COMDECK D1HBL0CK 
DIMENSION IP8(S. 4>.JPB(St 4).ISTER{ 4) 

•COHDECK DIMBACK 
DIMENSION VOELTI 4I.UDELM 4 ) ,Gl 5),YBAI 20) 

•COMOECK DIHTRACK 
DIMENSION XXA( 4>>YCALC( 20).YOiFI 201 

•COMOECK OlMLIPEX 
DIMENSION AAI 4) .8B( 4) .CCI 4).DO! 4I.EE< 4>.ITEL( 4) 

•DECK EXAMPLE 
•COMOECK XINITL 

200 FORNATUH*iax# SOIL 
HRITEO.2011 

201 rORNATUH # 
100 FORMAT(/IH »SUBJ£CT»/1H » • • • • • • • » 

•/1H «SOIL MOISTURE RETENTION CURVE 

MOISTURE RETENTION CURVE 

NONE I»» 

JANUARY 1975» 

101 FORMATI/1H »COMMENTS»/1H »••••••••» 
•/IN »COMMON DECK A04/020B'» 
*/lHO»VARlABLES Y * MOISTURE CONTENT IN PERCENTAGES' 
•/1H # X - LOGARITHM OF THE MOISTURE TENSION* 
•/1H »FORMULA BY FINK AND JACKSON 11973) SOIL SC. V O L - H t »0.4 P.2* 
•9»/lH »APPLIED TO DATA FROH ICH-LAB. WASENItMEN» 

102 F0RMAT</1H «F0RMULA»/1H »»••••••» 

' A*B*LNIIY/0> -II 
ICH IS SOLVED FOR 1 

<X-A)/B 
I E 

BY THE FORMULA» 

>» 
• / / I N 
• /1H I 
•/1H0»PARAMETERS TO BE FITTED» 
•/IH » C(l) - D « PORE SPACE» 
•/1H » C(2) * A - LOCATION» 
•/IH » C O ) » 8 • SCALE * 
•/IH » CI-.) • C - EXPONENT» 

NAME(l>-l0HPORE SPACE 
NAMEI2)>10HLOCAT10N A 
NAMEI3I-10HSCALE B 
NAHE(4)-10HEXPONENT C 

•COMOECK NOIMRD 
C RESERVED FOR DIMENSION 
•COHDECK RDDATA 

READ(2.21 (YOBSI1).1-1.9) 
2 FORMATI10FB.5) 

Xtl,2>-0.t * X<2.21-1.0 * X(3.2)-1.5 
X 15.21-2.3 S X(6.2)»2.7 S XI7.2)-3.4 
X<9,21.6.0 % NDATA-9 

•COMOECK »TOATA 
HBITEI3.lt.) 

15 FORMAT I/1H01I>X»DATA READ IN SUBROUTINE READ»/ 
•/IH 10X»I»6X»YOBS»9X»X* 
•/IH 19X»V*9X*PF» 

IRITE(; .33) 
33 FORMAT(IH 

DO 200 I-1.LAST1 
200 HRITE<3.202) I . Y O B S U ) . * 
202 FORMAT(IH Jl 1 ,F11 .2,Fl 1 .< 

WRITE(3,20) 
20 f '•»/IM 

N-NDATA 
M R I T E O . 2 0 2 ) N.YOBSIN).» 

•COMDECK NOIHFN 
C — — - R E S E R V E D FOR DIMENSION— 
•COMDECK NFNCTN 

DO 200 I-1.N0ATA 
•-IX(I.2)-CI2>)/C(3) 
T — 1 . / C ( 4 ) 
E1T-E1 — T 
YCLC(I)-CU 

200 CONTINUE 
•COMOECK « F N C T N 

CONTINUE 
•COMDECK NOIMOF 
C RESERVED FOR DIMENSION— 
•COMOECK NOFDA 

K1-JPI1) i K2*JP(2) ] 
00 200 I-1.N0ATA 
• > I X ( I . 2 ) - C ( 2 ) ) / C ( 3 ) 
T — 1./C<4) 

«E1T 

1 E-EXI 

S KS-I 

E l - E M . 
E1T1-E1T/E1 

FAI I .KD-E1T 
F A ( I , K 2 > - C U ) / C ( 3 > / C ( 4 ) « E « E 1 T 1 
FA ( I .K 3 ) -C(1)/C(31/C14)«0»E»E1T1 
FA(I ,K4)-C(1)/CI4)/CI4)»AL0G(E1)»EIT 

200 CONTINUE 
•COMDECK NDIMD2 
C RESERVEO FOR OIHENSION 
•COMOECK N02F0A 

K l - I L ( l ) * K2»IL(2) $ K3- ILI3) 1 K4-1L 
K6-IL(6) S K7-IL(7) I KB-IL IB) % K9-1L 
DO 200 I-1.N0ATA 
• - ( X ( I . 2 ) - C ( 2 ) ) / C ( 3 t $ E-EXP(O) 
T — 1. /C(4) f T l - T - t . S E l - E ' 1 . 
E1T-E1 — T S E1T1-E1T/E1 
F A A I I . K D - 0 . S 0C=CI1) /C(3) /C(3) /C(4) 
FAAII .K2)-1. /CI3) /CI4)«E>E1T1 
FAA(I.K3)-Q*FAAII.K2) 
FAA(I.K4)-1. /C<4)/C(4)*AL00IE1)*E1T 
FAA(I.K5>>-0C*E1T1>I I -1 . /C(4)-1. )»E«E/E1»E) 
FAAII.K6)-0>FAAII.K5)-0C<E*E1T1 
FAAII .K7I>CI11/CI3)/C(4)/C(4)>E>E1T1*(AL0GIE1I/CI4)>1.) 
FA*H,K8)- -0C«E1!! •£• • • (E»0«T1/E1*0*2 . ) 
F A A ( I , K 9 ) - a * C l l ) / C ( 3 ) / C ( 4 ) * E < E l T l * ( I A L 0 G I E l l / C ( 4 ) > l . ) / C I ' 
FAA(I,K10)>Ctll*ElT*ALOGIEl)*(ALOG(El>-2.*C(4))/C(4>>«4 

200 CONTINUE 
END OF RECORD 

STARTING VALUES FOR THE PARAMETERS 

A(l)-34.8 S A(2)-1.31 t A(3)-.2746 t A(4)-3.4S9 

FIRST PARAMETER REOEFINEO IN MAIN PROGRAM NLV BY 

CALL READ II. 
A(l>> rOBS(l) 
1REP - 0 

KJTRD) 

DATA TO DEMONSTRATE FAST CONVERGENCE 

DATA TO DEMONSTRATE SLOW CONVERGENCE 
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1.4.2 default output 

M U S t S SS SS SS SSSSSS SSSSSS SSSSSIS sssssss 
SS SS SS SS SSS SS SS SS SS SS SS SS SS 
SS SS SS SS SSSS SS SS SS SS SS SS SS SS 
SS SS SSSSSSSS SS SS SS SS SS SS SS SS sssssss 
SS SS SS SS SS SS SS SS SS SS SS SS SS SS 
SSSSSSS SS SS SSSSSSSS SSSSSSS SS SS SS SS SS SS 
SS SS SS SS SS SS SS SS SS SS SS SS 
SS SS SS SS SS SS SS SS SS SS SS SS SS 
SS SS SS SS SS SSSSSS SSSSSS SSSSSSS SSSSSSS 

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 
s s 
s s 
S SOIL MOISTURE RETENTION CURVE S 
s s 
s s 
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS 

" • • CONTROL PARAMETERS USED IN FUNCTION* IF ANY • • " 

VALUES OF SYSTEM PARAMETERS «FAULT / USCO IN THIS JO« 

NCVCLES-10 / IS NDATA «5HC0UNT / X EPS • .001 / . M U M IC<1)-10L<BLANKI / 
ENO « 1 / 1 EP5EST- . M l / . 0 0 1 0 » ICt2>"lftL / 

NOUTRD »O(NDATA) / 0 I C » ) * 1 * L / 
INK3 ' 1 / 7 NOUTFN - 1 / 1 COS • . 6 6 6 6 6 / . 6666M 1CI4)*>10L / 
INKT • T / T NOUTDF " 1 / 1 1C<5I*10L / 
INKS « 7 / T N0UTD2F« 1 / 1 RM • . 1 / . 1 0 0 9 0 0 IC(6)-19L / 

NOUTFL «SMNDATA / X RP • . 1 / . 1 S S S M 
LSUMRY • 1 / 1 H C l • 0 .0 / 

C0SCR1T- 1000. / . 1000E*M R « 1 . / 1.009090 DCC2 • • • • / 

IF NOATA • X DATA «ILL K COUNTED IN READ 
IF NOUTRD- • NOUTRD KILL AUTOMATICALLY SE COUM.LED TO MIN<NOATAt50> 
IF NOUTFL« X NOUTFL MILL AUTOMATICALLY K ESUALLED TO MINtNDATA.50) MATRIX N02 NOT USED INOf» 0 / • t 

NO BOUNDS HAVE BEEN DEFINED KFORE CALL HEADIN6 

HO BLOCKS HAVE SEEN DEFtNCO 

SUBJECT DATE 

NONLINEAR PARAMETER OPTIMIZATION 01/17/75 

SUBJECT 

SOIL MOISTURE RETENTION CURVE. JANUARY 197S 

TINE 

12 .46 .27 . 

CP-SEC 

2*665 

USED FOR 

COMPILATION/LOADING 

COMMON KCK A04/020B* 

VARIABLES Y » M0I5TURE CONTENT IN PERCENTAGES 
X • LOGARITHM OF THE MOISTURE TENSION 

FORMULA BY FINK AND JACKSON (1973) SOIL SC. VOL.116 NO.* P.2*» 
APPLIEO TO DATA FRON 1CM-LAB. WAOENlNQEN 

X • A*B*LNItV/0) - 1 ) 

WHICH IS SOLVED FOR V BY THE FORMULA 

4X-AI/B -1 /C 
V • 0 • t E • 1 1 

PARAMETERS TO BE FITTED 
C<1> • 0 • PORE SPACE 
CI2t - A - LOCATION 
CO) « B • SCALE 
C(4) - C » EXPONENT 

PERMUTATION OF THE FIRST NPAR PARAMETERS 

TOTAL NUMBER OF PARAMETERS NPAR » * 
TOTAL NUMBER TO BE SOLVED NPAR - * 
TOTAL NUMBER TO BE FITTED NPART« * 

TOTAL NUMBER OF DATA NOATA- X 

NUMBER OF DATA WILL BE COUNTED IN SUBROUTINE READ IF NDATA-1 

»•»INITL XEOD**» 

•••XCfi READ"* 

DATA READ IN SUBROUTINE READ 

I T M S X 

45.30 
43.40 
41.00 
33.30 
27.60 
23.20 
11.50 
7.40 
2.40 

.4« 
1.00 
1.50 
2.00 
2.30 
2.70 
3.40 
4 .20 
6.00 
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INITIAL VALUES PARAMETERS AND NAHE 

.3*800E*02 

.13100E*01 
•27*60E*00 
.3*890E*01 

PORE SPACE 
LOCATION A 
SCALE e 
EXPONENT C 

.3*800E*02 

.13100E*01 

.27*60E*00 
,3*890E*01 

PORE SPACE 
LOCATION A 
SCALE B 
EXPONENT C 

'•START OF CYCLE NO 

COS-MATRIX FOR PARAMETERS ANO PARTIAL COSINES COSIFO.FK) 

PORE SPACE 
1.00000 

.7306' 

.32608 

.5*873 

.53113 

LOCATION A 

1.00000 
.7*5*8 
.89157 
.88*93 

SCALE 

1.00000 
.95855 
,958*5 

CORRELATION MATRIX OF ESTIMATES. OBTAINED FROM THE INVERSE OF I 

1 2 3 * 
SCALE B EXPONENT C 

fOK NPART-

PORE SPACE LOCATION A 
1 1.00000 
2 .2*85* 1.00000 
3 .72973 .7*150 
* -.67771 -.8322* 

DIAGONAL .1B519E*01 .1213*£-( 

-.98*06 1.00000 

.76968E-02 .19776E« 

LINEAR REDUCTION OF S«B 8V APPLICATION Of DELTA CORRECTIONS TO L PARAMETERS 

,*5*OO000E*02 
,13100000E*01 
,27*60000£*00 
,3*S90000E*01 

REOUCED SOB 

.56*60B3SE*03 
•*0533392E*03 
.10631131E*03 
.7*6009O*E*01 
.62798688E*01 

.15927**6E*03 PORE SPACE 

.29902261E*03 LOCATION A 

.9885U17E*02 SCALE • 

.ii8022i7E*oi EXPONENT C 

REDUCTION/OCLTA 

,63*06€*03 
.39222E*0* 
.16122E»0* 
.7T2S3E*00 

' AFTER CYCLE NO MULT.CORR.- .961195 

.25E*00 .13E*01 - .35E*( 

.T6E-0I . IBE'00 ,65E'< 
-61E-01 .16E.O0 
,15E*01 

RESULT OF SOLVIN( 

Y08S 

SOA. .56*61£>03 • • S t f - .62799£»01 

LEN6TH OF VECTORS 

/ T M S / " .906KSE*02 

MULT.COSINE • .97503 /SOA/- .23T61E*02 

'ANflCNT PLANE /YCALCV" .T5?71E»02 

TOTAL COSINE • .99**2 STANOARO ERROR- .10626*6112E«02 
SOA - .56M.083793E.03 

NPARTXf 1 I • * 

• COSINORMALtDELTA) FOR NPART TANtEPS*0t5QA*l> 

.*5*OOOO0O0E*02 
,1310000000E<01 
.Z7*6000000E>00 
,3*B9000000E*01 

.53113 .00000 
,88*93 .00000 
,958*5 .00000 
,99378 .00000 

OELTA-WECTOR 

.2S119840e*00 

.T623TS23C-01 

.61315276E-01 

.15277276€»0I 

.210*2901C*02 

.81S56065E*03 
,2*973377E*0* 
.22i07100E*03 

,*1M*E.00 
.29S4«E*01 
.6T236E*01 
.1*303C*02 

.3S1S3E*02 .1**90E*01 

.31632E>05 .38TB6E*02 

.273B5E*06 .10966E*03 

.20697E*0* .93*20E*0I 

>«ENO OF CTCLE NO 
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• • •»« • •LAST CVCLEt NO 

COS-MATRIX FOR * PARAMETERS AW PARTIAL COSINES CO5<F0.FK> 

PORE SPACE LOCATION A SCALE 
1.00000 

.73620 1.00000 

.26656 .70369 1.001 

.56725 .69505 .99! 

CORRELATION MATRIX OF ESTIMATES* OBTAINED FROM THE INVERSE OF Mt FOR NPART" 

1 2 3 4 
PORE SPACE LOCATION A SCALE B EXPONENT C 

.00000 

.77386 
.3161* 
.7474* 

-.6925$ -.96030 1.00000 

OIAOONAL .13740C*O1 .19272E-01 .II743C-01 .16900E*01 

LINEAR REDUCTION OF S6B BT APPLICATION OF DELTA CORRECTIONS TO L PARAMETERS 

.45443522E*02 

.1T606409E*01 

.3740ST62E*00 

.34«44376£*01 

REDUCED SOB 

.59948760E*01 

.5994S760C*01 

.59948760E*01 

.59948760E*01 

.59946T60E*01 

.26546161E-OB PORE SPACE 

.25B92177E-I0 LOCATION A 

.67302608E-10 SCALE • 

.12S43637E-08 EXPONENT C 

REOUCTION/DELTA 

-.1129TC-02 
-.560501-05 
-.18761E-04 

.27160E-0* 

• AFTER CYCLE NO Xtlil>« V A U ) * 1.00000 • VOCUl MULT.COR»'- .99057* 

1 -.23E-05 .26E-04 
2 -.45E-05 -.20E-06 
3 -.36E-Û5 .18E-06 
4 .46E-04 

RESULT OF SOLVING NRMEOS 

VOBS 

SOA* .59949C*01 • • SOF« .S9949E*01 

LENGTH Of VECTORS 

/VOBS/- .«0655E*02 

MULT.COSINE • .99964 /SOA/« .244»4E*01 

> TANOENT PLANE /YCALC/- .90622E*02 

FCALC**2> .40021E-

TOTAL COSINE • .00003 STANDARD ERROR- .1694977262001 
SOA > .19946760IK*01 

NPARTJH 7 1 - 4 

• • • • COS(NORMAL«DELTAI FOR NPART • TAMEPS-OiS&Atl) • 

•45443S2232C*02 
,1760840947E*01 
.3740576162E*00 
•3494437595E*01 

COS F OELTA-VECTOR 

- .00000 -.2349BB33E-05 
• .00000 -.44603086E-05 
. .00000 -.3SBT3505E-05 
0.00000 .461505B3E-04 

.10274503C-03 -.4666OC-05 .2O469E-03 . I994ZC*01 

. 139430B9E-02 - . 146IOC-03 .44332E-0I ,32T3M»02 

. IT723657E-02 - .26967E-03 .13323C*00 .T51T3E*02 

.36061625E-03 .42483C-03 .33196E-02 .92664C*91 

•••ENO OF CYCLE NO 7 • • • 

SUMMARY NO 

OIFFERENCE 

.45460«*02 

.131600E.OI 

.274696E*00 

.34S90*E*01 

.435223E-01 

.45O641E*0Q 

.994576E'01 

.S437S9E-Q2 

•454435E*02 
.17608*E*01 
.374O58E*O0 
.349444E*Q1 

PORE SPACE 
LOCATION A 
SCALE 6 
EXPONENT C 

.1001E*01 

.1344E*01 

.1362C*01 

.1002E*01 

TOTAL NUMBER OF USED DATA 
OF FITTED PARAMETERS NPART« 
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F U N C T I O N E V A L U A T I O N M I T H F I N A L PARAMETER VALUCS t ( K ) 

A N A L Y S I S OF OBSERVED AND CALCULATED F U N C T I O N VALUES M . E . - S U M / N O A T A S . E . - S T A N D A R D ERROR X l « Y A * B £ T H A * Y O C tfall-VCALC T - V / S . E . 

9 5 0 / 0 CONFIDENCE INTERVAL FOR f i t ) 

X2 

,40000E*00 
.10000E*01 
.15000E*01 
.20000E*01 
.23000E*0I 
.ZTOOOE'OI 
,34000E»OI 
,42000E'01 
.60000E*01 

»1- Y USED 

.45300E*02 

.43400E*02 

.41000C*02 

.33300E<02 

.27600E*02 

.23200E*02>U6 

.11SOOE*02<LB 

.74000£*01 

.2*OO0E*01 

' LOMER BOUND 

.431T2E*02 

.42513E*02 

.38769£*02 

.32I52E«02 

.26914E*02 

.20282E>02 

.1157«.02 

.55266E>01 

.85367E*0Q 

2 ( • 2 2 . 2 ( 

YCALC 

. 4 5 1 0 7 E * 0 2 

. 4 3 8 7 3 E * 0 2 
. 4 0 4 B l £ » 0 2 
. 3 3 5 2 4 E > 0 2 
. 2 B 3 1 0 E ' 0 2 
• 2 1 6 6 4 E . 0 2 
. 1 2 9 2 2 C 0 2 
. 7 0 2 8 7 E * 0 1 
• 1 7 7 * 2 E * 0 1 

T UPPER SOUNB 

,47043E*O2 
,45232E*02 
.42194E*02 
.3489« »02 
.29706E»02 
.23045E»02 
.14269E*02 
.SS307E*01 
.2694TE»0l 

i DATA OUTSIDE INTERVAL 

- . 2 0 5 £ * 0 0 
- . 3 « « E * 0 0 
- . T M E * 0 0 
- . 1 6 « C * 0 1 
- . 2 1 1 E * 0 1 
- . 2 3 2 E * 0 1 
- . 2 1 S E » 0 1 
- . 1 7 2 C * 0 1 
- . T 2 6 E * 0 0 

» 1 - Y C A L C A N A L Y S I S 

. 1 9 2 8 7 1 * 0 0 
- . 4 T 2 6 3 C * 0 0 
.51883**00 

• .22360E*00 
- .71012E*00 
.1S364E*01 

- .14215C*0I 
.37135E*00 
. 6 2 S 8 Z E * 0 0 

TO BE NEAR ZERO 

- . 3 2 4 5 3 E * 9 1 
- - . 2 8 2 T 9 £ * 0 1 
- . 4 1 7 4 4 C * 0 0 

N E A N / V / * . 6 7 4 7 9 E * 0 0 

S . E ( F ( B I I 

• 9 6 7 T E « 0 0 
. 6 T * 4 £ * 0 0 
. B M 3 C * 0 0 
* * t * M * 0 O 
. * 9 T « E * 0 0 
. 0 9 0 6 C » 0 0 
. • 7 3 T O 0 0 
. 7 3 1 0 E * 0 0 
. 4 6 0 3 £ * 0 0 

SECOND D E R I V A T I V E MATRIX N02 NOT USED I N O / 2 - ( N - N 0 2 > 

A N A L Y S I S OF T - V / S . E . ( E X P E C T A T I O N S ARE USED I N H I 6 N E « HOMENTSI 

MEAN 
VARIANCE 
S K E U N E S S . G A M M A U I 
K U R T 0 S I S t C A H H A I 2 l 

E X P E C T A T I O N E S T I M A T E STAND.ERROR 
. 4 2 3 S 9 E - 0 1 - 3 3 2 T 9 E - 0 0 
. 1 0 0 0 0 0 0 1 . S O O O O E * 0 0 
• 2 4 7 7 6 E * 0 0 . 7 1 7 1 4 £ * 0 0 
. 6 5 2 1 7 £ < 0 0 . 1 3 9 9 7 0 0 1 

STAND.ERROR F I B i 

• YCALC 
• F A A * I N V < N > » V A P I / 2 
• REHAINOER 
• S a R T i r A » I N V ( N ) > F A * V A R t 

NOATA- 9 

( E S - E X I / S E 
CHARACTERISTICS 

ZERO 

CLASS L I M I T S 

( I 
} 0 ) 0 

. 0 < 0 . 0 ( 0 

. 1 ( 0 . 5 ( 1 

( I 

1 < 
) 0 I 

0 1 0 . 0 ( 

7 1 4 . 4 ( 

1 ) 
1 1 . 1 ( 

9 . 2 1 

1 
1 1 , 1 

1 5 . 0 

> 2 ) 
I 2 2 . 2 < 

( 1 9 . 1 

( 

3 > 
3 3 . 3 

1 9 . 1 

1 
1 1 . 1 

1 S . 0 

I i 
1 1 

( 1 1 . 1 1 
1 

( 9 . 2 I 

( 1 

0 ) 
0 . 0 ( 

0 1 
0 . 0 < 

1 . 7 1 

0 
0 . » 

0 . 5 

0 
0 . 

0 . 

KOLNOGOROV-SHlRNOV ONE-SAMPLE 9 5 0 / 0 T W O - T A I L E D TEST FOR CUMULATIVE D I S T R I B U T I O N OF T - V / S . E . • CRITICAL VALUE-

UPPER BOUND 
D I S T R . OF T 
LOWER BOUND 

NORMAL D I S T R I B . 

6 5 . 4 2 
2 2 . 2 2 

0 . 0 0 

1 0 0 . 0 0 1 0 0 . 0 0 1 0 0 . 0 0 
7 7 . 7 8 8 8 . 8 9 1 0 0 . 0 0 
3 4 . 5 0 4 5 . 6 9 S t . B O 

1 0 0 . 0 0 1 0 0 . 0 0 
1 0 0 . 0 0 1 0 0 . 0 0 

S 6 . B 0 9 6 . 8 0 

1 0 0 . 0 0 1 0 0 . 0 0 
1 0 0 . 0 0 1 0 0 . 0 0 

5 6 . 8 0 5 6 . 8 0 

5 0 . 0 0 6 9 . 1 5 0 4 . 1 4 9 3 . 3 2 9 7 . 7 2 9 9 . 3 8 9 9 . 8 6 1 0 0 . 0 0 

OUTS IDE INTERVAL < 

• " C O L L E C T I O N OF RESULTS AFTER ' TOTAL NO Or SUMRIES TO BE PROOUCED • DATE 0 1 / 1 7 / 7 5 

I N I T I A L PARAMETER 

. 4 5 4 0 0 0 0 0 0 0 E * O Z 

. 1 3 1 0 0 0 0 0 0 0 E * 0 1 
. 2 T 4 6 0 0 0 0 0 0 E * 0 0 
. 3 4 B 9 0 0 0 0 0 0 C * 0 1 

PORE SPACE 
LOCATION A 
SCALE B 
EXPONENT C 

EPS 
TO O B T A I N 
NEXT CYCLE 

0 . 
. 1 0 7 5 3 E ' 0 1 
. 4 8 8 4 5 E * 0 0 

. 9 1 6 0 5 E * 0 0 
• 1 0 4 B 2 E * 0 1 
. 1 0 6 5 9 E - 0 1 

CYCLE 
NO 

J 

3 

6 
7 

„ H FOUND 
I N . X 

0 
b 
S 
7 
b 

6 

SQUARES T 
SOA 

• 5 6 4 6 1 E * 0 3 
. 2 5 9 6 9 £ > 0 2 
. 1 3 B 4 9 E > 0 2 
. 6 0 2 5 0 0 0 1 
. 5 9 9 ( , 6 E * 0 1 
. 5 9 9 * 9 E * 0 1 
, 5 9 9 4 9 E * 0 1 

BE EOUAL 
SOF 

. 6 2 ? 9 9 E ' 0 
• 6 3 4 0 B E < 0 
. 6 0 4 2 6 E * 0 
. 5 9 9 5 8 0 0 
• 5 9 9 4 9 E » 0 
. 5 9 9 4 9 E > 0 
. 5 9 9 * 9 0 0 

I 

I L E N » T 
I NORMAL 

I . 2 6 3 6 S E * 0 4 
I . 9 1 B 1 4 E * 0 2 
I . 9 6 4 1 0 E * 0 2 

I . 3 5 9 7 9 E * 0 1 
I . 2 4 8 S 6 E * 0 1 
1 . 2 0 4 2 3 E - 0 1 
I . 2 2 6 1 9 E - 0 2 

I S T O B E 
DELTA 

. 1 5 * 1 3 0 0 1 
. 2 7 * 9 3 E ' 0 1 
, S 3 2 8 2 E * 0 0 
. 1 3 3 4 9 E » 0 0 
. 2 2 7 9 9 E - 0 1 
. 1 6 2 8 1 E - 0 2 
. 4 6 S 6 4 E - 0 4 

I 
Z E R O I 

V < S O A - S O F ) I 

, 2 3 6 2 * 0 0 2 I 
• 4 4 3 0 4 C * 0 1 I 
. 2 T 9 3 9 E » 0 1 I 
. 1 7 0 9 1 E * 0 0 I 
. 4 1 0 2 9 E - 0 1 I 
. 1 3 2 4 5 E - 0 2 I 
. 6 3 2 6 3 E - 0 4 I 

T O T A L L 
NORMAL 

. 2 6 3 * 5 0 0 4 

. 9 1 B 1 4 E * 0 2 

. 9 6 4 1 0 E * 0 2 
. 3 S 9 T 9 E * 0 1 
. 2 4 0 3 6 0 0 1 
. 2 0 4 2 3 E - 0 1 
. 2 2 6 1 9 E - 0 2 

E N 0 T H S 
DELTA 

. 1 S 3 1 3 C * 0 1 

. 2 7 4 9 3 C * 0 1 
. 5 3 2 B 2 E * 0 0 
. 1 3 3 4 9 C « 0 0 
. 2 2 7 9 9 C - 0 1 
. 1 6 2 B 1 E - 0 2 
. 4 6 5 4 4 E - 0 4 

S ( P R E D I C T E D ) 

, 8 3 3 4 3 E ' 0 0 
, 9 3 0 2 1 E ' O 0 
. 9 9 4 9 6 E * 0 0 
. 1 0 6 0 6 E * 0 1 
. 9 7 8 7 0 E * 0 0 
. 1 0 6 B 6 E * 0 1 

NO 

I 
2 
3 

5 

EPS 
IOPT IMUH) 

0 . 0 
. 1 0 7 S 3 E * 0 1 
. 4 8 6 4 5 E * 0 0 
. 1 0 0 9 4 E . 0 1 
, 9 1 6 0 5 E » 0 0 
. 1 0 4 B £ E * 0 1 
. 1 0 6 5 9 E < 0 1 

E P S ( O P T ) 
TOTAAL 

1 0 7 5 3 E * 0 1 
1 5 6 3 8 E * 0 1 
2 5 7 3 2 E * 0 1 
3 4 B 9 2 E * 0 1 
4 5 3 7 4 E * 0 1 
5 6 0 3 3 t « 0 1 

RESULT 
C Y C L E -

1 

3 

5 
6 
7 

OF F I T T I N G 
MULT.CORR 

. 9 6 1 2 

. 9 9 7 6 

. 9 9 8 6 

. 9 9 8 6 

. 9 9 8 6 

. 9 9 8 6 

PftOf 
HUL 

1 0 . 6 2 6 4 6 
2 . 2 7 8 9 « 
1 . 6 6 4 2 5 
1 . 0 9 7 7 3 
1 . 0 9 5 1 3 
1 . 0 9 4 9 8 
1 . 0 9 4 9 8 

. 9 9 4 4 2 3 

. M 9 3 8 5 

. 7 5 0 7 7 7 

. 0 6 9 6 2 8 

. 0 1 6 7 5 5 
. 0 0 0 5 4 1 
. 0 0 0 0 2 6 
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PARAMETER VALUES 

1 

.4s*ou*o2 

.4S*TOE*02 
,454S1E*02 
.4S43K*02 
.4*447E*02 
,4$445£*02 
.45444E*02 

TAULEAU OF PARTIAL SOLUTIONS O U * OT CYCLE • » • 

.13100E*01 

.13920E*01 

.15071E*01 

.17793E*0I 

.17632C*01 

.17610C*01 

.17608E*01 

.2?460E*00 

.340S3C*00 

.3W21E*0fl 

.3B632E*00 

.37579C*00 

.37416E*00 

.37406E*00 

EXPONENT C 

.34090E<01 

.SI310E*01 

.30040E*01 

.33491E*01 

.34695E*01 

.34930E*01 

.34944C-01 

OCCURRENCE 

DIFFERENCES OF PARAMETER VALUES TO M T A l N CYCLE NO I 

CYCLE 1 
2 .27012E*00 
3 -.19134E-01 
4 -.21311E*0O 
5 .9S452E-02 
6 -.2BO1BE-02 
T -.10173E-02 

TOTAL .43S22E-01 

.1»21SE*00 
- .16147E-01 
-.21638C-02 
-.1S792E-03 

.65933E-01 

.416T7E-01 

.41U3E-02 
• .10520E-01 
• . 1 6 3 U E - 0 2 
- .10304E-03 

.9945SE-01 

.1642BC»Q1 
-.1327SE*01 
-.454S6£*0Q 

.12037E*00 

.2356BE-01 

.13933E-02 

.54376E-02 

SCALE FACTORS 

1 
.16690E*01 
.19426E*0) 
.I94)9E*01 
.1992*E*01 
.19933E*01 
.19941E*01 
.19942E*01 

.3B7S6E*02 

.29762E*02 
•31490E*02 
.325«1E*02 
.32731E*02 
.32T32C*02 
.32732E*02 

.10966E*03 

.96496C*02 

.7B972E*02 

.T1937E*02 
,74699C*02 
.7S146E*02 
•75173£*02 

.93620E*OI 

.601«4E»»1 

.807B2E*01 

.95«SK*01 

.9271S£*01 

.920*2E*01 

.92054E*01 

RADIUS OF GEODESIC CURVATURE IN DIRECTION OF SEARCH 

ABSOLUTE RELATIVE TO /StA/ 

SA.779 
1.616 

19.639 
.338 

2.305 
.356 

S.277 
.136 

TOTAL COSINE 

.99442) 

.0693BS 

.750777 

.069620 

.0167SS 

.000541 

/SOA/ 

.23761E*02 

.50960E*01 

.37214£*01 

.2454*E*01 

.24*ME*fl 
,244«4E*»I 

/DELTA I HP ART 1 

.15513E*01 

.27493C*01 

.53Z02E*00 

.13349E*00 

.22T99E-01 

.16201E-02 

PARTIAL COSINES 

53113 
35530 
52422 
03742 
0122« 
00030 
00002 

2I04E-04 

.00493 

.30705 

.62952 

.00051 

.01374 
-.00025 

.00002 

.1690F.-04 

.95045 
-.14330 

.20639 
-.02034 

.01204 
-.00001 

.00001 

.9629C-05 

.99370 
-.02460 

.30231 
-.00428 

.01479 
-.00009 

.00002 

.1600E-

FINAL PARAMETER VALUES STANOARO D E V I A T I O N 

PORC SPACE 
LOCATION A 
SCALE B 
EXPONENT C 

MULT.CORR. 
.99857 

PORE SPACE 
LOCATION A 
SCALE B 
EXPONENT C 

\ 

\ 

1 
2 
3 
4 

SOA» 

K 

1 
2 
3 
4 

.4544352232C02 • 

.1760040947E*01 • 

.3740576162E*00 • 

.3494437S9SC*01 • 

.599407601BE*01 

L0HER BOUNO 

42.9 
1.46 

.14 

.6 

COS CRITERIUM FULFILLED WITH 3 

: 

• 1 .I2B35C*tl 
2 .1S201E*00 
3 .1I0«6E*00 
4 .1426U>01 

STANO.ERROR» .10949773E*0 

LINEARIZEO IN TANOENT PLANE 
95 0/0 CONFIDENCE IHTERV 

ZEROS FOR 

TOTAL 

MEAN VALUE 

45.4 
1.76 

.37 
3.5 

/ NO ' YES 
NPARTa 4 •• 

COSINE •• 
NPAR « 4 •* / 

| 

1 

; 

IN CYCLE 

• 1 35.41 
• 2 11.50 
• 3 3.15 
• 4 2.49 

••••••••••••••••••••••«•• 

TOTAL COSINE- .2503701 

UPPER BOUND 

40.0 
2.06 

.61 
6.3 

E-04 

K • 

1 • 
2 • 
3 • 
4 • 

N U H K R OF DATA * 

NO 7 OUT OF 10 CYCLES 

STATISTICS« 

USED FOR TH)S JOB CP-5EC. 

TOTAL NO OF ENTRIES IN FNCTN OFDA D2F0A SOLVE 
62 62 7 7 

OEFINED NO OF SUMMARIES* PRODUCEO. CYCLES/SUMRY• PRODUCED IN LAST ONE* TOTAL NO OF CYCLES 

M O U l f t » CONDITION rttLfUXMO 
PROCESS TERMINATES AT-STO» SS-
IN NLV FROM HON* ENTÂT SUNNY 

*»»ENO or jo«-*«* 
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1.5 Instructions to apply main program NLV 

it TO DISTINGUISH BETWEEN EXISTING *M0 SUPPLEMENTARY STATEMENTS THE LATTER ARE 
NUMBERED IN THE T3RD COLUMN. «FAULT VALUES THAT SHOULD BE CHANCED FOR A 
PROPER EXECUTION OF THE MODIFICATION ARE GIVEN IN THE HEAD IN« AND ARE NARKED 
WITH 0 IN THE T3RD COLUMN. 
PROGRAM TEXTS ARE GIVEN BETWEEN FULL — AND LINES. A SERIES OF EXISTING 
ANO UNALTERED CARDS IN THE MAIN PR06RAH NLV IS DENOTEO Br ... IN THE MARGIN. 
IN MODIFICATION EXAMPLES THE FIRST AND THE LAST LINE ARE EXISTINO UNALTERE» 
STATEMENTS OF THE DEFAULT OECK. 
FOR INFORMATIVE USE A STOP STATEMENT CAN BE INSERTED AT THE DESIRED POINT Of 
THE MAIN PROGRAM NLV. USE OF LSUMRY-0 IS SUSGESTEO FDR U5E IN DIFFERENT RUNS 
OF MODIFICATIONS THAT ARE ENTERED AFTER THE 40 CONTINUE STATEMENT. 

CALL REAO ( l . l . N O U T R D ) 
L S U M R Y - 1 S N C Y C L E S - 5 t CALL F N C T N C A . 1 , S « A , 1 . O . Y C L C A . Y O C A . 0 . 0 ) 
DO BS 1 - 1 . N O A T * S A L O G 1 0 Y - A L O G 1 0 ( A B S I Y C L C A 1 1 > > I 
I F I A L O G 1 0 Y . L T . . 0 ) A L O G 1 0 Y - A L O G 1 0 Y - 1 . S I P O W E R - 2 - l P I X ( A L O B I 0 Y I 

B5 r O B S ( I ) « F L O A T U F I X < Y C L C A ( I f l O . » l P O M E R I I / 1 0 . » I P O M E R 
I R E P - 0 

CALL M I N i D E L T A , 
I F ( N C . E O . l ) 

«CALL H I N t D E L T A . 
CALL A I SB 

- . 2 * E P M I N ( N O C L C I , . 1 » E P H I N I N O C L C ) , 2 2 . 0 , 1 

M O D I F I C A T I O N 2 . P R O P E R T I E S OF C O N D I T I O N F U N C T I O N AND S T A R T I N G P O I N T 
2 . 1 D E T E R M I N A T I O N OF A NEU START ING P O I N T BY U N I V A R I A T E SEARCH TOR THE F I R S T 

NPART PERHUTEO PARAMETERS 

CALL REAO ( l . l . N O U T R O ) 
CALL N E H Z E R O ( 1 0 . 6 . 6 > 
CALL PUNCH(O) 
STOP 
I R E P - 0 

THE STOP STATEMENT I S OPTIONAL 

I A T I O N BY COMBINATORIAL SEARCH 

I F ( N O C L C . G C . N C Y C L S ) GOTO 3D 

NUMBER OF CYCLES AUTOMATICALLY RESTRICTED TO 4 

MODIFICATION 3. SELECTIVE USE OF PARAMETERS 
3.1 AUTOMATICAL ORDERING OF PARAMETERS BY MEANS OF 1 

USE DEFAULT LSUNRY-1 
t PARTIAL COSINI 

CALL DFDAfA.HA.YCLCA.YOCA.l.l.NOUTDFI 
CALL ORDERlA.HA.YCLCA.YOCA.l.l.NOUTDF) 
CALL D2FDAIA.S8A.HA.YCLCA.YOCA.ltNOUTD2F) 

.2 USE OF TWO BLOCKS WITH PERMUTED AND 3ftOOPEC PARAMETERS IN 
MAXIMUM NUMBER OF BLOCKS THAT CAN BE USED IS S 

USE LSUHRY-1 (DEFAULT) FOR INTERMEDIATE RESULTS. 

THE FIRST BLOCK 

NPART 

NPAR 

MPAR 

CALL 8LOCKI2.1 

> M ' N C l 
CALL B L O C K < 0 , 2 t 3 t l O . ) 
CALL FNCTN ( A . l . b O A . l . l • Y C L C A . Y O C A . l . N O U T F N ) 

ALSO CAN BE USED E . G . CALL BLOCK 1 0 . 2 . « C Y C L E S - E N D , C O S C R I T 1 

I F ( N O C L C . G E . N C Y C L S ) GOTO 3 0 S N O C L C - N O C L C H 
CALL H I N M N O R M . O . l « . 0 , . 0 . 2 0 . 0 . 0 ) 1 
CALL A I S B 

M O D I F I C A T I O N S . SELECTED PATHS 
S . 1 A CONTROLLED APPROACH »LONG THE F I R S T YOCA-VECTOR W I T H T R A C K ( 1 . N P A R T , 

CONTROLLED APPROACH ALONG EACH NEW YOCA-VECTOR W I T H TRACK<2.NPART< 

N C - 0 
CALL T R A C M 1 , N P A R T . . 2 . 4 . 5 , 0 , 1 ) 

2 0 N C - N C 1 

* 3 0 CONTINUE 
I F ) I R E P . L T . END I GO TO 10 

CALL SUMRY.RETURNSC40) 
I F < I R E P . L T . ENO ) GO TO 10 

ICYCLS-NCTCLES 

• 0 CONTINUE 
I F « I R E P . L T . ENO I 

I F ( N 0 C L C . G E . N C Y C L S 1 GOTO 3 0 
CALL T R A C M 3 . N P A R T , . 0 , 0 . 0 , 0 , 0 1 
CALL M I N I D E L T A , 0 , 1 . . 0 , . 0 , 2 0 , 0 , 0 ) 

NOCLC-NOCLC«] 

6 . 2 APPROACH W I T H OBSERVATION VECTOR REFLECTED I N THE TERMINAL I 

40 CONTINUE 
CALL TRACK(4,NPART,.0.0.0.1 

IF( IREP .LT. END I 
STOP 5S 

,l*EPMIN(NOCLC).22,1 

CALCULATION OF CURVATURE ALONG EACH PARAMETRIC CURVE SEPARATELY 

CALL M l N t O E L T A . O . 
DO 8 0 « - 1 . N P A R T 

8 1 C O R R I K D - . O 
CALL H I N < C O R R . 1 . 

8 0 CONTINUE 
STOP 
CALL A I S B 

. . 0 . . 0 . 2 0 . 0 
0 0 8 1 KL 

1 
. . 0 . . 0 . 0 , 0 . 

0 ) 
c l . M P A R 

CORRI 
1 

EPS-EPS1 
DO 55 1-1.NPAR 

55 CORRtI)«CORRtII*H»(Il 
EPS"EPS2 * CALL * 
CALL AISB 

CALL HIN<DELTA.0.1..0..0< 
CALL BACK(NPART.O.O.O.S) 
CALL AISB 

CALL MIN<DELTA>0.1..0..0.20.0.0) 
CALL BACKiNPART.0,0.1.5) S EPSSAVE-EPS 
IF(NRINSUÖ(15).EQ.5000) GO TO 5000 
CALL MlN(CORR,0,lt.D..O>20,0,0) 
CALL MIN(CORR.0,0,.0.3.J 415926535/16..32.0.0) 
CALL Bl (0.0.0.0.0) 
CALL MIMCORR.0.1..0.. 0.20. 0.0) 
CALL B2 (0.0,0,0.0) S EPS-EPSSAVE 

5000 CONTINUE 
CALL AISB 

THE WRITE OPTION GIVES THE (EPS 
CALL BACKINPART.1. 

CIRCULAR SEARCH IN OBSERVATION SPACE IS PERFORMED BY 

IONSHIP FROM 0 TO 2*>PI 

CALL BACKlNPARTi 

CALL SUNRY.RETURNS140 
CALL LIHYPEXU«3.4,S.< 
CALL M1NICORR.0.1..0. 

POLYNOMIAL. HYPERBOLIC OR EXPONENTIAL EXTRAPOLATIN 

MODIFICATION 9. SPEEDING UP CONVERGENCE USING SECOND DERIVATIVES 
9.1 USE OF APPROXIMATED STEP FACTOR BY SECOND DERIVATIVES 

REDUCTION OF NUMBER OF ITERATIONS IN SUBROUTINE MIN 

IFINOCLC.GE.NCYCLS) GOTO 30 
1 IF(EPSEST.GT..S*EPS) NO=4 

1F(EPSEST.GT..S«EPS) EPS-EPSES 
J(DELTA.0.l,.Q..0.NO.0.O) 

NOCLC-NOCLC*) 

9.2 CORRECTION FOR NON LINEAR!T' I SCALE FACTOR WEIBHTS BASED ON DIFFERENTIALS 

."== 
EPSHA 
DO 6 0 
DELTA 

"' 
1-PS 
K - l 

CALL M I N I 
CALL i s b 

I F O . 

<NPAI 
1ELT-
>£LT< 

BEFORE ENTERING THE DO LOOP EPSHA=1. COULD BE USED 

MODIFICATION 10. INFORMATION ON RESULTS USING FIR 
10.1A NUMERICAL INVESTIGATION OF CURVATURE ALONG 

NUHERICAL INVESTIGATION OF CURVATURE FOR 

40 CONTINUE 
CALL TRACKI5.NPART..0,.0.0.1.0) 
CALL TRACM6, NPART.. 0.. 0.0. 1.0) 
STOP 55 

>T DERIVATIVES 
RITTING ORDER TRACK<5.* 
EQUAL STEPS TRACK(»»* 

IREP • 0 
100-1 S IOONE-1 

10 IREP > IREP*1 1 1 IF(LSUMRY.EO.O) 13-7 

NC-0 S NCYCLS*NCYCLES 
M5TEP*10 » CALL TRACK(1.NPART,.O.MSTEP, S.0.1) S IDONE*I0ONE*1 2 

20 NC-NC'1 

3 0 CONTINUE 
L A G - 2 S I F U D O N E . G T . H S T E P - L A G . A N O . I D O . E * . l > I D O - N R [ N S U B ( l b l > 0 3 

I F < I R E P . L T . END I GO TO 10 4 
CALL S U M R Y , R E T U R N S I 4 0 ) 

4 0 CONTINUE 
I F ( I R E P . L T . END ) GO TO 10 5 
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4 0 CONTINUE 
CALL T R A C K I 5 . N P A R T . . 0 « . 0 , 0 , 1 . 0 ) 1 
CALL T R A C M 6 . N P A R T , . 0 « . 0 , 0 . 1 . 0 ) 2 
0 0 5 5 K - l i N P A R T % DO 6 5 L - l . H P A R 3 

6 5 A ( L ) - X A I N O C L C . L ) 4 
A I I P I K M - X A U . I P I K ) ) 5 

SS CALL TRACM6.NPART«.0.0,0.0.0) 6 
STOP 55 

USE CAN BE MAOE OF PREDEF1NEO PARAMETER VALUES. IN THIS EXAMPLE THE INITIAL 
VALUE IS RECALLED BY THE 5TH INSERTED CARD. A USEFUL ALTERNATIVE IS 

•(IP(K))-A(IP(K))-2.*STOEV(K) S 

FINAL REMARKS. 
ALTHOUGH EACH OF THESE MODIFICATIONS HAS BEEN TESTED CAREFULLY TO PERFORH 
ITS SPECIFIC ALGORITHM PROPERLY ARBITRARY COMBINATIONS OF MODIFICATIONS M1GH1 
PRODUCE UNPREDICTABLE RESULTS. 



2 Examples 

Observation matrix .Y < 

2.1 Specimen nonlinear condition fonction 

Condition function y = xe 

Vector of observed variables * = (xltx2) = Ü\*) 
Vector of parameters 0 = (0) 

[10.0 ej 
Position vector ƒ = (l,e*)T 

First derivative of condition function fe = x° In x 

Jacobian J = 9 I, scale factor h — (e8) 

Matrix of normal equations JTJ=M-= (e29) = (7.38906) 
Inverse matrix of normal equations AT"1 = (e~2e) = (0.13534) 
Initial parameter vector ff(0) = (1) 

Difference vector * - ƒ(*«») = f0 = [ ^ ~_ \ m ] = [ " ^ J 

Sum of squares at initial point/J/o = S = 53.273 
Normal vector J r /0 == AT = (19.794) and Jd =7.282 
Differential correctionM~1N=d= (2.679) 
Updated value for 0 becomes 0(1> = (1 + 2.679) = (3.679) 
Exact solution 0* = (2.30258) 

Used to demonstrate application of arc length in Section 2.7.3. See also Figure 7. 

2.2 Nonlinear condition fonction, fast convergence 

A function analogous to the one given by Fink & Jackson (1973) to describe sig-
moidal adsorption isotherms, applied to observations on the soil moisture tension 
(its common logarithm being denoted by x) and the moisture content (y) of soil 
samples appeared to be a good condition function to demonstrate properties of op­
timization processes. Examples are given for two series of observations carried out by 
the laboratory of the Institute for Land and Water Management Research, Wage« 
ningen. The first series (Table 18) gives an example of an optimization process with 
fast convergence, the second series, see Appendix 2.3, gives an example of an optimi­
zation process with slow convergence. 
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Table 18. Data to demonstrate fast convergence. 

i 

X 

y 

l 

0.4 
45.3 

2 

1.0 
43.4 

3 

1.5 
41.0 

4 

2.0 
33.3 

5 

2.3 
27.6 

6 

2.7 
23.2 

7 

3.4 
11.5 

8 

4.2 
7.4 

9 

6.0 
2.4 

The condition function reads 

y = D { e ( * - A > ' * + l } - 1 / C 

where the asymptotes are given by y = 0 and y = D. 
Vector of observable variables x = (y,x) 
Vector of parameters 0 = (D,Â,B,C)T 

Initial parameter 0<°> = (34.8, 1.31, 0.2746, 3.489)T 

Initial parameter values obtained as an average for several samples. After the data 
are read the parameter 9± is redefined by öt = yC1 ] + 0.1 
Sum of squares at initial point S(fli0)) = 564.61 
Sum of squares at final point S(0(t)) = 6.00 
Final parameter 0(t) = (45.44, 1.761, 0.3741, 3.494)T 

Results obtained in this example are used in Sections 9.3.4, 9.4.4, 11.4 and Appen­
dices 1.4.1 and 1.4.2. 

2.3 Nonlinear condition function, slow convergence 

Condition function and initial parameter as given in Appendix 2.2. Data as given in 
Table 19. 

Sum of squares at initial point S(0m) = 976.40 
Sum of squares at final point S(0U)) = 1.83 
Final parameter 0<'> = (38.31, 2.1277, 0.5474, 3.047)T 

Results obtained in this example are used in Sections 5.5, 6.5, 7.4.3, 9.4.4, and 
10.6. 

Table 19. Data to demonstrate slow convergence. 

I 

X 

y 

l 

0.4 
38.3 

2 

1.0 
36.1 

3 

1.5 
34.8 

4 

2.0 
32.3 

5 

2.3 
29.0 

6 

2.7 
24.1 

7 

3.4 
17.2 

8 

4.2 
11.4 

9 

6.0 
3.5 
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' V• • . ' A ' ' ' • II. 

List of symbolic FORTRAN names 

Main symbols used throughout the subprograms are given. The dimension of 
arrays is obtained by p = total number of parameters, q = p + 1, c = pq/2, m — 
total number of observed variables, v = total number of observations, t = predefined 
number of fitting cycles (f=lS),t1 = t+l. 

Name 

A 
ALB 
ANORM 

AUB 
B 
BNORM 

CORR 
CURVGEO 
CURVTOT 
DELTA 
END 

EPMIN 
EPS 
EPSNEW 
EQS 
FA 

FAA 
FAFAA 

FA2 

FSS 
FOFAA 

Dimension Symbol Interpretation 

px 
px 
qx 

px 
px 
qx 

px 
px 
px 
px 

tx 1 

ti X 1 

v X q 

V X c 

pxp 

0<°> 

W(0<°>) 

K 

d 

X 
A<°> 
K 
J 

ƒ« 
M12 

q X 1 (ƒ*ƒ*) 

v x 1 
pxp N02 

Initial parameter in each cycle 
Lower bound of parameter values 
Normal at initial point A, extended with sum 
of squares SQA 
Upper bound of parameter values 
New parameter in direction of search 
Normal at point B, extended with sum of 
squares SQB 
Arbitrary direction of search 
Geodesic curvature 
Total curvature 
Differential corrections 
Number of repetitions of a predefined num­
ber of cycles 
Optimal step factor in nth cycle 
Step factor 
Predicted step factor 
Reduction factor to step factor 
Jacobian matrix of first derivatives 
extended with difference vector 
Vectors of second derivatives 
Scalar products of vectors of first and second 
derivatives 
Square of length of first derivatives extended 
with sum of squares (JQ,f0) 
Curvature vector 
Scalar products of difference vector and 
vectors of second derivatives 
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Name 

HA 

HB 

IB 
IP 
IPX 

IREP 

Dimension Symbol Interpretation 

STDEV 

q X 1 

q X 1 

p X 1 
q X 1 
t X p 

p X 1 

Ä(0(o)) 

A(0(1)) 

JP 
M 
MAXDAT 
MAXVEC 
MPAR 
MT 
NB 
NC 
NCYCLES 
NCYCLS 
NDATA 
NOCLC 
NPAR 

NPART 
NPARTX 

NT 
SQA 
SQB 
SQMIN 

q 
i 

t 

x 1 
X q 

X 1 

M 
V 

m 
P 
P + l 

n 

V 

n 

P 
P 

P+l 
S(0(o)) 
S(6W) 
£*« 

X 
XA 

XCOSMT 
XCOSN 
XCOSQ 

v X m 

t X p 

t X 1 
t X ƒ> 

t X 1 

* 
0 

cos a 
c 
cos/? 

Scale factors at initial point A, extended 
with square root of SQA 
Scale factors at point B, extended with 
square root of SQB 
Index to save bounded parameters 
Index to save parameter permutation 
Index to save parameter permutation for 
summary 
Index to save number of repetitions of pre­
defined number of cycles actually being 
performed 
Index to save original parameter ordening 
Matrix of normal equations (extended) 
Total number of data 
Total number of observed variables 
Total number of parameters 
MPAR+1 
Total number of bounded parameters 
Cycle number being performed 
Number of cycles to be performed 
Number of cycles to be performed 
Total number of data to be performed 
Cycle number being performed 
Number of to be fitted and informative 
parameters 
Number of to be fitted parameters 
Number of to be fitted parameters saved for 
summary 
NPAR+1 
Sum of squares at initial point A 
Sum of squares at point B 
Subminimum of sum of squares in direction 
of search 
Linearized standard deviation of parameter 
estimates in tangent plane 
Observation matrix 
Initial and optimal parameter values saved 
for summary 
Multiple cosine saved for summary 
Partial cosines saved for summary 
Total cosine saved for summary 
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Name Dimension Symbol Interpretation 

XCRLMT 
XDELT 

XDELTA 

XGEO 

XHA 
XM 

XNORM 

XNRM 

XSQF 

YCLC 
YCLCA 

YCLCB 
YOBS 
YOCA 
YOCB 

f X 1 

tx 1 

t X 1 

tx 1 

txp 
qxq 

tx 1 

tx 1 

tx 1 

v X 1 
V X 1 

V X 1 
V X 1 
V X 1 
V X 1 

Mil 

K« 

h 
MM~X 

«/vu 

(.Afo,Afo) 

y 
W0)) 

A*") 
X 

/o(0(O)) 
/o(0a)) 

Multiple correlation saved for summary 
Length of vector of differential corrections 
for NPART parameters saved for summary 
Length of vector of differential corrections 
for NPAR parameters saved for summary 
Geodesic curvature in direction of search 
saved for summary 
Scale factors saved for summary 
Matrix to save matrix of normal equations 
and its inverse 
Length of normal for NPAR parameters 
saved for summary 
Length of normal for NPART parameters 
saved for summary 
Sum of squares to tangent plane saved for 
summary 
Calculated function values 
Condition function evaluated at initial point 
A 
Condition function evaluated at point B 
Observed function values 
Difference vector at initial point A 
Difference vector at point B 

189 



List of symbols 

Symbols defined or introduced in chapters or sections mentioned between paren­
theses are used in a restricted number of sections. The other symbols are used 
throughout the book. Symbols falling outside the main line of argument are defined 
in the text only. Dimension symbols are also explained in this list. 

Symbol Dimen- Chapter Interpretation 
sions Section 

A 2.4 Tangent plane 
A 2.4 Left superscript denoting quantities with 

respect to the tangent plane as A0, Af0 and AS 
a (10) Constant of parameter function 
B p x p 3.4 Metric matrix whose inverse acts on the 

vector of steepest descent — g 
b p x 1 2.9 Auxiliary vector in tangent space 
b p X 1 6.2 Vector of back projection 
b (10) Constant of parameter function 
C p x p 2.2 Cosine matrix whose elements, cos (/*,ƒ), are 

the cosines of the angle between the direction 
vectors 

C 2.9 Contour curve for constant value of the 
response 

c p X 1 2.2 Cosine vector whose components, 
cos (f0, /à), are the partial cosines 

Cj (3.1) Constraint to jth variable 
cu c2 (4) Constant function values 
c (6.3) Algorithm parameter equal to 2 cos (j> in 

back projection method 
c (10) Constant of parameter function 
d p x 1 (2.4) Differential correction vector; the solution 

of the normal equations 
d (10) Constant of parameter function 
ds 2.7 Arc element 
E' 1.3 /»-dimensional Euclidean parameter space 
E' 1.3 /7-dimensional Euclidean tangent space 
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Symbol 

Ep+1 

F 
e 
F 
F 
lF2F 

f 

Dimen­
sions 

Chapter Interpretation 
Section 

v x 1 

v x 1 
v x 1 

v x 1 

2.2 
1.3 
(10) 
2.2 
1.2 
(4) 

2.1 
2.1 

2.8 

ƒ„ 
/o 

f 
A 

V,2/,'/ 

G 

G 
g 
-g 
g 

g 
H 

h 

h 
i 

i 

i 

v x 1 
v x 1 

pxp 

p X 1 
p X 1 

pxp 

p X 1 

2.8 
2.1 

2.1 
2.1 

(4) 

2.5 

(4) 
2.2 
2.2 
2.8 

(4) 
3.4 

2.2 
2.2 
2.1 

1.2 

OD 

(p+ l)-dimensional Euclidean response space, 
v-dimensional Euclidean observation space 
Constant of parameter function 
Vector of implicit condition functions F 
Implicit condition function 
Left superscript denoting implicit condition 
functions of different form 
Vector of explicit condition functions ƒ 
Direction vector, tangent to fcth parametric 
curve on the fitting surface 
Direction vector with arc length taken as 
parameter 
Curvature vector 
Difference vector in the observation space, 
equal to x — y, for differences between ob­
served and calculated function values 
Explicit condition function , 
Explicit condition function differentiated 
with respect to the kth parameter 
Left superscript denoting explicit condition 
function of different form 
Hessian matrix whose elements, d2S/dOkd&„ 
are second derivatives of the objective func­
tion 
Implicit condition function 
Gradient vector 
Vector of steepest descent 
Subscript denoting quantities related to 
geodesic curvature, e.g. K9, (fag and (ƒ•«)» 
Explicit condition function 
Matrix to be updated in subsequent cycles; 
approximation to G"1 

Vector of scale factors hk 

Scale factor; length of direction vector./* 
Identity matrix; dimensions being defined by 
operation rules of matrix algebra 
General superscript for observations, e.g. 
xm 
General superscript for steps in controlled 
approach, e.g. x (0 
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Symbol Dirnen- Chapter Interpretation 
sion Section 

i (10.1) General subscript for equidistant steps, e.g. Xt 

J v x p 2.2 Jacobian matrix, j[n, consisting of direction 
vectors fk 

j{ v X p 2 .2 J acob ian mat r ix , dß-^jdO^, a bbrev ia ted t o J 
J% p X q 2 .5 J acob ian ma t r ix dOJdAj 
Jg v x p 4.3 Jacobian matrix dFwjd6k for implicit condi­

tion function F 
J2 v x (P2X) 2.5 Matrix of second derivaties/^ where k :g / 
Jb v X 1 (6) Vector in tangent plane obtained by back 

projection; linear combination of direction 
vectors 

Jd v x 1 2.4 Total tangent; linear combination of direc­
tion vectors according to the solution of the 
normal equations 

j v X 1 (4.9) Choice vector to save information on the 
sequence of executed statements for alterna­
tive condition functions 

j 1.2 General subscript for variables 
j (1.2) Subscript assigned to quantities that refer 

to a condition function solved for the y'th 
variable, e.g. *,,ƒ}, yj,f0J, Sj 

j (4) Ibidem 
j 2.5 General subscript for algorithm parameters 
j (4) Left superscript for general index of condi­

tion functions of different form, e.g. Jf 
j (10) General superscript for fitting cycles, e.g. 0(

k
j) 

K v x p 2.8 Matrix derived from the Jacobian for the 
determination of the curvature in an arbitra­
ry direction of search 

k 1.2 General first choice subscript for parameters, 
e.g. 0k 

k 2.1 General first choice subscript denoting dif­
ferentiation with respect to the Mi parame­
ter, e.g. fk 

l v x 1 2.3 Position vector of the tangent plane 
/ 2.1 General second choice subscript for param­

eters, e.g. 0j 
/ 2.1 General second choice subscript denoting 

differentiation with respect to the /th param­
eter, e.g. fi 
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Symbol Dirnen- Chapter Interpretation 
sion Section 

M p x p 2.4 Matrix of normal equations with elements 
Ob/D; the square of the Jacobian / 

M12 pxp 2.5 Matrix with elements (yjjii) 
-**22 C2 1) x C21) 2.5 Matrix which is the square of the matrix J2 

m 1.2 Total number of real variables of the condi­
tion function 

N p x 1 2.4 Normal vector with components (f0,fdl 
the right-hand side of the normal equations 

N p x 1 (6.2) Normal vector redefined for back projection 
method 

N02 p x p 2.5 Matrix with elements (ƒ>,/«) 
N (11) Number of steps in controlled approach 
n 1.4 General superscript for fitting cycles e.g.000 

o(A2) (5.3) Remainder of Taylor expansion of scale 
factors representing terms of second degree 
and higher 

o(A3) (2.6) Remainder of Taylor expansion of the objec­
tive function representing terms of third 
degree and higher 

p 1.2 Total number of real parameters of the 
condition function 

q 2.5 Total number of algorithm parameters 
R (9.3) Reduction factor used in finding the sub-

minimum 
r 2.8 Subscript denoting quantities related to 

remainder curvature, e.g. K„ (fj, and (f,X 
r,rur2 (4) System parameter to control sequential use 

of sequential condition functions 
r (9) Subscript for reduction factor to step factor, 

viz. X, 
S 1.2 Objective function (f0J0); sum of squares; 

response 
* p x 1 1.4 Arbitrary vector of direction of search 
s 2.7 Arc length 
T (9.3) Measure of slope to (A, 5(A))-curve 
t 1.4 Superscript denoting fitting cycle in which 

stopping criteria are fulfilled, e.g, 0( , ) 

/ (9.3) Reduced measure of slope pT 
tu t2 (10.4) Auxiliary variable in exponential extrapola­

tion 
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Symbol Dirnen- Chapter Interpretation 
sion Section 

U (2.2) Arbitrary matrix 
« (2.1) Arbitrary vector; (also in Sections 2.9 and 

3.5) 
u (2.1) Arbitrary variable 
u (4) Arbitrary function of the parameters 
v (2.1) Arbitrary vector; (also in Section 3.5) 
o (2.1) Arbitrary variable 
v (4) Arbitrary function of the parameters 
w p x 1 3.5 Vector of weights; weights to be applied to 

s; defined in Chapter 5 
w (4) Arbitrary function of the parameters 
w (4.8) Auxiliary variable for sequential condition 

functions 
X v x m 1.2 Observation matrix with elements x$i] 

x 1 x m 1.2 Vector of real variables Xj 
x v X 1 2.1 Observation vector with components xin 

xlt) v x 1 (11) ith intermediate observation vector used in 
controlled approach 

Xj v x 1 (2.1) Observation vector; observed values for ys 

x 1.2 Observable real variable of the condition 
function 

y v X 1 2.2 Vector of calculated values ylil; position 
vector of the fitting surface 

yj v X 1 (2.1) Vector of calculated values ylp 
yj (2.1) Variable for which the implicit condition 

function F is solved 
z p X 1 (6.4) Basis vector used in back projection method 
z (4.5) Arbitrary function of the parameters 
z (4.6) Auxiliary variable for sequential condition 

functions; (also in Section 4.8) 

a 2.4 Angle between observation vector * and 
position vector y 

cos a 2.4 Multiple cosine; cos (x,y) 
a (3.5) Algorithm parameter; (also in Section 6.3.1) 
ß 2.4 Angle between ƒ<, and Jd 
cos)S 2.4 Total cosine; cos (f0,Jd) 
ß (3.5) Algorithm parameter; (also in Section 6.3.1) 
ß (11) Reduction factor of difference vector f0 used 

in controlled approach 
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Symbol Dirnen- Chapter Interpretation 
sion Section 

A p x 1 2.3 Difference vector in the parameter space 
S p x 1 (7.4) Stopping criterion vector for partial cosines '. 
5 v x 1 2.3 Remainder vector of Taylor expansion of 

position vector with components S1*1 

ô (7.4) Stopping criterion 
6 p x 1 1.2 Parameter vector of real parameters 0k 

9 1.2 Real parameter of condition function 
K 2.8 Total curvature 
Kg 2.8 Geodesic curvature 
K, 2.8 Remainder curvature 
X q x 1 2.5 Vector of algorithm parameters Xj 
X 1.4 Algorithm parameter: step factor in direc­

tion ofsearch 
A, (12.1) Equidistant points in direction of search 
X, 9.4 Reduction factor to step factor 
v 1.2 Total number of observations 
p 9.3 Reduction factor applied to measure of slope 

T 
<t> 6.3 Angle in tangent subplane between Jd and 

Jb; algorithm parameter in back projection 
method 

<f> (9.3) Angle between g and s 
ij/ 6.4 Algorithm parameter in back projection 

method 
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Special notation 

Symbol 

D 

Dimen­
sion 

Chapter Interpretation 
Section 

2.2 

2.2 

d 
e 
In 
min(a,b) 
T 

dk 

6 

V 

V' 

[ ] 

( ) 

p x 1 

q X 1 

1.2 

2.1 

2.1 

2.5 

*(») 

Superscript, adds the &th component of the 
superscripted vector to the (&,Â:)th element of 
a zero matrix 
Superscript, adds the inverse of the &th 
component of the superscripted vector to the 
(k,k)th element of a zero matrix 
Differential operator 
Base of system of natural logarithms 
Natural logarithm 
The minimum of the numbers a and b 
Superscript denoting transposition of a 
vector or a matrix 
General component of the operator V 
Element of 
Vector differential operator for differentia­
tion with respect to condition function 
parameters 
Vector differential operator for differentia­
tion with respect to algorithm parameters 
Superscript; brackets denoting number of 
observation, e.g. xin 

Superscript; parentheses denoting number of 
fitting cycle, e.g. 000 

Is defined by 
Which defines 
Superscript denoting quantities related to the 
minimum response 
Superscript denoting quantities related to the 
minimum response in the nth cycle or to the 
#th subminimum 
Euclidean norm 
Under the condition. Given 
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Symbol Dirnen- Chapter Interpretation 
sion Section 

' Prime, denoting the derivative with respect 
to the innermost argument 

' Prime, used in superscripts defined in the text 
— (9.3) Subscript assigned to quantities left to thé 

(sub)minimum 
+ (9.3) Subscript assigned to quantities right to the 

(sub)minimum 
3 2.1 Matrix (vector) whose elements (compo­

nents) are equal to 3; dimensions being 
defined by operation rules of matrix algebra 

lk 2.1 Unit vector in direction of ftth coordinate 
axis of an orthogonal reference system; 
dimensions being defined by operation rules 
of matrix algebra 

k = 1(1 )/> 1.3 The general subscript Granges from 1 through 
p, with increments ( ) equal to 1 
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