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General introduction

Chapter 1

General introduction

Lennart Suselbeek

Background to the study of mutualisms

Mutualisms occur in habitats around the world and are considered fundamental to ecological and evolutionary
processes (Tomback 1982; Howe 1984; Boucher 1985; Bond 1994; Bronstein 1994b; Ferriere et al. 2002;
Herrera & Pellmyr 2002; Del-Claro 2004; Holland et al. 2004; Bronstein et al. 2006; Bascompte 2009; Bronstein
2009). In The Origin of Species, Darwin (1859) was one of the first to give substantial attention to mutualism
but it was the Belgian zoologist Pierre Joseph van Beneden who introduced the term mutualism in biology. Van
Beneden defined mutualism to apply to “mutually beneficial relationships between species” (Van Beneden
1876). A more formal definition of a mutualism is “an interaction between individual organisms in which the
realized or potential genetic fitness of each participant is raised by the actions of the other” (Janzen 1985).
Mutualisms may be roughly subdivided into four types: 1) pollination mutualisms, such as the pollination of
flowers by bees (Kearns et al. 1998), 2) digestive mutualisms, such as the interaction between ruminants and
microbes in their gut (Mackie et al. 1997), 3) protective mutualisms, such as plant protection by carnivorous
insects (Wackers & van Rijn 2005), and 4) seed-dispersal mutualisms, such as the interaction between

frugivorous birds and fruit-producing plants (Howe 1986).

The concept of conditionality

Traditionally, interactions among species were thought to be either positive (+), negative (-), or neutral (0) for
each species involved in the interaction. Consequently, mutualism (+,+) was one of six potential outcomes of
interspecific interactions, the others being commensalism (+,0), agonism (+,-), competition (-,-), amensalism
(-,0), and neutralism (0,0) (Malcolm 1966; Lewis 1985; Bronstein 1994a). In reality, the outcome of a given
interaction may vary in space and time (Bronstein 2001; Bronstein et al. 2003), and can shift, for instance, from
mutualistic to antagonistic (Bronstein 1994a; Herre et al. 1999; Del-Claro & Oliveira 2000; Siepielski & Benkman
2008). Therefore, it would be more appropriate to consider species interactions from a cost / benefit
perspective, i.e., If either the costs or the benefits change in magnitude, the degree to which an association is

mutually beneficial will change as well.

Variation in the outcome of species interactions as a function of the biotic and abiotic context in which the
interaction occurs, commonly termed conditionality or context dependence, has been documented in several
types of species interactions (reviewed in Chamberlain et al. 2014). However, despite substantial evidence that
the magnitude and sign of species interactions is context-dependent, the ecological and evolutionary
significance of conditionality and the main factors driving it have not been well characterised (Benedetti-Cecchi

2000; Agrawal et al. 2007; Chamberlain et al. 2014). Within the field of mutualisms, it has been predicted that
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conditional outcomes are most likely to occur if a) the mutualism is facultative rather than obligate, b) the
densities of both interacting partners vary, or c) a third species is intimately involved in the interaction
(Bronstein 1994a; Herre et al. 1999; Del-Claro & Oliveira 2000; Siepielski & Benkman 2008). These and other
predictions regarding conditionality have received considerable theoretical and empirical attention in plant-
pollinator-, digestive-, and plant-protection studies (reviewed in Beattie 1985; Cushman & Addicott 1991;
Bronstein 1994a; Bronstein & Barbosa 2002; Bronstein et al. 2006; Chamberlain & Holland 2009; Chamberlain
et al. 2014). However, theoretical exploration of the phenomenon in seed-dispersal mutualisms has only just
begun (Theimer 2005; Holland & DeAngelis 2009; Schupp et al. 2010), and empirical evidence of conditionality
in seed-dispersal mutualisms is still scarce (but see, Siepielski & Benkman 2008; Jorge & Howe 2009; Klinger &
Rejmanek 2010; Liu et al. 2013). My study is an attempt to fill this gap by quantifying the role of seed-hoarding
rodents as conditional mutualists of large-seeded trees in a multi-trophic system, and to explore the main

factors driving conditionality in seed-dispersal mutualisms.

Seed-dispersal mutualisms

Seed-dispersal mutualisms are widespread and are considered of crucial importance for plant regeneration
(Janzen 1970; Howe & Smallwood 1982; Boucher 1985; Howe 1989; Nathan & Muller-Landau 2000; Levey et al.
2002; Steele & Smallwood 2002; Vander Wall 2002; Forget et al. 2005). A seed-dispersal mutualism can be
defined as an interaction between a plant and a seed disperser, resulting in resources for the disperser as well
as seed dispersal for the plant, with both partners benefiting from the interaction in terms of fitness or
reproductive growth (Janzen 1985). The process of seed dispersal includes the movement of seeds away from
the parent plant and its siblings, but also away from other seeds, thereby reducing density- and distance-
dependent mortality (Janzen 1970) and directed to sites that are more favourable for germination and
establishment (Howe & Smallwood 1982; Briggs et al. 2009; Hirsch et al. 2012b). Although the ecological and
evolutionary significance of seed-dispersal mutualisms have been recognized long ago, critical examination of
the phenomenon has been hampered by the difficulty to non-invasively follow the seed-dispersal process from

seed shedding to seedling establishment (Wang & Smith 2002; Forget et al. 2005; Vander Wall et al. 2005b).

Animals dispersing seeds range from species as small as ants (Christian & Stanton 2004) to large mammals like
rhinoceros (Dinerstein & Wemmer 1988), and also the mechanism by which animals disperse seeds are diverse
(Van der Pijl 1972). Many birds and herbivores disperse seeds by defecating seeds that are contained in fleshy
fruits away from the host plant (Howe 1989), while several ant species transport seeds to the nest where they
consume a nutritive elaiosome, attached by the plant to the seed, leaving the seed unharmed and protected in
or just at the entrance of the ant’s nest (Handel & Beattie 1990). Finally, many rodent species living in regions
with alternating periods of food scarcity and food abundance, disperse seeds by storing them in underground
caches (Howe & Smallwood 1982; Jensen & Nielsen 1986; Vander Wall 1990; Vander Wall et al. 2005b). In this
process, called food hoarding, a substantial proportion of seeds handled is consumed or damaged by the
hoarder, however, some cached seeds may be forgotten or may otherwise escape predation and are left to

germinate and establish seedlings (Vander Wall 1990). Large-seeded trees are thought to rely heavily on seed-
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hoarding rodents for the dispersal of their seeds (Vander Wall 1990; Jansen & Forget 2001; Jansen et al. 2004;
Forget & Jansen 2007).

Rodents as conditional mutualists of large-seeded trees

The interaction between plants and seed-hoarding rodents is likely to show conditionality, because seed-
hoarding rodents play a dual role in plant regeneration. They consume large quantities of seeds, thereby
reducing plant recruitment, but at the same time they store many seeds, potentially reducing the seed’s risk of
desiccation, consumption by strict seed predators, and distance- and density-dependent mortality below the
parent plant and close to conspecifics (Janzen 1970, 1971; Jansen & Forget 2001; Vander Wall 2001; Zwolak &
Crone 2012). In addition, seed dispersal is sometimes directed to places where seed- and seedling survival are
relatively high (Howe & Smallwood 1982; Briggs et al. 2009; Hirsch et al. 2012b). However, whether the costs of
seed predation outweigh the benefits of caching seems to be highly dependent on the hoarder’s strategy of
caching, which in turn is likely to vary with the circumstances under which hoarding takes place (Stapanian &

Smith 1978; Vander Wall 1990; Theimer 2005; Zhang et al. 2011; Zwolak & Crone 2012).

The strategies that rodents use for storing seeds typically range between two extremes: scatter hoarding and
larder hoarding (Vander Wall 1990). Larder hoarding involves the placement of many food items in one or few
caches (‘larders’), usually located in or near the nest, in underground burrows, or in tree cavities. Larders are
relatively easy to create and recover, yet usually require active defence against other animals (Clarkson et al.
1986; Vander Wall 1990; Daly et al. 1992; Dally et al. 2006). Scatter hoarding, in contrast, involves spreading of
food over many widely spaced caches with one or few food items each (‘scatters’) (Morris 1962; Clarkson et al.
1986; Vander Wall 1990, 2001). Scatters are not individually defended and involve higher energetic costs in
terms of travel (food is spaced out more widely) and memory (more locations have to be remembered), as well
as increased mortality risk due to longer exposure to predators and adverse environmental conditions
(Stapanian & Smith 1978; Smith & Reichman 1984; Stapanian & Smith 1984; Jenkins et al. 1995; Dally et al.
2006). While larder hoarding generally precludes recruitment because large numbers of seeds are stored in
deep burrows where germination and seedling establishment is highly unlikely, scatter hoarding may positively
affect plant regeneration because individual seeds are buried in numerous spatially scattered, shallow soil or
litter caches. Non-recovered scatter-hoarded seeds may thus be left in sites that are suitable for germination
and seedling establishment: they are dispersed away from their parents, siblings, and associated parasites and

pests, and they are planted at shallow depth but out of predators’ immediate reach (Vander Wall 1990).

Conditionality in this type of interaction arises due to many rodent species following a mixed-hoarding strategy,
in which seeds may either be individually scatter hoarded, be hoarded in small clusters, or be larder hoarded in
underground burrows (Clarke & Kramer 1994; Den Ouden et al. 2005). The degree to which the scatter-
hoarding strategy is followed — determining the effectiveness of hoarding as seed-dispersal mode — typically
varies in space and time (Theimer 2005), but the drivers of this variation are largely unknown . One theory is

that the pattern of seed hoarding employed by an animal is related to its ability to defend caches against
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competitors (hereafter, superiority) (Stapanian & Smith 1978). If the hoarder is superior over its competitors,
larder hoarding would be an optimal strategy, since larders can be defended against inferior competitors.
However, if the hoarder faces superior competitors, larders would not be safe from pilferage (i.e., cache
predation by an individual other than the original hoarder of that cache) and thus the optimal strategy may be
scatter hoarding. Under high food competition, especially with superior competitors present, scatter hoarding
could thus yield a greater net reward than larder hoarding for the inferior hoarder. In other words, the benefits
of decreased cache pilferage may outweigh the increased costs of scattering, remembering, and retrieving the

caches (Stapanian & Smith 1978; Dally et al. 2006).

This study

The objective of my study was to investigate the role of seed-hoarding rodents as conditional mutualists of
large-seeded trees in a multi-trophic system. | specifically aimed to examine whether and how intra- and
interspecific food competition affects the hoarding patterns of rodents such that their role as mutualists of
large-seeded trees changes. To do this, | studied the interactive effects of seed abundance, rodent abundance,
and the presence of a third-species competitor on seed-hoarding patterns as produced by rodents, both in the
field and in controlled experiments. The ultimate goal was to explore the broader ecological and evolutionary

consequences of conditionality in seed-dispersal mutualisms.

| focused on the interaction between a large-seeded tree, Pedunculate oak (Quercus robur), two seed-hoarding
rodents, Wood mouse (Apodemus sylvaticus) and Bank vole (Myodes glareolus), and a heterospecific seed
predator, Wild boar (Sus scrofa). What distinguishes my study from other recent studies of conditionality in
seed-dispersal mutualisms (Siepielski & Benkman 2008; Jorge & Howe 2009; Klinger & Rejmanek 2010; Liu et al.
2013), is the inclusion of a third-species competitor that is intimately involved in the interaction, and the use of
a novel technique (i.e., PIT tagging) for non-invasively tracking individual seeds all the way up to the seedling

establishment.

Design of the study

My study consisted of a combination of a large empirical field study and two controlled experiments. The field
study involved tracking of over a thousand acorns in time and space to determine their ultimate position and
fate, across twelve sites that varied in wild-boar presence and rodent abundance, but that were otherwise
comparable (Fig. 1.1a). For this, | used Passive Integrated Transponder (PIT) tags, inserted into acorns (Fig.
1.1b). PIT tags are small (2x12 mm) uniquely coded glass transponders that can be tracked indefinitely and can
be detected with antennae up to distances of 40 cm. The use of PIT tags allowed me to non-invasively and
individually follow the seeds until they had either died or established seedlings. The results of this field study
enabled me to evaluate whether and how seed-hoarding patterns of rodents were affected by wild-boar
presence, rodent abundance, and seed abundance (this varied between years), and how this, in turn affected

the mutualism between rodents and oaks.
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The two controlled experiments were set up to disentangle the complex web of interactions encountered in
the field. In the first controlled experiment eight captive wild boar were allowed to search for acorns that had
been experimentally hidden according to different hoarding strategies. This experiment was used to evaluate
whether differential seed-hoarding patterns actually affected the risk of seeds being found and pilfered by wild
boar (Fig.1.1c). The second controlled experiment involved experimental caching of a fixed number of acorns
by wood mice that varied in sex and weight and that had been wild-caught from sites with contrasting wild-

boar presence (Fig. 1.1d). This enabled me to test whether variation in hoarding patterns could be explained by

weight, sex, and/or provenance of the hoarder.

Fig. 1.1: (a) shows the experimental setup for monitoring seed removal as part of the field study described in chapter three.
(b) shows a PIT-tagged acorn of the pedunculate oak that was partly consumed by rodent. This technique is further
described in chapter two, and was used for tracking seed-dispersal in the field (chapter three) and in the experiment with
captive rodents (chapter five). (c) shows the experimental setup of chapter four, and (d) shows the experimental setup of

chapter five.

Study site

The fieldwork for this study took place between September 2010 and July 2012 in a forested area in the
Netherlands, the Veluwe (52°1'N, 5°43'E). The area consists of sandy deposits and a spodosol soil type
(Bloemers et al. 1980). Mean annual precipitation during 2010-2012 was 870 mm and average temperature
ranged between 3 °Cin January to 18 °C in July (Koninklijk Nederlands Meteorologisch Instituut (KNMI) 2014).
Tree cover comprised a mixture of coniferous and deciduous species, dominated by Scots pine (Pinus
sylvestris), Douglas fir (Pseudotsuga menziesii), Japanese larch (Larix kaempferi), European beech (Fagus
sylvatica), Red oak (Quercus rubra), and Pedunculate oak. The understory was dominated by Bracken
(Pteridium aquilinum), Blueberry (Vaccinium myrtillus), Bramble (Rubus fruticosus), and several species of

grasses and sedges (Smit et al. 2001; Den Ouden et al. 2005; Jansen & Den Ouden 2005; Kramer et al. 2006).

The study area was effectively divided into two parts by a fenced four-lane motorway, established in 1956.
Conveniently, wild boar occurred in relatively high densities north of the motorway (i.e., approximately 3-5
individuals km™) while they were not allowed, and thus absent, south of the motorway (Spek 2014). Apart from
providing a stark contrast in wild-boar presence, the motorway also served as a barrier for mixing of rodent
populations between both parts of the study area. This enabled testing for behavioural differences between
rodents living in areas with a long history of wild-boar presence and rodents living in areas with a long history

of wild-boar absence.

11

Il



Chapter 1

Study species

Pedunculate oak (Fig. 1.2) is a large-seeded deciduous tree species abundant
in central and western Europe that exhibits alternate bearing, with periodic
rich and poor mast years (Crawley & Long 1995). Seeds start to ripen in
September-October and are shed between October and December (Watt
1919; Jones 1959; Bossema 1979; Crawley & Long 1995). In good seed-years,
production averages about 50,000 seeds (Jones 1959; Crawley & Long 1995;
Tyler 2008). The seeds of pedunculate oak (henceforth: acorns) are used by
many animals to overcome food scarcity during winter, such as Eurasian jay

(Garrulus glandarius), Wood pigeon (Columba palumbus), Red squirrel

(Sciurus vulgaris), Red deer (Cervus elaphus), Roe deer (Capreolus capreolus),
Bank vole, Wood mouse, and Wild boar. In return, pedunculate oak relies Fig. 1.2: drawing of the large-
heavily on animals for the dispersal of its seeds, which is taken care of seeded tree species used in my
primarily by corvids, squirrels, and rodents (Jones 1959; Bossema 1979; study, the pedunculate oak.
Jensen & Nielsen 1986; Crawley & Long 1995; Gomez et al. 2003; Den Ouden et al. 2005; Gomez et al. 2008).
Other than being eaten by seed predators, acorns are prone to die from drying, freezing, or rotting when left

on the forest floor (Jones 1959).

The two species of seed hoarders in my study system are both common
European woodland rodents: the Wood mouse and the Bank vole (Fig. 1.3).
The wood mouse measures 75-110 mm (excluding tail) and weighs between
14 and 35 g, whereas bank vole tends to be slightly larger, measuring 85-135
mm (excluding tail) and weighing between 12 and 40 g. They primarily breed
between April and October, depending on temperature and food availability
(Lange et al. 1994). Both species are largely nocturnal and are characterized

by well-developed olfactory, visual, and auditory senses. They are typical

granivores, with seeds constituting roughly 70% of the diet, particularly so in
autumn and winter (Watts 1968; Flowerdew et al. 1985). Wood mice and
bank voles play an important role as predator and disperser of acorns in
Europe, by hoarding acorns in autumn to serve as a food reserve for winter
(Vander Wall 1990; Den Ouden et al. 2005; Takahashi et al. 2007). They may
function as mutualists of oak when scatter hoarding seeds, providing seed

dispersal and protection against seed predators and environmental stress,

but they function as seed predators when larder hoarding seeds in
Fig. 1.3: drawings of the two species

underground burrows (where recruitment is near-absent), when eating ) )
of seed-hoarding rodents used in my

seeds without first hoarding them, r when recovering all caches for food study. (a) shows a drawing of the

(Den Ouden et al. 2005). wood mouse, and (b) shows a

drawing of the bank vole.
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The third species, believed to be intimately involved in the interaction
between oaks and seed-hoarding rodents, is the Wild boar (Fig. 1.4). Wild
boar is a medium-sized (50-200 kg) ungulate that is regarded as an important
competitor to seed-hoarding rodents in forests and woodlands throughout its
range of occurrence (Focardi et al. 2000; Massei & Genov 2004). Acorns are a
dominant food source in autumn when they have freshly shed and are
abundantly available on the forest floor (Massei & Genov 2004; Elston &

Hewitt 2010), but also in mid- and late winter when very few acorns remain

on the forest floor (Groot-Bruinderink et al. 1994; Den Ouden et al. 2005;
Mufioz & Bonal 2007). The latter suggests that wild boar actively search for Fig. 1.4: drawing of the third-
and pilfer acorn caches created by seed hoarders, such as wood mouse and species competitor used in my
bank vole (Borchert et al. 1989; Herrera 1995; Focardi et al. 2000; Gomez et~ Study, the wild boar.

al. 2003; Den Ouden et al. 2005). Wild boar have well-developed olfactory senses, which they may use for
locating cached acorns and other hidden food items (Briedermann 1986; Focardi et al. 2000; Den Ouden et al.

2005).

Outline of the thesis

In chapter 2, | describe the PIT-tagging method that | used for tracking rodent-dispersed seeds. My study was
the first to use PIT tags for tracking seeds and establishing seed fate. | explain how PIT tags work, what the pros
and cons are of using this technique, and how PIT tagging compares to other frequently used techniques for

tracking rodent-dispersed seeds, such as thread marking.

Chapter 3 deals with the large empirical field study, in which PIT-tagged acorns were presented to seed-
hoarding rodents living in areas with a long history of either wild-boar presence or wild-boar absence. Seed-
removal rate, seed-dispersal distance, cache spacing, and ultimate seed fate were recorded to test whether
and how hoarding patterns varied with wild-boar presence, rodent abundance, and seed abundance, and how

this, in turn, affected the mutualism between rodents and oaks.

Chapter 4 considers the risk of pilferage by wild boar, under different hoarding patterns. | designed this
controlled experiment to mimic alternative outcomes of the hoard-size / number trade-off that hoarders face.
Given a certain food supply (i.e., a fixed number of seeds or other food items) and available area (i.e., the home
range), pilferage rates can be influenced only by changing the distribution of food items over the available
patches and by varying the depth at which food items are cached. | tested this by distributing a fixed number of
acorns (32) over a fixed number of patches (100) within a fixed area (750 m?), but varying cache size and cache
depth, thus mimicking alternative hoarding patterns. | then had a fixed number of wild boar searching for the

hidden food items, to test whether pilferage rates were affected by the hoarding pattern.

13
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Chapter 5 describes the second controlled experiment. Here, | placed wood mice, varying in sex and weight and
wild-caught from areas with contrasting wild-boar presence, individually in large sand-filled arenas, where they
were allowed to hoard a fixed number of acorns. This experiment was designed to evaluate the importance of
individual characteristics of the hoarder (i.e., superiority) for explaining variation in seed-hoarding patterns. A
test with a conspecific audience was later introduced to investigate whether and how pilferage risk by

conspecifics affected seed-hoarding patterns.

Finally, in chapter 6, | present a synthesis of the main findings, also including some results of unpublished
experiments. | discuss the phenomenon of conditionality in seed-dispersal mutualisms, and more specifically,
how the presence of a third-species competitor can affect the outcome of seed-dispersal mutualisms. |
evaluate the relative importance of inter- and intraspecific food competition on seed-hoarding patterns and on

ultimate seed fate, and | propose some directions for future studies.

14



Tracking seed dispersal with PIT tags

Chapter 2

Tracking rodent-dispersed large seeds with Passive Integrated Transponder (PIT) tags

Lennart Suselbeek, Patrick A. Jansen, Herbert H.T. Prins, Michael A. Steele

This chapter was modified from:
Suselbeek, L., P. A. Jansen, H. H. T. Prins and M. A. Steele. 2013. Tracking rodent-dispersed large seeds with Passive
Integrated Transponder (PIT) tags. Methods in Ecology and Evolution, 4, 513-519.

Abstract

Seed dispersal, a critical phase in the life history of many plants, is poorly understood due to the difficulty of
tracking and monitoring dispersing seeds until they reach their ultimate fate. Scatter-hoarding rodents play a
substantial part in the seed dispersal process of many plant species, however, existing tracking methods do not
allow seed monitoring without risk of influencing the hoarding process and seed fate. Here, we describe and
test the use of Passive Integrated Transponders (PIT) tags inserted into seeds for the tracking and monitoring of
large seeds dispersed by rodents. Unlike other tagging methods, PIT tagging combines the advantages of
leaving no external cues and being readable without disturbance of caches. Rodents cannot remove these tags.
We evaluated the performance of PIT tagging through a series of trials with Quercus acorns dispersed by
rodents, both in North America and in Europe, with equipment from different manufacturers. We quantified
effects of tagging on seed removal and caching, cache pilferage, and seed germination, by comparison between
PIT-tagged and untagged acorns. We evaluated the detectability of buried tags to researchers. Minimal effects
of PIT tagging on seed mass and seed germination were found. As with typical seed handling by rodents, seed
removal of PIT-tagged seeds was instantaneous, seeds were either cached or consumed, and some caches were
retrieved over time while others were not, suggesting that rodent behaviour was little influenced by PIT
tagging. Buried PIT tags were retrieved with high reliability by naive researchers, even at burial depths up to 30
cm. Identification codes could be read even when multiple tags were buried at a single location, as in larder
hoarding. The method was successfully applied in two field studies of dispersal of Quercus palustris and Q.
rubra acorns by Eastern gray squirrels Sciurus carolinensis in North America, and Q. robur acorns by Wood mice
Apodemus sylvaticus in the Netherlands. The proportion of seeds recovered was comparable to that in studies
using traditional thread tags. We conclude that PIT tagging is a particularly suitable method for tracking and
monitoring of seeds dispersed by scatter-hoarding rodents. PIT tagging solves most of the main problems

generally encountered when following the fate of rodent-dispersed seeds over time.

Keywords: acorn, hoarding, passive integrated transponder, PIT tag, Quercus, rodents, seed dispersal, seed

tracking
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Chapter 2

Introduction

Seed dispersal is a major determinant for plant regeneration (Van der Pijl 1972; Lemke et al. 2009). The
majority of large-seeded trees, such as oak, chestnut, hickory, pine, and many palm species, in temperate, sub-
tropical and tropical forests rely on seed hoarding by granivorous mammals and birds for primary and/or
secondary seed dispersal (Howe & Smallwood 1982; Jansen et al. 2004; Forget et al. 2005). These so-called
‘scatter hoarders’ store large numbers of seeds, individually or in small quantities throughout their home
range, serving as food supplies during periods of food scarcity (Morris 1962). The shallow cache sites used by
scatter hoarders are often ideal for both seed storage and germination. Thus, when animals fail to recover
some of the cached seeds, the latter are likely to establish as seedlings (Vander Wall 1990; Jansen & Forget
2001; Steele & Smallwood 2002; Forget et al. 2005). Scatter hoarders can move large numbers of seeds in a
relatively short time span, sometimes over considerable distances (Smith & Reichman 1984; Price & Jenkins

1986; Vander Wall 1990; Steele & Smallwood 2002).

Whereas many studies have attempted to quantify the role of scatter-hoarding animals in seed dispersal and
tree regeneration, few have been able to actually estimate the proportion of scatter-hoarded seeds
germinating and establishing. A major reason is that scatter-hoarded seeds are often repeatedly recovered and
re-cached before they reach their ultimate fate (Vander Wall et al. 2005b; Jansen et al. 2012). Existing tagging
methods, such as coloured threads or flagging tape, inserted magnets or metal objects, and radio isotopes
(Forget & Wenny 2005) are not well suited for tracking and monitoring seeds beyond their initial cache, either
until the seeds die or until they germinate and establish as seedlings. One major concern is that these methods
present cues to rodents that can increase cache dynamics (e.g., increased re-caching, increased pilferage) and
thus bias ultimate seed fate. Internal tags and radio isotopes typically require disturbance of the cache to
identify the individual seed, thus producing digging traces that rodents use to locate and pilfer cached seeds
(Murie 1977; Guimardes Jr et al. 2005). Likewise, external visual tags may also increase the likelihood of
rodents locating cached seeds (Hirsch et al. 2012a). Thirdly, traditional tagging methods often result in a
considerable increase in seed weight, while seed mass is known to affect seed removal and dispersal (e.g.,

Jansen et al. 2002; Jansen et al. 2004).

Here, we describe a new technique for tracking the movement of animal-dispersed seeds that is free of these
constraints: internal tagging of seeds with Passive Integrated Transponder tags, henceforth PIT tags. PIT tags
are widely used to individually tag animals in husbandry and wildlife conservation (e.g., Elbin & Burger 1994;
Hewitt et al. 2010; Hoy et al. 2010). In ecology, PIT tags have been used to study the movement and behaviour
of freshwater fish (e.g., Greenberg & Giller 2001; Cucherousset et al. 2005), and for animal monitoring and
studies of population dynamics (reviewed in Gibbons & Andrews 2004). In this paper, we provide a technical
description of the method, and summarize potential advantages and disadvantages for studying removal,
dispersal, and caching of seeds. Then, we present results from greenhouse and field experiments that evaluate
the suitability of the technique for tracking seed dispersal, using acorns (Quercus spp) in two different study

systems. Results of a full field study using this method are presented in a companion paper (Steele et al. 2011).
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Technical description

A PIT tag is an electronic microchip connected to an electric resonance circuit that acts as a
receiving/transmitting antenna, encased in a biocompatible glass cylinder (Fig. 2.1) (Jansen & Eradus 1999).
Each PIT tag is programmed with a unique alphanumeric code, permitting individual identification with a Radio
Frequency Identification (RFID) transmitter-receiver (Gibbons & Andrews 2004). The RFID reading device
generates a carrier radio wave, while an antenna system attached to the reader generates an electromagnetic
field that prompts the transponder to send back its code, which is then received by the antenna and
interpreted by the RFID reader (Bonter & Bridge 2011). The PIT tags do not require an internal power source,
and can work indefinitely. PIT tags are available in various sizes, ranging from 4 x 34 mm down to as small as
1.5 x 7 mm, and weighing just 0.05 grams, small enough to be inserted into seeds. PIT tags typically have a read
range of about 25-60 cm (Fuller et al. 2008), large enough to detect seeds hoarded underground. This range

can be extended to 1-2 meters with customized antenna and tag designs (Cucherousset et al. 2005). Generally,

larger tags will have larger detection ranges.

Fig. 2.1: Two sizes of PIT tags (in cm) (Trovan Ltd.)

Performance tests

We evaluated the performance of PIT tags for tracking seeds in two study systems: acorns of Pedunculate oak
Quercus robur dispersed by Wood mice Apodemus sylvaticus in the Netherlands, and acorns of Red oak Q.
rubra and Pin oak Q. palustris dispersed by Eastern gray squirrels Sciurus carolinensis in Pennsylvania, USA. We
used the following criteria for this evaluation: (1) no effect on seed mass, which is important because individual
dispersal distance and fate are affected by seed mass (e.g., Jansen et al. 2002; Jansen et al. 2004; Pons &
Pausas 2007); (2) no effect on germination and seedling growth; (3) negligible effect on animal behaviour
related to scent and modification of the seed, and; (4) high rates of recovery, i.e., a low chance of missing seeds

within the search area.
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In the Netherlands, we prepared experimental acorns by drilling a small hole of 2 x 12 mm in the basal half of
each acorn (using a wood drill), inserting a single glass-encapsulated PIT tag (ID100A, 2 x 11.5 mm, 125 kHz,
Dorset Identification, Netherlands), sealing the hole with scent-free wax (Entwas, Asepta BV, Netherlands) and
polishing the seed with an odourless cloth to remove all traces of wax on the seed shell. We wore scent-free
gloves during all seed handling. The entire tagging process takes less than a minute per seed. The reading
equipment consisted of a high-performance handheld reader (GR-250, Dorset Identification, Netherlands) and
a flat-panel antenna system (LID-650, Dorset Identification, Netherlands) optimized to work with these PIT tags.
The reader continuously displays tag code data received by the antenna, and alerts the operator whenever a
tag is detected (as in Cucherousset et al. 2005). This system allows the simultaneous reading of multiple tags,

which is important when caches can contain more than one seed.

In Pennsylvania, we used similar-sized PIT tags (1.5 x 12.5 mm, 134.2 kHz; Model HPT12, Biomark Corporation,
Idaho, USA ) with a Destron-Fearing reader and hand-held loop antenna (Model FS2001F-ISO, Biomark
Corporation, Idaho, USA). Acorns of pin oak and red oak were prepared and tagged in a similar manner to that
described above, sealing the hole first with odourless wood filler (EImer’s Products Inc., Ohio, USA), allowing it
to dry, and then disguising the sealed hole with a small patch of the filler similar in colour to the shell of the
acorns (colour varies considerably with oak species). Careful closure is important in this system, because any
indication that the shell of an acorn is compromised will likely result in selective consumption rather than
caching of an acorn by rodents because the animals are highly sensitive to seed perishability (Hadj-Chikh et al.

1996; Steele et al. 1996).

To evaluate effects of PIT tagging on seed mass, we randomly selected and numbered 60 Pedunculate oak
acorns in the Netherlands, and 60 Pin oak and 59 Red oak acorns in Pennsylvania from composite samples from
3-5 trees of each species. We weighed each acorn with a precision balance, inserted a PIT tag, reweighed the

acorn after drying of the glue and/or filler, and compared the weights with pairwise t-tests.

For Pedunculate oak in the Netherlands, we report results from a two-year field study where nearly 1,200 PIT-
tagged acorns were offered to wood mice at twelve different locations in October 2010 and October 2011.
Hoarded acorns were subsequently relocated and followed through time until July the following year, at which
time caches were recovered and long-term seed fate was established. In addition, we experimentally tested
the effects of PIT tagging on seed germination and seedling establishment, by comparing the proportion of
acorns germinating and seedling growth between 60 tagged and 60 untagged acorns of Pin oak in
Pennsylvania. Acorns were germinated in 1-liter plastic containers by filling the containers with dampened
paper towels and nesting the acorns within the towels along the sides of the container so their germination
progress could be regularly observed. This approach allows acorns to grow well up to 12 weeks or more and
allows assessment of seed performance without the further confounding effects of soil nutrients. Equal
numbers of pit-tagged and untagged acorns were alternately placed around the edge of each container. Paper

towels were moistened daily. Seed germination was initiated on July 23, 2010 and all seedlings were harvested
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on August 13, 2010. For each seedling, we measured the radicle length, epicotyl length, and number of leaves.

We tested for differences with Chi-squared tests (germination) and t-tests (seedling size).

We assessed effects on animal behaviour in the Netherlands, by presenting differently marked acorns to wood
mice and recorded their handling and removal. We tested two wire-marking techniques; wire glued to the
acorn, and wire stitched through the acorn, and one type of internal tag marking; a 5x3 mm tag inserted into
the acorn (and the hole sealed with scent-free wax). Here, the tag was a magnet rather than a PIT tag, but the
treatment was the same otherwise. We also report preliminary findings from a field study using PIT tags in the
same area. In a separate study in Pennsylvania, we presented habituated, free-ranging Eastern gray squirrels in
a semi-natural park setting with PIT-tagged and untagged acorns (Steele et al. 2011) to follow patterns of seed

fate before and after cache owners were removed from the site.

To assess the accuracy of cache retrieval by researchers, we buried PIT-tagged acorns of Pedunculate oak in an
open grassy field in the Netherlands and had a naive researcher attempt to recover them. We individually
buried 12 PIT-tagged acorns at each of 4 depths: 5 cm, 10 cm, 15 cm, and 30 cm, and determined what
proportion was retrieved by the test person. We also buried 12 tagged acorns at 10 cm depth randomly
scattered across a grassy field of 1000 m’ and then had a test person, who was unaware of the cache locations,
recover them. We also report here some data on cache retrieval for the long-term field study we performed in
the Netherlands. Likewise, in Pennsylvania, we buried 12 PIT-tagged acorns of Red oak at each of 3 depths: 5
cm, 10 cm, and 15 cm, and had an observer recover them. Finally, we tested for the maximum detection range
of both systems, measuring maximum distances at which 12 individual PIT-tagged acorns were detected when

placed on the soil surface.

Results

Effects on seed mass

PIT tagging resulted in a significant, yet minor increase in seed mass in two of the three species (Fig. 2.2). Mean
mass of individual acorns changed from 4.54 g (N = 60, SD = 0.70) to 4.56 g (SD = 0.70) after PIT-tag insertion in
Pedunculate oak (Paired T-test; t = 16.25, df =59, p < 0.001), from 5.56 g (N =59, SD =1.44) to 5.61 g (SD =
1.41) in Red oak (t = 5.32, df =58, p < 0.001), and from 2.280 g (N = 60, SD = 0.251) to 2.281 g (SD = 0.243) in
Pin oak (t = 0.10, df =59, p = 0.9). However, seed mass did not significantly differ between randomly selected
PIT-tagged and untagged acorns from the same source, neither in Pedunculate oak (Student’s T-test: t = 0.013,

df =118, p =0.99) nor in Red oak (t =0.198, df = 116, p = 0.84).

19




Chapter 2

6 -
T
I'T1
5 .
= 1
R
©
E 3 -
£
g 2 -
<
1 -
0 T T
pedunculate oak red oak pin oak

Fig. 2.2: Effects of PIT tag insertion on seed mass for pedunculate oak (N = 60), red oak (N = 59) and pin oak (N = 60). White

bars represent untagged acorns and grey bars represent PIT-tagged acorns. Error bars represent 95% confidence intervals.

Effects on germination and seedling establishment

In Pedunculate oak, a field study showed that PIT-tagged acorns readily germinated and established as
seedlings. Of nearly 1,200 PIT-tagged acorns offered to and hoarded by wood mice in October 2010 (N = 589)
and October 2011 (N = 588), 833 (70.8%) were later retrieved within the search area. Of these, 114 (13.7%) still
remained in July the following year. Of these last 114 acorns that were not recovered by the wood mice, only 5
(4.4%) had died from a fungal infection while all others had germinated (95.6%). Finally, 72 (63.2%) of the PIT-

tagged acorns that had germinated, emerged and established as seedlings.

In Pin oak, a greenhouse experiment showed a slight effect of PIT tagging on germination but little effect on
seedling growth. We observed initial germination (radicle growth > 1 cm) in 45 (75.0%) of the 60 tagged acorns
and 55 (91.7%) of the 60 untagged acorns ()(2 =5.255, p = 0.02; Fig. 2.3a). Continued germination (plumule
emergence) was observed in 39 (65.0%) and 53 (88.3%) of the tagged and untagged acorns, respectively (x* =
8.382, p = 0.004; Fig. 2.3b). We noted that in these nearly 1-year-old acorns, which appeared otherwise sound,
traces of fungus or mould were found in 36 of the tagged and 0 of the untagged acorns. This suggests that in
older acorns, tagging may predispose them to lower germination success by allowing colonization by
pathogens. Thus, care should be taken to use newly collected seeds and to minimize contamination when
preparing tagged nuts. Under normal circumstances PIT tagging would occur at the time of acorn maturation

and if the acorn is well sealed, mould and fungus are unlikely to penetrate the cotyledon.

Among the tagged and untagged Pin oak acorns successfully exhibiting aboveground seedling growth, we
observed nearly identical measures of seedling performance six weeks after planting; including mean number
of leaves (tagged (N = 39): mean = SD; 6.2 * 2.3; untagged (N =53): 6.0 + 2.7; Welch’s t-test = 0.342, p = 0.73;
Fig. 2.3c), mean epicotyl length (tagged: 17.6 + 5.7 cm; untagged: 18.7 £+ 5.8 cm; t =-.973, p = 0.33; Fig. 2.3d)
and mean radicle length (tagged: 20.6 + 6.3 cm; untagged: 20.7 + 7.2; t = -0.083, p = 0.93; Fig. 2.3e).
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Fig. 2.3: Effects of PIT tagging on (a) germination (N= 60), (b) plumule emergence (N = 60), (c) number of leaves produced
(N =53 for untagged and N = 39 for PIT tagged), (d) mean epicotyl length (N = 53 for untagged and N = 39 for PIT tagged),
and (e) mean radicle length (N = 53 for untagged and N = 39 for PIT tagged) for Pin oak acorns. White bars represent

untagged acorns and grey bars represent PIT-tagged acorns. Error bars represent 95% confidence intervals.

Effects on animal behaviour

In the Netherlands, wire-marking techniques did not work well with wood mice. The majority of wire-marked
acorns (55%, N = 76) was not removed from the plot at all by wood mice, and of the acorns that were handled
by wood mice, 84% was gnawed off the wire and only the wire was retrieved. In contrast, all magnet-marked
acorns (N=45) were removed from the seed plot within one night. Of these, 19 (42%) were retrieved within the
search radius of 30 m, while the other acorns had probably been dispersed outside the search area. In 10 cases
(53%), acorns were found intact while in the other 9 cases magnets were retrieved together with acorn shell
remains, indicating consumption at the retrieval site. Our field study with PIT-tagged acorns (12 sites, 49 acorns
/ site, N=588) provided similar results to those from magnet-tagged acorns. All PIT-tagged acorns were
removed within one to three nights and were often retrieved intact in shallow individual caches throughout the

search area or as exposed PIT tags accompanied by acorn shells, indicating local consumption.

In Pennsylvania, animals never rejected tagged acorns but instead either ate or cached them within sight. After
consumption, PIT tags were often dropped at the feeding site and easily recovered among the feeding debris.
Immediately after the animal cached an acorn, we mapped the cache location and verified the presence of the
acorn in the cache site. We were then able to revisit cache sites almost indefinitely and monitor the presence
of the cache without disturbing the cache in any manner. When an acorn was removed, either by a pilfering
conspecific or by the cache owner, an obvious pit was observed and the PIT tag was not detectable. When the
acorn was eaten at the site, observers often recorded acorn shell fragments and the intact PIT tag. Steele et al.
(2011) used this technique to follow the fate of acorn caches and assess pilfering rates of natural caches when

cache owners were removed from their home ranges.
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Retrieval success

Using the Trovan system in the Netherlands, all seeds artificially cached at 5, 10, and 15 cm depth were
detected and read by the naive researcher. At 30 cm depth, 90% of the acorns were detected and read. The
test person also recovered all acorns that we artificially scatter hoarded (at 10 cm depth) within 6 minutes,
without need to repeatedly search the same area. The maximum depth of detection for 12 tagged acorns
ranged between 27.8 and 34.2 cm (31.43 + 1.70), and the system was capable of detecting and reading up to 6
PIT-tagged acorns cached together, and of detecting caches with up to 16 PIT-tagged seeds. Results from a field
study in a natural forest area in the Netherlands, where nearly 1,200 PIT-tagged acorns were offered to and
hoarded by wood mice, showed a retrieval success of 70.8% (N = 833) within a search radius of 45 meters from
the source location. Likewise, using the Biomark system in Pennsylvania, all PIT-tagged acorns were detected
and read at all three depths. Maximum depth of detection for 12 tagged acorns of Red oak ranged between
18.0 and 31.5 cm (23.75 + 4.77), which is enough to also detect seeds that have been taken into an average-

size burrow system (Jennings 1975).

Discussion

Assessing the ultimate fate of seeds dispersed by rodents requires tracking and monitoring of seeds without
animals severing the tags, and without tags presenting cues to pilferers, as the latter may accelerate or
seriously alter cache dynamics (e.g., increased re-caching, increased movement of seeds and increased risk of
predation on seeds) (Guimardes Jr et al. 2005; Hirsch et al. 2012a). Here, we describe how insertion of PIT tags
allows the non-invasive measurement of removal, dispersal, and ultimate fate of seeds dispersed by scatter-
hoarding rodents. We show that 1) insertion of PIT tags in acorns has a negligible effect on seed mass, 2) PIT
tagging hardly influences acorn germination and seedling establishment probabilities, 3) PIT-tagged seeds are
treated similarly by seed dispersers as untagged seeds and that the tags are not removed, and 4)

experimenters’ retrieval success of PIT-tagged acorns after dispersal is high.

Although a diverse range of seed-marking techniques has been described in literature (for a review, see Forget
& Wenny 2005), none of them possesses the unique combination of advantages listed above. For example,
metal- (e.g., Sork 1984), magnet- (e.g., Den Ouden et al. 2005), and radio-isotope labelling (e.g., Vander Wall
1994, 2000) also hardly affect seed mass, but do not allow individual identification of the seed, at least not
without disturbing the cache and/or leaving a possible cue for cache detection (e.g., Forget 1990). Similarly,
thread marks (e.g., Forget et al. 1994), wire tin-tags or plastic seed tags (e.g., Xiao et al. 2006), telemetric
thread tags (Hirsch et al. 2012a), and VHF radio transmitters (e.g., Tamura 1994; Soné & Kohno 1996) also
allow individual identification of seeds, but they may significantly increase seed mass, are frequently severed
by rodents, can influence seed predation and germination rates if seeds are pierced for tag attachment, or
present cues to cache pilferers (Hirsch et al. 2012a). In contrast, PIT-tagged seeds were readily removed from
seed plots and cached or consumed by rodents without leaving cues for pilferers, both in the Netherlands and
in Pennsylvania. And although a greenhouse experiment with 1-year old Pin oak acorns showed some effects of

PIT-tagging on seed germination, it did not seem to affect seedling growth once the seedling had emerged. We
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in part selected pin oak acorns for these germination studies because their size is among the smallest for oaks,
increasing the potential for a negative effect of the tag on the embryo. It should also be noted that the
dormancy period (i.e., cold stratification) of red oak species (section: Lobatae) requires older acorns from the
previous year to evaluate germination rates. Under normal circumstances, red oaks would be tagged and
sealed a few weeks after maturation, and germination would begin about 5-6 months later, thus reducing the

probability of rot.

PIT tags remain detectable virtually indefinitely, allowing to follow seedlings even after the acorns have rotten
away. In Pennsylvania we have recovered PIT tags at the base of tree saplings more than four years after
deployment in the field. Although PIT tagging involves piercing of the shell and removal of some cotyledon
mass, the tags are entirely inside and the acorns are sealed after PIT-tag insertion. As a result, the long-term
impact on seed rot, seedling establishment, and growth is likely no worse, and possibly far better, than with
other tagging methods that involve piercing of the acorn shell. For example, the metal-tagging method first
suggested by Sork (1984) and used extensively by Steele et al. (2001) and Moore et al. (2007) is generally
assumed to have no negative effect on seedling establishment and seedling survival, despite the fact that these
brad nails typically leave the acorn exposed to possible pathogen infestation. Moreover, oaks are known to use
only a small percentage of the cotyledon biomass for seedling development up to autotrophy (e.g., Bossema
1979; Andersson & Frost 1996). This is also why cotyledon removal by jays after seedling emergence has no
adverse effects on seedling growth or development (Bossema 1979; Sonesson 1994; Garcia-Cebrian et al.
2003). Therefore, any negative effects of PIT tagging are likely to show during the early developmental stages
of the seedling. That PIT tags do not seem to influence long-term seed fate is further suggested by our 2-year
field study in the Netherlands, in which PIT tags did not markedly influence seed survival, seed germination,
and seedling establishment. Germination and seedling establishment probabilities for PIT-tagged acorns were
similar to probabilities reported for untagged acorns (90-100%; e.g., Shaw 1968). This low apparent impact,
combined with the fact that PIT tags do not require internal batteries and thus function indefinitely, illustrates
their great potential for studying ultimate seed fate and seedling establishment, particularly when seeds with

delayed dormancy must be followed until germination and seedling emergence.

Another advantage of PIT tagging, not evaluated in this paper, is the possibility of wiring specific areas to
record passage of individual seeds (and animals that carry PIT tags) over a data logger. This provides more
robust data than monitoring with remote cameras (e.g., Jansen & Den Ouden 2005), and it requires far less
effort. This is particularly useful for studying removal rates of seeds from a central location (e.g., a seed station)
or for studying pilfering from a previously created cache. Moreover, PIT tags can be simultaneously used for
disperser and seed identification, by not only individually marking seeds, but by also marking the animals that
disperse the seeds. Such an approach can allow one to control for independence of individual dispersal events
and study the interaction of conspecific scatter hoarders, such as pilfering behaviour in an experimental setting

(see Vander Wall et al. 2008).
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Prices for individual PIT tags vary between $ 2.50 and $ 5.50, depending on type and size of the tag. Tags used
in this study cost € 2.20 (~ $ 2.75) per tag in the Netherlands and $ 5.00 per tag (for a purchase over 500 tags)
in the U.S. Generally, readers and antennae cost around $ 500 — $ 1,500, again depending on brand, size and
qualifications. The customized flat panel antenna system used in the Netherlands cost around € 1,050 (~ $
1,350), while the handheld reader was € 700 (~ $ 900). The Biomark system used in Pennsylvania currently
costs $ 3,125 for the advanced reader and loop-antenna system used in this study (cheaper systems < $ 1,000
are available). If compared to thread-, metal- or magnet marking the use of PIT tags is more expensive,
however, if compared to telemetric thread tags or VHF radio transmitters this technique is considerably
cheaper. Also, since PIT tags function indefinitely, they can be re-used in various studies, lowering the costs per

study.

One disadvantage of PIT tags remains the need to closely approach buried tags for detection and scanning, as
in tagging with magnets, metal and radio isotopes. In irregular terrain and dense vegetation, where it can be
hard or even physically impossible to cover every spot of the search area, PIT tagging can be somewhat labour
intensive (it generally takes one hour to search a forest patch of 25 x 25 m) and may result in more false
negatives and lower recovery rates than tagging with thread tags or active radio transmitters, which can be
detected from a greater distance. In the temperate forest study systems in which we used PIT tags, however,
we achieved higher recovery rates than prior studies using other tags at the same sites, even though the
retrieval success for our field study in the Netherlands was negatively influenced by the size of our search area.
Our search area covered a radius of 45 meters around the seed station, but it is likely that some seeds were

dispersed beyond this distance.

We conclude that PIT-tagging is an excellent technique for tracking seed removal, dispersal, re-caching and
ultimate seed fate in a variety of field and laboratory situations. PIT tagging solves some of the main problems
generally encountered when following the fate of animal-dispersed seeds over time. They provide a reliable,
non-invasive and durable seed-marking technique particularly a) in systems where typical seed-dispersal
distances are less than about 50 m or in experiments where dispersal is limited to a fixed area, b) in studies
where the focus is not on initial dispersal but more on re-caching and ultimate fate of seeds, and c) in long-

term monitoring projects in which seed germination and seedling establishment are followed.
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Abstract

Animal-mediated seed dispersal is of crucial importance for plant regeneration, particularly for large-seeded
trees. Consequently, seed-dispersal interactions are generally classified as being mutualistic. However,
depending on the conditions, the interaction outcome may vary. This so-called ‘conditionality’ can have large
implications for the ecological and evolutionary significance of seed-dispersal interactions, yet it has received
little attention so far. We conducted a field study in which we presented PIT-tagged acorns to seed-hoarding
rodents living in sites with and without wild boar (Sus scrofa), a species known to compete with rodents for
acorns. We tested whether and how seed-hoarding patterns were affected by acorn abundance, rodent
abundance, and wild-boar presence, and whether and how this in turn affected germination of hoarded seeds.
Seed-removal rate was negatively related to wild-boar presence and acorn abundance, while it increased
strongly with rodent abundance. Seed-dispersal distance was positively related to acorn abundance and seed
spacing was positively related to rodent abundance. Changes in these seed-hoarding patterns significantly
affected germination of hoarded seeds. Generally, seed germination tended to increase with rodent
abundance, except if wild boar were absent and acorn abundance was low. Seed germination tended to be
highest if rodents were relatively abundant and acorn abundance was high, regardless of wild-boar presence.
Interestingly, under these conditions, seed-removal rates were relatively high, and seed-dispersal distance and
seed spacing were greatest. We conclude that seed-hoarding patterns are influenced by the intensity of intra-
and interspecific competition for seeds, which in turn affects the likelihood of seed germination. The intensity
of intra- and interspecific competition thus affects the interaction outcome of seed-dispersal mutualisms,
confirming the occurrence of conditionality in seed-dispersal mutualisms and highlighting the importance of

considering multi-species interactions in seed-dispersal studies.

Keywords: hoarding; seed dispersal; rodents; conditionality; mutualism; species interactions.

25



Chapter 3

Introduction

Seed-dispersal interactions between plants and animals are traditionally described as mutualisms (reviewed in
Bronstein 1994a). More recently, however, studies have shown that for many proposed mutualisms, the
interaction outcome is not fixed, but dynamic depending on the conditions under which the interaction takes
place (Bronstein & Barbosa 2002; Bronstein et al. 2003; Bronstein et al. 2006; Holland & Bronstein 2008;
Bronstein 2009; Chamberlain et al. 2014). It has been predicted that conditionality in mutualistic interactions is
most likely to occur when 1) the mutualism is facultative rather than obligate, 2) a third species is intimately
involved in the interaction, and 3) the benefits involved with the interaction are a function of the abundance of
its partners (Bronstein 1994a). Based on these predictions, Theimer (2005) argued that the scatter hoarder-
plant interaction would be very likely to fall in the category of conditional mutualisms. Consequently, he
developed a conceptual model of how the outcome of the scatter hoarder-plant interaction depends on both
the relative abundance of each partner and the challenges to recruitment faced by the plant. Thus far, the
predictions derived from Theimer’s (2005) conceptual model have been empirically tested in a small number of
studies, most notably by Siepielski and Benkman (2008), Jorge and Howe (2009), Klinger and Rejmanek (2010),
and Liu et al. (2013). All these studies focused on scatter-hoarding rodents, rather than on rodents that may
show variation in the hoarding patterns, and they investigated how specific conditions affected the availability
of seeds to a hoarder (Siepielski & Benkman 2008), the decision to eat or cache seeds (Jorge & Howe 2009;
Klinger & Rejmanek 2010), or the distance at which seeds were dispersed (Liu et al. 2013). However, given the
general consensus that scatter hoarding potentially benefits plant recruitment while larder hoarding generally
precludes plant recruitment (Vander Wall 1990), variation in the actual pattern of hoarding could shift the
interaction between seed-hoarding rodents and large-seeded trees from mutualism to antagonism or vice
versa. For example, the availability of seeds to an individual hoarder may affect its effort invested in hoarding
these seeds, but also the intensity of competition with conspecifics and/or heterospecifics may affect the

pattern of hoarding.

Under pressure of competition, hoarders are predicted to adopt a seed-hoarding pattern that minimizes
pilferage risk. Depending on the search tactics used by the competitor, this may imply (a) an increase in seed-
removal rates to quickly remove seeds from the soil surface, as this lowers the likelihood of detection, (b) the
movement of seeds away from the parent tree (i.e., increased dispersal distances), as this lowers the likelihood
of encounter and detection, and (c) movement of seeds away from siblings (i.e., increased seed spacing), as this
lowers the likelihood of detection. From the tree’s perspective, all this may have profound effects on the
probability of seed survival and germination. It is generally assumed that seed-survival probabilities increase
with the rate of removal, the distance of dispersal, and the spacing between individual seeds (Janzen 1970,
1971). For instance, increasing seed-dispersal distances lowers the likelihood of distance-dependent risk of
seed predation, while increasing the spacing between individual seeds lowers the risk of density-dependent

seed predation (Janzen 1970; Stapanian & Smith 1978; Clarkson et al. 1986; Jansen & Forget 2001).
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Here, we tested whether the outcome of a potentially mutualistic seed-dispersal interaction between seed-
hoarding rodents and large-seeded trees is conditional on the circumstances under which the interaction takes
place (Bronstein 2009). We specifically included a large third-species seed competitor in our sturdy to test for
its role in shaping the mutualism. We studied the interaction between a large-seeded tree, Pedunculate oak
(Quercus robur), two seed-hoarding rodents, Wood mouse (Apodemus sylvaticus) and Bank vole (Myodes
glareolus), and a large seed predator, Wild boar (Sus scrofa). Oak relies heavily on animals for the dispersal of
its seeds (henceforth: acorns) (Den Ouden et al. 2005). Particularly wood mouse, but also bank vole, serve as
potential seed dispersers for the oak as they collect large quantities of acorns in autumn, when the seeds are
shed, and hoard them as winter food supply. Wild boar are predicted to play an important role in this system as
they compete for acorns with rodents in autumn when the acorns are freshly shed (Groot-Bruinderink et al.
1994; Groot-Bruinderink & Hazebroek 1996; Focardi et al. 2000; Massei & Genov 2004; Elston & Hewitt 2010),
but also in mid- and late winter when very few acorns remain on the forest floor (Groot-Bruinderink et al. 1994;
Den Ouden et al. 2005; Mufioz et al. 2009). The latter suggests that wild boar actively searches for and pilfers
acorn caches created by seed hoarders, such as wood mouse and bank vole (Borchert et al. 1989; Herrera

1995; Focardi et al. 2000; Gomez et al. 2003; Den Ouden et al. 2005).

We hypothesized that increased competition for acorns, either due to the presence of wild boar, due to low
acorn abundance, or due to a high rodent abundance would drive seed-hoarding rodents to change their
hoarding pattern, by (1) increasing seed-removal rate, (2) increasing seed-dispersal distance, and (3) increasing
seed spacing. We predicted the effect of rodent abundance to be strongest in sites without wild boar and with
low acorn abundance, while we predicted the effect of wild-boar presence to be strongest in sites with few
rodents and with low acorn abundance. In other words, we predicted the effects of wild-boar presence and
rodent abundance to be strongest if competition otherwise was low, while we predicted the effect of acorn
abundance to be strongest if competition otherwise was high. We further hypothesized that (4) high seed-
removal rate, large seed-dispersal distance, and large seed spacing favours germination of hoarded seeds.
Successful seed germination would thus be most likely under high competition, but only up to a certain point. If
competition were to become too high, the majority of the seeds would likely be consumed and survival to

germination would again diminish.

Methods

Site and species

Fieldwork was conducted in the southwest Veluwe area, a temperate forest ecosystem in the centre of the
Netherlands (52°1'N, 5°43’E). The area is a large push-moraine complex formed by the Saalien glacial during the
Pleistocene era, consisting of sandy deposits and a spodosol soil type. Mean annual precipitation is 833 mm
and the average maximum temperature between October and April ranges from 7 to 11 °C. Tree cover
comprises of a mixture of coniferous and deciduous species, dominated by Scots pine (Pinus sylvestris), Douglas

fir (Pseudotsuga menziesii), European larch (Larix decidua), European beech (Fagus sylvatica), Red oak (Quercus
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rubra), and Pedunculate oak. The understory is dominated by Bracken fern (Pteridium aquilinum), Blueberry

(Vaccinium myrtillus), Bramble (Rubus fruticosus), and several species of grasses and sedges.

The study area is effectively divided into two parts by a fenced four-lane motorway, established in 1956. Wild
boar occur in relatively high densities north of the motorway, and are absent south of the motorway, providing
a stark contrast in wild-boar abundance. The motorway also serves as a barrier between rodent populations of
both subareas. Twelve sites were selected; six north and six south of the motorway. This set-up allowed testing
for behavioural differences between mice living in areas with a long history of wild-boar presence and mice
living in areas with a long history of wild-boar absence. Each site consisted of one isolated pedunculate oak
(henceforth, “focal tree”), within a forest stand dominated by scots pine. Focal trees were comparable across
sites in height, crown size and diameter at breast height. Sites were selected based on similarity in crown
openness, and understory vegetation and -structure. To ensure sampling of independent mouse populations,

sites were located in distinct forest stands situated at least 500 m apart from each other.

The Pedunculate oak is a large-seeded deciduous tree species abundant in central and western Europe that
exhibits alternate bearing, with periodic rich and poor mast years (Crawley & Long 1995). Seeds start to ripen in
September-October and are shed between late October and early December (Watt 1919; Bossema 1979;
Crawley & Long 1995). Seeds of pedunculate oak (i.e., acorns) form an important food source to overcome
winter scarcity for many animals, such as Eurasian jay (Garrulus glandarius), Wood pigeon (Columba
palumbus), Red deer (Cervus elaphus), Roe deer (Capreolus capreolus), Bank vole, Wood mouse, and Wild boar.
In return, the pedunculate oak relies heavily on animals for the dispersal of its seeds, which is taken care of
primarily by Eurasian jay, wood mouse, and bank vole (Bossema 1979; Gomez et al. 2003; Den Ouden et al.

2005; Gomez et al. 2008).

The Wood mouse and the Bank vole are both common rodents of European woodland, that weigh between 10-
35 g and breed between April and October. Both species are largely nocturnal and characterized by well-
developed olfactory, visual, and auditory senses. They are typical granivores, with seeds constituting roughly
70% of their diet, particularly so in autumn and winter (Watts 1968; Flowerdew et al. 1985). Wood mice and
bank voles play an important role as predator and disperser of acorns in Europe. They hoard acorns in autumn,
primarily through scatter hoarding, to serve as a food reserve for winter (Vander Wall 1990; Den Ouden et al.

2005; Takahashi et al. 2007).

The Wild boar is a medium-sized (50-200 kg) ungulate that is regarded as an important competitor to seed-
hoarding rodents in forests and woodlands (Massei & Genov 2004). Acorns are a dominant food in autumn
when they have freshly shed and are abundantly available on the forest floor (Massei & Genov 2004; Elston &
Hewitt 2010), but also in mid- and late winter when very few acorns remain on the forest floor (Groot-

Bruinderink et al. 1994; Den Ouden et al. 2005; Mufioz & Bonal 2007). The latter suggests that wild boar
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actively search for and pilfer acorn caches created by hoarders, such as wood mouse and bank vole (Borchert

et al. 1989; Herrera 1995; Focardi et al. 2000; Gomez et al. 2003; Den Ouden et al. 2005).

Experimental design

In this study, PIT-tagged acorns were presented to free-ranging wood mice and bank voles in each of the
twelve sites, and for two consecutive years. Prior to presenting the tagged acorns, we attempted to capture
and individually mark all wood mice and bank voles present in each site to estimate rodent abundance. At that
time, we also visually inspected the seed crop to estimate acorn abundance in each site. After the seeds had
been presented, the exact time of removal for each seed was monitored using automated cameras. Once all
seeds had been removed, we relocated the seeds using custom-made PIT-tag readers. For all relocated seeds,
the seed-dispersal distance and angle from the source were recorded, which allowed us to later calculate the

spacing between seeds. Finally, in July the next year, the final fate of all relocated seeds was established.

Wild-boar presence — Although wild boar were not allowed south of the motorway (Groot-Bruinderink & Spek
2001; Groot-Bruinderink et al. 2004; Spek 2014), we monitored all sites (north and south of the motorway)
with motion-activated camera traps (Reconyx HC500 Hyperfire IR, Reconyx Inc., USA) and carefully checked
each site for any traces of wild-boar presence, such as uprooted patches, faeces, and hairs. No wild boar were
ever recorded on the cameras in sites south of the motorway, but they were regularly recorded on the cameras
in sites north of the motorway. Also, no traces of wild-boar presence were found in the sites south of the

motorway.

Rodent abundance — In each site, wood mice and bank voles were captured using 25 Longworth live traps
(Penlon Ltd., UK) that were placed in a 5x5 grid with 5 m spacing between traps. Traps were run for four
consecutive days per site during October 2010 and October 2011, just before the majority of acorns are shed
from the trees (Watt 1919; Bossema 1979; Crawley & Long 1995). Traps were filled with fresh hay and baited
with a mixture of peanut butter, rolled oats and apple, and were checked twice daily, just after sunrise and
approximately five hours after sunset. During the day, traps were left open and then set to catch animals every
afternoon at 5 PM. Consequently, the maximum amount of time that an animal could be in a trap was 7 h.
Captured individuals were sexed, weighed, and marked by applying a distinctive fur-clipping pattern (in 2010)
or by injecting a uniquely coded PIT tag (in 2011) at first capture, and then released again at the capture site.
Fur-clipping and PIT-tag injection had no notable effects on animal locomotion or behaviour, based on personal
observations during release and repeated recapture of the same individuals. All experimental handling
procedures were approved by the Animal Experiments Committee of Wageningen University (2010: WUR-
2010082.c, 2011: WUR-2011091.b). As our trapping design was identical across sites, the total number of
individuals captured in each site could be directly compared and used as a measure of relative abundance of

conspecifics.
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Acorn abundance — In both years, natural acorn production was close to zero for all focal trees as well as for
other oaks in the direct vicinity of each site. Therefore, in the second year, we supplemented each site with a
total of 1,000 acorns, collected from mature trees of the same species in the surrounding areas of our field
sites. Consequently, acorn abundance was highly comparable across sites and within years, but, at least locally,

it varied substantially between years.

Seed-removal rate — Acorns were collected from mature oaks in the surrounding areas of our field sites during
October 2010 and 2011, and selected based on a visual check of intactness, floatability, and mass. Only acorns
ranging from 7 to 9 g fresh weight were used in order to minimize seed-size variation, as this is known to
influence seed-dispersal patterns (Jansen et al. 2004), but was beyond the scope of this study. Acorns were
stored in a refrigerator at 4 °C. Acorns were uniquely marked using PIT tags (2x12 mm Trovan ID100A Glass
Encapsulated Transponder, Dorset ID, Netherlands). Acorns were tagged following the procedures described in
Suselbeek et al. (2013). PIT-tagging large seeds seems to have no effect on seed removal by rodents, nor does it

affect germination and growth of the seedling (Suselbeek et al. 2013).

In early November 2010 and 2011, 49 PIT-tagged acorns were placed on the forest floor in each site,
approximately one meter south of the focal oak tree (henceforth: seed station). Acorns were placed in a 7x7
grid with 6 cm spacing between seeds. To prevent animals other than wood mouse and bank vole from
removing PIT-tagged acorns, seed stations were covered with a large crate that was secured to the ground with
stakes during the day. Two motion-activated camera traps (Reconyx HC500 Hyperfire IR) were positioned at
different angles facing each seed station to monitor seed-removal times as well as the identity of the individual
rodent removing each acorn. In addition to the two camera traps, a custom-made PIT-tag antenna ring with a
stationary reader (LID572, Dorset ID, Netherlands) was placed around each seed station in 2011. This reader
recorded time and identity of both PIT-tagged rodents and PIT-tagged acorns moving over the antenna ring,

providing additional accurate records of when and by whom acorns were removed from the seed station.

If possible, the exact timing of removal for each acorn was recorded from either the camera traps or the
antenna ring, however, in those instances where the actual removal event was neither recorded by the
cameras nor by the antenna ring, the first instance at which a tagged acorn was no longer observed at the seed
station, was taken as the removal time. In 2011, the cameras were set to take one picture every minute
(regardless of motion detected) reducing this uncertainty interval to a maximum of one minute. For each
acorn, the inter-acorn removal time, was calculated as the time between removal of that acorn and that of the
previously removed acorn. The actual seed-removal rate (expressed in acorns h™) was then obtained by taking

the inverse of the inter-acorn removal time.
Seed-dispersal distance — We used two customized PIT-tag detectors (LID650 stationary decoders with 40x40

cm ANT612 Panel antennae, Dorset ID, Netherlands) as well as a handheld reader (Trovan GR250, Dorset ID,

Netherlands) to locate PIT-tagged acorns. Upon encounter of a tagged acorn, we recorded its status as (1)
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‘cached’ — acorn stored by wood mouse or bank vole; (2) ‘consumed’ — only a PIT tag found; (3) ‘moved’ —
acorn removed from previously located cache and not relocated; (4) ‘recached’ —acorn removed from
previously located cache to a new location, and (5) ‘not retrieved’ — acorn not encountered since its removal
from the seed station. For establishing the status of each tagged acorn, we did not disturb the cache or the
seed but only visually inspected the cache location. Cache locations were non-invasively marked by placing a
30-cm bamboo stick at 30 cm from the cache, and away from the seed station. The angle and distance from the
seed station as well as the number of acorns per cache were recorded for each retrieved acorn, using a
precision compass (Suunto KB-77/360RL, Suunto, Finland) and an ultrasonic range finder (Hagl6f DME 201

Cruiser, Haglof Sweden AB, Sweden).

In 2010, seed-dispersal patterns were recorded at 3 and 10 days, and at 3, 5, 9, and 20 weeks after placement
of the tagged acorns. During the first visit, PIT-tagged acorns were searched for in a radius of 25 m around the
seed station, while during the other visits the search area encompassed a radius of 50 m around each seed
station. Due to less-man-power and time-investment, seed-dispersal patterns were recorded only after 2 days
and at 5 weeks in 2011. During the first visit, PIT-tagged acorns were searched for in a radius of 20 m around
the seed station, while during the other visit the search area encompassed a radius of 35 m around each seed
station. During each visit, previously located caches were revisited to check whether they were intact or
depleted, and during all visits, caches were not physically disturbed but only the location of each PIT tag was

recorded.

Seed spacing — Seed spacing was defined as the distance to the nearest neighbouring PIT-tagged acorn, and
was calculated from the dispersal distance and angle for each acorn recorded in the field. Seed spacing could
theoretically range from 0 to infinity, with O being the seed spacing between two tagged acorns stored in one
cache. If two acorns would be found in two caches spaced 1 m apart, with no other tagged acorns in close

vicinity, then the spacing between these acorns would be 1 m.

Seed fate — During July 2011 and July 2012 all sites were visited again and seed-dispersal patterns were
recorded once more. At this time, all caches were opened to record final seed fate, as (1) ‘cached’ — acorn
intact and seemingly viable in cache; (2) ‘consumed’ — only a PIT tag found; (3) ‘germinated’ — the acorn
developed a root and was still alive; (4) ‘emerged’ — the acorn developed a root and a shoot and was still alive,
and (5) ‘died’ — acorn remains still visible in cache, but clearly rotten, infected with a fungus, or otherwise
severely damaged , but not consumed. Acorns that were ‘cached’, ‘germinated’, or ‘emerged’ at this census

were left in the field for potential follow-up studies, while all other PIT-tags and seed remains were removed.

Data analysis

Seed-removal data were fitted with a Generalized Linear Mixed Model with a Gamma distribution (Ronnegard

et al. 2010), as seed-removal rates were greater than 0, continuous, and non-normally distributed (right-
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skewed). We tested for main effects and for potential interaction effects between wild-boar presence, acorn

abundance, and rodent abundance on seed-removal rate (N = 1136).

A Mixed Effects Cox Model analysis was used to test for effects of wild-boar presence, acorn abundance, and
rodent abundance on seed-dispersal distance (Therneau 2012, 2013). A Cox model (i.e., a special type of
survival analysis) was chosen to acknowledge the fact that we had observations that were censored at 50 m
(i.e., acorns that had been removed from the seed station, but that were not retrieved within the search radius
of 50 m) (Jansen et al. 2004; Hirsch et al. 2012c). We tested for main effects and for potential interaction
effects between wild-boar presence, acorn abundance, and rodent abundance on seed-dispersal distance (N =

1177).

We fitted a Generalized Linear Mixed Effects Model with a Gamma distribution to test for effects of wild-boar
presence, acorn abundance, and rodent abundance on seed spacing (Ronnegard et al. 2010). A Gamma
distribution for the dependent variable was selected because the spacing data were all greater than O (i.e.,
after adjusting seed spacing for acorns cached in the same cache to 1 cm, rather than 0 cm), continuous, and
non-normally distributed (right-skewed). We tested for main effects and for potential interaction effects

between wild-boar presence, acorn abundance, and rodent abundance on seed spacing (N = 670).

A Generalized Linear Mixed Model with a Binomial distribution was fitted to the seed-fate data (Bates et al.
2013). A Binomial distribution was selected because seed fate was defined as the ratio between the number of
successes and the number of failures, with successes representing acorns that had successfully germinated
and/or emerged in July of the year following the placement of acorns, and failures representing all other acorns
that were still followed at that time. Thus, all acorns that had never been retrieved or that had been lost over
time, were excluded from the analysis. We tested for main effects and for potential interaction effects between

wild-boar presence, acorn abundance, and rodent abundance on seed fate (N = 670).

For all analyses, a mixed-effects structure was selected because our individual acorn data originated from
twelve different sites, with 49 tagged acorns being offered in each site, while we were not interested in a
potential site-effect. We therefore included site as a random factor. All analyses were carried out in R3.0.2 (R

Core Team 2013).

Results

In total, nearly 75% (N = 866) of all PIT-tagged acorns (N = 1177) were retrieved at some point in time during
the study period, while 57% (N = 670) of all PIT-tagged acorns could be followed until July the next year, when
final fate of the seeds was recorded. A summary of all retrieval results per year and per site is given in table

3.51.
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Seed-removal rate ranged among sites from 0.7 to 17.2 acorns per hour (N = 24, median = 3.2 acorns / hour).
There was a significant interaction effect on seed-removal rate between acorn abundance and wild-boar
presence (Generalized Linear Mixed Model: Wald t 1,5, = 4.86, p < 0.001; Fig. 3.1, Table 3.1). If acorn abundance
was low, wild-boar presence had a weak negative effect on seed-removal rate (Wald t 15, = 2.40, p = 0.0167;
Fig. 3.1b,d), while if acorn abundance was high, wild-boar presence had no effect on seed-removal rate (Wald t
1121 = 0.04, p = 0.96; Fig. 3.1a,c). On the other hand, acorn abundance had a strong negative effect on seed-
removal rate if wild boar were absent (Wald t 11,1 = 5.90, p < 0.001; Fig. 3.1a,b), and a weak negative effect on
seed-removal rate if wild boar were present (Wald t 15, = 2.42, p = 0.0155; Fig. 3.1c,d). There was also a
significant interaction effect on seed-removal rate between acorn abundance and rodent abundance (Wald t
1121 = 2.00, p = 0.0463; Fig. 3.1, Table 3.1). The effect of rodent abundance on seed-removal rate was positively
related to the abundance of acorns, such that the seed-removal rate increased more rapidly (16.2% increase
per unit increase in rodent abundance) if acorn abundance was high than if acorn abundance was low (11.3%
increase per unit increase in rodent abundance). In general, however, there was a strong positive relation
between rodent abundance and seed-removal rate under low acorn abundance (Wald t,;,, = 8.25, p < 0.001;

Fig. 3.1b,d) and under high acorn abundance (Wald t 15, =6.87, p < 0.001; Fig. 3.1a,c).

Table 3.1 Summary of the main and interactive effects of wild-boar presence, acorn abundance, and rodent abundance on
seed-removal rate, seed-dispersal distance, seed spacing, and seed fate. In case of significant interaction effects, the p-
value for the interaction is given and the direction and strength of the effect is specified for each combination of the

interactive variables.

Seed-removal Seed-dispersal Seed
. . Seed fate
rate distance spacing
low AA: - low AA: -
wild-boar presence (WBP) NS NS
high AA: NS high AA: NS
WB absent: --- WB absent: NS
acorn abundance (AA) +++ NS
WB present: - WB present: +
low AA — WB absent: NS
low AA: +++
low AA — WB present: +
rodent abundance (RA) NS +++
high AA —WB absent: NS
high AA: +++
high AA — WB present: NS
WBP x AA p<0.01 NS NS p<0.01
low AA: p <0.05
WBP x RA NS NS NS
high AA: NS
WB absent: NS
AA X RA p <0.05 NS NS
WB present: NS
WBP x AA x RA NS NS NS p <0.05

-/+forp<0.05 --/++forp<0.01,---/+++forp<0.001, NS for p >0.05
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Fig. 3.1: Interactive effects of wild-boar presence, acorn abundance, and rodent abundance on seed-removal rate of acorns
removed by wood mice and bank voles in a field study. The bullets depict the average seed-removal rate as measured in
each replicate site, while the dashed curves represent the model’s fitted relationship between rodent abundance and seed-
removal rate. Panels (a) and (b) represent sites without wild boar, respectively under high or low acorn abundance, while

panels (c) and (d) represent sites with wild boar, respectively under high or low acorn abundance.

Seeds were dispersed at distances ranging from 0.8 —46.3 m (N = 1177, with 670 events and 507 censored
observations, median = 18.8 m). Under high acorn abundance, median seed-dispersal distance was estimated
to be a factor 1.44 higher (95% Cl = 1.23 — 1.68) than under low acorn abundance (Cox Proportional Hazards
Survival Analysis: Wald z = 4.61, p = 0.000004; Fig. 3.2, Table 3.1). Median seed-dispersal distance was
estimated to be a factor 1.39 higher (95% Cl = 0.89 — 2.16) if wild boar were present than if wild boar were
absent, however, this effect was not significant (Wald z = 1.44, p = 0.15). Rodent abundance had not effect on

median seed-dispersal distance (Wald z = 0.16, p = 0.87).
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Fig. 3.3: Interactive effects of wild-boar presence, acorn abundance, and rodent abundance on seed spacing of acorns
dispersed by wood mice and bank voles in a field study. The bullets depict the average seed spacing as measured in each
replicate site, while the dashed curves represent the model’s fitted relationship between rodent abundance and seed
spacing. Panels (a) and (b) represent sites without wild boar, respectively under high or low acorn abundance, while panels

(c) and (d) represent sites with wild boar, respectively under high or low acorn abundance.
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Seed spacing ranged between 0 and 24.9 m (N = 670, median = 4.0 m). Seed spacing was not affected by wild-
boar presence (Generalized Linear Mixed Model: Wald tgs9 = -1.10, p = 0.27; Fig. 3.3) or acorn abundance (Wald
teso =-0.79, p = 0.43; Fig. 3.3), but increased significantly with rodent abundance (Wald tgs9 = 3.62, p = 0.00032;
Fig. 3.3, Table 3.1).

0.5

0.4 - .
0.3 - - . v
0.2 1 < - \

0.5

0.3 4 .

seed germination (prop.)

0.2 m o LI 7

0.1 4 . .

L ]
paertt
0 ® PP PTCLLLLM
I = T L T I

0 10 20 30 40 O 10 20 30 40
rodent abundance (N)

Fig. 3.4 Interactive effects of wild-boar presence, acorn abundance, and rodent abundance on seed fate of acorns dispersed
by wood mice and bank voles in a field study. The bullets depict the proportion of germinated seeds as measured in each
replicate site, while the dashed curves represent the model’s fitted relationship between rodent abundance and seed
germination. Panels (a) and (b) represent sites without wild boar, respectively under high or low acorn abundance, while

panels (c) and (d) represent sites with wild boar, respectively under high or low acorn abundance.

Seed germination within sites ranged between 0 and 35% (N = 24, median = 7%). There was a significant three-
way interaction effect on seed fate between wild-boar presence, rodent abundance, and acorn abundance
(Generalized Linear Mixed Model: Wald z = 2.18, p = 0.02916), and significant two-way interaction effects
between wild-boar presence and acorn abundance (Wald z = 2.66, p = 0.00789) and between wild-boar
presence and rodent abundance (Wald z = 2.08, p = 0.03783; Fig. 3.4, Table 3.1). If acorn abundance was low,
wild-boar presence negatively affected seed germination (Wald z = 2.82, p = 0.00508; Fig. 3.4b,d), while if acorn
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abundance was high, wild-boar presence had no effect on seed germination (Wald z = 0.70, p = 0.48; Fig.
3.4a,c). Similarly, if wild boar were present, acorn abundance negatively affected seed germination (Wald z =
2.08, p = 0.03764; Fig. 3.4c,d), while if wild boar were absent, acorn abundance had no effect on seed
germination (Wald z = 1.65, p = 0.09984; Fig. 3.4a,b). If acorn abundance was low and wild boar were present,
seed germination significantly increased with rodent abundance (Wald z = 2.31, p = 0.02102; Fig. 3.4b). In all
other cases, however, rodent abundance did not affect seed germination although there was a general

tendency for seed germination to increase with rodent abundance (Fig. 3.4a,c,d).

Discussion

In this study, we examined whether and how the abundance of seeds, the abundance of rodents, and the
presence or absence of a large competitor, influences seed-hoarding patterns of rodents and whether and how
this subsequently affects their role as mutualists of large-seeded trees. We found that seed-hoarding patterns
(i.e., seed-removal rate, seed-dispersal distance, and seed spacing) of wood mice and bank voles were affected
by the combined effects of wild-boar presence, rodent abundance, and acorn abundance. This, in turn,
influenced the likelihood of seed germination and with that it shifted the outcome of the interaction between

seed-hoarding rodents and large-seeded trees from being mutualistic to progressively more antagonistic.

Seed-removal rates varied strongly between sites. The factor best explaining these differences in removal rates
was rodent abundance. Generally, the more rodent conspecifics there were, the higher the seed-removal rate
was, a finding that is in line with those reported in several other studies (e.g., Bowers & Dooley 1993; Wang et
al. 1999; Jansen et al. 2004; Jansen & Den Ouden 2005; Vander Wall et al. 2005b; Perez-Ramos et al. 2008;
Perea et al. 2011). In contrast to our predictions, wild-boar presence had a weak negative effect on seed-
removal rates, but only if acorn abundance was low. This may, however, be explained by the fact that wild boar
also predate on rodents (Groot-Bruinderink & Hazebroek 1996; Focardi et al. 2000; Baubet et al. 2004;
Gimenez-Anaya et al. 2008; Gomez & Hodar 2008; Bueno et al. 2009; Elston & Hewitt 2010). Hoarders may
thus face a trade-off between quickly collecting and removing seeds upon encounter, or moving more
cautiously while exposing themselves less to predators like wild boar (Bowers & Dooley 1993; Jansen & Den
Ouden 2005). We found seed-removal rates to be negatively influenced by acorn abundance, which was in line
with our and other’s predictions (Jansen et al. 2004; Jansen & Den Ouden 2005; Vander Wall et al. 2005b;
Perez-Ramos et al. 2008; Hirsch et al. 2012a). As expected, seed-removal rates were lowest if acorn abundance

was high, wild boar were absent, and rodent abundance was low, that is, if competition for seeds was lowest.

Optimal cache spacing theory predicts that food items are stored at a density that balances the gains of
reducing pilferage against the costs of spacing food items out further (Stapanian & Smith 1978, 1984; Clarkson
et al. 1986; Dally et al. 2006; Galvez et al. 2009). We found that seed-dispersal distance was strongly positively
related to the abundance of acorns. This increase in seed-dispersal distance with acorn abundance confirms the
optimal cache spacing theory in that rodents seem to move seeds further away from the source, if this source

contains more seeds (Stapanian & Smith 1978, 1984). By moving seeds further away from the source, seed
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density is lowered, while seed spacing may remain constant. Similarly, we found that seed spacing was strongly
positively affected by rodent abundance. Again, this is in line with optimal cache-spacing theory, as an increase
in rodent abundance is likely to incur increased pilferage risk, and thus seed spacing should be increased to
lower the density of seeds in a certain area (Stapanian & Smith 1978, 1984). Wild-boar presence had no effect
on seed spacing, but seed-dispersal distance showed a tendency to increase with wild-boar presence. Although
this was in contradiction with our prediction, we think that the potential effects of wild-boar presence may be
overruled by the effects of acorn abundance and rodent abundance. That is, competition with conspecifics
already requires a certain degree of seed spacing and transportation of seeds away from the source. However,
a controlled experiment in which effects of rodent abundance and acorn abundance could be filtered out,
would perhaps provide more insight into how and why wild boar presence affects seed-dispersal distance and

seed spacing.

The changes that we observed in seed-removal rate, in seed-dispersal distance, and in seed spacing led to
significant changes in seed fate. The direction and magnitude of the effect, however, varied strongly depending
on the conditions. Due to this large variation, most of the effects were not significant. However, in line with our
predictions, we found that the likelihood of seed germination was lowest if acorn abundance was low and wild
boar were present. In this situation, it is likely that the majority, if not all, of the seeds are being consumed by
seed predators (Crawley & Long 1995). However, if wild boar were absent, rodent abundance was low, and
acorn abundance was low, the likelihood of seed germination was relatively high. Again, from a predator-
satiation perspective, this is in line with predictions (Crawley & Long 1995). The highest likelihood of seed
germination, however, was found when wild boar were absent, acorn abundance was high, and the abundance
of rodents was intermediate. Interestingly, taking into account that seed-dispersal distance was strongly
positively related to acorn abundance and that seed spacing was strongly positively related to rodent
abundance, it seems that increased seed dispersal and increased seed spacing positively affect seed
germination. This is in line with results from other studies and predicts the existence of density- and distance-
dependent risk of predation (Janzen 1971; Howe & Smallwood 1982; Stapanian & Smith 1984; Jansen & Forget
2001).

We used some novel techniques to monitor seed removal and -dispersal. To accurately record who removed
which acorn at what time, we used camera traps — to visually record which individual removed which seeds at
what time — in combination with a custom-made antenna ring that recorded the exact time of a PIT-tagged
acorn (and in 2011 also a PIT-tagged rodent) moving through the ring. This combined set-up provided us with
an accurate removal time for each acorn. Then, we used PIT tags, inserted into each acorn to uniquely identify
acorns and to be able to relocate them after they had been dispersed by the hoarders. PIT tagging large seeds
is relatively cheap and it does not impact seed choice, seed removal, and seed-dispersal patterns by rodents,
nor does it affect germination and growth of the seedling (Suselbeek et al. 2013). PIT tagging allowed us to
accurately relocate the cache location, the approximate cache depth, the number of tagged acorns in a cache

and the microhabitat surrounding the cache, without any physical disturbance of the cache. Nonetheless, PIT
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tagging has some potential drawbacks, most notably the effort needed to relocate PIT-tagged seeds. The
maximum detection distance for PIT-tagged seeds in underground caches was about 35 cm. Relocating PIT-
tagged seeds thus requires a meticulous search throughout the search area, which increases exponentially with
distance from the source. Particularly if seed-dispersal distance generally exceeds 50 m, this method may
become too demanding. Secondly, PIT tagging does not allow real-time following of seeds. This makes it hard
to accurately record secondary-dispersal events (i.e., re-caching) and predation events by, for example, wild
boar. Here, this led to a fair amount of seeds initially found but lost again over time Nevertheless, we were able
to follow 57% of all presented acorns for a period of 10 months until their final fate was established; a
proportion that is much higher for such a long post-dispersal period than achieved in most other seed-dispersal
studies (Steele et al. 2001; Den Ouden et al. 2005; Forget et al. 2005; Xiao et al. 2006). For instance, in a study
that actually compared two seed-tagging methods for assessing post-dispersal seed fate in rodent-dispersed
trees, the proportion of Quercus variabilis seeds for which the fate could be established two months after seed
placement was only 2% for thread-marked tags and 32% for wire tin-tagged seeds (Xiao et al. 2006). In another
study, only 22% of all metal-tagged acorns that had been dispersed by small mammals in autumn 1994, were

retrieved between December 1994 and June 1995, while 78% was never retrieved (Steele et al. 2001).

If one strives to understand the biological processes affecting tree recruitment, appreciating long-distance
dispersal by animals is of particular importance. Ignoring the fact that some seeds are dispersed outside the
search area (26% in this study) prevents a clear understanding and proper representation of dispersal
distances. This study is among the first to use the censored-tail-reconstruction method (Jansen et al. 2004;
Jansen et al. 2008; Hirsch et al. 2012c). Instead of omitting seeds that were not retrieved, they were assumed
to be dispersed at least as far as the search radius, allowing us to obtain more accurate estimations of the
seed-dispersal distance. We cannot rule out the possibility that some seeds were overlooked within the search
area. If, however, some seeds were indeed overlooked, for instance due to inaccessibility of cache locations,
we have no reason to assume that the risk of overlooking such seeds would vary between sites, and therefore

it is unlikely to have influenced the comparison between sites.

In this field study, we determined whether and how the outcome of a seed-dispersal interaction between seed-
hoarding rodents and large-seeded trees was influenced by the abundance of seeds and by the presence and
abundance of both inter- and intraspecific competitors. We found that seed-hoarding rodents responded most
strongly to a change in abundance of intraspecific competitors, but that there were significant interactions with
wild-boar presence and acorn abundance. Generally, seed-removal rate, seed-dispersal distance, and seed
spacing were increased in response to increased competition for seeds. These changes in seed-hoarding
patterns resulted in significant differences in seed fate. The likelihood of successful seed germination was
highest if wild boar were absent, and generally tended to increase with rodent abundance, but only if acorn
abundance was sufficiently high to satiate the seed-predator / seed-disperser community. This suggests that
seed-hoarding rodents aid seed germination so long as there is a surplus of seeds available to the hoarder

(Theimer 2005). It also suggests that wild boar do not enhance the mutualism between seed-hoarding rodents
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and large-seeded trees. For instance, if wild boar were absent and acorn abundance was high, seed-hoarding
patterns of rodents were more favorable for acorn germination than if wild boar were present and / or acorn

abundance was low, resulting in higher levels of seed germination.

To conclude, we believe to have convincingly shown that the outcome of seed-dispersal interactions, in
particular, those that intimately involve a third species, is very likely to be conditional on the circumstances
under which the interaction takes place. Nevertheless, more controlled experiments would be needed to
further disentangle the relative importance of specific conditions affecting the outcome of seed-dispersal
interactions. For example, it would be very interesting to gain more insight on 1) the specific effects of intra-
and interspecific competition on seed-hoarding patterns and 2) whether and how different hoarding patterns
affect seed-germination rates and with that the outcome of seed-dispersal interactions. Rather than studying
and reporting the outcomes of several direct interactions between two species independently, a more
integrated approach should be taken in which broader ecological processes are studied as one entity. Such
multi-species interaction studies will contribute to a solid scientific basis for forest and wildlife management

and -conservation and enhance our understanding of conditionality in species interactions in general.
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Appendix

Table 3.51: Summary of the number of PIT-tagged acorns placed in each site in autumn, the number of PIT-tagged acorns

A field test of conditionality in seed-dispersal mutualisms

retrieved at any point in time between autumn and July the next year, and the number of PIT-tagged acorns for which final

fate was recorded in July. The proportion of seeds relative to the total number of seeds presented in each row is given in

brackets.

total total total with final fate
presented retrieved recorded in July
low acorn abundance (2010) total 589 448 (76.1%) 378 (64.2%)
wild boar present total 295 221 (74.9%) 174 (59.0%)
1 49 34 (69.4%) 23 (46.9%)
2 49 45 (91.8%) 35 (71.4%)
3 49 32 (65.3%) 23 (46.9%)
4 49 39 (79.6%) 35 (71.4%)
5 49 25 (51.0%) 18 (36.7%)
6 50 46 (92.0%) 40 (80.0%)
wild boar absent total 294 227 (77.2%) 204 (69.4%)
1 49 48 (98.0%) 42 (85.7%)
2 49 40 (81.6%) 39 (79.6%)
3 49 37 (75.5%) 36 (73.5%)
4 49 29 (59.2%) 26 (53.1%)
5 49 42 (85.7%) 36 (73.5%)
6 49 31 (63.3%) 25 (51.0%)
high acorn abundance (2011)  total 588 418 (71.1%) 292 (49.7%)
wild boar present total 294 194 (66.0%) 126 (42.9%)
1 49 32 (65.3%) 19 (38.8%)
2 49 26 (53.1%) 24 (49.0%)
3 49 30 (61.2%) 20 (40.8%)
4 49 46 (93.9%) 30(61.2%
5 49 26 (53.1%) 12 (24.5%)
6 49 34 (69.4%) 21 (42.9%)
wild boar absent total 294 224 (76.2%) 166 (56.5%)
1 49 45 (91.8%) 36 (73.5%)
2 49 27 (55.1%) 23 (46.9%)
3 49 48 (98.0%) 37 (75.5%)
4 49 32 (65.3%) 29 (59.2%)
5 49 31(63.3%) 18 (36.7%)
6 49 41 (83.7%) 23 (46.9%)
GRAND TOTAL 1177 866 (73.6%) 670 (56.9%)
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Abstract

Food-hoarding patterns range between larder hoarding (few large caches) and scatter hoarding (many small
caches), and are, in essence, the outcome of a hoard-size — number trade-off in pilferage risk. Animals that
scatter hoard are believed to do so, despite higher costs, to reduce loss of cached food to competitors against
which they cannot defend their food reserves (henceforth: superior competitors). We tested the underlying
assumption that the cost of having more caches under scatter hoarding, thus increasing the likelihood of cache
encounter by superior competitors, is outweighed by the benefit of having small caches, that are less likely to
be detected upon encounter by superior competitors. We carried out a controlled experiment in which we
distributed a fixed number of acorns over a fixed number of patches within a fixed area, varying cache size and
cache depth, thus mimicking alternative hoarding patterns. We then recorded cache pilferage by a fixed
number of wild boar (Sus scrofa), a well-known pilferer of acorn caches. The time wild boar needed to pilfer the
first cache was shortest for scatter hoarding, but the time needed to pilfer all caches was slightly longer for
scatter hoarding than for larder hoarding. Overall, however, the rate of pilferage did not differ between scatter
hoarding and larder hoarding, and was not affected by cache depth. We conclude that the effects of alternative
hoarding patterns on reducing cache pilferage by wild boar were smaller than expected, and that superior
competitors may thus not be important drivers of scatter hoarding. Instead, other factors, such as conspecific
pilferage or the risk of cross-contamination of food items in large caches, which can also cause catastrophic loss

of food reserves, may be more important drivers of scatter hoarding.

Keywords: competition; caching; seed dispersal; theft; olfaction; cache defence; rodents; oaks; acorns; seeds.
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Introduction

Many seed-eating animals cache seeds at times of high food availability and rely on these reserves during
periods of food scarcity (Vander Wall 1990). The spatial pattern at which seeds are cached ranges between
larder hoarding and scatter hoarding (Vander Wall 1990). Larder hoarding involves the placement of food items
in one or few caches (‘larders’), usually located in or near the nest, in burrows, or in tree cavities, that are often
actively defended. Scatter hoarding, in contrast, involves spreading of food over many widely spaced caches
with one or few items each (‘scatters’), scattered throughout the hoarder’s territory, usually created and

accessed from the soil surface (Morris 1962; Clarkson et al. 1986; Vander Wall 1990, 2001).

Both hoarding strategies have their own set of advantages and disadvantages. Larders are relatively easy to
create and recover, yet usually require active defence against other animals, which costs time and energy,
involves risk of injury, and is successful only if the hoarder is superior to its competitors (Clarkson et al. 1986;
Vander Wall 1990; Daly et al. 1992; Dally et al. 2006). Moreover, larders emit stronger odours, hence for
competitors larders may be easier to detect by olfaction than small caches. Scatter hoarding, on the other
hand, involves higher energetic costs in terms of travel (food is spaced out more widely) and memory (more
locations have to be remembered), as well as increased mortality risk (longer exposure to predators and
adverse environmental conditions) (Stapanian & Smith 1978, 1984; Dally et al. 2006), but scatter hoards are
not usually defended individually (Smith & Reichman 1984; Jenkins et al. 1995).

Given a certain number of food items to be hoarded, and a limited number of patches suitable for hoarding
within a limited area (i.e., the home range), the hoarder’s options are constrained, because reducing the
number of food items per cache comes with increasing the number of caches and vice versa (Vander Wall &
Jenkins 2003; Dally et al. 2006). Thus, in essence, the decision about how to hoard a given number of food
items is the outcome of a hoard-size — number trade-off, in which hoarders optimally balance the risks
associated with having few large caches (i.e., larder hoarding) against the risks associated with having many
small caches (i.e., scatter hoarding) (Alpern et al. 2012; Hirsch et al. 2013). For many rodent and bird species,
this balance is shifted towards scatter hoarding, presumably because they have competitors against which they
cannot defend larders (henceforth: superior competitors) (e.g., Stapanian & Smith 1978; Hurly & Robertson
1987; Daly et al. 1992; Brodin et al. 2001; Vander Wall & Jenkins 2003; Dally et al. 2006). Whereas for some
species, this may be a flexible decision made by individuals, depending on the context under which hoarding
takes place, for other species changes in hoarding patterns may have evolved over time. That is, a population
of hoarders that has been exposed to superior competitors for a long period of time, may have evolved
different hoarding patterns than hoarders of the same species that have not been exposed to superior
competitors (e.g., Andersson & Krebs 1978; Stapanian & Smith 1978; Smith & Reichman 1984; Vander Wall
2001; Levey et al. 2002; Vander Wall & Jenkins 2003; Dally et al. 2006; Siepielski & Benkman 2008; Brodin
2010).
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There are two hypotheses regarding the mechanisms by which scatter hoarding could reduce the risk of cache
pilferage (Dally et al. 2006). The assumption underlying the first hypothesis (here termed the ‘risk spreading’
hypothesis) is that potential pilferers use random search or explorative search to find hidden food items, and
that larder hoarding involves the catastrophic risk of instantaneously losing the entire food supply (i.e.,
complete pilferage), imperilling the animal’s survival (Wauters et al. 1995). Scattering food items over many
small caches spreads the risk of pilferage and thus makes complete pilferage less likely (e.g., Kraus 1983; Jacobs
1992; Macdonald 1997; Devenport et al. 2000; Dally et al. 2006). For instance, if we consider 100 repeated
trials of a pilferer randomly visiting a fixed number of 50 patches (and potentially revisiting some) out of a total
of 100 patches, the probability of this pilferer encountering all caches is approximately 80% if the total number
of caches is 2, while it is only 7% if the total number of caches is 32. In other words, simply increasing the
number of caches should reduce the risk of complete pilferage if the pilferer operates by means of random
search or explorative digging (Vander Wall 1990; Dally et al. 2006; Galvez et al. 2009). The assumption
underlying the second hypothesis (here termed the ‘cue-reduction’ hypothesis) is that potential pilferers use
special cues to locate hidden food items. It reasons that scattered food is more difficult to detect and pilfer, for
example, because smaller caches are less easily detected by olfactory cues (e.g., Reichman & Oberstein 1977;
Vander Wall 1993b, 1998, 2000, 2003; Geluso 2005), or because it is more difficult for a pilferer to spy on a
hoarder’s caching events if these are swift and numerous, as happens with scatter hoarding (reviewed in Dally

et al. 2006).

Many field and experimental studies in a variety of systems have shown that food-hoarding animals indeed
change their hoarding patterns in response to superior competitors, often by scattering the food items more
widely. For example, in North America, Merriam’s kangaroo rats (Dipodomys merriami) change their hoarding
patterns in response to cache pilferage by the more aggressive and dominant Chisel-toothed kangaroo rat (D.
microps) (Preston & Jacobs 2005), and in Spain, spacing patterns of acorn caches created by Wood mice
(Apodemus sylvaticus) differed between areas with and without wild boar (Sus scrofa) (Mufoz & Bonal 2007;
Puerta-Pifiero et al. 2010). No study, however, has yet tested experimentally how cache characteristics
resulting from alternative hoarding patterns affect the risk of cache pilferage, while taking into account the

hoard-size — number trade-off.

We carried out a controlled experiment to determine how hoarding patterns affected the rate at which
superior competitors pilfered the hidden food supply. The experiment involved an arena in which we
distributed a fixed number of pedunculate oak acorns (Quercus robur) over a fixed number of patches, but in
varying hoard-size — number configurations, ranging from few caches with many acorns (larder hoarding) to
many caches with a single acorn (scatter hoarding). We then measured the rate at which the cached food was
pilfered by wild boar, a keen-scented ungulate (e.g., Briedermann 1986) with a strong preference for acorns
(e.g., Groot-Bruinderink et al. 1994; Focardi et al. 2000; Schley & Roper 2003; Herrero et al. 2006), that
intensely competes for acorns with food-hoarding animals such as wood mice (e.g., Gomez et al. 2003; Mufoz

& Bonal 2007; Perez-Ramos & Maranon 2008). The interaction between wood mice, wild boar, and oaks is
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interesting, as it is known from previous studies that hoarding patterns of wood mice can vary between
individuals and between populations (e.g., Jennings 1975; Jensen & Nielsen 1986; Clarke & Kramer 1994;
Jenkins & Breck 1998; Den Ouden et al. 2005; Lu & Zhang 2005, 2008), and that they can vary depending on
wild-boar presence (e.g., Focardi et al. 2000; Mufioz & Bonal 2007; Mufioz et al. 2009; Puerta-Pifiero et al.
2010).

We tested contrasting predictions derived from the cue-reduction hypothesis and the risk-spreading
hypothesis: (1) Scattering decreases the rate of pilferage for the first cache(s) and for the last remaining
cache(s), because scattered caches emit weaker olfactory cues and are therefore much harder to detect than
larders. Thus, the overall rate of pilferage is lower for scatter hoarding than for larder hoarding (cue-reduction
hypothesis). Alternatively, (2) scattering increases the rate of pilferage for the first cache(s) because there are
simply more caches to be encountered, but decreases the rate of pilferage for the last remaining cache(s)
because it takes more time to encounter many small caches than few large caches, and therefore the overall
rate of pilferage is lower for scatter hoarding than for larder hoarding (risk-spreading hypothesis). To further
assess the role of cue reduction in avoiding cache pilferage, we added a scenario in which seeds were buried at
greater depth. The prediction was that (3) pilferage rates are lower for deep caches than for shallow caches,

due to weaker olfactory cues emanating from deep caches than from shallow caches (cf Vander Wall 1993a).

Materials and methods

Study system

The wild boar is a medium-sized (50-200 kg) ungulate that is regarded as an important competitor to seed-
hoarding rodents in forests and woodlands. The wild boar is one of the most widespread ungulates in the
world. Its natural range extends over most of Europe and Asia and is still expanding rapidly (Massei & Genov
2004). Female wild boar generally live in family groups of 6 to 30 individuals, while males are mostly solitary
(Poteaux et al. 2009). Their natural diet consists of 80-90% plants, but they also feed opportunistically on live
and dead animal matter. Being mono-gastric ungulates, wild boar cannot efficiently extract carbohydrates from
cellulose, and therefore rely on high-energy food items, such as mast of large-seeded trees, and nowadays,
agricultural crops (Groot-Bruinderink et al. 1994; Schley & Roper 2003; Massei & Genov 2004).Acorns are a
particularly dominant food in autumn when they have been freshly shed and are abundantly available on the
forest floor (Massei & Genov 2004; Elston & Hewitt 2010), but also in mid- and late winter when very few
acorns remain on the forest floor (Groot-Bruinderink et al. 1994; Den Ouden et al. 2005; Mufioz & Bonal 2007).
This suggests that in winter, wild boar actively search for and pilfer acorn caches created by hoarders such as
the wood mouse (Borchert et al. 1989; Herrera 1995; Focardi et al. 2000; Gomez et al. 2003; Den Ouden et al.
2005). Wood mice play an important role as seed predators and dispersers of acorns in Europe. They hoard
acorns in autumn as a food reserve for the winter. Food hoarding patterns of the wood mouse range from
almost exclusive scatter hoarding to a mix of scatter- and larder-hoarded caches (e.g., Vander Wall 1990; Den
Ouden et al. 2005; Lu & Zhang 2005; Takahashi et al. 2007). The majority of food items, however, is typically

scattered throughout the home range of the wood mouse (e.g., Jennings 1975; Jensen & Nielsen 1986;
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Shimada 2001; Den Ouden et al. 2005; Suselbeek et al. 2013) with the degree of scattering being larger in the

presence of wild boar than in their absence (Puerta-Pifiero et al. 2010).

Experimental design

Experimental trials were conducted from 16 February to 25 March 2011, with eight wild boar (five females,
three males). Wild boar were taken as six-month old piglets from “Natuurpark Lelystad”, the Netherlands,
where they had been living with a social group of twelve adult individuals under semi-wild conditions in a 7-ha
fenced natural area. To capture the wild boar from their living area, a trap of 5x5 m was built on 10 August
2010, which had a 0.2x0.4 m lockable entrance, to ensure exclusive access for piglets to the trap. The animals
were then fed daily in and around the trap to habituate them to it. On 14 September 2010, the animals were
fed in the trap at 7 a.m. and the entrance was closed during feeding, while eight piglets were inside. A team of
five experienced caretakers from the park positioned a wildlife trailer so that the piglets could be swiftly guided
through the trap entrance and into the trailer. A pre-built mobile fence was used to reduce the size of the trap
and to direct the piglets (without physical contact) to its entrance and into the trailer. The entire capturing
procedure took less than 10 minutes and was done without administering any drugs to the piglets. The wildlife
trailer was not compartmentalized and had an 8 m’ floor lined with a 20-cm layer of fresh hay. The trailer was
approximately 1.9 m high and had roof hatches at the top of the back door which were all opened to ensure
sufficient ventilation during transportation. As soon as the animals were in the trailer, they were transported to
the experimental facility, a journey that lasted approximately one hour. Upon arrival, the trailer was again
positioned so that the animals could walk out of the trailer without help or physical contact from the
caretakers, and into the 1,200 m” field enclosure at the experimental facility “De Haar” in Wageningen, The
Netherlands. No adverse effects of capturing and transportation were detected. Inside the field enclosure, the
wild boar had access to four 8 m” shelter boxes with a layer of fresh hay. The shelter boxes had 1.2-m high
walls made of concrete plywood, and had a roof covering approximately half of each shelter box. Shelter boxes
could be entered by a 0.5x1 m opening in the wall at the front. Shelter boxes could be entered and exited by

the wild boar at all times.

Wild boar had ad libitum access to water and were fed twice daily with fresh and dried plant material
supplemented with sow pellets. Every week, a large pile of fresh stems, branches, and twigs was placed in the
middle of the field enclosure, below an observation tower, to allow natural sheltering and to provide natural
food to the wild boar. Throughout the study, wild boar were not physically contacted, but they were
habituated to the presence of the experimenters and the regular caretakers. At the end of the study, the wild
boar were culled by a professional wildlife hunter, who is also responsible for the yearly culling of wild boar in

“Natuurpark Lelystad”.
Experimental trials took place in an outdoor arena of 26 x 30 m, consisting of bare clay soil with little or no

vegetation. In this arena, a 10x10 grid of 100 sand-filled buckets with a diameter of 40 cm were dug into the

earth, at regular intervals of 2 m, representing 100 distinct potential cache patches. A 3-m buffer zone was
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maintained around the grid to avoid edge effects (Fig. 4.1). Experimental acorns were collected from oaks in
the surrounding area and then mixed and stored under low temperatures in large storage trays. Wild boar
were habituated to the living area and to the experimental arena for the entire period between arrival (10 Sep
2010) and the start of experimental trials (16 Feb 2011). For each trial, a fixed number of 32 experimental
acorns was randomly selected from the storage trays, and distributed over the patches. Preliminary results
from a complementary field study showed that a density of 32 acorns spread out over an area of approximately
800 m” (i.e., the size of our experimental arena) corresponded well with natural wood mouse hoarding
patterns. In this field study, 49 PIT-tagged acorns were offered in 12 different field sites. In each site, 20-40
tagged acorns were relocated after hoarding by wood mice within a radius of 15 m (i.e., an area of 780 m’)
around the seed station. This set-up, with a fixed number of acorns distributed over a fixed number of suitable

patches within a fixed area, mimics the options available to hoarders for adjusting their hoarding patterns to

the risk of pilferage. This level of control would be impossible to achieve in a field study.

Fig. 4.1: Overview of the experlmentél arena and the exprlmenta stupIW|th sand-filled buckets in which acorns were

cached.

We compared three different spacing patterns of 32 acorns over the 100 patches, so as to simulate alternative
hoarding patterns: 1) larder hoarding, with two randomly selected patches containing 16 acorns each, 2)
intermediate hoarding, with eight patches containing four acorns each, and 3) scatter hoarding, with 32
patches containing one acorn each. All caches were created 5-8 cm below the soil surface. These depths
approximate the depths reported for seeds hoarded by wood mice (Jennings 1975; Mallorie & Flowerdew
1994; Den Ouden et al. 2005). In addition, we ran a fourth treatment (“deep larder hoarding”), in which seeds
were larder hoarded as above (treatment 1), but at greater depth: 15-20 cm below the soil surface. All

treatments were randomly assigned to trials.
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Prior to each trial, soil moisture content (%) was measured (Theta Probe soil moisture sensor ML2x, Delta-T
Devices Itd, UK) in three randomly selected patches, with three measurements per patch, as soil moisture is
known to affect olfactory cues and with that the detectability of hidden food items (reviewed in Vander Wall
2003). To avoid potential effects of human scent on cache detection, we wore surgical gloves during all acorn
handling, and we raked the soil in all patches prior to each trial, while placing seeds in only some of the
patches. During the night, and on days without trials, patches were covered with 50x50 cm plastic container
lids to avoid large fluctuations in soil moisture content within the patches due to rainfall. Trials were also only

conducted in dry weather.

Each trial started with allowing four selected individuals inside the arena to search for the cached acorns. This
set-up with four animals simultaneously searching and competing for cached acorns corresponds to the natural
situation, where wild boar live and forage together in groups and thus also compete for cached resources.
During each trial, two observers continuously recorded the order in which all individuals visited the patches in
the arena. In addition, all trials were recorded using two video cameras (Panasonic SDR-S50, Panasonic Corp.,
USA), positioned so that the entire arena fell inside the combined field of view. Trials ended two minutes after
all caches had been found, or when all animals stopped searching for more than five minutes. Trials ended with
examination of caches for non-discovered acorns. All experimental handling procedures were approved by the

Animal Experiments Committee of Wageningen University (WUR-2010088.C).

The exact timing and order of cache encounter and pilferage were obtained from the combination of observer
data and video recordings. The video recordings were prepared for further analysis using a custom-made
program modelled in AutoHotkey (Mallet 2009), that enabled clips from the two cameras to be viewed

simultaneously.

Data analysis

We used Cox Proportional Hazards (CPH) models (Therneau 2013) with moisture content as covariate, to test
for differences in time until pilferage of the first and the last remaining cache between the alternative hoarding
patterns (N = 16 for scatter- and intermediate hoarding and N = 15 for shallow larder- and deep larder
hoarding). CPH models are frequently used when comparing survival times across treatment levels, as these
models can deal well with censored observations and covariates. We included a frailty term (i.e., a random
factor, here: ID_group) in the survival analysis to account for repeated tests of the same group of wild boar
under the same hoarding pattern (Therneau 2013). We also used CPH models (Therneau 2013) with moisture
content as covariate to test for differences in the overall rate of cache pilferage between the alternative
hoarding patterns. All acorn retrieval events from the individual trials were lumped per treatment level,
resulting in 512 events for scatter hoarding (32 events x 16 trials), 128 events for intermediate hoarding (8
events x 16 trials), and 30 events for both shallow and deep larder hoarding (2 events x 15 trials). We again
included a frailty term (here: ID_trial) in the survival analysis but this time to account for multiple (non-

independent) events within each trial (Therneau 2013). We used One-sample T-tests to compare expected and
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observed encounter probabilities of caches across treatment levels. Expected encounter probabilities were
defined based on the ratio of empty patches to cache-patches, for each hoarding pattern. For example, in the
case of scatter hoarding, 32 out of 100 available patches contained a cache, resulting in a 32% probability that
a randomly encountered patch contained a cache. Thus, these were fixed probabilities for each treatment level
(i.e., 0.32 for scatter hoarding, 0.08 for intermediate hoarding, and 0.02 for larder hoarding). These expected
encounter probabilities were then compared to the true observed encounter probabilities, which were based
on the actual ratio of empty-patch to cache-patch visitation by one prior-defined focal individual for each trial.
It may have been that group composition influenced the response of the focal individual, but since we had
repeated measurements on the same focal individual under the same treatment level, but with different
companion animals in the group, we first averaged the observed visitation rates for each individual and then

used these in the analysis. All analyses were carried out in R3.0.2 (R Core Team 2013).

Results

A total of 62 trials were run, with 21 replicate groups of wild boar (i.e., groups that consisted of a unique
combination of individual wild boar). Altogether, 16 trials (12 replicate groups tested) were run for scatter
hoarding, 16 trials (11 replicate groups tested) for intermediate hoarding, 15 trials (11 replicate groups tested)
for shallow larder hoarding and 15 trials (15 replicate groups tested) for deep larder hoarding. Summaries of a)
the number of times that each wild boar was tested within each treatment level, and b) the number of times
that each group of wild boar was tested within each treatment level can be respectively found in table 4.S1 and
table 4.52. Soil moisture content ranged among trials from 1.6 to 7.2% (Mean 4.2%, SD = 1.3), but did not differ
among treatments (One-way ANOVA: F3 55 = 0.19, p = 0.9).

Hoarding pattern significantly influenced the time it took a group of wild boar to pilfer the first cache (Cox

Proportional Hazards Model: Wald x* = 21.0, p = 0.00003; Fig. 4.2a), and the last remaining cache of a trial (Cox

Proportional Hazards Model: Wald )(2 =16.5, p = 0.003; Fig. 4.2b). In line with our second prediction, the time
until pilferage of the first cache was significantly shorter under scatter hoarding (mean =6.2's, 95% Cl = 4.6 —
8.5) than under intermediate (12.9 s, 8.2 — 20.4) or larder hoarding (41.0 s, 19.7 — 85.0), while pilferage of the
last remaining cache took significantly more time under scatter hoarding (mean =567 s, 95% Cl = 415 — 774),
than under intermediate (389 s, 278 — 545) or larder hoarding (221 s, 122 — 400). Soil moisture content did not
explain any variation in the time it took to pilfer the first cache (Wald )(2 = 0.6, p = 0.44), however, regardless of
the hoarding pattern, an increase in soil moisture content reduced the time it took a group of wild boar to

pilfer the last remaining cache (Wald x’ = 10.0, p = 0.002).

Contrary to our predictions, hoarding pattern did not affect the overall rate at which acorns were pilfered by a
group of wild boar (Cox Proportional Hazards Model: Wald )(2 =9.1, p =0.996; Fig. 4.3a). The average
proportion of caches pilfered after 5 minutes of wild-boar searching did not significantly differ between scatter
hoarding (86.5%, N = 16) and larder hoarding (73.3%, N = 15) (Mann-Whitney U test: U = 114, p = 0.81), and the

probability that all caches had been pilfered after 10 minutes of searching also did not significantly differ
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between scatter hoarding (62.5%, N = 16) and larder hoarding (86.7%, N = 15) (Pearson X’ =2.36,p=0.12).
Regardless of the hoarding pattern, the overall rate of pilferage significantly increased with soil moisture

content (Wald x° = 7.5, p = 0.006).
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Fig. 4.2: Effect of hoarding pattern on the rate of cache pilferage by wild boar in a controlled experiment. (a) and (b) show
survivorship curves indicating time-to-pilferage for (a) the first cache, and (b) the last remaining cache, for scatter hoarding
(solid line), intermediate hoarding (dashed line) and larder hoarding (dotted line). Crosses in curves represent censored

observations.
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Fig. 4.3: Effects of hoarding pattern and cache depth on the overall rate of acorn pilferage by wild boar for all trials, lumped

per treatment. Panel (a) shows survivorship curves for scatter hoarding (solid line), intermediate hoarding (dashed line) and

larder hoarding (dotted line), and panel (b) shows survivorship curves for shallow larder hoarding (solid line) and deep

larder hoarding (dashed line). Crosses in curves represent censored observations.
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Contrary to our third prediction, cache depth did not influence the overall rate of cache pilferage by wild boar
(wald )(2 =0, p = 0.988; Fig. 4.3b). Cache depth also did not affect the time it took a group of wild boar to pilfer
the first cache (Wald xz =0.12, p = 0.73; Fig. 4.4a) or the last remaining cache (Wald )(2 =0.06, p = 0.81; Fig.

4.4b).
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Fig. 4.4: Effect of cache depth on the rate of cache pilferage by wild boar in a controlled experiment. (a) and (b) show
survivorship curves indicating time-to-pilferage for (a) the first cache, and (b) the last remaining cache, for shallow larder

hoarding (solid line) and deep larder hoarding (dashed line). Crosses in curves represent censored observations.

The above results suggest that wild boar visited patches more or less randomly, regardless of whether they
contained a cache. We verified this possibility by comparing the random encounter probability of patches that
contained acorns with the observed encounter rate of such patches. Observed encounter rates for patches that
contained a cache did not differ from expected encounter rates based on random patch visitation, irrespective

of the hoarding pattern (One-Sample t-tests: all p-values > 0.05; Table 4.1).

Table 4.1: One-Sample T-test results of the comparison between mean observed and mean expected cache encounter

probabilities for eight individual wild boar, summarized for each alternative hoarding pattern.

treatment mean mean median T (df) P min max
expected observed observed 95% Cl 95% ClI

scatter (32 caches) 0.320 0.309 0.319 -0.634 (7) 055 0.269 0.350
intermediate (8 caches) 0.080 0.074 0.077 -1.036 (7) 0.33 0.059 0.088
shallow larder (2 caches) 0.020 0.029 0.030 0.949 (7) 0.37 0.007 0.051
deep larder (2 caches) 0.020 0.029 0.026 0.871(7) 0.41 0.005 0.053
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Discussion

We conducted a controlled experiment to determine how alternative hoarding patterns influenced pilferage of
cached acorns by a large non-hoarding food competitor, the wild boar. We found that scatter hoarding, as
expected, reduced survival time for the first cache and slightly increased survival time for the last remaining
cache. The overall rate of pilferage by wild boar did not, however, differ between scatter- and larder hoarding,
and the overall rate of pilferage was also not influenced by cache depth. This suggests that wild boar were
either unable to pick up olfactory cues from acorn caches, e.g., because these were too weak, or were not
using olfactory cues to locate cached acorns. It also suggests that risk spreading, rather than cue reduction,

may be the dominant mechanism by which acorn pilferage by wild boar is minimized.

Our finding that scatter hoarding increased the rate of pilferage of the first cache(s), but reduced the rate of
pilferage of the last remaining cache(s) is in agreement with the risk-spreading hypothesis, which argues that
scattering of food increases the probability of a pilferer randomly encountering some caches (as simply more
patches contain a cache) but also increases the effort needed to locate all caches, and that, as a consequence,
the probability of at least some caches escaping pilferage is higher (Kraus 1983; Jacobs 1992; Macdonald 1997;
Devenport et al. 2000; Dally et al. 2006). These findings are not, however, in line with the cue-reduction
hypothesis, under which scatter hoarding should reduce the rate of pilferage for both the first and the last
remaining cache(s) due to reduced olfactory cues emanating from scatter hoards as compared to larder hoards
(as a consequence of scatters being smaller) (e.g., Reichman & Oberstein 1977; Vander Wall 1993a, 1998, 2003;
Geluso 2005). Similarly, we found no effect of cache depth on pilferage by wild boar, even though several
studies have shown that shallow caches emanate stronger olfactory cues than do deep caches (reviewed in
Vander Wall 2003). This, together with the results of the comparison between expected and observed cache
encounter probabilities, suggests that cue reduction is not the mechanism by which acorn pilferage by wild
boar is avoided. This could be because olfactory cues emanating from acorn caches were too weak to be picked
up by wild boar, or because they simply do not use olfactory cues for cache finding but perhaps use systematic

or random searches instead.

The finding that wild boar may not be able to pick up olfactory cues from buried acorns or may not be using
them for cache finding was unexpected, as wild boar are well-known for their sensitive olfactory senses. Much
of the literature’s acclaim of the wild boar’s sense of smell is, however, based on their capacity to locate black
truffles (see Briedermann 1986). Black truffles and all other hypogeous fungi have evolved to produce their
fruiting bodies below ground and thus they rely, for having their spores dispersed, on being found and dug up
by animals (e.g., Bellina-Agostinone et al. 1987; Bruns et al. 1989; Talou et al. 1990; Johnson 1996; Pyare &
Longland 2001). Acorns, on the other hand, are the fruiting bodies of oak trees that require transportation by
scatter-hoarding animals to reach a location for germination and establishment, and so it is unlikely that there
has been a selective advantage for oaks to produce acorns that can be found and destroyed by wild boar. On
the contrary, selection pressure may have favoured acorns that emanate weak olfactory cues that cannot be

picked up efficiently by seed predators such as the wild boar. Consequently, wild boar may only be able to

53



Chapter 4

easily locate cached acorns by opportunistically foraging and rooting at locations likely to have acorns, such as
directly below and around adult oak trees. This would also provide an explanation for high concentrations of
rooting found below and directly around adult oak trees (e.g., Groot-Bruinderink & Hazebroek 1996; Welander
2000; Fig. 4.5). If wild boar were able to pinpoint the location of cached acorns by means of olfaction, one
would expect to see many small rooting patches rather than a few large rooting patches. Nevertheless, a useful

follow-up experiment could focus on the wild boar’s ability to detect (hidden) acorns on the basis of olfaction,

and perhaps to test at which spatial scale these olfactory cues could be picked up.

Fig. 5 A typical acorn hotspot in the Veluwe, The Netherlands; an adult oak tree, with the soil below and around the tree

uprooted by wild boar.

Pilferage rates of cached acorns by wild boar did not differ between scatter- and larder hoarding. The reason
for this may be that under scatter hoarding, the initial rate of pilferage was higher, but this decreased with
depletion of caches, while under larder hoarding the rate of pilferage was more constantly low over time. Thus
the overall rate of pilferage ended up being very similar for scatter- and larder hoarding. The question that thus
arises is: why do many animals primarily scatter hoard their food items? First, and perhaps most importantly,
scatter hoarding is assumed (and was found in our study) to be a strategy to lower the risk of a catastrophic
loss (i.e., instantaneously losing the entire food supply) (e.g., Smith & Reichman 1984; Vander Wall 1990; Dally

et al. 2006). While several studies have suggested that complete pilferage by superior competitors poses the
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largest threat of catastrophic loss (e.g., Macdonald 1997; Preston & Jacobs 2001; Zhang et al. 2011), there may
be several other factors that could result in such catastrophic loss. For example, many large seeds are prone to
fungal infections due to their high natural moisture content. Caching large quantities of such seeds together
may thus pose a large threat of catastrophic loss due to fungal cross-contamination (e.g., Reichman et al. 1985;
Edelman 2011). Similarly, physical disturbance of the cache (through e.g., windthrow) as well as density-
responsive seed predators (Janzen 1970) may pose a large threat of catastrophic loss. Another possibility is that
scatter hoarding by wood mice is a response to competition with conspecifics and that hoarding patterns
depend on the individual characteristics of the hoarder, in terms of its dominance over conspecific competitors
(Clarke & Kramer 1994), a response that has also been shown for other species (e.g., Sanchez & Reichman
1987; Daly et al. 1992; Preston & Jacobs 2001; Leaver 2004; Zhang et al. 2011). Finally, while scatter hoarding
does not seem to have a large effect on pilferage risk by wild boar, this effect may be different for other
species, depending on the cues provided by the caches and by the hoarder itself, and depending on the search
tactics applied by the pilferer. For instance, hedgehogs (Erinaceus europaeus) and red foxes (Vulpes vulpes),
which use olfaction to locate buried eggs, have been shown to be able to detect (by smell) eggs buried at 3 cm
depth up to a distance of respectively 50 cm and 3 m (Tinbergen 1965). After retrieval of a buried egg,
hedgehogs only searched in an approximately 1 m?’ area around the cache location, suggesting that scattering

individual food items beyond the olfactory detection distance of the pilferer reduces pilferage risk.

One aspect that should not be overlooked here is the direct risk of predation imposed upon wood mice by wild
boar. Wild boar are known to have a very diverse diet, that certainly includes animal matter, ranging from
insects and worms to mice and voles, and they even scavenge around the carcasses of larger animals
(Briedermann 1986). It is thus not unlikely that wild boar form a direct threat to the survival of wood mice, and
as a consequence, wood mice might have adjusted their hoarding patterns so that risk of predation by wild
boar, rather than risk of pilferage, is minimized (Focardi et al. 2000; Mufioz & Bonal 2007; Puerta-Pifiero et al.
2010). Generally, larder hoards are connected to the underground burrow system of the hoarder and are
usually located near the hoarder’s nest, while scatter hoards are created from the soil surface, and are usually
not connected to the burrow system of the hoarder (Jennings 1975; Vander Wall 1990). The scatter-hoarding
set-up, where food is detached from the burrow system, is likely to reduce the risk of wild boar encountering

the nest or hiding place of a hoarder while it is searching for buried food items (Vander Wall 1990, 2001).

Our experiment (in which we distributed a fixed number of acorns over a fixed number of potential cache
locations within a fixed area) was designed to mimic alternative outcomes of the hoard-size — number trade-off
that hoarders face. Given a certain food supply (i.e., a fixed number of seeds or other food items) and available
area (i.e., the home range), pilferage rates can be influenced only by changing the distribution of food items
over the available patches and by varying the depth at which food items are cached. In our experiment, we
controlled for the number of food items and the number of available patches as well as for pilferer pressure
(i.e., the number of wild boar in the area). Nevertheless, two aspects of our study differ slightly from the

natural situation; 1) we used a fixed number of distinct patches, rather than a continuous area in which caches
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could be created, and 2) wild boar could have been aware that hidden food items were present in the
experimental arena during each trial. These aspects may have facilitated exploration by wild boar and may thus
have inflated the rate with which caches were pilfered, as compared to a truly natural situation. Since these
conditions were similar across different treatments, however, this will not have influenced our final conclusion.
Finally, in a natural situation, wild boar may be using cues other than those assumed in this study. For instance,
they may use visual or olfactory cues to locate the entrance of a hoarder’s burrow system and accordingly
uproot the entire burrow system (Focardi et al. 2000). If this were true, it would particularly favour scatter

hoarding.

The results from this study suggest that the overall rate of cache pilferage by wild boar, and with that, the risk
of catastrophic loss of food reserves, is little affected by the hoarding pattern applied by the food hoarder. This
suggests that superior competitors are not driving the decision of a hoarder to scatter hoard. Although scatter
hoarding may have the potential to lower the rate at which competitors pilfer cached food, this probably
depends on the cues provided by the caches and by the hoarder, and on the search tactics used by the pilferer.
There may also be other factors, such as conspecific pilferage, physical cache disturbance, or cross-
contamination of food items, that could lead to catastrophic loss of food reserves and as such could be more

important drivers of the decisions of animals to scatter hoard the majority of their food reserves.
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Table 4.51: Summary of the number of times that each of the eight individual wild boar was part of a team that was tested

in each of the four treatment levels. Column totals represent the total number of individuals tested in each treatment level.

Table 4.52: Summary of the number of times that each of the 21 unique teams of wild boar was tested within each of the

scatter intermediate  shallow larder  deep larder
hoarding hoarding hoarding hoarding

1 | F1_ALF 5 6 6 6
2 | F2_BIL 8 8 7 9
3 | F3_MAT 6 6 6 7
4 | F4_OSW 7 6 6 3
5 | F5_SOP 9 11 10 8
6 | M1_BIG 10 10 10 10
7 | M2_CHA 8 7 6 7
8 | M3_HAZ 11 10 9 10

TOTAL 64 64 60 60

four treatment levels. Column totals represent the total number of trials for each treatment level.

scatter intermediate  shallow larder  deep larder
hoarding hoarding hoarding hoarding
1| F1_ALF M1_BIG F2_BIL M2_CHA 1
2 | F1_ALF M1_BIG F2_BIL M3_HAZ 1 1 1 1
3 | F1_ALF M1_BIG F2_BIL F5_SOP 1
4 | F1_ALF M1_BIG M2_CHA  M3_HAZ 1 1 1 1
5 | F1_ALF M1_BIG M3_HAZ F5_SOP 1
6 | F1_ALF F2_BIL F3_MAT F5_SOP
7 | F1_ALF M2_CHA  M3_HAZ F3_MAT 1
8 | F1_ALF F3_MAT F4_OSW F5_SOP 3 3 3 1
9 | M1_BIG F2_BIL M2_CHA  M3_HAZ 3 2 2 1
10 | M1_BIG F2_BIL M2_CHA  F5_SOP 1
11 | M1_BIG F2_BIL M3_HAZ F3_MAT 1
12 | M1_BIG F2_BIL M3_HAZ F5_SOP 1 1 1 1
13 | M1_BIG F2_BIL F3_MAT F5_SOP 1
14 | M1_BIG F2_BIL F4_OSW F5_SOP 1
15 | M1_BIG M2_CHA  M3_HAZ F3_MAT 1 1 1 1
16 | M1_BIG M2_CHA  M3_HAZ F5_SOP 1 2 1 1
17 | M1_BIG M3_HAZ F4_OSW F5_SOP 1 1 1 1
18 | F2_BIL M2_CHA  M3_HAZ F4_OSW 1
19 | F2_BIL M2_CHA  M3_HAZ F5_SOP 1 1
20 | F2_BIL F3_MAT F4_OSW F5_SOP 2 2 1
21 | M2_CHA  M3_HAZ F3_MAT F5_SOP 1
TOTAL 16 16 15 15
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Chapter 5

Intraspecific variation in hoarding patterns of the wood mouse (Apodemus sylvaticus)

Lennart Suselbeek, Herbert H.T. Prins, Frans Bongers, Sipke E. van Wieren, Anneke M. Valk, and Patrick A.

Jansen

Abstract

Hoarding patterns vary from larder hoarding to scatter hoarding, both between and within species, and this
variation is generally ascribed to differences in pilferage risk. We experimentally tested whether within-species
variation in hoarding patterns is more driven by conspecific or by heterospecific competition, and whether
dominance of the hoarder over its competitors plays a role. We compared acorn hoarding between male and
female wood mice (Apodemus sylvaticus) of known body sizes, and from areas with and without wild boar (Sus
scrofa), a reputed pilferer of acorn caches. Mice were allowed to hoard acorns in indoor arenas, with acorn
removal recorded using camera traps. After each trial, distance and angle of dispersal as well as the proportion
of acorns cached were recorded. All individuals predominantly scatter-hoarded acorns, however, females
cached significantly more seeds than males did. Also, females from areas with wild boar scattered seeds more
widely than did females from areas without wild boar. The introduction of a conspecific audience mouse did
not significantly affect hoarding patterns in the wood mouse, however, in females their tended to be a negative
relationship between seed scattering and body size in response to a conspecific audience. Our results show
that dominance status of the hoarder in relation to its competitors, regardless of the type of competitor
(conspecific or heterospecific), leads to variation in hoarding patterns between individuals, but not to the
extent that hoarding patterns shift from larder hoarding to scatter hoarding or vice versa. Other factors may

thus be driving the decision to scatter- or larder hoard.

Keywords: rodents, acorns, hoarding, competition, seed dispersal, dominance, seeds, wild boar
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Introduction

Food-hoarding animals cache food items at times of high food availability and rely on these reserves during
periods of food scarcity (Vander Wall 1990). The spatial pattern at which food items are cached ranges
between larder hoarding and scatter hoarding. Larder hoarding involves the placement of many food items in
one or few caches (‘larders’), usually located in or near the nest, in underground burrows, or in tree cavities.
Larders are relatively easy to create and recover, yet usually require active defence against other animals
(Clarkson et al. 1986; Vander Wall 1990; Daly et al. 1992; Dally et al. 2006). Scatter hoarding, in contrast,
involves spreading of food over many widely spaced caches with one or few items each (‘scatters’) (Morris
1962; Clarkson et al. 1986; Vander Wall 1990, 2001). Scatters are not individually defended but involve higher
energetic costs in terms of travel (food is spaced out more widely) and memory (more locations are to be
remembered), as well as increased mortality risk due to longer exposure to predators and adverse
environmental conditions (Stapanian & Smith 1978; Smith & Reichman 1984; Stapanian & Smith 1984; Jenkins
et al. 1995; Dally et al. 2006).

Variation in hoarding patterns occurs between species but also within species (Roberts 1979; Clarkson et al.
1986; Vander Wall 1990; Dally et al. 2006). Numerous field and experimental studies in a variety of systems
have shown that between-species variation in hoarding patterns is largely explained by differences in pilferage
risk (e.g., Vander Wall & Jenkins 2003; Vander Wall et al. 2005a; Dally et al. 2006). For instance, larger-bodied
species are generally better able to defend reserves against potential pilferers, and therefore more prone to
larder hoard (Roberts 1979). However, the large majority of these studies considered hoarding patterns to be
fixed within species, which is why within-species variation in hoarding patterns has received much less
attention up to now. Those studies that reported within-species variation in hoarding patterns, almost
exclusively focused on responses to conspecific pilferage rather than to heterospecific pilferage. For example,
Korean field mice (Apodemus peninsulae) and Merriam’s kangaroo rats (Dipodomys merriami) shift almost
entirely from scatter hoarding to larder hoarding in response to cache pilferage by a conspecific (e.g., Preston &
Jacobs 2001; Zhang et al. 2011). We could find only one study in which the role of heterospecific competitors in
explaining within-species differences in hoarding patterns was investigated (Zhang et al. 2013), and no study
that was focused on the combined effect of conspecific and heterospecific competition on hoarding patterns,

or on the relative contribution of both types of competition to variation in hoarding patterns.

The mechanism of pilferage is likely to differ between conspecific and heterospecific pilferers. For example,
pilferage by conspecifics generally results in a steady decrease in hoarded food items (sieve-effect), an act to
which a hoarder could respond by redistributing the remainder of the food items, such that further pilferage is
prevented. In contrast, pilferage by heterospecifics, particularly if they are large, is often a sudden and
catastrophic event resulting in loss of the entire hoarded food supply (catastrophe-effect). Such a sudden act of
complete pilferage cannot be counteracted by the hoarder and the risk of this happening should thus be
minimized. Therefore, it is likely that the hoarder’s response to conspecific pilferage is instantaneous, while the

hoarder’s response to heterospecific pilferage has evolved over time and is only apparent in hoarder
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populations that have a long history of being subjected to this heterospecific competitor, but not in other

populations of the same hoarder.

Apart from responses to conspecific and/or heterospecific competitors, individual characteristics, such as sex
and body size, may help explaining within-species variation in hoarding patterns, as this may affect the ability
of the hoarder to defend its caches (Clarke & Kramer 1994; Jenkins 2011; Zhang et al. 2011). For example,
small-sized individuals may be more inclined to scatter hoard, because they are less able to defend their caches
against larger-sized individuals of the same species (Dally et al. 2006; Price & Mittler 2006; Swartz et al. 2010;
Zhang et al. 2011).

Here, we used the study system of a species that hoards seeds in both larder- and scatter forms, the Wood
mouse (Apodemus sylvaticus), a superior heterospecific competitor, the Wild boar (Sus scrofa), and their
communal food source, acorns of the Pedunculate oak (Quercus robur), to experimentally compare hoarding
patterns between male and female wood mice that differed in body size, and were taken from areas with a
long history (nearly 60 years) of either wild-boar presence or wild-boar absence. Our experiment was designed
to mimic alternative outcomes of the hoard-size — number trade-off that hoarders face (Vander Wall & Jenkins
2003; Dally et al. 2006; Alpern et al. 2012; Hirsch et al. 2013). Given a certain food supply (i.e., a fixed number
of seeds or other food items) and available area (i.e., the home range), hoarding patterns can be varied by
changing the speed at which food items are removed and secured in safe locations, by changing the
detectability of the food items to others (e.g., by hiding the food items below ground), and by changing the
number of food items per cache (and with that the total number of caches). Our experiment was performed in
large indoor arenas, and was controlled for the number of food items presented, the size of the hoarding area,
the structural diversity of the ground cover, as well as for pilferer pressure. Our experiment consisted of two
sub-experiments; the first experiment tested seed-hoarding patterns of individuals that varied in sex, body size,
and provenance, while the second experiment was a test for the response of individual hoarders to the
presence of a conspecific audience. Here, treatment mice, all taken from similar areas, were first tested
without and then with an audience mouse to further investigate how individual differences in sex and body size

affected seed-hoarding patterns.

With respect to the first experiment, we predicted that 1) seed-removal rates, the number of seeds cached,
and the spatial extent of seed scattering would be greater for females, small-sized individuals, and individuals
from areas with wild boar, than for males, large-sized individuals, and individuals from areas without wild boar.
With regards to the second experiment, we predicted that 2) females and small-sized individuals would
respond to the presence of a conspecific audience by increasing the spatial extent of seed scattering, increasing
caching and increasing the rate of seed removal, while males and large-sized individuals would not change

hoarding patterns in response to the presence of a conspecific audience.
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Materials and methods

Study system

The wood mouse is a common European woodland rodent that weighs between 10-30 g and breeds between
April and October. Wood mice are nocturnal and characterized by well-developed olfactory, visual, and
auditory senses. The wood mouse is a typical granivore, with seeds constituting roughly 70% of their diet
(Watts 1968; Flowerdew et al. 1985). Wood mice play an important role as seed predators and dispersers of
acorns in Europe. They hoard acorns in autumn, primarily through a combination of scatter- and larder

hoarding, as food reserve for winter (Vander Wall 1990; Den Ouden et al. 2005; Takahashi et al. 2007).

The wild boar is a medium-sized (50-200 kg) ungulate that is regarded as an important competitor to seed-
hoarding rodents in forests and woodlands (Massei & Genov 2004). Acorns are a dominant food in autumn
when freshly shed and abundantly available on the forest floor (Massei & Genov 2004; Elston & Hewitt 2010),
but also in mid- and late winter when very few acorns remain on the forest floor (Groot-Bruinderink et al. 1994;
Den Ouden et al. 2005; Mufioz & Bonal 2007). The latter suggests that wild boar actively search for and pilfer
acorn caches created by hoarders, such as the wood mouse (Borchert et al. 1989; Herrera 1995; Focardi et al.

2000; Gomez et al. 2003; Den Ouden et al. 2005).

Experimental design

Experimental trials were conducted from 9 November 2011 to 24 February 2012 at the experimental facility
“De Ossenkampen” in Wageningen, the Netherlands. Wood mice were taken from mixed-forest stands in the
Southern Veluwe, the Netherlands. This area is crossed by a motorway (A12) that was established in 1956 and
since then effectively divides the study area into a northern part with wild boar and a southern part without
wild boar. Pedunculate oak and Scots pine (Pinus sylvestris) are dominant trees in the area. Besides the wood
mouse, potential acorn hoarders present in the area were Eurasian jay (Garrulus glandarius), red squirrel
(Sciurus vulgaris) and bank vole (Myodes glareolus). In total, 112 wood mice were captured and used in the
experiment. Of these, 59 were males (46 from areas without wild boar and 13 from areas with wild boar) and
53 were females (42 from areas without wild boar and 11 from areas with wild boar). Body size of wood mice
used in the study ranged from 11 to 27 g for males (mean = 19.2 g) and from 10 to 32 g for females (mean =
18.6 g). Wood mice were captured using Longworth live traps (Penlon Ltd., Oxford, U.K.) that were pre-baited
with a mixture of peanut butter, rolled oats and fresh apple for two nights. Traps were set at 11 PM and
checked at 7 AM the following morning. Wood mice in apparent healthy condition were taken to the
experimental facility, where they were weighed, sexed and individually marked by means of fur-clipping (cf.
Clarke & Kramer 1994). Pregnant or lactating individuals were excluded from the experiment and immediately
released at the capture site. Experimental acorns were collected from the same areas as the mice and were

stored at 4 °C in a refrigerator at the experimental facility.

At the experimental facility, wood mice were housed individually in 42x26x19 cm living cages, with a 5-cm layer

of natural forest soil and a 10-cm layer of fresh hay as bedding and enrichment. Animals had ad libitum access
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to fresh apple (for water) and a mixture of peanut butter with rolled oats. Living cages were placed in a 4x6 m
room inside an isolated building at the experimental facility. The room had windows but no lights, thus having a
natural light : dark cycle. Temperature and humidity inside the room fluctuated with outside weather

conditions, but less extreme.

Experimental trials took place in a large 15x30 m barn, adjacent to the building where experimental mice were
kept. Poor isolation of the barn made the indoor climate very similar to the outdoor climate, except for the
absence of precipitation. Two rings of corrugated iron (11 m diameter, 1 m high) were placed in the barn.
Experimental arenas were created by subdividing each ring into four quadrants by using 1-m high wooden
frames covered with black silage film. The smoothness of silage film prevented mice from gnawing through
and/or climbing over the arena walls. This resulted in 8 pie-shaped arenas of approximately 24 m”. Arenas were
filled with a layer of approx. 25 cm of natural forest soil (Hooijer Renkum B.V., the Netherlands). Half of the
surface area of each arena was covered with a camouflage netting that had a leaf-like textile structure knitted

on top (Seyntex N.V., Belgium), to resemble a natural leaf layer.

Experimental trials started with the introduction of one experimental mouse into each arena, between 3 and 4
p.m. on day one. Each mouse was then allowed to acclimatize to the arena and had access to a mixture of
peanut butter and rolled oats, some fresh hay to serve as nesting material, and a bottle cap filled with water.
The next day, between 2 and 3 p.m., experimental acorns, that had been soaked in cold water for 24 hours,
were PIT-tagged (Trovan ID100A, 11.5 x 2.0 mm, Dorset ID, Netherlands) and weighed on a precision balance.
These electronic tags do not influence removal rates or dispersal distances and can be re-used indefinitely,
while allowing individual identification of buried acorns (Suselbeek et al. 2013). Then, at approximately 3 p.m.
on day two, 6 PIT-tagged acorns were placed in a 2x3 grid in the seed station of each arena. Acorns were slid
through a 2.5-m PVC pipe, allowing placement away from the outside edges of the arena and adjacent to the
camouflage netting, without the need for the experimenter to enter the arena. The mouse was then allowed to
hoard acorns until approximately 10 a.m. in the morning of day three. During each trial, a motion-sensitive

camera trap (HC500; Reconyx Inc., Wisconsin, USA) was used to monitor acorn removal from the seed station.

Trials ended with digging out the mouse from its burrow, if it had one, and guiding it back into its living cage
using cardboard sheets that narrowed towards the cage entrance. This capture procedure generally took less
than two minutes and had no visible adverse effects on the mice. If a mouse was scheduled to be tested in a
second trial, it was returned to the living-cage room and kept there for 6 days, until the start of the second trial
for that mouse. Otherwise, the mouse was released the same day at the location of capture. Consequently,
mice were in captivity for a maximum of 12 days. All experimental handling procedures were approved by the

Animal Experiments Committee of Wageningen University (WUR-2011092.f).

After the trial had ended, acorns were relocated using a handheld PIT-tag reader (Trovan GR-250, Dorset ID,

Netherlands). For each acorn, its hoarding status (i.e., cached or exposed), as well as the distance and angle
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from the seed station, were recorded. Once all acorns had been relocated, the top soil layer of the arena was
thoroughly raked and mixed, to remove or at least reduce any mouse- or human traces of the preceding trial as

much as possible.

To quantify seed spacing, Minimum Spanning Trees (MST) were obtained by mapping the spatial distribution of
cached acorns in ArcGIS 10 (ESRI, California, USA). However, the estimate of MST in itself does not always
‘capture’ the true extent of seed scattering. for instance, if 5 acorns are clumped together and the sixth acorn is
placed in another cache at 5 m distance the MST will be 5 m, while if all acorns are cached individually with a
regular spacing between caches of 1 meter, the MST will still be 5 m (Fig. 5.1). Therefore, we defined the spatial
extent of seed scattering as a combination of the MST and the total number of caches created, relative to the
maximum number of caches possible and to the maximum MST within the arena. The spatial extent of seed
scattering was thus obtained by multiplying the MST of a trial by the number of caches created in that trial, and
dividing this over the theoretical maximum of the MST (i.e., 15 m) multiplied by the theoretical maximum of
the number of caches (i.e., 6). This resulted in a measure of scattering that fell between 0 (all seeds clumped

together) and 1 (widest possible scattering).
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Fig. 5.1: Panels illustrate the relationship between minimum spanning tree (MST) and the number of caches created. MST
equals 5 m across all panels, however, the number of caches varies and thus the spatial extent of seed scattering also

differs.

Data analysis

We used Linear Mixed Models to test for differences in seed-removal rate and for differences in the extent of
seed scattering between males and females of different body size and from areas with and without wild boar.
We used a Generalized Linear Mixed Model with a binomial error distribution to test for differences in the
proportion of seeds cached between males and females of different body size and from areas with and without
wild boar. We included “individual” and “arena” as random effects in all models to account for repeated use of

the same individual and the same arena.

We used Repeated-Measures ANOVA to test for a change in seed removal rate, proportion of seeds cached,
and extent of seed scattering after the introduction of a conspecific audience, for males and females of
different body size from areas without wild boar. Preliminary data from a complementary field study suggest
that wood mouse activity is influenced by ambient temperature. At temperatures well below freezing, wood
mice decreased their activity. Thus, to account for possible effects of temperature on hoarding patterns, we

included the daily minimum ambient temperature, obtained from a professional weather station located 1 km
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away from the experimental facility, as covariate in all models. All analyses were carried out using the packages

Ime4 (Bates et al. 2013), ImerTest (Kuznetsova et al. 2013), and stats, in R3.0.2 (R Core Team 2013).

Results

Single individual experiment

Seed-removal rate did not differ between males and
females (Linear Mixed Model: p = 0.44; Fig. 5.2a), nor
between individuals from areas with or without wild
boar (p = 0.56), or with body size (p = 0.69). However,
the proportion of seeds cached, as opposed to seeds
that were left exposed, was significantly higher for
females (mean = 0.98, 95% Cl = 0.95-0.99) than for
males (mean = 0.93, 95% Cl = 0.80-0.98) (Generalized
Linear Mixed Model: )(21 =5.19, p = 0.02267; Fig. 5.2b),
but did not differ between individuals from areas with
or without wild boar (p = 0.29), and was not affected

by body size (p = 0.95).

Individuals from areas with wild boar tended to
scatter seeds more widely (mean =0.12, 95% Cl =
0.05-0.27) than individuals from areas without wild
boar (mean =0.07, 95% Cl = 0.04-0.11) (Linear Mixed
Model: le =5.08, p = 0.07887), however, this
provenance effect was only apparent in females, as
indicated by a significant interaction effect between
sex and provenance (x’; = 4.78, p = 0.02881; Fig. 5.2c).
Females from areas with wild boar scattered seeds
more widely (mean = 0.24, 95% Cl = 0.07-0.57) than
females from areas without wild boar (mean = 0.05,
95% Cl = 0.02-0.10), while the extent of seed
scattering was similar for males from areas with wild
boar (mean = 0.06, 95% Cl = 0.02-0.19) and for males
from areas without wild boar (mean = 0.10, 95% Cl =
0.05-0.18). The extent of seed scattering was not

influenced by body size (p = 0.67).
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Conspecific audience experiment

The conspecific-audience experiment revealed that for the control treatment there were no effects of sex and /
or body size on seed-hoarding patterns. This led us to assume that any difference detected in the audience
treatment resulted from the addition of a conspecific-audience mouse. On average, the presence of a
conspecific audience led to an increase in seed-removal rate for males by a factor 1.8 (95% Cl = 0.7-2.8), while
it increased seed-removal rate in females by a factor 1.4 (95% Cl = 0.4-2.4). Due to large variation, however,
these effects were not significant for males (Repeated-measures ANOVA: F; ;; = 0.05, p = 0.8; Fig. 5.3a), nor for
females (p = 0.8). There was no effect of body size on the response to the presence of a conspecific audience,

in terms of seed-removal rate (p = 0.6).

In males, the introduction of a conspecific audience led to a 3.7% decrease in the proportion of seeds cached
(95% Cl = 18% decrease — 11% increase), while in females, it led to a 1.5% increase in the proportion of seeds
cached (95% Cl = 13% decrease — 16% increase). These changes were, however, not significant (F;,, =0.25, p =
0.6; Fig. 5.3b). The change in proportion of seeds cached after introduction of a conspecific audience was also

not affected by body size (p = 0.7).

The extent of seed scattering did not change with the introduction of a conspecific audience in males (mean
change =-0.08, 95% Cl =-0.21 — 0.05) or in females (mean change = -0.04, 95% Cl =-0.18 —0.09) (F;,, = 0.19, p
= 0.7; Fig. 5.3c), and was not influenced by body size in general (p = 0.3). However, in females seeds tended to
be scattered less in response to the presence of a conspecific audience as the hoarding individual was larger

(F1,10 = 3.58, p = 0.0876).
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extent of seed scattering, after the introduction of a conspecific audience. For each panel, scatterplots show the average

change for males and females and the relationship between body mass and change for males and females. Error bars

represent 95% confidence intervals and dashed lines represent non-significant trend lines.
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Discussion

Food-hoarding patterns range from larder- to scatter hoarding between species but sometimes also within
species. Little is known, however, about the drivers of within-species variation in hoarding patterns, even
though the decision to scatter- or larder hoard may have profound implications the role of seed-hoarding
rodents as effective seed dispersers for trees. We experimentally compared hoarding patterns between male
and female wood mice of known body sizes, and from areas with a long history of either wild boar presence or
absence, to investigate the effect of conspecific and heterospecific pilferage as well as the effect of individual
dominance characteristics, such as sex and body size, on hoarding patterns. We found that females hid
significantly more seeds (as opposed to leaving them exposed) than did males, and that females from areas
with wild boar scattered seeds more widely than did females from areas without wild boar. These findings are
in line with the hypothesis that individual dominance characteristics cause within-species variation in hoarding

patterns (as suggested by Clarke & Kramer 1994; Dally et al. 2006; Jenkins 2011; Zhang et al. 2011).

The introduction of a conspecific audience mouse led to a slight but not significant increase in scatter hoarding
by small-sized females, while large-sized females actually tended to increase larder hoarding. Although this
effect was not significant, the tendency was in line with the second hypothesis that subordinate individuals
(i.e., females and / or small-sized individuals) would change their hoarding patterns in response to a conspecific
audience by increasing scatter hoarding, while dominant individuals (i.e., males and / or large-sized individuals)
were expected to maintain their existing hoarding patterns or to even increase larder hoarding to be able to
defend the food supply from competitors. We did not find any other effect of the introduction of a conspecific
audience on seed-hoarding patterns. This again, is in line with our hypothesis that dominant individuals may
not respond to a conspecific audience by changing their hoarding patterns, but it is in contrast with the
prediction that subordinate individuals would change their hoarding patterns in response to a conspecific
competitor. Interestingly, several other studies have found mixed results with respect to the response of a
hoarder to a conspecific audience (e.g., Jenkins et al. 1995; Preston & Jacobs 2005; Dally et al. 2006; Leaver et
al. 2007; Zhang et al. 2011; Tong et al. 2012). For instance, Preston and Jacobs (2001) found that Merriam’s
kangaroo rats (Dipodomys merriami) did not respond to the presence of a conspecific audience (as in our
study), but that they did change their hoarding patterns in response to actual pilferage by conspecifics (which
we did not test for here), while in another study, Zhang et al. (2011) found that Korean field mice (Apodemus
peninsulae) and Chinese white-bellied rats (Niviventer confucianus) responded to the presence of a conspecific
audience by increasing seed-hoarding intensity and seed-removal rate, and that Korean field mice shifted from

scatter- to larder hoarding in response to the mere presence of a conspecific audience.

The effects that we found were all related to individual dominance characteristics. For instance, we found

differences in hoarding patterns between males and females, with females showing more pilferage-avoidance
behaviour than males, which is in line with several other studies (e.g., Macdonald 1976; Vander Wall & Jenkins
2003; Dally et al. 2006; Leaver et al. 2007; Steele et al. 2008). Similarly, only in females did we find an effect of

wild boar presence, suggesting that females respond more strongly to interspecific competition than males do.
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Lastly, we found that smaller females responded more strongly to the presence of a conspecific audience than
larger females, while males, regardless of their size, showed very little tendency to respond to the presence of
a conspecific audience. One possible reason for the absence of a strong response to the presence of a
conspecific audience may be that we attempted to match the characteristics of the hoarder as much as
possible with those of the conspecific audience. That is, if the hoarder was a 15-g female, we made sure that
the conspecific audience mouse was also a female of comparable body size. If we had instead chosen to
contrast the characteristics of the hoarder with those of the audience mouse, we might have found stronger
responses of the hoarder. For instance, a small-sized female may respond more strongly to a large-sized male

audience than to a similarly-sized female audience (Zhang et al. 2011; Tong et al. 2012).

These findings suggest that there is some response of wood mice to conspecific and / or heterospecific
competitors, however, the effect was weak. Hence, pilferage risk is unlikely to be the main driver of the
widespread within-species variation in hoarding patterns found in natural systems. But what then drives some
individuals to scatter hoard and others to larder hoard? Most importantly, scatter hoarding is assumed to be a
strategy to lower the risk of catastrophic loss (i.e., instantaneous loss of the entire food supply) (e.g., Smith &
Reichman 1984; Vander Wall 1990; Dally et al. 2006). While several studies have suggested that complete
pilferage by superior competitors (i.e., competitors against which caches cannot be defended) poses the largest
threat of catastrophic loss (e.g., Macdonald 1997; Preston & Jacobs 2001; Zhang et al. 2011), other factors
could also result in catastrophic loss. For instance, many seeds are prone to fungal infections due to high
natural moisture contents, so that caching large quantities of seeds together may pose a threat of catastrophic
loss due to fungal cross-contamination (e.g., Reichman et al. 1985; Edelman 2011). Similarly, physical
disturbance of the cache (e.g., windthrow) as well as density-responsive seed predators (Janzen 1970) may
pose a threat of catastrophic loss. Finally, although a hoarder may be dominant over its current competitors, at
any time a more superior competitor may arrive. The risk of this happening, albeit it very small, will likely have
fatal consequences for a larder-hoarding animals, and this in itself may be sufficient reason for most animals to
scatter hoard. Thus, although pilferage and dominance may play a substantial role in explaining variation in
hoarding patterns, other factors may be equally important. The importance of such other factors as drivers of

within-species variation in hoarding patterns begs for further investigation.

Our experiment (in which we offered a fixed number of acorns to one hoarder within a fixed area) was
designed to mimic alternative outcomes of the hoard-size — number trade-off that hoarders face. Given a
certain food supply (i.e., a fixed number of seeds or other food items) and available area (i.e., the home range),
hoarding patterns can be varied by changing the speed at which food items are removed and secured in safe
locations, by changing the detectability of the food items to others (e.g., by hiding the food items below
ground), and by changing the number of food items per cache (and with that the total number of caches). Our
experiment was unique in fully controlling for the number of food items, the size of the hoarding area, and the
structural diversity of the ground cover, as well as for pilferer pressure (i.e., by testing mice individually, or by

including one audience mouse in the arena). Nevertheless, three aspects of our study differ from the natural
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situation; 1) The arenas had a surface area that was smaller than the average wood mouse home range, 2)
wood mice were alone in the arena and could have learned this during the acclimation period, and 3) the

audience mouse and the focal mouse were able to see and smell each other, but the audience mouse was
unable to actually pilfer food items from the other individual’s caches. It may be that the responses of the

tested individual therefore were less extreme then to be expected in a natural situation.

Our results suggest that dominance of the hoarder over its competitors, regardless of the type of competitor
(heterospecific or conspecific), explains some variation in hoarding patterns. However, responses found were
too weak to explain the widespread variation in hoarding patterns found under natural conditions. We
therefore conclude that other factors, such as cross-contamination of food items, may be more important in

driving variation in hoarding patterns.
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General discussion

Lennart Suselbeek

Introduction

The main objective of this thesis was to gain insight in the role of seed-hoarding rodents as conditional
mutualists of large-seeded trees in a multi-trophic system. | specifically aimed to examine whether and how
intra- and interspecific food competition affects the hoarding patterns of rodents such that their role as

mutualists of large-seeded trees changes.

In chapter two, | introduced PIT tagging as a novel seed-tracking method to follow individual seeds from initial
dispersal all the way up to seedling establishment. | showed that PIT tagging provides a reliable, non-invasive
and durable seed-marking technique, solving some of the main problems generally encountered when
following the fate of animal-dispersed seeds over time. Then, in chapter three, | used this technique in a large
field study to investigate whether and how acorn abundance, rodent abundance, and wild-boar presence,
affected seed-hoarding patterns of rodents, and how this in turn influenced the likelihood of seed germination.
Rodents almost exclusively scatter hoarded seeds, but the extent to which this strategy was applied was
related to food competition. Successful seed germination was most likely when competition was low. In the
following chapters, | experimentally disentangled the factors potentially influencing seed-hoarding patterns of
rodents. In chapter four, | investigated the likelihood of cache pilferage by wild boar under various hoarding
strategies, while in chapter five, | compared seed-hoarding patterns displayed by wild-caught rodents of
different sex, weight, and provenance (i.e., captured in areas with or without wild boar). Variation in seed-
hoarding patterns did not affect cache-pilferage rates by wild boar, but part of the variation in hoarding
patterns displayed by rodents could be explained by individual differences in dominance status of the hoarder

in relation to potential pilferers.

In this synthesis, | will discuss how these results relate to each other and what new perspectives they bring in

relation to conditionality in seed-dispersal mutualisms and in species interactions in general.

The concept of conditionality in mutualistic interactions

Variation in the outcome of interspecific interactions is common in nature. This phenomenon is commonly
described as conditionality or context dependency, i.e., the sign or magnitude of the effect on fitness changes
as a function of the biotic or abiotic context in which the interaction occurs (Chamberlain et al. 2014).
Thompson (1988) was among the first to review the evidence for variation in interspecific interactions, and
many studies since then have documented conditional outcomes in species interactions (reviewed in

Chamberlain et al. 2014).
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Particularly in the field of mutualisms, the concept of conditionality has been studied extensively (Thompson
1988; Bronstein 1994a). For example, many studies focusing on ant-plant-protection mutualisms have shown
that the benefits of this interaction largely depend on the abundance of enemies for the plants. With very few
or no enemies in the area, ants benefit from food rewards produced by the plant, but plants do not actually
benefit from protection offered by the ants, as there is nothing to be protected from (reviewed in Cushman &
Addicott 1991). Similarly, several studies have investigated the role of insects robbing nectar in pollination
mutualisms. These so-called ‘larcenists’ may enter flowers as genuine pollinators do, collecting nectar from the
plants, but not always transferring pollen from one flower to the next (reviewed in Irwin et al. 2001). In her
review on conditional outcomes in mutualistic interactions, Bronstein (1994a) predicted that conditionality was
most likely to be found in mutualisms 1) that are facultative rather than obligate, 2) in which a third species is
intimately involved, and 3) in which the benefits for both partners are a function of the abundance of these

partners.

Interestingly, as of yet, the concept of conditionality has not been extensively studied in seed-dispersal
mutualisms. This is perhaps due to the difficulty to non-invasively follow the seed-dispersal process from seed
shedding to seedling establishment (Wang & Smith 2002; Forget et al. 2005; Vander Wall et al. 2005b). In box
6.1, | provide more background information on the typical issues involved with marking seeds and tracking
seed dispersal, and | also discuss the technique that | used to overcome most of the typical seed-tracking issues
in my study. Studies that did test for conditional outcomes in seed-dispersal mutualisms gathered convincing
evidence that conditionality seems to be a widespread phenomenon in seed-dispersal mutualisms (e.g.,
Brathen et al. 2007; Schupp 2007; Schupp et al. 2010; Zwolak & Crone 2012; Perea et al. 2013). Of all types of
seed-dispersal mutualisms, that of seed-hoarding rodents and large-seeded trees has probably received most
attention with respect to the phenomenon of conditionality in recent years, most likely due to a theoretical
exploration of conditionality in this type of interaction by Theimer (2005). Theimer predicted the interaction
between scatter-hoarding rodents and large-seeded trees to be a likely case of conditional mutualism. More
specifically, he argued that the outcome of this type of interaction would depend on a) the seed : seed-hoarder
ratio, and on b) the recruitment of seedlings from seeds that are not handled by seed hoarders versus the
recruitment of seedlings from seeds that are handled by seed hoarders, of which both are likely to vary across
space and time (Theimer 2005). Not surprisingly, the theory that was postulated by Theimer (2005), combined
with Bronstein’s (1994a) review on conditional outcomes in mutualistic interactions, formed a solid theoretical

basis for my study.

Rodents as conditional mutualists of large-seeded trees

Many rodent species act as seed dispersers by moving seeds away from the parent plant and conspecifics and
storing them in underground caches, a process called food hoarding (Jensen & Nielsen 1986; Price & Jenkins
1986; Vander Wall 1990; Jansen & Forget 2001). Patterns of food hoarding typically vary between species,
ranging between scatter hoarding and larder hoarding (Stapanian & Smith 1978; Vander Wall 1990; Clarke &

Kramer 1994). Larder hoarding involves the placement of many food items in one or few caches (‘larders’),
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usually located in or near the nest, in underground burrows, or in tree cavities (Vander Wall 1990). Scatter
hoarding, in contrast, involves spreading of food over many widely spaced shallow caches with one or few food
items each (‘scatters’) (Morris 1962; Vander Wall 1990, 2001). While larder hoarding generally precludes plant
recruitment because large numbers of seeds are stored in deep burrows where germination and seedling
establishment is highly unlikely, scatter hoarding may positively affect plant recruitment because individual
seeds are buried in numerous spatially scattered, shallow soil or litter caches, and often in sites that are

suitable for germination and seedling establishment (Vander Wall 1990).

Box 6.1: The difficulty of studying animal-mediated seed dispersal

One of the main problems hampering seed-dispersal studies is the difficulty to track the fate of seeds from the
moment they are being released by the trees until they have reached their final location (Forget et al. 2005; Dennis
et al. 2007). This may also be one of the reasons as to why studies on seed-dispersal mutualisms have been lagging
behind as compared to studies on other types of mutualistic interactions (Chamberlain et al. 2014).

Although several techniques have been proposed to mark seeds, either collectively or individually, and reliably
follow their removal, dispersal, and ultimate fate, no current technique can do this without influencing the seed-
dispersal process (Forget & Wenny 2005). For instance, seeds can be marked using external tags, attached to the
seeds by a thread or wire, with dispersal and final fate being established by visually retracing the tags in the field,
however retrieval of the tags is time-consuming and therefore often limited to a confined area. Also, tags are often
cut off by the dispersal agent upon encounter, making it impossible to establish the fate of the seeds. Apart from
the difficulty in retrieving all or at least most of the tagged seeds, the actual tagging influences their detectability to
potential pilferers, thus affecting the fate of the seeds (Jansen et al. 2012). Other existing techniques, such as
isotope labelling, radioactive marking, and telemetric tagging may overcome some of the specific issues mentioned
above, however, they have their own set of disadvantages to cope with (Forget & Wenny 2005).

In this thesis, | described a novel technique for tracking the fate of individual seeds, namely PIT tagging (chapter
two). PIT tagging involves the insertion of a 2 x 12 mm Passive Integrated Transponder (PIT) tag into a seed. For
seeds that are large enough to have the tag inserted, | showed that this method allows for non-invasive marking of
individual seeds all the way up to seedling establishment (Suselbeek et al. 2013). With PIT tagging, the
characteristics of the seeds as observed by seed-dispersal agents are not altered, and also their detectability to
potential pilferers is not influenced. In addition, since PIT tags do not have an internal battery they last indefinitely,
making them very suitable for tracking long-term seed-dispersal processes, e.g., in seeds that have a long
dormancy period.

This study has shown the potential for using PIT tags to track seed dispersal and seed fate, not only in the field
(chapter three), but also and perhaps even more so in controlled experiments (chapter five). The only drawback of
tracking seed dispersal by means of PIT tagging, is the fact that tags used in this study could only be detected up to
distances of 40 cm (Suselbeek et al. 2013). The effort involved with this type of tracking increases exponentially
with the dispersal distance of the seeds, and although tag detection within the search area is very reliable if
searched meticulously, there is a risk of missing tagged seeds that are cached at depths larger than 40 cm or
immediately below a very large adult tree. Nevertheless, | believe that PIT tagging is one of the most promising
new methods for non-invasively tracking individual seeds. Considering the fact that current commercial
development of PIT tags is aimed towards decreasing size and increasing reading distances, the applicability of this
technique for tracking seed dispersal may extend further in the near future.

Those species that exclusively larder hoard seeds, can thus be confidently described as antagonists of the seed-
producing trees, while species that exclusively scatter hoard seeds are at least likely to be mutualists of the
trees that produce the seeds. In reality, however, many species follow a mixed-hoarding strategy and show
variation in the extent to which a certain strategy is followed. Based on this, Theimer (2005) argued that the

interaction between seed-hoarding rodents and large-seeded trees is likely to be a conditional mutualism, as
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the effectiveness of seed-hoarding rodents as mutualists of trees seems to be determined by the extent to
which they follow the scatter-hoarding strategy. The interaction between rodents and large-seeded trees is
also likely to be a conditional mutualism because seed-hoarding rodents play a dual role in tree regeneration;
they are both seed predator and seed disperser. Their effectiveness as seed predator thus influences the

likelihood of seeds surviving and establishing seedlings.

Thus far, the predictions postulated by Theimer (2005) have been empirically tested in a handful of studies,
most notably by Siepielski and Benkman (2008), Jorge and Howe (2009), Klinger and Rejmanek (2010), and Liu
et al. (2013). Interestingly, all studies testing Theimer’s (2005) predictions focused on true scatter-hoarding
rodents, rather than on rodents that may show variation in the patterns of hoarding itself, and investigated
how specific conditions affected the availability of seeds to a specific hoarder (Siepielski & Benkman 2008), the
decision to eat or cache seeds (Jorge & Howe 2009; Klinger & Rejmanek 2010), or the distance at which seeds
were dispersed (Liu et al. 2013). However, given the general consensus that scatter hoarding potentially
benefits plant recruitment while larder hoarding generally precludes plant recruitment (Vander Wall 1990),
variation in the actual pattern of hoarding could shift the outcome of the interaction between seed-hoarding
rodents and large-seeded trees from mutualism to antagonism or vice versa. For example, the availability of
seeds to an individual hoarder may affect its effort invested in hoarding these seeds, but also the intensity of
competition with conspecifics and/or heterospecifics may affect the pattern of hoarding. My study was an

attempt to disentangle the factors involved with the decision-making process of rodents during seed hoarding.

INTERACTIONS BETWEEN OAKS, RODENTS AND WILD BOAR

In my study, | focused on the interaction between a large-seeded tree, Pedunculate oak, two seed-hoarding
rodents, Wood mouse and Bank vole, and a third-species food competitor, Wild boar. Wood mice and bank
voles are known to show variation in seed-hoarding patterns between and perhaps even within individuals
(Flowerdew et al. 1985; Vander Wall 1990; Den Ouden et al. 2005). They may function as mutualists of oak
when scatter hoarding seeds as winter food supplies — providing seed dispersal and protection against seed
predators and environmental stress — but they function as seed predators when larder hoarding seeds in
underground burrows, when consuming seeds rather than hoarding them, or when recovering all hoarded
seeds for food. | predicted that the pattern of hoarding, the ratio of consumed seeds:hoarded seeds, and the
proportion of seeds recovered from caches may all be conditional on a) the abundance of wood mice and bank
voles, b) the abundance of seeds, and c) the abundance of wild boar. Before synthesizing the results obtained
from the various experiments described in this thesis, | first shortly reflect on the rationale for focusing on

oaks, wood mice, and wild boar.

Rationale for focusing on oak as large-seeded tree
The genus Quercus is a member of the family Fagaceae (excluding Nothofagus), which also includes Fagus
(beeches) and Castanea (the true chestnuts). The genus Quercus is one of the most important clades of woody

angiosperms in the northern hemisphere in terms of species diversity, ecological dominance, and economic
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value. Oaks are dominant members of a wide variety of habitats, including temperate deciduous forest,
temperate and subtropical evergreen forest, subtropical and tropical savannah, and tropical montane forest
(Nixon 2006). Various Quercus species are sources of high-quality timber, and it is the preferred firewood in
many areas. Because of the dominance of oak in many forests, it is the subject of a vast number of ecological
studies (Kappelle 2006), and its evolutionary and ecological significance in forest ecosystems is well
acknowledged (e.g., Watt 1919; Jones 1959; Bonner & Vozzo 1987; Sork 1993; Niven & Liddle 1994; Crawley &
Long 1995; Nixon 2006; Reif & Gartner 2007). All species of oak produce (relatively) large seeds (acorns), which
are consumed by a very broad range of species. However, some of these species actually also disperse acorns
in the process of handling, e.g., when they store acorns as food supplies for periods of food scarcity. It is these
types of animals that oaks rely heavily on for the dispersal of their seeds to new sites for establishment (Jones
1959; Crawley & Long 1995). Examples of seed predators that may also function as seed dispersers include
several species of corvids (e.g., Cyanocitta cristata —Johnson and Webb (1989), Garrulus glandarius — Bossema
(1979), Corvus frugilegus and Pica pica — Waite (1985)), and rodents from several genera (e.g., Sciurus — Steele
et al. (1996), Apodemus — Jensen and Nielsen (1986), and Peromyscus —Vander Wall (1990)). In North-western
Europe, my study area, two main species of oaks occur, namely Pedunculate oak (Quercus robur) and Sessile
oak (Quercus petraea). In terms of biology, both species are very comparable and they are even known to
hybridize in some areas. In my specific study area, however, pedunculate oak is the dominant species and

therefore | selected this species as my study species (Fig. 6.1a).

Rationale for focusing on wood mouse and bank vole as seed-hoarding rodents

In my study area, acorns are primarily dispersed by Eurasian jay (e.g., Bossema 1979; Den Ouden et al. 2005),
Eurasian red squirrel (e.g., Wauters et al. 1995), Wood mouse (e.g., Jensen & Nielsen 1986; Den Ouden et al.
2005), and Bank vole (e.g., Jensen & Nielsen 1986). All above species disperse acorns in the process of creating
food stores (hoards) for periods of scarcity. While Eurasian jay is more important for long-distance dispersal of
seeds to sites outside forest stands, small rodents are more involved with seed dispersal on the small scale,
often within forest stands (Steele & Smallwood 2002). From a methodological perspective, following seed
dispersal by birds is more difficult than following seed dispersal by ground-dwelling rodents, for one because
average seed-dispersal distances are generally much longer for bird-dispersed seeds. In addition, both Eurasian
jay and Eurasian red squirrel have been shown to exclusively scatter hoard seeds (Stapanian & Smith 1978;
Wauters et al. 1992), while wood mouse and bank vole are known to show variation in hoarding patterns
between individuals and perhaps even within individuals (e.g., Jennings 1975; Jensen & Nielsen 1986; Vander
Wall 1990; Clarke & Kramer 1994; Jenkins & Breck 1998; Steele & Smallwood 2002; Den Ouden et al. 2005; Lu
& Zhang 2005, 2008). This, combined with the fact that the natural distribution of wood mouse and bank vole
overlaps largely with that of pedunculate oak (Fig. 6.1a-c), and that they are easily captured (using life traps)

and individually marked, made them very suitable candidates for inclusion in this study.
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Rationale for focusing on wild boar as a third-species food competitor

The Wild boar is one of the most widespread ungulates of the world; its natural range extends over most of
Europe and Asia (Fig. 6.1d), and is still expanding rapidly (Massei & Genov 2004). Female wild boar generally
live in family groups of 6 to 30 individuals, while males are mostly solitary (Poteaux et al. 2009). Their natural
diet consists for 80-90% of plants but they also opportunistically feed on live and dead animal matter. Acorns
are a staple food in autumn when they have freshly shed and are abundantly available on the forest floor
(Massei & Genov 2004; Elston & Hewitt 2010), but also in mid- and late winter when very few acorns remain on
the forest floor (Groot-Bruinderink et al. 1994; Den Ouden et al. 2005; Mufioz & Bonal 2007). The latter
suggests that wild boar actively searches for and pilfers acorn caches created by other species (Borchert et al.
1989; Herrera 1995; Focardi et al. 2000; Gomez et al. 2003; Den Ouden et al. 2005). In this process, wild boar is
thought to rely on its keen sense of smell for locating the hidden food items (e.g., Briedermann 1986). Wild
boar may affect the interaction between oaks and seed-hoarding rodents in several ways; 1) wild boar may
directly compete with small rodents for freshly shed acorns, thereby reducing the abundance of acorns (e.g.,
Groot-Bruinderink & Hazebroek 1996; Mufioz et al. 2009), 2) wild boar may pilfer rodent-made caches, thereby
a) altering the spatial pattern of hoarding, and b) imposing a large risk of losing the entire food supply on
rodents (e.g., Focardi et al. 2000; Mufioz et al. 2009), 3) wild boar may actively predate on rodents, thereby
potentially altering space use and abundance of rodents (e.g., Focardi et al. 2000; Mufioz & Bonal 2007; Mufioz
et al. 2009), 4) wild boar may directly change microhabitat conditions, thereby reducing the availability of a)
suitable hoarding sites for acorns and b) suitable hiding places for rodents (e.g., Mufioz & Bonal 2007; Mufioz
et al. 2009), and 5) wild boar may promote directed dispersal of acorns to places that are not easily uprooted
(e.g., below large objects or at the base of large trees) (e.g., Mufioz et al. 2009). These aspects, combined with

the fact that small rodents are unable to defend their stores against wild boar, made wild boar a very

0

interesting species to include in my study as a third-species competitor.
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Figure 6.1: Species distribution maps for (a) pedunculate oak, (b) wood mouse, (c) bank vole, and (d) wild boar.
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Seed hoarding by rodents: the benefits for pedunculate oak

While for rodents the benefits involved with seed hoarding are easily identified as providing a source of food —
if carefully stored — can help them overcome periods of food scarcity, the benefits for oaks of having seeds
hoarded by rodents are less easily identified. To conclude anything about the added value of seed hoarding for

oaks, one needs to study the biology of the species, and particularly the biology of acorns.

Pedunculate oak exhibits alternate bearing, which means that seed production is rich in some years and poor in
others according to a certain periodic pattern (Crawley & Long 1995). It is thought that periodic synchronous
seed production is an adaptation which allows satiation of seed-feeding animals, and hence increases the
probability of seedling recruitment following years of peak seed production (Janzen 1971; Silvertown 1980;
Crawley & Long 1995). In rich years, seed production averages around 50,000 seeds per adult tree — with peaks

of up to 90,000 seeds per tree — while in poor years seed production can be close to zero (Jones 1959).

Generally, pedunculate oak acorns weigh between 2 and 15 grams, but this varies dramatically between acorns
of one tree, between trees, and between years. Acorns start to ripen in September and are shed between half
October and early December. After shedding, they readily germinate, forming a long taproot. Seedling
emergence, however, generally occurs no sooner than May-June of the year following shedding. Basically,
acorns face four major threats precluding germination and / or establishment as seedlings, namely; death by
drying, death by freezing, death by rotting, and death by predation (Jones 1959). All threats are linked to
specific aspects of the biology of acorns. With respect to death by drying, fresh acorns have to maintain a
relatively high moisture content of about 40-50%. A loss of 5% moisture can be tolerated, but further drying
will lower acorn quality. Viability will be completely lost when moisture content drops to about 25 percent
(Jones 1959; Bonner & Vozzo 1987). Due to their high moisture content, acorns are also sensitive to frost.
Temperatures below -10 °C are lethal for most acorns (Jones 1959). With respect to rotting, acorns are most
prone to infection by the fungus Ciboria batschiana, which causes “black rot” in acorns (Jones 1959; Delatour et
al. 1977; Delatour & Morelet 1979; Bonner & Vozzo 1987). Infection with this fungus can take place while the
acorn is still on the tree, or after it has shed. Black rot very easily spreads from one seed to the other if they are
close to each other, e.g., directly below the parent tree (Bonner & Vozzo 1987). Finally, predation is one of the
most obvious causes of death in acorns. Just in the United States, already over 150 species of animals have
been recognized as predators of Quercus acorns (Van Dersal 1940). Seed predation takes place while the acorns
are still attached to the tree, but also after they are shed. Most seed predators, however, occur in the direct

vicinity of seed-producing oaks.

Thus, for seed hoarding to be beneficial to oaks, it is suggested that the acorns are handled by the hoarder in
such a way that 1) the moisture content of acorns is maintained, 2) the acorns are protected from adverse
weather conditions, such as frost, 3) the acorns are transported away from the parent plant and away from
other seeds a) to minimize the risk of fungal infections, such as with black rot, and b) to minimize the risk of

being found and eaten by seed predators.
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To see which one of the above aspects was most important for successful germination of acorns, | set up an
experiment where | placed 1664 pedunculate oak acorns in the field in autumn and monitored their fate over
time. Seeds were either placed directly below adult oaks or 50 m away from the nearest adult oak, they were
either placed on the surface or buried 5-8 cm below the soil surface (i.e., at typical scatter-hoarding depth,
Jennings 1975; Mallorie & Flowerdew 1994; Den Ouden et al. 2005), and they were either placed as a clump of
16 acorns or as individual acorns that were spaced at least one meter apart from each other. In all cases,
however, metal wire cages were used to protect the seeds from vertebrate predation or dispersal. The results

from this experiment are not included in this thesis, but | will shortly describe the main results here.

Just over 40% of all acorns germinated, while 32% established a seedling. The odds of successful germination
were by far the highest for seeds that were buried (Fig. 6.2a). Of the seeds that were buried, the highest
probability of germination was observed in seeds that were placed individually, as compared to clumped seeds.
The probability of germination seemed to be little affected by movement away from the parent plant. Of the
acorns that had germinated, the highest probability for establishing a seedling was again observed for seeds
that were buried, but also for seeds that were placed away from the parent plant (Fig. 6.2b). It thus seems that
burial is thus most important in all stages of development, as it protects seeds from adverse weather
conditions, such as large temperature fluctuations (drying and freezing) and excessive rainfall (rotting), but it
also protects seeds from predation by reducing visual and olfactory cues to seed predators. Interestingly,
movement away from the parent plant seemed to be most important once the seedling had emerged
aboveground. This is likely due to seed- and seedling predators that are attracted to adult oaks and then

visually orient towards seedlings.
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Figure 6.2: (a) Proportion of seeds
germinating and (b) proportion of germinated
seeds establishing seedlings, under different
experimental conditions but always protected

from vertebrates.

Variation in seed-hoarding patterns by rodents in response to competition

In chapter three and chapter five | examined whether and how seed-hoarding patterns varied depending on

the circumstances under which hoarding took place. In chapter three, | did this in a large field experiment,

while in chapter five | set up a controlled experiment with wild-caught wood mice. Specifically, | tested for

variation in seed-removal rate, seed-dispersal distance, and seed spacing as these can be varied by rodents in

the process of hoarding and these factors are most relevant from the perspective of dispersal for acorns. For

instance, a given rodent can decide to speed up the seed-removal process to more quickly place all available

seeds out of view of its competitors, or it may store seeds at larger distances from the source in order to

reduce the likelihood of detection by competitors. For seeds, the likelihood of escaping predation is suggested

to be highest away from the parent plant (i.e., dispersal distance) and away from other seeds (i.e., seed

spacing) (Janzen 1971). The more quickly this movement takes place (i.e., seed-removal rate), the higher the

odds for seeds to escape predation.

| hypothesized seed-removal rate, seed-dispersal distance, and seed spacing to be positively related to the

intensity of competition, both with conspecifics and with heterospecifics. More specifically, | predicted seed-

removal rate, seed-dispersal distance, and seed spacing to decrease with a) the abundance of acorns and to

increase with b) the abundance of rodents, and c) the presence of wild boar. Results from the field study are

summarized in table 6.1, but a more detailed elaboration on each aspect of seed hoarding is given below.
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Table 6.1: Summary of the main and interactive effects of wild-boar presence, acorn abundance, and rodent abundance on
seed-removal rate, seed-dispersal distance, seed spacing, and seed fate. In case of significant interaction effects, the p-
value for the interaction is given and the direction and strength of the effect is specified for each combination of the

interactive variables.

Seed-removal Seed-dispersal Seed
. . Seed fate
rate distance spacing
low AA: - low AA: -
wild-boar presence (WBP) NS NS
high AA: NS high AA: NS
WB absent: --- WB absent: NS
acorn abundance (AA) +++ NS
WB present: - WB present: +
low AA — WB absent: NS
low AA: +++
low AA — WB present: +
rodent abundance (RA) NS +++
high AA — WB absent: NS
high AA: +++
high AA — WB present: NS
WBP x AA p<0.01 NS NS p<0.01
low AA: p <0.05
WBP x RA NS NS NS
high AA: NS
WB absent: NS
AA X RA p <0.05 NS NS
WB present: NS
WBP x AA x RA NS NS NS p < 0.05

-/+forp<0.05 --/++forp<0.01,---/+++forp<0.001, NS for p >0.05

Seed-removal rate — With respect to seed-removal rate, | found substantial variation in the field (chapter three)
and in the controlled experiment (chapter five). The factor best explaining variation in seed-removal rate was
the abundance of rodents (i.e., wood mice and bank voles). Generally, if rodent abundance — and thus
competition —increased in the field, seed-removal rate also strongly increased. Seed-removal rate was also
significantly higher if a conspecific audience was present in the controlled experiment. These findings are in line
with those reported in other studies (e.g., Bowers & Dooley 1993; Wang et al. 1999; Jansen et al. 2004; Jansen
& Den Ouden 2005; Vander Wall et al. 2005b; Perez-Ramos et al. 2008; Perea et al. 2011; Zhang et al. 2011;
Tong et al. 2012). Again in accordance with my predictions, seed-removal rate was negatively related to acorn
abundance. In other words, if acorn abundance was low — and thus competition was high — seed-removal rate
increased, suggesting that rodents invested more in quickly removing seeds from the source to secure
sufficient food resources for winter (Jansen et al. 2004; Jansen & Den Ouden 2005; Vander Wall et al. 2005b;
Perez-Ramos et al. 2008; Hirsch et al. 2012a). This effect of acorn abundance on seed-removal rate, however,
seemed to be overruled by the effect of rodent abundance, such that under high rodent abundance seed-
removal rate was always high. | found no support for the prediction that seed-removal rate would be higher
under wild-boar presence. Instead, in the field, | found seed-removal rate to be lower if wild boar were present
than if wild boar were absent (chapter three), while in the controlled experiment, seed-removal rates were
similar for wood mice from areas with and without wild boar (chapter five). These findings may be explained by

the fact that wild boar also predate directly on rodents (e.g., Briedermann 1986; Groot-Bruinderink &
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Hazebroek 1996; Focardi et al. 2000; Baubet et al. 2004; Gimenez-Anaya et al. 2008; Gomez & Hodar 2008;
Bueno et al. 2009; Elston & Hewitt 2010), who thus may be moving more cautiously if wild boar are present
and therefore take more time to encounter and remove seeds (Bowers & Dooley 1993; Jansen & Den Ouden
2005). Finally, although seed-removal rate was strongly affected by rodent abundance, the change in seed-
removal rate was not affected by individual characteristics of the hoarder, such as sex or weight of the
individual. It thus seems that intra-specific competition always leads to higher seed-removal rates, even though
the individual removing the seeds may be dominant over its direct conspecific competitor(s). This result is in
line with results reported in other recent studies (e.g., Zhang et al. 2011), and may be explained by the
assumption that seeds are available to anyone so long as the seeds lie on the forest floor below the parent
tree, and can be protected by means of active defence only if competitors can be excluded entirely from the
area. It is unlikely that any individual would be able to exclude all competitors from a certain area, and thus

seed-removal rate should be increased by all individuals in response to increased competition.

Seed-dispersal distance — | found that wood mice and bank voles dispersed seeds at a median distance of 20 m
away from the source, which corresponds with median distances of seed dispersal by rodents reported in
several other studies (e.g., Sork 1984; Jensen & Nielsen 1986; lida 1996). However, as with seed-removal rate,
seed-dispersal distance was quite variable depending on the context. This substantial variation in seed-
dispersal distance, however, lead to wide confidence intervals and thus few significant effects. Nevertheless,
seed-dispersal distance was shown to strongly increase with acorn abundance. Wild-boar presence and rodent
abundance did not affect seed-dispersal distance, although wild-boar presence tended to lead to an increase in
seed-dispersal distance (chapter three). This result is at least partly in line with optimal cache spacing theory,
which predicts that food hoarders must space out their caches to a degree that optimally balances the benefits
of reduced risk of cache pilferage and the costs of carrying food items to caches (Stapanian & Smith 1978,
1984; Clarkson et al. 1986; Dally et al. 2006; Galvez et al. 2009). Namely, the finding that seed hoarders
responded to increased abundance of acorns by increasing seed-dispersal distance, suggests that seed
hoarders attempted to maintain a certain density of seeds and were thus forced to transport seeds over larger
distances if the abundance of seeds was higher. Interestingly, rodent abundance had no effect at all on seed-
dispersal distance, suggesting that the decision to transport seeds further away from the source is not affected
by competition with conspecifics, perhaps because the reduction in pilferage risk does not weigh up to the
increased cost of transportation. Biologically, it makes sense that there is an optimal or even a maximum for
the median seed-dispersal distance, as rodents are restricted in their movements by a) territory size, and/or b)
physical endurance, and that they may instead decide to space seeds further apart within the same dispersal
area (e.g., Kikkawa 1964; Flowerdew et al. 1985; Korn 1986; Benhamou 1990; Telleria et al. 1991; Akbar &
Gorman 1996; Corp et al. 1997; Vukicevic-Radic et al. 2006; Buesching et al. 2008).

Seed spacing — The extent to which animals scatter hoard seeds can be quantified by measuring seed spacing.

The more seeds are spaced out, the more scattered they are. | found that the median seed spacing by rodents

in the field study was 4.2 m (chapter three). Interestingly, however, rodents almost exclusively scatter hoarded
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seeds and only very incidentally created a larder hoard. For instance, in the field study, | only encountered two
true larder hoards. One consisted of 7 acorns cached by a 17-g male wood mouse in a site without wild boar
and under low acorn abundance, while the other larder consisted of 13 acorns and was created by an unknown
bank vole (i.e., the individual had not been caught during the live-trapping session prior to presenting the
tagged acorns) in a site with wild boar and under high acorn abundance. In other words, little could be
concluded from these events with regards to the most likely conditions for larder hoarding to take place.
However, even though scatter hoarding was the dominant pattern of hoarding displayed by rodents in my
study, the extent to which this strategy was applied (as quantified by the extent of seed spacing) varied
substantially between individuals and within individuals. Most importantly, seed spacing was strongly positively
related to rodent abundance. This is again in line with my predictions and with optimal cache spacing theory,
which suggests that increased risk of pilferage imposed on hoarders by the increased abundance of
conspecifics may be countered by increasing the spacing between seeds. Wild-boar presence had no significant
effect on seed spacing, which suggests that spacing seeds further apart does not lower pilferage risk by wild
boar, or that it at least does not weigh up to the increased costs of transportation. Taking into account the
mobility of wild boar, seed spacing may need to be increased too much to substantially lower the risk of
pilferage. Finally, acorn abundance also did not affect seed spacing. This may be because acorn abundance was
already shown to result in increased seed-dispersal distance. By doing so, seed hoarders are capable of
maintaining a certain seed density, while spacing seeds out further within the same area does not lower seed
density but does involve more costs of transportation. Finally, while results from the field study (chapter three)
already showed a strong relation between seed spacing and rodent abundance, the results from the controlled
experiment (chapter five) showed more detail about the effects of individual characteristics of the hoarder in
relation to its competitors. For instance, females from areas with wild boar scattered seeds to a larger extent
than females from areas without wild boar, and seed spacing tended to be negatively related with body size in
females. These findings are interesting, because they suggest that dominance of the hoarder over its
competitors may influence its hoarding patterns, such that subordinate individuals (i.e., females and / or small
individuals) are more inclined to scatter hoard than dominant individuals (Clarke & Kramer 1994; Dally et al.

2006; Tong et al. 2012).

Linking seed-hoarding patterns to germination and seedling establishment

Not only did | find that seed-hoarding patterns varied substantially depending on acorn abundance, rodent
abundance, and wild-boar presence, but also that germination rates of differentially hoarded seeds varied
widely. Specifically, results from the field study showed that the proportion of seeds germinating within a
certain site and year varied from 0% to 35% (chapter three). Successful seed germination was most likely when
acorn abundance was high and rodent abundance was relatively high, regardless of wild-boar presence. In this
situation, seeds were removed rapidly, they were dispersed over large distances, and were spaced out widely.
However, seed germination was also relatively high if acorn- and rodent abundance were low, and wild boar
were absent. This suggests that if there are very few seed predators around, seed germination may also be

relatively high. An increase in rodent abundance or wild-boar presence, however, rapidly reduced seed
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germination. Generally, however, so long as sufficient seeds were abundantly available, seed germination
increased with rodent abundance, suggesting that rodents indeed play an important role as seed disperser for

oaks.

How do wild boar search for hoarded acorns?

The results described in chapter three and chapter five give rise to the impression that wild-boar presence had
little effect on seed-hoarding behaviour of rodents and on seed fate of acorns cached by rodents. That is, seed-
removal rate was significantly lower if wild boar were present, however, only if acorn abundance was low,
while seed-dispersal distance and seed spacing were not affected by wild-boar presence. It thus may be that
the hoarding patterns displayed by rodents in this study reduce pilferage risk by wild boar even though the
decision to apply this hoarding strategy is not affected by the presence of wild boar. However, it may also be
that wild boar simply have difficulty locating cached acorns in general, regardless of how these are hoarded. To
be able to draw conclusions on the role of wild boar as seed predator and competitor of rodents, | thus
performed another controlled experiment. This experiment, described in chapter four, was set up to
investigate how wild boar actually search for hidden acorns, and whether the rate of pilferage by wild boar
could actually be influenced by changing seed-hoarding patterns. Specifically, | tested how changes in a) the
number of seeds per cache, b) the total number of caches, and c) the depth of hoarding, affected the rate of
pilferage by wild boar. | assumed that wild boar would use their keen sense of smell during their search for
hidden acorns (reviewed in Briedermann 1986). Given that large and shallow caches emanate stronger
olfactory cues than small and deep caches (reviewed in Vander Wall 2003), | predicted that wild boar would
have much difficulty detecting scatter-hoarded seeds (i.e., small caches) and seeds that were cached at large
depth (i.e., deep caches), while | predicted them to quickly detect larder hoarded seeds (i.e., large caches),

particularly if these were cached just below the soil surface (i.e., shallow caches).

The time wild boar took to detect and pilfer the first cache was shortest for scatter hoarding, but the time they
took to pilfer all caches was slightly longer for scatter hoarding than for larder hoarding. Overall, however, the
rate of pilferage did not differ between scatter hoarding and larder hoarding, and also was not affected by
cache depth. In light of my predictions, which were based on wild boar using olfactory cues for detecting
hidden acorns, these findings were truly unexpected. However, if one would rethink the assumption that wild
boar would use olfactory cues emanating from the caches to locate them, there may be good reasons to
suggest that wild boar are either unable to pick up olfactory cues from hidden acorns, or that they do not use
such cues for cache finding. For instance, it is well-acknowledged that searching behaviour in general is costly,
but particularly searching on the basis of olfaction is demanding (e.g., Gazit & Terkel 2003). It may thus well be
that searching by means of olfaction incurs a success rate in terms of food detected that is lower than the costs

involved with this type of searching.

Alternatively, it may be that wild boar were unable to pick up the olfactory cues emanating from hidden

acorns, in contrast to their proven ability to locate hidden truffles which largely forms the basis of the
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literature’s acclaim of the wild boar’s sense of smell (Briedermann 1986). An explanation for this would be that
black truffles (Tuber melanosporum) and all other hypogeous fungi have evolved to produce their fruiting
bodies belowground and have been selected to be found and dug up by animals to have their spores dispersed
(e.g., Bellina-Agostinone et al. 1987; Bruns et al. 1989; Talou et al. 1990; Johnson 1996; Pyare & Longland
2001). In contrast, acorns are the fruiting bodies of oaks that require transportation to a location for
germination and establishment but that do not require to be found by seed predators, and so it is unlikely that
there has been a selective advantage for oaks to produce acorns that can be found and destroyed by wild boar
or other seed predators. To the contrary, selection pressure may have favoured acorns that are visually

conspicuous but that do not emanate olfactory cues.

Now, assuming that olfaction indeed is not the mechanism by which hidden acorns are being detected and
pilfered by wild boar, what other mechanism may be used? Given the fact that the first caches were quickly
encountered and pilfered under scatter hoarding, but that the time until pilferage of the first cache under
larder hoarding was much more variable, | propose that wild boar were using random or systematic search for
cache finding. Under scatter hoarding, 32% of all potential cache locations actually contained a cache, while
under larder hoarding only 2% of all potential cache locations actually contained a cache. Thus, if one would
randomly or systematically visit potential cache locations the odds would be very high that detection of the
first cache would be faster under scatter hoarding than under larder hoarding. However, it is likely that every
now and then, one of the first patches visited under larder hoarding actually contained a cache while in other
cases it may be that the last few patches visited actually contained all caches, resulting in a large variation in
the time it took until pilferage of the first cache. Still assuming that wild boar used random or systematic
search, one would predict that it simply takes a certain amount of time to visit all patches, and that there thus
may be little difference in the overall rate of pilferage between scatter and larder hoarding, even though one
would again predict the variation in pilferage rate to be higher under larder hoarding, due to chance effects of
quickly finding both caches. Finally, we found no differences in pilferage rates of shallow and deep caches, even
though olfactory cues emanating from deep caches are weaker than those emanating from shallow caches

(Vander Wall 2003).

All arguments raised above point in the direction that wild boar, at least in my experiment, relied on random or
systematic search to locate hidden acorns. From the perspective of the rodents hoarding acorns, this implies
that risk of pilferage by wild boar may be relatively low, so long as the seeds are being removed from the
surface (to avoid visual detection by wild boar), and taken away from places where acorns are generally likely
to be found (i.e., below or directly around adult oaks). In other words, to avoid wild-boar pilferage it may be
most important for rodents to move seeds away from the source and to bury them, but it may be less
important to scatter the seeds. Interestingly, this corresponds well with the responses that rodents showed in
terms of seed-dispersal distance —i.e., seeds were always dispersed away from the parent tree — and seed

spacing —i.e., seed spacing was not affected by wild-boar presence (chapter three and chapter five).
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IN CONCLUSION

This study on conditional outcomes in seed-dispersal mutualisms has been the first to focus on rodents that are
known to show within-species variation in hoarding patterns and that were likely to show within-individual
variation in hoarding patterns. It was also the first to examine both individual and combined effects of hoarder
abundance, seed abundance, and presence of a third-species food competitor — wild boar — on seed-hoarding
patterns (i.e. on seed-removal rate, seed-dispersal distance, and seed spacing), and how this in turn affected

the outcome of the mutualism between seed-hoarding rodents and large-seeded trees.

The results from the large field study, combined with findings obtained in two complementary controlled
experiments, convincingly show that there is a great deal of variation in hoarding patterns both within and
between individual rodents. This variation could at least be partly explained by the intensity of competition, as
predicted prior to the start of my study. | had expected, however, to find more extreme shifts along the
continuum from perfect larder hoarding to perfect scatter hoarding. In reality, | found rodents to primarily
scatter hoard rather than larder hoard acorns, albeit to a varying extent depending on the context. Secondly, |
had assumed that wild boar would be playing an important role in shaping the mutualism between rodents and
oaks, by using their excellent sense of smell to actively search for and pilfer the caches that had been so
carefully created by rodents. But again, in reality wild boar seemed to have much difficulty in locating hidden
acorns, and they did not seem to use olfaction to locate cached acorns. Most likely, however, free-ranging wild
boar use a combination of tactics, including visual orientation, memory, and olfaction, to find hidden food
items. On the large scale, they may be using memory (e.g., to recall that distant oak stand several kilometres
away), while on a small scale, they may be using visual orientation (e.g., to locate acorns lying on the forest
floor below adult oaks), while on a tiny scale, they might use their sensitive nose for prodding in the soil and for
sniffing out edible food items in the top soil layer. If this were indeed true, the most important aspects of
successful hoarding behaviour (in terms of avoiding pilferage) would consist of at least removing the seeds
from the soil surface — to prevent visual detection by pilferers —and moving them away from adult oaks — to
reduce the chance of olfactory or tactile detection by pilferers. However, this would not necessarily imply that

seeds would need to be scatter hoarded rather than larder hoarded.

If indeed the risk of pilferage by superior competitors (i.e., competitors against which caches cannot be
defended) is not the most important driver of scatter hoarding, then why would animals like the rodents in my
study primarily scatter hoard their food supplies? | believe that there are several alternative factors — other
than risk of pilferage by superior competitors — that may be involved with the decision of animals to either
scatter- or larder hoard seeds. Most importantly, scatter hoarding is a strategy to prevent catastrophic loss of
food supplies (i.e., instantaneously losing the entire food supply) (e.g., Smith & Reichman 1984; Vander Wall
1990; Daly et al. 1992; Dally et al. 2006). While several studies have suggested that complete pilferage by
superior competitors poses the largest threat of catastrophic loss (e.g., Macdonald 1997; Preston & Jacobs
2001; Zhang et al. 2011), there may be several other factors resulting in catastrophic loss of food supplies. For

instance, many large seeds are prone to fungal infections or other types of diseases. Caching large quantities of
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such seeds together may pose a large threat of catastrophic loss due to cross-contamination of seeds (e.g.,
Reichman et al. 1985; Edelman 2011). Similarly, natural disturbances such as windthrow or flooding may
instantly destroy a cache and its contents. Lastly, although the absolute risk of catastrophic loss due to
whichever factor may be very small, the consequences for the hoarder are disastrous and in most cases lead to
death of the hoarder by starvation. Thus, only those species that a) are able to defend their caches against
competitors, that b) cache food items that are not sensitive to cross-contamination of diseases, and that c)
store seeds in places where the risk of catastrophic loss is negligible, or species for which the consequences of

instantaneously losing the entire food supply are not detrimental, may be expected to larder hoard.

Reflecting on the theories on conditional outcomes in mutualistic interactions in general (Bronstein 1994a), and
on seed-hoarding rodents as conditional mutualists of large-seeded trees in specific (Theimer 2005), | believe
that this study clearly confirms the existence and importance of conditionality in seed-dispersal interactions. It
also confirms the predictions postulated by Theimer (2005), in that successful seed germination tended to
increase with rodent abundance (at least up to a certain abundance or rodents) but not if acorn abundance was
low. In that case, it is likely that the large majority of seeds were consumed by the rodents, either before or
after they had been cached as winter food supply. There thus seems to be an optimum in the seed : seed-
hoarder ratio, resulting in maximum seed germination. Also, the results from the unpublished seed-
germination experiment, described above (Fig. 6.3), suggest that seed handling by rodents significantly
improves the likelihood of successful germination of acorns. It is interesting to note that burial and movement
away from the parent tree already significantly increase seed germination, even though the seeds were
protected from all vertebrate pilferers. Given the wide array of vertebrate species predating on acorns, the
differences in seed germination would likely have been even larger if the caches had not been protected.
Nevertheless, the results from this experiment suggest that the likelihood of seed germination without
handling by seed-hoarding rodents would be close to zero. Any handling of acorns by seed-hoarding rodents is
thus likely to increase their likelihood of germination, at least so long as the abundance of acorns satiates the
demand for food of the rodents (Crawley & Long 1995; Theimer 2005). With respect to Theimer’s (2005)
conceptual relationship between the potential recruitment of seedlings from seeds that are not handled by
seed-hoarding rodents versus recruitment when seeds are handled by seed-hoarding rodents (Fig. 6.3), | thus
predict that shifts in the probability of cache survival in response to different conditions may show a similar
pattern as displayed in figure 6.3b, but that the curve representing potential recruitment of acorns in the

absence of seed-hoarding rodents (Fig. 6.3b, curve D) would in most cases be lower than the other curves.
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Figure 6.3: Panel (a) shows a hypothetical relationship between the proportion of the seed crop that successfully
establishes seedlings from caches created by rodents (solid circles) and the proportion that escapes handling by rodents
(open boxes) versus crop size. The potential recruitment of the same plant from seeds that were not handled by rodents
could be higher than for seeds hoarded by rodents (curve A) or lower than that of seeds hoarded by rodents (curve B).
Panel (b) shows the relationship between the probability of seedling recruitment in the absence and in the presence of
seed-hoarding rodents. If curve Cis the probability of seedling recruitment in the absence of seed-hoarding rodents, factors
that shift the probability of cache survival from the solid line (solid circles) to the dashed line (solid circles) will cause a shift
in the role of seed-hoarding rodents from antagonists to mutualists. Curve D in panel (b) represents my prediction of the
potential recruitment of pedunculate oak in absence of wood mice and bank voles, which predicts seed-hoarding rodents to

perform as mutualists under most conditions. (figure adapted from Theimer (2005)).

In conclusion, what | believe to be essential to take away from this study, is the need to move beyond the
pairwise perspective of seed-dispersal interactions, i.e., the interaction between a single seed producer and a
single seed disperser, and instead to focus on the network of species involved in the interaction. This does not
only account for seed-dispersal interactions, however, but for species interactions at large. Certainly now that
the body of literature acknowledging the widespread generality of conditional outcomes in species interactions
is growing rapidly, we should encompass the phenomenon of conditionality and focus our studies on broader
ecosystem- and community interactions. Only then will we advance our understanding of ecosystem
functioning, and can we accurately judge the importance of conserving certain species within the larger

communities.
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Of Mice and Oaks: Conditional outcomes in a seed-dispersal mutualism

Mutualisms are widespread and are considered fundamental to ecological and evolutionary processes.
Mutualisms may be grouped into four types: 1) pollination mutualisms (e.g., pollination of flowers by bees), 2)
digestive mutualisms (e.g., the interaction between ruminants and microbes in their gut), 3) protective
mutualisms (e.g., plant protection by carnivorous insects), and 4) seed-dispersal mutualisms (e.g., the
interaction between frugivorous animals and fruit-bearing plants). Traditionally, interactions among species
were thought to be either positive, negative, or neutral for each species involved in the interaction. In reality,
however, the outcome of a given interaction often varies in time and space, and can shift, for instance, from
mutualistic to antagonistic. Variation in the outcome of species interactions, commonly termed conditionality
or context dependence, has been documented in several types of species interactions. Within the field of
mutualisms, conditional outcomes are predicted to be most likely if a) the mutualism is facultative rather than
obligate, b) the densities of both interacting partners vary, or c) a third species is intimately involved in the
interaction. These and other predictions regarding conditionality have received considerable theoretical and
empirical attention in plant-pollinator-, digestive-, and plant-protection studies. However, theoretical
exploration of the phenomenon in seed-dispersal mutualisms has only just begun, and empirical evidence of
conditionality in seed-dispersal mutualisms is still scarce. Furthermore, the main factors driving conditionality
in seed-dispersal mutualisms have not been well characterised. This study was an attempt to fill this gap by
quantifying the role of seed-hoarding rodents as conditional mutualists of large-seeded trees in a multi-trophic

system, and to explore the factors that drive conditionality in seed-dispersal mutualisms.

This study focused on a large seeded tree, the Pedunculate oak (Quercus robur), two seed-hoarding rodents,
the Wood mouse (Apodemus sylvaticus) and the Bank vole (Myodes glareolus), and a third species food
competitor, the Wild boar (Sus scrofa), to test whether and how the outcome of the seed-dispersal interaction
between rodents and oaks varied as a function of the context in which the interaction occurs. Pedunculate oak
is a large-seeded deciduous tree species abundant in central and western Europe that produces periodic rich
and poor mast years. Seeds are shed between October and December, and seed crop averages about 50,000
seeds in good years. The seeds of pedunculate oak (henceforth: acorns) are used by many animals to overcome
food scarcity during winter. In return, pedunculate oak relies largely on animals for the dispersal of its seeds, of
which the wood mouse and the bank vole are good examples. Wood mouse and bank vole are both common
rodents of European woodland. The wood mouse tends to be slightly smaller than the bank vole, but generally
behaves more aggressively. Both species are largely nocturnal and are characterized by well-developed
olfactory, visual, and auditory senses. They are typical granivores, and as such they play an important role as
predator and disperser of acorns in Europe by hoarding acorns in autumn to serve as a food reserve for winter.
They may function as mutualists of oak when scatter hoarding seeds, providing seed dispersal and protection
against seed predators and environmental stress, but they function as seed predators when larder hoarding

seeds in underground burrows (where recruitment is near-absent), when eating seeds without first hoarding
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them, or when recovering all caches for food. The Wild boar is a medium-sized (50-200 kg) ungulate that is
regarded as an important competitor to seed-hoarding rodents in forests and woodlands throughout its range.
Wild boar consume large quantities of acorns in autumn when they are abundantly available on the forest
floor, but also in mid- and late winter when very few acorns remain on the forest floor, suggesting that wild
boar actively search for and pilfer acorn caches created by wood mouse and bank vole. Wild boar have well-
developed olfactory senses, which they are thought to use for locating cached acorns and other hidden food

items.

The interaction between pedunculate oak and seed-hoarding rodents was likely to show conditionality, for two
main reasons. First, wood mice and bank voles play a dual role in plant regeneration. On the one hand, they
consume large quantities of seeds, thereby reducing plant recruitment. On the other hand, they store many
seeds, thereby potentially aiding the species’ range expansion, and reducing the seed’s risk of desiccation,
consumption by strict seed predators, and distance- and density-dependent mortality below the parent plant
and close to other seeds of the same species. Secondly, the patterns of seed hoarding in the wood mouse and
the bank vole often shows variation between and sometimes even within individuals, and this in turn affects
the balance between the costs of seed predation and the benefits of seed caching for the oak. The strategies
that rodents use for hoarding seeds typically range between larder hoarding and scatter hoarding, where larder
hoarding involves the placement of many food items in one or few caches that are often actively defended by
the hoarder, while scatter hoarding involves spreading of food over many widely spaced caches with one or
few food items each that are not generally defended by the hoarder. While larder hoarding generally precludes
recruitment because large numbers of seeds are stored in deep burrows where germination and seedling
establishment is highly unlikely, scatter hoarding is more likely to positively affect plant regeneration because

individual seeds are buried in numerous spatially scattered, shallow soil or litter caches.

This study consisted of a combination of a large empirical field study and two controlled experiments. The field
study took place across twelve sites in a forested area, centrally located in The Netherlands, and involved
tracking of over a thousand acorns in time and space to record their ultimate position and fate. Passive
Integrated Transponder (PIT) tags, inserted into acorns, were used to track the removal and dispersal of the
seeds by seed-hoarding rodents. The results of the field study enabled me to evaluate whether and how seed-
hoarding patterns of rodents were affected by wild-boar presence, rodent abundance, and seed abundance,
and how this in turn affected the role of seed-hoarding rodents as mutualists of oaks. The two controlled
experiments were set up to answer specific questions that could not be well-studied in the field. The first
controlled experiment involved captive wild boar that were allowed to search for acorns that had been
experimentally hidden according to different hoarding strategies. This experiment was used to evaluate the
mechanism used by wild boar for cache finding, and whether differential seed-hoarding patterns actually
affected the risk of seeds being found and pilfered by wild boar. The second controlled experiment involved
wild-caught wood mice varying in sex, weight, and provenance (i.e., they had been captured in sites with

contrasting wild-boar presence), that were allowed to first individually hoard a fixed number of seeds within a
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fixed area, and then hoard the same number of seeds in the same fixed area but then in presence of a
conspecific audience mouse. This enabled me to test whether variation in hoarding patterns could be explained
by weight, sex, and/or provenance of the hoarder, and whether the actual presence of a competitor influenced

the patterns of hoarding.

In chapter two, the technique of using PIT tags inserted into seeds for the tracking and monitoring of seed
dispersal by rodents was introduced and tested. The performance of PIT tagging was tested through a series of
trials with Quercus acorns dispersed by rodents, both in North America and in Europe, with equipment from
different manufacturers. Minimal effects of PIT tagging on seed mass and seed germination were found. Buried
PIT tags were retrieved with high reliability by naive researchers, even at burial depths up to 30 cm.
Identification codes could be read even when multiple tags were buried at a single location, as in larder
hoarding. It was shown that, unlike other tagging methods, PIT tagging combines the advantages of leaving no
external cues, being readable without disturbance of caches, and of rodents being unable to remove the tags

from the seeds.

In chapter three, the results from the field study using PIT tags were presented. We tested whether and how
seed-hoarding patterns were affected by acorn abundance, rodent abundance, and wild-boar presence, and
how this in turn affected seed germination. It was shown that seed-removal rate was negatively related to wild-
boar presence and acorn abundance, while it increased strongly with rodent abundance. Interestingly, seed-
dispersal distance was positively related to acorn abundance but was not related to rodent abundance, while
seed spacing was positively related to rodent abundance, but was not related to acorn abundance. These
results suggested that seed-hoarding rodents changed their hoarding patterns so that a certain optimal cache
spacing was maintained. Generally, seed germination increased with rodent abundance, except if wild boar
were absent and acorn abundance was low. In that situation, it was best not to have any seed predator at all,
as they would not be easily satiated and all seeds would thus likely be consumed by the seed predators. Seed
germination was highest, however, if rodents were relatively abundant and acorn abundance was high,
regardless of wild-boar presence. Perhaps not surprisingly, seed-removal rate was relatively high, and seed-
dispersal distance and seed spacing were greatest under these conditions, suggesting that these changes in

hoarding patterns indeed affected seed germination as predicted.

In the study system of this thesis, wild boar compete strongly with seed-hoarding rodents and it is clear that
rodents are unable to defend their reserves against wild boar. Generally, animals that are unable to defend
their food reserves against competitors, are believed to scatter hoard food items to reduce the loss of cached
food to such superior competitors. In chapter four, the underlying assumption was tested that the cost of
having more caches under scatter hoarding is outweighed by the benefit of having small caches. A controlled
experiment was carried out in which a fixed number of acorns was distributed over a fixed number of patches
within a fixed area. Only cache size and cache depth was varied to mimic alternative hoarding patterns of

rodents. A fixed number of wild boar was then allowed into the area to search for the hidden food supplies. It
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was shown that the overall rate of pilferage did not differ between scatter hoarding and larder hoarding, and
that it was not affected by cache depth. These results suggested that wild boar may not be able to efficiently
pilfer caches of acorns created by rodents. The results further hint towards the suggestion that wild boar did
not actually use olfaction for cache detection, even though their keen sense of smell is generally
acknowledged. If wild boar indeed make little use of olfaction for cache detection, but rather rely on visual
cues or memory, it may imply that the movement of seeds away from places where acorn abundance is

expected to be high, is most crucial in avoiding pilferage by wild boar.

The second controlled experiment of this study was described in chapter five. In this chapter, an attempt was
made to disentangle the role of individual characteristics of the hoarder in explaining variation in seed-
hoarding patterns. Wood mice that varied in sex and weight and were wild-caught in areas with and without
wild boar were allowed into an indoor arena that had a uniform layer of natural forest soil. Wood mice were
first individually allowed into the arena to hoard a fixed number of acorns, while in a follow-up experiment
wood mice were allowed into an arena to hoard the same fixed number of acorns, but now in presence of a
conspecific audience. If wood mice were alone in the arena, all individuals predominantly scatter-hoarded
acorns. However, females cached significantly more seeds than males did, and females from areas with wild
boar scattered seeds more widely than did females from areas without wild boar. The introduction of a
conspecific audience mouse did not significantly affect hoarding patterns in the wood mouse. However, small
females tended to scatter seeds more widely in response to a conspecific audience, while large females tended
to clump seeds more in response to a conspecific audience. Altogether, however, the responses to the
conspecific audience were weak and the variation between individuals was large. One possible explanation for
this would be that we attempted to match the individual characteristics of the hoarder with those of the
audience mouse. As a consequence, the difference in dominance rank between the hoarder and the audience

may have been too small to effectuate an extreme response by the hoarder.

This study on conditional outcomes in seed-dispersal mutualisms has been the first to focus on rodents that are
known to show within-species variation in hoarding patterns and that were likely to show within-individual
variation in hoarding patterns. It was also the first to examine both individual and combined effects of hoarder
abundance, seed abundance, and presence of a third-species food competitor — wild boar — on seed-hoarding
patterns (i.e. on seed-removal rate, seed-dispersal distance, and seed spacing), and how this in turn affected
the outcome of the mutualism between seed-hoarding rodents and large-seeded trees. Generally, the results
from chapters three, four, and five convincingly show that there is a great deal of variation in hoarding
patterns both within and between individual rodents. This variation could at least be partly explained by the
intensity of competition, although more by competition with conspecifics than with heterospecifics. Actually,
the role of wild boar in shaping the mutualism between rodents and oaks turned out to be smaller than
expected on beforehand. This expectation, however, was primarily based on the assumption that wild boar
would be using their excellent sense of smell to search for and pilfer rodent-cached acorns. It may well be,

however, that acorns have been selected to provide as little cues to seed predators as possible, while still being
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found and dispersed by seed dispersal agents. Most likely, free-ranging wild boar use a combination of tactics,
including visual orientation, memory, and olfaction, to find hidden food items. This may lead them to acorn
hotspots, i.e., places where acorn abundance is generally high (e.g., below adult oaks). If this were true, seed-
hoarding patterns that involve the movement of seeds away from such hotspots may be sufficient in largely
avoiding pilferage by wild boar. In that sense, scatter hoarding and larder hoarding may both reduce pilferage
risk by wild boar, so long as the caches are being created away from acorn hotspots. The absence of a strong
response to wild-boar presence may thus be (partly) explained by the suggestion that all types of seed hoarding
already sufficiently reduce the risk of pilferage by wild boar. Several other factors are thus believed to be
involved with the decision of animals to either scatter- or larder hoard seeds. Most importantly, scatter
hoarding is a strategy to prevent catastrophic loss of food supplies (i.e., instantaneously losing the entire food
supply), and there may be several other factors playing a role here. For instance, caching large quantities of
such seeds together may pose a large threat of catastrophic loss due to cross-contamination of seeds. Similarly,
natural disturbances such as windthrow or flooding may instantly destroy a cache and its contents. Lastly,
although the absolute risk of catastrophic loss may be very small, the direct consequences of catastrophic loss

for the hoarder may be fatal.

To conclude, this study has shown that seed-hoarding rodents play an important role as seed dispersers of
large-seeded trees, and that any handling of acorns by wood mice and bank voles in this study is thus likely to
increase their likelihood of seed germination in oaks, at least so long as the abundance of acorns satiates the
demand for food of the rodents. The study, however, has also shown that the patterns of hoarding are flexible
and depend on the broader community of species and their abundances. These findings highlight the necessity
to move beyond the pairwise perspective of seed-dispersal interactions, i.e., the interaction between a single
seed producer and a single seed disperser, and instead to focus on the network of species involved in the
interaction. Certainly now that the body of literature acknowledging the widespread generality of conditional
outcomes in species interactions is growing rapidly, the phenomenon of conditionality should be embraced and
future studies should thus focus on broader ecosystem- and community interactions. Only then will we
advance our understanding of ecosystem functioning, and can we accurately judge the importance of

conserving species within the larger communities.
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Over Muizen en Eiken: conditionele uitkomsten in een zaadverspreidingsmutualisme

Mutualismen zijn wijdverspreid en worden als fundamenteel beschouwd voor ecologische en evolutionaire
processen. Mutualismen kunnen worden ingedeeld in vier hoofdgroepen: 1) bestuivingsmutualismen (v.b.
bestuiving van bloemen door bijen), 2) verteringsmutualismen (v.b. de interactie tussen herkauwers en
microben in hun verteringsstelsel), 3) beschermingsmutualismen (v.b. de bescherming van planten door
vleesetende insecten), en 4) zaadverspreidingsmutualismen (v.b. de interactie tussen fruiteters en
fruitdragende planten). Traditioneel werden interacties tussen soorten geclassificeerd als zijnde positief,
negatief of neutraal voor ieder van de betrokken soorten. In werkelijkheid varieert de uitkomst van een
willekeurige interactie echter dikwijls in zowel ruimte als tijd, en kan de uitkomst omslaan van, bijvoorbeeld,
mutualistisch naar antagonistisch. Variatie in de uitkomst van interacties tussen soorten, veelal conditionaliteit
of context-afhankelijkheid genoemd, is gedocumenteerd in verscheidene typen interacties. Binnen het veld van
de mutualismen is voorspeld dat conditionele uitkomsten het meest voor de hand liggend zijn als a) het
mutualisme facultatief, in plaats van obligaat, is, als b) de dichtheden van beide interacterende partners
variéren, of als c) een derde soort direct betrokken is bij de interactie. Deze, en andere voorspellingen met
betrekking tot conditionaliteit, hebben ruimschoots theoretische en empirische aandacht gekregen in plant-
bestuivers-, verterings- en plant-beschermers studies. Echter, de theoretische verdieping van het fenomeen
conditionaliteit in zaadverspreidingsmutualismen is pas kort geleden begonnen, en empirisch bewijs van het
voortkomen van conditionaliteit in zaadverspreidingsmutualismen is nog schaars. Daarnaast is het zo dat de
bepalende factoren voor conditionaliteit in zaadverspreidingsmutualismen nog niet goed gekarakteriseerd zijn.
Dit onderzoek was een poging dit gat te dichten, door de rol van zaad-hamsterende knaagdieren als
conditioneel mutualisten van zaaddragende boomsoorten in een multitroof systeem te kwantificeren, en door

de bepalende factoren voor conditionaliteit in zaadverspreidingsmutualismen in kaart te brengen.

Deze studie richtte zich op een boomsoort die grote zaden produceert, de zomereik (Quercus robur), twee
zaad-hamsterende knaagdieren, de bosmuis (Apodemus sylvaticus) en de rosse woelmuis (Myodes glareolus),
en een derde soort die met de knaagdieren concurreert om de zaden, het wild zwijn (Sus scrofa). Het doel was
om te testen 6f en hoe de uitkomst van de zaaverspreidingsinteractie tussen knaagdieren en eiken varieert als
functie van de context waarbinnen de interactie plaats heeft. De zomereik is een veel voorkomende
loofboomsoort in Centraal- en West-Europa, die in afwisselende jaren veel en weinig zaden produceert. De
zaden van de eik vallen voornamelijk in de periode oktober-december van de boom en in een goede jaren
worden ongeveer 50.000 zaden geproduceerd. De zaden van de zomereik (hierna: eikels) worden door veel
dieren gegeten en gebruikt om de winterperiode van voedselschaarste te overkomen. Aan de andere kant is de
zomereik sterk afhankelijk van dieren voor de verspreiding van zijn zaden, bijvoorbeeld door bosmuizen en
rosse woelmuizen. Bosmuizen en rosse woelmuizen zijn beiden veel voorkomende knaagdieren in Europese
bosgebieden. De bosmuis is iets smaller dan rosse woelmuis maar gedraagt zich over het algemeen meer

agressief. Beide soorten zijn voornamelijk nachtactief en hebben een sterk ontwikkeld zicht, gehoor en reukzin.
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Ze zijn typische zaadeters en daardoor spelen ze een belangrijke rol als predator en als verspreider van eikels in
Europa, die ze hamsteren en verstoppen in de herfst, om zo de winter te overleven. Ze zouden kunnen
fungeren als mutualisten van de eik als ze de eikels in een verspreid patroon verstoppen, waardoor ze zorgen
voor zaadverspreiding en voor bescherming van de zaden tegen zaadpredatoren en omgevingsfactoren, maar
ze zouden fungeren als zaadpredatoren als ze de eikels in grote hoeveelheden bij elkaar zouden verstoppen in
hun diepe holen (waar ontkieming en ontwikkeling van de zaden bijna onmogelijk is), of wanneer ze de zaden
meteen opeten zonder ze te verstoppen voor later, of wanneer ze alle verstopte zaden terugvinden en alsnog
opeten. Het wild zwijn is een hoefdier van gemiddelde grootte (50-200 kg) die wordt gezien als een belangrijke
voedselconcurrent van zaadhamsterende knaagdieren in bossen en struwelen in zijn gehele leefgebied. Wilde
zwijnen eten grote hoeveelheden eikels in de herfst, wanneer de zaden in grote getalen op de grond onder de
bomen liggen, maar ook midden en laat in de winter wanneer bijna alle zaden al van de grond zijn verdwenen.
Dit suggereert dat wilde zwijnen actief op zoek gaan naar de voorraden van bosmuizen en rosse woelmuizen en
deze plunderen. Wilde zwijnen hebben een sterk ontwikkeld reukvermogen en dit gebruiken ze waarschijnlijk

voor het lokaliseren van de verstopte eikels en ander eten.

Er waren twee redenen waarom het aannemelijk was dat de interactie tussen de zomereik en hamsterende
knaagdieren conditioneel zou zijn. Ten eerste spelen bosmuizen en rosse woelmuizen een dubbele rol in het
regeneratieproces van planten. Aan de ene kant eten ze grote hoeveelheden zaden waardoor ze het
regeneratieproces van planten negatief beinvloeden. Aan de andere kant slaan ze grote hoeveelheden zaden
op, waarbij ze de verspreiding van de plantensoort in ieder geval in potentie helpen, en waarbij ze het risico op
uitdroging van de zaden verkleinen, het risico op consumptie door pure zaadpredatoren verkleinen, en
afstands- en dichtheidsafhankelijke sterfte onder de ouderboom en dicht bij soortgenoten verkleinen. Ten
tweede varieert de ruimtelijke wijze waarop bosmuizen en rosse woelmuizen hun voorraad aanleggen vaak van
individu tot individu en soms zelfs binnen het individu. De verschillende vormen van ruimtelijke spreiding in het
aanleggen van de voorraden hebben invloed op de balans tussen kosten van zaadpredatie en de baten van
zaadverspreiding. De strategieén die knaagdieren gebruiken voor het verstoppen van zaden varieert van
zogenaamd “larder hoarding” tot “scatter hoarding”, waar larder hoarding inhoudt dat alle zaden in één of
enkele voorraadkamers verstopt worden en dat deze voorraadkamers vervolgens actief verdedigd worden door
de eigenaar, terwijl scatter hoarding inhoudt dat alle zaden individueel of in kleine groepjes worden verstopt
en dat deze individuele zaden zo ver mogelijk uit elkaar verstopt worden en vervolgens ook niet actief
verdedigd worden door de eigenaar. Hoewel de kansen op succesvolle kieming van de zaden bij larder hoarding
over het algemeen bijna nihil zijn omdat de zaden in grote hoeveelheden diep onder de grond verstopt liggen,
zijn de kansen hierop bij scatter hoarding veel groter, omdat de zaden voornamelijk individueel verstopt liggen

in holletjes die vlak onder de oppervlakte liggen en vaak ver uit elkaar gespreid zijn.

Deze studie bestond uit een combinatie van een grootschalige veldstudie en twee gecontroleerde

experimenten. De veldstudie vond plaats in twaalf daarvoor geselecteerde plekken in bosgebieden in het

midden van Nederland. In het kader van deze veldstudie werden meer dan duizend eikels in ruimte en tijd
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gevolgd om zo hun uiteindelijke locatie en lot vast te stellen. Er werd gebruik gemaakt van Passive Integrated
Transponder (PIT) tags, welke in eikels werden geplaatst, om het wegnemen en verstoppen van de eikels door
hamsterende knaagdieren in kaart te brengen. De resultaten van de veldstudie gaven mij de kans om te
evalueren 6f en hoe de zaadverspreidingspatronen van knaagdieren beinvloed werden door de aanwezigheid
van wilde zwijnen, de abundantie van knaagdieren en zaden, en hoe dit op zijn beurt weer invloed zou hebben
op de rol van knaagdieren als mutualisten van de eik. De twee gecontroleerde experimenten werden opgezet
op antwoord te kunnen geven op enkele specifieke vragen welke niet goed konden worden bestudeerd in het
veld. Bij het eerste gecontroleerde experiment waren wilde zwijnen betrokken die in een speciale arena op
zoek gingen naar door ons in verschillende patronen verstopte eikels. Dit experiment was bedoeld om inzicht
te krijgen in het mechanisme dat door wilde zwijnen gebruikt wordt om verstopte eikels te lokaliseren, en om
te evalueren of verschillende zaadverspreidingspatronen leidden tot verschillen in het risico om gedetecteerd
en geplunderd te worden door de zwijnen. Bij het tweede experiment waren bosmuizen betrokken die in het
wild gevangen waren uit verschillende gebieden (mét en zonder wilde zwijnen) en die varieerden in gewicht en
geslacht. De bosmuizen werd de kans geboden om eerst alleen en later met publiek een bepaald aantal eikels
te verstoppen in een bepaald gebied. Dit bood mij de kans om te testen of variatie in
zaadverspreidingspatronen verklaard konden worden door verschillen in geslacht, gewicht, en/of afkomst van
de zaadverspreider, en of de aanwezigheid van een concurrent van dezelfde soort invioed had op de

zaadverspreidingspatronen.

In hoofdstuk twee werd het gebruik van PIT tags als techniek voor het volgen en monitoren van
zaadverspreiding door knaagdieren geintroduceerd en getest. De prestaties van PIT tagging werden getest
middels een serie tests met Quercus eikels verspreid door knaagdieren in Noord Amerika en in Europa, met
apparatuur van verschillende fabrikanten. Minimale effecten van PIT tagging op zaadverspreiding,
verstopgedrag, plundering, en kieming werden gevonden. Begraven PIT tags konden met hoge nauwkeurigheid
worden teruggevonden door naieve onderzoekers, zelfs tot op 30 cm diepte. De unieke identificatiecodes
konden zelfs worden teruggelezen als er meerdere tags bij elkaar verstopt lagen, zoals in larder hoarding het
geval is. Het experiment liet zien dat PIT tagging, in tegenstelling tot andere markeringstechnieken, de
voordelen van het niet zichtbaar zijn, het op afstand afleesbaar zijn, en het niet verwijderbaar zijn door

knaagdieren combineert.

In hoofdstuk drie werden de resultaten van de veldstudie, waarin PIT tags gebruikt werden. gepresenteerd. We
testen 6f en hoe zaadverspreidingspatronen beinvloed werden door eikelabundantie, knaagdierabundantie, en
aanwezigheid van wilde zwijnen, en hoe dit op zijn beurt invloed had op kieming van de zaden. De studie liet
zien dat de snelheid van het wegnemen van de zaden negatief gerelateerd was aan de aanwezigheid van wilde
zwijnen en aan eikelabundantie, terwijl de snelheid sterk toenam met knaagdierabundantie. Interessant
genoeg was de zaadverspreidingsafstand positief gerelateerd aan eikelabundantie, maar was zij niet
gerelateerd aan knaagdierabundantie, terwijl de spreiding van individuele zaden positief gerelateerd was aan

knaagdierabundantie maar juist niet gerelateerd was aan eikelabundantie. Deze resultaten suggereren dat
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zaadhamsterende knaagdieren hun zaadverspreidingspatronen aanpassen zodat een bepaalde optimale
spreiding tussen de zaden behouden bleef. Over het algemeen nam de kans op kieming voor de zaden toe met
knaagdierabundantie, behalve wanneer wilde zwijnen afwezig waren en de eikelabundantie laag was. In die
specifieke situatie was het het beste om geen enkele zaadpredator in het systeem te hebben, daar zijn niet snel
verzadigd zouden zijn en dus waarschijnlijk alle aanwezige zaden zouden consumeren. De kans op kieming van
de zaden was het hoogst als knaagdieren in relatief grote aantallen aanwezig waren en als de eikelabundantie
hoog was. De aan- of afwezigheid van wilde zwijnen had onder die omstandigheden geen invloed op de
kiemingskans. Wellicht niet verrassend was onder deze omstandigheden de snelheid van het wegnemen van de
zaden relatief hoog, en waren de zaadverspreidingsafstand en de spreiding tussen individuele zaden het
grootst, wat suggereert dat deze aanpassingen in de zaadverspreidingspatronen inderdaad invloed hebben op

de kiemingskans van de zaden.

In dit studie system is er een sterke concurrentie tussen wilde zwijnen en zaadhamsterende knaagdieren en het
is duidelijk dat de knaagdieren niet bij machte zijn om hun voorraden te verdedigen tegen wilde zwijnen. Over
het algemeen wordt verondersteld dat dieren die niet bij machte zijn om hun voedselvoorraden tegen
concurrenten te verdedigen hun voorraden volgens de strategie van scatter hoarding verstoppen, om zo de
kans op plundering door sterkere voedselconcurrenten te minimaliseren. In hoofdstuk vier werd de
onderliggende aanname getest dat de kosten van het aanleggen en onderhouden van een groot aantal
verstopplaatsen onder scatter hoarding teniet gedaan worden door de voordelen van kleine verstopplaatsen.
Een gecontroleerd experiment werd uitgevoerd waarbij een bepaalde hoeveelheid eikels verstopt werd over
een bepaald aantal potentiéle verstopplaatsen binnen een vast gebied. Alleen het aantal eikels per
verstopplaats en de diepte waarop de eikels verstopt werden, werd gevarieerd om zo verschillende
zaadverspreidingsstrategieén van knaagdieren na te bootsen. Vervolgens kreeg een vast aantal wilde zwijnen
de kans om binnen het gebied te zoeken naar de verstopte eikels. Uit het experiment werd duidelijk dat de
totale snelheid van plunderen niet beinvloed werd door de strategie van verstoppen, en dat het ook niet
beinvloed werd door de diepte van de verstopplaatsen. Deze resultaten suggereren dat wilde zwijnen
misschien niet in staat zijn om de door kaagdieren verstopte eikels efficiént te plunderen. De resultaten
wekken verder de suggestie dat wilde zwijnen hun reukvermogen niet gebruikten bij het lokaliseren van de
verstopte eikels, ook al wordt algemeen beweerd dat hun reukvermogen zo sterk ontwikkeld is. Als wilde
zwijnen inderdaad weinig gebruik maken van hun reukvermogen voor het lokaliseren van verstopte eikels,
maar bijvoorbeeld van visuele hints of van hun geheugen, dan zou dat kunnen betekenen dat het simpele
wegdragen van de eikels van plekken waar ze normaliter verwacht worden (bijvoorbeeld onder de ouderboom)

het meest cruciaal is ter voorkoming van plundering door wilde zwijnen.

Het tweede gecontroleerde experiment van deze studie werd beschreven in hoofdstuk vijf. In dit hoofdstuk
werd een poging gedaan om te ontrafelen wat de rol is van bepaalde individuele eigenschappen van de
hamsteraar in het verklaren van variatie in zaadverspreidingspatronen. Bosmuizen die varieerden in gewicht en

geslacht, en die gevangen waren in dezelfde gebieden als waar de veldstudie had plaats gevonden, kregen de
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kans om een bepaald aantal eikels te verstoppen in een speciale overdekte arena waarin een laag bosgrond
was aangelegd. Eerst deden de bosmuizen dit alleen, maar in een opvolgend experiment werd een extra muis
als publiek toegevoegd aan de arena. Als de muizen alleen in de arena waren deden ze vooral aan scatter
hoarding. Echter, vrouwelijke individuen verstopte significant meer zaden dan mannetjes en vrouwtjes van
gebieden met wilde zwijnen spreiden de eikels ook verder uit dan vrouwtjes uit gebieden zonder zwijnen. De
introductie van de publieksmuis had geen significant effect op de zaagverspreidingspatronen van de bosmuis.
Echter, kleine vrouwtjes hadden de neiging om eikels meer uitgespreid te verstoppen in reactie op de
publieksmuis, terwijl grote vrouwtjes de neiging hadden om eikels juist meer bij elkaar te verstoppen in reactie
op de publieksmuis. Alles bij elkaar bezien, was de response op de publieksmuis echter zwak en was de variatie
tussen de individuen groot. Een mogelijke verklaring hiervoor zou zijn dat wij als onderzoekers gepoogd
hebben om de testmuis zoveel mogelijk te matchen aan de publieksmuis (qua gewicht en geslacht), waardoor
de verschillen tussen beide individuen klein waren en dus was het misschien voor de individuen niet meteen

duidelijk wie hoger of lager in rang zou staan.

Dit is de eerste studie van conditioneel mutualisme in zaadverspreidingsmutualismen geweest die zich richtte
op knaagdieren waarvan bekend was dat ze variatie in zaadverspreidingspatronen tussen de individuen
vertonen, en waarvan voorspeld werd dat ze ook variatie in zaadverspreidingspatronen binnen het individu
vertonen. Dit was ook de eerste studie die zowel de individuele als de gecombineerde effecten van
knaagdierabundantie, abundantie van zaden, en aanwezigheid van een derde soort als voedselconcurrent — het
wild zwijn — op zaadverspreidingspatronen (dat is, de snelheid van het wegdragen van zaden, de
zaadverspreidingsafstand, en de spreiding tussen individuele zaden) onderzocht. Tegelijkertijd werd gekeken
hoe deze effecten invloed konden hebben op de kiemingskans van de zaden en daarmee op de uitkomst van de
interactie tussen de zaadhamsterende knaagdieren en de zaadproducerende bomen. Over het algemeen laten
de resultaten van de hoofdstukken drie, vier, en vijf overtuigend zien dat er veel variatie in
zaadverspreidingspatronen is tussen en binnen de individuele knaagdieren. Deze variatie kon ten minste voor
een deel verklaard worden door de intensiteit van voedselconcurrentie, hoewel concurrentie tussen
soortgenoten belangrijk was dan concurrentie met de derde soort. Sterker nog, de rol van wilde zwijnen als
sturende factor van het mutualisme tussen knaagdieren en eiken bleek kleiner dan verwacht. Deze verwachting
was echter voornamelijk gestaafd op de aanname dat wilde zwijnen hun sterk ontwikkelde reukvermogen
zouden gebruiken om de door knaagdieren verstopte eikels te lokaliseren en plunderen. Het is echter goed
mogelijk dat door natuurlijke selectie de eikels zo geselecteerd zijn dat ze zo min mogelijk signalen afgeven aan
potentiéle predatoren, terwijl ze toch nog wel gevonden en verspreid worden door echte zaadverspreiders. Het
ligt daarom voor de hand dat wilde zwijnen, in de natuur een combinatie van tactieken gebruiken, inclusief
visuele oriéntatie, geheugen, én reukzin, om verstopte zaden te lokaliseren. Dit zou hen kunnen leiden naar
eikel hotspot, d.w.z. plekken waar de aanwezigheid van eikels over het algemeen verwacht kan worden
(bijvoorbeeld onder ouderbomen). Als dit inderdaad het geval is, dan zou het misschien al voldoende zijn als de
zaden weggedragen zouden worden van deze plekken tijdens het zaadverspreidingsproces, om zo de kans op

plundering door wilde zwijnen te voorkomen. In dat geval zou zowel larder hoarding als scatter hoarding
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kunnen leiden tot een afname in het risico op plundering door wilde zwijnen, zo lang de verstopplaatsen maar
weg van de hotspots gecreéerd worden. De afwezigheid van een sterke reactie op de aanwezigheid van wilde
zwijnen zou dus (deels) verklaard kunnen worden door de suggestie dat alle verspreiding van zaden al bijdraagt
aan het verkleinen van het plunderingsrisico. Verscheidene andere factoren hebben naar verwachting invioed
op de beslissing van dieren om zaden te scatter hoarden of te larder hoarden. Het is vooral belangrijk dat
scatter hoarding een strategie is om het risico op het catastrofale verlies van voorraden (d.w.z. het ineens
verliezen van de complete voorraad) te voorkomen. Er zijn verscheidene andere factoren te noemen die hier
een rol bij zouden kunnen spelen. Zo zou het kunnen dat het gegroepeerd verstoppen van grote aantallen
zaden de kans kruisbesmetting met schimmels vergroot waardoor de kans op catastrofaal verlies groter wordt.
Ook natuurlijke verstoringen, zoals een storm of overstroming zouden in en klap de gehele voorraad kunnen
vernietigen. Tot slot is het zo dat hoewel het risico op catastrofaal verlies van voorraden klein kan zijn, de

gevolgen vaak groot of zelfs fataal zijn voor de getroffen hamsteraar.

Ter conclusie, deze studie heeft aangetoond dat zaadhamsterende knaagdieren een belangrijke rol spelen als
zaadverspreider voor bomen met grote zaden, en dat het hanteren van eikels door bosmuizen en rosse
woelmuizen dus waarschijnlijk bijdraagt aan de kans op kieming in eiken, in ieder geval zo lang het aanbod van
de eikels voldoende is om de hamsteraars te verzadigen. De studie heeft echter ook laten zien dat de patronen
van zaadverspreiding flexibel zijn en afhankelijk zijn van de samenstelling van de leefgemeenschap en hun
abundantie. Deze bevindingen onderstrepen de noodzaak om verder te kijken dan de één-op-één studies van
zaadverspreidingsinteracties, d.w.z., de interactie tussen een zaadproducerende plant en een
zaadverspreidend dier, en om zich in plaats daarvan te richten op het netwerk van soorten dat direct of indirect
betrokken is bij de interactie. Zeker nu het aantal studies dat de algemeenheid van conditionele uitkomsten
van interacties tussen soorten onderkent sterk toeneemt, zou het fenomeen conditionaliteit omarmd moeten
worden en dus zouden de toekomstige studies zich moeten richten op bredere ecosysteeminteracties. Alleen
dan zullen we ons begrip van het functioneren van ecosystemen verder kunnen uitbreiden en kunnen we goed
beoordelen wat het belang is van het behouden van bepaalde soorten voor het functioneren van de bredere

gemeenschap.
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veterinarian, he discovered the beauty and richness of natural wildlife in New Zealand and decided to be better
off studying and working with healthy plants and animals. Consequently, he enrolled in the MSc study Forest &
Nature Conservation at Wageningen University in September 2007.

Lennart did two MSc theses as part of his study, both in the tropical forests of Barro Colorado Island, Panama.
His first thesis was with the Forest Ecology and Forest Management group of Wageningen University, and
focused on activity patterns of the Central American agouti in relation to food availability and predation risk.
His second thesis was with the Community and Conservation Ecology group of the University of Groningen, and
focused on a new method to estimate the density of wild animal populations from camera trapping data. Both
theses were supervised by his future PhD supervisor Patrick Jansen. In August 2009 he received his MSc degree.
In October 2009, he started the PhD research that led to this thesis at the Resource Ecology Group and at the
Forest Ecology & Forest Management group of Wageningen University. During his PhD research, Lennart
participated in several PhD Discussion Groups and was an active member and chair of the PE&RC PhD Council
(PPC). He attended several national and international workshops, PhD courses, and conferences. As of January
2013, Lennart started working two days a week for the graduate school for Production Ecology and Resource
Conservation (PE&RC), as PhD programme coordinator. Now, five years later, his PhD has come to an end and
Lennart has managed to have his position at PE&RC expanded to four days a week. He also runs his own

company “Wildlife Monitoring Solutions”.

Publications

1. L.Suselbeek, V.M.A.P. Adamczyk, F. Bongers, B.A. Nolet, H.H.T. Prins, S.E. van Wieren, and P.A. Jansen.
2014. Scatter hoarding and cache pilferage by superior competitors: an experiment with wild boar (Sus
scrofa). Animal Behaviour (in press).

2. L. Suselbeek, W.-J. Emsens, B.T. Hirsch, R. Kays, J.M. Rowcliffe, V. Zamora-Gutierrez, and P.A. Jansen. 2014.
Food acquisition and predator avoidance in a Neotropical rodent. Animal Behaviour 88: 41-48.

3. L. Suselbeek, P.A. Jansen, H.H.T. Prins, and M.A. Steele. 2013. Tracking rodent-dispersed large seeds with
Passive Integrated Transponder (PIT) tags. Methods in Ecology and Evolution 4(6): 513-519.

4. W.-). Emsens, L. Suselbeek, B.T. Hirsch, R. Kays, A.J.S. Winkelhagen, and P.A. Jansen. 2013. Effects of food

availability on space and refuge use by a Neotropical scatter-hoarding rodent. Biotropica 45(1): 88-93.
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Training and education statement

The C.T. De Wit JPRODUCTION

PE&RC Training and Education Statement st

With the training and education activities listed below the PhD
candidate has complied with the requirements set by the C.T. de Wit
Graduate School for Production Ecology and Resource Conservation
(PE&RC) which comprises of a minimum total of 32 ECTS (= 22 weeks of

Lo & RESOURCE
activities). CONSERVATION

Review of literature (6 ECTS)
- Conditionality in seed-dispersal interactions

Writing of project proposal (1.5 ECTS)
- Context-dependence in the outcome of a seed-dispersal mutualism: interactions between Wood
mouse, Wild boar and Pedunculate oak

Post-graduate courses (6.8 ECTS)
- Consumer resource interactions; PE&RC, RSEE, SENSE (2010)
- Spatial ecology; PE&RC, RSEE, SENSE (2011)
- Survival analysis; PE&RC (2011)
- Linear models; PE&RC (2011)
- Generalized linear models; PE&RC (2011)
- Mixed linear models; PE&RC (2011)
- Introduction to R for statistical analysis; PE&RC (2011)

Invited review of (unpublished) journal manuscript (2 ECTS)
- Acta Theriologica: scatter-hoarding seeds by rodents (2010)
- Basic and applied Ecology: acorn dispersal by rodents (2011)
- Journal of Natural History: seed dispersal and oak regeneration (2013)

Competence strengthening / skills courses (2.3 ECTS)

- PhD competence assessment; WGS (2010)

- Project and time management; WGS (2013)

- Data management; WGS (2013)

- Mini-symposium: how to write a world-class paper; Wageningen UR Library, Elsevier (2013)
- Last stretch of the PhD programme; WGS (2013)

PE&RC Annual meetings, seminars and the PE&RC weekend (3 ECTS)
- PE&RC Weekend first year (2009)
- PE&RC Day (2009-2013)
- PE&RC Weekend last year (2012)

Discussion groups / local seminars / other scientific meetings (7.5 ECTS)
- 16th Benelux Congress of Zoology; Wageningen, The Netherlands (2009)
- Ecology Theory and Application (2009-2013)
- International Symposium for Seed Dispersal and Frugivory; Montpellier, France (2010)
- WEES Seminars (2010-2013)
- Netherlands Annual Ecology Meeting; Lunteren, The Netherlands (2010-2014)
- Het varken als landschapsontwikkelaar; Garderen, The Netherlands (2011)
- Biodiversity merger symposium; Wageningen, The Netherlands (2012)
- R Discussion Group (2012-2013)
- Current Themes in Ecology; Amsterdam, The Netherlands (2013)
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International symposia, workshops and conferences (5 ECTS)

ATBC; oral presentation; Marburg, Germany (2009)
Wild Boar symposium; oral presentation; Hannover, Germany (2012)

Lecturing / supervision of practical‘s / tutorials (3 ECTS)

Ecology (2010)
Strategic planning in forest and nature conservation (2011, 2012)
Animal ecology (2011, 2012)

Supervision of MSc students
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Daan Jacobs: effects of wild-boar presence on seed removal by wood mice (2011)

Simone van Santen de Hoog: how resource competition affects seed dispersal in rodents (2011)
Vena Adamczyk: effects of hoard distribution and depth on cache pilferage by wild boar (2011)
Marco Snijder: microhabitat conditions of rodent-dispersed acorns: indications for directional
hoarding? (2012)

Malou van Meer: the mutualism between rodents and oak: effects of wild boar and masting on seed
dispersal (2012)

José van der Bijl: responses of seed-caching rodents to intra- and interspecific competition (2013)
Anneke Valk: caching decisions of wood mouse: effects of pilferage risk by conspecifics and wild boar
(2012)

Madieke Gehem: the advantages of scatter hoarding for seeds: an experiment with oak in the
Netherlands (2014)
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Cover drawing by Anneke Valk.

The research described in this thesis was financially supported by The Netherlands Organisation for Scientific
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