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Abstract

StoL, Pa. Th. (1975) A contribution to theory and practice of nonlinear parameter optimization,
Agric, Res. Rep. (Versl, landbouwk. Onderz.) 835, ISBN 9022005623, 197 p., 19 tables, 47 figs,

56 refs, 2 appendices, summary. :
Also: Doctoral thesis, Wageningen.

Nonlinear parameter optimization in least squares was studied from a point of view of differential
geometry. Properties of curvilinear coordinates, scale factors and curvature were investigated. Params-
eters of the condition function were expressed as functions of algorithm parameters to generalize
the formulas. The analysis of the convergence process cumulated in the development of procedures
that accelerate convergence. Scale factors were used as weights to the differential correction vector to
improve the direction of search. A method to correct for curvature, called back projection method,
was developed. Use was made of the tangent plane on which the path of search on the fitting surface
was projected. Deviations from the original direction were corrected by optimizing the angle of
deviation and the step factor. The correspondence between rate of convergence and curvature of the
path of search was illusirated with an example. A small geodesic curvature at the starting point indi-
cates fast convergence. Curvaturs properties of the parametric curves appeared to be of more in-
fluence than those of the fitting surface. To avoid heavy oscillation of intermediate paramster values a
method was developed that required the intermediate points to be the foot of a perpendicular from
the terminal point of intermediate observation vectors thus producing paths of controlled approach.
Since condition functions may have a complicated structure in that they can be implicit functions,
sequential functions or can consist of mathematical models involving alternative functions, it was
treated how first derivatives can be calculated and programmed systematically for these functions,
Methods introduced were made operational by means of a FORTRAN program. A description of the -

useofthesubprogramsandmmnammodlfythemamprommtosmtthevanomalgorithms ‘

and procedures developed are given in the Appendices. ’

UDC 519.281.2: 518.62: 516.8 : 681.32.06 and 513.736.7 : 513.735.43 : 518.5
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1 Introduction

1.1 General

Research workers who describe their problems with mathematical formulas in
which variables and unknown parameters occur, have need for testing their working
hypothesis with the aid of observations. But then they face a new problem, that of
finding the best value of the parameters in their models.

With the aid of a test criterion the term “best’ can be made operational. The problem
that now arises is a complicated one since most models consist of functions that are
nonlinear in the parameters and iterative methods have to be employed to find ‘best’ or
optimal values for them. Although computers work so fast that execution of some 100
iteration steps is acceptable for rather small-scale problems, there still are reasons to
search for faster techniques. Execution of series of data on routine basis is one of them.
Application of complicated models, with many variables and parameters, to a large
number of observations requiring a manifold of a reasonable number of iterations, isa
second.

These practical reasons necessitate a theoretical treatment to gain insight in opti- -
mization processes, Therefore, in the present study a theoretical approach has been
made leading to a computer program in which newly developed optimization algo-
rithms are incorporated.

Simplifying a complicated optimization procedure by piotting the test criterion or
response as contour curves in a graph with two parameters as variables, apparently
gives an indication of how to find the extremum starting from an arbitrarily chosen”.
initial point. For most fitting problems this way of represéntation is inadequate, how--
ever. Least squares techniques have the advantage that except for the above inc'licated‘
parameter space, use can be made of the space in which observed and calculated fune- .
tion values are plotted. In this observation space the function to be fitted is represented
by a surface covered with a curvilinear coordinate system. The mathematical tools to
investigate such surfaces are treated in Chapter 2. Analysis of the curvilinear coordi-
nate system and its role in the search for more efficient paths on the fitting surface
leads to new algorithms (Chapter 5), that produce paths closer to the final solution
{Fig. 1). Other techniques that serve the same purpose are more empirically based on
intermediate resuits in the tangent plane to the fitting surface and on results obtained
along the axes of the parameter space (Chapter 6 and 10). ‘

Main notions that are of importance in optimization techniques are briefly reviewed .
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Fig. 1. Perspective drawing of an optimization problem with three directions of search. Given the con-
dition function y = a exp (-bx?) it is asked to optimize @ = (a,b)T given the observation matrix
X = (y,x) where y = (2,50, 3.80, 1.50)” and x = (0.3, 0.1, 0.5)7. The starting value is 8 = (3, 10)7.
In the figure three gradient directions are drawn. The steepest descent (-4g) decreases the objective
function (sum of squares) from S(@®) = 4,39 to § = 1.69 with step factor A* = 1.0 in the figure .
denoted by an asterisk on the path. The modified Gauss-Newton method, operating with differential
corrections d, decreases the response S to a lower value, viz. § = 0.23 taking the step factor in this
direction 1* = 0.6. Finally the path produced by weights assigned to d has been drawn, The weights
w” are obtained from differentials of scale factors (Chapter 5) with the aid of equation (5.3.3)and taken
independent of 1. Along this path of search the response is reduced to S = 0.06, with step factor
A* = 1.2, This path proceeds close to the final solution §* = (3.87, 4.09)™ with S(§*) = 0.05.

in Chapter 3. Stress is laid on least squares methods since they are used in this study as
the test criterion.

In Chapter 4 it is shown that the function subject to such fitting procedures not nec-
essarily need be explicit but that the algorithms that use first derivatives can also be
applied to a variety of functions including branched models of sequential functions, as
those used for the analysis of time series with deterministic models.

The efficiency of iterative methods can be improved by choosing good starting ap-
proximations to the solution of the parameter values. It is reasonable to require these
starting values from the research worker who developed the condition function. Opti-
mization techniques, however, can lead to paths of progress in the convergence pro-
cess that swing over the fitting surface before the terminal point isreached. The research
worker then may require that intermediate solutions will not move to undesirable
directions. For this reason in Chapter 11 an algorithm is developed that produces a fit
along controlled paths to avoid heavy oscillation of intermediate solutions,

14



A subproblem is the delm'mmauon of the mmlmum response in agwen darechon o!‘
search. Algorithms can fail when this subproblem is not adequately solved. Compli-

cations that arise from the special structure of the condition function often are detected = .
during the execution phase of this subproblem. Special attention has therefore been

given to the determination of the minimum response in one-dimensional search (Chap-
ter 9).

To meet the demands of practice, a computer program has been developed that
consists of subroutine subprograms that can be linked by a main program whose de- -
fault deck structure can be modified to perform specific procedures, as for example the
investigation of the properties of the function to be fitted (Chapters 8 and 12), as well -

as for the investigation of the properties of the applied algorithm and of the conver-
gence process itself. This according to the field of interest of the user of the program
{Chapter 13). To avoid time consuming programming of new parameter optimization

problems the program is set up in such a manner-that in principle only the new con- -

dition function and its derivatives with respect to the parameters, need be program-
med (Chapter 7 and Appendix 1.4.1).

Some examples illustrate the developed algorithms. Exampies of a hypothetical )

nature elucidate specific properties of fitting procedures, Formulas and data from re-
search practice serve the same goal, without giving an opinion on their value,

The Appendices contain the complete program, a technical description to it, an ex- *

ample of the default output and the most important update instructions.

1.2 Objective

We are concerned with a function F, the condition function, of m real variables x
orderedina 1 X mrow vector of variables

X = (XyyesXpyennsX)

and of p real parameters & ordered ina p x 1 column vector of parameters
(91, , p)r

whlchhastobeopumxzed—inanumericalsense-ormimated-—inast‘atisticalsense_— :

on basis of v (v > p) observations ordered in a v X m matrix of observations
E R

X= x&"---«,xgu s--'!xgl

X1, xE.".
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We assume that at least one of the parameters occurs nonlinearly in the condition
function Fand write

F(I,ﬂ) = F(xl,...,xm,GI,...,Gp)

If F = 0 can be solved with respect to x;, 1 = j = m, producing function values y,, it
is asked to fit the observed values x;, requiring the objective function .S, giving the
response

540 := I; x M-y @1 (1.2.1)

to be minimized with respect to @, so it is asked to find

min [S48)]
e

which is supposed to be solved at § —: 8%,
1.3 Conditions

It is assumed that the condition function F has continuous first and second deriva-
tives with respect to 8, k& = 1(1)p, for x{9,... x4 i = 1(1)w.

The condition function may be either explicit or implicit and can be determined for
all feasible choices of @, F being subject to constraints of this type only. Because of
(1.2.1) the same conditions hold for the objective function S;.

Vectors of observed or calculated function values are elements of the v-dimensional
Euclidean space, the observation space. Parameter vectors are elements of the p-
dimensional Euclidean parameter space so x € £ and 8§ € E£®. The norm in these spaces
is defined by the Euclidean norm ||x|| = {xTx)? and ||8]] = (078)* respectively.

1.4 Terminology

The optimization process is an iterative process. Once # fitting cycles have been
produced, the next updating of the parameter vector & can be obtained from the itera-
tion

0t D) = 07+ Is™ (1.4.1)

where A is a step factor and s a p x 1 vector that produces a direction of search in the
parameter space. The step length is given by Ails||. If A is determined such that

S£6*™y .= min[S (6" V(A)]
A

the updating is called optimal for 6"+ 1) = §*™_The vector s is obtained by applica-
tion of a particular algorithm. The process (1.4.1) terminates under control of stopping

16
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Fig. 2. Typical flowchart of an algorithm for one-
dimensional optimal search in nonlinmr_opﬁmin—
tion,

criteria at 0@ := the # for which all stopping criteria in the numerical process are ful-

filled,
Convergence of the algorithm takes place if
limo® = ¢*

fand]

Because the entire process consists of several iterative procedures, a distinction is

made between algorithm fitting cycles and iteration steps as given in Fig. 2.
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2 Functions, vectors and spaces

2.1 Functions and vectors

Functions to be considered can generally be written in the implicit form
F(x,0) = 0 (21.1)

The variabies x are supposed to represent observable quantities. The matrix of ob-
servations X is to be interpreted as v row vectors of observed values, each with respect
to m variables, where superscripts refer to observations, so

X = (x{ﬂ,.",x[i],“"x[' T
It is convenient to consider X occasionally to be composed of column vectors

X = (xl,...,x_,,...,x,,,)

F(x,0) is particularized for the observed values of the vanables and for specified param-
eter values e.g

= (xﬁl e ,xm‘]) (21'2)
and
0° = (6P,....00,...,0mMT 2.1.3)

Sequences of parameter values up to a terminal vector obtained in a sequence of -
fitting cycles, are represented by (2.1.3) where n == 1(1)z. This superscript will also be
used for other vectors, matrices and scalars when referring to a particular fitting cycle.

For the ith vector of cbservations to the m variables and the nth vector of p param--
eter values we define

F(0™) : = F(xP0"), i =1ty 2149

In general, the condition of zero function value is not met by inserting (2.1.2) and
(2.1.3) in (2.1.1). However, in all cases to be dealt with it is assumed that (2.1.1) can be
solved with respect to the jth variable, now denoted by y,, to obtain roots of F that can
be represented by v condition equations

Py, 09) 1 = F(20, .11, y,580 .. 200%9) = O @15
For any @ the relationship between implicit and explicit functions can thus be given by
F'(y,0) = 0 = {1 =311 (6) | 2.1.6)

21




It is assumed that solutions y1, i = 1(1)v, can be obtained from (2.1.6) by either
iterative methods or by simple evaluation. Numerical solutions y}7 are components of
anewv X 1solution vector

¥ =f® .17

A v X 1 vector of function values depends according to (2.1.4) on all observable
magnitudes and is given by

F(X,0) := [FGx''19),.. . Fx",0)]7

where, in general, F(X,#) # 0. From this definition it can be seen that the components
of F do not depend on all observations simultaneously. Consequently the solution
vector is obtained from

F(y;.0) = [FU0)10),.. . FP 0] = 0 (2.1.8)
where the ith component, i = 1(l)v, is a function of the ith component of the vector y,

alone.

Definition 2.1.1.: A vector function »(u) is called a strict function of u if v, = v,{u;) for
all i

Instead of the parameter vector @ itself, functions of algorithm parameters will often
be used to obtain the appropriate parameter values. These functions will be called
parameter functions. They consist of scalars and vectors, Frequently use will be made
of the scalar A and the vector s. A parameter function in its general form reads

8(7) := [Bl(las)""’ap(las)]r
A strict parameter function is given by
() = [8,(4s )-8, (A1
A further special case is the linear and strict parameter function
o) = 0™ + is™ (2.1.9)

which is sketched in Fig. 3. The locus of the terminal point of the vector @ in this case
is a straight line in the parameter space. Exploration of the response surface (Fig. 5)
along such a locus is called exploration along a one-dimensional path of search.

Solutions of (2.1.6) when subtraced from the corresponding observations produce
thev x 1 difference vector f,

x; — ¥; = fo(0) = [/5;(0),...fCH 0" (2.1.10)

Without loss of generality the chosen variable can be designated by j = 1.
Thep x 1 differential vector 40 is defined by

d8 : = (d6y,....d0n..,d6,)T

22



PARAMETER SPACE E2

ea 1
" a—A =
\¥e
" 2 A /ﬂ‘n‘
N — L~
A
S
- . /
o )
’/ -1 Fig. 3. Parameter space with a linear
i s and strict parameter function (1) =
a 8 g4 L™ :

Differentiation with respect to each of the parameters is denoted by the vector differen-
tial operator V, defined as the p x 1 vector

vi=( Oy )

a6, o6,
which acts on functions only. Using (2.1.6) without subscript /, we have fori = 1(1)v
VI = 3, /9,...,0,f%,....0,/% 2.111)
which will be written
Vi e (0, 0D L)
The total differential of /1) reads ')
dfie) =%, + ... + fLl40,
= V'7*%e - @113)

In expressions as 8f(0)/66, the order of operation is: differentiate the function f
with respect to the kth parameter and then insert the particular value @ = 6™ in the-
result.

The square of the length of a vector, say v, will be denoted by any of the expressions
|| # )2, (v,2) or #7v. The cosine of the angle between the directions given by wand o is
written cos(w,v), the inner product of these vectors is denoted by (#,9) or #™e.

Finally we define vectors and matrices consisting of numbers only, by e.g. 3 :=
(3,...,3)7 and 3 :=[| 3 |, dimensions being defined such that vector and matrix -
operations can be performed. A unit vector in the direction of the kth coordinate of an
orthogonal reference system is denoted by 1. Obviously IT¢ = p, and for any matrix
Awehave 1741, = A,. A unit matrix is denoted by 1. v

To clarify the structure of arguments of vector functions the right-hand side of -

2
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(2.1.9) is sometimes used in full, e.g. (8™ + As™), Composite functions like #(6(4))
will often be abbreviated to z(l).

2.2 Spaces and curvilinear coordinates

The geometric representation of the vector function

y =£(6) (2.2.1)

where from now on we drop the subscript j, is a p-dimensional surface in the v-dimen-
sional Euclidean observation space E¥ (p << v), This surface will be called the fitting
surface. Its properties depend on the form of the condition function £ and on the ob-
served values.

The function

y =f(91”"’8k—1!9£0)’9k+ 1""’9P)

where 6,(® is kept constant, is the locus of a subsurface of the fitting surface. It is the
coordinate surface to be enumerated with 6,49,
The function

y = f(elw)s' . ~,8§£-)1,ek,6§¢(-)|-}1,~ '-36510)) (22.2)

where components with superscripts are kept constant, is briefly denoted by £(8,). It is
the locus of a space curve in E” satisfying (2.2.1) and so a curve on the fitting surface.

Each of the parameters produce a space curve according to (2.2.2). These paramet-
ric curves can be considered a curvilinear coordinate system on the fitting surface (cf.
Struik, 1961). The implicit form reads

F(y,0) =0, k=11)p

A geometric representation is given in Fig. 4, where the E* (v = 3) space is sketched.
Values of p! are plotted on an orthogonal v-dimensional reference system of unit
vectors of the v X v unit matrix .

Vectors in E” having their terminal point on the fitting surface are called position
vectors, e.g. y given by (2.2.1). Position vectors depend on the value of the components
of the p x 1 parameter vector 8. This vector is an element of a p-dimensional Euclid-
ean space E? considering the values 6,, k& = 1{1)p, coordinates of an orthogonal
p x p reference system I. Instead of the fitting surface the parameter space E? will
frequently be used, an example is given in Fig, 3.

An arbitrary curve on the fitting surface is given by the vector f{@(2)) with parame-
ter A. This can also be considered a one-dimensional subspace that can be plotted on
an E! parameter space for the algorithm parameter A.

The sum of squares of deviations x — y according to (1.2.1) can be written with
{2.1.10) as

S =fofo (2.2.3)

24
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OBSERVATION SPACE E3

obsearvation difference
vactor

direction

vector

parametric curve
for 8zconstant

y=t(ey,00h

fitting surface
y=f{Q)

Fig. 4. Observation space and fitting surface, with vectors defined in Sections 2.1 and 2.2 evaluated at
G on the fitting surface. ‘

and so the problem is the minimization of the square of the Euclidean norm of £;.

Values of § can be assigned to the terminal point of the appropriate vectors 6.
Plotting these values on a further coordinate the function § = S(6) can be drawnin a
{p + 1)-dimensional Buclidean space E7*!, the response space, giving the response
surface (Fig. 5). The objective function 5 generally cannot be considered a quadratic
function, It is quadratic in the parameters only if the condition function is linear.

The projection of S(#) = constant on the parameter space E? produces contours in
this space. The p x 1 gradient vector g(0) = VS(0) represents the slope of the {p + 1)-
dimensional response surface giving the direction of the greatest rate of change of §'in
the point @, with magnitude [| g ||. The gradient in 0 is perpendicular to contour § =
constant in space E® (cf. Struik, 1961). Parameter functions depending on a single
algorithm parameter A produce an E?2 response subspace in E7* 1. The steepest descent
response subspace along N = - 4g can be obtained from coordinate axes for S and 4’
(Fig. 5).

Evaluated for all observations, that means for all functions f1, § = 1(1)v, equation
(2.1.12) leads to the v X p Jacobian matrix
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parameter
subspace E1

contour curve
TelSaconstant

=]

Vs=g

/

algorithm

Fig. 5. Response space, response surface and parameter space with the gradient g and the normal N =
—ig at §° as defined in Section 2.2. The response space is an extension of the parameter space, see
Fig. 3. In a response subspace E2 with coordinate system (4, S(1)) a subminimum can be determined.
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where an arbitrary element is given by JI7 = o
k

The matrix J consists of all partial derivatives of f with respect to the parameters,
evaluated for all observations. So (2.2.4) is the matrix of column vectors

J= (fl’xﬂ’tfp)

where f; is a v X 1 dimensional direction vector in E* tangent to the parametric curve
for 0, in the terminal point of the position vector f{@). See Fig. 4. On the other hand J
will sometimes be referred to as a matrix of row vectors of gradients of f1*J, viz., see

2.1.11),
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The length of the kth direction vector will be denoted by .

o) := 1 af@ 1 = R, k=1(1p @27
the scale factor. Scale factors are considered components of the p x 1 vector
h(a) = [4,(0),....h(8),. --ihp(o)]r . : (2.2.8) ’

The squares of these scale factors are the diagonal elements of the square symmetric
p X p matrix JTJ.

Definition 2.2.1.: Let Ube a p X p matrix with elements U, = 0if i +# jand U3 =
v; # 0ifi = j, then U will be denoted by :

o® 1= (0gee0)’ =: U

and the inverse matrix by

= (l,...,i)" =: !

From this definition we observe that »e = Is0 # = #”I and vPv? = I.
Unit vectors in the direction of the derivatives are now obtained by .
J(0) ¥ (0) ' 229 .

with dimensions v X pand p x p giving for the product v X p again.

As the cosine of the angle between two vectors is given by the inner product of unit
vectors in their directions, the cosine matrix of the direction vectors of J is conse-
quently given by the square of (2.2.9) giving the p X p cosine matrix

C := &I (2.2.10)

The p X 1 cosine vector ¢ which consists of the cosines of f, with each direction vector
{Fig. 4) isequal to

e:=RkIflf1" (2.2.11)
and will be called the vector of partial cosines.

2.3 Linear approximation to the fitting surface

If it is required to approximate f{0‘*) starting from the position vector f{0¢®), we
can define the p x 1 difference vector 4 (' in the parameter space by :

gV = g 4 O (2.3.1)

which is a linear and strict parameter function. :
Taylor expansion of the position vector f{0 * + 4) gives for any component the
expression
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8f(6'”)

f(a(l}) f(a(ﬂ)) 3 A(O) .+ m Ag’)

2

+ 8(4™) (2.3.2)

where the remainder 6(4‘?’) is defined by (2.3.2). Obviously from (2.3.2) and (2.3.1)
4(0) = 0. Using (2.1.11), equation (2.3.2) can be written

f(o(l)) =f(a(0}) + va(a(Ol)A(O) + J(A(U))

Evaluated for all observations, so for all functions f, this becomes — making use of
(2.2.6)-

f(g(i)) =f(0(0)) + J(O“”)A(O) + E(Aw)) (2.3.3)

The tangent plane to the fitting surface evaluated at 6‘®’ is spanned by the (column)
direction vectors of J and is given by the linear expression

KA) 1= £(8™) + JO'“H4

where 4 is an arbitrary vector producing on the right-hand side linear combinations
of the column vectors of J. The vector I is the v x 1 position vector of the tangent
plane.

Equation (2.3.3) expresses that without the remainder 8(4‘®) the position vector
F(0) can be approximated by f(6‘°") and a linear combination of the direction vec-
tors.

Linear approximation with the aid of a tangent plane concerns three important
properties of the fitting surface. They are:

- the fitting surface is replaced by a plane,

~ the parametric curves are replaced by straight lines having zero curvature, the
directions being fixed at their value at 8%,

— the scale factors are fixed at their value at 8”,

Consequently linear approximation produces in general a nonorthogonal linear
coordinate system on the tangent plane. If the condition function itself is linear in 8,
k = 1(1)p, the Jacobian Jis constant and

y=1Jo (23.4)

2.4 Optimization condition and normal equations

We consider the optimization problem solved at #* = 6" when S{(6) according to
(2.2.3) is minimum. So, using (2.1.10) and (2.1.7),

56) = [x — f(0)][x — f(6)] (24.1)

has to be minimum, hence the gradient of § must vanish to obtain a stationary point
#, for which it is required that

g(@) = VS(6) =0 (2.4.2)
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This gradiént (Section2.2)isap x 1 vector whose kth component reads

2 [x - 1O [x - £0)] =

26,

[-£@Y[x — f@)] + [x — FOT[-£O)], k = 1(1)p 24.3)
which is equal to

@ = <200 [x - O], k=11p 2449
Worked out for all parameters the gradient becomes in virtue of (2.2.5)

8(0) = —2[F(O)1/,(0) : (24.5)

The terminal 6 of a sequence of parameter vectors #™ producing the desired
solution is conditioned by (2.4.5) and (2.4.2) so by

ENIx - fE@] =0

The argument of the position vector can be replaced by 8¢, hence with (2.3.1) and
(2.3.3) producing the condition

EOT e — £(6°7Y) — JE )4 - 54" =0
Defining the p X p matrix

M(0©,0071) = [J(O¢ D +4¢7 ] H0 D) (2.4.6)
we arrive finally at an implicit expression for 4¢=1, viz.
497D = MU + 4 O)LE0) - $4C)] @47

Under the assumption that in the arguments of (2.4.6) and (2.4.7) the contribution
of 44~ to the function values can be neglected, (2.4.7) gives the solution for A= 1,
which reads ’

4470 = MTHS,

where 8(4) = §(0) = 0, leaving it understood that evaluation of the right-hand side is
with respect to §¢-12, )
In this and further expressions, M is taken to be the square symmetric matrix

M(6) = [J@)]" (@) : (24.8)
It will be convenient to introduce the p x 1 vector '

N@) : = [J(0)]/o(0) (2.49) -
which is called the normal. It is related to the gradient g by (2.4.5) so

£6) = VS(©) = —2N) (2.4.10)

hence giving the direction of greatest rate of change for decreasing function values of
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S. N gives the direction of steepest descent in the parameter space (see Fig. 5).
Using the new symbols the normal equations are given by

MAS D = N (2.4.11)
where
Fisfdrerlfisf) orf)
M= . . , N = . (2.4.12)
S Dok ) o)

Because of (2.3.1) the solution of the normal equations is a direction of search to be in-
serted in (1.4.1) and to be applied according to the scheme in Fig. 2. In this case the al-
gorithm is the unmodified Gauss-Newton method for iterative solution of 8% with
differential corrections d as direction of search, obtained by

d=M'N (2.4.13)
With the cosine matrix C = k?MA* from (2.2.10) the solution reads
d = ¥C'KN

The geometric meaning of this optimization procedure is given in Fig, 6. The response
S with respect to the fitting surface is given by (f.fs). The length of the difference
vector is minimum at 8¢ if £,(0“) is perpendicular to all direction vectors at ¢, so

1,89 L J@™) ' (2.4.14)

As 8 isessentially unknown, evaluation of (2.4.14) is with respect to a known param-
eter vector 871 say. The exact condition then reads

L0y — JE* D — §@* 1) L 3™ (2.4.15)

where Jd is a linear combination of vectors that span the tangent plane A, producing
the foot of the perpendicular from the terminal point of the observation vector x on A,
see Fig. 6. The remainder vector & is the difference vector of the projection of x on A
and on the fitting surface respectively.

The vector Jd will be called the total tangent, the difference vector to the tangent
plane A will be denoted by “f,. Analogous to (2.2.3) the sum of squares with respect to
the tangent plane is defined by

A4S =: (“f) ) (2.4.16)

The cosine of the angle « between the observation vector x and the position vector y
will be called the multiple cosine. The cosine of the angle § between the difference
vector f; and the total tangent Jd will be called the total cosine. The cosine of the
angles between the difference vector £, and the direction vectors f, will be called partial
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Fig. 6. Fitting surface and tangent plane A. The tangent plane is spanned by the column vectors of J:
the direction vectors f; and f>. The difference between the observation vector x and the position
vector y — the difference vector J; — is projected on the tangent plane giving the vector Ji, whichisa
linear combination of the direction vectors. The difference vector with respect to A is denoted by 4/,

cosines. They are components of the vector e in (2.2.11).
If the difference between the fitting surface and the linear approximation is sufficient~
ly small, ali vectors can be evaluated at 61’ which yields instead of (2.4.15)

.ﬁ)( !-1)) — J(ﬁ'-l))d(t_n 1 J(a(t—l))
and normal equations according to (2.4.11) through (2.4.13) are found again.

In the linear case of (2.3.4), starting at # = 0, the normal is equal to N = J7x and
the minimization of || x—y||2 leads to

0 =M

which gives the solution in one step because the matrices on the right-hand side do not .
depend on 8.

.




2.5 Useful derivatives

In further sections use will be made of first and second derivatives of functions of
parameters and algorithm parameters. Basic formulas are derived in this Section.
Letag x 1 vector of algorithm parameters be

A= (‘ll,..-,}uj,-c-’Aq)T! q < P

The parameter function #(4) then is a function of ¢ algorithm parameters. Now let
the ¢ x 1 vector differential operator with respect to each of these parameters be

vi=( 2,2 Oy @2.5.1)
FTFYRaNY)

q

then the p X ¢ Jacobian reads

'691 agl"
o, oA,
S %0 o0
2= = a—ll,...m—q) (2.5.2)
%, a0,
a2, oA

We observe that for one algorithm parameter this Jacobian reduces to Ji = %g which

for linear and strict parameter functions # — 8'® + s again reduces to J¢ = ».

First derivatives of the position vector f(8(2)). An arbitrary element of J{ reads

0 _ yryn 96
o0 = Vi 253)

J

Referring to (2.2.6) and (2.5.2) we notice that derivatives for all combinations of i and j
can be obtained from the chain rule

J =Hr (2.5.4)

Second derivatives of the position vector f(8). An arbitrary element of the Jacobian
reads

s _ 9@
k 36,

The second derivative with respect to the /th parameter is
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8‘f“’(0) | 1
£ . =]
I = 30, I=10p (2.5.5)

The elements JI for { = 1(1)v, k = 1(1)p, { = 1(1)p cannot be ordered in a matrix.
However, only one special case will be involved in our considerations and therefore
we define

L i= (fiaeeaip LazresLopeon Sop) 2.5.6)

whichis 2 v x (®3!) matrix. The length of the vectors in (2.5.6) can be obtained from
the (°3) x (°3) matrix

Mzg = Jg‘lz (2,5.7} .
It is assumed that the order of differentiation can be interchanged.

First derivative of the difference vector f{0(2)). This de:'ivative reads
d d
afo(ﬂ(l)) =2 [x — (oA

with (2.5.4) this becomes fora 1 X 1 algorithm parameter vector

_
di
If the parameter function is linear and strict this reduces to
d
IO = =Js

which is the vector opposite to the total tangent vector in Fig. 6 if the direction of
search is chosen by s = d.

First derivative of the Jacobian J(6(1)) multiplied by f,. The kth column of (2.2.4) gives |
with the aid of (2.1,13)

dfk (vfl'}{l]do va[l]do ’va{v]j_z)T

di (2.5.8)

The scalar product with £, produces in the right-hand side

do 9 do do,
1% . 1 Yy 11 . I‘_v] 1 ¥]
(f"‘ a +f'("dﬂ.)f% * +(f i ot "d:t)j{

Collecting terms that contain ‘%‘, k = 1(1)p, this becomes
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v, 140 ety
(f%llf[ki] + ... +f|(:) :!f;" ]) d; (f[l]f[l] C+ f'(') !f}zp] )C;ip

hence giving

df" =[S (ﬁ;,ﬂ,)]g;

Finally, applied to all columns £ = 1(1)p of J we obtain the p x 1 vector

[ J(a(z»} o = Noz%

where
(ﬂ)zfl 1):"'s(fo’f1p)
Ny 1= : : (2.5.9)

(.’BJ‘lp)!"‘!(fOxﬁp)
the symbol ¥,, being suggested by the form of the normal given in (2.4.12).

First derivatives of the square of the scale factors h3(@). These derivatives reads

dhi® d
= =2 Y I=10
a8, a8, kf;: ftfu Mp

For all k and ! the results can be collected in the p X p matrix

(flafll):"-s(fl!fl.p)
M, := ‘ .
. . (2.5.10)
(f;af;l)""!(f;;’fpp)

the symbol M, , being suggested by the form of the matrix A in (2.4.12). This matrix
is not symmetrical.

Second derivatives of the response 5(8). The p X p matrix with elements

3%5(0)
Gy = , k = 1(1)p, [ =11 2.5.11
aryy 1)p Dp | ¢ )

is called the Hessian matrix of S. Omitting arguments, the Ath component of (2.4.3)
gives
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éd a9 T ' '
a—&a—&s 2% — Yofu |

For sl k£ and { the regults can be collected in the p % p matrix
G = 2M — 2N,, (2.5.12)
In the linear case y = J@ the second derivatives vanish which causes Ny; = ¢ and so '
G =2M =2I"J

This means that in this case the Hessian of the response equals two times the square of
the Jacobian (cf. e.g. Fletcher, 1969b; Powell, 1972a).

First derivatives of the response S(§(3)). The vector of first derivatives is obtained by )
application of (2.5.1) which yields

VT S(90/04,)
vsew) =| .

_v"sfao;a,t,,)
and, in virtue of (2.4.10)
1 "(avlam] ‘thao/ah)

@2.5.13)

| g(0/02 NT(20/21,)

where g and N depend on 6(4). The expression (2.5.13) set equal to a ¢ X 1 vector 0
can be written

g =07 (2.5.14)

This is the condition for a minimum in a g-dimensional sebspace of £7 (g =< p). Mosﬂy
¢ = 1 and the search one-dimensional. Then we have
do _
—2[N(0(1))]T (2.5.15)

which means that the normal must be orthogonal to the direction of search at 8(4).
For linear and strict parameter functions this reduces to the conditon

NO@) L s
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Table 1, Summary of matrices containing scalar products of vectors

Used symbol Arbitrary Type Dimension
element

S (fo, fo) scalar 1 x1

N (fo. i) vector px1

Noa (fou fid) symmetric matrix pXp

M (o fi) symmetric matrix = p X p

M, (fe, fi1) matrix PXp

M;. (e tis) matrix (P"z' 1) % F; l)

Second derivative of the response S(0(A)) for linear and strict parameter functions. First

we consider ‘% N(B(2)). Analogous to (2.5.3) we have

d
— V@) = [V fof 08,0V (fof 51" (2.5.16)
The derivative of an arbitrary component of N reads, withf, = x — f

aie [~ NH%T = ~fT + ¥ {=10p
1

The first component of the vector in (2.5.16) becomes
(_fIT 1 + ft;r i § ELLLH _fljfp + fgﬁp)s
and finally with (2.5.15), (2.4.12) and (2.5.9)

d*S(6(1)) d T
_— " = 2 [N(O(A
7 — [NOOY's
= 2ST(M— Noz)s (2.5.17)
and with the Hessian defined in (2.5.12)

dz%z@ — 57Gs (2.5.18)

A summary of matrices containing scalar products of vectors is given in Table 1.
2.6 Quadratic approximation to the response surface

We assume that the response surface in the neighbourhood of a stationary peint
can be approximated by a quadratic expression. The Taylor expansion of 5(#) about

@(A), where @ is a linear and strict function of A, then gives
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(0 + i) - S(@) = 4"g + ;A’ATGQ + o(A%) - (2:6.1)

The first derivatives are obtained from (2.5.13) and the second derivatives from (2.5.18) )

and so the expressiop in least squares problems reads
= —204TN + 224T(M — Nppd + o(A%) 2.6.2)

At 5 stationary point 0* we have g = 0 and the matrix G must at least be positive
semidefinite to produce & minimum, hence for A sufficiently small (2.6.1) yields

S(0* + 14) = S5(6™

In the linear case y = J@, the response § is a quadratic function of the parameters
given by

58 + Ad) = £}y — 24T, + A4 T4 (2.6.3)

since Ny, then equals 0. The Hessian is in this case positive definite becanse 3G re~
duces to M and ATMA is equal to || JA ||2, the square of the length of a vector that is
a linear combination of the direction vectors. Equation (2.6.3) expresses that S =
il fo — AJA4 |2, which is also clear from Fig. 6 where now the tangent plane is the
linear fitting surface.

2.7 Scale factors and arc length
2.7.1 Seale factors

In general the scale factors are functions of all p parameters. Their total differential
is thus given by

dh, = g%:‘dﬂl + ..+ g%:dﬂ,
= V'h, do
For all scale factors this leads to
dh = J* do

An arbitrary element (k,/) of this Jacobian reads

=2yt
O0) = =2 AH)

giving

i(.ﬁ?k)-%wffu) =%’:‘-‘ 2.1.1)
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Using the notation defined in definition 2.2.1 and equation (2.5.10) the total differen-
tial of the scale factors is found to be

d’l = hdMlzde

2.7.2 Arclength

Regarding arc lengths, let s represent the arc length along the kth parametric curve,
then the differential reads

1] v}
ds(0y) = [(d:;[_ek)2 P (‘ge 1t a6,
Kk

= 71} 4o, = hyo) do,
The arc length between 8 and 6{% is given by
8

s=1 m0)do,
o

(2.1.2)

If 5(A) represents the arc length along an arbitrary curve on the fitting surface with
parameter A, the differential is

ynde, Y Os

ds(d) = o+
o) [(691 dj. 68 di
[¥]
AL L N O
a0, dA 08, di
[1]d02

T, 1pnd0,2- 1
=[(Vy to+ (VTR dA

The sum of these squares can be written

- do T [t L4 Tdﬂ
Z(ﬁ) (511 (%

where the summation sign acts on the gradients only, thus giving a sum of v matrices
with dimension p X p, which according to (2.4.12) equals M. Consequently the arc
Iength between 6(1,) and 8(4,) is given by

Ag

f {(dzf;.)) M) dO(A)}

4y
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Using (2.4.8) the structure of'this integral can be made lucid viz.

dﬂ(ﬁ.) '
f 1 9@ S Paz @13

which again ig a linear combination of the direction vectors at 1.
If the parameter function is linear and strict in an arbitrary linear direction of search
5, (2.7.3) reduces to

) ,
s = jzu (s dA .79
I

Then, if the Jacobian is independent of A, which is the case in the tangent plane to
the fitting surface, (2.7.3) becomes

s =1 Js 0 G~ 4) 21.5

which intuitively is also clear from Fig. 6. Equation (2.7.5) then expresses the fact that
the arc length is equal to the step factor times the length of the total tangent when s ig
taken equal to 4.

If, finally, all parameters are kept constant, except the kth, by taking s = 1, (2.7.4)
becomes

A2
s ={ (AW d2 (27.6)
2 .

which is in agreement with (2.7.2), the arc length along 8, on the fitting surface.

2.7.3 Example

The example, for which the formulas and data and calculations are given in Appen-
dix 2.1, can be used to demonstrate the application of (2.7.6). Fig. 7 shows that,
starting at 0(® = 1, the length of the total tangent J4 in the tangent plane equals 7.28
in units of the metric I for the observation space E2, The arc length along the only
existing parametric curve on the fitting surface is given by

K L0

f "_f‘_"dﬂ = e’, w = 7.28

©) )

] . .
Since the initial value is #® = 1, it is readily found that 8> = 2,30 which is the so-
hition 6%, Application of differential corrections produces 01> = #® - d = 3.68 and
overshooting on the fitting surface takes place (Fig. 7).
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DBSERVATION SPACE E2

(shifted}
Bl fitting surface tangent plane at ('J
ket )
10 ----#.2303.9 -][Ae1
L x
fo 420 arc length
= 1)
+ -/ éhfe)de
T 18
- 1" Fig. 7. Usc of arclength in the observation space E?
L 10:6© Ya ém to determine the optimal step length on the fitting
| surface which in this example is degencrated into a
Y lo straight line. The scale factor 4 is the length of the
\ ) direction vector f; which in this particular case
0 1 2 [1]3 coincides with the fitting surface and emanates
¥ from & = 1.0 with length 2,72 (after Stol, 1962a),
2.8 Curvature

Formulas for the curvature of curves are derived in differential geometry. The prin-
ciples of the theory will be discussed in short. Reference is made to Struik (1961). The
derivation of formulas is for the kth parameter, leaving it understood that for the
other parameters the results are identical.

If f = f(6,) represents the kth parametric curve, then an arc element ds is given by

L
ds = [(df"Y* + ... + @"H* = |4f|
From this it follows that the derivative with respect to 8; reads

ds _dfl _ df df % _

g, do, do, 46,

= [lfill = he (2.8.1)

This result gives the possibility to use the more convenient arc length s as a parameter
along the kth parametric curve. Consequently

A _.po & By _h 282
s =@ T 282

Equation (2.8.2) represents a tangent vector to the kth parametric curve. The length
of this vector does not depend on s because it is equal to 1. So we have

diﬂf. =21, =0
)

hence £, L f.. The vector £, gives the rate of change of the tangent when we proceed
along the curve. For this reason f, is called the curvature vector whose length is the
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curvature. The reciprocal of the curvature is called the radius of curvature. The cur- -
vature i denoted by

-

k1= || Sl
and can be determined as follows. By virtue of (2.8.2) we have
e S

ds”' dsh, o h, dé,
hence, using (2.7.1) and (2.8.1)

Sl — f;((:;c){u) h™? (2.8.3)

The length of this vector can be written with a determinant, using 7,2 = (£,

Jfu=

RETIWAL -
K= — 28.4)

R fodi) i)

which is the curvature at # of the kth parametric curve. A zero second derivative pro-
duces zero curvature. The elemenis of the determinant can be found on the main
diagonal of the matrices M, M, and M, (Table 1).

The curvature # is a characteristic for space curves. For curves on surfaces, as para-
metric curves used in the present sence, another characteristic is of importance. This is
the component of the curvature vector f;, in the direction of the tangent plane, the
geodesic curvature. This component is the ordinary curvature vector of the projection
of the curve on the tangent plane to the surface at @ (cf. Struik, 1961). ‘

The geodesic curvature vector is obtained as follows. The orthogonal projection of a
vector on the tangent plane can be expressed by a linear combination of the basis
vectors which are in the Jacobian J. According to {2.4.9) and (2.4.13) the components
of this linear combination are given by M~J7f£, and so the geodesic curvature vector
itself reads

(fo)y = MUY,
and the magnitude of the curvatore is obtained from
k2 1= (AN = FLIM IS, (28.5)

which can be considered the square of the length of £, under the metric JM~1J7,
A further component of the curvature vector is now obtained by

Ju = (fu)g + (>

The second vector at the right-hand side is a remainder curvature in a (v — p)-dimen-
sional snbspace of the observation space which is orthogonal to the fitting surfacein 6.
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The corresponding curvatures are connected by

2)%

K= (x +x

The geodesic curvature in units of 'S will be called the relative curvature and it is
given by «, \/5.

Thus far attention was paid to curvature in the direction of a parametric curve. In
the general case of curvature in an arbitrary direction of search s the formulas are to be
generalized. Let an arbitrary curve on the fitting surface be given by p(1) = f(6(1))

where 8(4) = 8‘® + 1s. Then, analogous to (2.8.1) we have, making use of the chain
rule in (2.5.4)

and analogous to (2.8.2)

7740

6_"

’ = |5l

S = JIs|Isi !

This is a vector of unit length in the direction of the given linear combination of direc-
tion vectors.
To determine df,/ds we make use of (2.5.8} to obtain

%Jﬁ"(«@) ~ (Vi) =: KD
hence, by this definition

4 jo)s = Ks

di

and obviously Ks = (Jf's,...,J{?s)s. The derivative of the length of Js reads

sTK'Js _ (Js.Ks)
sl 1 5]

:_l [s"F T.Is]% =

giving finally for (df,/d2) (ds{d?)~*

Ks|Js))? — Js(Js5,Ks)
17

fss=

with length

|| s s K5 H

1| (15, Ks) (K, Ks)
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Taking s = (0,...,0,6,,0, .. ,0)7 these formulas reduce to (2.8.3) and (2.8.4) obtained
for the kth parametric curve, : -

N -

2.9 Relationship beiween spaces

1]

The spaces distinguished merit further comment as regards their relationship. It is
not adequate to use only the parameter space to illustrate the progress of search. The
tangent space must be used as well.

First we consider the observation space (Fig. 8). Vectors in the tangent plane are
linear combinations of the direction vectors of J. The metric in the tangent plane is' M
because for any p X 1 vector # we have || Jul|> = #"Mu. Vectors u can be represented -
in the tangent space with a p X p metric I, This is done in Fig. 9 for w = dandu = J,
respectively.

The image of the path of search on the fitting surface is a curved line obtained by

OBSERVATION SPACE EV

16"

fitting surface

Fig. 8. Observation space with application of differential corrections. On the fitting surface the path of
search generated by s emanates from § in the direction of Jd. The orthogonal projection of this s-
path on the tangent plane A is denoted by Jb-locus. Contour curves for .S = constant are denoted by
C, the neighbourhood of the solution is indicated by C*. The metric of the tangent plane is JJ = M,
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orthogonal projection of this path on the tangent plane. In the Figs. 8 and 9 it is
denoted by b-locus. Although the application of differential corrections is based on the
fact that a direction d to a neighbourhood of the minimum (C*} can be found, the
image of the actual path of search shows that only in 48® ii is in the direction of d
(Fig. 9), where the left superscript 4 refers to quantities with respect to the tangent
plane.

Next we consider the parameter space (Fig. 10). This space also has the p X p metric
I and consequently it has the same coordinates as the tangent space. However, there
are differences that are essential. Contour curves for S(8) = constant form a fixed
pattern in the parameter space. These contour curves change shape in a sequence of
intermediate tangent spaces, they tend toward those in the parameter space when
499 _, 49* The path of search on the fitting surface is curved but it is the locus of
points 8§ = 8@ + 1s, where s = d, which plots a straight line in the parameter space.

From the representation in the intermediate tangent space it becomes clear that the
curvature of the parametric curves on the fitting surface causes divergent shooting
rather than overshooting. For this reason the method of back projection was developed
in Chapter 6 to find paths that proceed towards the end point of the image of Jd in the
parameter space (Fig. 10).

PARAMETER SPACE E2

9,
* < J/
R
U /‘s—lpath
\Jd—image

Ny /-

(4]

—

S Fig. 10, Parameter space with path of search

o ) = @ + s, where s = d the vector of

3 differential cotrections which emanates from

T/! B e 6. Along the s-path the normal N changes

Jb-image direction. Images of the vector Jd and J& in the

observation space are indicated as well. The
o 0y metric of the parameter space is 7.
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3 Features of optimization

3.1 General

Methods that are available for unconstrained optimization have been reviewed by
many authors (Brooks, 1959 Spang II, 1962; Fletcher, 1965; Box, 1966; Box, Davies
& Swann, 1969; Fletcher, 1969b; Murray, 1972a; Powell, 1972a, Dixon, 1974). In
general the optimization problem is to minimize an objective function F(x) subject to
the constraints ¢{x) = 0, = 1(1)m, where a vector x € E” that satisfies the con-

_straints is called feasible. It is assumed that F(x) can numerically be evaluated for all .
feagible x.

Here the objective function S(#) is a sum of squared functions. This means that
parameter optimization is a special case of mathematical programming techniques. In -
general S is not quadratic in # and then its optimization is not a special case of qua-
dratic programming.

3.2 Constraints

In the present case no constraints on the values of the parameters are involved.
However, one or more parameters may be bounded to ensure numerical evaluation of
the condition function F in Chapter 2. In case of overshooting during intermediate
iteration steps, the vector @ can enter the unfeasible region, Instead of keeping the ™
violating parameter constant at its boundary value (Spendly, 1969), subprogram MIN
iterates the parameter vector in the feasible region as close to the bound as predefined
by program options. When oscillating may occur it should be tested in the next fitting
cycle whether the same parameter violates the constraint again before to break down’
the parameter vector (Chapters 8 and 9). .

3.3 Sequential and onsequential search

Unsequential search is employed in situations where function evaluation is expen-
sive or time consuming. Factorial methods or random experimentation can be used,
although they are less efficient (Brooks, 1959). Since function values in mathematical
models can be obtained by numerical evaluation, most methods for fionlinear opti-
mization of objective functions employ sequential search methods. This means that
new parameter values are obtained from previous values by a fixed set of operations
to update @. For instance for any algorithm that produces a direction of search s =

s(0)
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1. 6(A) = 6™ + is™

2/3. 2™ = ) obtained by applied algorithm

4. 9D = (A (3.3.1)
5, ™ .= gnr)

6. s :=5(0"™), repeat from step 1

This type of iteration is most common for various choices of s (Cauchy, 1847; Curry,
1944; Crocket & Chernoff, 1955; Hartley, 1961 ; Spang 111, 1962).
The value of A% can be held constant, A*? say, giving in each cycle the iteration

g+ = g 4 JDgm n = 1(1) (3.3.2)

In this case 1! is sometimes called the damping factor (cf. Kowalik, 1967). When
A1) = 1 in each cycle, the method is a full step method (cf. Hayes, 1974).

3.4 Direct and analytical search

Direct search methods use evaluation of functions only. As 2 matter of fact theyare
heuristic methods or methods of empirical optimization, developed in the parameter
space. A general introduction to these methods is given by Hooke and Jeeves (1961).
The most simple direct search method is that of alternating parameters, each at a time.
Other more complicated methods as Partan algorithms (Wilde, 1965), Simplex al-
gorithms (Nelder & Mead, 1965) as also Rosenbrocks method (Rosenbrock, 1960)
explore the pattern produced by contours of § = constant in the parameter space and
are called methods of pattern search. Reviews of these methods are given by Spang I11
(1962), Fletcher (1969a), Fletcher (1969b), Powell (1972a), Swann (1972). Direct
search methods are used in cases where no derivatives of the condition function are
available. This means a loss of efficiency. It will be shown that derivatives can be
found for least squares methods even for complicated models (Chapter 4).

Analytical search methods make use of information about first and second deriva-
tives of the objective function with respect to the parameters to be optimized. Thus,
these methods ~ also called gradient methods — use information of the direction to-
ward the minimum.

One can distinguish between methods in which the derivatives are available and
those in which they are approximated. In the last case they are obtained by difference
technigues, evaluating the condition function for two different values of 8, to approx-

imate f;.
The first derivative of the objective function results in the gradient g, giving a linear
direction of search toward a minimum with s = —g. This method was proposed first

by Cauchy (1847) and is called the method of steepest descent. Modifications have
been proposed to improve the rate of convergence and to accelerate the numerical
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process. Curry (1944) did show that convergence depends on the metric, B, used, when
s = —B~'g. When the contours of the objective function are spherical in the param-
eter space, the steepest descent converges in one step. In this case B = 1. When the
contours are elliptical, so with a quadratic objective function, conjugate gradient
methods can be applied (Fletcher & Reeves, 1964). These type of methods recently
have been reviewed by McCormick & Pearson (1969), Fletcher (1972a) and Dixon -
(1974).

If Taylor expansion of the objective function about the current approximation is
employed, the first three terms of the series are used and the optimization method is g
second order method called the Generalized Newton or Newton-Raphson method.
When the objective function is quadratic in the parameters one step convergence is .
obtained by the Newton-Raphson algorithm using the Hessmn as metric, 50 d =
—G-1g.

Linearization of a nonquadratic objective function results in methods where the

metric G is applied and apdated in each fitting cycle. This is called a variable metric .

method. If a minimum is determined in the current direction of search in each cycle, -
the method is an optimal gradient method. Otherwise the method is a fixed step factor
method, that can be used when the decrease of values of the objective functlon fora
number of fitting cycles according to (3.3.2) is pertinent. 4
Algorithms where G~! is approximated by a matrix H, say, and updating of H oc-

curs each cycle (Davidon, 1959), are called Quasi Newton methods. The matrix H is’
taken positive definite to ensure reduction of the response S. Several of these methods
have been compared and discussed by Fletcher (1969b).

Mixed methods make use of both direct and analytical search as the polyalgorithm.
for global nonlinear least squares problems designed by Aird (1973). A further exam-
ple is the simulation of convergence of parameter values as developed in Chapter 10.
After several cycles of analytical search, values obtained thus far for each parameter
separately are extrapolated in an empirical way to accelerate convergence. :

3.5 Dimension of search, optimal search

Nonlinear parameter optimization is employed by reducing the number of para-
meters in each fitting cycle using a ¢ X 1 algorithm parameter vector 1, ¢ < p, in
which case the search is g-dimensional. In fitting practice the number of algorithm'
parameters is small, two at most, when applying techniques for finding an optimal
value of 4 that gives a subminimum of S. The condition to achieve optimal progress is
given by (2.5.14). For one-dimensional search, that still can be either curved or linear,
this condition reads

r d&(2)
—_—t =0
AT

which for linear and strict parameter functions according to (2.1.9), reduces to(g,s) = 0.
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In one-dimensional linear optimal search it is the minimum in the direction of
search that is used to furnish a new starting value for the next fitting cycle to gnaran-
tee convergence (e.g. Kowalik & Osborne, 1968). The update of # for an algorithm
that produces a subminimum in the direction of search 5 = s(#) reads

1. 6() = 0% + As®

2. S(B(*™)) = min S(B(4))
A .
(r) _ 1%(@)
347 =4 (3.5.1)
4. 8"+ = 0(2")
5.0 1= g+
6. s 1= 5(6™), repeat from step 1

Since the minimization in step 2 is nonlinear, A is to be solved by iterative methods
(see Chapter 9).

One-dimensicnal nonlinear search can be carried out in several ways. Application
of weights to the components of the search vector s as developed in Chapter 5 gives in
step 1in (3.5.1)

o) = 6 + iwP(A)s™ (3.5.2)

where the weights in the diagonal matrix w? depend on the step factor A.

One-dimensional nonlinear search can also be obtained by treating two directions
of search with interpolation techniques. The Levenberg method (Levenberg, 1944),
generalized by the Marquardt method (Marquardt, 1963) is an example of such a pro-
cedure. It can be shown that the search with these methods is curved (spiral) and is
determined by the gradient and the differential correction vector (Jones, 1970).

One-dimensional circular search is a special case which depends on two vectors say
u and v with properties ||#]| = [|v]| and # L v, then step 1 in (3.5.1) would read

O(@) = 8™ + ™ cosa + o™ sina (3.5.3)

where now the angle « is the algorithm parameter to be optimized.
Extension to a two-dimensional circular search is obvious. Optimizing the direction
of search and the step length in the new direction, the update of @ is obtained with

ap) = 0™ + B@'™ cos a + o™ sin 2) (3.5.4)

where the algorithm parameter vector 4 = (o, f)7 is subject to optimization.
The back projection method developed in Chapter 6 is an example of the practical
use of (3.5.3) and (3.5.4).
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3.6 Convergence of gradient methods o

The main problem in optimization is the choice of an efficient new direction of search
and the application of a metric that gnarantees fast convergence.

Proofs of convergence for gradient methiods are given in literature for various modi-
fications and for specific functions, Curry (1944) gives a proof for the sequential op-
timal steepest descent method. If there is only one stationary point in a region C the
gradient method starting in C will converge to it. The process will anyway terminate in
a stationary point that is in C. Crockett & Chernoff (1955) give a proof for

s=-~Bg (3.6.1)

using eigenvalues of the matrix B~!G, where G is the Hessian defined in (2.5.11).
Hartley (1961) proves convergence for the sequential optimal differential correction
method.

The essentials of these proofs are that S(0*)> 0 and bounded. If in a convex region
in the parameter space with boundary 8, 2 value 0 can be found such that S(@V) <
5(8.) for any boundary value 8., and if a direction of search s can be found that gives
S(0P) = SOV + 2 sy < S(¢1) the process will converge to a stationary point.
Obviously a sufficient requirement to 4 that the mentioned inequality be satisfied
(Spang 111, 1962) reads % 1=0
method of steepest descent, the Gauss-Newton and the Levenberg method (Tornheim,
1963). Weight and metric of several gradient methods are listed in Table 2.

While for gradient methods S(@¢*1) < S(0*) is obtained by optimizing the step
length, the direct search methods achieve this by inspection.

< ). Such solutions exist for gradient methods as the

Table 2. Conspectus* of gradient search directions based on the gemeral formula
5 =-W(d +_a1)"8.

Method Weight Metric Search
W matrix scalar
A a
1. steepest descent- I I H linear
2, general gradient I B 0 linear
3. differential correction I M 0 linear
4. scale factor weight el M 0 curved
5. damped differential correction I MC o curved
6. second order, approximation I H-? 0 linear
7. second order I G 0 linear

* The matrix € is defined n Chapter 2, matrix w? will be defined in Chapter 5, B denotes
an arbitrary metric matrix, For least squares M = JTJ and G = 2(M — No.). The matrix
H stands for an approximation to &-* according to Davidon’s algorithm. Values for «
andHarechosentoensmethememcbemgpomwedeﬁmte(Dawdon, 1959; Marquardt,
1963).




3.7 Local and global minima

Optimization algorithms are designed to find the solution g* = @, they thus find at
least local minima. A necessary condition for a local minimum (cf. Fiacco & McCor-
mick, 1968} is that g* = @ and G* a positive semi-definite matrix. A sufficient con-
dition is that g* = 0 and G* a positive definite matrix. For a global minimum it is re-
quired that for all @ € E” we have a 8* that satisfies

S(8*) < 5(0)

There is only little known about algorithms that furnish information on the type of
minimum obtained for arbitrary functions (¢f. Spang III, 1962; Murray, 1972b).
Hartley (1961) suggests a grid search of the parameter space. One can also use different
starting approximations and observe whether they converge on the same stationary
point. The entire feasible region should be investigated in this way. Such a type of
numerical analysis is a laborious method, however, even for a small number of
parameters (Powell, 1972a). For least squares problems, paths of search can be found
that avoid heavy oscillation of intermediate results. For the same starting point and
the same algorithm different paths on the fitting surface can then be followed. A
method to achieve this kind of exploration will be paid attention to in Chapter 11.

3.8 Least squares

Objective functions with the form of a sum of squares have special properties. While
the general problem of optimization is in the parameter space, minimization of a sum
of squares § can be studied in the observation space, where the problem is the deter-
mination of the foot of a perpendicular io the fitting surface. For this case Taylor ex-
pansion produces the normal equations (Sections 2.3 and 2.4).

When the condition function is linear in the parameters, the objective function is
quadratic giving G = 2J7J for the Hessian, In nonlinear cases the Hessian reads G =
2JTF — 2Ny, as derived in (2.5.12). The Gauss-Newton method for least squares uses
a metric where the matrix N, is considered to be absorbed in the remainder o(12) of
the Taylor expansion in (2.6.2) (Powell, 1972a). This means that only the first deriva-
tives of the condition function need to be evaluated.

Since in most practical fitting problems M = J7J is positive definite, its use guaran-
tees 2 descent in the response space emanating from the starting approximation. To
obtain convergence it is necessary to determine the next point in the parameter space
according to the conditions discussed in Section 3.6. This means that determining a
minimum in the direction of search producing a lower value for the sum of squares is
efficient. This optimal step factor method is called the modified Gauss-Newton method
which is given in (3.5.1) withs = 4.

Methods have been developed that improve the condition of M by adding a number
to the diagonal terms of this matrix (Levenberg, 1944 and Marquardt, 1963), but Da-
vies & Whitting (1972) report the rate of convergence as being slow compared to the
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Gauss-Newton algonthm because of the damping of the normal equations.

A review of methods, which are mostly based on the efficient treatment of the Jaco«
bian and on interpolation techniques between the gradient and the differential cor-’

rections, can be found in Jacoby et al., (1972).
3.9 Evaluation of methods

There is no general classification of optimization methods with respect to their
efficiency for arbitrary condition functions. The applicability of an algorithm depends

on the special properties of the functions to be minimized and the extent to which °

assurnptions made, hold. The choice of an algorithm therefore depends on several
considerations. Algorithms that ensure convergence may work so slow that applica-

tion without any modification is a waste of computer time. Therefore some algo- :

rithms are designed in such a manner that updating of matrices is not carried out in
each cycle but only after a predetermined number of them, _
The slow convergence of the method of steepest descent has been emphasized by

many authors (Spang III, 1962; Marquardt, 1963; Fletcher, 1969b), although the first

few steps may give an appreciable decrease of the response the rate of convergenceis in
general considered unpredictable. Steepest descent convergence will occur even from a
poor initial approximation in the first cycle (Powell, 1972a), but the direction toward

the minimum according to the Gauss-Newton algorithm is often found to be about

perpendicular to the direction of steepest descent for the first fitting cycles (Marquardt,
1963; Davidon, 1969; Powell, 1972b).

The Gaugs-Newton method is independent of scaling and although there is no de-
vice to force convergence from a poor approximation (Powell, 1972z) it converges
rapidly when near a solution.

Fletcher {1972b) points out that in his experience first derivatives are usually ex-
tremely valuable and that second derivatives do not furnish the same order of improve-
ment. In least squares methods updating of the matrix 2J7J will usually be quite
satisfactory, It will be shown in Chapter S that second derivatives are useful when ap-
plying scale factor differentials as weighting system for the differential correction
vector.

Methods which use a nonlinear search might have advantages over others. They
may foliow the natural valleys better, as the Levenberg method does (Curry, 1944).
However, a practical drawback can be the numerical compiexity of the method. In the
Levenberg method the algorithm parameter occurs implicit in the metric (Table 2)
which to find the parameter value has to be inverted for each step in the iterative
process. Davies & Whitting (1972) derive a single prediction formula for this parameter
to simplify arithmetics.

Algorithms that use function values only, have the advantage that no further for-
mulas need be evaluated. The most simple of these algorithms, the alternating direc-
tion or univariate method, usually fails to give convergence in & reasonable number of
fitting cycles (Fletcher, 1969b), especially in situations where contours of the response
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Table 3. Classification of optimization methods in descending efficiency.

Sequential methods Nonsequential methods
Second order methods Factorial methods
First order methods Random methods

Gauss-Newton

Quasi Newtort

Conjugate gradient

Zero order methods
Conjugate directions
Direct search

surface in the parameter space are inclined at about equal angles to the coordinate axes
(Spang I11, 1962). When using weak stopping criteria the obtained parameter values
will deviate unpredictably from the required solution.

Some authors, possibly in accordance with their experience, give a classification of
methods in nonlinear optimization as regards their assumed efficiency. A combination
of classifications given by Brooks {(1959), Hartley (1961) and Murray (1972d) could
read as given in Table 3.

Classification of various modifications of the above mentioned methods according
to ‘standard’ problems in unconstrained optimization are given by Kowalik & Os-
borne (1968), Sargent & Sebastian (1972), Himmelblau (1972), Davies & Whitting
(1972), Aird (1973) and Dixon (1974) among others.

3.10 Stopping criteria

Stopping criteria are used to terminate the execution of an optimization problem
for several practical reasons,

To avoid waste of computer time tests are used in computer programs to stop the
process after a2 predetermined number of cycles has been performed, so even if no
convergence takes place the number of fitting cycles remains limited. For the same
reasons the use of control cards in the input stream to define the maximum computer
time in a single run, can be advocated. When convergence is apparent one can ter-
minate the numerical process when a required accuracy is obtained.

Main criteria mostly used for the termination of the optimization process are

— magnitude of the relative change of the response in consecutive cycles,
— magnitude of the relative change of the parameter values in consecutive cycles,

~ length of the gradient.

Stopping criteria for least squares methods will be discussed in more detail in Sec-
tion 7.4.2.
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4 Extension of the condition function

4.1 General

Functions that occur in fitting practice have to be put in a suitable form before the
theory discussed in Chapter 2 can be applied. In cases where the derivation and pro~
gramming of second derivatives gives complications it here is assumed that algorithms
based on first derivatives still can be applied. It is then at least necessary to calculate
the components of the vectors f, and £, k = 1(1)p, numerically. These vectors are

"essential when using gradient or differential correction methods. However, the deter-
mination of both vectors is not always achieved by simple numerical evaluation; some-
times an iterative solution of implicit functions and the solution of derivatives from
simultaneous equations is required,

To distinguish between functions of the same variables and parameters but of
different form a left-superscript is introduced, e.g. *F(x,8) and *F(x,0). Particular
functions will be defined in each section separately. Letter subscripts denote differen-
tiation with respect to the indicated parameter according to (2.1.11) and (2.1.12).

4.2 Functions of different form

A vector of values defined by (2.1.5) reads

FOef, x5 L ol
Fr,0) = | —0 @2.1y

F(xiﬂ,---,xfﬂ 1,_])5'],175‘2 pEL "x[n‘:’] ,ﬂ)

It is not necessary that all functions F in (4.2.1) have the same form. Generally, equa-
tions (4.2.1) are called the condition equations, where the function F represents the
condition function, hence the observations are subject to v conditions which may be
of different form (Deming, 1948). In this case (4.2.1) must be written

lF(xEH,---,xgl-lgsJ'Sll,x_[pE1,-~ -,xs.n,o)
Fy0 =| . =0 @422
PP,y
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to distinguish between v different condition functions. According to (2.1.8) this can be
written :

F(yfﬁo) = [IF“] (y?]se),---,vF[v] (y?]:a)]r =@

which expresses that actually it is the adjusted value y&'], i = 1(1)v, that is subject to v
conditions. The vector of deviations from observed values xI, i = 1(1)v, is obtained
by

fo; =X; — Y

according to (2.1.10).
If the equations (4.2.2) can be solved, giving y; = f(#), the Jacobian reads

I = VO, VT

With these expressions the theory developed in Chapter 2 can be applied. The subscript
Jwill be omitted in further sections unless newly defined in the text.

4.3 Implicit fonctions

Derivatives required to evaluate the Jacobian can also be obtained from implicit
functions F(y,0) = 0. See (2.1.8).
The ith component differentiated with respect to the kth parameter gives

oft'@ _ _ arF™ (aFm)‘l _._ B

20, a, \ay/ = F¥

Fils£0 43.1
dy

Evaluated for all observations and all parameters this can be written

-l -=1 -1 1 1
Fi £ P U

¥ =- " A F{ . F, 8 (4.3.2)

0 . B . o]

FM) [ FY,LLGFE LR

The relationship between the Jacobian matrices for implicit and explicit functions can
be expressed by means of Definition 2.2.1 as

I = — Ff (4.3.3)
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4.4 Nested implicit functions

In this section we are concerned with condition functions of the following type _
Fluw0) =0 - 44.1)

where u = u(8) and w = w(f). Let calculated values that meet the condition (4.4.1)bé "~ = .~
u and let the vector of observed function values be x,, then we have to determine the .
components of the difference vector

0 = X -8B (4.4.2)
and of the direction vectors
. o
= -—, k=11
A 3, (Dp

We assume that a can be solved from (4.4.1) iteratively which gives (4.4.2). To solve
J use is made of the total differential of (4.4.1) with respect to each parameter which
reads for the kth, :

dF(umd) =L % g0, + F O 40 + O g, =0
du 36. ow 38,, 39,,

from which we obtain witha 1 X 2and a2 X 1 dimensional vector of variables in the
nhumerator, the solution .

u = — Lo F) (B ) w)fb W' _iwp,  F#0 4.4.3)

which has to be evaluated for all /. This equation is a generalization of (4.3.1). An ar-
bitrary element of the Jacobian thus reads ‘

I = ~(FIH (41, FEHEFE wihT
which is a generalization of (4.3.2).

4.5 Simultancous nested fmplicit fonctions

A further extension of the use of implicit functions is given by the following simul- -
taneous system of condition functions

F(u,0,w,8) =0 sy

G(u,0,2,6) =0
where u,0,w, and z are functions of # and the solution is with respect to # and v The
total differentials 4F = 0 and dG = 0 applied to the kth parameter yield after dividing
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them by 46,

oF du +8FBD aF ow +6F —0
udd, v 6, owod, 08,

0Gou G  0Fdz L 0G _ o
ou 86, 0o 06, 9z 96, 96,

from which the partial derivatives u, and v, have to be solved. The solution is obtained
from

Fu Fr; el "Fwwk_Fk

G, G, ||v| | =G,z —Gs (4.5.2)
and can be written with a 2 X 2 dimensional matrix and a 2 x 1 dimensional vector
of variables at the right-hand side

Uy Gv _Fu Fk+Fwwk

et S (4.5.3)
FuGu - GuFu

U _Gu F Gl: + G,zk

which is a generalization of (4.4.3).

Next we assume that (4.5.1) can be written in a special form to obtain mutual solv-
able equations, viz.

F=u -—f(D’wsa) =0

(4.5.4)
G=vp—gluz®) =0
then (4.5.3) takes the form
E L L) Tfe + fuw]
_ 1
1- guj;
% (8, 11 L&k + g:2.!

4.6 Sequential functions

Sequential functions can be considered a series of multiple nested implicit functions
of different form with respect to the argument. The vector of calculated function val-
ues of such a sequence can be written, given a starting value ¥'%), in the following way

56



B Al
it N i O I s O

y=|ya| = | wmor-ngl = [ g 4.6.1)

ESI PSPy I Y

We have to determine £, and f;, k = 1(1)p. Values of y**? can be obtained by simple
evaluation, the starting point for instance being y'° = x%), which enables us to deter-
mine f17 = x — pI j = 1(1)v. The first, second, ..., ith component of an arbitrary
vector f; read

oyt gt
6, 6,

ay[Z] af[n ay[ll af[2]
= +
aet ay 591 aﬁg

-['l 1] 5,,[i~11 i
LA il L L PPV

0, ady o9, 98, (4.6.2)

Sequential functions given by (4.6.1) can easily be reduced to functions defined in
Section 2.1. We only need to replace the variable yI*1 in the argument of f by observed

4
values, say x4, so producing in the derivatives in (4.6.2) %ﬁ =0, i = 1(1)v and so
[i1 y
%Vﬂ_ = fI7 The observation vector x, is in this case defined by
k

. (1) 1 —1RKT
%y 1= (xPx ML Yy

The starting value for the sequence, viz, y'®1 = xi%, will generally not be an optimal
choice. For this reason we can define 1% =: 8, , where ,‘2, can be taken equal to
x%%). This new parameter can be used to extend the vector of parameters. To optimize
&, + 1, partial derivatives with respect to this parameter have to be determined.

In a computer program both possibilities can be built in, their choice being governed
by a system parameter r. Using an auxiliary variable z, and renumbering the parameters
such that now @, defines y°), the series (4.6.1) can be set up as follows
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2 =19 + (1 - Hx®

[FLSS SR <} e S} BN 22 =yt (1 =l

Y3 ol I g 23 = (1 =

y o =1 G g 2 =l (1 -, (4.6.3)
y[v—l.] =f[v-1](z[v-i] ’0) z[w] - ry[v—l] + (1 o r)x[lv—:l]

y[v] - j{v] (Z[V] N

where r = 0 means nonsequential treaiment and r —= | means sequential treatment.
The derivatives of the auxiliary function for{ = 1 are

[1}
"az =0, k=I1DG-1
B | (4.6.4)
oz
= p
o0

P
The derivatives of the condition function for { = 1(1)v are obtained from

a[i] ai]a [é] a[!']
_ oo o

L k=10 4.6.5
2, 8z 90, o9, (p (4.6)

The next component for the auxiliary function can now be prepared
[i+ 1] 1]
oz _, ay[_

o6, 00,

where the partial derivatives 9z/86, cancel out if the system parameter r = 0. As the
functions z always occur in the same way in the functions f, the derivatives can be pro-
grammed efficiently on basis of the following scheme, [ denoting DO-loops
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where the particular partial derivatives f; for all parameters have to be programmed |
separately in step 4 only. .

In fitting practice it will be helpful to choose » = 0 in the first few fitting cycles to -
obtain an improved starting value 0%’ before applying sequential functions withr = 1.

H the new parameter that represents the starting value yt®1 of the serieshastobe ex-

cluded from the fitting procedure, this can be done by means of the parameter index -
cards in the main program to be discussed in Chapter 8. ;

In case of time series it is custom to plot y'', ; = 0(1)v, against i = time, connecting
the points by polygons thus producing a broken line whose first derivative with respect
to time is not continuous. Partial derivatives of the sequential condition function with
respect to the parameters, however, are continuous since also in this case the con-
ditions laid down in Section 1.3 hold.

4.7 Alternative functions

A further generalization of the condition function occurs when the structure de-
pends on results obtained by function evaluation. In that case it is not known what the
structure of the entire function is unti! all alternatives have been chosen. This type of
fanction belongs to the class of nested implicit functions. An example is given in Fig,
11 where the functions fand %f are supposed to have different forms.

We define the row vector of variables x := (x,,...,X,) Where we assume that it is x,
which in this model has to be compared with calculated values y to find the sum of
squares S. Values for f§? = xi7 — y/) can be obtained by numerical evaluation. :

The derivatives in which /%, f = 1,2, is involved read respectively

iful <0

o _ a0 | Ay | ot
96, ou 06, oo 06, 90,
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algorithm
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fitting cycles on @
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Fig. 11. Flowchart for parameter optimization detailed for the calculation of the difference vector fo
of a composite alternative condition function, Particularization of /f'; j = 1, 2; # = 1(1)v, is caused
by the value of u*! which can change for the same 7 at varying values of @ in consecutive fitting cycles,

ifu? 2 0
ayt  ac%th aut + a2ty owt™ + ot

3, ou 00, ow 00, 26,

In the computer program the derivatives can be included in the subprogram for
function evaluation. The advantage is that the program can be shortened since use can
be made of auxiliary variables in function as well as derivative function statements.
When the derivatives are written in their own subprogram, an array of integers must
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Fig. 12. Part of flowchart for the calculation of the difference vector f; and of the first derivatives of a
composite alternative condition function. Values of first derivatives are controlled by values of ufl
See Fig. 11 for completion.

be produced that contains information on the step sequence at the u!l-decision for
each i.

If fis a function of both, v and w, these functions have to be defined for both choiceg.
An example is given in Fig. 12 where ¢, and ¢, denote constants. The calculation of the
derivatives is indicated in the flowchart.

The functions u, v, w and f need not be functions of all components of #. This means
that for u, v and w only those derivatives have to be programmed whose parameters
occur in the functions mentioned. The function £, which is a function of the parameters
occurring in u, v, w and in its own argument, can be treated as follows. Let the function
u depend on p, = p parameters taken from 8 and suppose when treating u that they are
ordered by k, = 1(1)p,, and all this analogous for », w and f. Numerical calculation of

Ji is then carried out by the following scheme
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In Fig. 11 and in Fig. 12 it is assumed that the step sequence depends on the value of
u''l, The foregoing procedure can also be used when the function choice is made to
depend on the observation order number . If for a first group of data, say v,, the right-
hand route is to be chosen, the argument in the decision statement on #!*1 should read

vl_i.

4.8 Combinations of functions

The functions discussed in Section 4.7 can be sequential functions. A flowchart for
the application of such a combination is given in Fig. 13.
Observed values of y and u are components of the (v + 1) x 1 vectors

. o 1 ¥y—1 T
xy o= (P T

1 -1 T
X4 1= (x[iO]!xE’. R ]:xl:zﬂ)

It is assumed that values of u are obtained by sequential functions too and that ob-

servations on u are components of the vector x.. We define the row vector of variables

x =: (Xs,...,X,) and use x, for the determination of § = Y (x}7 — y!*)%. The system
i

can be set up with system parameters r; and r, as follows
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r; = 0, nonsequential treatment of y
=1 sequential treatment of y
r, == 0, nonsequential treatment of «
ry =1, sequential treatment of u

Auxiliary functions as used in Fig. 13 are
2 =y 4 (1 =, i=10)F+1D
W = =1 (1 - )R i=1DE+1)

where y1°3 and 4!®! are starting values for function evaluation. The parameter vector
is defined such that

¥y =:0,and ! =:9,_,

Observed values x1%7 and x[ are assumed to be available and are to be used as starting
values for parameter optimization,

Two functions are distinguished, viz. v and 2p, to obtain values for v. Each function
has its own subset of parameters. The appropriate derivatives for sequential functions
are obtained automatically by the choice of r, and r, respectively. The starting value
zM11 depends on the parameter that represents the starting value xt). However, from
i = 2 onward, the variable 2! depends on all parameters because z is a function of y
ifr; = 1. Analogous arguments hold for w and u.

Permutation and partitioning of the components of the parameter vector furnishes
the possibility of excluding either 8,_, or #,, or both, from the fitting procedure (See
Chapter 8).

4.9 Special properties of the fitting surface

Application of sequential and alternative condition functions discussed in this
chapter result in special properties of the fitting surface. This surface depends on both
the form of the condition equations and the observed values assigned to the variables.
For x 1= (x3,...,x ) and X : = (x,...,x) let

¥8) = f(x,.X,0) 4.9.1)

be a strict function of the vectors of variables, then p is the position vector to the fitting
surface. Fitting without sequential functions takes place on the fixed surface given by
(49.1).

For sequential functions we define the second observation vector to be used in the
{n + 1thfitting cycle as follows (see 4.6.3)

23%6) : = [09,514D),...y" @]
where yU'1, i = 1(1)(v—1), is found in the nth cycle, then
¥6) = f(x(0).X,0) 4.9.2)

64




OBSERVATION SPACE EV

Xp(N-locus

y (N-locus

Fig, 14, Two members of a family of fitting surfaces for sequential condition functions. The lower
surface is explored by keeping the vector of variables x2(1) constant at A — ™, '

Now y(0) is the position vector to another fitting surface (Fig. 14). Since x{™ is a func-
tion of the parameters, fitting with sequential functions takes place on a family of sur-
faces; each iteration within a cycle producing a new member of it. Fitting along a
(linear) direction of search in the parameter space can be regarded as fitting along loci
which satisfy

o) = 6™ + 5™
D) = 18,00, XA,... 7" )" (4.9.3)
¥ = fxP(N).X,02)

The nth intermediate fitting surface can be explored by putting 4 = 1™ = constant in
the expression for x, in (4.9.3) giving the position vector in Fig. 14,

YAA®) 1= f(xP(A™),X,6(2))
The program option to control this is the choice of the value of the system parameter

r = 0 in the (n + 1)th fitting cycle. An adequate value for A is in this case the optimal
step factor A = A*®, see (3.5.1).

For alternative condition functions (see Fig. 11) the fitting surface does not change
as long as for all  the same choice is made in the decision statement on #!*1, A partic-
ular order of the functions f and 2fin the nth fitting cycle can be stored in av X 1
choice vector j™. Components of this vector are ji*1 = —1 if 4 < 0, j17 = 41
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fitting surface fitting surface
for jv for ji2}

Fig. 15. Schematical illustration of a discrete fitting surface. Along the dotted line the value of one or
more of the components of the integer choice vector 7 suddenly changes, causing a jump to a further
fitting surface.

otherwise. Assume a one-dimensional search to be carried out with step factor A then
J =Jj(A). This vector will not vary continuously with A. It changes value when jumps to
other fitting surfaces occur.

Complications can arise as to the choice of a terminal point 8% since this can be
situated on a surface producing a greater value of the response S than that obtained in
preceding cycles. Such a situation is sketched in Fig. 15.
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' 5 Use of scale factors for accelerating convergence o e B

5.1 General

Convergence in the fitting procedure can be accelerated by choosing directions in °
the parameter space that produce paths closer to the minimum of S(6). .
Stol (1962b) developed a method where use was made of ratios of scale factors to -
obtain weights to be applied to differential corrections & (Section 2.4) to find these
better directions. Determination of weights that depend on the course of scale factors
by varying the position vector y, involves evaluation of change of scale factor values .

_ when proceeding in the direction of search. Now it depends on the structure of the .
condition function whether differentials of the scale factors can easily be used to de- )
scribe the scale factor course with second derivatives. Otherwise, when this structure is .
complicated, differences have to be applied. However, in that case numerical informa-
tion on two points on the fitting surface must be available.

The problem of finding weighted corrections to accelerate convergence can be con-
sidered part of the problem of finding corrections for curvature of the fitting surface,

£.2 Role of scale factors

Scale factors were introduced in (2.2.7) and discussed in Section 2.7. Their role in - |
parameter optimization will now be dealt with, S ;

Consider two points on the fitting surface, given by #? and #®, with scale factors S
K 1= o) and K ;= 0'®) respectively. o

Assume 8‘® to be in the direction of differential corrections obtained from (2.4.13) o
80 02 = @ | 14D, Tt is noted that d'¥ is found by projection on the tangentplane .
to the fitting surface (Fig. 16). This means that the order of magnitude of the compo-
nents of ¥ is based on units along the parametric curves at 0%, being A, (0'V), k =
1(1)p, (Stol, 1962a and for a one-dimensional example Draper & Smith, 1967).

In the nonlinear case this results in too rapid a progress in a divergent direction orin
slow convergence. Fig. 16 and Fig. 17 show an instance of the first case on a two |
parameter fitting surface. The differential correction vector in this example is supposed
to be 4"} = (3,3) expressed in units of 2, and &, at 6V in the tangent plane, (

In the figure the scale factors are assumed to increase, each in its own way, along .
the path from i) to fIFP). This means that the length of this path on the fitting . ‘

|

surface is considerably longer than the Iength of the image of this path in the tangent -
plane, viz. the length of the total tangent Jd. To overcome the consequences of this
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Fig. 16. Detail of tangent plane to fitting surface at  Fig, 17, Detail of fitting surface where the dif-
O with differential correction vector d = (3, 37  ferential correction vector & == (3, 3)7 is applied
measured in units of the scale factors Ay and A;.  to § = (1, 1)7 giving a linear path of search
The terminal point of Jd is obtained by orthogonal  in the parameter space. The terminal point for

projection as sketched in Fig, 6, step factor 4 =1 is §® = (4, 4). The course
of the scale factors induces what mostly is
called overshooting.

situation we introduce weights w to act on d to produce paths closer to the solution 8*.

Obviously the weights have to be chosen inversely proportional to the scale factors
in newly obtained points 82! on the fitting surface along the direction of Jd, therefore
we define the Ath component of the p X 1 vector w by the ratio

(0

PR ) e o —
CA = A )

k = 1(1)p (5.2.1)

hence, denoting the step factor in the weighted direction by A’
0% = g 4 A [wP(A VY (5.2.2)

giving new paths on the fitting surface (see Fig. 18 path 2 and 3, and Fig. 1).

In (5.2.2) values for A’ and 1 have to be determined to make optimal progress. Solu-
tions can be obtained by taking differentials or differences of scale factors depending
on the availability of second derivatives of the condition function.

5.3 Differentials of scale factors
5.3.1 Application

Caonsider the kth coordinate of the vector in the denominator of (5.2.1), viz.
(820 1= h (0 + 2d) (5.3.1)

which can be expanded in a Taylor series with respect to the increment id
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K = BD + Md VY VROD) + o(2%) : (5.3.2)
The scalar product can be written

oh, oh
dyyondy) (228 2k
@1r-.sdp) (ae, ae)

in which the elaboration of the arbitrary /th term of the second vector is given by
2.7.1)

alh]; = (fhfkl)' I = 1(1)k
by
Using the matrix (2.5.10) the results can be collected as follows, for A sufficiently small
KBy = KD 4 A OM D
Finally the weights (5.2.1) can be given by the vector
wid) = (& + KM d)'h (533

where vectors and matrices on the right-hand side have to be evaluated at § = 2,
Relative to k the expression becomes

w(i) = (I + AWM dY'] (5.34)
5.3.2 Minimum response

The response S in case of weighted corrections taking A = A’ and dropping the
prime can be obtained from

S() = Lfo@ + "] f(6" + aw’(D)d) (535) .

to be evaluated at 8. The general formula for the optimization condition is given in
equation (2.5.14) and for one-dimensional search in (2.5.15). The derivative of the
argument in (5.3.5) with respect to A becomes

ey _ WP + 4w y
di di

The kth component gives, using (5.3.3) and {.k.} to denote the kth component of
M, .d

2y 2 <
o _ K dﬁ&g(z b dk)
da hZ + A{k} di\hi + A{ .k}

which gives
2)r 2 2
46>’ %) =( B ) d, (5.3.6)
di h? + A{k.} )
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The optimization condition for a subminimum along (5.2.2) reads, differentiating
{5.3.5) using (2.5.13), (2.4.12) and (2.5.15)

dS(A) Z[ﬁ(l),,ﬁ(l)]( - i{ k. }) w0

from which A has to be solved. This can be done by means of iterative methods as are
discussed in Chapter 9. Since d6(1)/dA depends on 1 — see (5.3.6) — the path along which
exploration of the parameter space takes place is curved, giving a one-dimensional
nonlinear search in the parameter space. The derivative of @{2) has to be evaluated for
each iteration step in searching the subminirnum.

. d0'®’(2) o
It will be noted that =: #,(0) has the direction of d because of (5.3.6).

The properties of the weighting system for 1 = 0 and A — oo are, referring to (5.3.3),
w2 =1, ¢2(0) = 0, 0,000 =d

hi

w(c0) = 0, 8 (c0) = 6" + 3 d;» k = 1(1)p, 0y(c0) =0

508, k = 1(1)p, is bounded for M,, # 0. If M,,d = 6, for instance with a linear
condition function, (5.3.3) gives w = I and the weights cancel out.

Changing values of 1 will not change the sign of 8,{1) because of the square in
(5.3.6). This means that, depending on the sign of d, the values of 8", k = 1(1)p,
increase or decrease monotone although the search is nonlinear, In Fig, 18 three paths
of search are sketched. Path 1 is valid for (3.5.1) with s = d, path 2 for (5.2.2) with
A = constant and path 3 for (5.2.2) with A = A",

Fig. 1 gives an example of paths obtained in this way on an actual fitting surface.

PARAMETER SPACE E2

4
S constant d
8, / 9‘%”
o“"l

Fig. 18, Differential corrections applied in
three algerithms, In path 1 given by §* =
° + MY according to the modified
Gauss-Newton algorithm, In path 2 given
by 9 = g0 3 N[WP(AH)JIWD by
weighting differential corrections with
constant values of scale factor differentials.
In path 3 given by % = g + A'[w®
(AN where the weights depend on the
step factor A”,
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" 8.4 Differences of scale factors

5.4.1 Application

To avoid the determination of second derivatives of the condition function a differ-

ence method can be applied. We assume that a second point is known numerically -

which means that (5.2.1) can be calculated. Suppose this second point be optimal in
the divection 4V then, with & = &(1)

wA*) = [HOA* TR 0) (5.4.1)
which can be inserted in (5.2.2) giving, again dropping the prime for 4,

() = 8 + AW VD (54.2)
from which the optimal value of A is to be determined.

Analogous to (5.3.4) we can write

w = [1 + FYG? - N1 (54.3)

where A i supposed to be evaluated at #*(1? (Fig. 18). In this case the scale factor at
an optimal point in the weighted direction does not agree with that at 8+, To main-
tain correspondence between both, an alternative expression for (5.4.2) would read
generalizing (5.4.1)

o{z):( 2) = o 4 1[""( 1)](1)“(.1)
again giving a nonlinear direction of search.

5.4.2 Minimum response

In case of differences of scale factors the parameter function (5.4.2) is again a linear
and strict function of 4. This means that the direction along the path of search is given
by

do(z)f(l) = [WD(A* (1))](1)“(1)
di

independent of the step factor A. Progress is made along a straight line in the param-
eter space. Optimal values of 4 can be obtained by methods given in Chapter 9.

5.5 Example

For the condition function and data given in Appendix 2.3 three methods have been
compared (Fig. 19). The thres methods converge on the same terminal point. The
starting value gives § = 976.40. The modified Gauss-Newton algorithm gives con-
vergence in 25 cycles under default accuracy options (Chapter 13). When using weights
according to differences of scale factors in (5.4.3) with optimal first step lengih the
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Fig. 19. Decrease of sum of squares for
the problem in Appendix 2.3 according
to three algorithms based on the dif-
ferential correction vector d. 1 modified
Gauss-Newton; 2 and 3 differential cor-
rections weighted with the ratio of scale
factors; 2 with use of differences, the
number between parentheses includes
full optimal search to obtain A(1*™) in
each first direction; 3 with use of dif-
ferentials.

response decreases in the first cycle to § = 71.59. Under the same options the number
of cycles necessary for the same accuracy is 13. Differentials of scale factors produce
weights by means of (5.3.4) that cause convergence in 11 cycles.

As regards the approach to the terminal point, Fig. 19 shows that the modified
Gauss-Newton algorithm gives a response S < 100 after 18 cycles. Weights based on
differences of scale factors achieve this in the first cycle but it will be remembered that
scale factors from two points must be available and so in each cycle two subminima
have to be calculated, the first to obtain 8*™, the second to obtain 6*¢*'. With weights
based on differentials of scale factors 6 cycles are needed to obtain S <2 100. Now only
one subminimum has to be determined in each fitting cycle. The least sum of squares
appears to be S(0°) = 1.83, which is found with all three methods.

The results, depicted in Fig. 19, were obtained by the default main program NLV,
the Modification 8.1 and the Modification 9.2, respectively. (See Appendix 1.5).
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6 Correction for curvature by back projection

6.1 General

In Chapter 5 a method was developed to accelerate convergence. Use was made of
the scale factors of the parametric curves. Because of their curvature the focus of the
terminal point of the position vector, which proceeds on the fitting surface along a
linear direction of search in the parameter space, can deviate in undesired directions.

In the following sections a method is developed that measures and corrects for the
departure from the desired direction of correction. This method consists of orthogonal
projection of the paih of search in the fitting surface on the tangent plane at the current
starting point. Because of the fact that the direction of search, which in the present
case is determined by differential corrections, is found with the aid of the same tangent
plane, the method is called the back projection method.

In this chapter the situation at #™ is considered and consequently the matrices Jand
M are to be evaluated at this point.

Optimization iterations pertaining to back projection will be denoted by »".

6.2 Mathematical description

Since the tangent plane is spanned by the column vectors of J, the projection of the
vector f; on the tangent plane is Jd (Fig. 20), where dis obtained by (2.4.13).

An arbitrary point in the direction 4 in the parameter space is denoted by 8¢®+13(3)
= 0™ + Ad. In fitting practice 8™+ will be chosen to represent §*™, obtained with
A = A*"_ and the orthogonal projection 40¢+1 of this point on the tangent plane at
0 will be considered. The normal for this case reads according to (2.4.9)

N = JTHO** D) — fio™)] 621

The projection of this difference vector on the tangent plane can be written as Jb, see
Fig. 20. The solution of b is obtained from the inverse matrix M~! (earlier stored in
the computer memory) by

b=M'N (6.2.2)

which is the vector of back projection. '

Now the situation is as follows. Emanating from ¢™, the direction of search on the
fitting surface is along Jd in the tangent plane. On the fitting surface the path is curved
and it terminates in the (optimal) point #@+1), Back projection furnishes the informa-
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Fig. 20. Nlustration of the principie
of the back projection method. The
point 91 on the fitting surface is
projected on the tangent plane
giving 49**1 indicating that the
vector Jb makes an angle ¢ with the
direction obtained with differential
corrections,

titting surtace

tion that the subminimum is found in the direction Jb in the tangent plane. Since the
new direction js produced by the disturbing influence of the curvature of the para-
metric curves, corrections have to be applied to find a back projection that is closer to
the vector Jd in the tangent plane.

6.3 Two-dimensional linear search
6.3.1 Correction for curvature

In Fig. 20 the situation is sketched where back projection gives a direction Jb too
far to the right of Jd. Correction for this can be made by starting in a direction
to the left of the vector Jd for which we take Js (Fig. 21). The magnitude of the
correction can be taken equal to the angle ¢ between the vectors Jd and Jb. The new
direction in the two-dimensional tangent subplane spanned by Jd and Jb can be written
as the linear combination Js = aJd + 8Jb.

In this tangent subplane we have

. &' T I8 d"™Mb
os ¢ =

= = 6.3.1
IJdll - \JBll (47" Mdyd" Mb)} @D

From Fig. 22 we can derive the values for « and § to obtain the desired correction,
namely

)

Js = 2cos¢ Jd —
75

(6.3.2)
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TWO-DIMENSIONAL TANGENT SUBPLANE . /

Fig. 21. Starting in the direction Jd in the

surface is produced whose image is denoted.
by curve 1. The tangent subplane is spanned
by the vectors Jd and Jb. Curve 2 is the
image of a path of search on the fiting
surface when starting in the direction Js
\ which is a linear combination of Jd and Jb.

TWO-DIMENSIONAL TANGENT SUBPLANE

Fig. 22. Construction of the vector Js in the
two-dimensional tangent subplane as suggested

by Fig. 21.
The length of this vector is obtained from
2 _ 2 2 _ \7a| r 2
\Jsl* = dcos® $ |Jd))* — dcosp —— 178 d'Mb + |[Jd|

In virtue of (6.3.1) the first two terms at the right-hand side vanish and so |Js{| = ||Jd|.
The solution of s can be obtained from (6.3.2) and reads

s,

d—-
0o IIJT'II

6.3.3)

To avoid matrix calculation this solution can be approximated by one that would be
obtained in the two-dimensional tangent subspace with M = I which gives
hdl,

63.4)
||5|| 634

=2cospd—
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where cos ¢ = (d,B)/(|d]| . | 51).
The search according to (6.3.4) — and analogous for (6.3.3) - can be done by

™) = 0™ + s (6.3.5)

where a first approximation to the step factor can be taken equal to 1¥¢,

Apart from the iteration to find 4 = 2*®” in (6.3.5), the method of back projection
itself can be considered an iterative process. Optimization can be employed for ¢ and
A both, considering them a pair of algorithm parameters. Defining ¢ := 2 cos ¢ the
algorithm parameter vector becomes 4 := (4,¢)7 and (6.3.5) then reads

8T () = 8™ + s(c) (6.3.6)
finally giving for the sum of squares the expression
S@)) = SE™ + A(ca‘ - IEll_:% b)) (6.3.7)

6.3.2 Directions of search

The conditions for a minimum are given by (2.5.14) and read in the present case

a8 il

= p) T(d_ﬁb)=0 6.3.8

57 = Le@r(ed - 635

g—f = [g()]'(Ad) =0 (6.3.9)
to be solved for A and c.

The tangent subspace spanned by the vectors  and b is considered. The directions
of search are given by differentiating the parameter function (6.3.6) and (6.3.4)

o0 lidll

B o) =cd— 14y (6.3.10)
di | &l

¥ _ (6.3.10)
dc

which is also clear from (6.3.8) and (6.3.9),

For a fixed value of ¢, ¢ say, the vector (6.3.10) emanates from 8 as sketched in
Fig. 23. This means that the gradient in (6.3.8) can be used to solve A iteratively,
starting with 4 = A*™, producing the new optimal value 1*®?. Keeping this value
constant, ¢ can be solved iteratively from the gradient in (6.3.9) to obtain c¢*®". This is
performed along A*"”d emanating from the point

g _ yron Il apn
fl
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TWO-DIMENSIONAL TANGENT SUBSPACE

Fig. 23. Relationship between direc-
tions of search as used in two-dimen-
sional search by back projection.
The steps are: 1 back projection of
8°+ 2 producing the vector b in the
tangent subspace; 2 determination of
a vector of length |l in the direction
of &: 3 reflection of this vector in 4
to produce s; 4 initial step along s
with a vector of length [|b]; 5 deter-
mination of the optimal value of the
step factor 4 to obtain 1%™2; 6 op-
timization of the angle ¢ by means
of the parameter ¢ starting at 49*?
to obtain ¢**?,

with initial step factor ¢®? as illustrated by point 5 in Fig, 23.
The optimization in the directions distinguished can be carried out with methods
described in Chapter 9.

6.3.3 Propertics of the algorithm parametric curves

In contrast with parametric curves for the condition function, parametric curves
for 4 = (4,¢)T tend toward orthogonality when » — co.

Consider the two-dimensional tangent plane spanned by Jd and Jb. The condition
function reads ‘

ﬂ%m=wa+40w-Eﬂb

s
The direction vectors to the curvilinear coordinates of the {4,¢$)-system are given by

unu)
=Jlcd — —— b
/s (c 101

fo = —2ising Jd

where use was made of (2.5.4) with J{ = (f,.£;) and of (6.3.6) and (6.3.4).
The scalar product becomes

¢c=2cos¢

. » nﬂuy
T = —2 PERLLL ALY
fiks m¢G 1781

which tends to zero for n — co because in the Gauss-Newton algorithm d™ — 0.




6.4 Two-dimensional circular search

The method described in Section 6.3.2 gives linear search in two directions. The re-
flection of the vector Jb in the straight line given by the vector Jd in Fig. 21 can be
replaced by a circular search when moving from point 2 to point 3 in Fig. 23, following
the circular path that connects the terminal point of the vectors (|| 4//]5])é and s.

6.4.1 Correction for curvature
Correction formulas are derived for the metric M = J7J. An orthogonal base for

the two-dimensional tangent subplane is determined (see Fig. 24) by taking a vector
perpendicular to Jd and of the same length

Iz = : (d cos 9 — M b) (6.4.1)
|sin @] (X di
d"Mb
here cosSp = — — 6.4.2
wher ¢ (d"™™Md) (6" Mb) (642
Tasy —
and Z’Md =0 (64.3)
I7z]| = || Jd|

The relationship between z, d and b is obtained from (6.4.1).

The metric can be taken unity (M = I) when applying the formulas (6.4.1) through
(6.4.3) in the two-dimensional tangent subspace analogous to the conversion of (6.3.3)
into (6.3.4). This is done in the remainder of this section.

An arbitrary vector that is alinear combination of the base vectors z and & with prop-
erties analogous to (6.4.3), namely (z,d) = O and ||z|| = ||, is given by

s(f) = zsiny + dcos (6.4.4)
TWO-DIMENSIONAL TANGENT SUBPLANE
Jzh Js
L]
Yy A4 Jd
Fig. 24. Construction of the vector Js in the two-dimen-
sional tangent subplane as a linear combination of the
arthogonal vectors Jd and Jz. The particular case ¥ = ¢
Jb is illustrated.
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wmchhasalengthequaltothatodeahngw ¢equahon(644)reducesto(634)
using, see (6.4.1),

r= L (,mé' fd] )
|sin @] 8l
Wlﬂl (6.4.4) a new parameter vector for two-dimensional circular search is, deﬁmng
= @AW",

6" = o™ + As(¥) (6.4.5)
giving for the sum of squares
S(6(4)) = SO + Azsin ¥ + Adcos 1)

6.4.2 Directions of search

The directions of search in each point of the two-dimensional (1,%)-coordinate sys- - |
tem is given by formulas analogous to (6.3.10) and {(6.3.11). In the present case they
are

=gsiny + deosy = () ' (6.4.6)

80 .
ﬁ=).(zooslll—dsm'ﬁ) 6.4.7

The optimization conditions are again
[e(] (a) 0and [g(4)] ( aw) 0

The value of ¥ can be determined from the second condition, keeping A constant. Then
the first condition is used to solve 4, keeping ¥ constant. Optimization of each of the
algorithm parameters can be achieved by methods described in Chapter 9.

6.4.3 Properties of the aigorithm parametric curves

The directions of search in (6.4.6) and (6.4.7) are orthogonal since the scalar prod-
uct of the vectors 86/0A and 20/dy is

Az"zsin § cos ¢ — Az7d(sin®y — cos’y) — AdTdsin ycosyy = 0

This holds because z is perpendicular to 4 with equal length,

v
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6.5 Example

Results of optimization using back projection techniques are given for the condition
function and data mentioned in Appendix 2.3.
In Fig. 25 the decrease of the sum of squares is plotted against cycle number for

S
1000
800
Method Number of
600 cycles
i . 24
2 . 4]
3 s 14
400 4 & 19
5 X 19
200 e
.
o s ...\"'-._J ]
a 12 16 20 24 28

number of fitting cycle

¢

cycle 2

]

tast cycle
' i [ L 10°
o YA T A 2$:

Fig. 25. Decrease of sum of squares for
the problem in Appendix 2.3 according
to five algorithms. 1 modified Gauss-
Newton; 2 through § methods of back
projection; 2 noncircular search with
metric I; 3 circular search with metric 7,
after five cycles transfer was made to
modified Gauss-Newton; 4 noncircular
search with metric M; 5 circular scarch
with metric M. The course of the partial
cosines for algorithm 3 is plotted in
Fig. 32.

Fig, 26, Relationship between sum of
squares S and angle w for the direction
of circular search with metric I for
various fitting cycles. After five cycles
transfer was made to modified Gauss-
Newton.



four methods of back projection. In this example the use of the metric  appears to be
more efficient than that of the metric M, The curves in this figure can be compared
with those given in Fig. 19, taking the unweighted modified Gauss-Newton algorithm
as reference. !
. A large area of the fitting surface is explored by back projection techniques as can
be seen from Figures 26 and 27 for circular search. They give the relationship between
the sum of squares obtained by rotating the vector s respectively Js about the starting
point (see Fig. 24 and equation (6.4.4)). To avoid an extension of the search in direc-
tions that produce too large values for the sum of squares, a reduction to the angle ¢ in
(6.3.2) and (6.4.1) is applied as a starting value when cos ¢ is negative. In fitting prac-
tice it then appears to be efficient to change the sign of the vector of back projection 5.
However, in some of such cases the sign of the direction of search that is applied in.
subprogram MIN must also be changed to obtain a negative slope at the initial point,
(cycle 2 and cycle 13 in Fig. 27). Since in the present case the search is nonlinear, the
program statement that would change the sign was temporarily deleted, giving an op-
. timal search for A alone at v = 0. Otherwise execution would have been terminated
after the second time a positive slope at the initial point was found in the same cycle.

10 10

cycle2

10° / /\ 10?

/ cycle 10
—YEe
g2l o~ 1 _ /] 2
10 cycin 13 ——110
cycle 14
T ;
101 - cycle!s— 10
J\
I cycle 17 \
' Fig. 27. Relationship between sum of
0 \ L I :wf 18 . 10° squares § and angle w for the direction
o % . %0 znC of circular search with metric M, for

various fitting cycles.
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The convergence to the final solution is slow after the sum of squares has decreased
to values below 8§ = 5, say. For circular search with metric I the algorithm was trans-
ferred to the Gauss-Newton method with optimal step length after the angle ¢ de-
creased below 0.02 radians or cos ¢ << 0.0008.

The best result for the given example was obtained with a non-circular search with
metric . The number of cycles necessary to obtain default accuracy decreased from 24
to 9 (Fig. 25).
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II Special procedures
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7 Structure of the program

7.1 General

The computer program is written in FORTRAN and was run on a CDC 6600 com-
puter using Scope 3.3 UPDATE features (Appendix 1.1).

A program written for the application of different algorithms has to be complled of
subprograms that contain the statements of the subroutines of the entire procedure.
Particular algorithms then can be employed by choosing the proper sequence of sub--
routines in the subprograms by calling them from the appropriately modified main
program. Use is made of SUBROUTINE subprograms only.

The program is divided into three parts. The first part consists of subprograms that
have to be updated for each particular condition function that is to be optimized. The
second and third part consist of subprograms that contain algorithm statements and
that need no updating except for the dimensions of the arrays, if desired. Subprograms
are called by the main program NLV (Appendix 1.2) which can be modified to suit
various algorithms (Appendix 1.5).

Variables that occur in different subprograms are linked by the appropriate argu-
ments or by COMMON statements. Variables that occur in COMMON statements
are subdivided into two blocks. Those whose dimensions of arrays are condition
function dependent are collected in *COMDECK DVAR, those whose dimensions
are algorithm dependent are collected in *COMDECK DFIX together with nonsab-
scripted variables. Condition function dependent subscripted variables are updated
with dimension comdecks as described in Appendix 1.1. See also example given in
Appendix 1.4.1.

To use the program for investigation either of the condition function and its prop-
erties or the convergence process, options are included that are not part of the al-
gorithm. Options can also be used to modify the main program NLV (Chapter 12 and
Appendix 1.5).

7.2 Condition function statements

Subprograms written as a framework for new condition functions are contained in '
the first part of the entire program. They serve two purposes.

Administration The SUBROUTINE INITL was written to produce the specific
headings for problem identification, to initialize variables and counters and to govern
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Table 4. Update *COMDECKSs called by SUBPROGRAMs
mentioned. See also Appendix 1.3 and Appendix 1.4.1.

Contents of the comdecks Comdeck name Called by

Headings XINITL INITL
Dimensions NDIMRD READ
READ instructions RDDATA READ
WRITE instructions WTDATA READ
Dimensions NDIMFN FNCTN
Function evaluation NFNCTN FNCTN
WRITE instruction WFNCTN FNCTN
Dimensions NDIMDF DFDA
First derivatives NDFDA DFDA
Dimensions NDIMD2 D2FDA
Second derivatives ND2FDA D2FDA
Data DATA

Data to be copied to file MYDATA, see Section 7.6.

the desired output.

Function evaluation It is evident that for each new problem to be optimized, the con-
dition function and its derivatives with respect to the parameters is to be programmed.
To be able to apply metheds at the level of information available, separate subpro-
grams were written for the evaluation of the condition function (SUBROUTINE
FNCTN), of the first derivatives (SUBROUTINE DFDA) and of the second deriva-
tives (SUBROUTINE D2FDA).

A new function and its derivatives can be inserted in the framework of the program
by means of update decks that are called by the subprograms during an update run
before they are written to the compile file, Update decks to be inserted in the different
subprograms are mentioned in Table 4.

7.3 Algorithm statements

Subroutines of gradient methods were written in separate subprograms which can
be linked to obtain modifications of standard methods (Chapter 12). These subpro-
grams form the second part of the entire program. The third part consists of special
procedure subprograms. They need not necessarily be loaded when using the default
deck structure of the main program NLV,

1.3.1 Gradient subroutines

Algorithm partitioning The level at which an algorithm can be applied furnishes the
criterion for partitioning in subprograms. Fig. 28 gives a conspectus of the compo-
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_ Condition function

LEVEL OF First derivatives
AVAILABILITY

Second derivatives

Curvaturs Information
Differantials of scale factors
Step factor in ohe-dimensional

Gradient
Narmal equations

CALCULATION Ditterential corrections

Function evaluation

- ———

COMPONENTS Siope in one-dimensional search |’
. search
Second order improvement
POSSIBLE
USAGE Gradient methods

Methods of direct search

Fig. 28. Conspectus of components of calculations and their possible usage following from the level of
availability. .

nents of the calculations that are needed for further elaborations. Apart of the subpro-
grams mentioned in Table 4, subprograms were written for the determination of the
gradient and the composition of the normal equations (NRMEQ), for their solution to
produce differential corrections (SOLVE) and for one-dimensional optimal search
(MIN). The determination of curvature and of differentials of scale factors are spread
through some appropriate subprograms,

Process continuation The convergence process is to be followed carefully in order to
detect whether convergence occurs and to decide whether execution can be terminated.
Decisions based on stopping criteria are taken in two steps. The first step is to in-
vestigate by means of subprogram HOWA the situation on the fitting surface at the -
initial point, point 4 say. When the decision is made to proceed with a fitting cycle at
a new point B, the second step is to start the next cycle with the replacement of point 4
by point B which is carried out in the subprogram AISB. After this the first step is re-
peated, and so on, till the stoppig criterion is satisfied.

Administration ‘The output contains the main results of the calculations with respect
to optimal parameter values and corresponding function values, as well as intermedi-
ate results concerning the applied algorithm and its properties. Subprogram LISTING
controls the output and the listing of tables produced by the first and second parts of -
the program, according to the demands of the user.

7.3.2 Particular subroutines

Exclusion of parameters Parameters in condition functions can be kept constant, and .
thus excluded from the optimization process, to particularize or simplify the func-
tion. Examples were given in Section 4.8, where a choice was made between sequential
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and nonsequential use, Another possibility is a partitioning of the parameters into
two groups, the first consisting of those that occur nonlinearly, the second of those
that occur linearly in the condition function, Grouping and selective use of parameters
once can be applied in the default deck structure of the main program. Grouping and
partitioning can be saved, however, by means of the subprogram BLOCK that can
contain 5 different groupings and governs their subsequential use. Details of grouping
are given in Chapter 8.

Additional subprograms The method of back projection developed in Chapter 6 is
programmed in subprogram BACK. Two further subprograms are included in the
third part of the program. A method of finding controlled paths on the fitting surface,
given in Chapter 11, is made operational in subprogram TRACK. Possibilities to
extrapolate iniermediate parameter values, as developed in Chapter 10, are available
in subprogram LIHYPEX.

T.4 Convergence characteristics
7.4.1 Type of convergence

From personal experience it was found that in many least squares problems both
the sum of squares with respect to the fitting surface & and the sum of squares with
respect to the tangent plane 45 decrease. To distinguish between this situation and the
one where S”+1 < §® while at the same time 45"+ > 4§ the latter situation
will be called Type I convergence and the former Type I convergence.

In Fig. 29 the principle of both types is sketched. An example is given in Section
7.4.3.

fitting surface

tangent plane

TYPE I TYPEXL

Fig. 29. Principle of the two types of convergence distinguished. Proceeding on the fitting surface in
the direction of the arrow, the properties of Type I convergence are S®+1 = ||+ D2 < §™ =
o™ |? and 4SC+D == [Hf+D)2 = A5 — |[Ap2 Type 11 convergence is characterized by
S(ll+1) < S(n) and AS(IH-I) < As(n)‘
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7.4.2 Stopping criteria

Stopping criteria are used for economic reasons. They can be based on several '
quantities that give information on the state of the convergence process in consecutive
fitting cycles. Quantities that converge to an unknown value, as the sum of squares and
the parameter values, give this information in a relative sense. Quantities based on the
orthogonality of the vector f; on the fitting surface in the final solution, give this in-
formation in an absolute sense.

A sequence of parameter values 8%, n — oo, is assumed to converge to 8*. Several '
criteria can be put forward to establish 6” to be a terminal point of the sequence, -
where ¢ << oc. The criterion d; for the sum of squares reads

if |S® — S*+)| < §g, g > 0 (14.1)
then 6% := 9@l
For the parameters this becomes
if 6% — 08+ < 8y, 8, > 0
then 6 :=gi*D (14.2)

where k£ = 1(1)p

Both criteria can be made relative to the order of magnitude of the values of S and 6, -
respectively by dividing the expressions by the value obtained in the nth cycle, thus ex-
pressing d in fractions. These criteria do not make use of first derivatives of the con-
dition function, so the rules do not guarantee that a neighbourhood of 0* has been
reached because (7.4.1) and (7.4.2) do not depend on the condition for a minimum, ‘

With the aid of first derivatives stronger criteria can be put forward. They depend
on the consequences of VS = §. For nonsingular M1, equation (2.4.13) resulis in
d = 0 for N(0*) = 0. Application of (2.2.11), where J7fy = N, produces a farther
criterion in that the components of the vector of partial cosines ¢ have to be zero. From
Fig. 6 it is obvious that at @* the vector f; and the vector 4f, coincide, hence giving
zero difference in length when the iteration process terminates.

The foregoing characteristics can also be expressed by the cosine of § (Fig. 6), re-
quiring that the total cosine tends toward zero in consecutive fitting cycles, so

T;
cOB B = _M_ -0
ERTAR (74.3)

In fitting practice the criterion (7.4.1) has often been found too weak; the criterion
[IN) < &y, 8y >0, appears to be one of the strongest. Experience learned that the
above given criteria probably can be ordered according to the following sequence .
from weak to strong, see also {2.4.16),

{ Is(a} - S(u+ l)l

5™ }; {1/S = /4S1}s, {€}2» {cO8 B} {Idl}as {I NI} (14.4)
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where {u}, stands for u™® < 8,8 > 0,6 = 671, and §, = 8, k = 1(1)p, I = 1(1)p.
-t

It proved that the partial cosines provide the most efficient criterion even if their
absolute values may show an increase in the early stages of the convergence process
although the sum of squares is monotone decreasing. The partial cosines give informa-
tion on each parameter separately. They also give a direct geometrical interpretation
in the observation space with known final values ¢ = @. This value does not depend on
the step length in one-dimensional search, contrary to (7.4.2) which gives for linear
and strict parameter functions with 8"* 1> = 8™ + is,

165 — 801 = Alsy)
which will satisfy the criterion when
A < Oyflsd

The total cosine is related to the partial cosines since for an arbitrary direction s
equation (7.4.3) can be written, with (2.2.11) in the form of the row vector

" = foIh ol
as

cThs
cos B =
¢ I Js1;

giving for s = 5.1, the equality cos 8 = ¢,. For nonsingular M~! the total cosine
tends toward zero when ¢ — @ using the direction of differential corrections s = d =
MN,

In the computer program cosine criteria are set for the partial cosines. The default
value § = 0.00], in FORTRAN defined by COSCRIT = 3, requires that at least three
leading zero decimals appear in the results for the partial cosines. On basis of this
criterion it is decided in subprogram HOWA whether or not further fitting cycles are
to be produced. The same criterion is used on the total cosine in an informative sense.

7.4.3 Example

For the condition function and the data mentioned in Appendix 2.3 results on the
use of convergence characteristics are depicted in Figs 30 and 31. Fig. 30 illustrates
that in this example the process has Type II convergence during the first 14 cycles of the
modified Gauss-Newton algorithm. It has been found that in general this type of con-
vergence is slow. During the cycles 14 to 19 the convergence is of Type L. Fig. 31
shows the conurse of the total and the partial cosines. They are not monotone decreas-
ing although the sum of squares, depicted in Fig. 30, does. Only during the last few
cycles the partial cosines decrease simultaneously. A typical example of the behaviour
of partial cosines is shown in Fig. 32, which gives cosines for the fitting process that
was discussed in Section 6.5 (see Fig. 25, curve 3).
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Fig. 30, Decrease of sum of squares § with,

respect to the fitting surface and of sum of

squares 4§ with respect to the tangent plane, in-
subsequent fitting cycles. When 5§ decreases

and 48 increases the convergence is of Type I;

when both sum of squares decrease the con-

vergence is of Type IT (see also Fig. 29)."

Fig. 31. Relationship between cosines,
total and pactial, for the parameters D, 4,
B and C in the condition function of Ap-~

peadix 2.3, and number of fitting cycle for

the modified Gauss-Newton algorithm.
Although the sum of squares is monotone

decreasing (Fig. 30 curve S) this is not the

case for the cosines, During the last few
fitting cycles they suddenly approach zero.
The numbers I and II refer to the type of
convergence as given in Figs. 29 and 30.
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Fig. 32. Relationship between total cosine and partial cosines for the parameters D, A, Band C in the
condition function of Appendix 2.3, and number of fitting cycle. During cycles indicated by BP back
projection has been applied (circular search with metric I, see Fig. 25); during cycles indicated by
G-N modified Gauss-Newton has been applied showing an increase of the partial cosines before they
tend to zero. Sums of squares, § and 48 respectively, for each fitting cycle are mentioned in the margin
on the level of the ordinate values for the total cosine.

7.5 Subroutine control

The subprogram D2FDA for the evaluation of second derivatives is an example of a
subprogram that needs not necessarily be called. Results obtained from D2FDA,
however, are used in other subprograms and the corresponding statements must be by-
passed in case D2FDA was not called by the main program NLV. This is governed by
the subscripted variable NRINSUB, the subroutine index that counts the number of
entries in each subprogram. The first statement of subprogram INITL is to set the
subroutine counters to zero. The first statement of the Ith subprogram reads
NRINSUB(I) == NRINSUB(I) + 1. Since the subroutine index occurs in COMMON
it is possible in every subprogram to test each number of entries. If no use is made of
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subprogram D2FDA, for which I = §, its counter remains zero. Second derivative
application anywhere in the program can thus be skipped if NRINSUB(5) = 0 in
appropriate [F-statements.

A further advantage of the use of subroutine indices is that initial values to variables
can be set to zero in the subprograms themselves. This can be done during the first
entry, which is recognized by an appropriate IF-statement on the subroutine index.

7.6 Program layout

The arguments of the main program name, NLV, depend on the way the data are
stored. If data have to be read from the input file, the first statement in the main pro-

Table 5. List of subprograms and their entries.

Name of Alternative Main purpose is to
‘subprogram entry
Part I Fumction subprograms
1. INITL — define initial values
DEFAULT - define default values
HEADING - produce headings
2. READ — read data
NEWZEROQ - perform univariate direct search
3. FNCTN — evaluate the condition function
4. DFDA - evaluate first derivatives
ORDER — perform optimal Gauss-Newton with parameter vectors
partitioned according to ordered partial cosines
5. D2FDA - evaluate second derivatives
Part I Gradient subprograms
6. NRMEQ - produce the gradient vector
— produce normal equations
7. SOLVE - solve normal equations
8, HOWA — investigate the fitting result at point A, (§™)
12. SUMRY — summarize results
COMBIN — produce combinatorial search
9. MIN - find the subminimum {point B, §*™) in the direction of :
search
10. AISB — replace A by B
11, LISTING - ptroduce an output list of intermediate and final results
13. PLOT - plot sequential functions on the line printer
PUNCH — punch (or print) intermediate parameter values
Part III Particular subprograms -
14, BLOCK ~ store parameter groupings
15. BACK Bi, B2 - perform back projection
16, TRACK — petform procedures of controlled approach
17. LIHYPEX — apply parameter value extrapolation formulas
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gram reads

PROGRAM NLV(INPUT,OUTPUT,TAPE2=INPUT,TAPE3=0UTPUT,

TAPET)
If data are written onto a file MYDATA the first statement reads
PROGRAM NLV(MYDATA,OUTPUT, TAPE2=MYDATA, TAPE3=
OUTPUT, TAPET7)

The use of the arguments of the subprogram names are explained in Chapter 13.
The subprograms are listed in Table 5 according to the subdivision into three parts
as explained in Sections 7.2 and 7.3. The main purpose of each subprogram is mention-
ed as well. In Appendix 1.5 the modifications of the main program NLV that call

subprograms from the third part, as well as those that call alternative entries, can be
found.
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- 8.1 General

For several reasons it is useful to create the possibility to change the parameter

vector.
The condition function can be extended for instance {0 a more general form. Then
the research worker can decide to leave owt of consideration particular parts of the

function by keeping constant one or more of the parameters by giving them a trivial -

value, for example zero. The choice between sequential and nonsequential search
(cf. Section 4.8) is another example where one might decide to keep constant one or
more of the parameters in the condition function. One can also decide to partition the
components of the parameter vector in two groups: the first consisting of those that
are nonlinear in the condition function, the second consisting of those that are linear
(Hayes, 1974).

Another reason to advocate the possibility to have the disposal of a system for
solving only part of an optimization problem is, that if bounds on parameter values

are exceeded, the parameter voctor has to be broken down and its components have -

to be rearranged (Chapter 9).

Finally, in the first steps of the fitting procedure a group of parameters can be more .
efficient than the entire parameter vector. This means that fitting cycles then could be
carried out with only p, < p parameters and in a further stage either with the re--

maining p — p, parameters or the entire p X 1 vector.

In these cases only that part of the solution of the normal equations that furnishes
the required corrections needs attention and only those parameters that remain in the
parameter vector as to be fitted parameters are subject to alterations.

It is obvious that it is not sufficient to develop a system with which the parameter
vector can be truncated to a py X 1 vector. It is also necessary to permute the com-
ponents of the parameter vector to generalize the procedure.

Permutation and truncation of the components of the parameter vector can be -

controlled by the user of the program. He has at his disposal parameter index cards
in the main program deck, as described in Section 8.3.1. for permuting and grouping

the parameter vector. Since this grouping takes place before execution of the main

program, it is unconditional, Permuting and grouping also can be performed automat-

ically during execution, This is unconditional in combinatorial search where ail -

2? — 1 combinations of the components of the parameter vector are subsequentially
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used in a one-dimensional optimal search (entry COMBIN in subprogram HOWA,
see Chapters 12 and 13). Conditional grouping is applied in subprogram MIN
(Chapter 9) when bounds are violated. Finally, in entry ORDER in subprogram
DFDA grouping is based on the valuves of the partial cosines in the vector ¢,

8.2 Partitioning the parameter vector

The back solution of the complete p X p system of normal equations gives the
possibility to preserve partitioned solutions for 1, 1(1)2,..., I{Dp,,..., I(1)p param-
eters, p, << p, in order of occurrence in the parameter vector. Solutions beyond the
required first p, parameters can be useful. For example the length of the p x 1 cor-
rection vector d tends toward zero. In case only p, parameters are applied this holds
for the p; X 1 vector &', say. However, one may wish to remain informed on the
behaviour of the length of the p x | vector d after each fitting cycle and so further
solutions must then be available in an informative sense. Other examples are the
partial cosines for those parameters that are not involved in a particular fitting cycle.
As the coordinate system on the fitting surface generally is not an orthogonal one,
so JTJ = hPRP, improvement of cosines with respect to parameters not used also may
occur, It is of interest to remain informed on the values of these cosines as well.

From a point of view of efficiency this may not always be satisfactory. Suppose
Py << p. In grouping, normal equations are evaluated for all p parameters, but only
Py are employed in the following fitting cycle. When the advantage of the availability
of informative parameters is not great, it is not efficient to calculate all products and
cross products of the matrix M == J¥J. To avoid time consuming unnecessary cal-
culating and printing, it is advisable to reduce the optimization problem to a smaller

Table 6. Scheme of status in the program, denoted by x, of parameters after permutation.

Use Status

to be fitted informative constant
Parameter vector X X b'e
Evaluation of condition function X X X
Evaluation of first derivatives X X X
Evaluation of second derivatives X X x
Normal equations X X
Partial cosines X X
Correction to parameters x X
Length of normal vector X X
Length of differential vector X X
Application of corrections X
Curvature of parametric curves X
Differentials of scale factors x
Optimal step factor X
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size with a p; X p; matrix M. So parameters that are not involved in a particular

fitting cycle then are taken constant for efficiency reasons.

These considerations lead to the concept of tripartitioning the parameter vector
into to be fitted, informative and constant parameters, see Table 6.

Permutation and grouping are program options achieved by parameter index cards,
As each parameter occurs subscripted in the condition function it must have a fixed
place in the parameter vector. Hence permutation has to be carried out by indirect
subscripting of the parameters. Grouping by the user is carried out by rearranging
parameter index cards in the desired order in the main program deck. It then is auto-
maticaily employed throughout all subroutines. Alternative groupings can be saved
in subprogram BLOCK, up to a number of five. The use of this subprogram ig ex-~
plained in Chapter 13.

8.3 Application

8.3.1 Main program NLV

Permutation of parameters is a one-two-one mapping of the components of the

original vector onto the components of the permuted vector. When permuting, each
parameter obtaines a new subscript. The old and the new subscripts have to be kept
in store to preserve the uniqueness of the permutation. This permutation is carried out
by means of the parameter index cards.

After parameter values have been defined, the main program therefore continues

with for example the following statements

K=0 (0)
K=K+1 $ IP(K)=4 $ JP4)=K :
K=K+1 $ IP(K)=2 $ JP(2)=K

NPART=K (¢}
K=K+1 $ IP(K)=1 $ JP(D=K

NPAR =K )]
K=K+1 $ IP(K)=3 $ JP(3)=K

MPAR =K 3)

In this case the order of the parameters 8,, 8., 6; and 9, has been changed into
0,4, 9, 6, 0;. The old subscripts are indicated by IP(K), the new subscripts by JP(k)
on the parameter index cards. The maximum number of parameters p is denoted by
MPAR. For to be fitted and informative parameters truncation is achieved by NPAR,
this is the total number of parameters to be included in the normal equations. Final-
ly NPART defines the first p, parameters that have to be fitted.

The order of cards that define the grouping must be (0), (1), (2), and (3) respective-
ly, the first and last in fixed positions. The parameter index cards and the defining
cards (1) and (2) - in that order - can be permuted, thus giving tripartitioning of the
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parameter vector. The restrictions are
| == NPART = NPAR = MPAR =p
causing MPAR to be fixed at the value p.

8.3.2 Subprogram FNCITN

The subroutine subprogram that calculates the function values uses the parameters,
called by the subscripted variable C in the argument, in the original order, so:

DO 200 I=1,NDATA
200 YCLC(I)= function of X(I,J) and C(K)

Calculated values YCLC are obtained from the independent variables X(LJ) and
the parameter values C(K). In the function the jth independent variable for j =
1(1)m, in FORTRAN J=1,NVEC, and the kth parameter for &k = 1{1)p, or K=lI,
MPAR, take their own place and all parameters are needed. Therefore the compo-
nents of the parameter C are not subject to permutation, neither to grouping.

Evaluation of the condition function is for ali data i = 1(I)v, or I=1,NDATA,
thus producing the vector

¥y =0
according to (2.2.1).

8.3.3 Subprogram DFDA

In the general case the first derivatives with respect to the parameters are functions
of all parameters. This means use of the unalteted parameter vector. However, in
preparing the calculation of permuted normal equations, the vectors of first deriva-
tives themselves have to be permuted. This can be done using the JP indirect subscript
as follows {Appendix 1.4.1)

Ki=JP(1) $ K2=JP(2) $ K3=JP(3) $ K4=JP(4)

DO 200 I=1,NDATA
FA(ILK1)= function of X(L,J} and C{K}
FA(LLK2)= ibid
FA(LK3)= ibid
200 FA(LK4)=ibid

The functions at the right-hand sides denote the derivatives fI 17 ffand f11
respectively. The left-hand sides, evalvated for all data, produce for the example
given in Section 8.3.1. the Jacobian

J = (f4;f2:flzf3)
according to (2.2.5).
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8.3.4 Subprogram D2FDA

The appropriate construction of permuted second derivatives is more complicated -
because cross derivatives occur. The total number of second derivatives equals (°3 1)
or in FORTRAN MT*MPAR/2. In the example given in Section 8.3.1 this number
is equal to 10. The pairs of subscripts of the unpermuted parameters are replaced by
a single subscript KL, in our example according to

K,L)= (1,1}, (1,2), (1,3), (1,4); (2,2), (2,3), (24); (3,3), (3,9); (44)
KL =1, 2, 3, 4; 5, 6, 7; 8, 9;10

The subscripts IDGL of the diagonal (K=L) are computed by
IDGL=(K-1)*(2*MPAR—K)/2+ K for all K

However, when permuting, K and L have to be replaced by the new subscripts -
JP(K) and JP(L), for shortness denoted by KV and LV respectively. In those cases
where KV > LV the subscripts are exchanged before calculating their single sub--
script KL. This part of the program reads (Appendix 1.3 and 1.4.1) -

KL=0
DO 4K—=1,MPAR § DO 4L=K,MPAR $ KL=KL+1
KV=JP(K) § LV=JP(L)
IF (KV.LELV) GO TO 5
KRES=KV § KV=LV § LV=KRES
5 LV=LV—KV
4 ILKL)=(KV—1)*(2*MPAR-KV)/2-+KV+LV

K1=IL(1) $ K2=IL(2) $ K3=IL(3) § K4=IL(4)
K5=IL(5) $ K6=IL(6) $ K7=IL(7) $ K8=IL(8)
K9=IL(9) $ K10=IL(10)

DO 200 [=1,NDATA
FAA(LK1)= function of X(I,J) and C(K)
FAA(QK2)= ibid

200 FAA(I,K10)=ibid

The new single subscripts are stored in IL(XL). For the example given in Section
8.3.1, the relationship between pairs of permuted subscripts and the old and new
single subscripts is

(KV,LV)= (4,4), (4,2), (4,1), (4,3); (2,2), 2,1), 2,3); (L,1), (1,3); (3,3)
KL =10, 7, 4, 9; 5,2, 6; 1, 3; 38
ILKL) = 1, 2, 3, 4; 5, 6, 7; 8, 9; 10
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The indicated functions at the right-hand sides in the program text following the DO
200 statement denote for our example the second derivatives fI1% f19, .. /1 respective-
ly. The left-hand sides, evaluated for all data, produce the matrix J, as defined in
(2.5.6) now with permuted column vectors.

FNCTN DFDA
I Yoc(D FA{I,JP (K))
r==71 bl itk A
i ¥
! 4 2 1 3 5 K before storage
[ BEBEBRREE
2 . o ] L] =] ]
- . . : : of |» extended
. . el o] [o] [e] |- Jacobian
. . o fa| {o] |e] [ of first
. o Fal {o] [+] |+ derivatlves
Nowta . nEHEMENEN
] —d _.J . bl -
ditterence 1 2 3 4 5 K after storage
vector
FA(T K}
NPART = 2 HA (i)
NPAR =3 - «
NT = 4 [
£EE.
MPAR = 4 z z X X
MT =5
Bl B 131 scate tactors
Dimension of o ¢ sum of squares
arrays equals R S
MPAR cr MT ! o
1
X
1 2 3 4 5 ANORMI(K) K
scalar products 1 [44]42]a1 45 }------ a5 1
of extended 2 22] 21125 25 2
matrix of 3 1118 J--—-r- 55 3
normal 4 55 [ 4
equations 5 5
1 2 3 NT scalor products
of extended
NRMEQ M (KL} normal

Fig. 33. Flow of first derivatives FA and of differences YOC through subroutines in the subprograms
FNCTN, DFDA and NRMEQ. The Jacobian is extended with the difference vector. Scale factors are
stored in HA, extended with the square root of the sum of squares stored in HA(MT). The normal
and the sum of squares are stored in ANORM,
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8.4 Consequences for first and second derivative flow

Permutation of the parameter vector has consequences for the flow of the deriva-
" tives through the subroutines. '

The example of Section 8.3.1 is used in Fig. 33 which schematically shows the
flow of the first derivatives and the difference vector through subroutines of subpro-
grams FNCTN, DFDA and NRMEQ. The truncated normal is preserved in a vector
ANORM extended with the sum of squares. The normal equations are solved for
NPAR parameters of which the solution for NPART parameters is stored in the
vector DELTA. The solutions for 1; 1,2: 1,2,3; ...; I(1)NPAR parameters obtained
in the subprogram SOLVE are saved in the extended matrix M together with the
inverse matrix. This is illustrated in Fig. 34,

In subprogram MIN the solution stored in DELTA is applied to the relevant para-
meter values stored in A. In the equation for B the subscript K ranges from 1(1)
NPART. The indirect subscripting causes the flow of the components of the parame-
ter vector as given in Fig. 35. Parameters that play the role of informative parame-
ters, in the present example @,, and constants, in the example 05, are not altered by
differential corrections DELTA.

SOLVE
K\L 1 2 3 4 6 DELTA(K) K
partiland 1 [a4fa[4] | Jeomw——— 1
total 2l44l21 2 | EEC RN NPART = 2
solutions 3 |42 NPAR = 3
and Inverse 4 (41§21 1 NT - 4
matrix ] 5
difterential
M KLY corrections
MIN

S

A(K)  A{IP(K)) « EPS # DELTA{K) 2 B{IP(K)} BIK) K

1 I e L 3 at— 1] 1
2 [2]--—f-»{2]-- j: an{@le~bamid] 2
3 3] N Y 3
4 7 4] 4
Tnitial differential
parameter corrections parameter
values values

Fig. 34. Storage of solutions (upper triangle) and of the inverse mairix (lower triangle) for the first
NPAR permuted parameters in the matrix M and the vector of differential corrections DELTA for
the to be fitted NPART parameters, ‘

Fig. 35. Flow of the components of the parameter vector to apply differential corrections DELTA to

the parameter 8, and &; stored in the initial parameter vector A. The new parameter vector is used in
one-dimensicnal search. The step factor is denoted by EPS.
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I FAA (I,1LEKLY)
44 42 41 43 22 21 23 1 3 33 {X,.L) before storage

D2FDA .
E second derivatives
NDATA
1 2 3 4 8 9

o=

5 & 7 1© K ofter storoge

& Ho| | [ | Fasziosl)
[ ! |
H - -—- 1 '

DFDA Py Ty

transposed first FAFAALK,L)
derivatives
K FA (T, JP{K)) 1 2 3 4 %

PEN X . 4,44 4.42 4.41 4.43 1

1 e s s* s s s 17.14 1.12 1.1 113 3 NPAR

2 e roe vt 2.24 2.22 .21 2.23 2 NPART
I NN

3.34 3.32 ad 3.33 4 MPAR

Fig. 36. Flow of first and second derivatives to obtain the matrix J, stored in FAA, the diagonal
terms of the matrix M, ,, stored in FAA2 and the matrix M ;, stored in FAFAA,

For the flow of second derivatives the cross second derivatives are stored in their
new order of occurrence IL(KL) as illustrated by Fig. 36. To keep the possibility of
using any number of parameters, all second derivatives are, for our example, stored
in (3) columns. From these columns scalar products are calculated to obtain the diag-
onal of the matrix M, (equation 2.5.7) and the entire matrix M, , (equation 2.5.10).
The latter is stored in the NPART x NPART matrix FAFAA,
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9 Finding the minimum response in a given direction

9.1 General

When in a certain fitting cycle a direction of search s is adopted, the subminimum
of the response § in this direction can be determined. The fitting problem thus is
reduced to the determination of the optimal step length A*™s™ in (3.5.1), which can
be solved in the response subspace giving a subminimum (Fig. 5). The search then is
called optimal search,

Methods to be applied depend to a certain extent on the progress aiready made
during the preceding fitting procedure. In a neighbourhood of the minimum of §,
where linear approximation to the fitting surface is accurate enough, the entire cor-
rection vector obtained in the Gauss-Newton algorithm can be added to the parameter
vector (cf. Deming, 1948; Hayes, 1974). In this situation the efforts to achieve a bsi-
ter starting point by iteration procedures are superseded by the advantage of proceed- ~
ing at once with farther fitting cycles. Before a neighbourhood of the minimum
response is reached, the optimum rate of progress in the new direction is to be deter-
mined to ensure real improvement of the actual parameter values.

In this chapter the parameter ”+2’ is considered a linear and strict function of the
direction of search s™.

9.2 Review of methods

In the response subspace (Fig. 5) we assume our problem solved for A* if

ds(e4)

|11 =0 (6.2.1)

which produces optimal search along s in #®+1) = ™ . j5™™,

In case the fitting surface is linear the response surface is quadratic (Section 2.6} and
the (2, S(A))-diagram will plot a parabola in any direction s. This can be derived
from (2.6.3) where for any constant vector s, d2S/dA* = 2s"J7Js > 0. When the
fitting surface is nonlinear but is approximated by a quadratic surface, the (1, S(A))~ ..
relationship is also represented by a parabola. '

To find the subminimum, several methods have been suggested. Hartley (1961)
calculates three values of the response, viz.

5(0), (), S(1) 922
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The optimal value of A where the approximating parabola through (9.2.2) attains
its minimum then is given by the prediction
5(0) - S(1)
S(0) — 25(3) + S(1)
It is to be checked whether S(A*) << S(0) to be sure that an improvement is obtained.
A method where only two response values are needed was mentioned by Rueden-

berg (Hartley, 1961). He uses S(0), S(1) and the slope dS/di at A = 0 which is given
by (2.5.15) which gives —2NTs and so the prediction is

. _ Nis
S(1) — S(0) + 2N"s

(9.2.4)

the vector N to be understood as evaluated at 4 = 0. In this case a check is also re-
quired.

A method which tries to find the minimum by checking the results each time and
that can be used where parabolic approximation is not allowed, is described by
Booth and Peterson (1960). Their method (Fig. 37) works by halving or doubling the
step factor A. When new calculated values of the response S(A) no longer decrease,
the last three values are used to find the minimum by approximation according to
(9.2.3). The method principally is based on the following ideas. If S(3) > S(1) both
points are assumed to be located to the left of the minimum on the (A, S{4))-curve.
If S(3) << 5(1) both points are assumed to be located to the right of the minimum. In
case this is not true it will only be detected after many further calculations have al-
ready been made, In fitting practice the (4, S(A))-relationship is often found to be

Fig. 37. Flowchart of mini-
mization by halving or dou-
bling the step factor (after
Booth & Peterson, 1960).
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highly asymmetric, so here also it is to be tested whether the value S(1%) actually
is smaller than any of the other values of the response found thus far.” ’

The methods described above have no stopping criterion that depends on the
condition for a subminimum. The test whether the value S(A*) is smaller than any of
the other values found in the current direction, does not guarantee that the best value
of the step factor is found. Techniques that for this reason use first and second
derivatives of the response are discussed in Sections 9.3 and 9.4.

9.3 Use of first derivatives

9.3.1 Root finding

In finding a subminimum of the response, use can be made of the actval function
applied in (2.4.1), We transform the problem into the search for a root of the first
derivative of the (1, S{1))-curve.

The calculation of the first derivative of the condition function is then necessary,
but the advantage of using it is the more complete information on the process of
finding the subminimum and the possibility to apply a simple stopping criterion.
The slope to the (4, S{(A)}-curve in any arbitrary point is given by (2.5.15) and for any
linear path of search with parameter 4 by

S0 = ‘%S(ﬂ‘”’ + ™) = —2[N(H]"s™ (9.3.1)

In the general case this is a nonlinear function of A and it is to be solved by iterative
methods. The solution A* must meet the condition

—NGHTS™ =0 ©32)

The component of the gradient g(A) = —2N(4) in the direction of an arbitrary
unit vector is called the directional derivative, which is the rate of change of § in the
direction of this vector. Let s/|s| be such a unit vector, then the directional derivative
along this direction is given by

03] (9.3.3)
lisl _

Let ¢{A) be the angle between the gradient and the direction of search s, then the
scalar product (9.3.3) can be written [|g(A)[} - 1 - cos[¢(8™ + As™)]. This expression
takes its maximum for constant A when ¢ = 0, 30 by taking # in the direction of the
gradient itself. The greatest rate of change therefore is found in the direction of g
and, consequently, the steepest descent takes place aiong N, cf. (2.4.10). The descent
in the direction of s is zero if the directional derivative vanishes, so if for constant
s the argument of the cosine becomes ${@® + 1*s™) = x/2 and g(A*) and s™ are
perpendicular (cf. Section 2.5 and equation (2.5.15)). This may be called optimal
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PARAMETER SPACE E2

S8}
Lconstant

Fig. 38, Path of search in the parameter
space E2 for the subminimum of the re-
sponse S in an arbitrary direction s and in
the direction of the stespest descent N(Q).
The solution is obtained when the gradient
at @+ is perpendicular to s or the gra-
dient at §™*1¥ s perpendicular to N(0).

gradient search (cf. Spang ITI, 1962). In Fig. 38 this is the case at 8+ in the direc-
tion of 5, and at 9+ 'Y in the direction of the steepest descent at 0 taking s = N(0).
Equation {9.3.1) can also be expressed as a cosine, viz.

[e)” s
P L
05D = 1T

The minimum of § along s is obtained by setting (9.3.1), (9.3.3) or (9.3.4) equal
to zero. These equations are spoken of as measures of slope. They all give the same
solution for A. The measures of slope are indicated by numerical, directional and
cosine tangent respectively. The choice is governed by the calling program NLV, by
means of the argument of the subprogram name MIN.

~i1ZScosp s +1 (9.3.4)

9.3.2 One-dimensional linear search

The ‘Regula Falsi® (see e.g. Stanton, 1961 and Fig. 39 for factor R = 1) can be
applied succesfully when two points are known that enclose the desired solution. To
obtain a pair of points with this property, the following procedure is employed in
subprogram MIN.

The first point of the (4, S(3))-curve, when A = 0, has a negative slope if s = N or
s = d, because (9.3.1) and (2.4.13) produce —2NTN and —2NTM~IN which are
always negative (cf. Kowalik & Osborne, 1968). A starting value 1 = 19 is applied.
In case ds/d] at A=A is positive, the location of the root is already enclosed. If
S'(A®) is still negative a step factor 4 = 21® js applied. The step factor is
doubled until the first positive value of the (A, $"(4))-relationship is found. Now two
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L N ——-_ ()

I 1 :
0 l(ﬂ) 2#0) 41(01 1# alfﬂ)

T (A7)

A Fig. 39, Scheme of the order of calculation to ens
close the minimum response § with the aid of a
measure of slope T. Function evaluation is per-
formed from point ! through 5. The 6th point is-
obtained by using the factor R. Indicated by ¢#_ and
¢, is the region for values of slope that satisfy the
stopping criterion. With R = 1 the ‘Regula Falsi®
will be performad.

approximations to the root are available, In Fig. 39 this is the case in the fifth itera-

tion step. The minimum is located somewhere in the interval (1_, 1,), where A_ = -

last found abscissa with §” < 0 (point 4) and i, = first found abscissa with $' >0
(point 5). ,

As the (4, §°(A))-curve may deviate appreciably from a straight line, a modified .
‘Regula Falsi’ - illustrated by Fig. 39 —is an option in subprogram MIN. The arc
between the points 4 and 5 is replaced by the chord. A new abscissa Ae(A_, 1,) is
found by the apdate formula

2'...—“-_

o1 ©.35)

A =24, — RT,

where
T= measure of slope according to (9.3.1), (9.3.3) or (9.3.4)
R= reduction factor (0 < R< 1) .
—,+ = subscripts denoting location with regpect to the minimum at 1 = 1*

In further iteration steps cross partitioning of the chord is employed. If T < 0 equa-
tion (9.3.5) is used, if at the current point T = 0 use is made of

dp =2
A=A —RT. 2= 9.3.6) .
PR 3.6 .
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Fig. 39 illustrates the advantage of using the reduction factor R in a special case.
However, as the shape of the (4, §'(4))-curve may be different in each special case, it
should be investigated whether it makes sense to use other values than unity for R as
a default value. Because of the application of cross partitioning, values of R greater
than unity can cause unpredictable results in that the iteration takes place at one side
of the minimum only.

Obviously the ‘Regula Falsi’ works with R = 1.

9.3.3 Stopping criteria

Use of first derivatives makes it possible to introduce adequate stopping criteria.
In the first place it is required that the positive value T(4.) be less than
t, := —p,T(0), in the second place that the negative value 7(A_) be greater than
t_ := p_T(0), see Fig. 39. Values can be assigned to p, and p_ in the main program
NLYV, the default value is set to 0.1 (109 of the slope at 1 = 0). Higher values can be
efficient in the first number of fitting cycles since the (4, S(A))-curve then often is
needle-shaped.

Stopping values for the step factor 1 and the absolute value of the numerical tan-
gent T given by (9.3.1) are built in in subprogram MIN. If doubling the step factor
results in A > 10, the step factor is fixed at A = 10 and a last iteration with this value
is performed. When |T| < 0.1 % 10~!° no further iterations are carried out. In
both cases the step factor that produces the least value for the sum of squares is cho-
sen and a return to the main program NLYV is made.

The total number of iteration steps permitted is governed by the argument of
SUBROUTINE MIN when greater than the default value 3.

9.3.4 Example

For the condition function and the data mentioned in Appendix 2.2, the number
of iteration steps is determined for various values of the process parameters when
applying the modified Gauss-Newton algorithm. The entries in Table 7 are the stop-
ping criteria p and the reduction factor R. The number of iteration steps is listed for
the cycle that gives the first subminimum and for the one that gives the second sub-
minimum.

The increase of the number of iterations necessary to fulfill a given accuracy de-
creases for high values of R. Numbers obtained at values of the reduction factor
equal to 0.8, 0.9 and 0.95, are of the same order of magnitude as numbers found with
the ‘Regula Falsi® given in Table 8. Also in this case the number of iteration steps
only decreases slighty when p takes smaller values. Values for the measure of slope
denoted by numerical tangent and cosine tangent, as derived in (9.3.1) and (9.3.4),
are headed by 1 and 2 respectively. The sum of squares § calculated for these cases
do not differ much. The results obtained with the default algorithm (R = 1,p_ = p,
= 0.1) are given in bold type. See also Table 9 where the number of iteration steps
in further cycles are also mentioned.
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Table 7. Number of iteration steps to obtain the subminimum according to the Gauss-Newton
algorithm for various values of the reduction factor R and the measure of accuracy g, p_ —p..., for
condition function and data mentioned in Appendix 2.2.

Reduction  First subminimum, Second subminimum,
factor R p fraction of slope p fraction of slope
06 04 02 01 005 o001 06 04 02 01 005 00f |,

0.4 14 14 16 18 22 28 7 1 13 17 19 25
0.5 14 14 16 18 20 24 7 9 1 13 15 1%
0.6 4 14 16 16 18 22. 5 7 7 9 1 13
0.7 14 14 16 16 18 20 5 5 7 8 9 12
0.8 i4 14 16 16 17 19 5 6 6 8 8 10
0.9 14 14 16 16 16 18 6 6 6 7 7 9
0.95 14 14 16 16 16 17 7 7 7 7 3 9
0.9999 14 14 19 19 19 19 14 14 14 14 14 14

Table 8. Number of iteration steps to obtain the subminimum according to the Gauss-Newton
algorithm for the ‘Regula Falsi’ for various values of the measure of accuracy p, p. = p,, and
for the numerical tangent (1) and the cosine tangent (2), for condition function and data men-
tioned in Appendix 2.2.

First subminimum Second subminimum
P number of SO number of S

iterations ‘ iterations

1 2 1 2 1 2 1 2
0.6 14 16 2690 26.07 6 5 13.87 13.85
04 14 16 2690 2607 6 5 13.87 13.85
0.2 15 19 2598 2597 7 6 13.85 13.85
0.1 16 19 2597 2597 8 7 13.85 13.85
0.05 16 20 2597 2597 9 7 13.35 1385
0.01 17 21 2597 2597 10 8 13.85 13.85

9.4 Use of second derivatives
9.4.1 Root finding

The *Regula Falsi’ convergence gives a linear approach to the root of a function.
When certain conditions are met the Newton-Raphson algorithm can be used. It
is faster because of a quadratic approach, since the number of correct decimals rough-
ly doubles with each iteration step (see e.g. Stanton, 1961).

Application of the Newton-Raphson algorithm requires the evaluation of the
derivative of the (4, S'(4))-relationship, so it requires the second derivative of the
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response with respect to A, given in (2.5.17) and (2.5.18). Consequently the method
requires the evaluation of (P4*) second derivatives and so the advantage of using it
for searching a subminimum is to be weighed against this disadvantage. Application
can be justifiable when the number of parameters p and the number of data v is small.

If it is asked to find the solution of f{x) = 0, the Newton-Raphson iteration re-
quires the evaluation of

i
@ L _ fx")

&)

X (9.4.1)

where

x‘D = starting point of the iteration, near enough to the required root that the tan-
gent to f{x) at (xV, f(x{')) cuts the abscissa in a point nearer to the root than
XD,

x? = point of intersection which meets this condition.

Expressed in the symbols used in (9.3.1) and (2.5.17) the equation (9.4.1) becomes
. (cf. Davies & Whitting, 1972)

FIO TN ENG)]s
sTIM(AD) — Nop(2'))s

(9.4.2)

As the direction of search s is chosen arbitrarily, (9.4.2) can be used for differential
corrections 4 even if they are determined using first derivatives only, viz. d = M~ 1N.
The second term at the right-hand side of (9.4.2) is spoken of as the prediction formu-
Ia for the step factor.

We restrict attention to a linear condition function. Then N,, vanishes and M does
not depend on 4, so for any vector sin (2.5.17)

S"(1) = 2s"Ms = constant (9.4.3)

This expression is greater than zero for s 5% 0 (Section 2.6) which means that the
(4, S(4))-curve has 2 minimum in the first quadrant because $'(0) < 0 and S(4) > 0.
Now (9.4.2) reduces to

A9 = 2 4 [N(fu)]rs

9.4.4
s Ms ( )

Using differential corrections, so s = d, the denominator in (9.4.4) becomes
dTMM-1N(0) using (2.4.13) at A = 0. From {9.4.3) and {9.3.1) it now follows that
8"(4) = —§'(0) = constant (9.4.5)

where 5°(0) < 0. Equation (9.4.5) expresses that the slope of the straight line for the
(A, S'(A))-relationship is equal to the negative value of its intercept on the ordinate.
The equation of the line itself reads
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SW = —A - DSO) | 9.46)

which has a root at A = 1, giving a full step in the direction of search. For nonlinear.
condition functions this resuit may be used in near-linear situations so when d7N,.d
now present, in (9.4.2), is sufficiently small. P

9.4.2 Initial step factor

Second derivatives can be used to predict the step factor in a certain fitting cycle
(see Davies & Whitting, 1972; and for a discussion in detail for variable metric .
algorithms Dixon, 1972). This prediction value can be used as an initial value for \ &
A to start the iteration process. Inserting A = 0 in (9.4.2) gives LA

1@ o [NO)T"s
s"TM(O) — Nox(0)1s

The choice to use (9.4.7), only makes sense if the CALL D2FDA statement is present.
Application then is possible by an appropriate modification of the main program
NLYV (Section 12.3).

Without using second derivatives a starting value A‘? can be declared in the main
progtam, the default value being 0.001. In further fitting cycles A®+1D = %@,

n = 1(1) is automatically chosen as initial value in the next cycle.

In fitting practice the solution 42> obtained with second derivatives according to
(9.4.2) can be compared with the solution by the iterative procedure to be described
in Section 9.5.1 which gives the optimal value A*'*), When in preliminary cycles both
values differ appreciably, one should prefer 1*(1?, When after several cycles it appears
that A+ js a good prediction for A**™, one should prefer A®*+1 without fm'ther
iterations. A criterion could for example be 0,54 < Jir+D ] 5]%m,

Since the routine is to enclose the root of any of the expregsions (%.3.1), (9.3.3) or
(9.3.4), in subprogram MIN, the employed initial value is automatically reduced. The
default value for this reduction is 4, = §. Assuming A*®+1 = 1*®, this reduction -
gives

%—A‘(') < lt(u+1) < %x&(u) < ut(l+1) < _g_l*(ll)

(947

thus producing intervals symmetric about the assumed new optimal value and a
value twice as large. . -

9.4.3 Information on curvature

Second derjvatives can be used to obtain information on the curvature of the direc-
tion of search on the fitting surface at the initial point (Section 2.8). Before proceeding
with the proper minimization routine, subprogram MIN starts with the determina-
tion of the geodesic curvature in the chosen direction of search,
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9.4.4 Example

Initial values for the step factor obtained by the prediction formula (9.4.7) can be
compared with optimal values obtained by the iteration process in subprogram MIN.
This is done in Table 9 for the condition function and data given in Appendix 2.2
and Appendix 2.3, example 1 and 2 respectively, by consequent use of the modified
Gauss-Newton algorithm. For each cycle the corresponding prediction value of the
step factor was also calculated. It is observed that in example 1 from cycle 4 on, there
exists a good agreement between both values. In example 2 the values deviate from
cycle 17 through 21. These are the fitting cycles where the partial cosines start to
approach zero as was illustrated in Fig. 31. In Table 9 the number of iterations to
obtain the subminimum in the cycles mentioned was determined for the ‘Regula Falsi’
and default accuracy options viz. p_ = p, = 0.1. The first subminimum is obtained
after 16 respectively 15 iterations, then the number of iterations is found to be 6 in
almost all cycles. In example 2 this number slightly increases in cycles where the
course of the partial cosines is irregular (Fig. 31).

The radius of geodesic curvature (x,)~*' is listed in Table 10 as absolute values
and values relative to /.5 in each initial point of a fitting cycle. Fast progress is made
in the cycles 18 through 22 where the radius of curvature is large and so the curvature
in the direction of search is small. For a plot of the decrease of § in subsequent fitting

Table 9. A comparison between predicted step factors obtained with formula (9.4.7) and optimal step
factors as obtained with the ‘Regula Falsi’ to determine the subminimum in subsequent fitting cycles
for example 1 (Appendix 2.2) and example 2 (Appendix 2.3} when applying Gauss-Newton. The
number of iteration steps in each cycle is also given.

Example 1 Example 2

Cycle Step factor Number Cycle Step factor Number Cycle Step factor Number

pre- iterated pre- iterated pre- iterated

dicted dicted dicted
1 0.0 0.0 0 1 0.0 0.0 ] 13 0.0332 0.0333 6
2 0.8334 1.0753 16 2 03354 12043 15 14 0039 0.0397 6
3 0.9302 04885 § 3 0.0104 0.0103 7 5 0.0483 0.0491 5
4 0.9950 1.0094 7 4 00116 00117 6 16 00632 0.0641 35
5 1.0606 09161 6 5 00129 00130 6 17  0.0893 0.0918 6
6 09787 1.0482 6 6 0014 00144 6 18  0.1498 0.1615 7
7 1.0686 1.0652 6 7 00159 00160 6 19 03930 05458 8
8 00177 00177 6 20 03765 0.7294 6
g 00197 00197 6 21 0.5643 1.326%9 7
16 0.0221 0.0221 6 22 09255 1.039% 6
11 00249 00250 6 23 0959 09308 6
12 00285 0.0286 6 24 1.0278 1.0309 6
25 11436 1.1416 6

112




Table 10. Vahues of quantities at the initial point of each fitting cycle for example 2, see Appendix 2.3,

Fitting =~ S Total M ]| Radins of geodesic
cycle cosine curvature in direction d
" absolute relative to
vSs
1 976.4 9967 2966 6.1 27.39 0.88
2 327.2 9808 2400 584 0.41 0.02
3 323.9 . 9825 2267 523 045 0.03
4 3203 9843 2133 46.6 0.50 0.03
5 3163 .9862 2000 41.6 0.56 0.03
6 3118 9882 1869 37.0 0.62 0.04
7 307.0 9902 1742 128 0.69 0.04 -
8 301.6 9922 1617 29.0 0.78 0.04
9 295.7 9940 1445 25.6 0.88 0.08
10 289.3 9956 1376 24 1.01 0.06
11 282.1 9970 1261 19.5 1.17 C 007
12 274.0 9980 1148 16.8 1.40 0.08
13 264.9 9986 1037 14.3 1.72 0.11
14 2544 .9988 927 11.9 2.20 0.14
15 241.9 9986 818 9.4 3.03 0.19
16 226.4 5979 707 6.9 467 0.31
17 205.6 9966 592 4.1 9.14 0.64
18 1729 9944 464 21 25.54 1.4
19 87.5 9869 273 42 16.33 1.74
20 38.1 9751 162 0.9 29.69 481
21 49 7926 78.5 0.12 31.21 < 1408
22 1.8 0338 071 0.048 0.34 025 :
23 18 0028 0.13 0.0027 3.90 2.88 :
24 1.8 0002 0.0026 0.0005 0.12 0.08
25 18 L0000 0.0007 0.0000 - C -

cycles see Fig. 25, It is observed that the steep decrease of sum of squares S from cycle

1 to cycle 2, occurs in an approximately linear direction of search with radius of o

curvature equal to 27.39 (Table 10).

9.5 Subprogram MIN
9.5.1 Finding the optimal step factor

Subprogram MIN starts with setting to zero the indices IREQN and IREQP that
save the state of the measure of slope T relative to the stopping criteria ¢._ and £,
(Fig. 40). An index I'TO for the choice of the route through the program is set to 1.
The first caloulation of T is for 4 = 0. A starting value A® can be declared in the
main program NLV, the default value being 0.001. For reasons explained in Section -
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[ IREQN = IREGP =o_|

Choose least value
of 5{A)out of thoss
calculated in this

cycle, Define tha val
of the argument as X

)

IRECQN =1

IREQP »1

ho

20

[A:A““’I

| return ta calling program |

20 <0

T.>t- >y—“—>| IREQN =1 ]

A w)\_~R tT.I%.*:_l_:

+ -

na

ITO =4

yes

A=A, -ReTpte=h-

+ -

e
yes

!
{ 1REON-1 ATREGPA HYT2o] hefo(Aph.) [—n| 1TO-3H]
no

< (IREQN=1VIREGQPa1)AR=] ﬂ/\_yes

no

I ITO-4I—
i ITO=2 I—

—i ITOx

Fig. 40. Flowchart for main staternents in subprogram MIN to find the subminimum of the response
in the direction of search s,
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. 9.4.2 a reduction is employed taking A = 4,1'® as the first step factor.
The iteration process consists of the following procedures (Fig. 40).

Ist procedure With a given arbitrary correction vector s the sum of squares S and-‘
the desired measure of slope T to the (4, S(4))-curve at A = 0 is caiculated. If T hap-

pens to be positive, the sign.of ¢ is changed. Next, § is evaluated at A = 1 A®,
2nd procedure The step factor is doubled until a point is encountered where the
slope is positive.

R#1

3rd pracedure The chord between the two points (A_, T_)and (4., T,) last found is
used to approximate the root of §°(A) = 0, until both the last found negative value
7_ and the last found positive value 7", meet the required stopping criteria ¢_ and 7,
at 1% and X, respectively.

4th procedure The mean value of 1. and A}, is employed as a possible value for A%,
with which the last iteration step is performed.

R = 1, ‘Regula Falsi’

3rd procedure The chord between the two points (A, ) and (4, T',) last found ‘

is used to approximate the root of $'(1) = 0, until either the last found negative value
T_ or the last found positive value T, meets the required stopping criteria #_ and ¢,
at A~ and 1}, respectively.

4th procedure One further iteration is carried out, producing a possible value for 1*.

R#1,R=1
5th procedure The value of A which gives the least value for the response out of

those calculated during the entire iteration process is finaflly employed as optimal -

step factor A*. The value 1 = 1* is saved by means of the COMMON statements.
9.5.2 Treatment of bounded parameters

‘When doubling parameter values during the first stages of the iteration process to
find the subminimum, predefined boundary values may be violated. In subprogram

MIN this is detected by a separate routine. When boundary values are exceeded the

routine iterates backwards in the direction of search to find a parameter vector whose

terminal point is close to the boundary but inside the feasible region. The violating-

parameter is kept constant in further cycles, reducing the number of to be fitted param-
eters to p — 1, thea grouping of parameters according to Section 8.2 automatically
takes place.

When no boundary values are defined in the main program deck, this routine is

bypassed.
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9.5.3 One-dimensional nonlinear search

Subprogram MIN is suitable for linear and strict parameter functions.The correc-
tions to parameter values can be obtained by adding the components of the vector
of direction of search to the corresponding components of the parameter vector. In
FORTRAN statements

DO 12 K=],NP $ IPK=IP(K)
12 B(IPK)=A(IPK)+EPS*CRCTN(K)

The direction of search is stored in CRCTN, and the step factor A in EPS.

In nonlinear search formulas for the direction of search have to be derived by dif-
ferentiating the parameter function with respect to the step factor as algorithm param-
¢ter, see (2.5.15). This is done in the subprograms BACK and LIHYPEX for the
special methods developed in Chapter 6 and Chapter 10. In these subprograms the
direction of the nonlinear search is calculated and stored in CORR, the parameter
values are calculated and stored in B, both being subscripted variables that occur in
COMMON. Control then bypasses the above mentioned DO-loop in subprogram
MIN. CORR is assigned to CRCTN by means of the SUBROUTINE MIN argu-
ment, for further use in the subprogram. ‘
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10 Convergence of parameter values by extfapolation

10.1 General

Extrapolation of intermediate results can be employed at various stages of the
fitting process. In these cases it is often the response surface or a response subsurface
that is described by means of lower degreec polynomials. Examples are the minimiza-
tion in a direction of search by means of an approximating parabola and the approxi-
mation of the response surface by quadratic functions to assess the Hessian (Spend-
ley, 196%; Murray, 1972b).

However, these techniques can also be used to simulate the convergence of param-
eter values. In many cases the path produced by the relationship between j and
6, j = 1(1)n, shows only little curvature. Still, linear extrapolation of the terminal
points of parameter vectors obtained in preceding fitting cycles is not satisfactory,

]

because in nonlinear optimization final values for each parameter separately will .

generally not be obtained with the same step factor. So other functions must be tried.
Values of 8¢, j = 1(1)n, can be plotted against the cycle number j or versus the
cumulated values of A*Y, giving ordered pairs

J
G.BED)  amd GO, 60)
im1 .
In the first case parameter values in subsequent cycles are equidistant for j = 1{1)n,
in the second case their location is assumed to depend on the step factor.
The constants ocourring in the parameter function to be used for extrapolation have
to be solved from results of previous fitting cycles. Although such constants have to

be determined for each condition function parameter separately they are not sub- -

scripted in this chapter, leaving it understood that they are collected in arrays ranging
1(1)p.

For convenience sake we define in this chapter the following auxiliary quantities, -

omitting the subscript £ for an arbitrary component of @
i
0, 1= %@ — g, FIREDY A Aji= A — A (10.1.1)
=1 . E

In Sections 10.3 and 10.4 it is required that .
g#(l) < 9#(2) s 9:&(3) or 91:(1) = 01:(2) = 9:;(3) (10.1.2)

andA,; 20,  j=1(Dn.
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10.2 Fourth degree exirapolation

Simulation of convergence with a fourth degree polynomial was based on five
equidistant fitting cycle numbers. After rescaling the parameter function becomes
with 1 = —4(1)0

) =a+b2+D+c2+D3+d2+ D3+ e2+ 1)*
where the solution for the constants is given by

0 0 24 0 0] [6*D

2 -—16 0 16 -2| |8**®
-1 16 =30 16 -—1{ |6**

-2 4 0 -4 2| |0*®
1 -4 6 —4 1 |6*®

1
2

& o o6
B

The direction of search in the parameter space for an arbitrary component of s is
given by

s(A) = i‘g—“ =b+2e2 + A) + 3dQ2 + 1 + 442 + i)°

producing a nonlinear direction of search, The optimization of A can be achieved with
subprogram MIN, see Section 9.5.3. A trivial starting value is the equidistant unit
A =1, which produces a prediction for 0*¢%,

10.3 Hyperbolic extrapolation

In hyperbolic simulation (Fig. 41) it is assumed that 8* tends toward 0* by means
of a hyperbolic relationship. The general formula for each parameter then reads

>0

c<Q

- S U

t
i
oI
/ ! ] Fig. 41. Schematic illustration of using three inter-
! ! mediate fitting results for hyperbolic extrapolation
‘:—I Ay A, 3 A based on parameter values and cumulative step
i factors.
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&4 =

+ a, b<11
b .

where a is an approximation to 6*. The three constants are solved from three not

necessarily equidistant points. Simulation of convergence then is based on the points
(Ay, 6°),  (1,6%®)  and (4, 6" (103.0

The first step to the solution of the constants is to eliminate a by taking the dsﬂ‘erencu
0, and 6,,. The next step is solving these differences for ¢. Equating gives '

Az 03243 — 23,0,,4, .
3-21332 - Aszﬂn )

b=

80
-0 . -
¢ =20, ~ b) (4, - b) ;
432 :

and

a=0"® . _°
ls""b

Finally we use, relative to the point last mentioned in (10.3.1)

<

W =at+ ——y  A20 (1032)

A4y + 4) -

with initial step factor 4 = A5 when entering subprogram MIN for the optimization

of A. Terminal points are H0) — 6** and 6(c0) = 4. The direction of search in the
parameter space is for an arbitrary component of s given by
déd) - -

di (A + Ay ~ b)Y

(A =

which gives a nonlinear direction of search. The solution is restricted by a numbef -

of conditions that have to be checked for each parameter separately. Reference i u
made to (10.1.1) and (10.1.2).

The algorithm parameter 4 is valid for the entire vector & and so conditions on 41
hold for all k. We observe that there is no solution if A5, = 0. On the other hand if ,,

=0thesoluﬁonreadsb=).1,whichinsertedinthsequationforcgivesc=0m9.’ .

the hyperbola degenerates into its asymptotes. In this case extrapolation is to be
employed by

a=2%_¢*®  p =m0, =85l (103.3)
to be inserted in (10.3.2). Terminal points of search in this case are 8(0) = 0%

and &) = 8% + 8,,. All other cases have the property 4, < 4; < 4;.
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If for a condition function parameter it is found that £5, = 0, the solution is
b = A, and ¢ = 0 and so 8{1) = 6** for any choice of A in (10.3.2). Finally if #,, —=
0 the solution given by (10.3.3) can be used. The particular parameter for which this
solution holds is extrapolated linearly.

The conditions can be summarized with

1821/421] > 1032/ 23;l (10.3.4)

which can easily be interpreted geometrically. It covers the situations ¢ > 0 and
¢ < 0 (Fig. 41).

10.4 Exponential extrapolation

In exponential simulation (Fig. 42) it is assumed that 8*” tends toward 6* by
means of an exponential relationship. The general formula for each parameter reads

() = ce_bl +a

where the constants are solved from a set of points according to (10.3.1). The first
steps are analogous to those described in the former section. Then we arrive at a
nonlinear equation for 5 which reads

Biz - 1 —exp(—bi;,)
6,, exp (bdyy) — 1

This can be written, introducing the auxiliary variables ¢,(,} and #,(b;) requiring
t]_ =t2f0rb1 =bzand.bl 5"—'0

m*
g

[
g+ ---—7 i c<a
AR
e . L .
/ b : Fig. 42, Schematic illustration of using three
?It ;'\ i X intermediate fitting results for exponential ex~
/ 1 fp Ay trapolation based on parameter values and
cumulative step factors.
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) i di - - T
ti(by) = ﬂsz(eb‘ H_, 2 |by=0 = X210, B 104.1) -
1 ' .
—b,A dt ‘
tib)) =01 —e "3, = As20 : 10.4.2
2{b2) 21( € ) db, b, =0 32V { _)

which are monotone fuhctions because of the conditions laid down in Section 10.1. .

In (10.4.1) we have ¢,(0) = 0, 1,{c0) = o0; in (10.4.2) this is £,(0) = 0, £,{c0) = 0,,.
The condition for a solution thus is 4,,03, < A320;,. The iteration procedure starts

is solved for b, and the solution is put equal to b; and so on. Elimination of ¢ gives
the iteration formula

In[8y; — 0, exp (—bjd;5;)] — In by, .

(104.3)
Ay

bl =
The first iteration step can conveniently be performed with b, = co. Back solution
of ¢ and a yicld

032

‘= Th b
e B M

and
4 =0 _ et

Parameter values relative to the point last mentioned in (10.3.1) now can be obtained
from

o) =a+ce 2tD 5y (10.4.4)

with initial step factor A = 1, when entering subprogram MIN for the optimization
of A. Terminal points are 8(0) = 6*® and &(c0) = a. The direction of search in the
parameter space is for an arbitrary component of s given by

giving a nonlinear direction of search,
This solution also is restricted by a number of conditions, analogous to those for

produces b — oo and the solution preferred under this condition reads

to be inserted in (10.4.4). Terminal points of search are in this case 6(0) = ™ and

12t

with the calculation of ¢, for a given value of b, ; equating f; = ¢#; the equation (10.4.1)

.L hyperbolic extrapolation. Again we have no solution if 1, = 0. Further, 4;; =0 |

=209 _ gD po cm gy (1045)



Hco) = 0% 4 f,,. For decreasing values of 8 slopes in (10.4.1) and (10.4.2) are
negative. The condition for a solution then is 45,83, = A3,0,;.

If for a condition function parameter it is found that #;; = 0 the solution for any
choice of 4 in (10.4.4) gives 8(1) = 8*®. Finally §,, = 0 requires a solution by (10.4.
5). The particular parameter for which this solution holds is extrapolated linearly.

The conditions can be summarized with (10.3.4) covering the situations ¢ > 0 and
¢ < 0 (Fig. 42).

10.5 Program options

The extrapolation procedures are programmed in subprogram LIHYPEX. Specific
options are governed by the appropriate arguments of the subroutine and the calling
programs. The statement reads

SUBROUTINE LIHYPEX(LHE,NI1,N2,N3,NCRIT,LIST)

where the following choices can be made

LHE = 1, fourth degree polynomial extrapolation.

= 2, hyperbolic extrapoliation.
= 3, exponential extrapolation.

N1,N2,N3, fitting cycle numbers that define the intermediate optimal points to be
used. If LHE = 1 five equidistant points are chosen, the first and second being
given by N1 and N2,

NCRIT, critical number of significant figures to predetermine the required accuracy

' of the iteration process in (10.4.3). A suitable value is NCRIT=3. The
number of iterations for each parameter is confined by a default value
25 defined in the subroutine.
LIST = 1, a list of intermediate results will be produced.
= {0, listing is suppressed.

In subprogram LIHYPEX it is tested whether the number of cycles is sufficiently
[arge to perform the extrapolation with the points required by N1, N2 and N3. The
subprogram can be called by a modification of the main program NLV and then is
automatically called by subprogram MIN. In the last case the statement reads CALL
LIHYPEX (LPX + 10,0,0,0,0,0) and it is used to jump to the calculation of
8(2) and s(1) only, for optimizing 1. In subprogram MIN the DO-loop that calculates
parameter values & is bypassed, as explained in Section 9.5.3.

10.6 Example
For the condition function and data given in Appendix 2.3 exponential extrapo-
lation was applied. Intermediate parameter vectors chosen to be used for extrapolation

were 0%, g*@® and #*®) gbtained with the modified Gauss-Newton algorithm.
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Fig. 43. Decrease of sum of squares for the
problem in Appendix 2.3 according to two
algorithms, 1 modified Gauss-Newton; 2 modi- -
fied Gauss-Newton with exponential extra-- °
polation of parameter values obtained in the -
mmberoﬂittlng cy:lc 2nd, 4th and 6th cycle. See also Figs. 19 and 25.

For each parameter, exponential approximation was applied. The optimization of the -
algorithm parameter A gives a decrease of the sum of squares from 311.8 to. 40.3 in :
the 6th fitting cycle which is illustrated in Fig. 43. The modified Gauss-Newton algo- .
rithm needs 19 further cycles, but after exponential extrapolation only 7 further cycles

were needed.

Table 11. Parameter values obtained in the fitting cycles mentioned. In the
upper part for the modified Gauss-Newton algorithm, in the lower part after
in the 6th cycle exponential extrapolation was employed based on intermediate
results in cycles 2, 4 and 6. For condition function and data see Appendix 2.3.

Fitting A Parameters in condition function
';”ck D A B c
Gauss-Newton
1 0.0 38.40 1.3100 0.2746 3.489
2 1.204 3794 0.8067 0.2117 10.772
4 1.226 38.10 0.8187 0.2365 9.570
6 1.254 38.31 0.8345 02674 8.385
10 38.93 0.8847 0.3529 6.167
15 40.31 1.0508 0.5392 .72
20 37.81 22101 0.6662 2.117
25 3.3 21277 0.5474 3.047
Gauss-Newton and exponential
1 0.0 3340 1.3100 0.2746 3489
2 1.204 37.94 0.8067 02117 10.772
4 1.226 38.10 0.8187 0.2365 9.570
6 1.254 38 0.8345 0.2674 8.385
6* 1.702 4042 1.2617 0.6144 4468
10 38.2 2.1315 0.5500 2.952
13 38.3 212717 0.5474 3.047
* Exponential extrapolation.
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Table 12, Values of constants for exponential extrapolation.

See Table 11.

Condition Exponential extrapolation constants
function

parameter a b c

D 44.145 1.0 -20.447

A 2.018 1.0 - 4,147

B 0.925 1.675 531

C 4413 9.537 0.619 x 10°

The solutions converge to the same parameter values, but it is as if a number of
intermediate results is skipped when using extrapolation. A summary of results is
given in Table 11. The upper part of the table gives a sequence of results obtained
with the modified Gauss-Newton algorithm. The lower part gives the resuits obtained
with. this algorithm, with in the 6th cycle application of exponential extrapolation.

In Table 12 the constants used in exponential extrapolation are given for the param-
eters of the condition function.
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11.1 General

In parameter optimization the path on the fitting surface along which convergence
is achieved depends on

— the choice of the initial value of the condition function parameters,
— the algorithm applied,
— the strategy on step length. ‘

Appropriate choices can be made by the user of an optimization program, but by
this no conditions are set to the path of search to be followed. It might be of interest
to the research worker, however, to know that the minimum response was reached
without heavy oscillation of the intermediate solutions in undesirable directions
(see Section 1.1). .

In this chapter a method is developed that gives a controlled approach to §*
starting at 6 by gradually increasing the distance to the fitting surface from zero to
the value at the terminal point of the observation vector. Although the procedure does

not give an acceleration of the convergence process, the advantage is found in that
it reduces the relative curvature of the fitting surface and the parametric curves (Sec- -
tion 2.8) and produces on the fitting surface a locus of points that are closest to the

terminal points of intermediate observation vectors.

11.2 Procedure

11.2.1 Reduction of the original difference vector

Starting from the initial approximation 6‘® intermediate observation vectors x® .
. i

can be found with
¥ = f(6®)

PO IPRIE (k) I Blx ~ x(i-l))

! J i = I{I)N, N<w

ﬂ—N+1—i
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OBSERVATION SPACE EV

Fig. 44, Schematic illustration of methods
of controlled approach by intermediate ob-
servation vectors whose terminal points des-
cribe loci in the observation space. 1 locus
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observation,
vectors X

position
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£(F%ex® o when using the original difference vector
? A { e Jo(@®) only; 2 locus when using subsequent
u ~—-—---""} y difference vectors fo(g*"), i =1(1)N; 3 when
= oo ; 2‘ - : - e using fo(@") to start a new procedure 2 to
1

proceed from N, in again N steps for better
control.

——
_— e
o

fitting surtace

when an approach to x = x™ in N steps is employed. The locus of the terminal points
of x® is illustrated in Fig. 44 by line 1. In this linear case the locus is the original
difference vector f,(6'®") = x — f{8*®). For the construction of these vectors x* no
further points on the fitting surface are needed.

Intermediate observation vectors are obtained by adding to the position vector
at 8?0’ the original difference vector reduced with a factor B. The orthogonal projec-
tion of their terminal points on the fitting surface are determined, giving controlled
approach to 8*.

11.2.2 Reduction of sequentiul difference vectors

The procedure can be repeated when as a result of fitting on x¢*? the optimal param-
eter has be found, now using 8% as the starting point for a new difference vector.
This results in a slower progress to the terminal point of the observation vector x in
the first stages (curve 2 in Fig. 44). Intermediate observation vectors in this case are
obtained by

X = f@

¥ =0V + Blx — £(6Y7 )] (11.2.2)
1 C_
by TION, N<w (11.2.3)

where 89~ can be chosen to denote §*!~12, If the fitting surface is approximated by
& straight line (Fig. 44), the terminal points of the intermediate observation vectors
are obtained by the intersection of lines, expressed in a (w,v)-reference system,

u=N-—-1i

and
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N+l—i

where 5% = S(9*) and i — 1(1)N. Elimination of { yields

ou+1)=>

Thus the locus of the terminal points of x® is a hyperbola with asymptotes u = ~1
and » = 0. Also here the orthogonal projection of the terminal points on the fitting
surface gives controlled approach to 8%.

11.3 Application

Since each step in the controlled approach method is subject to a fitting procedure -
to find the next value of 0, available optimization algorithms can be used. To obtain -
the intermediate results weaker stopping criteria than the default values (Section 13.4)
could be employed. On the other hand, to ensure that the path on the fitting surface :
really is controlled, criteria that are too weak are in contradiction with the purpose
of the method. The disadvantage of a relatively strong stopping criterion in the deter-
mination of intermediate resulis is partly compensated by increasing the number of
steps on the fitting surface. For the chosen example the number of éycles in each step
was found to decrease slightly in these situations {Section 11.4), .

The factor # in (11.2.1) and (11.2.2) is defined such that the original observation -
vector x is reached in a predefined finite number of steps N. If required, from a cer-
tain step N, on progress to this vector can be done in more steps by replacing the
original difference vector by f,(@%+).

Such an approach is indicated in Fig. 44, curve 3, where at step N, the value of i in
(11.2.3)is set to 1 again. '
The method and its modifications are part of subprogram TRACK.

11.4 Example

For condition function, data and starting values mentioned in Appendix 2.2, con-,
trolled approach was applied using the method developed in Section 11.2.1. For:
each parameter separately the results are plotted in Fig. 45. The numbers refer to the
the number of steps that the original difference vector f, was divided in. For N=1

the full difference vector was used, the total number of fitting cycles using modified . |

Gauss-Newton being 7. Then the value N = 4 was applied. The number of fitting
cycles for each step then was 5, 4, 4 and 5 respectively. In each step the deviations
from the ultimate trend are damped. For N = 10 only the terminal points 8 per
step are given. For N = 50 these points constitute the heavily drawn curve. In the -
latter case 3 fitting cycles per step were needed. ‘
Although the intermediate parameter values, especially of the first and the last
parameter, in controlled approach show the influence of the curvature of the para-
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metric curves, a cross section through the fitting surface gives no indication that this
surface is curved along the path used in this controlled approach. This is illustrated in
Fig. 46 that gives the calculated distance of the fitting surface to the intermedisate
points of the original difference vector for N = 50. _

To gain a better insight a schematic view is given (Fig. 47) of parametric curves on

v
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points on fitting surface
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Fig. 46, Cross section through the fitting
surface (heavy dots) obtained by plotting
calculated distances from the original dif-
ference vector fo(0¢") to the fitting surface,
when applying equation (11.2.1) with N ==

. 50 to condition function and data of Ap-
pendix 2,2, See also Fig. 45.

FITTING tS(.IRFACE
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Fig. 47. Path of controlled approach on the fitting surface from 9§’ to §®, for two parameters, passing
calculated intermediate parameter values as obtained by equation (11.2.1) with N = 50, for condition
function and data of Appendix 2.2. Hypothetical parametric curves that could have produced these

results are drawn. See also Figs. 45 and 46,
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the fitting surface that could produce results analogous to those depicted in Figures
45 and 46, For two parameters the path from 6? to 8 is given when passing the param-
eter values that form the intermediate results for N = 350 in controlled approach.
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12 Application

12.1 Testing the formulas for first and second derivatives

Formulas for first and second derivatives can be tested for programming errors by
a comparison of calculated function values and results empirically obtained (Murray,
1972d). In order to test all derivatives the parameter index cards (Section 8.3.1) are
arranged such that NPART = MPAR. The comparison proposed is valid in the
neighbourhood of the solution. This can be simulated by using a vector of calculated
function values, obtained with the initial parameter values, as new observation vector.
To this purpose calculated values are rounded to numbers with five significant figures.

First derivatives can be tested with the aid of the (4, S(4))-relationship. The slope
to the curve at @V(1) being given by (9.3.1), which with differential corrections reads,
see (2.4.13) and (2.4.9)

S’ = =2060@ITEVD) NI, S VARY)

where vectors and matrices without argument are to be evaluated at 9°’ and where
01 = 9O 4 1gO

In this expression the first derivatives occur evaluated at two points on the fitting sur-
face. Approximation to the slope is obtained by means of central differences at A, given
by

S‘(A‘) a~ S(Al-i' 1) - S(li— 1)
)'i+1 - '1(—1

where in this case, according to the program option, 4., — 4, = 4, — J;_;. Values
obtained this way can be compared with those caleulated with (12.1.1), They are printed
on the same line in the output list by appropriate statements in subprogram MIN,

Second derivatives can be tested by means of the optimal step factor and the weights
obtained with scale factors. The optimal step factor is found empirically in each
fitting cycle in subprogram MIN and printed in a summary of the entire fitting pro-
cess by subprogram LISTING. On the same line of the output list, values calculated -
with (9.4.7) are mentioned. In this last mentioned equation use of second derivatives
is essential. Empirically and analytically determined values can be compared as done
in Table 9.

Comparison can also be made for the course of the scale factors determined with
formulas for differentials (Section 5.3) and for differences (Section 5.4). The first
method requires the use of the matrix M, ,, defined in (2.5.10), which is compiled of .
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" second derivatives, the seobﬁd method uses first derivatives only. Comparison is peru ‘

formed best with results obtained in the second cycle.

12.2 Default algorithm

The default deck structure of the main program NLYV, given in Appendix 1.2, pro-
duces the Gauss-Newton aigorithm with step factor optimization. Under control of
defanlt options the output contains the following main items

— Numerical analysis of the convergence process in which is involved the calculation.
of the partial cosines; the total cosine; the length of the vector of differential correc-
tions and the length of the normal vector for the first NPART and the first NPAR

permuted parameters.

- Numerical analysis of the fitting procedure by means of a list of intermediate and ',

final results for parameter values; optimal values of the step factor; reduction of the

sum of squares to the fitting surface; course of the sum of squares to the tangent.

plane; course of the multiple cosine and the multiple correfation.
— Numetical information on scale factors.

— Test on normality of the distribution of residuals {Fisher, 1958) and a 959, confi-

dence interval about the empirical frequency distribution of the residuals according
to the Kolmogorov-Smirnov statistic (Siegel, 1956).

- Determination of a linearized 95%, confidence interval in the tangent plane about
the final parameter values.

The default deck can be modified to be suitable for various algorithms and proce-

dures developed in earlier chapters.
12.3 Seclective nse of main ptogram NLV

In Table 13 useful mod:ﬁcatlons are collected. Arguments of the subroutine sub-
programs are omitted unless their use is needed to perform a specific routine. In that

case adequate values are listed in the arguments by replacement statements, it being -

understood that the right-hand side of the replacement statement has to be inserted
only. Details on arguments are given in Chapter 13.
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13 Description

13.1 Function subprograms

In this section subroutine subprograms that need updating for every new function
to be optimized are briefly commented.

SUBROQUTINE INITL

This subroutine initializes values of variables to produce a correct first fitting cycle.
Summation fields are set zero, devisors are set 1.

ENTRY DEFAULT Algorithm and process parameters are defined in this entry.
The user can redefine the default values in the main program NLYV, preferably after
the CALL DEFAULT statement.

ENTRY HEADING This entry produces a list of default values and values actually
used, a list of initial parameter values and bounds to parameters if any. Appropriate
values have to be defined in the main program NLV.

*COMDECK XINITL Update deck for specific headings, commments and legends
to formulas and symbols to be used.

SUBROUTINE READ (IREADD, IWRITED, LAST1)

IREADD index to read data.
= 0 specific read statements bypassed.
= 0 data to be read in specific routine.
IWRITED index to write data.
= ( output list of data is not produced.
# 0 output list of data will be produced.
LAST1 number of data to be listed if IWRITED 3 0,
=1,=2,...,= NDATA.
Last data is listed for any value of LAST1 =< NDATA.

*COMDECK RDDATA Update deck for specific statements to read data.
*COMDECK WTDATA Update deck for specific statements to write data.

Observations are stored in the matrix X and the vector YOBS. Working field for
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observed function values X(I,1) = YOBS(I). If IREADD > 0 the specific routine.
to read and to count data is performed. Two lists of initial parameter values are pro-
duced. The first in the original order of occurrence, the second according to permuta-
tion and grouping as: to be fitted, informative or constants,

ENTRY NEWZER( Arguments are transformed into the following variables.

PROC correction in %, of the value of the parameter to define step length in alternat-
ing directions according to the parameters.

IREPTI number of times to repeat the procedure for each parameter to be fitted.

IREPT2 number of times the entire procedure is to be repeated.

An alternating direction method (univariate direct search) isapplied. To each param-
eter separately a step length is added as well as subtracted. If the central value has
not the lowest sum of squares the procedure is extended for at most IREPT1 times
in the direction of the lowest sum of squares. For all parameters the entire procedure
is repeated IREPT2 times unless all parameters in order of search have their lowest
sum of squares at the central value of the last three investigated values.

SUBROUTINE FNCTN (C,LSTC,5Q,LSTSQ,ISTOP,YCLC,YOC,LISTY,LAST1)

C parameter values for which the condition function is to be evaluated
LSTC index to list values of C.
= 0 no list is produced.
# 0 output list will be produced if INK3=3.
SQ sum of squares.
LSTSQ index to list observed function values, calculated function values, differences
between them and SQ.
= 0 no list is produced.
= 0 output list will be produced if INK3=3,
ISTOP index to return to calling program after function has been evaluated.
= 1 instant return takes place. '
# 1 no instant return, calculation of multiple cosine and multiple correlation be-
tween X(I,1) and YCLC(]) is performed.
YCLC calculated function values.
YOC differences between observed and calculated function values.
LISTY index to list specific output, output to be programmed by the user.
= 0 no list is produced.
> 0 output list will be produced.
LAST! see SUBROUTINE READ.

* COMDECK NFNCTN Update deck for specific statements for function evalua-
tion.
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*COMDECK WFNCTN - Update deck for specific output list of function values.

Function values calculated with the parameter vector C(K) are stored in YCLC(I).
Differences between X(I,1) and YCLC() are stored in YOC(I) and their sum of
squares in SQ. Informative resuits are the multiple cosine and the multiple correlation
between the vectors X(I,[) and YCLC(I), which are stored in respectively XCRLMT
and XCOSMT in COMMON. The sum of the YOC(I) values is calculated and printed
unless LSTSQ < 0.

SUBROUTINE DFDA (C,H,YCLC,YOC,LSTH,LSTFA,LASTI)

C parameter values for which the first derivatives are to be evaluated.
H scale factors.
YCLC calculated function values,
YOC differences between observed and calculated function values to be stored in
FA(LMT).
LSTH index to produce output list of scale factors.
= 0 no list is produced.
> 0 output list will be produced if INK7=3.
LSTFA index to produce output list of evaluated first derivatives.
= 0 no list is produced.
# 0 output list will be produced if INK7=3,
LASTI See SUBROUTINE READ.

*COMDECK NDFDA Update deck for specific statements for first derivative
evaluation.

First derivatives evaluated with the parameter vector C(K) are stored in the matrix
FA(LK). The difference vector YOC(I} is stored in FA(I,MT). The square of the
length of the derivative vectors are stored in FA2(K), the sum of squares in FA2(MT).
Scale factor values are returned via the argument variable H(K), the square root of
the sum of squares via HONT).

ENTRY ORDER The last argument is only used in a specific case.

LAST1 if first derivatives are programmed in SUBROUTINE FNCTN define
LASTI=99999

The first NPAR permuted parameters are ordered according decreasing partial
cosines. Those parameters for which the absolute value of this cosine is greater than
the mean of the absolute values for K=1,NPAR are selected as NPART to be fitted
parameters.
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SUBROUTINE D2FbA(C,SQ,H,YCLC,YOC,LSTD2,LASTl) ‘

LSTD?2 index to produce output list of evaluated second derivatives (first 9 permuted, .
parameters at most).
= 0 no list is produced.
> 0 an outpaut list will be produced if INK7=3.

Other variables have already been defined.

*COMDECK ND2FDA Update deck for specific statements for second denvattve
evaluation.

Second derivatives evaluated with the parameter vector C(K) are stored in the
matrix FAA. The square of the length of the derivative vectors are stored in FAA2(K).
Scalar products that are elements of the matrix M, , are stored in the matrix FAFAA"
(K,L), those of the matrix N,; in FOFAA(K,L).

13.2 Gradient subprograms

In this section subroutine subprograms that need no updating for new functions to
be optimized are briefly commented.

SUBROUTINE NRMEQ(YOC,CNORM,LSTNM,ISTOP,H,LSTEQ,KCOS,M02)

YOC see SUBROUTINE FNCTN.
CNORM normal.
LSTNM index to produce output list of the normal.
= { no list is produced.
# 0 ountput list will be produced if INK7=3.
ISTOP index for calculation of the normal and sum of squares only.
# 0 no further calculations are performed. .
= 0 execution proceeds.
H scale factors,
LSTEQ index to produce output list of normal equations.
= 0 no list is produced.
# 0 output list will be produced if INK7=3.
KCOS index to calculate the cosine matrix out of the normal equations and the
normal.
= 0 no cosines are calculated
# 0 cosines will be calculated and printed for first and last cycle only if LSUMRY -
=1,
M02 index to use the second derivatives of the condmon function to obtain the .
Hessian G = 2(M — N,;).
= 0 no use is made of N,,
# 0 use is made of N, unless no second derivatives are available.
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Normal equations are calculated for the first NPAR permuted parameters. From
these equations the cosine matrix of the cosines of the angles between FA(IK) and
FA(LL) is calculated and the vector of the partial cosines of the angles between
FA(IL,MT) and FA(LK).

SUBROUTINE SOLVE(C,SOLN,NP)

C parameter values for which the normal equations are to be compiled.

SOLN solution of differential corrections for NP parameters.

NP first NP permuted parameters for which the solution of the normal equations is
stored in SOLN(NP).

Normal equations are solved by means of the Choleski-algorithm, Partial solutions
for 1, 1(1)2,..., 1(1)NPAR parameters according to their permutation and grouping
are stored in the upper triangle of the matrix M. The inverse matrix M~! {diagonal
and upper triangle) is stored in the lower triangle of the extended matrix M. For the
first and last cycle the cosine matrix of M~ is calculated and printed if LSUMRY
# 0. The standard deviation of the estimates of the parameters are stored in
STDEV(K).

SUBROUTINE HOWA

This subroutine subprogram investigates how the situation of the fitting procedure
is at the initial point A for each new cycle. Numerical results are collected, checked
and printed in the first and last cycle. A summary of solutions of the normal equations
is produced. Informative results on the relative rate of change of scale factors and the
curvature are printed. The stopping criterion is tested. The test is performed on
basis of a cosine criterion COSCRIT. The default value is 1000 which means that
cosines with three zeros after the decimal point fulfill the criterion. A scheme of the
complete test is given in Table 14, For NYS2=4Hbb** the fitting procedure is con-
sidered to be terminated and one more cycle is performed by defining NCYCLS=
NC+1 which leads to NOCLC=NCYCLS in the main program NLYV in the next
cycle.

Table 14. Variables that save the state of the cosine criterion. Initially four blanks (4Hbbbb) are
assigned to all no-yes variables. These are changed in the following cases.

Variable ' Cosine criterion fulfilled

no yves
Partial cosines for to be fitted parameters NYSI = 4Hbb** NYS2 = 4Hbb**
Partial cosines for informative parameters NOYES] = 4Hbb** NOYES2 = 4Hbb**
Total cosine for to be fitted parameters NYS3 = 4Hbb** NOYES3 = 4Hbb**
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ENTRY SUMRY This entry is called by main program NLV if NOCLC =
NCYCLS. This condition is fulfilled automatically if NYS2=4Hbb** (sec Table
14). A comprehensive summary of the numerical and statistical results will be pro-
duced (see Appendix 1.4.2).

ENTRY COMBIN This entry produces a combinatorial search. The minimum
value of the sum of squares after one cycle for (%) to (IFA%) parameters is
calculated. The parameter vector is automatically permuted and reduced to the size
of the best combination before the return to the main program takes place. Combina-
torial search can be performed for the first 14 permuted parameters at most. The -
parameter vector can be permuted and grouped in advance in main program NLV.

SUBROUTINE MIN(CRCTN,LETLIST,ITAN,START,STEP,ITIMES,LPX, )
JUMP)

CRCTN vector of direction of search defined in the calling program.
= CORR for arbitrary direction of search.
= DELTA for differential corrections.
= NORMA for steepest descent at A,

LETLIST index to produce output list. LETLIST options override INK3, INK7 and
INKS conditions
= 0 no list is produced.
= 1 list of iteration steps (EPS, SQ-relationship) will be produced.
= 2 list of initital and optimal parameter values will be produced.
= 3 complete output of the iteration process will be produced.

ITAN index to define type of tangent to be used. _
= 0 (LETLIST=0 is required). No iteration takes place but a table of the (EPS,
SQ)-relationship will be produced emanating from EPS=START, with step length
STEP and number of steps equal to ITIMES;
= 1 numerical tangent is used.
= 2 directional tangent is used.
= 3 cosine tangent is used.

START starting value if ITAN=0.

STEP step length if ITAN=0.

ITIMES total number of (iteration) steps that will be performed. At least 3 steps are
done if ITAN > 0. In the last case, however, the iteration stops before the defined
number is reached when the required accuracy conditions are fulfilled.

LPX index to define the use of subprogram LIHYPEX.

JUMP index to define a jump to a second branch of the (EPS,SQ)-relationship.
= { no jump takes place.
= 1 minimum of a second branch will be used.

Since the direction of search is completely defined when entering this subroutine
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the curvature in the direction of search is calculated here. The curvature in the direc-
tion of CRCTN is produced without determination of the minimum by taking
ITIMES=0. Then the list parameter LETLIST is effective with O or 1. The geodesic
curvature is stored in XGEOQ.

SUBROUTINE AISB

The statements to assign variables valid at B to variables valid at the initial point
A are collected in this subroutine subprogram. The replacement is for A=B, YCLCA
=YCLCB, YOCA=YOCB, HA=HB, ANORM=BNORM and SQA=8QB. In-
formation on the course of scale factors from A to B is produced if LSUMRY =2.

SUBROUTINE LISTING (INDALL)

INDALL index to reduce information to be listed.
= ( listing of partial cosines for each cycle.
= 50 listing of parameter values obtained in each cycle.
= 1 complete list of intermediate and final results obtained in each cycle.

Independent of the value of INDALL a summary of the iteration to a subminimum
in each cycle is given with respect to number of iterations, optimal step factor, sum
of squares with respect to the fitting surface and to the tangent plane and lengths of
NORMAL and DELTA vectors.

ENTRY PLOT For sequential functions a plot of the curve against time can be pro-
duced on the line printer. An upper (TOP) and lower (BOTTOM) function value have
to be defined in main program NLV.

ENTRY PUNCH. Final parameter values are punched or printed, controlled by
the argument INDALL,

INDALL=1 final parameter values are punched on punch cards and can be used as
input in further fitting cycles in main program NLV.
= 0 final parameter values are printed on the line printer in a convenient layout
suitable for instant punching on cards. These can be used as input in further fitting
cycles.

13.3 Particular subprograms

In this section subroutine subprograms that need no updating and for which load-
ing is optional are briefly commented.
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SUBROUTINE BLOCK(NBLOCK,NROTATE,NCYC,CCRIT)

NBLOCK index variable that governs the creation and use of permutation and
grouping of parameters in blocks.
= 1,..., = 5 sequential definition of at most 5 blocks. Further arguments equal to
zero. Default number of blocks NBLOCK =1. In this case the subroutine need not-
be called by main program NLV,
=  blocks are used in order of creation. Fitting procedures start with first BLOCK
defined.

NROTATE number of blocks that sequentially will be used. After block number
NROTATE has been used, the first block will be used again.

NCYC number of fitting cycles that the same block will at most be used.

CCRIT cosine criterion with respect to the total cosine. This criterion overrides the -
criterion COSCRIT when blocks are being used. It acts analogous to COSCRIT. i |
the criterion is fulfilled the next cycle starts with the next block, whether or not the
actual block in execution has already been used during NCYC cycles. If the crite~ - .
rion CCRIT is fulfilled for all blocks defined, execution terminates in a normal way
in NLV.

The subroutine subprogram furnishes possibilities to make sequential use of dif-
ferent parameter permutation and grouping. Independent of the values in the argu-
ment, the fitting process terminates in a normal way if for all MPAR parameters the
cogine criterion is fulfilled. A typical example of the use of blocks is two blocks with -
MPAR parameters among which some are bounded. If a parameter exceeds his bound
in a certain fitting cycle and has to be deleted from the parameter vector, the remaining
parameters may fulfill the cosine criterion. As oscillation of parameter values can
occur, execution of the fitting procedure with the second block will automatically
test whether the deleted parameter can be improved after all. In the affirmative the -
final result can be a fit for all MPAR parameters again.

SUBROUTINE BACK(NPZ,LISTZJACBZ,ICIRCZ,LAST1Z)

NPZ number of the first permuted parameters involved in this algorithm,
A suitable value is NPZ=NPART.
LISTZ index to produce output list.
= 0 no list i3 produced.
= 1, 2, 3 main results are printed and the value of LISTZ is assigned to LETLIST
for output from subprogram MIN,
2 5 main resulis are printed without output from subprogram MIN.
JACBZ index that controls the required metric.
= 0 tangent space, metric 1,
= 1 observation space, metric J7J.
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ICIRCZ index to define the type of algorithm preferred.
= 0 search according to two linear directions.
= 1 circular search.

LASTI1Z number of data to be produced in output list.

The subroutine subprogram is used to apply the back projection algorithm. Auxil-
iary vectors UDELT and VDELT are calculated. Optimization is for both step fac-
tor EPS1 = A and direction of search EPS2 = 2 cos ¢ or EPS2 = ¢.

ENTRY Bl, ENTRY B2 Used to perform two-dimensional circular search.
SUBROUTINE TRACK(NTYPENP,START,NSTEP,KTIMES,NAUT,LIST)

In this subroutine several procedures are collected that transform the observation
vector YOBS or that determine the curvature empirically. Procedures are defined by
the variable NTYPE.

NTYPE==1 subdivision of the vector YOBS minus YCLCA to perform controlled
approach.
= 2 subdivision of the vector YOBS minus YCLCB proceeding in the direction of
search to perform controlled approach.
= 3 reflection of the terminal point of YOBS in the tangent plane before the mini-
mum is determined.
= 4 reflection of the terminal point of YOBS in the terminal point 8,
= 5 empirical determination of curvature of the fitting surface along intermediate
fitting results by calculation of the distance perpendicuiar to the final tangent plane
at 0, and the distance perpendicular to the YOCA vector at 6.
== § as before, but along the direction given by 6 — #® for 10 equal steps.

Use of further arguments depend on the value of NTYPE. They are listed in Table
15.

SUBROUTINE LIHYPEX (LHE,N1,N2,N3,NCRIT,LIST)

LHE index that defines the type of formula to be used.
= 1 a fourth degree polynomial is applied.
= 2 a hyperbolic function is applied.
= 3 an exponential function is applied.

N1,N2,N3 cycle numbers from which the results to be extrapolated are taken (N1
< N2<:N3}. If LHE=1 a fourth degree polynomial is calculated through the points
obtained in cycle numbers N14-I*(IN2—N1), where I=0(1)4.

NCRIT criterion for the accuracy of the iteration process calculating the constants
if LHE=3; e.g. NCRIT=3.
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Table 15. Use of argnments in SUBROUTINE TRACK.

NTYPE NP START NSTEP KTIMES NAUT LIST

land 2 number of  starting number of redefinition not =1*
parameters  value on parts in of number used gives
used in YOCAO. = whichthe of fitting list
fitting pro- START <  remainder cycles (e.g. = 0 gives
cedure (e.g. 1.0 of YOCA is KTIMES =5) only
NP = divided main
NPART) results

Jthrough6 notused not used notused’  not used ={Qfora =1*

single out-  gives

come only  list

= 1 proceeds = 0 gives

autorsat- only

ically main

results

* For min (NDATA, 10) a list is printed out of YOBS(T), X(I,1) and YCLCA(I) to indicate the rela-
tionship between observed and used vectors.

LIST index that defines whether an outpat list of intermediate results will be producéd.
= 0 no list is produced.
= 1 an output list will be produced.

The subroutine subprogram produces convergence of parameter values by extrap-
olation. When using this subroutine it is necessary to define in main program NLV the
valye for END greater than 1.

13.4 Default values

Values of algorithm and process parameters can be defined in main program NLV.
Experience learned that several of them can be predefined for normal routines. There-
fore a default value has been assigned to these parameters. A list of parameters and
their default values is given in Table I6. .

The contents of tables of optimization resulits in the output can be chosen by the
values assigned to the logical unit in formatted write statements. This is governed by
the indices INK 3, INK7 and INKS8 which take the value 3 to produce an output list
and the value 7 to write information onto a scratch file. Pertinent combinations of
values are given in Table 17. If INKi options are equal to 7, they override output
options in the argument of the subroutine subprograms, except for SUBROUTINE
MIN. As the definition of INKi options can occur anywhere in the main program they
can be used to serve a single subprogram by changing the value of the logical unit
before the CALL statement and redefining it after use to its default value again.
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Table 16. Algorithm and process parameters, their function, default value and possible alternative

values.
Parameter Function Default Alternative
NCYCLES Number of fitting cycles to be produced at most. 10 2,...,15
END Number of times that NCYCLES 1 >1
cycles have to be repeated.
INK3 Index to define desired output. 7 3
INK7 Ibidem. 7 3
INKS8 Ibidem. 7 3
LSUMRY Index to define desired output. 1 0,2
= ( output mainly based on the first part of
SUBROUTINE HOWA.,
= | no restrictions.
= 2 as = @ with additional information on scale
factors and curvature,
NDATA Number of observations to be processed. If not SHCOUNT = MAXDAT
defined in NLV, data will be counted in
SUBROUTINE READ.
NOUTRD Number of data in output list of SUBROUTINE 0 (NDATA) = NDATA
READ, to avoid the production of long tables
not necessary. If not defined in NLV the value
of NOUTRD will automatically be equalled to
min (NDATA, 50).
NOUTFN Number of data in output list of 1 = NDATA
SUBROUTINE FNCTN.
NOUTDF Ibidem for SUBROUTINE DFDA. 1 = NDATA
NOUTD2F Ibidem for SUBROUTINE D2FDA. 1 = NDATA
NOUTFL Number of data in output list of SUBROUTINE S5SHNDATA = NDATA
HOWA. If not defined in NLY the value of
NOUTFL will automatically be equalled to
min (NDATA, 50).
COSCRIT Variable to define the cosine criterion that is to 1000. 10%n>0
be fulfilled to terminate the fitting procedure.
Logy, (COSCRIT) furnishes number of leading
zeros after the decimal point at least to be
obtained.
EPS Initial step factor along direction of search. 001 > Q.
EPSEST Step factor approximated by second derivatives  .001 not used
if available.
EQS Step factor reduction. 66666 >0,
RN Fraction of the negative slope that is at leasttobe .1 > 0.
obtained in a given direction of search to conclude
that a subminimum of 8 is reached.
RP Ibidem for positive slope. 1 > 0.
R Fraction of progress along the chord to assess the 1. OS<RE1.
minimum in a given direction of search.
R = 1 gives ‘Regula Falsi’ algorithm.
IC,..., Six variables available for additional comments  10L{BLANK) 10 Hollerith
1C(6) to be defined in NLV and printed during characters,
execution of ENTRY HEADING. start with 10L
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Table 16, Continued.

Parameter  Function

RECI1 Two parameters to be nsed to

REC2 define whether sequential treatment
should be employed.

NO2 Index to be used to define whether the
Hessian should be applied.

Default

0.0
0.0

Aliernative

i0
10

Table 17. Values of the logical unit in formatted write statements defined by INKi (i = 3, 7 or 8).

To obtain

Complete output

Partial output of main results

Information sbout scale factors and curvature only
Output of intermediate results from special subroutines
Default output

Process parameter

INK3 INK7 INK8
3 3 3

3 7 3

7 7 3

7 3 7

7 7 7
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Summary

Research workers who describe their problems with mathematical formulas in
which variables and unknown parameters occur, have need for testing their working
hypothesis with the aid of observations. Since most models consist of functions that
are nonlinear in the parameters, iterative methods have to be employed to optimize
the parameter values. The objective function to be minimized is the sum of squares
of deviations of calculated function values from observed function values (Chapter I).

In the present study spaces and surfaces that play a role in least squares techniques
were investigated. Main spaces to be considered are the observation space and the
parameter space (Chapter 2). Vectors of calculated function values are position vectors
to the fitting surface in the observation space. This surface is covered with curvilinear
coordinates: the parametric curves. Elements of differential geometry were used to
investigate the role of scale factors and of curvature, both being essential properties
of curvilinear coordinate systems. Analytical treatment requires the derivation of
first and second derivatives of condition and objective function with respect to the
parameters. To generalize the analysis, parameters were expressed as functions in
which vectors and algorithm parameters occur; condition and objective function con-
sidered to be functions of these algorithm parameters. In many methods a step factor
that controls the progress in a direction of search. is the only algorithm parameter
that is applied. In this study the derivation of derivatives has been extended to make
the formulas suit algorithm parameter vectors. The notion of linear and strict para-
meter functions was introduced to particularize general formulas. Formulas for first
and second derivatives for several functions that play a role in gradient algorithms
are given. Formulas for the curvature of parametric curves were derived as well as
those for the curvature of a path in an arbitrary direction of search on the fitting
surface. For a simple condition function the use of formulas for arc length is given
to demonstrate that it makes sense to distinguish between three important proper-
ties of nonlinear fitting surfaces: the curvature of the surface, the curvature of the
parametric curves and the course of the scale factors along a path of search. The
relationship between parameter, observation and response space is discussed. Geo-
metrical interpretation gives insight in the slow convergence of normally used non-
linear curve fitting methods. This cumulated in the development of procedures that
accelerate convergence.

Least squares methods have their own place in nonlinear optimization techniques,
and algorithms developed for more general situations can be applied. On the other
hand more specific methods sometimes can be considered valid for least squares prob-
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lems. This for instance when second degree approximation to the fitting surface is
accurate enough. Techniques that can be applied are briefly commented and main

features that play a role in nonlinear optimization are discussed (Chapter 3). Gme-\

dient methods with step length optimization in each cycle use first derivatives of the
condition function. Methods developed in this study make use of the gradient vector
and the vector of differential corrections. It therefore was assumed that at least first
derivatives of the condition funiction are available. Their availability gives the further

advantage to be able to set stopping criteria based on the fact that it is an orthogonal .

projection of the terminal point of the observation vector on the fitting surface that
is to be determined,

Condition functions may have a complicated structure in that they can be implicit
functions, sequential functions or can consist of models involving alternative func-

tions (Chapter 4). It was treated how a system can be set up with which the condition

function and the first derivatives can be calculated systematically in these cases. A
process parameter that governs the type of use of sequential functions was introduced.
Flowcharts were given that illustrate the general treatment of the mentioned types of

condition function. The special structure of some of these functions gives complica-

tions when exploring the fitting surface. Along a chosen direction of search. jumps

to additional fitting surfaces can occur and it was expla.med in which way results have

to be interpreted in these cases.

Analysis of the fitting surface and its coordinate system of parametric curves gave
an indication on the cause of slow convergence. The concept of using scale factors as
weights to the direction of search was worked out analytically (Chapter 5). Two types
of weights were introduced using differences and differentials of scale factors respec-
tively. In the second case second derivatives of the condition function must be avail-
able. With an example the acceleration of convergence — expressed as decrease in num-

ber of new directions of search necessary to fulfill default stopping criteria — was dem-

onstrated. A reduction was found from 25 cycles for the modified Gauss-Newton to
11 cycles for the scale factor differential correction method. Application of differences
of scale factors has the disadvantage that two points in the direction of search must be
calenlated. However, the first stage of the approach to the final parameter values
appeared to be faster than with the aid of differentials.

The deviation of points on the path of search on the fitting surface from the direc-
tion of differential corrections in the tangent plane — caused by the curvature of the

parametric curves and scale factor variations — was measured by orthogonal projec- .

tion of the path of search in the fitting surface, on the tangent plane (Chapter 6). Sin-
ce this concerns the same tangent plane as the one used for the determination of the
direction of search, this method was called the back projection method. To correct

deviations from the required direction, the projection of an intermediate point found

by back projection was reflected in the total tangent vector on the tangent plane,
Paths found this way may still not be satisfactory because of the properties of the
fitting surface. Therefore two algorithms were developed to produce in back projec-

tion a two-dimensional linear and nonlinear search respectively, to optimize both the
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direction of search and the step length. The method appeared to be most effective
when applied in the tangent space using relationships between parameter vectors
rather than between vectors in the observation space. For the example chosen, back
projection gave slightly better results in that less fitting cycles were required than when
using scale factor corrections.

Subdivision of the program makes it possible to link subprograms in specific ways.
To make the program suitable for investigating the condition function as well as
the convergence process, an analysis was made of the subroutines that occur in gra-
dient methods. Considerations that lead to the subdivision of the program in sub-
routine subprograms are discussed (Chapter 7). It appeared to be useful to divide
the program into three groups of subprograms: subprograms that need updating for
each new function to be fitted, subprograms that need no updating and contain the
essential parts of gradient algorithms and finally subprograms that need not necessari-
ly be loaded since they consist of specific subroutines. The subprograms are linked
by the main program NLYV that can be modified to apply special procedures. Atten-
tion was paid to the problem of how and when to terminate the execution of an opti-
mization algorithm. Stopping criteria based on the geometric interpretation of the
algorithm were introduced and compared. Although the value of some of these
criteria — viz. criferia on the total cosine and on partial cosines — converges to zero
in the optimal point on the fitting surface, this value is not reached by a monotone
decrease of the absolute values of the cosines, not even when the objective function
in subsequent fitting cycles is decreasing monotone. It is of importance to recognize
this behaviour of the process to be able to judge on the basis of intermediate results
whether or not execution is to be terminated. It appeared to make sense to distinguish
two types of convergence. Type I was defined as the type for which in subsequent cy-
cles the sum of squares with respect to the fitting surface decreases and, at the same
time, the sum of squares with respect to the tangent plane increases. Type IT was de-
fined as the type for which both sums of squares decrease at the same time. Experience
learned that Type II convergence indicates that progress will be slow. This was dem-
onstrated with an example where both types occur alternately.

Condition functions can be given a particular form by choosing particular values
for one or more of its parameters. The program thus must give the possibility to keep
constant any of the parameters in order to omit parts of the condition function. In
the program this is generalized by an option to permute the componeats of the param-
eter vector and to partition the parameters into three groups (Chapter 8). The
first group consists of those parameters that have to be fitted, the second group of
those that need not to be fitted but give additional information and the third group
of those parameters that are kept constant. This partitioning is achieved by putting
parameter index cards in the main program NLYV in the required order. Permutation
and partitioning then takes place automatically throughout all subroutines in the
subprograms. For economic reasons the calculation of normal equations is confined
to parameters occurring in the first two groups only.

A central part of the entire optimization process is the determination of the mini-
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mum response in a given direction of search (Chapter 9). The search for sucha sub- -
minimum can be done by methods using first and second derivatives of the objective .

function. First derivatives are useful in sctting efficient stopping criteria, second deriv- - :

atives can be used to give a prediction of the step factor. With second derivatives

the geodesic curvature in the direction of search can be determined. From the curva- :

ture the radius of curvature can be derived. In the given example fast convergence
occurs when this radius is large and consequently the curvature of the path of search
is small. Convergence is slow when the radius of curvature is small. Then the path of
search deviates appreciably from the path as indicated by the total tangent vector '
on the tangent plane. Scale factor correction and back projection method were
developed to correct for this deviation. _
The search for a subminimum can be made more general by introducing nonlinear *
parameter functions. It then is necessary to determine separately the correction to the
parameters and the direction of search, by differentiating the parameter update for-
mula with respect to the algorithm parameter. This generalization, already applied
for the back projection method with two dimensional nonlinear search, can also be
applied to an empirical approach (Chapter 10). Slow convergence sometimes seems
to justify a linear extrapolation of intermediate parameter values. It appeared to be
more efficient to extrapolate intermediate results for each parameter separately
with simple nonlinear functions. With a few preliminary results available, this ex- "
trapolation is useful because during the extrapolation procedure no fitting cycles
need be executed. In the given example it seemed if about 10 cycles were skipped when
using exponential extrapolation and only 7 further cycles were needed insiead of
the 19 further cycles required for optimization without intermediate extrapolation.
The only restriction laid upon the intermediate results of the convergence process
with methods thus far considered is that they be optimal with regard to moves into
chosen directions. A method was developed where intermediate points were required -
to be the foot of a perpendicular from the terminal point of intermediate observation
vectors to the fitting surface (Chapter 11). Heavy oscillation on the fitting surface of.
intermediate resuits thus is avoided, as was illustrated with an example. It also ap-
peared that the curvature properties of the parametric curves are of more importance
than those of the fitting surface itself. For this reason scale factor correction and back
projection are efficient methods. The parametric curves that are passed when follow-
ing the path of controlled approach can be sketched. In this way an insight can be -
obtained of the pattern of the parametric curves on the fitting surface. This was illus-
trated with an example. .
For the algorithms and methods developed, a generally applicable computer pro-
gram for nonlinear parameter optimization was written. Since several algorithms are.
programmed for analytical methods as well as difference or empirical methods, their
results can be used to test the formulas for first and second derivatives (Chapter 12).
Since difference methods work best in an approximately linear situation, rounded
calculated function values are used as observation to simulate this situation in the
neighbourhood of the initial point. When testing of first and second derivative formu-
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las gives a positive result, optimization algorithms can be applied.

Methods introduced in this study can easily be made operational with the main
program NLV. The default algorithm of the program is the modified Gauss-Newton
algorithm. A short description of the subprograms and the use of their arguments is
given {Chapter 13). The complete text of the program and the instroctions to modify
the main program NLV are given in Appendix 1.
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Samenvatting .

Een bijdrage tot theorie en praktijk van niet-lineaire parameter-optimalisering

Bij het leggen van een verband tussen variabele grootheden wordt aan de variabelen
de voorwaarde van het moeten voldoen aan een mathematische betrekking opgelegd.
Van een dergelijke betrekking wordt aangenomen dat daarin variabelen en parameters

voorkomen en dat waarnemingsuitkomsten voor de variabelen kunnen worden inge- -

vuld. Aan de parameters wordt de eis opgelegd dat ze een waarde moeten aannemen
zodanig dat de berekende functiewaarden zo goed mogelijk aan de bijbehorende waar-

nemingen zijo aangepast. De doelstellingsfunctie waarmede de uitdrukking ‘zo goed

mogelijk” operationeel wordt gemaakt is in het hier beschreven onderzoek de sem van

kwadraten van afwijkingen tussen gemeten en berekende functiewaarden — ofwel het-

kwadraat van de lengte van de verschilvector — aangeduid als de respons. Kleinste
kwadraten-technieken bestaan er uit deze respons te minimaliseren. Aangenomen
wordt nu dat minstens én van de parameters niet-lineair in de voorwaardefunctie
voorkomt, In het algemeen zal de aanpassing dan — beginnend met een beginschatting
—iteratief in een aantal ronden moeten plaatsvinden — om de¢ optimale parameterwaar-
den — de eindoplossing — te leren kennen (hoofdstuk 1).

Eigenschappen van ruimten en oppervlakken die een rol spelen in kleinste kwadra-
ten-technieken werden onderzocht (hoofdstuk 2). De belangrijkste ruimten zijn de
waarnemingsruimte en de parameterruimte. Vectoren waarvan de kentailen berekende
waarden van de voorwaardefunctie zijn, zijn plaatsvectoren van het vereffeningsopper-
vlak dat in de waarnemingsruimte ligt. Dit oppervlak bevat een stelsel kromlijnige
codrdinaten: de parameterkrommen, Een baan waarlangs het vereffeningsoppervlak

kan worden onderzocht - of: waarlangs de respons wordt bepaald — kan worden uit- .

gedrukt in deze kromlijnige codrdinaten. Met behulp van differentiaalmeetkunde

werd de invloed van twee essentidle grootheden van kromlijnige codrdinaten, de

kromming en de schaalfactoren, op het convergentieproces onderzocht. Een analy-
tische behandeling van het hier geformuleerde probleem vereist het bepalen van eerste
en tweede afgeleiden van de voorwaardefunctie en de doelstellingsfunctie naar elk van
de parameters. Om tot een generalisatie te komen zijn parameters opgevat als functies

van algorithmeparameters waarin ook vectoren en scalaire grootheden kunnen voor-
komen. Hiermede worden voorwaardefunctie en doelstellingsfunctie beschouwd als .

functies van deze algorithmeparameters. Afgeleiden werden bepaald voor het algeme-
ne geval dat de voorwaardefunctie een functie is van een algorithmevector. Het begrip
lineaire en strikie parameterfunctiec werd ingevoerd om weer tot speciale oplossingen
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te komen aangezien veel methoden als enige — lineaire — algorithmeparameter een stap-
factor bevatten die de staplengte langs de baan van exploratie bepaalt. Formules voor
eerste en tweede afgeleiden van functies die een rol spelen bij gradiéntmethoden wer-
den gegeven evenals de formules voor de kromming van parameterkrommen en van de
geodetische kromming van de baan waarlangs het vereffeningsoppervlak wordt on-
derzocht. Voor een eenvoudige voorwaardefunctie werd een voorbeeld van toepassing
gegeven van de formules voor het bepalen van booglengten onder meer om aan te
geven dat het zinvol is drie belangrijke eigenschappen van niet-lineaire oppervlakken
te onderscheiden: de kromming van het oppervlak, de kromming van de parameter-
krommen en het verloop van de schaalfactoren langs een gekozen baan. Het verband
tussen de parameter-, waarnemings- en responsruimte werd besproken.

Kleinste kwadraten-methoden nemen c¢en eigen plaats in in niet-lineaire optimali-
seringstechnieken ; methoden ontwikkeld voor meer algemene problemen kunnen ech-
ter worden toegepast. Meer specifieke methoden zoals die welke zijn ontwikkeld voor
problemen waarbij de te optimaliseren grootheid kwadratisch in de voorwaardefunc-
tie voorkomt, kunnen worden toegepast wanneer een tweedegraads benadering van
het vereffeningsoppervlak voldoende nauwkeurig is. Van de samenhang tussen optima-
liseringsmethoden werd een kort overzicht gegeven (hoofdstuk 3). Gradiéntmethoden
maken gebruik van eerste afgeleiden en aangezien in het hier beschreven onderzoek
gebruik wordt gemaakt van de gradiéntvector en van de differentiaalcorrectievector,
werd aangenomen dat van voorwaardefuncties in ieder geval eerste afgeleiden beschik-
baar zijn. Hun beschikbaarheid heeft het verdere voordeel dat beéindigingscriteria
kunnen worden geformuleerd die zijn gebaseerd op het feit dat het de loodrechte
projectie van het eindpunt van de waarnemingsvector op het vereffeningsoppervlak is
die moet worden bepaald. De theoretische waarde van het criterium is daarmee bekend.

Voorwaardefuncties kunnen een gecompliceerde structuur hebben aangezien hier-
onder zowel implicite functies, sequentiéle functies als modellen waarin keuzemoge-
lijkheden kunnen voorkomen, worden begrepen (hoofdstuk 4). Er werd aangegeven
hoe een systeem kan worden opgezet waarmede ook in deze gevallen eerste afgeleiden
systematisch kunnen worden bepaald en geprogrammeerd. Een procesparameter werd
ingevoerd waarmede de keuze van het al of niet sequentieel gebruik van sequentiéle
functies kan worden bestuurd. Strcomdiagrammen werden gegeven ten einde de al-
gemene behandeling van de genoemde typen functies te illustreren. Door de bijzon-
dere structuur van sommige van deze functies kunnen complicaties ontstaan bif het
onderzoek van de bijbehorende vereffeningsoppervlakken. In een gekozen zoekrich-
ting kunnen discontinuiteiten voorkomen die sprongen naar nevenoppervlakken ver-
oorzaken. Er werd uiteengezet hoe in deze gevallen verkregen uitkomsten moeten
worden geinterpreteerd.

De meetkundige interpretatie van de eigenschappen van het vereffeningsopperviak
en het daarop gelegen cobrdinatensysteem geeft een inzicht in de reden van het voor-
komen van langzame convergentie bij niet-lineaire optimalisering. Dit leidde tot het
ontwikkelen van methoden waarmede de convergentie naar de eindoplossing wordt
versneld. Het gebruik van schaalfactoren ~ te weten de lengte van de raaklijnvector
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aan de parameterkrommen — als wegingsfactoren voor toe te passen correcties op

beginschattingen voor de parameters werd analytisch vitgewerkt (hoofdstuk 5). Twee =
manieren voor het vaststelien van deze gewichten werden geintroduceerd, namelijk het -
gebruik van differenties en het gebruik van differentialen van schaalfactoren. In het
laatste geval moeten tweede afgeleiden van de voorwaardefunctie beschikbaar zijn. De
met deze methoden te bereiken versnelling in convergentie werd met een voorbeeld
toegelicht. Voor voorwaardefunctie en gegevens vermeld in appendix 2.3, waarvoor bij .
het gebruik van de Gauss-Newton methode met staplengte-optimalisering 25 volledige -
berekeningsronden nodig waren, waren met gebruik van correcties door middel van
differentialen van schaalfactoren nog slechts 11 ronden vereist. Het toepassen van dif-
ferenties heeft het nadeel dat eerst ook van een tweede punt op het vereffeningsopper-
vlak de schaalfactoren berekend moeten worden; het voordeel is dat geen tweede afge-
leiden behoeven te worden berekend. Voor het kiezen van een tweede punt werden
algorithmen gegeven waarnit met een voorbeeld bleek dat de gewogen nieuwe correc-
ties het aantal banen benodigd om de eindoplossing te vinden sterk reduceerde, terwijl
in de beginfase van het optimaliseringsproces een nog sterkere reductie van de kwa-
draatsom van afwijkingen werd bereikt dan met het toepassen van differentialen. ‘

Wanneer op het vereffeningsoppervlak een baan wordt gevolgd die start in de rich- "
ting gegeven door de differentiaalcorrecties berekend in het raakvlak aan het opper- .
vlak, dan zullen de punten van deze baan na terugprojecteren op het raakviak nist op" .
de rechte liggen die opgespannen wordt door de vector gegeven door differentizal-
correcties. Dit tengevolge van het feit dat op het vereffeningsopperviak de baan ge- .
kromd is door de krommingseigenschappen van de parameterkrommen (hoofdstuk 6).
Dit feit werd geanalyseerd hetgeen resulteerde in een rekenwijze waarbij de afwijkin-
gen, hanteerbaar gemaake in het raakvlak door middel van het terugprojecteren, wer- )
den gecorrigeerd. Ten einde de methode zo efficiént mogelijk te maken werden twee
algorithmen ontwikkeld waarbij tweedimensionale lineaire respectievelijk niet-lineaire
optimalisering werd toegepast om zowel de staplengte als de zoekrichting zo goed mo-
gelijk vast te stellen. De methode gaf voor het gegeven voorbeeld een versnelling van .
de convergentie die vergelijkbaar is met die welke verkregen werd met de methode
waarbij schaalfactoren als gewichten werden gebruikt.

-Bij het schrijven van een programma voor niet-lineaire optimaliseringstechnicken
vallen een aantal subroutines te onderscheiden die tevens kunnen dienen om de eigen-
schappen van de voorwaardefunctie zowel als die van het convergentieproces te on- 7
derzoeken (hoofdstuk 7). Overwegingen werden gegeven die leidden tot een indeling
van het totale programma in subroutine subprogramma’s die met behulp van het
hoofdprogramma NLV al naar de gewenste berckeningswijze op de vereiste wijze.
kunnen worden gekoppeld. De subprogramma’s kunnen in drie groepen worden on-
dergebracht. De cerste groep bestaat uit de subprogramma’s die voor elke nieuwe
voorwaardefunctic moeten worden aangepast omdat daarin de functie en zijn afge-
leiden voorkomen, de tweede groep bestaat vit de subprogramma’s die de essentiéle
onderdelen van gradiéntmethoden bevatten en verder geen aanpassing aan nieuwe
voorwaardefuncties behoeven terwijl tenslotte de derde groep bestaat uit subprogram-
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ma’s die geschreven zijn voor speciale algorithmen en procedures en die niet in de com-
puter ingelezen behoeven te worden wanneer deze speciale algorithmen niet worden
toegepast. Aandacht werd besteed aan het probleem van het beéindigen van het itera-
tieproces. Hierbij werd vooral nadruk gelegd op het gebruik van de cosinus van de
hoek die de verschilvector maakt met de raaklijnvector aan elk van de parameter-
krommen. Er werd op gewezen dat, hoewel het optimaliseringsproces dusdanig kan
verlopen dat de kwadraatsom monotoon afneemt, dit niet het geval behoeft te zijn
voor deze cosinussen. Deze kunnen in absolute waarde zelfs toenemen waarbij toch
vorderingen worden geboekt in het convergentieproces. Twee typen van convergentie
werden onderscheiden. Type I werd gedefinicerd als het type waarvoor de kwadraat-
som met betrekking tot het vereifeningsoppervlak afneemt terwijl de kwadraatsom
met betrekking tot het raakvlak toeneemt. Type 11 werd gedefinieerd als het type waar-
voor deze beide kwadraatsommen tegelijkertijd afnemen. Uit ervaring bleek dat het
optreden van Type I een aanwijzing inhoudt dat de convergentie naar de eindoplos-
sing traag zal verlopen. Dit werd met een voorbeeld gedemonstreerd.

Voorwaardefuncties kunnen een specificke gedaante worden gegeven door én of
meer van de parameters constant te houden. Het computerprogramma moet dan de
mogelijkheid bevatten deze parameters als constante te behandelen. Aangezien dit
niet noodzakelijkerwijze de laatste parameters behoeven te zijn, dient het programma
tevens de mogelijkheid te bevatten de kentallen van de parametervector te permuteren,
Dit is in het programma algemeen gemaakt door een driedeling van de kentallen van
de parametervector toe te passen (hoofdstuk 8). De eerste groep bestaat dan uit die
parameters die moeten worden geoptimaliseerd, de tweede groep uit die parameters
die aanvullende uvitkomsten geven over het optimaliseringsproces alsof deze para-
meters daarin opgenomen zijn, de derde groep tenslotte bestaat wit die parameters die
constant worden gehouden. De permutatie en driedeling wordt bereikt door parame-
terindexkaarten in het hoofdprogramma NLYV in de vereiste volgorde te leggen. Per-
mutatie en driedeling komen dan automatisch tot stand in alle subprogramma’s. Ten
einde de berekeningen doelmatig te doen verlopen worden de normaalvergelijkingen
alleen opgesteld en opgelost voor de parameters uit de eerste twee groepen.

In het gehele optimaliseringsproces neemt het bepalen van een minimum in de rich-
ting waarin het vereffeningsoppervliak wordt onderzocht een centrale plaats in (hoofd-
stuk §). Het zoeken naar zulk een subminimum kan worden gedaan met methoden
waarbij zowel eerste als tweede afgeleiden van de doelstellingsfunctie worden gebruikt.
Eerste afgeleiden werden gebruikt om de mate van nauwkeurigheid van het verkregen
resultaat vast te stellen terwijl tweede afgeleiden, indien beschikbaar, kunnen dienen
om de staplengte in de richting van exploratie vast te stellen. Met tweede afgeleiden
kan bovendien de geodetische kromming worden bepaald van de baan waarin het ver-
effeningsoppervlak wordt onderzocht. Uit het gegeven voorbeeld valt op te maken
dat de convergentie snel verloopt wanneer de kromming in het beginpunt gering is
en de kromtestraal bijgevolg groot, terwijl de convergentie traag verloopt indien de
geodetische kromming een grote waarde heeft. De methode waarbij gebruik wordt
gemaakt van gewichten gebaseerd op het verloop van schaalfactoren en de methode
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waarbij door afwijkingen terug te projecteren in het raakvlak correcties werden aan-
gebracht op de richting waarin het vereffeningsoppervlak wordt onderzocht, werden
ontwikkeld om juist op deze kromming e corrigeren.

Het bepalen van een subminimum werd gegeneraliseerd om het invoeren van niet-
lineaire parameterfuncties mogelijk te maken. In dit geval moeten de correctie aan te
brengen aan de parametervector en de richting waarin het vereffeningsopperviak
wordt onderzocht afzonderlijk worden berekend, de laatste door de parameterfunctie
te differentiéren naar de algorithmeparameter. Deze generalisatie werd reeds toegepast
voor de methode van het terugprojecteren maar kan ook worden gebruikt voor een meer. .
empirische benadering van het convergentieproces (hoofdstuk 10). Er werd een réken-
wijze opgesteld waarbij met behulp van reeds verkregen tussenresultaten de nadering -
naar de eindoplossing wordt gesimuleerd door voor elke parameter de tussenresultaten
te extrapoleren. Voor deze extrapolatie werd zowel een aanpassing aan een vierde-
graads polynomium gebruikt als een aanpassing aan een hyperbolische en aan een
exponenti€le functie. Tijdens het extrapoleren behoeven geen volledige vereffenings-
ronden te worden berekend hetgeen de hoeveelheid uit te voeren rekenwerk gunstig
beinvioedt. In het gegeven voorbeeld bieken tijdens de extrapolatie als het ware 10
ronden te zijn overgeslagen waardoor het eindresultaat na nog slechts 7 verdere ron-
den werd bereikt in plaats van de 19 ronden die nodig waren bij het consequent door-
voeren van de Ganss-Newton algorithme zonder extrapolatie van tussenresultaten.,

De enige restrictie die aan de tussenresultaten tot zover werd opgelegd was dat deze
ieder in hun eigen richting een optimale deeloplossing moesten vormen. Aan de tussen-
resultaten werd een verdere voorwaarde opgelegd ten einde banen op het vereffenings-
oppervlak te verkrijgen die aan slechts geringe afwijkingen van een rechtstreekse na-
dering naar het eindpunt onderhevig zouden zijn (hoofdstuk 11). Een uitwerking werd
gegeven voor de eis dat alle tussenresultaten op het vereffeningsoppervlak loodrechte
projecties zijn van deelpunten van de verschilvector voor de beginschatting. Het bleek
hierbij dat de krommingseigenschappen van de parameterkrommen een grotere in-
vloed op het verloop van het convergentieproces hebben dan de krommingseigen~
schappen van het vereifeningsopperviak zelf. De ontwikkelde procedure heeft het
voordeel dat een inzicht kan worden verkregen in het patroon van de parameterkrom-
men voor de toegepaste voorwaardefunctie en de daarbij gebruikte gegevens.

De ontwikkelde algorithmen en methoden werden toepasbaar gemaakt in een com-
puterprogramma dat door middel van een hoofdprogramma kan worden bestuurd en
waarmee de vereiste modificaties kunnen worden gerealiseerd (hoofdstuk 12). Aan-
gezien met het programma een aantal berekeningen zowel met analytische methoden
kunnen worden vitgevoerd als met differentie en empirische methoden, biedt het pro-
gramma tevens de mogelijkheid om door het vergelijken van beide nitkomsten de pro-
grammering van eerste en tweede afgeleiden te testen. De bencedigde modificaties in
het programma kunnen met het hoofdprogramma NLYV tot stand worden gebracht.

Een korte beschrijving van de subprogramma’s en het gebruik van hun argumenten
is in een afzonderlijk hoofdstuk opgenomen (hoofdstuk 13). Voor de complete tekst van
het programma en nadere instructies voor het gebruik zij verwezen naar appendix 1.

157




References

Aird, T., 1973. Computational solution of global nonlinear least squares problems, Ph, D. thesis.
Purdue University, West Lafayette, Indiana: 120 p.

Booth, G. W. & T. 1. Peterson, 1960. Nonlincar estimation: Forecasting by generalized regression
methods. IBM, Math. and Appl. Dpt. New York. IBM-Share Program WL NLI. IBM-Princeton
University. Part IV: 21 pp., Part V: 15 + 7 p.

Box, M. J,, 1966, A comparison of several current optimization methods and the use of transforma-
tions in constrained problems. Comput. 1. 9: 67-77,

Box, M. J., D. Davies & W. H, Swann, 1969. Mathematical and statistical techniques for industry,
Monegraph No. 5: Non-linear optimization techniques. Oliver and Boyd, Edinburgh. VIII -
60 pp.

Brooks, 5. H., 1959. A comparison of maximum-secking methods. Ops. Res. 7: 430-457.

Cauchy, A., 1847. Méthode générale pour la résolution des systémes d’équations simultanées, Compt.
Rend. hebdo. Séances Acad. des Sci. Paris 25: 536-538.

Crockett, J. B. & H. Chernoff, 1955, Gradient methods of maximization. Pacific J. Math. 5: 33-50.

Curry, H. B., 1944, The method of steepest descent for non-linear minimization problems. Q. appl.
Math. 2: 258-261.

Davidon, W. C., 1959. Variable metric method for minimization. AEC Research and Development
Report. Argonne Nat. Lab, 5990 (Rev). 21 p.

Davidon, W. C., 1969. Variance algorithms for minimization. In: R. Fletcher (ed.). Optimization.
Academic Press, London and New York: 13-20.

Davies, M. & I. J. Whitting, 1972. A modified form of Levenberg’s correction. In: F. A. Lootsma
(ed.). Numerical methods for non-linear optimization. Academic Press, London and New York:
191-201.

Deming, W. E., 1948, Statistical adjustment of data. John Wiley and Sons, Inc., New York. X +
261 p.

Dixon, L. C. W., 1972, The choice of step length, a crucial factor in the performance of variable
metric aigorithms. In: F. A. Lootsma (ed.). Numerical methods for non-linear optimization. Aca-
demic Press, London and New York. p. 149-170.

Dixon, L. C. W., 1974, Nonlinear optimization: A survey of the state of the art, In: D. J. Evans (ed.).
Software for numerical mathematics. Academic Press, London and New York. p. 193-218.

Draper, N, R. & H. Smith, 1967. Applied regression analysis. John Wiley and Sons, Inc. New York,
London, Sydney. 407 p.

Evans, D. J., (ed.). 1974, Software for numerical mathematics. Academic Press, London and New
York. 451 p.

Fiacco, A. V. & G. P. McCormick, 1968. Nonlinear programming: Sequential unconstrained mini-
mization techniques. John Wiley and Sons, Inc., New York, Londen, Sydney, Toronto. 210 p.

Fink, D. H. & R. D. Jackson, 1973. An equation for describing water vapour adsorption isotherms of
soils. Soil Sci. 116(4): 249-261.

Fisher, R, A., 1958, Statistical methods for research workers. Gliver and Boyd, Edinburgh, London.
356 p.

Fletcher, R., 1965. Function minimization without evaluating derivatives: A review. Comput. J, 8:
33-41.

158




Fletcher, R., (ed.). lmmmmm Londonand New York, 354 p.
Fleicher, R., 1969b, Awwewofmethndsforuncomu‘mmdopumnmm.k.mﬂchn(od).
Optimization. Academic Press, London and New York. p. 1-12,

Fletcher, R., 1972a. Conjugate direction methods. In: W, Mmy(ed.).Nnmwalnmhodsfwun--

constrained optimization. Academic Press, London and New York. p. 73-86.

Fletchet, R., 1972b. A smrvey of algorithms for unconstrained optimization. In: W. Murray (ed.).
Numerical methods for unconstrained optimization. Academic Press, London and New York. p.
123-129,

Fletcher, R. & C. M. Reeves, 1964. Function minimization by conjugate gradients. Comput. J. 7:
149-154.

Hartley, H. O., 1961. The modified Gauss-Newton method for the fitting of non-linear regression ’

functions by least squares. Technometrics 3 : 269-280.

Hayes, J. G., 1974. Algorithms for curve and surface fitting. In: D. J. Evans (ed.). Software for
numerical mathematics. Academic Press, London and New York. p. 219-233,

Himmelblau, D. M., 1972. A uniform evaluation of unconstrained optimization techniques. In: F. A.
Lootsma (ed.). Numerical methods for non-linear optimization. Academic Press, London and
New York, p. 69-97.

Hooke, R. & T. A. Jeeves, 1961, Direct scarch: Solution of numerical and statistical problems. J. Ass.
comput. Mach. 8:212-229,

Jacoby, 8. L. 8., 1. 8. Kowalik & J. T. Pizzo, 1972. Iterative methods for nonlinear optlmmtlon
problems, Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 274 p.

Jones, A,, 1970. Spiral: A new algorithm for non-linear parameter estimation using least squares.
Comput. J. 13: 301--308.

Kowalik, J., 1967. A note on nonlinear regression analysis, Austr. Comput. J. 1: 51-53,

Kowalik, J. & M. R. Osborne, 1963. Methods for unconstrained optimization problems, Elsevier,
New York. 148 p.

Levenberg, K., 1944. A method for the solution of certain non-linear problems in least squares. Q.
appl. Math. 2: i64-168.

Lootsma, F. A,, (ed.). 1972, Numerical methods for non-linear optimization. Academic Press, London '

and New York. 440 p. .

Marguardt, D. W., 1963, An algorithm for least squares estimation of non-linear parameters. SIAM J.
2:431-441, '

McCormick, G. P. & J. D. Pierzon, 1969. Variable metric methods and unconstrained optimization.
In: R. Fletcher (ed.). Optimization. Academic Press, London and New York. p. 307-325,

Murray, W., (ed.). 1972a. Numerical methods for unconstrained optimization. Academic Press. Lon-
don and New York. 144 p.

Murray, W., 1972b. Fundamentals. In: W. Murray (ed.). Numerical methods for unconstrained op-

timization. Academic Press, London and New York. p. 1-12.

Murray, W., 1972¢. Second derivative methods. In; W. Murray (ed.). Nummcalmethodsfm-un-
constrained optimization. Academic Press, London and New York. p. §7-71.

Murray, W., 1972d. Failure, the causes and cures. In: W, Murray {ed.). Numerical methods for un-
constrained optimization. Academic Press, London and New York. p. 107-122.

Nelder, J. A. & R. Mead, 1965. A simplex method for function minimization. Comput. J. 7: 308—313.

Powell, M. J. D., 1972a. Minimization of functions of several variables. In: J. Walsh (ed.). Nmnenenl
analysis: An introduction. Academic Press, London and New York. p. 143-158,

Powell, M. J. D,, 1972b. Problems related to unconstrained optimization. In: W. Murray (ed.)
Numerical methods for unconstrained optimization, Academic Press, London and New York. p.
2955,

Rosenbrock, H. H., 1960. An automatic method for finding the greatest or least value of a function.

Comput. J. 3: 175-184.
Sargent, R. W. H. & D. J. Sebastian, 1972. Numerical experience with algorithms for unconstrained

159




optimization. In: F. A. Lootsma (ed.). Nurmerical methods for non-linear optimization. Academic
Press, London and New York. p. 45-68.

Siegel, S., 1956. Nonparametric statistics for the behavioral sciences., McGraw-Hill Book Company,
Inc. New York, Kogakuska Company, Ltd. Tokyo. 312 p.

Spang III, H. A., 1962. A review of minimization techniques for non-linear functions. SIAM Rev. 4.
343-365.

Spendley, W., 1969. Nonlinear least squares fitting using a modified simplex:minimization method. In:
R. Fletcher (ed.). Optimization. Academic Press, London and New York. p. 259-270.

Stanton, R. G., 1261. Numerical methods for science and engineering. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey. 266 p.

Stol, Ph. Th., 1962a. Een meetkundige beschouwing over de niet-lincaire vereffening. Nota 138, ICW,
Wageningen. 23 p.

Stol, Ph. Th., 1962b. Het gebruik van schaalfactoren als hulpmiddel voor een snelle convergentie bij
niet-lineaire vereffening. Nota 139, ICW, Wageningen. 22 p.

Struik, D. J., 1961, Lectures on classical differential geometry. Addison-Wesley Publ. Comp. Ing.,
Reading, Mass., London. 232 p.

Swann, W. H., 1972. Direct search methods, In: W. Mwray (ed.). Numerical methods for uncon-
strained optimization. Academic Press, London and New York. p. 13-28.

Tornheim, L., 1963. Convergence in nonlinear regression. Technometrics 5: 513-514,

Walsh, J., (ed.), 1972, Numerical analysis: An introduction. Academic Press, London and New York,
212 p.

Wilde, D. J., 1965. Optimum seeking methods. Prentice-Hall, Tnc., Englewood Cliffs, New Jersey,
202 p.

160




1 PROGRAMS 1.1 Technical information

L} THIS PRADSRAN IS DEVELOPED 3T PH.TH.STOLy HEAD SECTION NATHEMATICSs lii!'ll")l'(
FOR LAND AND SATER MANAGEMENT RESEARCH) 11 l“ll‘llﬂ- n.o.m 3% WABEM]
A UPDATE 5§ -lllllll'l‘ 1075

1
BY cmlm, OATA CORPORATIONs 215 MOFFETT PARK ORIVEs sumwuz. nuramu
o USE )% MADL OF 7-CHARACTER VARIAGLES. TRE PROGAAN IS PUNCHED In 026
Nﬂ.&.!wtwﬂ « DUTPUT 15 FOR A 136 CHARACTER LINE PRINFER.

m_on THE COC-4oud CONPTER OF CONTROL OATA HEDERLAND. ot
SERVICES DI¥ISION: 5 JiCoVAN MARKEML SHIJK [ZHI» THE METHERLAMOS
WEANS OF Tok WARC-[1 TERWINAL OF ThE TECAIZAL AND SCIEWFIFLC CamPuTER Eenven
OF THE GOVERWNENT SERVIGE FOR LAND AND WATER USE+ iZ WALIESINGEL+ UTRECWT,

41 PERTORMARCE OT 1€ DROGRA 15 UNDER SCOPE 1.3 (355.9 INSTALLED aT 49/08/731s
AS DESCATRED [N CPBEAMET SCOPE 3.7 REF MM B AND REMOTE BATCH
OPERAT NG SYSTEH: PUBLICATION NO B6OEBBOD 119793 5% CONADL SATS EORPORATION

Os MINMEAPOLISs MIMMESOTA SSh4d,

W SEVERAL PARTS. &L PROBRAN PARTS ARE ON FILES In
ALGOAITH® ROUTINES ARE FIAEQ EKCEPT FOR TrE DIMEN-
SIONS OF THE sws:nmr.o VAGINALESe T VARTAGLE PrbGAam BARts CoSlaT of Th

CondETLON FUuNCT AND LTS DERIVATIVES MITH AESPECT TQ THE

YARLARLE 'PACORAN PARTS ARE USED AS VPOATE COMDECRS.  GCUPE 1u3 URDATE sYarEm

AN 1S USED TO MAKIPLLATE THE LIBRARY FILES T) LINK THE PROANAM PAATS.

i|
ARRAY S[2ES ARL DETEAWINED wiTH THE AID OF THE INTESERS MENTIONCD BELON

NUMBER OF DIRECTIVE CONSTANTS LN HEW FUNCTION  CoMUHBER USEA. ELSE Cuml
NUmBER OF ?IRMEIEIIS IN NEW FUNCTION PENPAR
WMBER OF D

HURBER OF OISENED N‘AHMLES MuMAXVEC

SECOND DERIVATIVES USES Tal= IMQ)s TalHs (VESI,
DEF INE P1=P, nl-n- ﬁl'll CPLECPs  IFIT.ES.IN-) THEN PlanisgislPis}
FROW THESE CALCULATE THE INTEGERS SrP~1 AND (PagsP/Z

TNEl!! ARL WO RESTRICTIONS IN THE PROGRAM WITr D(SPEC' T "( MMIEII! C- Pr W

Ms HOWEVERs TuL TABLEAU OF PARTIAL SOLUTIONSs PRODUCED
LISTING IFOAMATS 35, 37 aNO 25) AND THE PARAMETLR PERHUI’AI’IM "AILE! nonuun
IN SUBROUTINES INITL {FOAMATS 123 33 M aLoecK lfaﬁul‘s hi AND &

IVE A PAOPER LAYOLT FOR 30 FARINETERS AT HO5T. COMBIHATORIAL SEARCH I! ron
I'HE FIRST |4 PEAMUTED PARAMCTERS AT NOST - OIMENSION KrAS=la 1M SUBM

USED IN ENTR¢ COMBIN AHD FORMAT 527 - . FOANATS 5204 S21 AND 5!2 nu

'OH 30 PARAMETERS AT moST.

ARRAY Sll!! OF VARIAGLE COomMON DIMENSIONS AAE (SEE APPEWCLIX 1.4.1)
SCOMDECK Dvid
DHMIN NPIvBlFJ-KMﬂIFIvMNElFlv:mIP DELTALP) « STDEV 1P}
DMMGH HA LR AT 1) + ANORM (D) sBHORM 10D o TP (R} 4 P 183
oMo vl:l.cnm.r:tciml-ratawnrocnl TORS AN
COMMDN NFLECIPY ¢ MLBI(P) s AUBLR ) v TB(PY T A INv#) oFAZ
COMMCH K INsMI s ACISeP) s XHALISoP) e ACOSNI LG sP3 o I LEAPY
COMMDN TRAR (C) oM CGrQ1 2 XM (G sFARIND CPLEsFOPAAIPLSPLY
TOMMON FAFRAIPIoPIY s FFAAMIIRL) »FSS5 (ML s SURVTOT{P 1) o CURVBED(PT }

ARRAY SITES OF YARIAGLE DIIEHSJWS IN SUBPROGRANS ARL

FCOMDESK DIMINITL DIMENSION [5TAl

SCOMDECK DIMFNCTN  DINENSION cwnrcmln:-rnclm

PCOMDECK DIMDFDA  DIMENSION CIP1+MIGH . YDC (NI ¢ FELE M) +OADERED (P) o [PERM (P}

SCOMDECK DIMDZFDA  DIMENSION CIPLY oF RARIP]) sHLA. u.tr.rn.ru.cmn.rocmn

BCOMDECK DIMWAMED DIMENSLON H Q) ~»CHORM [GH+COSN |

SCOMDECK DIMSGLVE DIMENSION CIF)+SOLNIRY l[lPl-llt’lcCNfINEOSIW(DD-DlﬂI

*COMDECK DIMHOWA  DIMENSION BIPI-EUD ISTRRIFIFTALT (M) oFOC INF2TIFSS (P
DIMENSION OCURVE(PL

SCOMDECK OIMM1N DIHENS1ON (slﬁllv"ﬁmllvf.l!(!ll)-I’.f!!l!lhnnl“iwll
OIMENSION CRCTNIR} p1AKIP

*COMDECK OIMLIST  DIMENSION

SCOMDECK DIMBLOCK DIMENSIOM

SCONDECK OIMOACK  DIMENSION vl

SCOMDECK DINTAACK DIMENSION

SCOMDECK DIMLIPER  DIMENSION

NPT

3
B IP12CCIF) aDDLPIEELP e 1TEL (M)
QTHER SUBSCRIPTED VARIAGLES MAYE FIKED OIMENSLONS AwD MEED NOT BE WPDATED.
"
INSTRUCTIONS FOR USE OF YARIAHLE AND PARAMETER NAMES WHICH SAE OB LBATORY

MALN PADGAAN NLY INITIAL PARANETERS TO BE DEF INED
ON PARAHETER VALUE CARDS BY AR

QBSERVEG FUMCTION VALUES
[NOEPENDERT OASERVED VARIABLES

weUKR ] s MPAR)
SUBROUTINE READ

0% (ThalalsNBiTh

KElyh s IwloNDATA
JaZeMARVED

Elledl 15 WORKING FIELD FOR

YOOS[1) AND CANNOT BE GSED.

WeEN, DRTA ART PUNCHED O 11))%0ATA

PUNCH CARDS THE FOLLOWING ROUTIND

CAN BE USED IN *COMBECK RODAT

WHERE FINALLY THE ACTUAL WUNGER

OF DATA NDATA=MIN IHEATASI=1}

-0
1800 I=I+} 5 READIZyZ) X4L1+21,708840)
IFC1.GT.NCATAS 40 TO 99§
IF(EQF L2 vio.lnw
%9 CONT S
FORNAT {2F 5.0)
NDATA=I-}

~

SURROUTINE FACTN CALCULATED FUNCTION VALUES
PARAWETERS TO BE F

INOEPENOENT QESERVED VARTABLES

ul;-)p-lll._na
JEZAMARVEL

Tub TYPES OF FURTHER VARIABLES IN
COMMON STATEMENTS ARE AvAILABLE LPAR L) simh 225
P i1

FOR whlCH THE INTEGER € I5

TO BE DEFINED (JF NOT USED, Cxlr
FOR IMPLICIT FUMCTIONS K(lsl) CAN
BE USED A5 STARTING VALUE FOR
ITERATLON OW YOLCLI)

VALLES OF FIAST OERIVATIVES

SUBRQUT INE DFDA

FAIIsKL s [l sNDATA
KItKZtaas kP

FOR PadPAR FIRST
DERIVATIVES.

FOR NANES OF PARAMETERS AND
VARLABLES SEE 51 FNCIN
FOR IMPLICIT FUMCTIONS USE

VALUES OF SECOMD DERIVATIVES

SUBRQUT INE DZFDA 'Llll-‘llcl-ldﬁl

KNeKZe o,

Ot Cpal ’GP'UIZ
SECOND DERAIVATIVES
FOR NAHES OF PARAMETERS AND
ARLABLES SEE 508 FNCIN

v
FOR [MPLICTT FUNCTIONS VAL YCLCASS s Lol ,mBATA
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THE USE ST CERIVATIVES OF THE COMDITION FURCTION [S OHLISATORY AS THE
umums IN THE PAQGAAM ARE BASED ON THEIR AVALLAMILITY.
THE uSL OF SECOND DERIVATLVES OF THE COMDLTEON FUNCTIOW IS QPYIOMAL. THEIR
USE THEQUSH ALL SUOROUTINES IS GOVERMED MERELY @Y ThE CaLL STATEWEMT IN THE
MAIN PROGRAM MLY.
JI)IIIHAA. TIWE To REID THE ENTIRE PROGRAM ON A MARC-I1 READER aSOuT 25 WIWUTES
TOTAL TIME FOR UPDATE 4MD CONPILATION [OFTaZri=d AMOUT 75 DCC.5v3TEW SECONDS
E REOULRED TO PRODUCE A LIST OF THE MATN PROGRAM AHO el
T 45 WINUTES UM THE MARC=IT TERMINAL LINE PRINTER.
31) _PADGRAMS ARE COMPLED UNGER FORTRAN QPT=2 COMPILE WODE. DEFALLT FI1fLD LENGTH
fwi LOADIMG CAN BE TakEM P60D0{ACT) . A REQUCTION OF FILLD LEI!Q'H l\' KHNS
NEDUCTION CONTROL CAKD wiLlL 8€ HOMORELD FOR MOOERATE SIXED P
a2t suenuun:ut SUPROGRANS ARE I:I-I.LED BY MAIN PADOAAN MLV, ws"u-cr:oul “ror
APPLICATION ARE GIVEW 1M 5TOL 11975+ APPENDIX 1.5) THE DEFAILT SLSOMITHM IS
SS-HESTON MITH STEP LEM‘»TH DP'III'IIITIDN
132 PARAMETERS PRESENT IN THE CONDITION FUNCTION CAN 9E PERMUTED Sr PARAMETER
PEAMUTATEON CARDS IN THE MALN PROGRAM MLV, GAOUPING OF PARMT{I‘I! 13 ACHIEVED
BY USING THE PARAMETER GROUPING CARDS 1N WLY WHICH ARE Fi
NPART = PARTIAL PARANCTER vE:lui Ta DFY'II‘HED
NPAR 4 NUMBER OF PARAMETERS F WH]CH HDAHAL ERUATIONS WILL BE SOLVEDs
MFDAMAT [ON ABOUT THT HUGIERIC-II. PROCESS 15 DBTAINED .
HPAR = TOTAL WUMBER OF PARAMETERS THAT OCCUR IN ThE cmlunou FuMcTION

Jal
QUTPUT OF INTERMEDIATE RESIN TS CAW BE DATAINED BY CHAWGING THE ﬂ!luuu VALUES
OF THE QUTPUT PARAMETERS, Tnls CAN BE DOWE IN maIW PROGRAM MLV
CHEOSING [NKImlne 7m[NK#m) ANU CHANGING THE OUTPUT WARLABLES IN I’D( ARGUMENTS
OF THE SUBROUTINES. UNDER CONTROL GF OEFAULT WALUES THE OUTPUT OF MARAYS
WHICH DEPEWD UM THE WUMBER OF DATA 15 AUTOMATICALLY REDUCED TO MENINDATAVSE).

EXECUTION TERMINATES LN THE FOLLOWING CASES QECAUSE OF AN ERWOR)

SUBROUTINE INITL STOP 10 COWMON STATEMENTS [N MAlH- SvD SUBPROGAANS
HAVE JIFFERENT CIMZNSIDNS OF ARAAYS, OR
CONMON CARDS QUT OF ORDER.

STOP 11 WPARTWO. PARAMETER PERWUTATION CAROS [N HAIN
PROGRAN HLY NOT IN PROPER ORDER.

SUSRCUTINE READ STOP ¢  WUMBER F DEGREER OF FREECUM (HBATA-HPART)
LESS THAN ZERD. NUMBER OF DATA INDATS) HAS To
BE CHECKED,

SUBROUT INE FHCTH STOP 30 INMITIAL PARAMETER YALUES OUTSIDE BDUNDI.
DEFINITION OF BOUNDS AHD INTTTAL PARAWETER
VALUES IM MLV SHOULD BE CHECKED,

SUBRDUTINE DFDA STOP 44  LEWGTH OF VECTOR OF DERCVATIVES (9CALE Fat-
TOR) EdUAL 1O ZERD, CHECK FINST DERIVATIVE
FORMULAS It SUR OFDA OR CHAOSE NEW INITIAL
PARRMETER WALUES 1IN MAIN PROBRAN NL¥.

SUBROUTINE SOLVE $TOP S0 ZERD DIAGONAL ELENENTS OCCUR [N THE WATRIZ W
OF NORWAL EQUATIONS, IT IS ALSC TESTED
WHETHER 2£A0S OLCUR DURING THE MUMERICAL
REDUCTIEN IN SDU:I.- THE HORMEL EQUATIONS.
MATRIL SINGULAR: PARAMETRIC CUAVE OIRECTIONS
PROBABLY DEPENDENT: SUPERFLUOUS PARANETERS
CAN BE PRESENT IN THE CONDITION FUNCTION.

SUBROUTINE HuNA INFORMATSVE CPTLmAL STEF LENSTH 15 Fouwc TO BE ZERO IN
'FMIE C!)NS[CU”\I( EPSLES. CORAECTION VELTOR
PROAABLY FERD 04 ALL PARANETER vALUES TDO
CLOSE To PARAMETER Iﬁlﬂ
EAECUTION TERMINATES IN Nllt PROBRAN MLV AT
STOP 1 (SEE BELOW).
. DER STOR 1 {SEE AELOW).

SYBROUTINE # STOP &0 SUEAOUTINE HIN Tuh TINES IN A RO ENTEAED
WITH STEP FACTOR (EPS) EOQUAL TO ZERC,
WINIHA IN DIRECTION OF SEARCH CAM OCCUR. Use
A WRITE OPTION [N THE ARGUMENT OF SUB8 WIN TO
INYESTIGATE THE [EPS-5Q) AELATIONSHIP.

SURROUTINE HIN STOP &) IH TwD CONSECUTIVE ITERATIONS THE S1oh aOF
THE DIRECYION OF sum:u cuun(n 10 carAln A
MEGATINE SLOPE AT [PS NDICAT ION FOR
4 SPECIAL ERROR. USE unlr! a-nw SEE 3TOF S0

SUBROUTINE L INYPEX STOP 70  THE VALUE OF THE INTEGER EWD THAT DEFINES ThE
HUMBER F REPETITIONS OF THE TOTAL F1TTING
PROCEDURE WAS TG AE GREATER THAN OR EQUA T3
2. REDEFIME EHT In TWE WAIM PROSRAR MV.

$T0P 7] NUMBER GF CYCLES T00 SHaLL TO APPLY THIS
SUBROUTINE. INCREASE VALUE OF NCTCLES DN
MALN PROGRAM MLV.

STOP T2 COLLINEARLTY OF AOINTS. HYPEABOLIC AND EX-
FONENTIAL SIMULATION CAN WOT BE PERFORWED.

EAECUTION TERMINATES IN A NOAMAL MAY IN ThE WAIN PRCBRAN MY WHEN THE
REJUIRED COWMVERGENCE CONDITION 15 FULFILLED OR WHEN TnE DEFINED MUSBER OF
CI‘CI.ES 15 PERFORMED. THE ALTERHATIVES AREF

PROGRAM NLY sToR ) DEFIMED NumaER OF C CLES MS BEEN PERFDRMER
(DEFAMILT NCYCLES E REPEATED END=]
TLIMES) WAXK [MUM m:u D' CYCLES THAT ¢am BE
DEFINED IN MoV NCYCLES=1S.

5T0P 55 CDSIME OF THME ANBLE BETWEEN THE DIRECT Ion

FARAMETERS LESS THAN A nz—m:vluso :wuulm
focram1 vaLye 0.00L: BEFIMED #Y O

L FTLLED QOVERSENGE CoMGTTIoN 18
inich oven THAGUSH THE SUBROUTINES BY THE
STATEMEMT NYSZ=ar o4, WHICH 15 DEFINED 1A
SUBROUT [N HOWA.

NMMBER OF STOP DEPENDS ON WHICH CONDITION IS FULFILLED FLAST. IN wv SPECIAL
PAOCEDURES THAT WAVE T BE CARRIED OUT WITH THE FINAL PARANETER vALUES CAN
BE INSERTEQC UEFORE THE 5TOF S5 STATEMENT.

mn
EXECUTION TERMINATES IN & HOAWAL WY IN

SUDROUTINE BLOCK EXECUT [ON TEAMLNATES 1M PROGRAN WLV IF THE
COSINE CRITERIQN In THE ARGUMENT OF 38 BLOCK
1CCRLTE [S FULFILLED FOR ALL umcxs DEFINE®.

MOOIFICATIONS TO TrE DEFAULT DECK RETURN 10 TreC CALLING PROGRAM AND CFECUTION
TEAMINATES AT 5TOP | CR STO® 55 In MAIN PROBRAM WLy RESPECTIVELY.
8

uul?\ﬂ STARTS wiTH SUBMCT HEADING nlun.n ln.o- THE SECOND Jo# SEQUENCE
ABER 38 SUTPUT 0F FROGRAX TEXT IS SUPOR
Ith MNOER CONSBDL OF OEFAULT wALUES Slan o8 TEARINATION PRODUCES 4 SUMMARY OF
HUMERICAL AMD STATISTICAL RESULTS OF THE FITTINO PROCESS. UmOER G104 |
COMTROL THE PADCESS CAMAT BE RESARDED 10 B TERWINATED. HOWCVER: WOST
TrE IMFORWATION 480UT THE FITTING PROCESS IS AIVEN [N TRIS CASE ¥0O.
200 'mls lllonnu CONTAINS ALGDRLTHHS AND METHDDS OF WHICH THC UKOERLTING THEORY
I8 GIVEN IN STOLs PRILIP TH. 1975, & COMTRIBUTION T THEOAY AND PRACTICE OF
NOHLIHEAR PARAMETER OPTINIZATION. PUDOL» WAGEMINGEN» THE NETWERL aWO3.
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1.2 Default msin program NLV ‘ I |

n - -t
SEfaLT DECK MALN PRubiin LY WETn PALAWETER PERMUTATION CAROL Fog A FOUR P

TER CONGLTION FUNCTIGN. CARDS THAT HAWEL TO BE REPLACID Ape DENCTER ' . .

Y = (6 THE FINST COLUMN. SEE EXPLANATION 3 SECTION- 33 .

AsUNMODIFIED DEFAULT DECK FOA WAIN FROMRAN MLYe2% . ’. N .

PROGRAN lI.\‘“w'lﬂw-lﬂlilmlifﬂllﬁllﬁllv'ﬂﬂ
oM n 3 INTEGER ‘

oINSEAT COMOECK DYAR (GARD ) = T)
nIWSERT COMOLCK DFLK  (CARD @ = i¢)

WpANE 4 B WAXVEC® ¥ 8 WAXDAT= 26 & Wded 3 AllisEEsl, KT MY

CML DEFMRT i .
SNCYCLESSLB/ENDA/ 1NN 30 74 98 T/LSURRYEL/NOUTF N1 OF 1 DFF 21 RDRF LR/ COBERL TR (27 ICtR) ' -
SMEOEF [ME DEFALLT vALUES LF DISIRED .
Mt NS e I SEIssEsLIEsceEs AN ERERR RS R LARTEEE e .

- IHITIAL YALUES: BOUMDS aND PLIMITATION OF PARLMETERS e ; .o

“ow - o e - - - P

=

=INSERT PARAMETER YAMLUL CARDS FOR Ml WPAR FARUNETERS
SINSERT PAAMMETER GOUNDARY Camps IF MECESSARY .

3 m ) . e '
x-lvl S IPOLIE L PRI bR T . v
el 4 [Pie 2 & SIPIKIIe 4
Rexel 3 Isdxlie 2 3 SIAIK e [N
Keftel 3 IPiKIe & § PIIPIKHheK ,

NPART = K 1] P
NPAR K 2 . .
WA m K 3

St mamcamEEEIEIsmEEESEEEEEesEEeBTEEEE EE R EEe .

o HEADINGY THITLy BEADs WOTLCE] THROUSN Z FORMAI e .

. - - i
oL WERDENS N
CALL INRTL .
CALL READ ¢1r1+HOUTRD} - i
ThES » '

L8 IREP = IREPeL 3 13m3 $ IFILSUMAY E. 1) IX=? - ',1]
HotLCE | ¥ MRITECIde2) MOCLE 3 QO S K » Jesrdlr L
BAKI=AALL K mALK ) . }

|

T FORMAT(LHLp#een. *+3START OF CYCLE mlu bl E

B T L L T EEFE N R R T , ]

o asoni e srnf.nsnn e i

e - - e - ses s s - [ .

[ 37 merolyewcrats
ae MCEuNCe)

CALL FHCTH (As] 1304 YCLCAYOCAY ) s HOUTFN)
CALL OFDALA N TELEAs TOCAS 11 | o SOUTOF 3 .

IASSOA0HA+ YOLLAL YOG AY £+ MOUTORF ) . o
CALL WAMEG{TOCE s ANORN. L v e HRs 111 0MI2} .-
CALL SOLVE LhoLHELTAWEART) . N

i

G0 TO 30 $  MOCLL=NOCLCeL

[i
CALL PUNCHIS} (81 1] . [
sToF 1
4 CONTIWUE ‘
STOP 5%
EnD
»n
Al EXECUTABLE DEFAULT DECK [5 OBTAINED AS FOLLANS. ISEE M.SQ APPINOIX 347 :
*INSERT DONDEX DVAR .
BoEAT AT THIS FLACE SCONDECK DUAR ISEE MPENOIN Lubul FiR CONPLITE EAMPLE} ‘
A COMDECK WITH THE SAME DINEWSIONS AS LSED [N THE SUOPROBRANS IS OBLIGATSRT.
“INSEAT

CONDECK DF A
MEERT AT THiS .\.Ml SCOMDECK DFIX ISEE APPENDLA Lod:) FOR CONPLETE ERAMMLEF
lltxﬂlt DEPAULT i
RED CHANGE OEFAULT YALUES HERE.
'lm'l PARANETER VALUES
IWBERT AT ThHiS PLACE CARDS FWAC l!slﬁ [NATIAL WALUES TO ALL SARANETORS
PRESENT 1k THE CONDITION FUNCTION, h
SINSIRT PARMLTER BOUMDART VALVES
BOUNDE 0w THE K=TH PARAMETER CAN BE QEFINED BT THE FOLLOWING STATEMENT1 -

ALBIKES =.9PE+3% §  AURIKES ,39E+%99 § NBwNB+4L 5 [BIMBEs K . .-

OMLY FHOSE FOR FARSRETERS Wiiw FINITE BouNE WEED BE USEDe THE EXMbE S1vim
DEFAULY YALUES, AWy ORDER AnD MNT NUNGER Fiom 81]1mkan [y PERMEYTED,
AMETER DOUNDARY CARDS CASE

BE PERNUTATED 1H THE PARMNLTERS AmE.
SFARRNETER VALUES AND GOUNDS THAT DEPEMD oM TWE MASH]ITUSES OF OBLERVED WAL '
AN BE DEFINED AFTER OBSEAVED #ALUES HWAVE BEEM READ. AN ELAMPLE WOILD REAL

CALL mEAD (Lsd reQuTROM

ALLP  =YBORILI*Ls

AMEIeTHISILY 3 AURI)Ie JSHERR & NBsNEH] 3 (BiNBEe )
INEF 2 & R

F SECOND DERIVATEVES ANE PAOGRAMNED Awd USED, THE COMGLETE MESS(AM WATRIX
AT MR

b DEF 1HING N8 3! -
AFART FAGH THLS uSE OF SECOND DEAIVATIVES THE BEFAULT vALUE wilnéd PERNI
THE USE OF SHE APPROXINAT[ON OF THE STEW FACTOR AL FOLLOWE

IF (HOCLE.BE . NCYCLE) 40 TO 36 8 CoNO0LE+] I
KeSESY -ﬂt’:.m-m“.ﬂ'-!-ﬁml =3 ; *

Wo SECONS DERLVATIVES ANE FROSRAMMED IF THEY MILL WOT BE OSED OR WiLL
Of SRIPPEDS THE CALL O2FOA STATENEWT HAS M OF DELETED DMu¥.




1.3 Subprograms in UPDATE creation mode

DECK

WNITL
SUBRDUTINE INITL

REM. W
INTEGER EMO
*CALL DEMINITL
“CALL
CALL OFIX

G0 Ta 13
ENTRY DEFALLT
IF OEFAULT VALUES ARE CHAMGED CHECK GUTPUT FORNATS 12414318+18

WOCLC® |REPENCENCYELSEL

Ifll:!.(n.lu)l 60 TO S«

§  WRITEID:58> Ai})sCK  §  STOP 10

55 HNATIIJ{ N #CK.NE A LI}y CHECK COMMON COMDECKS ON FROPER Illil)(li'/l

Sb FORMAT(IN E1e.50 4 IT LAST COMADM VARTABLE Oh COMMDN CAR
*0 NO LS CREA(1) W] El“.!l/lﬂ ®STOP L0 4INITLIR:

54 CONTINUE

00 & L=lewPaAR

NRINSUO(U-I.

Nﬁlllsuliltllll 3
NCYCLESmL %  ENDm $ TN IR

n 1N AT LSUMRYR]

NW'IRD-DIIU'FN-NGUIU"NWI’BZ('M‘FL' * NDAII-SNCOUN"
HOUTFLaSHNDATL ADa
COSCRIT=1000. s Eﬁi!sf‘!?i--lol 5 EQ5".80650
l. 3 PNsRPa,l 8 RECI-REC2+.0
=&
0 IC(DIIUL
1 C’!R!I) -lolﬂl
INITIAL VALUES 4RE GENERATED [N THIS paaT
15 Continue
MANCYCL=0
00 6 Imle2%
& m]nsmtn-urm{:ll-n Q
LATIME=SECOND LS 5 NRINSUR () eMRINSLB (L) =1
HUNBR -:um:u-wsnﬁuna
WLTHOa0
NTaNPAR+]
DO 3 T=l.HAXVEC
3 BOTTORII}=TOPITI=.0
Iuls)5
KAETAL]
A CRLNTA[I*0.0
[ L THPAR
AALLsTr=atl]
KF1AC (1) m
HAII aHBALlal, 3 DO 10 Jel.NCYCLES
NEARTX I sMPRAT
IPX o Ii=LH,
ACOSN1Js137.0
10 AMAL Iy DraidLFAL L.
WRITE13+21 MPAR-NPAR HPART +WDATA
2 fﬂﬁ!l'llllﬂlnﬂll HUMIER OF PARAMETERS HPAR =

%/ 1H ATOTAL HUNE
WPdR -tlilln ETOTAL NUMBER T! FITTER L2
INISIOTAL NUMBER OF DAT. AThai [4//LH SHMIER OF
* DATA wiLL BE COUMTED IN SMDUY!NE READ IF HDATA=XR/A)
WRITE{)+20%
20 FORMAT (In !"'INI". NEID'"DJI
IF(HPART GT,0) GG T
WRITE(Ds21) s 5 DP :Il
21 FORMATI//71H ANPARTZ0: INPROVE ORDER OF PARAMETER PEAMUTATION CAAD
*5 IN WMAIN PROGRAM MLYS//1H #5TOP 1) (INITLIMY

ENTRY HEADING
CPTINERSECOND IST) s
[TERT>L ] 10 &3
ok LTEKT=O
Iil[[l! 2
L] 1

HRINSUBI | b aNR I NSLELED + |

N:YCL[S-MBI]A-EPS-]EUI-EII!-EFS(!T-[I:(E)

HIUTRD «NOUTFN . EQ5 ) [t KT e NOLITON & IC |50
Ll lma.nﬂu‘lo BNy LC (8 s HDUTFL AP
Il!nil]-lll LSUMRY +RECT 4 COSCAITRIRECZ

BOT® IHNY
Iﬂl'l(l]-l!] NEZ 3 IF(N02.ERd) WRITECDV2T1 NOT
29 FORMAT [|H+85X#MATRIA NOZASAAUSEDSRA (A2 0 /BI28 198
Z7 FORMAT [)H+ 9B3,A3)

12 FORMAT I uln:lzrnvuuts OF SYSTEM FARBMETERS DEF AL’ /  usED
* IN THIS Simem) A7) WNCYOLESe ) D /ilbv’xim"i mSHCOUNT
. ch.louz;s = SAE10.E0INALCILI w1 OL (ALANKE  /PZANIDS IH

=1 I!I.l--fﬁ& EPSESTe 000 FOELA A IRRICL2) R 1OLFPRP /BTN

I!:

1e ) rnlnri]u TZAANOUTAD =0 IN0ATE} sRl4fIBIRTCIII = LsIRR/FZEA 191
=7 /Rl SARNOUTI slesitRnEas s i L

+9UAICI 61 ALGLASKR/F2XALE Z/1H RINKT & 7 nu.l;nmurw - 1

®  SALSLAFICISImIOLAYRAZAZEAND]

]g rom"q“ AlMnd = T /#[h SXEHDUTE2Fe ] o4
10869984 1€ 161 = IOLAPAR/PZARI0/LH r?nmmvrl.
]

AvAN w
FNDATA /014

e FRFL0.6)
18 FORAATSIN sLSOMRY » | /EL4:TLO1RECE 0.0 seFiteLrLn T2
FRE1D ke 10KNR XeRECZ &« 0

*RCOSCALTE 1030, .
(] /P10 0S1H L35Euwes /o LHOBIF unlu > K DATA  WILL BEF #
® COUNTED IN REAO#/LM SIF HOUTAD= ¢  WOUTAD wILL AUTONATICALLY BE
SEQUALLED TO MININOATRASSOIR/IH ALF WOUTFL* X MOUTFL MILL AUTOMAT)
®CALLY BE EQUALLED TO MINIHDATA5018)

IFINE.EC.0 WRITELD-0
13 FORMATI/ /14 #ND souuus WAVE BEEN CEFINED BEFORE CALL HEADINGW/}
IF (WB.EQ.0) 80 10
WRITE[32T)
17 FORMATIZ/IH & JEGXEHANERIORALOWER BOUNDREXASTARTING VALUEASIAUPPER
= BOUNDA/IH B9 idas) /|
DO 19 IR} sMPAR
WRITE 13+23) FanAMELT) 22 (1)
IF 1M BtL).oT, 1E+801 WRITEL3 24} ALE
IF1AUB T LT, ¢ 1EXT90) WRITE(I) 251 AV
19 CONTINUE
23 FORMATILH L2v4XaA10+22K4E13.5)

26 FORMATILH+LERLENS, Sed  =n)
25 FORMAT(AMeSiard =RE14.5)
22 CONTE

NUE
17 INRINSUBL14) sEQL0) 6O YO 0
CALL BLOCK{I0eDs 0+, D)

w2
%0 iﬂ]l’(lj
4l ramnum N0 BLOCKS HAVE BEEN DEFINEDS/)
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1
F
3
"
5
6
7
]
)

42 TOMTINUE
<
c
INEN-DI1E(1AUII S CLOCKsTIME(TAIZI) S CPTIMEaSELONDITA LI}
WRITE {32503 WRITEIDS1} & WRITE(D.S2}
5¢ FORWAT (1K

51 FORMAT(IH THNSUBJECTRT45ADATERTAINTINESTTI ACP-SECATASAMISED FORE /)
52 FORMAT (1K #NONL INEAR PAIAIOC'EH OPTINIZAT JON

43 COMTINUE
IFSITEXT.EQ.00 &0 TD 130
PRITECIe 197 ISWRITELDn 19B) SURITE 137 198) SURITELD
WRITE (3« 1982 SWRITE (D4 19803 SURITEID+ 199 ) $WRITE (D
197 FORMATI7//1H 9588 LS00
|aa Foﬂuﬂuu IXFSIABXY
FORMATI1M IKGB (X80} 77/}
I!e FORMATI LH IX#SREGKIRA/IN SAASRIESHA CONTROL MPMEI’(IS VIEN 1IN
* FUNCTIONs 1F aNY -ut-ul /M vu- Ml‘-#

81 EWRLTE 1302000
6

HEADINGS, 0SE LII(LS “200" 1/u zoll

s
+ PHWEED III’H SUIROU'HDI

.
198 conrinue
IFAITEXTSEQah) 60 To 44

WAITEtTy34) {1+ EwlpNPdr) 3 WAITEI3.32) o I1.TelwPaAi
3% FERHHV]« PPERNUTATION OF THE FIAST NPAA PARAMETERSA/IHOA Mwiddl4
EH FUDIII'IIAN #1Puadble]
INPAR
119 [STAR{[}=sHmes,

WRITE(3s331 ([STAR{TS Iml HPART)
31 FORMAT (IR &Ku30A40

118 CPTIMESSECOND(FS) +  EATIMENLIwESTIME(L) +FS-5T
RETLRN

END
PDECK READ
SUBROUTINE READ

READD: [WRITED+LAST]

REAL W
*CALL WOIMRD
vCALL DVAR
wCaLL DFIX

CPTIME=SECONDIST) F NRINSUN () =N INSLBI2) v1

IF IMDATALEQSHCOUNT H NDATA=9999599

15Tdae]

ual'El:'Jnl
30 FORMATIL EQ

1F LI R(&ODllﬂlevll
11 CONTINUE

Q AEADS»#R /]

macesssEmeszearemasuezsanm
READ OATA TO YORSII1: XileZle AiIeX)r wav

Kilsl) IS WORKING FIELD FOR YOES(])
uan.s nn T 400

18 eELPRROATE % lF(NMYA.H-Sm M(LP'H
IF INOUTFL . EG.SHMDATAI HOUTFLxHD
IF (NOUTRD.EQ,0) NOLTRGEHMELP
§F (HOUTRU.EQ.0) MOUTRO=NDATA
IF INDATALGE.NPART) GO TO ) 1]
WRITE(3421} NOATAINPARTINDF  §
z1 FO?IATI/HIN #NUNDER OF DEGAEES DF FN[EM! < Os MOATARAISH
163 D.F.S#IS//1H #STOP 2 (REAGIH)

NDF-NDAYA-NPM‘H
NPART
1 CoNHNuE
00 12 [x1+HOATA
12 A(I1)av3E5LE)

IF CIWRITED.E#.0) GO TO 13

WRITE DATA L<1,LAST)

-EALL urDarA

PROCEED wiTH SUBRGUTINE

13 ConTINGE
wRLTE(Isak) 4 WRITE{Ds4d]
wie TORMAT (/771 Arital (A=p)sedORdedSaib=k]dont}
«0 FOAMAT[In «Xg INTTIAL VALUES PARAWCTERS AMO MAMESIZXPPERMUTEDS
BLIRANAMEF/IH TORAMND PARTIAL (#1d/)
WRITEIdvw) HITE1Dabl} L1oXAIhe T b enARELLY oLy IPCINaATITPELEYy
PISTARNAHELIR (D) 2o LRI} o ImienPARTY

4 FOAMAT [IH 54X#TQ BE FITTECK/)
41 FORMAT (IH lJ-EA-EIh.s-nJ\'lln-m-]zh(u.s.zx.ﬂ-sx.uhlos
VUO’M‘Y]-G?-”AQI
WRITEC3eedl 11

ART

NPAATLI=NPART+L %

o Te 3
WRITEI3s0) 8 TRaNAHELL) s 1+ TRPCIp o ALika LR LTIy

HEAR)
X AL04 62 [Z24€18,5,9%521 0 14)
s FDRIAI’ElNDEEIiINI‘OﬂlAH\IE!II
S IFINT.GT.HPARY GO TQ
WRITE13.80 8 \lillElJ-le
HNAMECIP U0 s 1P ELY o LmNT o WP
FODIII’H»DEOA!CONST!N?S £
R1TE | 352 IfE(J-#ZI
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¥ OREERVEDsr sy

l arin ASOMARSIN o4 -
b/LH RIRsARLENSSSA wlEMTP L

S08/JH IR dkmi JOREI AL EAR S/ JH BXAT Ki
Illll!-lll” IIIP' ﬂl TRA] WETOWT 4-) o) Jhsedt
AR /LN

s_iﬁﬂus:usnl:‘j:u FAzA2IN23S

l
BrLH 2, ale Lo b L g
'C“lll!mll flT"lﬂ wnmuunu NII'WM!)'!“DM
l TACA/8JwIARS FIH SCOMMLETE SR, ¥ COmmECT b Ml

I'CNT'PE-IU-!.IW-W ToERe L} WRITE (LMKTs5I1
ll’“ll’ll'E.Dl -.“.l) ] TE | [mcFo 58+

& AND, WAL
WT-IB-II WRITE(L!
kpriOstn fll’“n. ORDERS.}
ll"lﬂ. TO TORAINAL POMEYW/T

§T FOURAL I/ LHORARRIGEON NOT AUTOMATIC S BY mEand OF A MREBGPIAOR Im.
oITIM PARMETER VECTORS,)

WRITE(IMKT 540
54 FORWAT | Lok sCYCLEMSARRERPRELIED [N B/8 OF /YOCASMESCYOLIV/AN #MT
lﬂl ARSARS| 19WTe 113
211 EPSR/)

s
3 ARAVD)=AACHOCLC D)
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CALL FHCTHIARE+0aSASAYE s Qs 11 ¥CALCHYDIF 18400

IA-- 1
I'FE EI)-SI nﬂn-mﬂ

)
IFIN'I

00 48 K=1.NDO

LF INAUT.EQ.0) 6O TO 48
IFINTYPE.EQ.5) G0 To 39
hdmpds, 1

do 38 I=1,MPAR

AMACT b =ARTHA(NCLLEs 1) 44 Ly
[FIKJEQe11.DRKAEQa 12D WR|
G0 Te &7

% 00 43 In1 MFAR
BANLY) mRALM 1Y

ru

o8 Adxdde,l

Do 8 [l Ll
a8 axatl) AL WLC-I)'II.-AAI'AlI)
IF(I Eﬂ.lla“.(.!ﬂ.iﬁl WRITE(INKT288)
AT ConlinuE

CALL FHETNIAKA»O4SOR+0: 14 YCLCAVOCALD1 0}

si=5a=s1za.8

GO &3 L=l NDATA
TCCARVEALC 1) =TCLCALT
S1=S1rYCIF{[) 042

»
w

DHe512/51

HEIGHT=.0

0O #a [2)¢NDATA

[ nzls»l-n(lmr-(u.onm-volrmJ--z

SHETGHT=SQRT (HE 1 G

ABaveescny (Sasaves
HELOW=ABOVE~SHE | GHT

v,

HEL OwZ:
LERGTHSS2~0EL Oud
SLENGTHWSORTILENGTH)
PROC=100. 'I!LDII!I‘UVE
:ru.znmn.uz..nl m 52
RATLIO=

52 nr;o-lnn.'suuﬁrnniovi

(LRI
JFINTYPE.EQSi WRITELINNT 1550 Mo 50ASOSAVE e SLENGTH OELOW-
SRATIONAROC K
IFINTYPE.EQ,6] WAITE(INKT#58)BE 5S8R 5SASAVE A SLENGTH,BELONS
CRATI01PROCHE0
o COWT INUE
5% FORMAT (AW T JA2E 1450 E1ToS0ELS.502F hen2 e 1120
98 FORMAT{1A FS.2s2E uaSeE1ToS0ELS, 5-2F 0. 2,F13.2)
NRINSUA (167 =0
:rmvw:.en S1 GO Te 50

TTE | ¥
el roﬂnutfrl» 23AWUSE A5 BEEN MADE OF YHE FOLLOWING VALUESH/IH «

RABKZHAMER LI XA INITIAL POINTASKATERNINAL POIMTF IGXEDIFFERENCE FEANR
=

0 92 ®=l lFlH

lfcmu A INOCLE oK) AR ELeN)

SED. Al
F (NAUT E Q- o A[hllmctL:»ll =RiK}

:lF(N-lor.En.l) WRITE [ [WeT (930 :.mhr:in.uu.-n-xlmﬁcl.c.n.Al'hlt

1F (NAUT.EQ.0) WRITEC[HKT4 031 K HONE K)o AIK) s KAINOCLCK) s ALTIR

CONT INGVE
53 FORMAT{IN 14450AL002AE19,8,£20.5:17)
60 10 50

% IF¢N.GT.1) RETURN
WRLTE{2+611 SQMININOCLLE#NOCLC
€3 FORHAT{/LA #50ARAELA.54 1N CYCLE MO.#[I/)
ChL mcwu.u-suA-uu.m.u.vocno.n
62 TT1HOATA
62 AlTvL]=2, o7 {LCALD -2l T0 1)
00 65 KalrHPAR

3

AR r=EA1L4K)
IREPTEND- L

€0 T0 SO

3 N TD I=LWDATS
ao 71 JalankPART

T APTAYFALLoJISOELTALY
TH ACI LIa2, aiR7e¥CLCA (]} H=YOBS (1)

50 CONTINUE
DT = 7

CPTIMERSECONDIFS) 5 EXTIMELZG)WEATTME (18} 4FS-ST
INKTIIRES'I % RETuAM
hgtling Ll 1143
uuouvw: LIAYPEK ILHE sH1sH2sNDaNCRITALISTH
INTEGER END
oAl Dimt
[lﬁﬂi]ﬁn VIS 51 PAIVECLS)
SCALL D7
*CaLL Dfll
c
< FOR APPLLCATION USE END.GE.2
c THE CORR(1) VECTORS USED 1M 1200 AWD 1300 ARE FLRST DERIVATIVES of
[ ThL PARAMLTER FUMCTIONS wiTH RESPECT TO TWE STEP FACTOR.
€ THESE WECTORS ARE TESTED IN SUBROUTINE MIN ON TERD LENSTH.
c FOR MEW CONVERGENCE SIMULATION FORMULAS IT 1S RECALLED THAT EPSy
[ SQAs AND KUK} MUST BE DEFINED BEFORE L RETURW TO ML¥ TANES PLACE
c

IFLLHELGELSD) G0 TO 1099
IFIEMDLGE-Z) G0 T0 7 5 WALTE{21@) END
& FORNAT{//1H #ENDEN]JN THIS SHOWD BE 2 2.#/IH #REDEFINE END 1N Mal
 PAOGEAN MvirsrTh asToR 10 L TnvhEx) ¢

0P T3
1 COMTINUE

J3.0RLIST.ER, L) INKEY & W)
nYPER CONVERGENCE S1HULATION
IFINCYELS-GE,NF) 60 TO %

Etdpl)
)

INKaT 3 IFCINKT
1 FORMATIZ/IH ##a8dE
Lk, Eo 1) G0 TO Libe %
]
€ WRITCL3sZ) NCYCLSINH 8 0P
2 FORNATI/1n AMCVELESRAL3E BT IT snom_o BEFTI//1M 4 INCREASE THE VAL
YU OF WCTCLES 1M THE HAIM PROGRAM MLWM/71H wSTOP T1 ALINYRERI®)

176

iz ’ u-:pn:mnu § E2e0 % [Ieniel

124 3 ESaferiPMEM(D) 3 ER€R+€l % E2LeE2-EL

125 Ed=.0 3 [l=H2+l

¥z6 O & eIl

12t & EIWLIEPHINITY 3 EIaEIeEZ S ENBeERER

128 IF (21 NE. 0L AND.E32, HE.2 0} GO TO 004

129 RITE(S) WLIELNZ EZANIENEZILER2 5 STOR 72

130 FORMATI/IH # N1&8K%E; PEINTASEZ) AIZREEIZRLIH
1 *3U12.€15,51 12 (E)5.50% POINTS ARE COLLIMEAR 30 EZL ANO/OR E32 < 4
132 /714 2STOP T2 (LIMVPEN) S

133 1086 50 T0 {1100+1 2001 1330 ) rinE

1% L1997 LikesLmE-T0 60 10 (119901299.1199) 4 ILME

3.

136 <

137 < 4TH-OEGREE SIMILATION OF COM/EROCHCE T0 FINAL PARAMETER
i z VALUES wlTH EQUAL STEPS GASED ON ML AND NZ

KL

140 1100 COHTINUE

141 WRALTEt3a10L)

162 191 l'nl?unnl»-snlu FOL THOM LAL B (N1} 2k

343 8/l “unERE ~|-ncu Huwal

243 “ntreaions -~z $ MeDINS-HZL 3

s 1E (NCYCLS LT oS! ANoHS

146 IriNCYCLS LT M3 60 1

T s =D CLr 2 2l L4 AU () e S UI20 018U (4e 3000

148 T Hv Wt IENTENE RN

168 ViZs))aitlarSing, 5 Uleslisul2e5imaz,

150 Vikr2)Es. 5 Uik IS 21 n [Seddnak,

151 ViZsalali(1p2) mh(3ealmlb, & Gl2eibmate

152 Ullediaza. § UIIAIE-30, & UIS:d1ms.

153

154

158 WRETE(, 1240 NIoNZoNIBsNa0NS

158 12« FORAMAT (/1M 1022USED PLRAMETER YALVUES ACCORDING TO CYCLE WUMEER NId
157 #/1n IKERRI1LouE20)

158 UG 119 I=l+MPART

15% U0 114 K=Ls5

1he NHNEM] 4 (K= 1P N2

183 116 ALVEC (K) =1k (HNN- 1P (11

142 SRITCCINGLZL) 121014 (AINEC (1 e 150

ARL[) BB ([3=CCCTI=U0ITIEE(TH
U ILe Jake S
SRCIE*AR LT} sy iLed) nRLVEC ()
LA LI =AU Ze ) PALVEC L)
CCUISCCLE) syYi 2 I wA1VECLH)
DRCI) aRD 1)+l s ) SALVEE (4
170 118 EE (I =EE (1) +U{5103 SAIVEC L)
LALLIwAM(]i/24. 3 BBIIJaBBILIA24. § CCLIvmCCiDI/24. % DOIDIm
OUILI42%. 3 EEAIVREENIN/24,

LFiINK.EO.T) GO TO 122
WRETEZINK 1207 NS
[F1) Fwn!llfln PHACRSOLUT ION'HOR I3+ 1328 NEAT FOUR EQUIDISTANT POINTS

un lJT lll NF!il
0% 118 FNSFLOAF (K1)
118 IIVEKZIK) nun-rmlasl1)-m-1:c|1|-rm CO{1IeFHaEE1T1I 1}
11T WRLTE(IMKr12L) LPSLi o (AIVECAKD 1KE 125}
121 FORMAT(IH [arELo.S1RE2D.5)
WRITE(IMK-L3L) (Telelsbh
WRITE{INKS112) (IPIT1aRA{D3eBBITYoCCOI)oDOCI12EE (114 )el (HPARTY
131 FORMATL/ W #POLYNONIAL PARAMETERS OF DEBREEF/IH Jaxdpw-4120)
132 FORMAT(IH LarE 8. TinEZ0.T)
122 EPS=). AuSOM [H{N5)
Up 130 = 1.muw
130 AC13RKACHSe
TEVIMGI2D) N5 iSoReER
123 VOFNATE/I" '50‘-50!1”!!13! ImIELS.S5H

NEW EPS vALUE =PELlT.5/}

¢
192 1199 00 151 [=1.NPART
344 1Ipily  § FHR2LeEPS
o BITJIE AACT)oFME(BB(11eFMD (CCLTNeFND (DD L[N eFWOEELTIIE
197 151 CORRILli= BBULI+FNT L2, #CCI TN eFNR {3 0001 J ) o bR, #EE( LI )
we . RETURN
mox HYPERHOLIC SINULATION
<
g:; 1200 WRLVELA:201) 5 WRITE (3200
B WAITE (20202 H1sHZHIsHLaNZaND
o4 231 FORMAT (1nvSUxKe~—-HYPERUOLIC B(k1aA(L [Nl sCr-0TERS(HI1-oors)
206 200 FORMATILh 4CA#~ WHERE TEPSIN} 15 THE n EPS VALUES QUT oOF

N FITTING CTCLES:
ur oeuat (/1

Z08 202 FI ZIH & RE2LAFTEPS (MINIHAFFA4CAVALUES OF PARAMETERS LSECH#/LAH
it et AARCTCLER# [502 1150 2224CTCLECRISAZI1E)
HH D 215 In1+NPART
) ALSEATHILIRUIIE 3 AZAXAINZIIRALI1 5 A3azmcndelpcl))
HH KIZ=ad-nz % hZlaAZ-al
Sin LFUINKEOW Ty GO TO 203
H MRITESLN, 20a) 1011 2€13E20E3:01 k2003
Sle 204 FORWAT(IN §3+2X03EN5.5¢18K
H O I iarta. oran a1 Ea 01 ve 10 216
H GHE2LeAIZ~EI20AZL
H IF (AUS LAIR/EI2) 1 0€, ABS LAZIZER1D ) GO TD 216
H 6B (1) =21V AIZPEI-EIZPAZISEL
H 8B{1)=BBI 1) fab
H £etl1-caazs iE3-c0Lly 1erEe-an i) 1 /E32
H IFLCCED) EQya) GO T
H Pt R B
H 0 215
M 216 ARTIITAJSOELTAIL) & BBIII=.0 3
e 215 CONTINVE
I IFTINK.EQ.T) 40 10 220
3 WRITECTMGR206) % WRITEAINK 2081
206 FORMATI//JH # K L‘SI’ AKX USEH'IZ!‘H‘F[EBGL'C PAAMETERS® 29
Lx ®AADACK SOLUTION BlKse
:: 208 FORMATIIM tl’li.h[LIH}S[]II!SlillElJlill!ulﬂllﬁl? Tug oM CISTAMCE W
3-NZ#)
14 30 230 |e]iNPART
4 AARIARI)SEGELN (~dBA[) vEY
1 2Ba8aR (1) +CC 11/ (=8B (13 1EIEQTY
0 CCCRAR(E)sECIH/ =i A [}4E 3022 8E32)
21 230 WRITECINKs207E IF L7 sXAtHILIPE17 1 AR(LF sBEC2sECIL) + AR BERLCCC
22 207 FORMAT (1w [3424re€15.5+ IKsILIS:S)
2 22¢ EPSSEDZ S SOARSOMININDY
2 GO 231 I=1/MPAR
5 2 ALy n L
28 RETEC 1»«.:33- N} SGASEPS
21 L-o To
F1]
3
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4
1299 l])o isl. 1=14NPART

B RCCE TN AHEDSEPS-LB LL) 2 48R0}
251 CORRLIIR=CCAT )/ [IEY+EAS=BLIL) y2od)
RETURN

1
c ERPONENTIAL SEAULAT(ON |
c .
1380 #RITES S WRITEC3.206) .
HLANZPNI o T eN2ebid
i rmnrumwnw--cmmmm. B =R ILIN) SCHERP (B TEPSIH) 2 mmsp L |
NCRITSHCRAT=L  § DO 315 =i nPaRl 15 i
ETEL L) =0 167 i
AJmRAINIIRIEY) % Az-umr-mm & Aduanind. [P UL}y 168 i
Adgra3-A2 3 uzu. 3LnaBeAl 169 :
mm.(n.n G0 T3 3| 17 . -
E NG 104 ) |Nl|-u.lz-sa.a|.nz.u in ! Lo
303 TFIAT2AE0 Lo DelH AL EBr bt 50" 10" 216 ] ]
. ersuau:u:.u.usueuum 80 70 26 1T ‘<
T4 :
< ITERAFIVE S0LUTION i
€ 176
181291=999999909%, H4 .
¢ 178
325 OT=EAP(=BLIEIZ) iTe K
BY =40 064 (A23-AZ14BT) /432) 160 Co
: 18
182
Tt 1 !
(e 184 -
«14.7=nCR 185
Iruuz-le:.e c.w.:rnln.u.as: 80 o 327 )
BI=182 AT i
T e . i
i . .
327 shtli=R2 1%
g::::n-ﬂnl[N(J)-ﬁ!l“-ﬂﬂ(ll'(!) :

1
lllHCIH:I[)‘EIP!-‘!]I'EQI

;:; :-l(ll-l3'ml’ll“ S #Biliel, % CCEeDy=-PELTANT)PERPLEN}

f“ll(.Eﬂ.Tl

IllFllI*oZDll N3 § WRITEITMK:I)SF MCRET
A} USEDE]ILXPEXPONENT [AL PARANETERSS 29

CYEY
[re(EI-£22)

CCCmAR 111 4CC1]) OEXP I Lrs{EXe2,+€32) 1

1 ﬂl'l[l;ilh!.?l TP KRNI EPIDY Yo RATEN BB I DM S0 1D}
.

307 FOAMAT 1L T1a28s%d |5, 5038, 215,51 1100

328 EPSREIZ 3 SQAsSCHININD

a3 lihl'll - .
3l lﬂ.!‘lllﬂ .
'l!ﬂllhl!ll NArJOA+EPS '
60 10 .
< -
139 oo 15[ ]tl‘lﬁlﬂf
1P
ﬂllllil’l-ﬂlﬂ!‘l!l'!ﬂ“ B
asi Williﬁ“lll‘lul 2
221
2zt !
c 23
399 WRITECINK.a00) 22 -
480 FORMAT L/27IH #essLIHYPES AQDserds) 223
RETLRN - ET1Y
o 22 *
CREATION RUN DECK LIST AS wAlTFEMs IF NEWPL UPDATE Yi.2 AILTAPS 12adbe I
OECRS ARE LISTED Iu THE DROER OF THEIR OCCURRENCE OH A NEW PROBRAN LIBRARY IF OME 1S CREATED BY THIS UPDATE .
TaNcsss  INITL READ FNCTN aroa Darpa ml:-! mﬁm
HowA WEiN Alse LISTING  BLOCK AR
ARLSE2IB QWAR oF I DENINITL OINFHCTM BIWOFDs  Dlubddds  Dhwesesdo
DInS vE DlWrowa  DIMMIN DINLIST  DEwpLocx Dlmgack  BIATRACK DEMLESEX .
EN E LWL WO EbfeD: RODATA MTDATA WO NPNCTH L]
HEIN nOFOA HOEMD2 HOZFOS
THIS UPOATE REQUIRED 33e008 WORDS OF CORE. -
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1.4 Condition function dapendent parts

CoMDECKS TO BE CALLED #Y ALL SUBRROGRAMS
COMDECKS Te BE [NSERTEQ IN MALN PROGAAN MLV

SDECK Adas 0208

oConDELH Ovan

COMMON 81 43e@t &) HANB{ 4}
MG

MANE L ) ¢ CORR I thuull R STOEN T &}
i

'
2121K415s %) +XHAIISS n.::mus. t 1IPAILE, &)
Bl 3¢ ShenM( 30 SheFAML FOFARL &5 &}
s SPaFFRANHT &FIFSST :wl-nnﬂou ) CURVBED| 41

T

EPMIMIIS) « SOMINCIS) o ASAF (15 ) yXDECT (LS} o ANOAMILS ) ehlvel (15}
CONMON NMRM (LS5 o KDELTACIS) sAALFALY ABETACIS) « ABARNNA [LSEL XSEOCIS)
COMMON WPARTAILS) yACOSRI1S) s ACOANT (15D o SCRLATA13) HEFSMEN 118D, L 1A}
CONHON MPART s NPARHT /MPARS MONTA ¢ HAKDAT + MAXVEC s N BOTYON IS + T0P (5)
CONMON ATOXYC s SGArSQBeEPSEST-MAINSUB (25) 1ENTIME (250 ~CPAR(2S) ¢ NG2
CONMWON EPSsEQS 1RNIRP Ry CUSCR]TF yHOYESL tHITESZ (NDYESINTEL4NYS21HYSD
COMMON HOCLCrNCTCLES sHETCL S o HE vMARCYCL v IRERSEND L SUMAT (RECLIRELZ
COMMON [MF s INBCT « THKS s RDUTRD « MOUTFH1 MOUTOF « NOUTD2F s HOUTF L s ME THO o £K
COMMON TALS)

COMDECKS TO BE CAMLED 87 SINME SUBPROBAAWS

'Cmft DIMINITL
bine nslnu 1s|'|m &)

SCOMDECK G JWFNC
D]I(NSIDOI El wbarCLCl ZokyroC{ 201

II‘NSIDI Cl 42 sH1 SEa¥GCH 201 -YCLCAI20H s CRDPERED 1 43 IPERMI &

DIMEMSION C1 AbeFARZL &) oH1 S1oIL (101 YELCT 201 )¥0CH 200
scomDECK D IwnknEe

GIMENSEOM M1 5),CNORKL S)1yCOSNE S).¥0CT 200
SCOMDECK DINGOLVE

CIME SIDH CL &) aSOLAL 41oE¢ &) .00 4)-CNI S13COSINFL 51401 S}
'colnﬁcx 019

lﬂNS[UN ot h)-(l ‘IIDIS"MI A1 FCALC] 200 aF 00 203 TS 4

FJSE 201y TUFSS{ 41 .BCURVEL %)
DIHEMS]OU CRCTHI «)elBm( a3
“COMDECK DIML IST

DINENSION AZALE ®).TOTZL1 &) eITALLTIL &0 TVALUEL 41
acaWDECK DTMBLOCK

CIMENSIOM IP8{S: «)rPBIS) &)eISTERL &)
SCONDECK D TWRACK

DIMEMSION VOELTL 41 ,UDELTE &) 081 ShavBAl 20}
ACOMOECK DIMTRAC

DIRENSION KAkl &1.¥CALCI 20).YDIFT 200
SCOMOECK O1M [PEN

DIMENSION aAl &1B8L 1 +CCT 41000 41 +E€0 43 0ITELL &)

178

1.4.1 statements

COMDECKS. TO BE CALLED 8Y SINGLE SULlmROORANS

*DECK EXSMPLE
*CAmOECK A INLT)

0 'ul‘ﬂ'ﬂn-lall
RITEL 322404

SCIL MOCSTUAE RETEMFEON CURVE L]

21 mli
109 FORAAT 1419 SSUBHECTAS L1 #9!
'fl" *501L WOISTURE RETENTION MIE' JANUARY L9TSH

lll FMMHII.N ACONMENTSE/LH plsdhvning
#COWMON DECK 408/0206¢d
ﬂllellll:S T = HOISTURE CONTENY IN PERCENTAGESY
I = LOGARITHN OF THE MOISTURE TENSLOW#
Lis I AND JACKSOM (119730 SOIL sSC. voL.
Ml\l ll’?l.l.iﬂ "0 DATA FROM ICW=iLAD. WAGENINAEWS

202 Foluaruw armuuul» avunn

‘le ‘ LI A-E'LNIII'IDI =1

S/fLM wWHICH L[S SOLVED FOR 1 sv rn[ rgq;m,.n
wrsln v xen1se

S/IH kY =0 & 1 E + )

=4 \mnaunﬂs o BE FITYED®

ML = PQRE SPACE®
S/IH # CiZ) ® A = LOCAT]ON®
*/IM m €(3) = B = SCALE &
/M 2 Lixd = C = EXPONENTF
"

NAME {1}+) OHPORE SPACE
NAMEI2) = |0 OCATION &

HARE 13 CALE B

HAKE (51
‘CONIJE!:K HOIMRD
C--—-=RESERVED FOR DIMENS10M----=
*COMDECK RDDATA
READIRe2] (YOBSi11eI=1a%)
2 FORMATLIDFE,S)
ls21ag.n 3 AlZe21m0 3 Ade2)=lS 3 Kise2) 2.0
LIS THIE T T N T SUTY SLF Y T RETe2Eden 3 RiGe20mh,2
AiF22)nha0 % HOATA2®
ACOMDECK WTOATS
WRITELT 1152

IN SUBRDUTINE READAS

QAR I KD ATORSATNALE
OIIN 195AVEIAFPFI

Uill‘[(!\!!l
33 FORMAT(In §

CO 260 Ixl.LASTI
200 WRITE132202) 1 YD!S(]I-III-?I

202 FDINI‘HN Il 2eF L2
WRITE{D.
20 rnmurcm i-wln [ L)
N-nuﬂ
l(il!v?ﬂl} HaYORS LR + R CHa 2Y
ncnuo(cu WO LW

E-----RESERIED FOR CIMEMSION-==e~
SCCWDECK NFNCTH
0O 200 [=l4NOATA

=KD P2)-CI21N/E 0 v ESEXPim)
e 1) 3 Eisgel,
EIT=E T

XCLCCI mCliegiT

200 CONTINUE
‘CGW(E! I'NC"N

'CGWEEK M'l[ D
- KSIRVED FOR DIMENSIOH-===-
-n:alni:t NOF |
~II-PII.J $ KIEPI2) S RIEPIN) B KeSF(A)
GO 209 [=LHOATA

(A1T22)=CL21)7C1) s EREXFIQ)
1=, /Cin s El=Esi.
ElTRELRST $ ELTIrELT/E}

FAilaxlreElT
FAL{LoRZIECU]1/CIr/CLa) 4EREIT]
FA(].KJlltlll!C(]l/E(ﬁl'nlﬁ'Clll
-v-t(n/C(n/:(-‘-lul.ootinlni

25 0.
KI®IL{L) 8 W2mlLiEg) S MI=ILI3) 8 wemliih) 3 KSALLIS!
KéaiLi6) 3§ KTa[L{?) § KA=ILiB) 3§ Re=lLi9) 4
Do 200 Tal.MDATA
B (1s21=0t2) b/C13) $+ EaErPte)

Ta-l.ACt4) % Tlafel, 5 EisEsl.
ENTaELvsT s EITLs€1T/EL
$ ACSCINICINATINICIN)
C001AC ieboE+E1TL

FAAITIKZS
% urcc-nuos(:l IELT
ATl =10 l'E‘t/EI.‘E'

FALIT KT =g |lftl]]/cmuctu-i-nn-lALuﬁl[un:m.l.l
rnu.x r Ell‘]'('.'lﬂ'ﬂ‘ﬂl[l a2
Fa J’ICMIIE'UYI'I‘lLONlEil/Clll I.}ICI‘H
VA-NI-KlolltlI.I'EJT'!LOGIEIF'MLDG(ED-Z-’C(‘I <y
200 COWTINUE
END OF RECORD

STARTING YALUES FOR THE PARAMETERS

Al E34.8 s AiZiwlod]l F AL E.ZTAS 1 Al4IE),MA%
FIPST PARAMETER REDEF INCD LN HAIN PRODRAN WLV BY

CALL READ (1) +NOUTRD:

?:2:-3:!51‘».1
DATA 7O DEMGNSTRATE FASK CONVERGENCE

453 6 g 31 274 232 1% o 2%

DATA TO JEMONSTRATE SLOW CONVERSENCE

383 8] kL iz 29¢ 241 "z il4 s

x11-2
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1.4.2 default output ‘ T

L L] " ]
1) 5 8 5 553 - .
13 4% 55 3% 889 .
" [ .
123 " 35 45 8 -
[l L] 35 SEssEsey N -
» Ee » » .
”" [T "
(14 I [
1] s ’
] [
. SOIL WOISTURE RETEWTLON CURVE s
] [ .
+ & K
.
COHTROL PARMETERE USED IN FoMCTION: IF ANY o ¢

HOWE
VALUES OF SYSTEW PARARETERS QEFAMLT 7  LSED IN THIS JOR
wTOLEI=IS ¢ Ly NOATA  aSmiount ¢ X (s = a8 7 08140 :Icul-nul.mu ’ ¥
£ EPECAT= ] /7 J0RLNM IELZ )= ’
NOUERD wmuu: P | Il:u:q-_ ’ .
w3 +t - 7 NOUTFH = o 05 = JGEeS 7 AN 1Ci4I=ke, ]
oy =1 5 3 NOUTDF = l LA | ICIZI=A0 2 v
=T s ? noughaFe | 1 o=l - Tcedraleg ’
WOUTFL »ShuDATA / X L4 LN ) FATLLL
LEMRY = | ¢ 1 D = b ’ o
COSCRIT™ 1080, 7/ SJB0EeO® " =)e 7 l.p00n08 PECZ = B0 I ! 9al
.
CF WOATA = & DATA  wili BE COUNTED IN ACAD .
IF HuTROw §  WQUTAD WELL AUTOMATICALLY 8 ESUMLED TG WIKINDATA:542
IF NOUTFL® X NOUTFL witl AUROMATECALLY 8E EBUMLLED TO WINIMDATA.S5N) HATAIK MAZ WOT USED (LN I ] - .

MO @oumOS mAYE BEEw DEFINEC DEFORE CAn wEADING

NG BLOCKS WAYE GCEN GEFINED

wesect DATE ine or-pEC D Fok
woln, InEAR PAAANETER OPTINIZATION [N ) 12427, T.445  COWPILATION/AGADING
SubEer .
ey
SOIL NOISTURE RETENTION CUIVE, JANUARY 1975

rose
COMMENFS .
abaavere
Commph B AR/ 9200+
VARTADLES F = MOISTUAE Gﬂlllﬂ! IN PERCENTAGES

LOGAR | T OF 1

o MOISTURE TEwS fow
FORMULA BY F Ilﬂ VACKSON (19730 SDIL 5C. VAL.114 Waod Po2a¥
APpLIED TO OASA FRON LCW-LAR, WSSENIMOEM

FOAMLA
aagsane
-t .
A = AeBHLNCIYA) =)} N
witH IS SOLVED FOR ¥ BY TWE Foliwia

(x=h1 R =kt - B
Yape(E +1

PAAAMETERNS TO BE FITTED

€il) =9 = peRl .
& = Locatlon
B o=
Clar = L * EAPONENT

o
3
[

PERMUTATION OF THE FIRST MPAR PARAMETERS

LI S B
= 1 2 3 &
P T T Tt

TOTAL MNBER OF mnzlm WMR s &
TOTAL wpelER TO BE SOLVED WA A
TOTAL WMUNOER TO SE FITTED NPARP= &
TOTAL WUMBER OF DATA NOATAs X

NONIER OF DAFA Will B COMNTED IN SUPDUFINE RCAQ IF WOAFASX
+aalniTL WEAD*»s

SeoRED READSIE

DATA READ [w SUHBRJUTENE READ
t voes x
[

FY LA
~
e

. 2asd [0 1] 1 79
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L VALUES PARSMETERS AND WAME PERMUTED HANE
AND PARTIAL v}
10 EE FITIED
1 36BUNES D2 FORE SAALE ) 1 GREDZ v PORE SPACE 1
2 «13100E+01 LOCATION A 2 z 1310DESDP] & LOCATION A 2
3 SZT460€ 000 ScaLE B a El 227460E400 * SCALE 8 3
- +I8090E 10 EXRGHENT € B & SHEPDE+RY 4 EXPONENT © %
- .
READ MEQD
SasanSTART OF CVOCLE NG 1 #ua
COS=HATRIA FOR & PARAMETERS AND FARTIAL COSINES COS{FO.FK)
i 2 M
PORC SPACE  LOCATION & SCAL a8 ERPOMENY ©
i -cann
H «13p67 1.00000
3 «12808 <T4548 1.0000¢
- +SH8TY %157 «I5855 1.vc000
HOAN L EAL3 LBE433 195846 £99378
CORRELATION MATRIA OF ESTIMATES: OBTAINED FROW THE INVERSE OF Ms FOR NFART= &
1 2 3 “
PORE SPACE  LOCATION & SCALE B EXPONENT ¢
i 1200000
2z 24854 1.000d00
3 =129 L1elS0 1.200¢0
“ =87171 83224 0000 1a40000
DIL00NAL  +18519€901 »12138€-01 T4968E-02 +1976ET1
LIMEAR AEDUCTION OF 588 BY APPYLICATION OF DELTA CORRECTIONS 10 L PARANETERS
K [ REQUCED 508 REOUCTI0N HAHE LY REQUCT 10W/DEL T
2544008 38E 403
1 +A5e00CODE +p2 2 8053239PE 00D +1592T4%6Ee03  PORE SPACE 1 1 -AMUM'DJ
2 J100000E 43} 0831 121E+03 299022616403 LOCATION & 2 2 IP22ze+04
2 Tab0CO0E+ DA +96B5121TE-02 SCALE n 3 3 18122004
- .MS’HIIIIIEODJ <11802217E+01 EXPOMENT C - L] -T1253E+00
wev HOM A ewr AFTER CYCLE WO 1 w=w Ailelt= yal1) o o200 ® VOC(IX HOWA o= |. tew WULT,CORR,w L BH]]95  Aes
ENg= ey
SUMMARY OF SOLUTIENS
pxs
.Z’E'll #13E-D) =, 3SE~G1 .TeEv0l
~TeE-02 .JBE'OQ -b5E+00
+B1E-0L .1BE~
=ISE4SL
RESULT OF SOULVING NAMESS LEWGTH OF VECTORS
L H
- /YORE/m JSOGBSES 02
.
e
SOMr .S6ABIESET 4 ¢ SEFE L62TVIE0L HULT,COSINE « ,9TS03 /SQASe _ZIT8LERZ
.
. .
+ +¢ TANBENT PLANE AYCALCS® LTSTTLE+DE
A 4
SAAFE (SSBIME YD
FCALCoe2w -5553“-.1
TATAL COSINE = 9342 STANOARD FREOR= ,1¢426441)28+52
= (SLAL0EITIN 0D
NEARTAC D e
seas 08 INORAMAL +DELTAl FOR NPART = «LIES0TS  ®ass  YANIEPE®0.9Qhel) =  =_]1)LeTE+04 REDICTED) = #0334323E
INIZ = § GIVES = +1000030E
PARTIAL  PARTIAL
« Y] USEG  COS A cas r DELTAVECTOR NORMAL HasoELTA L 10 [
1 +45500000¢06402 53123 00200 2511 PdabE 230 .?IMI]('OC s4LORAE+30 « 16490001 ]
2 00843 b - 88493 ~aee0d STERITSIME~0) «2OSAELD) 4 JOTASE 42 2
a - #9505 +0ROCY 181315276E=01 -2"7331’7[‘0‘ BT2IGE0) -871“!‘0. =10484E+ 0} 2
- - TR 03000 «15277270E0) 2225073008+0) «Lla3d3EC02 <ZOARTEI04 9ITHE+4Y -
Sa+END OF CYCLE NO 1 #=e
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essasssparnesiAST CYCLES MO T S40

COS-mATREX FOR & PARMEETERS AND PART1AL COSINES COSIFOPK)

z
LOCATION &
Loonedn
1 34%

e

3
SCME

»
W EXFOMENT C

COARELATION BATRIN OF ESTINATES, OOTAINED FROM THE JWVERSE OF M. FOR NPART= &

] 2 3 [
PORE SPACE  LOCATION A SCAlE B EXPONENT G 3
i 100808
H peITES 100800 -
2 2TATHS 77 198000
- st -a = 78028 1.98048
DEABONAL < LITAREXR] L LWTRE=D]  .31743£-01  .levanesn)
LINEAR REDUCTION OF SAB BY APPLICATION OF DELTA CORRECFIONS TE L PMIAHETERS
] A REQUCED 306 REQUCTLON LT KoL REOUET 1M/ DELTA
+SYMETEIE#L -
1 4454435228« +39METHIL e8] «ZOSAOIOLE-08 PORE SPACE 1 [} =¢11297C-0Z
2 L1 I8guspVEs -2GA02LTTE~|8 LOCATION & 2 2 S050E-45
b I | i WSTMBTHIE +ETH2008E-18 SCALE L 3 El L1l i
W JIABMAIPEECEL  OYASTRIECHL  JZFeIITE-0R EAPONENT C 4 4
448 HOW A ves AFTER CYCLE HO 7 »es HiLedba TAICE « 108000 * YOOI HOWA Ho= 1 eew WULT.COMRew  JSIE e
a8z ENO= | sem
asmevamsmn
I SUMMARY OF SOLUTIONS
.
ammmmemes 4+
~23E—#h  .26E-04
w2300 N
FESULT OF SOLVING MRS LENGTH OF VECTORS
THES
. 2Y0hnrn AMASECLT ~

.e
S04k FONGECRL + * SMF2 (399D
P

» w
casesgeqgensaasasas TANGENT PLANE
LY r

MULT COSINE = 9954

IS LEMAAE-D)

JYCMT/s (RN IE2

P ] -
FOALCmsn LedBZLE-08
ToTAL COBINE * .CONED FTANGARD ERPOAR . REBASTTINZE+0)
il * IR leglar+g)
WARTRE 71 = &
S48 COSENOMNM.ADELTS) FOR WPART = L0179 FANMEPSuDLB0As]1 & = BDRZE-00 s -
nsan (N2 & P BIVES &
PARTEAL  PARTIAL
® vsED  Cos A Cos F OLL TA-VECTSR NORHAL HASDELTA AR HAIK) ® s
1 + 02 =.50000 CHOZTHSIIERD - 4GIEHAT  ZBHNE-ED  IPMIEL 1
] 00 IIFAIBAIE =42 AGHOE-03 o 8] IR0 2
3 HIL  -.dukan SATIEMATE-4  -.eeselE=a)  ci3bidtewe  JTSITMsr 3 :
H 082 0.0000% SASISISAIE-AE  JIeARIS2SE-0Y OIME-02  SINMN) & '
cosEmd OF CYQLE WG 7 aes
[T
SUNMART MO L
InITIAL PALULE OLFFEREmCE FInAL vaLUE MAME bra Contitn,L ED
" Akl alki=aiKy | 113 3 x
+ +ASeRUPE 82 +435223€-1) »eSALISE+T FORE SPACE 1 «1001E4L o L
2 ~L3IRERESR) «SEHeE NG ciTetbatear  LOCATION A 2 . L ¢ @
2 +~2THRABE D = FASTEE~] =ITAESIE 200 SEME a 3 ~1362€ a 3
~ ¥ "l B 4R S INIRAE DY EXPOHENT © L] SV L 9 L]

TOTAL MUSHIER OF DATA

Usee NDA Thn
TOVAL MUSEER OF FLITED PARANETERS NPSRTE

L3
-
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FUNCTION EVALUATION WITH FINAL PARAMETER VALLES KIK)

ANALYSIS OF OBSERVED AND CALCULATED FUNCTION YALUES MLE.mSUM/NDATA

<=STANDARD ERADR RInrA+BETHARYOC L (<R

BETHA=  1.3000 95 a/0 LOMFIOENCE IHTERVAL FOR F(m3
RENAINDER
1 Az Alm ¥ -USLD ¥ LOWER @0uMO voaLc Y UPPER BOUNS S.Etfcmn) 1
1 +#8000E+0D 4530DE +82 .unzzoaz ASINTEEZ  ATHRIELDE - 2USL00 ST
2 .u-ou-lz IS LeS232Ee02 L ]
3 242LWE202 3 3
- GE L
5 . +29TRAE 02 L
6 -ZJZOII!'IIZD\II 202826402 230488402 = 2IZEI0L .
T SL1S00E+02<LB  ,11STRE=D2 +16269€002 - 21BESOL 1
L3 W TRED0EC DL VSS526BERL TE+ ~ESTEs0L *el¥2E00L L
* RLILLLISL 2] «2400E 0} +ASISTE O -177.2['U| 269aTE0L =« T26E4 00 +425820+00 *
NOATA® 8 #em- 2 (m 22.2 0/9) DATA DUTSIOE INTEAWAL v LARMNIEL
NPARTe & = m = BAZTH I
DF. = S SUme L 4LTHAE+DD
Te BE KI. 2EnC 1.Er= L 1PBAANECD)
MyEn L wbI8ZE-0L SsELtmELle L36a99Ls00 RAT Lo A2T) femmaan MEAN/Yre  LETATRE 00
ESTIWATE FiB} = ¥EALC
SECOND DERLVATIVE MATAIA NOZ MOT USED IN B/2+IN-NAZ) 2H0 ORDER TERM - FRASINY (NI SYARSZ
- REMAINDER
STAND.ERRQR ¥  SQRT(FA+LNY (M) #FASYAR}
ANALYSIS OF T=¥/5.E. {EXPECTATLONS ARL USED IM HISHER MDMEMTS) NDAT A+
CPARACTERISTICS
ELPECTATION ESTIMATE STAND ERRON (!S-Ellfﬂ
HEAN L] 42359 =01 «33219E+00 2eR0
AR ANCE 3 SOROLe0D I.On unirY
SKEMNESS 1 GaNMA 1LY L] . 16E <00 NORMAL
KURTOS IS+ GANNA |2) » +1199TEs0L .i’ NORMAL
1 t i t « I i t 1 t 1
NISTOSRAN OF T ] 10 11 2 3 3 3 Loy § )8 ] ryoe
RELATIVE 70 100 0r0 ¢ Ll.p v #1,1 € 22,2 ¢ 333 ¢ 10 0 b o .0t 0.0 L [ L3 0.0 €
1 ' ) 3 ) H ) 3 ) 3 ]
TLASS LIRITS . 1.0 5.5 -o» 0.5 3.0 1.3 2.4 “2.3 -
) 1 ) ] k) ] [} 2 >
HORMAL CISTRIBUTION B2 1 18,0 1 290 4 1921 0 35,0 4 W Z & AcA 1 L.T | L
FOR NDATA= 9 2 e ¥ 1. & 2s ) 2. ) ] [ [P 1
¢ 1 I ‘ t 1 1 1 1

KOLMOBOROY-SHIRNOY ONE-SAWPLE 35 0/0 TWO-TAILED TEST FOR CUMMNLATIVE CIATRIBUTION OF T=¥/S.E.s NOATA* & CHITIRAL VALUEw  41.7

— ———) e —- S - ——

VRPER B0uMO 42,20 81,20 &3.20 5w, JJ 5.4 100400 ldo.do  Jo0.00 k84,
DISTR, OF T fa00 9,00 0.80 111 2.22 TT.18 AA.89 180,00 100,00 140,

. LOWER BOUND a.00 1,00 9,90 0.0 0,00 0,00 §a24 34,58 A5.60 N4 00  S6.50 96,00

MOAMAL DISTRIA- .00 .13 62 2,28 S8 15,87 30.05 5SRO0 6¥.AS gA.)A 93,32 97,72 99,08 U4 108,00

QUTSIOE INTERYAL = 4

MEGATIVE T wlUES = &hobe 040
POSITIVE T vALUES =  55.¢ /0

matnaCOLLECTION OF RESIN T4 AFTER T CTCLES === SUMRY NGO | *%® TOTAL MO OF SUNRIES TC 9E PACDUCED 1 se= DATE 01/12/T5 seads

INITIAL PARRMETER VALUES NAHE
a7 .
+ +9540000800E+0Z  FORE SPACE ®
+ oz ~1310000800E+D]  LOCATION A =
+ LZTAEEO0000EF0E  SCALE @ o
A ~34B90GR0GPELD]  EKPOHENT ¢ #
- .
e o T 1
€Ps CVOLE  AIM } 1 1 I
10 0ATAIN NE 1 SQUARES 10 BE EdumL 1 LENBTHS T0 ®E ZERQ 1 1007aL LEHGTHS I
NERT CYCLE 1 sor 1 HORMAL DELTA ViSoArSaFy 1 NOAMAL JELTA I
- - e e 1mecmm == . - 1
1 o 17 lsewerieod - 1 .26265€v0%  LJSS13E-01 1
2 [ 425969E402 1 63a0BE4R] 1 SAIBINESDZ  ZTARN 0L I
) a1 +13849E 702 2BPaZ6EQl 1 196610E 92 +53282E+00 1
S10094E4) 4 T +B02505 01 WS9958EeRs 1 L3S979%Er00 =13249E408 3
«PIGO3Ed0 5 e L ASUILHEGL  LSIRPEADL 1 (ZeBSLECOL  .227FRC-0L I
-le482€s0) [ 6 I <59909E 01 ~H9%IELOL 1 -2¢4236-01 <1828 lE-02 4
.106595'“ T L] ] +599BE 0L 999495401 1 .22619(-!12 SHORRAE =04 I
e S NP s A 1
TOTAL 49
EPS{PREDICTED) EPS EPSLOPT) RESULT OF FITTING PROCEDURE ATANDARD ERROR OF ESTIMATE TOTAL COSINE
WU (OPTIHUMY TOTAAL CYCLE-NU MULT.CORR  MULT.COS HO HDATA D.F. STAnOERROK eYCLE-N CoRINE
[ 1% 1 o8, LH 1 612 9730 1 o 5 L0 62646 )
+3343E000 2 SMO7S3Ee0L  LNBTEDE4Dy 2 9 K 2 5 227008 H
LAI0ZIEAR0 ] L4BMEELQD k] 9¥TH FI ] 5 k]
SIRGA6E.00 4 L 109GEe0L . 0808 '] 5 -
PLOGPEEFD1 5 ,9la05€400 5 9584 5w 3 5
TOESbD & L104BZEsDL 6 oves b0 5 -
-l.llbaﬂ"ll T 410689E+0) .sounc«n 7 Rl LY T * E3 7
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PARMMETER vy UES

VAL EAS OF PARTIAL NOLUTONG DUT OF . CYGLE

PORE BPACE  LOCATION & SCALE 8 EAPOMENT € CHLEPRRT 1 2 3 &
vk L . 2 a & W an
1 - 2 11I0BE+0) «ITAME M) »MA90E01 * - Loa X A
H aS$ATOE+0 L. M0 -SL1ME 0L 2 & Lk N
3 +A3881Ee02 L5BTLE: A SMN0E 0L a - i K X A
& JASAINEADR L LTTIM +MORE - * L R X A
5 aSSARATES D »17632¢- ITSIE0 E] & LA Kk X -
- PNSASL02 s L7618E zl «IT4LeE+ 40 o 3 £ 1 k&
T JASRMAE02 . JITROBEL  JITMIEECRS ? ¥ A A ok &
ocCumEMcE T T 7 7
CIFFEREWCES OF PARAMETER VALUES 10 08TAIw CYCLE WO &
cveLE 1 2
z «2TRIRL 100 4BLOTIE~D]
3 - N
- 11E»#0 L] =
5 BASIE-82  -.1GLeTE-OL - l0R2RE-b] . A202TEs00
6 = 2BOLBE-02 = ZLbIRE«02 =, L63LIE-RZ +2ISHOE=D )
T - eliME-b2  -lISTRZE-D1 - l0IBAEeRd  13913E-02
TOTAL  -e3322E-81 waSIBML 8 LIMESE-01 WSedI6Le02
SCALE FACTORS
L]
CreLE @
i JIRISE402
z «ZVRIEG2
3 <JAS0E02 FUFIZESRZ
» «IRTRIE02 S TNOINE DT
[T IZTIE402 L IRARIELDE
L] «AYMIECH «3RPITE02 aI514bECDE
T LINEeRl JIR7AA402 LTSITIESE
RADIUS OF GLODERIC CURVATURE IN DIAECTION OF SEARCH
3,574 RELATLVE 10 /5847 TOTAL COSINE 50k DELTAINRARY )2 o
] 24308 A2ITRIE+I2 < LUELIE )
z 214938 18,
El “ + 2
- =130 7
5 JRETHRE-D) . .
6 < Led0IE-E .
PAMITIAL COSINES
cYiLE 1 2
3 #5213 el
a +335: TS
2 ~S2eEE 952
- 02702 051
3 012z a7s
- -S04 30 -+ 00825
H P ~ohH2
7 SELONE-S +L690K -84
NaRE FINAL  PARAMETER ¥ALUES STANDARD DEYIATI0M TevALLE
. . - - . .
PORE SPACE & ) SS441SZRIZENE 2 - ] ] - . 1 sy . .
LOCATION & - z s17608%DUTESOL  » » 2 )32¢10008 . . z 11.38 .
- 3 2 ITAOSTELOZE00 * . 3 1 LAGSE 3 2.8
CromENT C 2 . SIAGeATSOSEeEl 0 . . «J42e8E0 0L . 2,48
. . . . . .
. T.CoRfl. Shi= »SPdTRLBESHL STANDSERRDR® 109497101 TOTAL COSINE®  EBAITRE=84
99857
LINGAREZED [ TANGENT PLANE
trcsnusnunns 95 O/F  COMPIDEWCE  INTERVAL ===swasmssesassasrepmnd
. -
. % LONER QDUWD WENE YALUE L
.
spacE W g “2a% - .34 [
LoCatlon A = @ [ - L7 e
SCAL .3 rs - 437 3
EroNENT & o 4 5 - 2.5 - .
€05 CRITERIUM FULFILLED with 3 IEHOS FOR 7 s YES WUNBER OF DATA L}
e WEARTe -8
T0TAL COSINE o
AR & = s NCICLE W T T OF L) CTQES
sTARiSt
Fros QATE  0iiT/YS TIsE 12,446,237, Cr-SELUSED 2,045
T OATE  SirlT/TS TINE  13e0ded6, EP-SEC.USED 4,237
USED FOR TH|S JOB  CPeGEC. L8T2

TOTAL wd OF ENIRIES I FWNGIW OFDA DIFDA SOLVE MIM
(3 [ ? ? L3

OEFIMED NO OF SUMMARIES: FPRODUCED. CYCLES/SUMRY: MRODUGED IN LAST OWEs TOTAL MO OF CTCLES
3 1 1L 7 T

SansEND OF JORuSRE

[ T TT ]
PROEEYS TERRPMATER AT-3T00 B~
WhuA DNTRY SUMRY

IN NLw Fibe




1.5 Instructions to apply main program NLV

OF T4 OISTINGUESH BETNEEN :n:smﬁ Ang m!uﬁmh1 !urﬂ(nﬁs 'n( un(- ARE
ma!n In THE 73RG Cof DEFaULT THAT SHOULD
EXECUT1ON oF 'ID‘ mlncnlon -ll[ leiﬁ iN THE NEIBIW M‘D QIE lm!b
WETH I IN THE TIRD COLuUMN.
mll PEITS MIE GIVEN SETMEEW Fu.], mma AND === | INES. & SERIES OF EMLETING
IN THE MATM A HLY T5 DENOTEG BY ... IN THE MAAGIN,
u mnlnnrlnl EXAMPLES THE rlnst llll THE LAST LIME ARE EXISTING UNALTERES
Sfl'lllﬂﬂi OF THE DEFALT DECK
omunu WSE A STOP SYATENINT CAn BE INSERTED AT THE DESIRED POINT OF
AN MLV, USE DF LSUMRY=8 IS SUBOESTED For USE IN DIFFERENT RUNS
W mlrl:num THAT ARE ENTERED ATTER THE &0 CONTINUE STATEMENT.

MOOIF[CATION 1. TEST OF THE FORMLAS FOR FIRST AND SECUND OERIVATIVES
1.1 CURYE FITVING WITH ROUNDED CALCULATED ¥ALLES USED AS OBSERYATIONS

CALL READ [11l+HOUTAD}

LSUMRT! § NCYTLESSS 3 CALL FNCTNIA+1054&0 140 YCLCAIFOCALO:01 |

to 85 I= 'anl'l 1 -n. uv-n.oﬁmu-squ(:nl

IFIALOGIOV.LT..0) ALOI EPONER=2+ LPIX(ALOANOY) J
[0 ronsl|1-&anur[lwcu:hl|1-|o.”l.l'mtillfll.o-:lpol R

CALL MINIDELTA-Cly Sr2det40)

IF N E =40 s
SCALL MINCDELTA-Ey By e 2*EPMIN INOCLE) » o LREPN ININOCLE) 2224040 -
CALL

HGOIFICATION 2. PROPEATIES GF COMOITION FUMCTION AND STARTING POINT
DETERHINATION OF A NEW STARTING PCINT 8Y UNIVARIATE SEARCHM FOR THE FIRST
NPART PERNUTIU PARAMETERS

CALL READ 11+ }+NOUTRD)

MOUIFECATION €. SIMULATION OF REVERSED TYPL OF CONYERSEWCE
6.1 APPROACH WITH OBSERVATION YECTOR REFLECTED IN EACH NEW TANBENT PLAME

IF INOCLCLGE.NCYELS) GOTO 3¢ 3 wOCLOC=NIOLE+)
CALL TRACK LAsNPART 13+89050) 1
CALL WIM{DELTA»0rd1+8120:20-0400

6.2 APPROACH wiTH DBSERVATION VECTOR REFLECTED IN THE TERMINAL POINT

ag Con' 1Nl
CALL nuc«(smwm Q10084 040] 1
F ¢ IREP LT GO T2 18 2
STOP 55

IW]FICATIDN 7o INTERMEDIATE INFORMATION On THE FITIING FROCESS
.1 TING OF THE 1EPS+504)=RELATIONSHIF WITH FQUAL STEFS ABOUT THE MINIWuM

CALL MLNIDELTA»01l+,02,0+20-0

101
CALL MINIDELTAefe0s=225EPHINCHOCLE 5 o L*EPHIN IHOCLE) 12240401 L
LALL ATSE
.2 CALCW ATIGN OF CURVATURE ALONG T4CH PARAMETRIC CURVE SEPARATELY

CALL MINIOELTARQ I L1204 002040101

0C B0 K=1.NPART 8 (D 81 KLZ1+HPAR 1
81 CoRRieLi=. B L] CORRIKE®], 2
CALL HING CORRaLe0e.3+.0+00040} 3
L] CB TIWE &
cnu. AISB

AL '
CaLL 2
STOM a MODIFICATION 8. SPEECING UP CONVEROENCE USING FIRST DERLWATIVES
(LR 8.0 CORRECTION FOR NOM LINEARITY BY SCALE FACTOR WEISHTS BASED Om BIFFEREMCLS
THE 3T0P STATEMEMT 1S OFTIONAL IFANGCLE JGELNEPELSD GOTO 30 5 MOCLCONOCLCSY
EPS=EPSS 4 CALL NINIDELTA+0r14.0rali20i0) 4  EPSLeERS 1
2.2 CALEULATION OF THE BEST PARANCTER COMBINATION BY COMIMATORTAL s(ncu PAR z
LSUMA'T=! RRCTI#HALLYAHBA T 2
EPS=EPSZ 3+ CALL WINICORReQils-01.012640) 3 ERS2ZeEPS .
CALL HOwA CALL AISB
CALL COMBIH IFANC.LT. 3 B0 TO 20 1
Irmﬂuc.nﬁ.m:rcu: GOTH 36§ NOCLCENOULCL
8.28  CORRECTION FOR CURVATURE BY BACK PROJECTION
HUMBER OF CYCLES AUTOMATICALLY RESTRICTED TO & TWO DIMENS [ONAL SEARCH IN PARAWETER SPACE
HAGIFICATION J- SELECTIVE USE OF PARAMETERS CALL WIN{CELTA9s1v,0s,0:20:+0:0)
3d AUTCHATICAL ORDERING OF PARAMETERS BY MEAHS OF THETR PARTLAL COSINES CALL HACK{NPART:010+015} 1
USE OEFALLT LSUNRYel ° CALL ALS
GALL DFDRLA#HAL YCLEAS YOCAR b1 19NGUTOF | TuO DINENSIOWAL SEARCH IN DBSERVATION SPACE 1S PERFOAM
CALL URDERIK4HALYCLEASYOCH 114 Ly NOUTOF } \ CALL BACKINFART4Ds 100457 1
CALL D2FDA 1A-50A 1HA» FCLCARTOCAS LaHOUTDRZF )
8.25  CORRECTION FOR CURVATURE BY BACK PAOJECTION
3.2 USE OF Twd BLOCKS WITH FERNUTED AND OROUPEQ PANAMETERS [N THE FI1RET BLOCK CIRCULAR SEARCH IN FARMMETER SPACE
M HUNBER OF BLOCKS THAT (AN GE WSED I3 5
USE LSUMRY=L (DEFAULT) FOR INTERHEDIATE RESULTS, o CALL umwun.o.; o..n.znvo.n
CALL BACK{NPAR £ EPSSAVE=EPS 1
€ Botk 1 :NNRINSMIISI.EDJMM "50 10 5000 H
=0 I3 CALL I[MICUR? w,BaZ0nQaBy 3
LI SLIL) 5 JPUERIK 1Ak CALL MIN{LOR ..n.: 1415920535/ 164 03240000 oF { ToNAL
5 IRiRim 2 5 JPIIPIKY ieK CaLL 8L lu-u-n-o-ul by
HPART = K 3 CALL HINICORRyQolrsOny0e20e8s0t s
5 PO E T CYTINE CALL B2 1340104840} ¥ EPSEEPSSAVE 6
NPAR 8 X z sa08 :n«nm 1
1] [Pik= 3 ] JPATPRAK) g ALl ALSE
WPAR = 3
CALL BLOCK[1r00da. 0 1 TrE WRLTE OPTION GIVES THE (EPS,5CA)-RECATLONSKIP FRUM O T0 2+P)
C©  eLotx 2 £ALL BACKINPART Labe125
K=y 1 ] CIRCULRR SEARTH [M DBSERVATION SPACE IS PERFORWED BY
KaKel 3 1PtKI= L s puv(n:-; “ CALL BACKINEARTo0a111051 1
Keel £ [PUKIs 2 3 PRIIEN S
K=Kel  E 1POG)= ) ) JF(I!(II:-K e 8.3 SIMAATED APPROACH BT POLTMOWIAL» HYPERBOLIC OR EXPOMENTIAL EXTRAPOLATIN
KeKel & 1PUK1a & 3 et ENDR2 []
NPART = K ] 3
NPAR = K s 2 CALL SUWRY-RETURNS 1401
PAR = K P CALL LIAYPEA{Ledras5aDl) 1
CALL BLOCKIZ1Dete.0) 1t CALL HINICORReGrlealoao2deks @) z
MHrxmasxmx maszmsEsessrwrazEARanEmA N CaLL AISH )
‘e 161 1REP .LT. END ) 60 TO 10
WCEHCe]
CALL BLOCKINI2+3+10.! 12
CALL FHETH Chrdus@As 0 ¥CLEARTOCA | s MOUTFN] MODIFICATION % SPEEDING WP CUNVERGIMCE USING SECOMD OERIVATLYES
9.1 USE OF ARPROAINATED STEP FACTOR OY SECOWD DERIVATIVES
ALSU CAn BE USED E.G. CALL BLOCKID:ZsNCYCLESSEND s CASCRIT) iz REPUCTION OF WUMBER OF ITERATICNS 1N SUBROUT [NE HIN
IWIFICI'IO’I 4. APPLICATION OF ALGOR]THAS IFINBE[C.B‘..NCI'IZLSI GOTO 30 £ NOCLCENOCLC# 1
CURVE FITTING ACEORDING TO STEEPEST DESCENT NO=E2d * Fe «GT4o5%EFS) NO! ]
lFl[FsEEI G1..§‘(p5| EPSsEPSEST z
NOCLC.GE.HCYCLSE B0TO 33 3 MOCLE-NOCLES] CALL u:mnun.o-l..n..n.na tni2 3
caL nwlmnnn.on- “81 +0r20e0,8) 1 cALL &

CALL ALSE

WODIFICATION 5. SELECTED PATHS
Sula CONTROLLED APFROACH ALCNG THE FIRST YOCA=VECTOR wlThW TRACK {1 WPART:
CONTROLLED APPROACH ALONG EACH NEW YOCA-YECTOR WITH TRACK{Z WRARY..

NC=D 3 NCYCLSsWCTOLES
CALL TRACK (LaHPART s 2a4 051011} 1
20 NCaNC+]

EL cowllﬂ!
!H.LI.ENBJGOI’DIII 2
AL SWVvMHﬂNS
LREF -I.'l- END ) GO TO 20

.ltﬂ CONTINLE
IFL IREP JLT. END ) GO TC MO 3
Stor s§

5.l8 LOMTROLLED APPROACH WIVH REFETITION OF TeE PROCEDURE ON THE LAST INTEAVA
THEIR WuMBER BEING DEFINED BY THE WARIAGLE LAS

IREF = §

09| s IPONE=D
10 IREP = IREP+l ¥ 1323 5 IFILSUmEY . EQ.0) (3=7

NC=O NCYLLS®NCYCLES
WETEPXLE S EALL lncxu.wnv..n;nsv[h Ss0e1) § JOONE=100ME+L 2
0 NEeNC+)

30 CONTINUE
LAG=Z l "llm GY.NS]E-"I.IG.IND.IDO.EO.II[IIo‘N‘?INSW(IGIIO 3
[REP .LT. ENO ) GO T -
ALy sun!r.n:ruunsuu»

40 COWTIMUE
IFc IREF .LT. END | GO 7O 10 )
5108 S5
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%42 CURRECTICM FOR NON LINESALTY BY SCALE FACTOR WEISHTS B4SED On OIFFERENTIALS

IFANOCLEVGEWNCTCLS) GOTO 30§ MOCLCINOCLCS]
EPSHAEPS % IF{EPSEST.GT,.S#EF5) EPSHArEPS=EPSEST
LSLLL
50 OELTA (K =DELTA K] /(1. *EPSHASFF AAMH LK) 942]
CALL MINCDELTAsDairaPra0s2Z0n040)
CALL AISE

ren-

BEFORE ENTERING THE DO (O0F EPSHA=1. COULD BE USED

HOOLF ECATICM Lo, INFORMATION ON RESULTS USING FIRST BERIVATIVES
10.1A NUNERICAL INVESTIGATION OF CURVATURE ALONG FITTING DADER TRACK iSuNPART ..
HUMERICAL [NVESTIGATLOW OF CURWATURE FOR  EQUAL STERS TRACK(E NPART)..}

40 €
CALL TRACK{SsMPART:.04,0:04i100)
CALL TRACK(EINFART 1y Des0+04 10D}
$T0P 5%

1C.16 INVESTLGATIOM OF THE FITTING SURFACE IN THE OLRECTION OF EACH PARMMETER
SEPARATELY Ist COMBINATION wITH WODIFICATION 10.14

0 COMTINUE
CALL TRACK (SoNPART 1.04.040+100)
cALL lﬂlCK{t.NFARTuﬂnlva] [
09 55 KslaNPART & 45 LeliHPAR
ALY =Ak [HOTLC L)
ACIPURI I AXR UL eIPIK)H
65 CALL TRACK{GsNPART2,D+0sGu000)

STOP 55

&

]
LY T

USE CAN BE MADE OF PREDCF INED PARAMETER wALUES. TN THIS EXAMPLE FHE LNITIAL
VALUE 15 R G BT THE STW INSERTED CARD, A USEFUL ALTERNATIVE I5
AUIPAKY FRALIP () Y =R #STOEV (K)

FINAL REWARKS.
ALTHOVGH EACH OF THESE MCOLFICATIONS mAS BELM TESTED CAREFULLY TO PERFORM
175 SPECIFIC ALGORITHNM PROPERLY ARBITRARY COMBINATIONS OF MODIFICATIONS MIGHT
PRODUCE UMPREDICTABLE RESULTS.



2 Examples

2.1 Specimen nonlinear condition fauction

Condition function y = x°
Vector of observed variables x = (x3,x,) = (1)
Vector of parameters 8§ = (0)
051
100 e
Position vector f= (1,67
First derivative of condition function f; = x* In x

Jacobian J = [g, ] scale factor & — (¢%)

Matrix of normal equations J7J = M = (¢*°) = (7.38906)

Inverse matrix of normal equations M~ = (¢~%%) = (0.13534)

Initial parameter vector 89 = (1)

Difference vector x — f(8®) = f, =[ 0.5 -1 ] = [-0'5 ]
10.0 - 2.718 7.282

Sum of squares at initial point fof, = § = 53.273

Normal vector J7f, = N = (19.794) and Jd —7.282

Differential correction M~1N = d = (2.679)

Updated value for 0 becomes 8 = (1 + 2.679) = (3.679)

Exact solution 8* = (2.30258)

Observation matrix X =

Used to demonsirate application of arc length in Section 2.7.3. See also Figure 7.
2.2 Nonlinear condition function, fast convergence

A function analogous to the one given by Fink & Jackson (1973) to describe sig-
moidal adsorption isotherms, applied to observations on the soil moisture tension
(its common logarithm being denoted by x) and the moisture content (¥) of soil
samples appeared to be a good condition function to demonstrate properties of op-
timization processes. Examples are given for two series of observations carried out by
the laboratory of the Institute for Land and Water Management Research, Wage-
ningen. The first series (Table 18) gives an example of an optimization process with
fast convergence, the second series, see Appendix 2.3, gives an example of an optlml
zation process with slow convergence.
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Table 18. Data to demonstrate fast convergence.

i 1 2 3 4 5 6 7 8 9
x 0.4 1.0 1.5 20 23 217 34 4.2 6.0
¥ 45.3 434 410 333 27.6 23.2 11.5 74 24

The condition function reads

x—A)/B 1/c

y = D{e( + 1}

where the asymptotes are given by y =0and y = D.

Vector of observable variables x = (y,x)

Vector of parameters # = (D,4,B,C)T

Initial parameter 8°* = (34.8, 1.31, 0.2746, 3.489)7

Initial parameter values obtained as an average for several samples. After the data
are read the parameter @, is redefined by 8, = 1 - 0.1

Sum of squares at initial point S(@V) = 564.61

Sum of squares at final point S(@*) = 6.00

Final parameter 8 = (45.44, 1.761, 0.3741, 3.494)T

Resuits obtained in this example are used in Sections 9.3.4, 9.4.4, 11.4 and Appen-
dices 1.4.1 and 1.4.2.
2.3 Nonlinear condition function, slow convergence

Condition function and initial parameter as given in Appendix 2.2. Data as given in
Table 19.

Sum of squares at initial point S(0”’) = 976.40
Sum of squares at final point S(F™) = 1.83
Final parameter 0 = (38.31, 2.1277, 0.5474, 3.047)7

Results obtained in this example are used in Sections 5.5, 6.5, 7.4.3, 9.4.4, and
10.6.

Table 19. Data to demonstrate slow convergence.

i i 2 3 4 3 6 7 8 9
x 0.4 1.0 1.5 20 2.3 27 34 4.2 6.0
y 38.3 36.1 348 32.3 29.0 4.1 17.2 11.4 3.5
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. List of symbolic FORTRAN names

Main symbdls used throughout the subprograms are given. The dimension of

arrays is obtained by p = total number of parameters, g =p - 1, c = pgf2, m =

total number of observed variables, ¥ = total number of observations, £ = predefined )

number of fitting cycles (¢ = 15), ¢, = ¢+ 1.

Name

A
ALB
ANORM

AUB
B
BNORM

CORR
CURVGEO
CURVTOT
DELTA
END

EPMIN
EPS
EPSNEW
EQS

FA

FAA
FAFAA

FA2

FSS
FOFAA

Dimension Symbol
rxl o
px1
gx1 N
pxl1
px1 v
gx1 N(8)
pxl1 s
pxl X,
pxl1 K
pxl d
£x1 Av
A
t, X 1 A0
yR
vX g J
vXe¢ Su
PXp My,
gx1  (fiufd
vx1 .
PXp Noa

Interpretation

Initial parameter in each cycle

Lower bound of parameter values

Normal at initial point A, extended with sum
of squares SQA

Upper bound of parameter values

New parameter in direction of search
Normal at point B, extended with sum of
squares SQB

Arbitrary direction of search

Geodesic curvature

Total curvature

Differential corrections

Number of repetitions of a predefined num-
ber of cycles

Optimal step factor in nth cycle

Step factor

Predicted step factor

Reduction factor to step factor

Jacobian matrix of first derivatives

extended with difference vector

Vectors of second derivatives

Scalar products of vectors of first and second

derivatives

Square of length of first derivatives extended
with sum of squares (£,,15)

Curvature vector

Scalar products of difference vector and
vectors of second derivatives
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Name Dimension Symbol  Interpretation

HA gx1 RO Scale factors at initial point A, extended
with square root of SQA

HB g x1 A1) Scale factors at point B, extended with
square root of SQB

IB rxl1 Index to save bounded parameters

1P gx1 Index to save parameier permutation

1PX I Xp Index to save parameter permutation for
summary

IREP Index to save number of repetitions of pre-
defined number of cycles actually being
performed

JP g x 1 Index to save original parameter ordening

M gxgq M Matrix of normal equations (extended)

MAXDAT v Total number of data

MAXVEC m Total number of observed variables

MPAR 2 Total number of parameters

MT r+1 MPAR +1

NB Total number of bounded parameters

NC n Cycle number being performed

NCYCLES Number of cycles to be performed

NCYCLS Number of cycles to be performed

NDATA v Total number of data to be performed

NCGCLC n Cycle number being performed

NPAR Number of to be fitted and informative
parameters

NPART P Number of to be fitted parameters

NPARTX tx1 r Number of to be fitted parameters saved for
summary

NT ?+1 NPAR+1

SQA S(899) Sum of squares at initial point A

SQB S Sum of squares at point B

SQMIN S Subminimum of sum of squares in direction
of search

STDEV rpxl1 Linearized standard deviation of parameter
estimates in tangent plane

X vXm X Observation matrix

XA tXp 9 Initial and optimal parameter values saved
for summary

XCOSMT rx1 cos a Multiple cosine saved for summary

XCOSN X p ¢ Partial cosines saved for summary

XCO8Q tx1 cos § Total cosine saved for summary
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Name

XCRLMT
XDELT

XDELTA

XGEO

XNORM
XNRM
XSQF

YCLC
YCLCA

YCLCB
YOBS
YOCA
YOCB

Dimension Symbol

1t
tx1

tx1

tx1

tXp
gxq

tx1

tx1

tx1

v x 1
vXx1
v X1
vx1

Id|

MM~

I N1

(4o "fo)

y
™)
A6

x
-fO (0(0))
.’;J (0(1))

Interpretation

Muitiple correlation saved for summary
Length of vector of differential corrections
for NPART parameters saved for summary
Length of vector of differential corrections
for NPAR parameters saved for summary
Geodesic curvature in direction of search:
saved for summary '
Scale factors saved for summary

Matrix to save matrix of normal equations
and its inverse

Length of normal for NPAR parameters

saved for summary
Length of normal for NPART parameters

saved for summary

Sum of squares to tangent plane saved for
summary

Calculated function values

Condition function evaluated at initial point
A

Condition function evaluated at point B
Observed function values

Difference vector at initial point A
Difference vector at point B
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List of symbols

Symbols defined or introduced in chapters or sections mentioned between paren-
theses are used in a restricted number of sections. The other symbols are used
throughout the book. Symbols failing outside the main line of argument are defined
in the text only. Dimension symbols are also explained in this list.

Symbol Dimen-
sions

A

A

R
i
X
3

O o o

c X1

€y
C1,Ca

d pxl

ds
EP
EP

190

Chapter

Section

24
24

(10)
34

29
6.2

(10)
2.2
2.9

2.2

(3.1)
@
(6.3)

(10)
4

(10)

13
1.3

Interpretation

Tangent plane

Left superscript denoting quantities with
respect to the tangent plane as 40, 4f, and 45
Constant of parameter function

Metric matrix whose inverse acts on the
vector of steepest descent —g

Auxiliary vector in tangent space

Vector of back projection

Constant of parameter function

Cosine matrix whose elements, cos (f;.f;), are
the cosines of the angle between the direction
vectors

Contour curve for constant value of the
response

Cosine vector whose components,

cos (fo, f), are the partial cosines

Constraint to jth variable

Constant function values

Algorithm parameter equal to 2 cos ¢ in
back projection method

Constant of parameter function

Differential correction vector; the solution
of the normal equations

Constant of parameter function

Arc element

p-dimensional Euclidean parameter space
p-dimensional Euclidean tangent space




A

Ju
fo

fe
v i

Dimen-
sions

vx1

vx1
vy X1

vx1

vx1
vx1

PXp

pXp

p X1

Section

2.2
1.3

(10)
22
1.2

@

21
2.1

2.8
28
2.1

2.1
2.1

@

2.5

@

22
28

@
34

22
22
2.1

1.2

1

" Chapter  Interpretation

(p+1)-dimensional Euclidean response space._
v-dimensional Buclidean observation space
Constant of parameter function

Vector of implicit condition functions F
Implicit condition function

Left superscript denoting implicit condition
functions of different form

Vector of explicit condition functions f
Direction vector, tangent to kth parametric
curve on the fitting surface

Direction vector with arc length taken as .
parameter

Curvature vector

Difference vector in the observation space,
equal to x — », for differences between ob- -
served and calculated function values
Explicit condition function

Explicit condition function d1ﬁ'erent1ated -

with respect to the kth parameter

Left superscript denoting explicit condition.

function of different form

Hessian matrix whose elements, #25/06,86,,

are second derivatives of the objective fune-

tion :

Implicit condition function

Gradient vector

Vector of steepest descent

Subscript denoting quantities related to

geodesic curvature, e.g. K, (fJ), and (f..],

Explicit condition function

Matrix to be updated in subsequent cycles;

approximation to G~!

Vector of scale factors

Scale factor; length of direction vector f;

Identity matrix; dimensions being defined by

operation rules of matrix algebra

General superscript for observations, e. g.
xto2 .

General superscript for steps in controllod

approach, e.g. x®
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Symbol Dimen-

sion
i
J vXp
7 ¥Xp
I PXq
I VX p
I VX(PXI)
Jb v x1
Jd v x1
J v x1
j
J
j
J
J
J
K yXp
k
k
I vx1
!
I

192

Chapter
Section

(o.1)
22

22
2.5
43
2.5
(6)

24

(4.9)

1.2
(1.2)

@
2.5
“
(10)
2.8
1.2
2.1
2.3

21

2.1

Interpretation

General subscript for equidistant steps, e.g. 4
Jacobian matrix, JIY, consisting of direction
vectors fi

Jacobian matrix, df1'1/2@,; abbreviated to J
Jacobian matrix £6,/04,

Jacobian matrix 8F™/86, for implicit condi-
tion function F

Matrix of second derivaties ft9 where k < /
Vector in tangent plane obtained by back
projection; linear combination of direction
vectors

Total tangent; linear combination of direc-
tion vectors according to the solution of the
normal equations

Choice vector to save information on the
sequence of executed statements for alterna-
tive condition functions

General subscript for variables

Subscript assigned to quantities that refer
to a condition function solved for the jth
variable, e.g. x5, 1, Yo Jour )

Ibidem

General subscript for algorithm parameters
Left superscript for general index of condi-
tion functions of different form, e.g. ’f
General superscript for fitting cycles, e.g. 6.
Matrix derived from the Jacobian for the
determination of the curvature in an arbitra-
ry direction of search

General first choice subscript for parameters,
eg. 8,

General first choice subscript denoting dif-
ferentiation with respect to the kth parame-
ter, e.g. f;

Position vector of the tangent plane

General second choice subscript for param-
eters, e.g. B,

General second choice subscript denoting
differentiation with respect to the /th param-
eter, e.g. fi




Noa

o(A?)

o(4%)

ey R

FyFi,Fa

ta

"*h-]hh

2,1

Dimen-
sion

pPXp

PXp
¢z x %Y

pxl1

pXx1

PpXp

rxl

Chapter  Interpretation ‘

Section
24

2.5

2.5

1.2

24
(6.2)

2.5
(11)

(53)
(2.6)

1.2

2.5
9.3)

2.8
@
©®)
1.2
1.4

2.7
©.3)

9.3
(10.4)

Matrix of normal equations with elements
(fif); the square of the Jacobian J

Matrix with elements (£, /0

Matrix which is the square of the matrix J,
Total number of real variables of the condi-
tion function

© Normal vector with components (f,,/0);

the right-hand side of the normal equations
Normal vector redefined for back projection
method

Matrix with elements {f5.fi)

Numpber of steps in controlled approach
General superscript for fitting cycles e.g.0™
Remainder of Taylor expansion of scale
factors representing terms of second degree
and higher ’
Remainder of Taylor expansion of the objec-
tive function representing terms of third
degree and higher

Total number of real parameters of the
condition function

Total number of algorithm parameters
Reduction factor used in finding the sub-
minimum

" Subscript denoting quantities related to

remainder curvature, e.g. k., (£, and (f,,),
System parameter to control sequential use
of sequential condition functions

Subscript for reduction factor to step factor,
viz. A, .
Objective function (fp,fy); sum of squares;
response

Arbitrary vector of direction of search

Arc length

Measure of slope to (4, S(4))-curve
Superscript denoting fitting cycle in which
stopping criteria are fulfilled, e.g, %
Reduced measure of slope pT

Auxiliary variable in exponential extrapola-
tion
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Symbol Dimen-
sion

U

u

u

u

v

v

)

w px1

w

w

X ¥ X m

x 1xm

x v x 1

xit vx1

Xy vx 1

x

y v x 1

yj v x 1

Yi

z pxl1

z

z

o

COs &

3

B

cos f

B

B

Chapter
Section

2.2
@.1)

2.1
@
(2.1)
2.1)
@
3.5

L))
(4.8)

1.2
1.2
2.1

an
@.1)

2.2

@.0
2.0

(6.4)
(4.5)
(4.6)

2.4

24
(3.5)
2.4
2.4
@3.5)
an

Interpretation

Arbitrary matrix

Arbitrary vector; {(also in Sections 2.9 and
3.5

Arbitrary variable

Arbitrary function of the parameters
Arbitrary vector; (also in Section 3.5)
Arbitrary variable

Arbitrary function of the parameters

Vector of weights; weights to be applied to
s; defined in Chapter 5

Arbitrary function of the parameters
Auxiliary variable for sequential condition
functions

Observation matrix with elements x}”
Vector of real variables x;

Observation vector with components x[*?
ith intermediate observation vector used in
controlled approach

Observation vector; observed values for y,
Observable real variable of the condition
function

Vector of calculated values yI'7; position
vector of the fitting surface

Vector of caloulated values !

Variable for which the implicit condition
function F is solved

Basis vector used in back projection method
Arbitrary function of the parameters
Auxiliary variable for sequential condition
functions; (also in Section 4.8)

Angle between observation vector x and
position vector y

Multiple cosine; cos (x,»)

Algorithm parameter; (also in Section 6.3.1)
Angle between f;, and Jd

Total cosine; cos { fo,Jd)

Algorithm parameter; (also in Section 6.3.1)
Reduction factor of difference vector f;, used
in controlled approach




Symbol

MR A AR DD G WL

s v ¢

€ e

Dimen-
sion

pxl1
pxl1
vx1

pxi

gxl1

Chapter  Interpretation

Section

23

(74
23

(7.4)
1.2
1.2
2.8
2.8
2.8
25
1.4

12.1)
9.4
1.2
9.3

6.3

©.3)

Difference vector in the parameter space
Stopping criterion vector for partial cogines .
Remainder vector of Taylor expansion of -
position vector with components L'
Stopping criterion

Parameter vector of real parameters 0,

Real parameter of condition function

Total curvature

Geodesic curvature

Remainder curvature

Vector of algorithm parameters 4, &
Algorithm parameter: step factor in du'eo-
tton of search

Equidistant points in direction of search
Reduction factor to step factor

Total number of observations

Reduction factor applied to measure of slope -

T ,
Angle in tangent subplane between Jd and
Jb; algorithm parameter in back pro_;eot:on‘
method

Angle between g and ¢

Algorithm parameter in back pro;echtm :
method
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Special notation

Symbol

vl
[]
O

®* .” .

*(n)

(N

196

Dimen-

sion

px1

gx1

Chapter
Section

2.2

2.2

1.2
2.1

2.1

2.5

Interpretation

Superscript, adds the kth component of the
superscripted vector to the (k,k)th element of
a zero matrix

Superscript, adds the inverse of the kth
component of the superscripted vector to the
(k. k)th element of a zero matrix

Differential operator

Base of system of natural logarithms
Natural logarithm

The minimum of the numbers a and 5
Superscript denoting transposition of a
vector or a matrix

General component of the operator V
Element of

Vector differential operator for differentia-
tion with respect to condition function
parameters

Vector differential operator for differentia-
tion with respect to algorithm parameters
Superscript; brackets denoting number of
observation, e.g. xtl

Superscript; parentheses denoting number of
fitting cycle, e.g. 8™

Is defined by

Which defines

Superscript denoting quantities related to the
minimum response

Superscript denoting quantities related to the
minimum response in the #th cycle or to the
nth subminimum

Euclidean norm

Under the condition. Given




Symbol Dimen-
sion

L

k= 1(1)p

Chapter
Section

9.3)
©.3)

2.1

2.1

1.3

Interpretation

Prime, denoting the derivative with respect
to the innermost argument

Prime, used in superscripts defined in the text
Subscript assigned to quantities left to thé
(sub)minimum .
Subscript assigned to quantities right to the
(sub)minimum

Matrix (vector} whose clements (compo-
nents) are equal to 3; dimensions being’
defined by operation rules of matrix algebra
Unit vector in direction of kth coordinate
axis of an orthogonal reference system;
dimensions being defined by operation rules
of matrix algebra

The general subscript k ranges from 1 through
P, with increments () equal to 1
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