W. G. de Ruig
Government Dairy Station, Leiden

Infrared spectra of monoacid triglycerides

with some applications to fat analysis

1971 Centre for Agricultural Publishing and Documentation Wageningen

Abstract

Rug, W. G. de (1971) Infrared spectra of monoacid triglycerides; with some applications to fat analysis. Agric. Res. Repts (Versl. landbouwk. Onderz.) 759, pp. (VIII) + 143, tables 32, figs 49. Eng. summary. ISBN 9022003507 Also Doctoral thesis, Utrecht. Methods for characterization of fatty products and for the detection of foreign fats are discussed. The polymorphism of triglycerides as apparent from melting behaviour, X-ray diffraction, electron diffraction and infrared spectroscopy is reviewed.

Infrared spectra between 1500 and $400 \mathrm{~cm}^{-1}$ of even and odd triglycerides are given: from C_{7} to C_{22} of the a, β^{\prime} and β forms at -180° and of the liquid forms at room or elevated temperature; from C_{2} to C_{6} of the liquid form at -180° and room temperature.

The majority of strong and medium bands of the solid state spectra are assigned to molecular vibrations. Some deuterated compounds have also been studied.

The concept 'diathesis' is introduced to describe the intramolecular behaviour as apparent from vibrational spectra. The length of the fatty acid chains can be concluded from the spectra.

Some applications for the detection of beef tallow in milk fat and in lard are mentioned.

ISBN 9022003507
The author graduated as Doctor of Science at the State University of Utrecht, the Netherlands, on a thesis with the same title and contents, on 14th June, 1971.
© Centre for Agricultural Publishing and Documentation, Wageningen, 1971.
No part of this book may be reproduced or published in any form, by print, photoprint microfilm or any other means, without written permission from the publishers.

Foreword

The development of the instrumental methods of spectrophotometry and gas-liquid chromatography in the last two decades allowed a complete and rapid determination of the fatty acid composition of fats and oils and gave a tremendous impulse to fat chemistry and fat analysis. In the beginning of this new period, however, expectations for the use of infrared spectrophotometry in this field were not very high. Except for trans-unsaturated compounds, natural fats of different origin are similar in structure, so that their infrared spectra would not differ significantly. At that time, therefore, spectrophotometric and chromatographic methods were hardly used in fat research because of the expense and complexity of apparatus.

Developments in the field of solid state spectra, in the sixties, in particular the work of Chapman, gave a new dimension to the infrared analysis of fatty products. His work has helped considerably to sort out confusions about crystalline forms of triglycerides. He was able to determine the structure of natural fat components by infrared-spectrophotometry where other methods had failed.

The author of this book persued this subject and completed it in such a way that we now have at our disposal a list of infrared spectra of all monoacid triglycerides from triacetin up to tribehenin in their various phases, either liquid or crystalline. Special attention has been paid to the assignment of the absorption bands in infrared spectra of solid state triglycerides to definite molecular vibrations. This had already been done for long chain molecules as hydrocarbons, but not for triglycerides. Recently little has been published about vibrational analysis of more complex compounds. This might be caused by a 'brain drain' to other fields of interest, especially nuclear magnetic resonance and mass spectrometry, or because much basic information was already available and new knowledge could only be achieved by laborious and minute investigations.

At the Netherlands Government Dairy Station (Rijkszuivelstation) at Leiden the problem of the detection of foreign fat in milk fat and of the adulteration of natural fats in general has been studied for about sixty years. The main reason for this interest is the guarantee given by the Netherlands Government for the genuineness of exported dairy products. During the first half of this century there was no comprehensive system for the analysis of natural fats. Often the composition of an unknown mixture of fats could not be determined completely and with certainty, as a consequence of which adulterations could not always be proved. For the detection of adulteration the analysis of the minor constituents of fats in the unsaponifiable fraction: the sterols, was chosen in this institute around 1910. These compounds often show more distinc-
tive characteristics than the fatty acid composition of the glycerides themselves. Investigations in this institute on sterol technique were described by Den Herder, Roos, Riemersma and Copius Peereboom, showing several specific ways for detection on estimation of adulteration.

From the data gathered in the study, it should become possible to test fats, such as milk fat and lard, for adulteration with beef tallow, which cannot be detected by the sterol method. Specially made mixtures of these fats have been analysed satisfactorily; good prospects, however, still have to be confirmed by further investigations taking into account the influences of origin and seasonal variability.

I trust that De Ruig's book 'Infrared spectra of triglycerides; with someapplications to fat analysis' will provide food control authorities, trade and industry with some new possibilities for testing fats. The author's contribution to the understanding of infrared spectra of triglycerides, both by experiments and theoretical consideration, is worthy of the attention of scientists in this fields.
J. G. van Ginkel

Director of the Government
Dairy Station
Leiden (the Netherlands)

Contents

1 Introduction 1
1.1 Natural fats 1
1.2 Classical characteristic values 2
1.3 Modern analysis of fats 3
1.4 Standard methods 3
1.5 Infrared spectroscopy of fats 4
2 The polymorphism of triglycerides 6
2.1 Earlier investigations 6
2.2 X-ray analysis on powder diagrams 6
2.3 Single-crystal investigations 10
2.4 Infrared spectroscopy 16
2.5 Summary of Chapter 2 18
3 Experimental procedures 19
3.1 Equipment 19
3.2 Preparation of the samples 21
3.3 Preparation and purification of the triglycerides 22
3.4 Preparation of deuterated triglycerides 24
4 The interpretation of infrared spectra 26
4.1 Vibration modes and characteristic bands 26
4.2 The infrared spectra of triglycerides 26
4.3 The vibrations within a molecule 29
4.4 Vibrational analyses of n-paraffins 31
4.5 Band distributions in n-paraffins 32
4.6 Vibrational analyses of fatty-acid compounds 35
4.7 Theoretical considerations about distributions in triglycerides 38
5 The infrared spectra of the triglycerides 41
5.1 Presentation of the spectra of triglycerides $\mathrm{C}_{2}-\mathrm{C}_{22}$ 41
5.2 Assignments of absorption bands in the triglyceride spectra 116
5.3 Assignments of the spectra of the a forms 117
5.4 Assignments of the spectra of the β^{\prime} and β forms 120
5.5 Deuterated triglycerides 123
5.5.1 Glycerol-tri-(perdeutero-laurate) 123
5.5.2 (Perdeutero-glycerol)-trilaurate 124
5.5.3 Glycerol-tri-(a-dideutero-laurate) 124
6 Introduction of the concept ‘diathesis‘ of chemical compounds 125
7 Applications to the analysis of natural fats 129
7.1 Identification of pure triglycerides and of the crystalline state of triglycerides 129
7.2 The detection of beef tallow in milkfat 129
7.3 The detection of beef tallow in lard 132
Summary 135
Literature 136

1 Introduction

1.1 Natural fats

Natural edible fats and oils are substances of animal or vegetable origin. As early as 1823 Chevreul established that they were composed of glycerol esters of fatty acids. Nowadays fats are known to consist of about 95% triglyceride, with the general formula

where $\mathbf{R}_{\mathbf{1}}, \mathbf{R}_{\mathbf{2}}$ and $\mathbf{R}_{\mathbf{3}}$ are hydrocarbon chains, which can be either saturated or unsaturated, straight or branched. Free acids, monoglycerides, and, more rarely, diglycerides, may also be present. In the 'unsaponifiable matter' there are smaller or larger proportions of sterols, fatty alcohols, hydrocarbons, phosphatides, colouring matters, and other minor components.

In general the term 'fats' refers to materials which are solid, and the term 'oils' for those which are liquid at room temperatures. As this is not a rigid distinction, I will use the term 'fats' and 'fatty products', to include both. Differences in the market value of natural fats can tempt people to mix relatively expensive fats with lower-priced fats. Reliable and sensitive analytical detection methods can be helpful to withstand these temptations. From the controller's viewpoint these methods are even required.

The problem whether or not fats are mixed with fats of other origin is not equally important for all fats. For those used as raw materials in manufacturing complex nutritive fats, such as margarine and shortenings, nature and purity are less important than their properties. On the contrary, much value is attached to the purity of milk fat, which should not be mixed with other fats in milk products, such as butter, butter oil, cheese, condensed milk and dried milk. Olive oil, cocoa butter and lard should also be free from foreign fats.

1.2 Classical characteristic values

The analysis of fats and the detection of foreign fats are strengthened on the one hand by the great natural variability in the composition of the same kind of fat and on the other hand by the similarity of different fats. In the early stages of fat analysis knowledge of chemical composition and structure of fats was limited and the analytical equipment was restricted. Yet indications about the character of the fats were needed. Over the years a number of so called 'characteristic values' were found to distinguish fats and to detect the admixture of foreign fats. Among these the following are mostly used.

The Reichert-Meissl-Wollny value (R.M.W.) indicates water-soluble volatile fatty acids in saponified matter (in milk fat mainly butyric acid, further caproic and caprylic acid).

Similarly the Polenske value indicates water-insoluble volatile fatty acids (caproic and higher).

The saponification value (S.V.) measures the chain length of fatty acids, whereas the iodine value (I.V.) indicates the degree of unsaturation.

The refractive index depends both on chain length and unsaturation.
The genuineness of lard can be demonstrated by the Bömervalue, defined by
B.V. $=S_{g}+2\left(S_{g}-S_{f}\right)$
where
$S_{\mathrm{g}}=$ melting point of the saturated fraction insoluble in diethyl ether of the glyceride and
$S_{f}=$ the melting point of the fatty acids thereof.
A number of characteristic values for some well known fats are collected in Table 1.

Table 1. Characteristic values of several natural fats (AOCS, 1946).

	$\begin{aligned} & \text { D } \\ & \text { 霍 } \\ & \sum_{n}^{3} \end{aligned}$			$\begin{aligned} & \mathscr{y y} \\ & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
Milk fat	26-34	1.5-3.7	210-232	26-40	1.453-1.457	33-42
Beef tallow	<1	-	190-200	33-47	1.450-1.458	40-51
Lard	<1	-	190-203	53-68	1.448-1.460	59-68
Cocoa butter	0.2-1.5	0.5	192-200	32-40	1.456-1.458	41-48
Coconut oil	6-8	14-18	248-264	7.5-10.5	1.448-1.450	6-10
Palmkernel oil	4-7	9-12	243-255	14-23	1.449-1.452	13-19
Palm oil	<0.5	<0.5	196-202	45-56	1.453-1.459	48-58
Olive oil	<1	<0.5	190-196	79-90	1.460-1.464	83-91
Soyabean oil	<1	<1	189-195	127-138	1.465-1.470	82-90
Rapeseed oil	<1	<0.5	168-180	97-108	1.464-1.468	90-98

To detect foreign fats, it has turned out to be successful to investigate the unsaponifiable matter instead of the glycerides itself. Animal fats are accompanied by cholesterol, whereas there are phytosterols (e.g. β-sitosterol, campesterol, stigmasterol) in vegetable oils.

By analysis of the sterols animal fats can be distinguished from vegetable fats and the presence of vegetable fat in animal fat can easily be shown. As some vegetable fats also contain cholesterol, the reverse is not the case. And of course the problem of the detection of animal fat in other animal fat is not at all solved by this method. This problem is still of interest for fat chemists.

1.3 Modern analysis of fats

Modern analytical methods have resolved the composition and structure of fatty products. The fatty-acid composition could be determined by gas-liquid chromatography, for which the triglycerides are first converted into methyl esters. Nowadays also the triglyceride composition can be determined by this technique.

The crystal structure of solid glycerides has been analysed succesfully by X-ray diffraction, and very recently also by electron-diffraction methods (cf. Chapter 2). Also other modern, mostly instrumental, methods of analysis have been applied to fat analysis. Among these are differential-thermal analysis, thin-layer chromatography, ultraviolet and infrared spectroscopy, nuclear-magnetic resonance and mass spectroscopy. One of the main tasks of the present-day investigators is to 'translate' the classical characteristic values into data obtained by these modern techniques.
As this publication is concerned with infrared-spectroscopic investigations, how this technique is applied to fat chemistry will be discussed in Section 1.5.

1.4 Standard methods

Very careful instructions for analysis are needed as the result, particularly the determination of the classical characteristic values, is often affected by procedure. Conventions and legislation also promote international standard methods.
A number of international bodies are working on standardization of methods. Among these are IUPAC1, Codex Alimentarius Committee ${ }^{2}$, Committee of Government Experts on the Code of Principles ${ }^{3}$, the ISO ${ }^{4}$, and the IDF5. Standard methods are also published by several national bodies as e.g. AOCS ${ }^{6}$ and DGF7.
Methods of analysis are also described in a number of standard books on fat chemistry (E.g. Boekenoogen, 1964, 1968; Bailey, 1950, 1951; Brink \& Kritchevsky, 1968; Hilditch \& Williams, 1964; Kaufmann, 1958; Mehlenbacher, 1960; Williams, 1966; Wolff, 1968).
Monographs are published in the series Progress in the chemistry of fats and other lipids (Holman, 1952f).
Methods for the detection of foreign fats in milk fat have been reviewed by Roos (1963).

1.5 Infrared spectroscopy of fats

When infrared spectroscopy became available as an easy and simple analytical technique, it was applied to the investigation of fatty products. As the infrared spectrum is highly specific for a distinct compound, it is a usefool tool for identification. The main bands due to vibrations of functional groups have been assigned and are applied to detection of e.g. monoglycerides, epoxy compounds, branched chains, etc. by a number of authors. Also problems as the autoxidation of unsaturated oils have been studied.

Results are reviewed amongst others by Wheeler (1954), O'Connor (1955, 1956, 1961), O'Connor et al. (1955), Chouteau (1961), Chapman (1965b) and Freeman (1968). The AOCS Instrumental Techniques Committee deals with advances in analytical applications (O^{\prime} Connor, chairman, 1970).
An important application is the determination of trans-unsaturated products. This started with the observation of Rasmussen, Brattain and Zucco (1947) that a strong band at $967 \mathrm{~cm}^{-1}$ appears to be due to a trans $\mathrm{C}=\mathrm{C}$ group. A tentative standard method has been published by the AOCS (1961). Recently a rapid alternative method is reported (Allen, 1969). It is possible to distinguish between isolated cis- and transunsaturation, and even between various forms of conjugated cis-trans-unsaturation. Adulterations of butterfat can be detected by using these differences (Bartlet, pers. comm., Bartlet \& Chapman, 1961; De Ruig, 1968).

Much information can be obtained from solid-state spectra about the nature and composition of triglycerides, including the crystalline structure, chain length, and whether an even or odd triglyceride is present (cf. chapters 2,5 and 7). Chapman et al. (1957) showed with solid-state spectra that the major component of cocoa butter consists of 2 -oleo-palmitostearin, and not 2 -palmito-oleostearin as was previously assumed, whereas the latter is the major disaturated glyceride in lard.

At the Netherlands 'Government Dairy Station' an examination of natural fats with infrared spectroscopy indicated that a further fundamental study of infrared

1. International Union of Pure and Applied Chemistry.
2. Joint FAO/WHO Food Standards Programme; Codex Alimentarius Commission:

Codex Committee on Fats and Oils (CX/FO),
Codex Committee on Methods of Analysis and Sampling (CX/MAS),
3. Joint FAO/WHO Committee of Government Experts on the Code of Principles concerning Milk and Milk Products and associated Standards.
4. International Organization for Standardization:

Technical Committee Agricultural Food Products (ISO/TC 34),
Sub Committee Oleaginous Seeds and Fruits (ISO/TC 34/SC 2),
Sub Committee Milk and Milk Products (ISO/TC 34/SC 5),
Working Group Animal Fats (WG 3) of
Sub Committee Meat and Meat Products (ISO/TC 34/SC 6).
5. International Dairy Federation.
6. American Oil Chemists' Society.
7. Deutsche Gesellschaft für Fettwissenschaft.
spectra would be desirable. Therefore a series of pure monoacid triglycerides were extensively studied and vibrational analyses were carried out. The following chapters deal with the results of my studies and some applications to the detection of animal fats in other animal fats.

2 The polymorphism of triglycerides

2.1 Earlier investigations

One of the most interesting characteristics of triglycerides is their polymorphism. Heintz (1849) already reported two melting points for stearin. A solid sample melted at $51-52^{\circ} \mathrm{C}$. After further heating it resolidified and melted again at $62-621^{\circ} \mathrm{C}$.

For some triglycerides, Duffy (1853) even found three melting points, e.g. for mutton stearine at $52.0^{\circ}, 64.2^{\circ}$ and $69.7^{\circ} \mathrm{C}$, for beef stearine at $51.0^{\circ}, 63.0^{\circ}$ and $67.0^{\circ} \mathrm{C}$. He noticed that the purer the fat, the more difficult it became to detect the intermediate point. He assumed that this melting behaviour was due to some form of isomerism. Duffy's excellent work has been either overlooked by later scientists, or else the intermediate form was thought to be due to impurities. So, for many years, only two melting points were reported for triglycerides, the phenomenon being called 'double melting'.

In 1915, however, Othmer reported three melting points for tristearin and trimyristin. In 1928 this was confirmid by Loskit, who added tripalmitin. In 1932, Weygand \& Grüntzig claimed that even seven forms existed. However a careful study by Joglekar \& Watson (1930) produced only two melting points for a number of very pure triglycerides.

At the end of the 1920's, Duffy's conclusions of eighty years before still gave the best explanation: there are three forms of monoacid triglycerides with different melting points, but with the intermediate melting point often difficult to detect.

2.2 X-ray analysis on powder diagrams

About 1930, X-ray analysis became available as new tool of analytical investigation (Malkin, 1931). Malkin and co-workers studied extensively the multiple melting of triglycerides, using thermal and X-ray analysis, and showed that polymorphism accounted for this phenomenon, i.e. different crystalline forms occur for a given compound. Polymorphism in general means the occurence in either the solid or liquid phase of two or more physical distinguishable forms for the same substance.

Briefly, Malkin's method was to establish number and stability ranges of the various polymorphs by means of cooling and heating curves and, on the basis of this, to determine differences in structure by X-ray examination (Clarkson \& Malkin, 1934; Malkin \& Meara, 1939a, b; Carter \& Malkin, 1939a, b). Malkin (review 1954) distinguished four solid forms. In order of increasing melting point and likewise increasing stability these are

- a 'vitreous' form, being not truly crystalline but possessing characteristics of a glass;
- an α form in which the chains are vertical and rotating;
- a $\boldsymbol{\beta}^{\prime}$ form, possessing non-rotating tilted chains (Grüntzig, 1939; Clarkson \& Malkin, 1948);
- a β form which is stable and in which the long chains are at an inclination to the glycerol groups.

Later on, Bailey et al. (1945), Filer et al. (1946) and particularly Lutton (1945) came to the conclusion that Malkin was partially wrong in his association of melting points with X-ray diffraction patterns.

With long-chain compounds, as triglycerides are, the observed spacings may be classified as 'long spacings' and 'short spacings'. The first refer to the length of the molecules, i.e. the distance between the planes formed by the methyl groups; the short spacings relate in some way to the cross-sectional arrangement or the width of the molecules. The long spacings are usually a linear function of the number of carbon atoms. In many cases tilting of long chain axes with respect to end group planes shortens the observed long crystal spacing. The short spacings, being linked up with the glycerol-head of the glyceride molecules, are practically independent of the chain length. The geometry of triglycerides and its possible variation from compound to compound cause major variations in crystal structure in the long-chain direction.

Contrary to Malkin, Lutton (1945, 1950; Lutton \& Fehl, 1970) used the X-ray data of the short spacings as the primary basis for his nomenclature, as follows:

alpha	single strong line at about $4.1 \mathbf{A}$
beta prime	usually two (occasionally more) strong lines at about 4.2 and 3.8 A
beta	strong (usually strongest) line at about 4.6 A.

It may be noted that initially Lutton (1950) consequently used the full name, e.g. beta prime rather than β^{\prime}, but confusion nevertheless has occurred. Chapman (1957a) therefore has suggested the use of a suffix M for Malkin and L for Lutton. Hence a form of tristearin melting at $64-65^{\circ} \mathrm{C}$ could be referred to as a_{M} or $\beta_{\mathrm{L}}^{\prime}$. His proposal has not been followed by most other authors, however.

The controversy between Malkin and Lutton has led to considerable confusion in the literature. They based their nomenclature on different principles (Malkin: melting points, Lutton: X-ray data) and as is apparent from Table 2 they do not match, except for the form with the highest melting point.

Actually, both systems have their limitations (Larsson, 1965b; Chapman, 1965b).
The deadlock was broken by the introduction of infrared spectroscopy for studying polymorphism in glycerides.

In 1970, Lutton \& Fehl have re-investigated the polymorphism of all saturated monoacid triglycerides from C_{8} to C_{22}. The earlier results were in the main confirmed; minor variations in the short spacings were observed (Fig. 1). They reported, however, an exceptional phase for the stable form of C_{9} and C_{11} triglycerides replacing

Table 2. Nomenclature for triglycerides according to Malkin and Lutton. X-ray and melting data for tristearin.

Author	Melting point $\left({ }^{\circ} \mathrm{C}\right)$	X-ray short species (\AA)	Name
Malkin	54.4	diffuse 4.15	vitreous
	65.0	4.15	α
	70.0	3.8 and 4.2	β^{\prime}
	72.0	4.6	β
Litton	59.9	4.15	alpha
	64	3.8 and 4.2	beta prime
	73.1	4.6	beta

Figure 1. Short spacings of polymorphic forms of monoacid triglyceriides $\mathrm{C}_{8}-\mathrm{C}_{20}$ (Sutton \& Fehl, 1970).

Table 3. Melting points of monoacid triglycerides (Lutton \& Fehl, 1970; Larsson, 1965b).

Triglyceride			
	a form	β^{\prime} form	β form
C_{8} Tricaprylin	-51.0	-18.0	10.0
C_{9} Tripelargoin	-26.0	4.0	10.5^{a}
C_{10} Tricaprin	-10.5	17.0	32.0
C_{11} Triundecylin	2.5	27.0	31.0^{a}
		31.0^{b}	28.5^{b}
C_{12} Trilaurin	15.0	34.5	46.5
C_{13} Tritridecylin	24.5	41.5	44.5
C_{14} Trimyristin	33.0	46.0	58.0
C_{15} Tripentadecylin	39.0	51.0	55.0
C_{15} Tripalmitin	45.0	56.5	66.0
C_{17} Trimargarin	50.0	60.5	64.0
C_{18} Tristearin	54.7	64.0	73.3
C_{19} Trinonadecylin	59.0	65.5	71.0
C_{20} Triarachidin	62.0	69.0	78.0
C_{21} Triheneicosanoin	65.0	71.0	76.0
C_{22} Tribehenin	68.0	74.0	82.5

a. $\mathrm{I}_{9,11}$ forms, according to Lutton \& Fehl.
b. Values reported by Larsson.
the β form, which they call (though inadequately) $I_{9,11}$. The short spacings of this form are said to be not of the β type but reminiscent of the β^{\prime} form as is obvious from the figure (see further discussion in Section 3.2).

The melting points of the various forms were also re-examined (Table 3).
Knoop \& Samhammer (1961) and Knoop et al. (1966) distinguished five β modifications, differing only in the long spacings, i.e. in the angle of tilting of the hydrocarbon chain. The following inclinations were found for tristearin

β_{II}	β_{II}	β_{III}	β_{IV}	β_{V}
90°	$72^{\circ} 9^{\prime}$	$59^{\circ} 12^{\prime}$	$50^{\circ} 23.5^{\prime}$	$42^{\circ} 50.5^{\prime}$

The usual β form is conceived as a mixture of these forms, as is apparant from the X-ray diagram (Fig. 2), the $\beta_{\text {III }}$ form being dominant. Knoop \& Samhammer's supposition that the β forms should be monoclinic or thombic was not confirmed by other authors.

Gunstone (1964) tried to correlate the polymorphs of glycerides on their long spacings. He distinguished five groups with different angles of tilting, the five angles being different from those reported by Knoop et al.; they corresponded with the $\alpha_{\mathrm{M}}, \beta^{\prime}{ }_{\mathrm{M}}$ and β_{M} as follows;

Gunstone's group	V	U	T	S	R
angle of inclination	90°	68°	64°	57°	52°
Malkin's form	α_{M}	β_{M}^{\prime}	β_{M}		

Figure 2. X-ray diagram of stearin, indicating the occurrence of five β forms (Knoop \& Samhammer, 1961).

2.3 Single-crystal investigations

Within a crystal the smallest group of molecules whose repetition at regular intervals in three dimensions produces the lattice is called the 'unit cell'.

Certain crystals contain structural repetitions within the unit cell, which can be described by a much smaller 'subcell' (Vand, 1951). In triglycerides a subcell can be constructed describing the periodicity in the hydrocarbon chains. Some types of subcells for various packings of parallel hydrocarbon chains are illustrated in Fig. 3. The symbols used indicate the symmetry of the subcell and whether all zigzag planes are parallel (//) or every second plane is perpendicular (\perp) to the planes of the others. In the hexagonal packing the hydrocarbon chains are assumed to be rotating or in random orientation (Müller, 1932; Malkin, 1933; Chapman, 1965b).

Powder diagrams are inadequate for determining the dimensions of a unit cell or a subcell, and single crystals have to be examined.

For triglycerides their preparation is difficult, yet successful single-crystal investigations have been carried out on the β form of trilaurin (Vand \& Bell, 1951; Larsson, 1963, 1965a) and of tricaprin (Jensen \& Mabis, 1963, 1966).

The unit cell of this form was triclinic and contained two molecules. The subcell was also triclinic and contained two CH_{2} groups. Their packing corresponds with Figure 3d. The angle between the chains and the a-b plane of the unit cell agreed with that predicted from the long spacings of powder diagrams.

a HEXAGONAL

$\stackrel{12}{4}$

b ORTHORHOMBIC (OL)

c NEW ORTHORHOMBIC (O.1)

Fisure 3. Some types of subcells (after Vand \& Bell, 1951; Von Sydow, 1956; Abrahamsson, 1959a; Buchheim, 1970).

Figure 4. The arrangement of trilaurin in the crystal lattice (Chapman, 1962, after Vand).

■ = glyceryl carbon

- = side-chain carbon
$0=$ oxygen

From these examinations of single crystals it could be concluded that the triglyceride molecules pack in an asymmetrical tuning-fork configuration, Figure 4. The molecular arrangements along the b-axis and along the a-axis of the unit cell is shown in figures 5 and 6.

By the X-ray analysis of single triglyceride crystals only the stable β form has been studied succesfully. In 1970, Buchheim calculated subcell- and unit-cell dimensions of other forms from electron-diffraction patterns. When using an electron beam in stead of X-rays, much smaller single crystals are required, but the experimental difficulties are very much higher.

Buchheim observed an α form, two β^{\prime} forms and two β forms of trilaurin (Table 4). One of the β^{\prime} forms was identical with the former β^{\prime} form having tilted chains, the other was a new form with vertical chains. The β forms corresponded with the $\beta_{\text {II }}$ and $\beta_{\text {III }}$ forms reported by Knoop et al. (1961, 1966).

Table 4. Polymorphs of trilaurin (Buchheim, 1970).

Form	Angle between hydrocarbon chain and base level	Unit cell	Orientation of hydrocarbon chains with respect to adjacent chains	Subcell
a	90°	hexagonal	random	hexagonal $\begin{aligned} & a_{8}=b_{s}=4.80 \AA \\ & c_{0}=2.55 \AA \\ & \gamma_{s}=120^{\circ} \end{aligned}$
Vertical β^{\prime}	90°	$?$	perpendicular	
Tilted $\boldsymbol{\beta}^{\prime}$	62-63 ${ }^{\circ}$	orthorhombic 8 molecules per unit cell $\begin{aligned} & \mathrm{a}=22.93 \AA \\ & \mathrm{~b}=5.67 \AA \\ & \mathrm{c}=65 \AA \end{aligned}$	$?$	orthorhombic $\begin{aligned} & a_{8}=4.98 \AA \\ & b_{3}=7.46 \AA \\ & c_{s}=2.55 \AA \end{aligned}$
$\beta_{\text {II }}$	73°	triclinic 2 molecules per unit cell $\begin{array}{ll} a=11.60 \AA & a=89^{\circ} \\ b=5.30 \AA & \beta=85^{\circ} \\ c=34.7 \AA & \gamma=96^{\circ} \end{array}$	parallel	triclinic $a_{s}=4.43 \AA \quad a_{3}=76^{\circ}$
$\beta_{\text {III }}$	61°	triclinic 2 molecules per unit cell $\begin{array}{ll} a=12.28 \AA & a=95.3^{\circ} \\ b=5.48 \AA & \beta=95.8^{\circ} \\ c=31.8 \AA & \gamma=100^{\circ} \end{array}$	parallel	$\begin{array}{ll} \mathrm{b}_{8}=5.30 \AA & \beta_{8}=107^{\circ} \\ \mathrm{c}_{8}=2.56 \AA & \gamma_{3}=120^{\circ} \end{array}$

Figure 5. Molecular arrangement of trilaurin projected along the b-axis (Larsson, 1965a).

Figure 6. Molecular arrangement of trilaurin projected along the a-axis (Larsson, 1965a).

2.4 Infrared spectroscopy

The polymorphism of triglycerides and related compounds revealed by infrared spectroscopy has been extensively studied by Chapman (see his publications in the years 1956-65). In his study on triglycerides such as tristearin he obtained three kinds of spectra which may be compared with the three X-ray diffraction-patterns (Fig. 7).

The form obtained by quenching the melt from a high temperature to room temperature gave a spectrum not typical for a vitreous form. In the $1250 \mathrm{~cm}^{-1}$ region a regular series of bands occurred, giving definite evidence of crystallinity. As with spectra of α forms of other long-chain compounds, the CH_{2} main rocking mode was a single band at $720 \mathrm{~cm}^{-1}$. After melting and recrystallization the form transformed into the stable β form. The observations clearly showed that the lowest-melting form was not vitreous as suggested by Malkin, that its spectrum had much in common with that of the α forms of other long-chain compounds, that it was crystalline, and that Lutton had correctly considered it to be an a form. Moreover, this form exhibits strong birefrigence (Quimby, 1950), which is also inconsistent with a vitreous form. The single band at $720 \mathrm{~cm}^{-1}$ is correlated with hexagonally-packed chains (Chapman, 1957b). Only one band was observed mainly because there was only one chain per primitive subcell and a large interchain-distance in this form.

Figure 7. The polymorphic forms of tristearin (Chapman, 1956c).

An intermediate form crystallized when the melt was cooled to a temperature about two degrees above the melting point of the a form. The main $\mathrm{CH}_{\mathbf{2}}$ rocking mode in its spectrum was a doublet at 726 and $719 \mathrm{~cm}^{-1}$ indicating orthorhombicpacked $(\mathrm{O} \perp)$ chains and attributed to an interaction between neighbouring chains as there are two chains per subcell. As compared with the spectrum of the a form, the relative intensity of the bands in the $1250 \mathrm{~cm}^{-1}$ region had changed and new bands had appeared. This form of tristearin melted at $65^{\circ} \mathrm{C}$ and was then transformed into the β form. So it could not possibly be a hexagonally-packed or α form, and was correctly designated a $\boldsymbol{\beta}^{\prime}$ form.
The stable β form was obtained by solvent crystallization. Its spectrum differed from that of the other forms in the relative intensities of the bands in the $1250 \mathrm{~cm}^{-1}$ region. There was also a strong band ${ }^{1}$ at $890 \mathrm{~cm}^{-1}$ absent in the other spectra, and the main CH_{2} rocking mode was single (at $717 \mathrm{~cm}^{-1}$). This band was correlated with triclinic-packed ($\mathrm{T} / /$) chains and was single due to only one chain per subcell. Its shift was related to the change in the internal-potential-energy function of the molecule.
As Chapman (1962, 1965b) pointed out, if Malkin's interpretation of his X-ray data is rejected there is:
a. consistency of pattern of infrared spectra of the triglycerides with those of other long-chain compounds,
b. consistency of pattern of infrared spectra for various types of triglycerides, c. consistency of X-ray and infrared data.

The correlation between the packing of the hydrocarbon chains and the appearance of the infrared absorption in the $720 \mathrm{~cm}^{-1}$ region is also present in other compounds with long hydrocarbon chains, and has been confirmed by other authors too (Abrahamsson \& Fischmeister 1959).

A sub- α form was reported by Jackson \& Lutton (1950) and by Chapman (1960, 1962, 1965b) as a further form of triglycerides. When the temperature was lowered, the spectrum of the a form remained generally the same although the bands narrowed and sharpened, but between -50° to $-70^{\circ} \mathrm{C}$ for tristearin the main $\mathrm{CH}_{\mathbf{2}}$ rocking mode in the $720 \mathrm{~cm}^{-1}$ region gradually and reversibly changed from a single band into a doublet. The doublet was reported to be similar to that observed in the spectrum of the intermediate β^{\prime} form and the chains in the sub- α form were probably orthorhombically packed. Its short spacings were similar to those of the β^{\prime} form (~ 3.7 and $4.2 \AA$). This sub-a form behaves according to the idea that with lower temperatures the chains rotate less rapidly and pack together more tightly.

By combining the infrared data of Chapman with the X-ray short-spacing data

[^0]reported by Lutton, Larsson (1965b) has drawn up the following criteria for the nomenclature of glycerides in the solid state.

1. A form, crystallizing from the melt and giving only one strong short-spacing line at $4.15 \AA$ is termed α. A form related to the α form by an enantiotropic transition is termed sub- α, irrespective of its short-spacing data.
2. A form showing two strong short-spacing lines at 3.8 and $4.2 \AA$ or three strong lines near $4.27,3.97$ and $3.71 \AA$, and also exhibiting a doublet in the $720 \mathrm{~cm}^{-1}$ region of the infrared spectrum, is called β^{\prime}.
3. A form not satisfying critera 1 and 2 is called β.

2.5 Summary of Chapter 2

The polymorphism of triglycerides has been studied for more than a century. At present it is generally accepted that three crystallization forms exist (α, β^{\prime} and β) which are distinguishable by their melting points, X-ray data and infrared spectra, as indicated in Table 5. The α form is the least stable; the α and β^{\prime} forms are monotropic forms of the stable β form. Malkin's nomenclature is obsolete.

Some additional forms are reported.
A sub- α form, enantiotropic with the α form, arising when the α form is sufficiently chilled (Jackson \& Lutton, 1950; Chapman, 1960, 1962, 1965b). Buchheim (1970) reports a 'vertical' β^{\prime} form besides the usual tilted β^{\prime} form. Knoop \& Samhammer (1961) mention for the β modification five forms differing only in the angle of tilting (β_{I} to β_{V}), of which the β_{III} corresponds with the normal β form. Five (other) forms of different tilting are mentioned by Gunstone (1964).

Lutton \& Fehl (1970) state that the stable form of C_{9} and C_{11} is not the β form but another one, with a different X-ray pattern; it is termed $\mathrm{I}_{9,11}$.

Table 5. Survey of polymorphic forms of triglycerides (summary).

3 Experimental procedures

3.1 Equipment

A Perkin Elmer infrared spectrofotometer, model 457, with a wave-number range of 4000 to $250 \mathrm{~cm}^{-1}$ was used in scanning the spectra.
The temperatures of the samples were controlled in an RIIC temperature chamber VLT-2 (Fig. 8) with a pressure vessel with magnetic valve and a home-made automatic temperature-controller (De Ruig, 1971). The temperature range was from - $\mathbf{1 8 0}$ to $+250^{\circ} \mathrm{C}$, with an accuracy of $\pm 5^{\circ} \mathrm{C}$.
Under standard conditions the scanning speed was $400 \mathrm{~cm}^{-1} / \mathrm{min}$ over the range $4000-2000 \mathrm{~cm}^{-1}$ and $200 \mathrm{~cm}^{-1} / \mathrm{min}$ over the range $2000-250 \mathrm{~cm}^{-1}$. For the spectra of the most interesting section ($1500-400 \mathrm{~cm}^{-1}$) the scanning speed was $50 \mathrm{~cm}^{-1} / \mathrm{min}$ with double scale expansion. The wave-number accuracy was below $\pm 4 \mathrm{~cm}^{-1}$ from $4000-$

Figure 8. Variable temperature chamber with infrared cell.

$2000 \mathrm{~cm}^{-1}$ and below $\pm 2 \mathrm{~cm}^{-1}$ between 2000 and $250 \mathrm{~cm}^{-1}$. The resolution amounted to $2 \mathrm{~cm}^{-1}$ at $1000 \mathrm{~cm}^{-1}$. At $600 \mathrm{~cm}^{-1}$ there is a grid change in the apparatus; around this frequency deviations of about $5 \mathrm{~cm}^{-1}$ do occur.

Marking pips indicate in the expanded spectra the wave numbers 1400,1200 , etc., with an accuracy of about $\pm 1 \mathrm{~cm}^{-1}$.

The spectra of the solid states were scanned at $-180^{\circ} \mathrm{C}$. Such a low temperature sharpened absorption bands and gave a richer spectrum, as seen from Figure 9. At this temperature the α form is represented in the higher members of the homologous series by the enantiotropic sub- a form, apparent from the splitting-up of the $720 \mathrm{~cm}^{-1}$ band.

RIIC cells of the FH-01 type were used as demountable cells. To prevent fogging of the windows by moist condensation at low temperatures silver-chloride windows were chosen. Silver chloride cuts off frequencies below about $400 \mathrm{~cm}^{-1}$. In some cases potassium-bromide pellets were used; they cut off the spectrum at about the same frequency. The cells were placed in the RIC chamber which was provided with heated potassium-bromide windows and was evacuated before cooling.

3.2 Preparation of the samples

The various crystalline forms of the triglycerides can be obtained from the liquid phase or from the solvent.

For crystallization from the liquid phase a few drops of molten triglyceride were placed between two silver-chloride windows of an infrared cell; spacers of 0.025 or 0.05 mm thickness proved to be appropriate for obtaining good spectra. After mounting, the sample was quenched in liquid nitrogen. Under such conditions all triglycerides except the lowest terms crystallize into the a or sub- a form. The spectrum of this form was scanned at $-180^{\circ} \mathrm{C}$.

The transition of the α form into the β^{\prime} form, and also of the β^{\prime} form into the β form was achieved as follows. With the sample still in the infrared cell, its temperature was carefully raised a few degrees below the transition temperature, and left at this temperature for several hours or sometimes even days, Then, very slowly, the temperature was raised to just above the transition point. In this way the β^{\prime} form and the β form were obtained successively from the same sample. Both spectra were examined again at $-180^{\circ} \mathrm{C}$. As the various forms of triglycerides are monotropic, the α form being the less stable and the β form the most stable, no reverse transition occurs when the β^{\prime} and the β forms are cooled.

The melting points of the various forms are tabulated in Table 3 (Chapter 2).
The three forms were not obtained in all cases with this method. Some of the higher even triglycerides recrystallized directly from the α form into the β form. Still the β^{\prime} form of C_{16} and C_{18} could be obtained by using a not highly-purified sample (approximately 95%, the rest being lower and higher triglycerides) and slow solidification at the melting point of the a form, followed by quick chilling. This is in accordance with Duffy (1853) who already found that from highly-purified tristearin the intermediate
form is hard to prepare. It has been proved for homologous β^{\prime} forms, that the procedure mentioned above does not alter the infrared spectrum. The β^{\prime} forms of C_{20} and C_{22} are not obtained so far.

By crystallization from a suitable solvent (acetone, diethyl ether, n-hexane) the most stable form was obtained. In general, thus, the β form was obtained. Some odd triglycerides, however, crystallized into the β^{\prime} or a mixed $\beta^{\prime}+\beta$ form.

The crystals were collected on a Büchner funnel, washed and dried at temperatures below the melting point. $10-15 \mathrm{mg}$ of triglyceride was then ground with 700 mg potassium bromide in a mortar, and pressed into a pellet. After cooling to $-180^{\circ} \mathrm{C}$ a spectrum was recorded.

The β form of C_{9} is not obtained.
Besides the α and the β^{\prime} form from C_{11} a third form was obtained with troubles by crystallization from aceton. Its infrared spectrum was similar to the spectra of β forms. In the X-ray diagram short spacings were found ${ }^{1}$ at $3.03 \mathrm{vs}, 3.65 \mathrm{~s}, 3.82 \mathrm{~s}, 3.95 \mathrm{vs}, 4.18 \mathrm{~m}$, $4.37 \mathrm{~m}, 4.57 \mathrm{vs}, 5.21 \mathrm{~m}$ and $5.39 \mathrm{~m} \AA$, also indicating the presence of a β form, perhaps mixed with β^{\prime}. The form started to melt at $28.0^{\circ} \mathrm{C}$; at $28.8^{\circ} \mathrm{C}$ it recrystallized into the β^{\prime} form, the latter melting between 29.6 and $30.4^{\circ} \mathrm{C}$.

From these data I conclude that the present form is a metastable β form, while the β^{\prime} form is the stable one for C_{11}. These results are in accordance with those of Larsson (1965b), cf. Table 3. No indication is found for the existence of the $\mathrm{I}_{9,11}$ form as reported by Lutton \& Fehl (1970).

3.3 Preparation and purification of the triglycerides

Most of the triglycerides studied were commercially available. The others were prepared from the corresponding acids by a method described by Clarkson \& Malkin (1934) and Perron et al. (1969). According to this method 1.0 mole glycerol and 3.3 mole fatty acid are heated in 500 ml chloroform under a nitrogen atmosphere, with p-toluenesulfonic acid ($2 \% \mathrm{w} / \mathrm{w}$ fatty acid) as a catalyst, at 140 to $180^{\circ} \mathrm{C}$ (depending on chain length) for 2 hours. Then the mixture is heated for 6 hours at 160 to $200^{\circ} \mathrm{C}$ under 25 mm pressure, dissolved in chloroform, filtered, and dried. Free fatty acids, mono-, di- and triglycerides are then separated by silica-gel column-chromatography.

Whenever required, the triglycerides were purified by multiple recrystallization from a diethyl-ether solution. The absence of mono- and diglycerides and free fatty acids was verified by thin-layer chromatography. The composition of the fatty-acid fraction was determined by gas-liquid-chromatographic analysis (GLC).

The monoacid triglycerides which were investigated are mentioned on the next page.

1. $\mathrm{vs}=$ very strong, $\mathrm{s}=$ strong, $\mathrm{m}=$ medium intensity.

Unilever-Emery, Gouda, GLC: $99.9 \% \mathbf{C l}_{2}$, Fluka, purum grade, GLC: $99.8 \% \mathrm{C}_{4}$ synthesized from valeric acid, GLC: 99.9% C
Fluka, technical grade, GLC: $99.4 \% \mathrm{C}_{6}$ synthesized from enanthic acid, GLC: 99.8\% C_{7} Fluka, technical grade, recrystallized, GLC: 94.6% C $_{8}$ synthesized from pelargonic acid, GLC: 94.9\% C 9 Fluka, technical grade, recrystallized, GLC: 91.4\% C $\mathbf{C l}_{10}$ synthesized from undecanoic acid, GLC: $98.8 \% \mathrm{C}_{11}$ Fluka, purum grade, recrystallized, GLC: 99.2\% C $\mathbf{1 2}^{2}$ synthesized from tridecanoic acid, GLC: $98.6 \% \mathrm{C}_{13}$ Fluka, purum grade, recrystallized, GLC: 96.9\% C $\mathbf{C l}_{14}$ synthesized from pentadecanoic acid, GLC: $>99.8 \%$ Fluka, purum grade, recrystallized, GLC: 99.7\% and (for synthesized from heptadecanoic acid, GLC: $99.3 \% \mathrm{C}_{17}$ Fluka, purum grade, recrystallized, GLC: 98.1% and (for β^{\prime}) $\mathbf{9 5 . 0} \% \mathrm{C}_{18}$ synthesized from nonadecanoic acid, GLC: $99.8 \% \mathrm{C}_{19}$ synthesized from arachidic acid, GLC: $99.4 \% \mathrm{C}_{\mathbf{2 0}}$ synthesized from heneicosanoic acid, GLC: 97.4\% C21 synthesized from behenic acid, GLC: $\mathbf{9 8 . 9} \% \mathrm{C}_{22}$
triacetin, glycerol triethanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCCH}_{3}\right)_{3}$ tripropionin, glycerol tripropanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{2} \mathrm{H}_{5}\right)_{3}$ tributyrin, glycerol tributanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{3} \mathrm{H}_{7}\right)_{3}$ trivalerin, glycerol tripentanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{4} \mathrm{H}_{9}\right)_{3}$ tricaproin, glycerol trihexanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{5} \mathrm{H}_{11}\right)_{3}$ trienantoin, glycerol triheptanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{6} \mathrm{H}_{13}\right)_{3}$ tricaprylin, glycerol trioctanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{7} \mathrm{H}_{15}\right)_{3}$ tripelargoin, glycerol trinonanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{8} \mathrm{H}_{17}\right)_{3}$ tricaprin, glycerol tridecanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{9} \mathrm{H}_{19}\right)_{3}$ triundecylin, glycerol triundecanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{10} \mathrm{H}_{21}\right)_{3}$ trilaurin, glycerol tridodecanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{11} \mathrm{H}_{23}\right)_{3}$ tritridecylin, glycerol tritridecanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{12} \mathrm{H}_{25}\right)_{3}$ trimyristin, glycerol tritetradecanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{13} \mathrm{H}_{27}\right)_{3}$ tripentadecylin, glycerol tripentadecanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{14} \mathrm{H}_{29}\right)_{3}$ tripalmitin, glycerol trihexadecanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{15} \mathrm{H}_{31}\right)_{3}$ trimargarin, glycerol tribeptadecanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{16} \mathrm{H}_{33}\right)_{3}$ tristearin, glycerol trioctadecanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{17} \mathrm{H}_{35}\right)_{3}$ trinonadecylin, glycerol trinonadecanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{18} \mathrm{H}_{37}\right)_{3}$ triarachidin, glycerol trieicosanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{19} \mathrm{H}_{39}\right)_{3}$ triheneicosanoin, glycerol triheneicosanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{20} \mathrm{H}_{41}\right)_{3}$ tribehenin, glycerol tridocosanoate, $\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{OOCC}_{21} \mathrm{H}_{43}\right)_{3}$

3.4 Preparation of deuterated triglycerides

Besides normal triglycerides three deuterated triglycerides were synthesized, i.e.: glycerol-tri-(perdeutero-laurate), $\mathrm{C}_{3} \mathrm{H}_{5}\left[\mathrm{O}-\mathrm{CO}-\left(\mathrm{CD}_{2}\right)_{10}-\mathrm{CD}_{3}\right]_{3} \quad$ I (perdeutero-glycerol)-trilaurate, $\mathrm{C}_{3} \mathrm{D}_{5}\left[\mathrm{O}-\mathrm{CO}-\left(\mathrm{CH}_{2}\right)_{10}-\mathrm{CH}_{3}\right]_{3} \quad$ II glycerol-tri-(α-dideutero-laurate), $\mathrm{C}_{3} \mathrm{H}_{5}\left[\mathrm{O}-\mathrm{CO}-\mathrm{CD}_{2}-\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CH}_{3}\right]_{3}$ III
A method described by Nguyên Dinh-Nguyên \& Stenhagen (1967) was used for the preparation of perdeutero-lauric acid (IV) and of perdeutero-glycerol (V). By this method, hydrogen atoms are exchanged by deuterium with aid of a metal catalyst (Pt), an alkaline catalyst (NaOD) and a promotor $\left(\mathrm{D}_{2} \mathrm{O}_{2}\right)$.

Perdeutero-lauric acid The metal catalyst was prepared by stirring $2 \mathrm{~g} \mathrm{PtO}_{2}$ and $15 \mathrm{ml} \mathrm{D}_{2} \mathrm{O}(99.75 \%)$ with D_{2} gas for 30 h at $40^{\circ} \mathrm{C}$, to complete reduction of PtO_{2}.

For preparating the alkaline catalyst and promotor $1.4 \mathrm{~g} \mathrm{Na} 2_{2} \mathrm{O}_{2}$ was slowly added to $90 \mathrm{~g} \mathrm{D}_{2} \mathrm{O}$ with cooling, to give a solution containing theoretically 1.5 g NaOD and $0.6 \mathrm{~g} \mathrm{D}_{2} \mathrm{O}_{2}$.

For preparation of perdeutero-lauric acid (IV), the metal and alkaline catalysts and promotor were flushed with $\mathrm{D}_{2} \mathrm{O}$ (total amount 30 ml) into an autoclave and 3.52 g lauric acid $\left(99.9 \%\right.$) was added. The reaction mixture was heated at $240^{\circ} \mathrm{C}$ for 28 h in $1.5 \mathrm{~atm} \mathrm{D}_{2}$, and continuously stirred. After cooling of the mixture, $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ were evaporated in vacuo at $60-80^{\circ} \mathrm{C}$. The residue was flushed back into the autoclave with a total of $130 \mathrm{ml} \mathrm{D}_{2} \mathrm{O}$ and the same treatment was repeated.

The deuterated water was evaporated and diluted hydrochloric acid was added to convert the perdeutero-laurate into the acid. The acid was extracted with diethyl ether, washed with distilled water and dried. The yield was 2.63 g (IV) or 75%.

The degree of exchange was checked by nuclear magnetic resonance (nmr) and mass spectrometry measurements.

By nmr proved 89% D to be exchanged (with respect to H of COOH), viz. 100% $\alpha \mathrm{CD}_{2}, 87 \%\left(\mathrm{CD}_{2}\right)_{9}, 90 \% \mathrm{CD}_{3}$.

The mass spectrum gave $90 \% \mathrm{D}\left(42 \% \mathrm{D}_{23}, 31 \% \mathrm{D}_{22}, 13 \% \mathrm{D}_{21}, 4 \% \mathrm{D}_{20}\right.$, lower each $<1 \%$.

Perdeutero-glycerol This compound was prepared in a similar way using $1 \mathbf{g ~ P t O _ { 2 }}$, $0.69 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}_{2}$ and 1.62 g glycerol. The glycerol was treated two times in the autoclave with $60 \mathrm{ml} \mathrm{D}_{2} \mathrm{O}$ at $180^{\circ} \mathrm{C}$ for 28 h in a deuterium atmosphere.

The mixture was flushed out of the autoclave with $10 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$, neutralized by ion exchange with 7.5 g Dowex $50 \mathrm{Wx} 8,200-400 \mathrm{mesh}$, dried on a steam bath under vacuum ($20-50 \mathrm{~mm}$). It yielded 0.292 g or 18%.

All hydrogens were exchanged by deuterium (nmr: 100%).
Dideutero-lauric acid 5 g lauric acid $\left(99.9 \% \mathrm{C}_{12}\right)$ was treated in an autoclave with deuterium gas (70 atm) for 24 h at $240^{\circ} \mathrm{C}$, with the presence of Raney nickel.

The mass spectrum showed $>90 \%$ dideutero-lauric acid; according to the nmr
spectrum, the a protons were exchanged by deuterium.
Preparation of the triglycerides From the deuterated compounds, the triglycerides, I, II and III were prepared in the usual way, as described in Section 3.3.

4 The interpretation of infrared spectra

4.1 Vibration modes and characteristic bands

As, for lack of exact definitions, in infrared spectroscopy the terminology and the symbols for the normal vibrations of the atoms in a molecule is not uniform, Table 6 gives a summary of the terms used in this publication.

Almost independent of the total composition of the molecule, certain groups of atoms cause characteristic absorption bands in the spectrum. Such bands are found e.g. for $\nu \mathrm{C}-\mathrm{H}$ in the $2900 \mathrm{~cm}^{-1}$ region, for $\delta \mathrm{C}-\mathrm{H}$ at about $1400 \mathrm{~cm}^{-1}$, for $\nu \mathrm{C}-\mathrm{O}$ between 1250 and $1060 \mathrm{~cm}^{-1}$, and for $\nu \mathrm{C}=\mathrm{O}$ at $1750-1700 \mathrm{~cm}^{-1}$. They vary slightly, dependent on other groups in the molecule, for ethers compared with esters, for methyl compared with methylene, etc., as well as for various compounds of the same series of compounds. This means that infrared spectra can be very useful in deducing the composition of an unknown compound.

For a large number of absorbtion bands in the infrared spectra the origin is as yet unknown, especially between 1350 and $900 \mathrm{~cm}^{-1}$. The band collection as a whole in this region is specific for a certain compound. Therefore this region is generally referred to as the 'fingerprint region'.

Some vibrations modes give rise to a single band, e.g. the carbonyl stretching mode. Other vibration modes cause a number of related bands. I define:

Band series: the single bands of one type of vibration in a series of compounds (e.g. the carbonyl-stretching band series in fatty-acid esters from C_{2} to C_{18}).

Band progression: the absorption bands which belong to one type of vibrations in one compound (the methylene-wagging band-progression in methyl laurate).

Band distribution: the absorption bands of one type of vibrations in a series of compounds (the methylene-wagging distribution in fatty-acid esters).

4.2 The infrared spectra of triglycerides

The infrared spectra from $4000-400 \mathrm{~cm}^{-1}$ of tristearin in the α from and in the β form are shown as examples of triglyceride spectra (Figure 10).

In the region $4000-1500 \mathrm{~cm}^{-1}$ only small variations are observed throughout the homologous series of triglycerides. Remarkable variations do occur in the region $1500-400 \mathrm{~cm}^{-1}$; for different compounds of the series, as well as for different phases of the same compound. Therefore in this study only the latter region will be considered.

Until now no concerted effort has been made to assign the multitude of absorption

Table 6. Nomenclature of normal vibrations.
a. Normal vibrations of the methylene group

$\nu_{s} \mathrm{CH}_{2}$ symmetrical stretching
\qquad
stretching vibrations

$v_{2} \mathrm{CH}_{2}$ antisymmetrical stretching

$\omega \mathrm{CH}_{2}$ wagging

$\tau \mathrm{CH}_{2}$ twisting

$\varrho^{e} \mathrm{CH}_{2}$ rocking
deformation vibrations
bending vibrations
b. Normal vibrations of the methyl group

c. Normal skeletal vibrations

C-C torsion

d. Normal vibrations of other groups of atoms

Similar symbols; e.g. $\nu \mathrm{C}=\mathbf{O}$: carbonyl stretching vibration

$$
\nu \mathrm{C}-\mathrm{O}: \mathrm{C}-\mathrm{O} \text { stretching vibration }
$$

1. In other publications also termed bending.

Figure 10a, b. Infrared spectra of tristearin.
bands in the fingerprint region. I will attempt to interprete these bands in Chapter 5. Vibrational analyses by other authors on other long chain compounds, particularly n-paraffins will be reviewed in Sections 4.4-4.6. Molecular vibrations in general will be considered in Section 4.3, and Section 4.7 will apply this information to a theoretical treatment of band collections in triglycerides.

4.3 The vibrations within a molecule

An n-atomic molecule has $3 n$ degrees of freedom, including three translations and three or two (for linear molecules) rotations of the molecule as a whole. To characterize the remaining $3 n-6$ or $3 n-5$ internal vibrations it is convenient to introduce an equal number of independant internal normal vibrations. The number of energy bands actually observed may be considerably lower, some reasons being:

- bands are beyond the range of the measured spectrum,
- bands are too weak,
- bands are forbidden, because only vibrations accompanied by a change in dipole moment are active in the infrared, so that symmetric vibrations are not observed. (These bands can be active in the Raman spectra.)

The vibrations of two adjacent atoms in a molecule can to a first approximation be described by Hooke's law for the simple harmonic oscillator, so that the vibration frequency is given by

$$
\begin{equation*}
\nu=\frac{1}{2 \pi} \sqrt{\frac{f}{\mu}} \tag{1}
\end{equation*}
$$

with
$v=$ the frequency of the vibration
$f=$ the force constant of the bond for this vibration
$\mu=$ the reduced mass of the vibrating system,
$\mu=\frac{m_{1} \cdot m_{2}}{m_{1}+m_{2}}$
where m_{1} and m_{2} are the masses of the vibrating atoms.

Unbranched, long-chain molecules with periodic structures can be considered as series of point masses, connected by chemical bonds with certain stretching- and bending-force constants. For the mathematical calculation of the molecular vibrations in such chains the coupled-oscillator model can be used (Born \& Von Kármán, 1912; Bartholomé \& Teller, 1932; Kirkwood, 1939; Pitzer, 1940; Zbinden, 1964).
Suppose we have a row of n point masses m connected by springs with a stretchingforce constant f and with interaction only between two neighbouring masses. For each vibration mode, n normal vibrations are found, with frequencies ν_{k} :

$$
\begin{equation*}
v_{k}=2 v_{\mathrm{o}} \sin \frac{\pi d}{\lambda_{k}} \tag{2}
\end{equation*}
$$

where
$k=1,2, \ldots, n$
$d=$ distance between two adjacent point masses
$\nu_{0}=$ eigenfrequency of one point mass $=\frac{1}{2 \pi} \sqrt{\frac{f}{m}}$
$\lambda=$ wave length
λ_{k} is given by (Zbinden, 1964)

$$
\begin{equation*}
\lambda_{k}=\frac{2 n}{k-1} d\left(\text { free ends) or } \lambda_{k}=\frac{2(n+1)}{k} d(\text { fixed ends })\right. \tag{3a,b}
\end{equation*}
$$

(see Fig. 11 for the fixed boundary case).
The phase shift φ_{k} between two adjacent point masses is given by the Born-Von Kármán (1912) periodicity condition

$$
\begin{equation*}
\varphi_{k}=\frac{2 \pi d}{\lambda_{k}} \tag{4}
\end{equation*}
$$

Substituting (3a, b) in (4) gives

6

5

4

Figure 11. Vibrations of a linear chain of eight point masses with fixed ends (Zbinden, 1964).

Figure 12. Frequency branches for the vibrations in a chain of eight point masses with fixed and free boundaries (Zbinden, 1964).

$$
\begin{equation*}
\varphi_{k}=\frac{\pi(k-1)}{n}\left(\text { free ends) or } \varphi_{k}=\frac{\pi k}{n+1}\right. \text { (fixed ends) } \tag{5a,b}
\end{equation*}
$$

where $k=1,2, \ldots, n$.
Substituting (4) in (2) gives

$$
\begin{equation*}
v_{k}=2 v_{0} \sin \frac{\varphi_{k}}{2} \tag{6}
\end{equation*}
$$

which indicates that the frequency is a function of the variable φ only.
Figure 12 gives the frequency-phase curve for eight point masses for the fixed and the free boundary model. These models represent extreme cases: actually the vibration modes in a molecule will be intermediate.

4.4 Vibrational analyses of n-paraffins

X-ray and infrared analyses have shown that hydrocarbons in the crystalline state assume the planar zigzag form (Müller, 1928; Krimm et al., 1967), so that the coupledoscillator model can be applied for calculations of their molecular vibrations.

Vibrational analyses of n-paraffins and related compounds have been carried out by a large number of authors, a.o. Kellner, 1945; Axford \& Rank, 1949, 1950; Brown \& Sheppard, 1950, 1954a, b, 1955; Brown et al. 1950, 1954a, b; Barrow, 1951; Primas

Figure 13. Frequency ranges for methylene and skeletal vibrations of normal hydrocarbon chains.
\& Günthard, 1953a, b; Tschamler, 1954; Liang et al., 1956; Krimm et al., 1956; Sheppard, 1959; Nielson \& Holland, 1960, 1961; Nielson \& Hathaway, 1963; Tasumi \& Shimanouchi, 1962; Tasumi et al., 1962; Snyder, 1960, 1961; Snyder \& Schachtschneider, 1962, 1963; Schachtschneider \& Snyder, 1963; Zbinden, 1964.

These experimental and theoretical studies agree in that the distributions of frequencies for the same type of vibrations are confined to relatively well-defined regions. Estimates of the location of these regions by various reported authors are given in Figure 13. There are some disagreements, while there are interactions of unknown magnitude, and also while perturbations from the methyl or other end groups are not taken into account.

As the calculations of Snyder and Schachtschneider are the most extensive and detailed, in the next sections I will use data especially from these authors.

4.5 Band distributions in n-paraffins

In polymethylene chains the distributions are due to methylene and skeletal vibrations.

There are six fundamental methylene vibrations: antisymmetrical stretching, symmetrical stretching, scissoring, wagging, twisting and rocking (Table 6). The carbon chain itself has three fundamental modes: C-C stretching, C-C-C angle bending and torsional vibrations about internal $\mathbf{C - C}$ bonds. This gives rise to nine separate distributions of frequencies. Figure 14 shows the frequency-phase diagrams for these

Figure 14. Frequency-phase diagrams of fundamental methylene and skeletal vibrations.
Contribution of fundamental vibration modes to the apparent

- methylene wagging (fig. 14a),
- methylene twisting-rocking (fig. 14b),
- skeletal stretching (fig. 14c),
- methylene rocking-twisting (fig. 14d) and
- skeletal bending (fig. 14e) modes.
distributions, as theoretically calculated and experimentally verified as far as possible by Tasumi et al. (1962).

There are two limiting modes to each progression, viz. the in-phase mode $\varphi=0$ and the out-of-phase mode $\varphi=\pi$; which is which depends on how the symmetry coordinates are defined. The nomenclature adopted by Schachtschneider and Snyder sometimes is the reverse of that used by Tasumi.

The apparent distributions in Figure 14 are in general not true fundamental modes, but a combination of fundamental modes. The contributions of the fundamental modes to the apparent modes as calculated by Tasumi et al. are illustrated in Figure 14 a-e for the methylene wagging, methylene twisting-rocking, skeletal stretching, methylene rocking-twisting and skeletal bending modes respectively. The skeletal stretching and bending modes contribute to the methylene-wagging distribution (Figure 14a), etc.

Schachtschneider and Snyder (1963) also included coupling with methyl vibration modes in their calculations. The methyl vibration frequencies reported by these authors are indicated in Figure 14. Their conclusions (Table 7) agree in the main those of Tasumi et al.

Methylene twisting and rocking vibrations appeared in two regions, one between ~ 1295 and $\sim 1170 \mathrm{~cm}^{-1}$ and the other between ~ 1060 and $\sim 720 \mathrm{~cm}^{-1}$. Earlier investigators had supposed that these regions contained twisting modes and rocking modes, respectively (Figure 13). The terms 'twisting-rocking' and 'rocking-twisting'

Table 7. Classification of normal modes according to the character of their motion (Schachtschneider \& Snyder, 1963)
CH_{3} asymmetric $\mathrm{C}-\mathrm{H}$ stretching: almost pure $\nu_{\mathrm{a}} \mathrm{CH}_{3}$
CH_{3} symmetric C -H stretching: almost pure $\nu_{\mathrm{s}} \mathrm{CH}_{3}$
CH_{2} antisymmetric $\mathrm{C}-\mathrm{H}$ stretching: almost pure $\nu_{\mathrm{a}} \mathrm{CH}_{2}$
CH_{2} symmetric C-H stretching: almost pure $v_{s} \mathrm{CH}_{2}$
CH_{3} asymmetric deformation: $1.6 \delta_{\mathrm{a}} \mathrm{CH}_{3}+0.4 \varrho \mathrm{CH}_{3}$
CH_{2} scissoring: $\sigma \mathrm{CH}_{2}$, strongly coupled with $\delta_{2} \mathrm{CH}_{3}$, coupling strongest near $\varphi=\pi$ and least near $\varphi=0$
CH_{3} symmetric deformation: almost pure $\delta_{8} \mathrm{CH}_{3}$, except when the wagging mode is near; then strong coupling with $\omega \mathrm{CH}_{2}$ occurs
CH_{2} wagging: mostly $\omega \mathrm{CH}_{2}$ with some $\nu \mathrm{CH}_{2}$ and $\delta_{2} \mathrm{CH}_{3}$
CH_{2} twisting-rocking: pure twist at $\varphi=0$, pure rock at $\varphi=\pi$; from $\varphi=0$ to $\varphi=\pi$ ratio rock/ twist varies from 0 to ∞
C-C stretching: mostly $\nu \mathrm{C}-\mathrm{C}$ with strong coupling with $\rho \mathrm{CH}_{3}$ and C -C-C bending near $\varphi=0$
CH_{3} terminal rocking: for long chains ($\mathrm{CH}_{2}>\sim 10$): mainly $\varrho \mathrm{CH}_{3}$, with $\nu \mathrm{C}-\mathrm{C}, \omega \mathrm{CH}_{2}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bending
CH_{2} rocking-twisting: pure rock at $\varphi=0$, pure twist at $\varphi=\pi$; from $\varphi=0$ to $\varphi=\pi$ ratio twist/ rock varies from 0 to ∞
C-C-C bending: almost pure C-C-C bending except near $\varphi=0$ where coupling with $\nu \mathrm{C}-\mathrm{C}$ occurs
C-C torsion: $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ torsion with contribution of $\mathrm{CH}_{3}-\mathrm{CH}_{2}$ torsion, greatest at highest frequencies
for these distributions were proposed by Snyder and Schachtschneider. Although the $720 \mathrm{~cm}^{-1}$ limit corresponding to $\varphi=0$ is indeed an in-phase methylene-rocking mode, the $1060 \mathrm{~cm}^{-1}$ is an out-of-phase twisting mode. Similarly, although the $1295 \mathrm{~cm}^{-1}$ limit is an in-phase twisting mode, the $1170 \mathrm{~cm}^{-1}$ limit is an out-of-phase rocking mode.
The C-C stretching distribution had a minimum in its frequency-phase curve. This implied an overlap in the successive absorption bands due to this vibration mode, which hindered the assignments. Pitzer (1940) already has deduced that a coupling of the C-C stretching mode with the C-C-C bending mode gives a curve with a minimum.

Snyder and Schachtschneider have pointed out that for shorter chains, particularly for those modes to which end groups contributed, φ and consequently k loose their physical significance.

4.6 Vibrational analysis of fatty-acid compounds

The infrared spectra of fatty acids and their salts and esters have been studied by various authors (review: Chapman, 1965b). In this section special attention will be paid to band progressions in these compounds.
Jones and Sinclair described a distribution of uniformly spaced bands in solid fatty acids and methyl esters from C_{12} to C_{21} between 1350 and $1180 \mathrm{~cm}^{-1}$, increasing in number with the chain length (Jones et al., 1952; Sinclair et al., 1952a, b). The band progression was diminished in intensity or destroyed by introduction of unsaturated linkages. In cis compounds an irregular pattern was obtained. The spectrum of the trans-unsaturated elaidic acid closely resembled that of one of the saturated acids of short chain length (C_{9} and not e.g. C_{12} as the authors mention), suggesting that the two sections of the chain on each side of the double bond behave as more or less independent units. These observations substantiated the view that a linear zigzag chain in the crystal is required for a well defined progression.

Corish \& Chapman (1957) found similar bands in the spectra of lower homologues (C_{2} to C_{12}), although the regularity seemed to decrease with decreasing chain length.

Von Sydow (1955) pointed out that the positions of the band progression peaks were not merely related to the chain length but also dependent on crystal forms.

By empirically defining the band progression region as $1350-1180 \mathrm{~cm}^{-1}$ the following relationship is reported for straight chain fatty acids by Meiklejohn et al. (1957):
Number of carbon atoms in the chain: \boldsymbol{n}
$\begin{array}{ll}n \text { even } & \text { Number of bands }=\frac{n}{2} \\ n \text { odd } & \text { Number of bands }=\frac{n+1}{2}\end{array}$
This 'rule of two' relationship is valid for solid acids and soaps. A compound with an odd number of carbons may be distinguished from the next higher even
numbered acid which has the same number of progression bands by a shift in wave length of the entire progression.

More of the progression bands for a soap can be seen than for the corresponding acid, due to the removal of the interfering $\mathrm{C}-\mathrm{O}$ stretching band at $1307 \mathrm{~cm}^{-1}$.

Using the 'rule of two', observed by Meiklejohn et al., Susi (1959) determined the position of the double bond in trans-6-through 11-octadecenoic acids. The number of bands was related to the total length of the chain segment next to the carbonyl group. Contrary to saturated acids, no distinct carboxyl band was found in the bandprogression region. Some weak bands occurring between the main progression bands,

Figure 15. Infrared spectra of the silver salts of saturated C_{9}, C_{10} and C_{18} fatty acids (Kirby et al., 1965).
Peaks assigned to methylene vibrations are numbered;

- black peaks $=$ wagging
- peaks joined by dotted lines $=$ twisting-rocking
- the remainder $=$ rocking-twisting

Peaks joined by solid lines are assigned to end group vibrations.
and partially overlapping with them, might be caused by the terminal chain segments (from the double bond to the methyl group). These segments behave much like unsubstituted n-paraffins, which show progression bands of considerably lower intensity and less regular spacings than the corresponding fatty acids.

Kirby et al. (1965) studied the methylene wagging, twisting and rocking vibrations in salts of saturated and unsaturated fatty acids. Some spectra are shown in Figure 15.

In the region $1070-710 \mathrm{~cm}^{-1}$ the increase of the number of peaks with chain length in saturated salts corresponded closely to hydrocarbon behaviour, as reported by Snyder \& Schachtschneider (1963). Forbidden peaks in the hydrocarbons were the weaker ones in the salt spectra. Salts with various cations gave practically identical curves.
In cis-unsaturated salts there were relatively fewer peaks. The trans-unsaturated elaidate salts spectra, however, were more similar to the corresponding saturated salts. Therefore the methylenes in the carboxylate segment produce the peaks in the ciscompounds, but the trans-compounds give the vibration of the entire length of chain. Apparently the cis-double bond disrupts the vibration of the fatty radical as a unit, but the slight distorsion of the chain by a trans-double bond does not prevent coupling of the rocking-twisting modes of the segments at opposite sides of this double bond.
The region $1380-1170 \mathrm{~cm}^{-1}$ was more confusing due to overlapping of the methylene wagging and methylene twisting-rocking vibration peaks. The total number of peaks and the relative intensities depended on the cation. Certain peak positions shifted very little with different cations. These were assigned to methylene wagging vibrations. Other peaks were seen only with some cations, particularly in silver and barium salts;

Table 8. Number of methylene groups in the chain of unsaturated compounds (Kirby et al., 1965).

Compound	Formula	Chain length as concluded from	
		methylene wagging $1380-1170 \mathrm{~cm}^{-1}$	methylene rocking-twisting $1070-710 \mathrm{~cm}^{-1}$
Cls-configuration			
petroselenate	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COO}^{-}$	4	4
palmitoleate	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COO}^{-}$	7	7
oleate	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COO}^{-}$	7	7
11-eicosanoate	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{COO}^{-}$	9	9
erucate	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{COO}^{-}$	11	11
	Conclusion:	carboxylate segment only	carboxylate segment only
Trans-configuration			
	Conclusion:	carboxylate segment only	total chain

these peaks were assigned to methylene twisting-rocking vibrations.
Unsaturated salts had fewer peaks in this region than saturated salts of the same chain length. The number and position of the peaks was related to the length of the carboxylate segment. This holds for cis as well as for trans-unsaturated salts in this region. Here in all respects elaidate spectra agreed with those of oleate salts.

Apparent chain lengths in unsaturated compounds concluded from comparison with saturated compound data are summarized in Table 8.

4.7 Theoretical considerations about distributions in triglycerides

In the preceding sections the coupled-oscillator model has been shown to work fairly well for a linear methylene zigzag chain. Thus a chain of n methylene groups will have n vibrations for each of the six fundamental methylene vibration modes (Section 4.3 and 4.5). For the skeletal vibrations there will be $n-1 \mathrm{C}$-C stretching vibrations, $n-2 \mathrm{C}-\mathrm{C}-\mathrm{C}$ bending vibrations and $n-3 \mathrm{C}-\mathrm{C}$ torsion vibrations.
I applied the model to the triglycerides under investigation, with the aim of calculating the number of bands for a given compound. This treatment appears to involve some practical and theoretical difficulties.

In practice it appears that the actual number of bands found in the spectra does not agree with that predicted for the following reasons (cf. Chapter 5; see also Figure 14).

The absorption regions of the methylene antisymmetric and symmetric stretching distributions are too small for seperate bands to be identified.

The methylene wagging distribution is above $1385 \mathrm{~cm}^{-1}$ masked by the strong methyl symmetric deformation band.

The methylene twisting-rocking bands are very weak compared to the methylene wagging modes, which absorb in the same region.

At the high frequency end, the intensities of the rocking-twisting bands are also weak, and moreover there is an overlap with the C - C stretching modes. Identification of the latter is further hampered by the minimum in its frequency-phase curve (Figure 14).

The other skeletal bending and torsion vibrations fall totally or almost totally outside the examined region.

Besides these practical difficulties there are also some theoretical problems.
The model contains the simplifications of discounting the intramolecular and intermolecular effects which actually do occur.

For a polymethylene chain having n carbon atoms, mostly a phase difference

$$
\begin{equation*}
\varphi_{k}=\frac{\pi(k-1)}{n} \tag{5a}
\end{equation*}
$$

where $k=1,2, \ldots, n$
is accepted (Section 4.3), but there are several variations between authors as cited in Section 4.4.

The phase difference of the normal coordinates of a finite chain is difficult to find when appreciable coupling between two symmetry coordinates occurs (Tasumi et al., 1962; Pitzer, 1940). The phase differences of the resultant normal coordinates will then not agree with that from formula (5a), and cannot be defined in this way. In practice, however, workable results are obtained, even when coupling occurs.
Special problems are the border conditions and the choice of chain length which has to be considered in a given compound. As to the border conditions, Zbinden (1964) has pointed out, that the fixed-end model seems more realistic for the methylene rockingtwisting distribution in hydrocarbons than the free-end model. This justifies the use of formula (5a) in that case.

As far as the choise of chain length, the question is whether the end groups have to be taken into account, especially when this concerns a methyl group.

For the skeletal vibrations generally it is assumed that this is so (Brown, Sheppard \& Simpson, 1954a; Sheppard, 1959; Schachtschneider \& Snyder, 1963); it is a plausible assumption. An n-paraffin with n methylene groups will then have $n+1 \mathrm{C}$ - stretching vibrations, $n \mathrm{C}-\mathrm{C}-\mathrm{C}$ angle bending vibrations, $n-1 \mathrm{C}-\mathrm{C}$ torsion vibrations.
For the calculation of the number of vibrations in C-H distributions, however, most authors discount the CH_{3} groups (Brown, Sheppard \& Simpson, 1954a; Sheppard, 1959; Tasumi et al., 1962; Schachtschneider \& Snyder, 1963; Kirby et al., 1965). Brown \& Sheppard (1955) compare decamethylene halides with n-dodecane 'which has the same number of CH_{2} groups'.

However, comparison of the methylene wagging distribution of n-alkyl bromides (Brown \& Sheppard, 1954a) with those of n-paraffins (Snyder \& Schachtschneider, 1963) suggests that the total number of carbons, including the $\mathbf{C H}_{\mathbf{3}}$ groups is the significant figure.

Results obtained by Meiklejohn et al. (1957) on saturated long-chain fatty acids, and by Susi (1959) on octadecanoic acids also indicate that the number of bands is closely related to the total length of the chain or chain segment rather than the number of methylene units. The same conclusion is suggested by data of Corish \& Chapman (1957).

Snyder \& Schachtschneider (1963) point out that in cases where strong interaction does occur between the methylene chain and the methyl group vibrations, an extra mode $k=0$ or $k=n+1$ seems to occur. They report the mode $k=n+1$ for some of the rocking-twisting and twisting-rocking distributions.

As in triglycerides two different end groups are present in the hydrocarbon chain segments, namely one methyl and one carbonyl group, the border conditions will differ from those of n-paraffins. Intra- and intermolecular effects can be expected. Nevertheless I succeeded in assigning distributions in triglycerides with help of n-paraffins data. I found a remarkable agreement between the progressions of the methylene rocking-twisting and the methylene-wagging modes in triglycerides $\left[\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{n-2}-\mathrm{COO}_{3} \mathrm{C}_{3} \mathrm{H}_{5}\right.$ and paraffins $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{n-3}-\mathrm{CH}_{3}$ respectively; that means, a C_{n} triglyceride has to be compared with a $\mathrm{C}_{n-1} n$-paraffin.

Table 9. Compounds showing corresponding band progressions for methylene vibrations.

Compound	Formula
C_{-1} paraffin	$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{n-3}-\mathrm{CH}_{3}$
$\mathrm{C}_{\mathrm{n}-1}$ alkyl bromide	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}-2}-\mathrm{Br}$
C_{n} fatty-acid salt	$\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}-2}-\mathrm{COONa}^{2}$
C_{n} triglyceride	$\left[\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{\mathrm{n}-2}-\mathrm{COO}\right]_{3} \mathrm{C}_{3} \mathrm{H}_{5}$

In the case of the C -C stretching mode the situation is less clear, but it seems that the best agreement is obtained when the same rule is assumed to be valid.

For fatty-acid salts from acetates to behenates, Kirby et al. (1965) account for the methylene groups only. I have evaluated the reported methylene distributions with respect to those of the n-paraffins as given by Snyder \& Schachtschneider and of the triglycerides, and could conclude that a C_{n} fatty acid salt, a C_{n} triglyceride and a C_{n-1} paraffin correspond to each others.

If it is assumed that the methyl groups do not participate in the methylene vibration, the same chain length can be constructed in the considered compounds (Table 9) when the $a-\mathrm{CH}_{2}$ having a particular position is also excluded in the substituted hydrocarbons. The length of the vibrating hydrocarbon chain, and in consequence also the number of bands then will be $n-3$.

If, on the other hand, the $\alpha-\mathrm{CH}_{2}$ is counted with the other methylenes, also the methyl groups have to be included to obtain the same chain lengths and the chain length and the number of bands will be $n-1$.

As the total number of bands cannot be determined from the spectra, these suppositions cannot be verified directly from the spectroscopic results. The latter proposition is indirectly confirmed, however, from the examination of an α-dideuterated triglyceride, Section 5.5.3. This showed that in triglycerides all methylene groups take part in the methylene vibrations, including the $\alpha-\mathrm{CH}_{2}$. So I conclude that probably methyl end groups take part to methylene vibrations of long-chain hydrocarbons and related compounds.

5 The infrared spectra of the triglycerides

5.1 Presentation of the spectra of triglycerides $\mathrm{C}_{2}-\mathrm{C}_{22}$

The infrared spectra from 1500 to $400 \mathrm{~cm}^{-1}$ of triglycerides from triacetin $\left(\mathrm{C}_{2}\right)$ to tribehenin (C_{22}) were recorded using the technique described in Chapter 3 (Figs. 16-36).

The minimum scanning temperature, about $-180^{\circ} \mathrm{C}$, was limited by the temperature of the cooling medium: liquid nitrogen. At this temperature spectra of the polymorphic crystalline states were obtained from trienantoin (C_{7}) up (Figs. 21a, b, c,$36 a, b, c)$. For the series triacetin $\left(C_{2}\right)$ to tricaproin $\left(C_{6}\right)$ no solid state spectra could be obtained. In these cases the spectra at $-180^{\circ} \mathrm{C}$ are shown, although not of a crystalline state (Figs. 16a-20a).

The spectra of the liquid form (Figs. 16d-36d) were examined either at room temperature or, for the higher members, at elevated temperature, above the melting point. On these spectra the scanning temperatures are indicated.

In all spectra the wave numbers 1400,1300 , etc. are indicated by a marker pip. Sometimes two weak bands at about $660 \mathrm{~cm}^{-1}$ are present due to absorption of water vapour.
The band positions in the polymorphic forms are collected in tables 10-25.
Most of the very weak and weak bands are considered to originate from so far unknown higher-order interactions and are ignored. I could assign the majority of the observed medium and strong bands to definite vibration modes. These assignments, which are based on the spectra in figures 21-36 and on other spectra, not shown here, are listed in tables $\mathbf{1 0 - 2 5}$. Various series of bands will be considered in detail in the following sections.
(Text continued on page 116.)

Figure 16a, d. Infraned spectra of triacetin.

Figure 18a, d. Infrared spectra of tributyrin.

Figure 19a, d. Infrared spectra of trivalerin.

Figure 21a, b, c, d. Infrared spectra of trienantoin.

β form omitted

Figure 23a, b, d. Infrared spectra of tripelargoin.

Figure 24a, b, c, d. Infrared spectra of tricaprin.

Figure 25a, b, c, d. Infrared spectra of triundecylin.

Figure 26a, b, c, d. Infrared spectra of trilaurin.

Figure 29a, b, c, d. Infrared spectra of tripentadecylin.

Figure $\mathbf{3 0 a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$. Infrared spectra of tripalmitin.

Figure 32a, b, c, d. Infrared spectra of tristearin.

Figure 33a, b, c, d. Infrared spectra of trinonadecylin.

β^{\prime} form omitted

Figure 34a, c, d. Infrared spectra of triarachidin.

β^{\prime} form omitted

Figure 36a, c, d, Infrared spectra of tribehenin.

Figure 37a, b, c, d. Infrared spectra of glycerol-tri-(perdeutero-laurate).

Explanation of the Tables $\mathbf{1 0 - 2 5}$

$$
\begin{aligned}
& \mathrm{vs}=\text { very strong } \\
& \mathrm{s}=\text { strong } \\
& \mathrm{m}=\text { medium } \\
& \mathrm{w}=\text { weak } \\
& \mathrm{vw}=\text { very weak } \\
& \mathrm{sh}=\text { shoulder } \\
& \mathrm{b}
\end{aligned}
$$

	む	$\mathfrak{¢}$ ¢	ค	山	
aの日3	3 \＃g白め	のシ気をの日	3日日	a ${ }^{\text {a }}$	日日gきa
芯罗会合			禺通亏	各品	
《 ${ }_{\text {d }}$	芯	\pm \＆$\underbrace{\text { a }}$	Q m	L	
	二a33		E 3	g	3 令 E_{3}
	∞_{∞}^{∞}		70\％	会奚	
	$\begin{aligned} & \text { 荀 } \\ & + \\ & \vdots \end{aligned}$	\％\％			
3				E 3	38
Nos		웃쑤N		会会	等等

3

$\begin{aligned} & 1390 \\ & 1380 \\ & 1344 \\ & 1322 \end{aligned}$	$\begin{aligned} & \mathbf{s h} \\ & \mathbf{s} \\ & \mathbf{m} \\ & \mathbf{w} \end{aligned}$	$\} \begin{aligned} & \delta_{4}+\omega \\ & \omega_{3} \\ & \tau\end{aligned}$	$\begin{aligned} & 1397 \\ & 1383 \\ & 1371 \\ & 1366 \\ & 1356 \\ & 1347 \\ & 1342 \\ & 1324 \\ & 1305 \end{aligned}$	$\begin{aligned} & \mathbf{s} \\ & \mathrm{m} \\ & \mathrm{~m} \\ & \text { sh } \\ & \text { sh } \\ & \mathbf{s} \\ & \text { sh } \\ & \mathbf{s} \\ & \mathbf{s h} \end{aligned}$	$\delta_{s}+\omega$ ω_{3}
1296	m	ω_{2}	1295	s	ω_{2}
1282	w	$\boldsymbol{\tau}$	1276	s	
1262	w		1251	sh	
1238	sh		1237	s	ω_{1}
1234	m	ω_{1}	1206	sh	
1201	sh				
~ 1180	vs	$v_{\mathrm{A}} \mathrm{C}-\mathrm{O}$	~ 1180	vs	$y_{A} \mathrm{C}-\mathrm{O}$
1115	s	$\nu_{B} \mathrm{C}-\mathrm{O}$	1123	m	ν_{1} ？
				m	$\nu_{\mathrm{B}} \mathrm{C}-\mathrm{O}$
1072	vw	ν_{2}	1072	m	y_{2}
1060	w		1058	sh	

\＃\ddagger घ
이응 응

$\underbrace{\text { B }}$	$\begin{gathered} \text { + } \\ \stackrel{\rightharpoonup}{\Sigma} \\ \hline \end{gathered}$	\＆\＆¢
		の日気日。
		足き區员界
$$	＊	cs
＊日	－ $\mathrm{B}_{\text {B }}$	日。 ${ }^{\text {a }}$
๕n\％		ズき

\footnotetext{
Table 12. Tripelargoin, glycerol trinonanoate, C_{9}.

$\underset{\infty}{0}$		$8<$	誌咸
$=\begin{aligned} & \infty \\ & e \\ & e \end{aligned}$			
		8	荮
	日日日日号		＊日 方 方
	N 엉 엉 응 응		:ion O

Table 13. Tricaprin, glycerol tridecanoate, C_{10}.

	ミ ¢ ¢ ¢	＊\＆	$\begin{array}{r} \text { 䔍 } \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$
$\pm \infty$		の引日aをきをお	
$3 \text { 킄클 }$			
$\begin{array}{r} 8 \\ 8 \\ \mathbf{n} \end{array}$	ざ～ご	\pm \＆	$\begin{aligned} & \text { 毕 } \\ & \text { + } \\ & + \\ & \text { ゅ } \end{aligned}$
含先			方皆を引き日の
示気合			
$\begin{aligned} & 0 \\ & \text { Bun } \end{aligned}$	ざご気	\pm を	$\begin{aligned} & \text { 若 } \\ & + \\ & + \\ & \stackrel{y}{\circ} \end{aligned}$ ®
－	3 告	＊ B_{3}	
苞			¢ ¢ \％

Table 15. Trilaurin, glycerol tridodecanoate, C_{12}.

＝ 8	\％ $\mathrm{Fs}=$ ：	：	－ 0
\％		日里：	－8ıama
Brea			
8	E：		号を＂
5		Brasama	88．3日：
O			
		： 8	家
：		\＃8日明	－${ }^{\text {an }}$
$\stackrel{\otimes}{\underline{1}}$			－\％\％\％\％\％\％

Table 16. Tritridecylin, glycerol tritridecanoate, C_{13}.

－山 山

日回 以

今日

$$	$\stackrel{m}{\infty} \underset{\sim}{\infty}$
5告日成为	の日三或日品日
$\begin{array}{ll} 8 & 0 \\ 2 & 8 \\ 2 \end{array}$	
9 P	
옼․․․․	

$\boldsymbol{\alpha}$			β^{\prime}			β		
1476	vs	σ	1477	vs	σ	1492	sh	
1464	vs		1462	vs)	1479	sh	
1460	sh	$\delta_{a}+\sigma$	1457	sh		1475	vs	
1440			1446	vw	$\delta_{\mathrm{a}}+\sigma$	1467	sh	σ
1422	sh		1435	m		1460	sh	
1415	m	σ_{α}	1426	vw		1455	w	$\delta_{a}+\sigma$
			1412	s	σ_{α}	1444	m	
						1438	sh	
						1433	vw	
						1422	m	$\sigma_{\boldsymbol{a}}$
						1416	w	
1385	s	$\delta_{s}+\omega$	1397	m		1394	s	$\delta_{8}+\omega$
1365	w	ω_{8}	1382	m	$\delta_{8}+\omega$	1385	sh	ω_{9}
1349	m	ω_{7}	1376	m		1372	m	
1331	s	ω_{6}	1365	w	ω_{8}	1366	m	ω_{8}
1305	m	ω_{5}	1353	m	ω_{7}	1351	s	ω_{7}
			1344	w		1340	m	
			1338	w		1332	s	ω_{6}
			1331	s	ω_{6}	1319	m	
			1320	m		1310	sh	
			1316	sh	τ	1306	W	τ
			1306	s	ω_{5}	1300	w	τ
1292	w	$\boldsymbol{\tau}$	1298	w	$\boldsymbol{\tau}$	1295	s	ω_{5}
1280	S	ω_{4}	1293	m	τ	1291	sh	$\boldsymbol{\tau}$
1272	sh		1280	s	$\} \omega_{4}$	1280	s	$\} \omega_{4}$
1255	s	ω_{3}	1272	m	$\}^{\infty} 4$	1275	s	$\int \infty_{4}$
1250	sh		1269	sh		1261	w	
1238	sh	τ	1260	vN	τ	1256	s	ω_{3}
1228	s	ω_{2}	1254	8		1251	w	
1200	s	ω_{1}	1251	vw	ω_{3}	1245	m	

	u + ？ 3 \qquad $\overbrace{-}^{2}$ ๗	よ ஃ ๕ \＆
$\approx \approx \underbrace{\substack{4 \\ \vdots}}$ is 		¿）$\underbrace{\text { ® }}$ \qquad
淢 \ddagger	热	を \％\％\％
$33^{3} 3 \mathrm{y}{ }^{3}$		E3䂞を的
	\％No	

Table 18．Tripentadecylin，glycerol tripentadecanoate， C_{15} ．

日凹 以

Am	山	
E 3	事产 3 云	
\％\％		
$\stackrel{0}{8}$	品会》	家 ${ }^{\text {B }}$
¢	会素慈	寺守雨咢

Table 19. Tripalmitin, glycerol trihexadecanoate, C_{16}.

[

以

$\infty 5 \geqslant$ 日

응웅 웅응응응

α			β^{\prime}		β			\boldsymbol{a}			β^{\prime}			β		
1476	vs	σ	1477	vs σ	1477	sh	σ									
1467	sh		1464	vs 1	1471	vs		990	vw	$\nu_{5,7}$?	998	vw		992	m	$v_{5,7}$
1464	vs		1459	sh $\delta_{\text {a }}+\sigma$	1462	sh		976	sh		985	sh		985	m	
1460	sh	$\delta_{4}+\sigma$	1449	sh $\}^{\delta_{4}+\sigma}$	1458	sh	$\delta_{a}+\sigma$	948	m	ϱ_{12}	978	m		978	vw	
1445	sh		1436	w	1453	vw		927	vw		971	w		973	sh	ν_{6}
1414	m	σ_{α}	1422	sh	1444	m		907	sh		964	w		964	vw	
			1414	s σ_{α}	1427	sh					951	s	e_{12}	959	m	
					1423	m					933	vw		951	sh	
					1419	sh	σ_{a}				923	m	A	940	vw	
					1417	sh					918	sh		928	vw	
														920	m	
1384	s	$\delta_{s}+\omega$	1397	m	1396	sh								910	vw	
1370	w	ω_{10}	1384	sh $\} \delta_{s}+\omega$	1393	s	$\delta_{s}+\omega$							901	s	$@_{11}$
1353	w	ω_{9}	1380	m	1385	vw										
1338	m	ω_{8}	1374	sh	1373	m		898	m	ϱ_{11}	899	m	ϱ_{11}	897	s	C
1323	m	ω_{7}	1371	sh	1366	w		887	m	$\varrho \mathrm{CH}_{3}$	892	w	$\varrho \mathrm{CH}_{3}$	888	w	$\varrho \mathrm{CH}_{3}$
1301	s	ω_{6}	1359	w ω_{9}	1355	w		860	w	ϱ_{10}	880	vw		883	m	
			1352	sh	1345	sh		837	vw		873	w		874	w	
			1342	$\mathrm{m} \quad \omega_{8}$	1339	s		823	m	$\varrho 9$	859	w	ϱ_{10}	860	vw	
			1334	sh	1332	w					844	vw		854	m	ϱ_{10}
			1325	m $\quad \omega_{7}$	1325	m	ω_{7}				832	m	B	840	vw	
			1319	sh	1313	m					823	m	e9 9	822	s	ϱ_{9}
			1314	m	1309	sh					809	vw		805	vw	
			1304	$\mathrm{s} \quad \omega_{6}$	1305											
					1302	m		791	w	@8	791	w	ϱ_{8}	791	w	ϱ_{8}
								775	vw		780	vw		773	w	
1284	vw		1294	m \boldsymbol{r}	1293	s		770	m	$\varrho 7$	765	m	ϱ_{7}	763	w	$@_{7}$
1280	s		1282		1287	w		752	w		754	sh		751	vw	
1261	,	ω_{4}	1277	s $\} \omega_{5}$	1281	sh		745	sh	es	746	sh	@6	746	w	ϱ_{6}
	s										739		es			
1225	sh		1258	sh $\}^{\omega_{4}}$	1273	sh			vs	ϱ_{1-4}	736		ϱ_{4}			ϱ_{4}
1217	s	ω_{2}	1244	sh τ	1263	s					732	vs		722		

\％ $\mathrm{a}_{\text {a }}$		
	尔品은	

E		
중응	会寅䓌会菏	
${ }^{\text {B }}$		$3{ }^{3}$
중융	各弥志哭	㠻寺

の告日告め	
	\％\％\％

$\begin{array}{r} 0 \\ 3 \\ 3=2 \end{array}$	ミニさミロ

Table 21. Tristearin, glycerol trioctadecanoate, C_{18}.

B	
\％	
§ ${ }^{\text {\％}}$	
듂 ${ }_{\sim}^{\circ}$	
\＃ 3	＊
京	尔毞年

n
+
+
0
0
0

$\begin{array}{cc}8 & 8 \\ 3 \\ 3 & 8 \\ 8\end{array}$
 a
+
à
à

을욱을를을

－田山

25	ョa a	β	
± 9	\％\％	$\underset{\sim}{\sim}$	
$\underbrace{ \pm}$	日	山	
\％ 93	E日	¢ ${ }^{3} \overrightarrow{3}$	
\％	\％	～0\％	
		333	333
		No	「等夆

（

$\begin{gathered} 0 \\ 3 \\ 3 \end{gathered}$	2～	$\begin{aligned} & 0 \\ & 0 \\ & \text { m } \end{aligned}$	
	$3{ }^{3}$		
욱울	$\stackrel{\sim}{\boldsymbol{m}} \underset{\vec{y}}{\infty}$		

\boldsymbol{a}			β^{\prime} omitted	β		
996	w	ν_{9}		998	m	$\nu 9$
984	vw	$\boldsymbol{\nu}_{6,7,8}$		987	w	$\nu_{6,8}$
965	w	e_{15}		977	w	ν_{7}
947	m	ϱ_{14}		966	w	
936	vw			962	w	ϱ_{15}
926	vw			952	w	ϱ_{14}
908	vw			934	vw	
				925	sh	
				921	w	
				911	vw	
				902	s	$e_{13}+\mathrm{C}$
898	m	ϱ_{13}		898	s	
		$\varrho \mathrm{CH}_{3}$				
866		ϱ_{12}			m	$\varrho \mathrm{CH}_{3}$
834	m	Q_{11}		876	w	
806	w	ϱ_{10}		866	vw	
				859	w	ϱ_{12}
				847	vw	
				833	m	$@_{11}$
				820	vw	
				805	w	ϱ_{10}
790	vw			790	w	
781	m	O_{9}		780	m	ϱ^{9}
761	w	ϱ_{8}		767	vw	
746	m	ϱ_{7}		760	w	ϱ_{8}
				750		
	vs	Q 1-6		746	m	Q7
				733	m	ϱ_{6}

Table 23. Triarachidin, glycerol trieicosanoate, C_{20}.

$\boldsymbol{\alpha}$			β^{\prime} omitted	β		
1473	vs	σ		1476 sh		
1462	vs			1473	vs	σ
1455	sh	$\delta_{a}+\sigma$		1460	m	
1440	sh			1453	m	$\delta_{a}+\sigma$
1420	sh			1442	m	
1412	m	σ_{a}		$\begin{aligned} & 1420 \\ & 1414 \end{aligned}$	m	σ_{α}
1383	s	$\delta_{s}+\omega$		1395 s		
1355	w	ω_{11}		1383	w	$\delta_{s}+\omega$
1343	m	ω_{10}		1372	w	
1331	m	ω_{9}		1370	m	
1316	m	ω_{8}		1356	w	ω_{11}
				1344	m	ω_{10}
				1338	m	
				1331	s	ω_{9}
				1323	w	
				1317	m	ω_{8}
				1307	m	τ ?
				1300	w	
1297	m	ω_{7}		1297	w	ω_{7}
1284	sh	\boldsymbol{r}		1290	s	
1279	s	ω_{6}		1284	w	τ
1273	sh			1278	sh	
1262	s	ω_{5}		1276	s	ω_{6}
1245	s	ω_{4}		1271	sh	
$\begin{aligned} & 1227 \\ & 1209 \end{aligned}$	s	ω_{3}			s	
	s	ω_{2}		1262	sh	ω_{5}
				1257	w	τ
				$\begin{array}{r} 1248 \\ 1245 \end{array}$	s	

Table 24. Triheneicosanoin, glycerol triheneicosanoate, C_{21}.

> 以

■

38
388
888

$\begin{aligned} & 3 \text { 多 } \\ & \text { ~i } \\ & \text { in } \end{aligned}$

\%

\geqslant

$\begin{array}{r} 8 \\ \mathrm{O} \\ \end{array}$	$=\frac{\stackrel{m}{j}}{\stackrel{y}{j}}=$	E ${ }^{\circ}$
¢ \# ¢		

For the assignments of bands as reported in Tables 10-25 the spectra of the following series of compounds were compared.

- The homologous series of the triglycerides and the hydrocarbons, the latter mainly as assigned by Snyder \& Schachtschneider (1963).
- The α, β^{\prime}, and β form of each of the triglycerides.
- The homologous series of the α forms.
- The homologous series of the β^{\prime} forms.
- The homologous series of the β forms.
- Some normal and deuterated triglycerides of the same chain length.

Attention was paid both to the position of the bands and their shapes. Sometimes intensity calculations were helpful in detecting corresponding bands.

The first conclusion is that in the triglyceride spectra the absorption pattern of n-paraffins are recognizable, especially for the higher triglycerides (Section 5.3). This agrees with the results mentioned in Chapter 4 for fatty acids and their salts and methyl esters. But the triglyderide spectra are more complicated, due to the greater number of possible vibrations. In fact, the hydrocarbon chain can be considered as 'characteristic group' in the triglyceride molecule, in the same way as, e.g. the carbonyl group.

In triglyceride spectra two band collections can be considered: one originating from the hydrocarbon chains and another consisting of bands due to the glycerol 'head', including the carboxyl groups. The hydrogen part of the spectra will vary throughout the homologous series, but it may be expected that the vibrations arising from the glycerol head will be constant in number and approximate position. Intraand intermolecular effects give rise to additional complications.

Secondly, the spectra of the α, β^{\prime} and β forms are different: each of the crystallization phases has its own appearance throughout the homologous series.

In the field of infrared spectroscopy it is often just assumed, that a compound has its characteristic spectrum. This is a dangerous proposition, and the triglyceride spectra shown here are a convincing example that the infrared spectra are not only dependent on the molecular composition, but also on the molecular structure and on the relation between the molecules and their surroundings.

In the spectra of all crystallized triglycerides a number of strong to medium absorption bands were observed, which show only minor variations for various triglycerides, as well as for the various polymorphic forms of the same triglyceride. The major part of these bands have already been interpreted (Table 26).

The remaining absorption pattern as a whole is dependent both on kind of triglyceride and polymorphic form, in number and position of bands. Therefore in the following sections the homologous series in the α, β^{\prime} and β form will be discussed separately.

Table 26. Characteristic bands in the spectra of triglycerides.

Approximate frequency (cm^{-1})	Intensity	Assignment	
2925	very strong	methylene asymmetric stretching	
2850	very strong	methylene symmetric stretching	
1740	very strong	$\mathbf{C}=\mathbf{O}$ stretching	
1475	strong	methylene scissoring	
1470	strong	combination methylene scissoring	
1460-1440	some shoulders	+ methyl asymmetric deformation	
1415	medium	α-methylene scissoring ${ }^{\text {a }}$	
1385	strong	methyl symmetric deformation	
1180	very strong	$\mathrm{C}-{ }^{\wedge} \mathrm{O}$ stretching of $]-\mathrm{C}{ }^{\wedge}-\mathrm{O}-\mathrm{CH}_{2-\mathrm{B}}$	
1115	strong	C ${ }^{\text {B }}$ O stretching of $\}$ \|	
890	medium	methyl rocking $\quad 0$	

a. Corish \& Chapman (1957), Sinclair (1952a).
b. Thompson \& Torkington (1945), Tschamier (1953).

5.3 Assignments of spectra of the α forms

In Chapter 4 molecular vibrations due to methylene chains in n-paraffins, alkyl halides, polymethylene halides, fatty acids and their salts and methyl esters are discussed. These vibrations resulted in various series of band progressions.

I have found that corresponding band progressions also do occur in triglyceride spectra. In spite of the more complicated structure, the vibrations of the hydrocarbon chains evidently exist almost unaltered in triglyceride spectra.

When it is taken into account that in n-paraffins some vibrations are forbidden by symmetry considerations, the number of bands or band progressions and their position in triglycerides agree well with those of n-paraffins. For this agreement it proved to be necessary to compare a triglyceride with n methylene groups in the fatty acid chains with an n-paraffin having $n-1$ methylene groups (See further discussion in Section 4.7).

I succeeded in assigning band progressions due to methylene wagging, methylene rocking-twisting and skeletal vibration modes.

The methylene wagging modes in the region between 1385 and $1185 \mathrm{~cm}^{-1}$ form a series of regular medium to strong bands. These bands are much more intense than the corresponding ones in n-paraffin spectra. They mask the progression of the methylene twisting-rocking modes, which occurs in the same range (Section 4.5).

Some additional weak bands or shoulders are probably twisting-rocking bands, but they could not be combined into a regular progression.

As a consequence of the presence of the polar group at the head of the hydrocarbon chain the methylene wagging modes become much stronger while the inten-
sities of the methylene twisting-rocking modes do not alter. This means that the dipole moment change in the wagging mode is strongly influenced by the polar end, signifying presumably that a considerable movement of the carbonyl group is involved in this normal mode. The alternative explanation, that the strong intensity might be due to the wagging of an induced dipole in the $\alpha-\mathrm{CH}_{2}$ is extremely unlikely since in that case the twisting-rocking modes would have an increased intensity as well.
The methylene wagging region is bounded by the strong CH_{3} symmetric deformation band at about $1385 \mathrm{~cm}^{-1}$ and the very strong C-O stretching band at $1180 \mathrm{~cm}^{-1}$. Snyder and Schachtschneider have calculated that, theoretically, the methylene wag-

Figure 40. Methylene wagging mode array for triglycerides $\mathrm{C}_{7}-\mathrm{C}_{22}$.
ging mode frequencies should go up to $1420 \mathrm{~cm}^{-1}$, but the high frequency modes are masked by and coupled with the CH_{3} symmetric deformation band. The most in-phase methylene wagging mode ($k=1$, Section 4.3 and 4.7) is situated adjacent to the $\mathrm{C}-\mathrm{O}$ band. It shifts from $1234 \mathrm{~cm}^{-1}$ in C_{7} to $1190 \mathrm{~cm}^{-1}$ in C_{22}.

Throughout the homologous series, when the chain lengthens, even new bands appear by shifts to lower wavelenghts, first as a shoulder on the $\delta_{3} \mathrm{CH}_{3}$. The 'rule of two' relationship of Meiklejohn et al. (1957) drawn up for solid fatty acids and soaps (Section 4.6) obviously does not hold for triglycerides. E.g. for C_{18} ten bands and a small shoulder are found. The appearance of the shoulders are moreover dependent on the recording temperature of the samples and on the resolution of the spectrometer.

The array of methylene wagging bands is shown in Figure 40. All k values are allowed for all triglycerides, contrary to n-paraffins, where for even numbered ones the even k values are forbidden (Snyder \& Schachtschneider, 1963).

As mentioned above no regular methylene twisting-rocking distribution is observed, for these bands are masked by the much stronger methylene wagging modes. It may be expected that in the Raman spectra the reverse will be the case, so that in a further study using Raman spectroscopy this distribution can be found. In the tables 10-25 some uncertain assignments of methylene twisting-rocking bands are indicated.

The region between 1150 and $950 \mathrm{~cm}^{-1}$ includes the $C-C$ stretching vibrations. Their pattern is rather irregular; Section 4.5 already indicates that their frequencyphase diagram will have a minimum. Further complications are the overlap of the high frequency methylene rocking-twisting vibrations below $1060 \mathrm{~cm}^{-1}$ and the presence of a strong $\mathrm{C}-\mathrm{O}$ stretching vibration at $1115 \mathrm{~cm}^{-1}$ and of other vibrations of the triglyceride molecules with intensities similar to those of the C-C stretching vibrations. Nevertheless a number of absorption bands could be assigned tentatively to the C-C stretching vibrations with a satisfactory degree of certainty.

Figure 41 shows the array of skeletal stretching vibrations. Again all k values are allowed in the triglycerides, whereas for even n-paraffins only $k=$ even values are allowed.

The methylene rocking-twisting modes in the region $1060-720 \mathrm{~cm}^{-1}$ are mixtures of fundamental rocking and twisting modes (Section 4.5). In the triglyceride spectra all rocking-twisting modes are allowed, the $k=$ odd are the more intense, whereas in paraffins the $k=$ even modes are forbidden. The number of bands and their positions in C_{n} paraffins agree well with the $k=$ odd bands in the C_{n-1} triglycerides.

The array of methylene rocking-twisting modes for triglycerides is shown in Figure 42.

A band about $890 \mathrm{~cm}^{-1}$ in all spectra is assigned to the methyl rocking mode (Chapman, 1965b).

Figure 41. Skeletal stretching mode array for triglycerides $\mathrm{C}_{7}-\mathrm{C}_{22}$.

Skeletal bending vibrations should be present in the region below $700 \mathrm{~cm}^{-1}$. However, the observed bands in this region, so far could not be assigned to definite vibration modes.

5.4 Assignments of the spectra of the β^{\prime} and β forms

The transition of the α form into the β^{\prime} and the β forms results in changes in the infrared spectra, of which sharpening of the absorption bands is most obvious: the peaks are higher and narrower, though the integrated area is approximately the same.

Figure 42. Methylene rocking-twisting mode array for triglycerides $\mathrm{C}_{7}-\mathrm{C}_{22}$.

Again, in the β form the bands are sharper than in the β^{\prime} form. As sharp bands are correlated with a well-defined structure, these phenomena show that the a-crystals are the less well-formed, and the β-crystals are the most regularly shaped ones.

In Chapter 2 some marked differences of some triglycerides between the three crystallization forms have already been mentioned. The main rocking band has proved to be especially characteristic for the various polymorphic forms ($\alpha: 720 \mathrm{~cm}^{-1}$; β^{\prime} : 726 and $719 \mathrm{~cm}^{-1} ; \beta: 717 \mathrm{~cm}^{-1}$). Further differences are reported in the $1250 \mathrm{~cm}^{-1}$ region. A strong band near $900 \mathrm{~cm}^{-1}$ was present in the β form only.

These observations were confirmed by the examinations of the whole series of

Table 27. Intercomparison of the infrared spectra of the polymorphs of triglycerides.

	α	β^{\prime}	β
Quantity of absorption bands	less bands	more bands	still more bands
Appearance of bands	not sharp	sharp	very sharp
$\sigma \mathrm{CH}_{2}$	1475	ditto	ditto
$\delta_{8} \mathrm{CH}_{3}+\sigma \mathrm{CH}_{2}$	1470-1450	ditto ${ }^{1}$	ditto ${ }^{1}$
		1436 extra band	1439 extra band
$\sigma\left(a-\mathrm{CH}_{2}\right)$	1418 m	1415 s	$\begin{aligned} & 1425-1415 \mathrm{~m} \\ & \text { doublet or triplet } \end{aligned}$
$\delta_{5} \mathrm{CH}_{3}$	13801 broad	1395 sharp	13951 sharp
		13801 broad or doublet	
$\omega \mathrm{CH}_{2}$	1385-1185 regular band progression	ditto splitting up, irregularities	ditto more splitting up or new bands, more irregularities
$\nu_{\text {A }} \mathrm{C}-\mathrm{O}$	1178	11751	1180
			~ 1160 extra band
$\nu_{\mathrm{B}} \mathrm{C}-\mathrm{O}$	1115	1115	1115
$\nu \mathrm{C}-\mathrm{C}$	1495-950	ditto	ditto
		differently shaped	differently shaped
$\varrho \tau \mathrm{CH}_{2}$	1060-720	ditto	ditto
Other bands	~ 950	$\sim 975 \mathrm{~m}$	
		$\sim 950 \mathrm{~m}$	
A		$\sim 925 \mathrm{~m}$	
B		$\sim 835 \mathrm{~m}$	
C			$\sim 900 \mathrm{~s}$
		several weak bands	several weak bands
$720-400 \mathrm{~cm}^{-1}$	broad bands	sharper bands, a.o.:	sharper bands, a.o.:
D		~ 635	~ 635
E		~ 610 weakest	~ 610 strongest
F		~ 575 strongest	~ 600 weakest
			500-400: several medium bands

1. Shoulders or weak bands at the lower frequency side of the band.
investigated triglycerides. The more detailed results are included in Tables 10-25 and summarized in Table 27.

The very regular methylene-wagging band progression in the $1385-1185 \mathrm{~cm}^{-1}$ region in the α form (Section 5.3) I found to become less regular in the β^{\prime} and β forms; some bands seem to be split up and new ones have arisen.

The methyl symmetrical deformation band is split up into a doublet in the β^{\prime} form only; in the β form this band is shifted to higher frequencies.

In the β^{\prime} form and still more in the β form a number of weak bands have arisen, especially in the region $1100-700 \mathrm{~cm}^{-1}$. In this region I observed medium to strong
bands at about $975,950,925$ and $835 \mathrm{~cm}^{-1}$ in the $\boldsymbol{\beta}^{\prime}$ form; the strong band at about $900 \mathrm{~cm}^{-1}$ in the β form has been reported above (A, B and C in tables $10-25$).,
In the region $700-400 \mathrm{~cm}^{-1}$ a number of medium peaks are found in the β^{\prime} and especially in the β form, which are not observed in the α form. Remarkable are the three sharp peaks at about $600 \mathrm{~cm}^{-1}$ (listed as D, E and F in tables 10-25). These bands have different positions and intensities in the $\boldsymbol{\beta}^{\prime}$ and in the $\boldsymbol{\beta}$ forms.

5.5 Deaterated triglycerides

For further identification of bands and confirmation of assigned bands I have investigated some deuterated triglycerides, prepared as described in Chapter 3.
As the mass of deuterium is twice that of normal light hydrogen, the frequency of a C-D vibration will be $\frac{1}{\sqrt{ } 2}$ times that of the corresponding C-H vibration, according to Hooke's law (Section 4.3). That means that all C-H vibrations of the deuterated part of the molecule will shift by a factor 0.7 to lower frequencies. This offers the possibility of distinguishing between C-H vibrations and other vibrations. As the other bands in the spectrum keep their position, overlapping and masking of bands can be removed in this way.

The spectra of the following compounds were compared with each other.
Glycerol-tri-(perdeutero-laurate) $\mathrm{C}_{3} \mathrm{H}_{5}\left[\mathrm{O}-\mathrm{CO}-\left(\mathrm{CD}_{2}\right)_{10}-\mathrm{CD}_{3}\right]_{3}$
(Perdeutero-glycerol)-trilaurate $\quad \mathrm{C}_{3} \mathrm{D}_{5}\left[\mathrm{O}-\mathrm{CO}-\left(\mathrm{CH}_{2}\right)_{10}-\mathrm{CH}_{3}\right]_{3}$
Glycerol-tri- (α-dideutero-laurate) $\mathrm{C}_{3} \mathrm{H}_{5}\left[\mathrm{O}-\mathrm{CO}-\mathrm{CD}_{2}-\left(\mathrm{CH}_{2}\right)_{9}-\mathrm{CH}_{3}\right]_{3}$
'Normal' trilaurin
$\mathrm{C}_{3} \mathrm{H}_{5}\left[\mathrm{O}-\mathrm{CO}-\left(\mathrm{CH}_{2}\right)_{10}-\mathrm{CH}_{3}\right]_{3}$
Deuterated in these compounds are thus successively: the side chains, the glycerol head, and the methylene groups adjacent to the carbonyl group.

5.5.1 Glycerol-tri-(perdeutero-laurate)

From this compound four different infrared spectra were obtained (Fig. 37a, b, c, d), attributed to the α, β^{\prime} and β forms and the liquid, respectively.
In these spectra the CD_{2} scissoring and CD_{3} asymmetric deformation band combinations are found at about $1095 \mathrm{~cm}^{-1}$, the symmetric CD_{3} deformation at $990 \mathrm{~cm}^{-1}$. In trilaurin the corresponding bands are situated at about 1475 and $1380 \mathrm{~cm}^{-1}$. A relatively weak CH_{2} scissoring band is left at $1475 \mathrm{~cm}^{-1}$ due to the glycerol methylene groups.
The CD_{2} main rocking mode is shifted from 720 to $\sim 525 \mathrm{~cm}^{-1}$. The other methylene rocking-twisting modes are difficult to assign.
Probably the strong absorption bands at 1280 and $1190 \mathrm{~cm}^{-1}$ are the two $\mathbf{C - O}$ stretching vibrations, which are found at 1180 and $1115 \mathrm{~cm}^{-1}$ in normal triglycerides. These bands are shifted. to longer frequencies, due to an unexpected interaction of the $\alpha \mathrm{CD}_{2}$ (cf. Section 5.5.3).

Interesting is the beautiful band progression between 1100 and $1000 \mathrm{~cm}^{-1}$ observed in the spectrum of the β form (Figure 37c). Undoubtely these bands have to be assigned to the $\mathrm{C}-\mathrm{C}$ stretching vibration modes. This distribution lies in this region, but its bands are in normal triglycerides masked by and coupled with C-H and C-O vibration modes.

5.5.2 (Perdeutero-glycerol)-trilaurate

This compound is, as it were, the reverse of the first one. Only one polymorphic form could be obtained, which resembles most to the a form (Figure 38).

A doublet at $1085-1075 \mathrm{~cm}^{-1}$ is assigned to the CD_{2} scissoring. The surprising relatively strong intensity should be caused by induction from oxygen. Methyl and methylene vibrations due to the side chains resemble very close those of trilaurin, which confirms the assignments of these vibrations. More definite conclusions could not be drawn, as the sample after purification still contained free lauric acid. This restulted in a strong absorption band at $960 \mathrm{~cm}^{-1}$, and some other less intense bands a.o. at 1305,690 and $555 \mathrm{~cm}^{-1}$.

No shift of the C-O stretching vibrations is observed for this compound.

5.5.3 Glycerol-tri-(α-dideutero-laurate)

As the methylene group adjacent tot the carbonyl group ($\alpha-\mathrm{CH}_{2}$) occupies a particular position, a triglyceride was synthesized in which these groups only have been deuterated. Spectra of the α and the β forms and of the liquid have been obtained. In conformity with the expectations, the spectra of this deuterated compound most of the three resembles trilaurin (compare Fig. 39a,c,d with Fig. 26a,c,d).

The $\alpha-\mathrm{CH}_{2}$ scissoring band at $1415 \mathrm{~cm}^{-1}$ in trilaurin is replaced by an $\alpha-\mathrm{CD}_{2}$ scissoring band and shifted to $1085 \mathrm{~cm}^{-1}$.

The C-O stretching vibrations are also shifted. They are probably observed at 1280 and $1180 \mathrm{~cm}^{-1}$, and thus are shifted in the same way as in the perdeutero-laurate compound (Section 5.5.1).

A very interesting phenomenon is observed for the methylene band progression. In the deuterated compound methylene rocking-twisting and methylene wagging band progressions are found, both in the a and the β form, resembling those of trilaurin (indicated as C_{12} in Figure 39a,c). They are, however, interlaced with a second band progression which resembles that of glycerol triundecanoate, indicated as \mathbf{C}_{11} in Figures 39a,c. (Although no definite conclusions can be drawn from the ill-defined methylene wagging progressions in the β form, these tend to the same conclusion.)

The meaning of the phenomenon described is, that in the deuterated compound the methylene rocking-twisting and wagging modes are partly concerned with the methylene chain including the $\alpha-\mathrm{CD}_{2}$, but partly are 'reflected' from the $\alpha-\mathrm{CD}_{2}$.

The phenomenon demonstrates that in non-deuterated compounds for the methylene wagging and rocking-twisting modes the $\alpha-\mathrm{CH}_{2}$ behaves like the other methylenes.

6 Introduction of the concept 'diathesis' of chemical compounds

In infrared spectroscopy one often thinks in terms of an unambiguous correlation between chemical compound and infrared spectrum. A well defined chemical compound shows a definite spectrum, and vice versa, an infrared spectrum is characteristic for one definite compound. With this concept it is taken for granted, that the spectrum is dependent on the state of the compound. A change in temperature, phase or crystallization state and also sample preparation and scanning conditions can alter the infrared spectrum.

The absorption patterns of different compounds can also show a surprising similarity. Some examples of this will be mentioned here.
a. Mizushima (1954) showed that in Raman spectra of long-chained aliphatic hydrocarbons, absorption bands occurred that were also in the spectra of corresponding hydrocarbons with shorter chains. The latter were matched until the length of the long-chained molecules was reached, by combining $\mathrm{C}_{12}+\mathrm{C}_{4}, \mathrm{C}_{11}+\mathrm{C}_{5}, \mathrm{C}_{10}+\mathrm{C}_{6}$ and $\mathrm{C}_{9}+\mathrm{C}_{7}$. He concluded that the combination had caused a bend in the otherwise straight chain of the molecule, the two parts vibrating as independent units because the coupling across a cis-single band is weaker than that of a trans-single band. b. Broad bands are found in the infrared spectra of organic compounds with flexible chains, such as aliphatic compounds in the liquid state. Compounds with rigid skeletons, on the other hand, show narrower sharper bands, as in aromatic and cyclic compounds, steroids, and in general solids.
c. Kirby et al. (1965) determined the length of polymethylene chains in salts of saturated and unsaturated fatty acids from infrared spectra using the number and frequencies of the methylene wagging modes in the region $1380-1170 \mathrm{~cm}^{-1}$ and from the methylene rocking modes between 1070 and $710 \mathrm{~cm}^{-1}$ (see Section 4.6). In case of the methylene wagging modes, only the carboxylate segment is found. No coupling occurs over the double bond. For the methylene rocking modes the same rule is observed for the cis-unsaturated compounds. The trans-form, on the contrary, behaves as the corresponding saturated compound.
d. From my investigations the infrared spectra of the solid n-paraffins could be found in the infrared spectra of solid monoacid triglycerides. The acid radical chains in the triglyceride molecules behave almost as independent units. With the help of data from n-paraffin spectra, the chain length of monoacid triglycerides can therefore be determined.
e. The infrared spectrum of cyclohexadecane is remarkably similar to that of hexane. Although the cyclohexadecane spectrum (Fig. 43) is more complex, the absorption
 FREOUENCY (cm)

Figure 43. Infrared spectrum of cylohexadecane.

Figure 44. Infrared spectrum of n-hexane.

bands of hexane (Fig. 44) can be found in it, very close to their positions; this correspondence does not exist between the spectra of cyclohexadecane and, e.g. pentane (Fig. 45) and heptane (Fig. 46). A confirmation is the absence in cyclohexadecane of the $890 \mathrm{~cm}^{-1}$ band of hexane, assigned to the methyl rocking. Cyclohexadecane has a zinc sulphide structure and is folded in four $\left(\mathrm{CH}_{2}\right)_{4}$ groups. In this case too, a bend in the molecule prevents coupling.

We can, with this in mind, restore the unambiguous relation between the infrared spectrum and the physical entity by stating that each shape a molecule can assume is a different physical entity as far as vibrations are concerned. For these entities the qualifications of 'configuration' and 'conformation' may be used; these have so far been restricted to more or less stable atomic arrangements but we may extend usage of the word conformation to cases where the lifetime is only long enough to allow a few vibrations.
Following this usage we conclude that a compound with flexible chains in the liquid state exists in various conformations; the infrared spectrum of the liquid consists of a superposition of the spectra of these conformations.
These spectra show considerable differences. Parts of molecules in each conformation show absorption bands or band progressions characteristic for that specific spatial arrangement of atoms. It therefore seems both sensible and convenient to introduce a new term for such a spatial arrangement of atoms. I suggest the term 'diathesis' ($\delta \iota_{c} \theta_{\varepsilon} \varepsilon \iota_{\varsigma}=$ placing in order, arrangement, plan (of a building), bodily state, condition.

The use of the term may be illustrated by the following examples.
a. The cetane molecule can display various diatheses, i.e. the diathesis of $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$, $\mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{11}$ and C_{22}.
b. A flexible chain has a number of conformations. Each of these has one or more diatheses, which are apparent in the spectra.
c. In case of C_{18} unsaturated fatty acid salts (one double bond between C_{9} and C_{10}) the cis-configuration possesses the same diathesis as saturated C_{9}; the trans-configuration also does so for the methylene wagging, but for the methylene rocking its diathesis corresponds to the diathesis of saturated C_{18}.
d. The diathesis of a solid monoacid C_{n} triglyceride corresponds with that of solid $\mathrm{C}_{\mathrm{n}}-1$-1 n-paraffin for all normal vibrations.
e. The diathesis of solid cyclohexadecane appears to be identical with the diathesis of solid hexane.
The definition of 'diathesis' is: A group of atoms joined together in a spatial arrangement so that at least one vibrational mode exists in which all atoms are involved.

7 Applications to the analysis of natural fats

7.1 Identification of pure triglycerides and of the crystalline state of triglycerides

The infrared spectra with absorption band tables of all even and odd saturated monoacid triglycerides from C_{2} to C_{22}, can be used for the identification of these compounds (Figures 16-36, Tables 10-25). The spectra are recorded for the various crystalline forms as well as for the liquid state.

From the infrared spectra the crystalline state, α, β^{\prime} or β form can be deduced (cf. Sections 2.4 and 5.4). Besides the doublet at about $720 \mathrm{~cm}^{-1}$ a handy distinguishing mark of the β^{\prime} form of natural fats proved to be two medium absorption bands at 922 and $835 \mathrm{~cm}^{-1}$ being absent in the β form, and a strong band at $890 \mathrm{~cm}^{-1}$ in the β form being absent in the β^{\prime} form. The α form is easy to recognize from the appearance of the whole spectrum, having less and broader bands than the β^{\prime} and β forms (Table 27).

The chain length of the fatty-acid radical in the triglyceride can be deduced from the number and the position of certain bands which are found in the solid state spectra. The band progressions that have arisen from the methylene wagging and the methylene rocking-twisting modes, between 1385 and $1185 \mathrm{~cm}^{-1}$, resp. 1060 and $720 \mathrm{~cm}^{-1}$, can be used. The α forms which are obtained after melting followed by solidification below the melting point of the a form (Table 3), were most useful. These bands are compiled from Tables 10-25 in Table 28.

7.2 The detection of beef tallow in milkfat

When molten milkfat and beef tallow are solidified at low temperatures they crystallize in the α form. When heated slowly they first become β^{\prime} form and then they melt. No β form is observed in this way. When solidified at room temperature the β^{\prime} form is obtained directly. For the detection of beef tallow in milkfat I found it best to use the absorption bands B and C of the β^{\prime} forms at 922 and $835 \mathrm{~cm}^{-1}$.

In Figure 47 and 48 abc the infrared spectra between 1000 and $900 \mathrm{~cm}^{-1}$ of beef tallow and of milkfat in the α and β^{\prime} form and the liquid state are shown. This is a sloping part of the fingerprint region (cf. Figure 10). For the experiments I utilized a flatter curve, which is obtained by compensating the slope of the spectrum of the solid fat with the same fat in the liquid state in the reference beam (Figures 47 d and 48d).

In the following experiments I compared the compensated spectra between 1000

Figure 47a, b, c, d. Infrared spectra of milkfat.
a. Solid milkfat, a form; $-40^{\circ} \mathrm{C}$
b. Solid milkfat, β form; $8^{\circ} \mathrm{C}$
c. Liquid milkfat; $30^{\circ} \mathrm{C}$
d. Solid milkfat, $\boldsymbol{\beta}^{\prime}$ form; $8^{\circ} \mathrm{C}$, compensated with the same milkfat, in the liquid state; $30^{\circ} \mathrm{C}$

Figure 48a, b, c, d. Infrared spectra of beef tallow.
a. Solid beef tallow, α form; $20^{\circ} \mathrm{C}$
b. Solid beef tallow, β^{\prime} form; $14^{\circ} \mathrm{C}$
c. Liquid beef tallow; $55^{\circ} \mathrm{C}$
d. Solid beef tallow, β^{\prime} form; $14^{\circ} \mathrm{C}$, compensated with beef tallow in the liquid state; $55^{\circ} \mathrm{C}$

Figure 49. Infrared spectra of pure milkfat and of the same milkfat with 10% beef tallow at various temperatures.

Table 28. List of absorption bands in the a forms of pure triglycerides, useful for identification.

Triglyceride	Methylene wagging (cm^{-1})						Methylene rocking-twisting (cm^{-1})					
C_{7}	1344	1296	1234				796					
C_{8}	1359	1326	1275	1228			830	768				
C9	1342	1307	1263	1219			954	860	795	751		
C_{10}	1355	1330	1292	1252	1213		953	887	822	722	739	
C_{11}	1364	1342	1332	1282	1245	1210	908	847	797	758		
C_{12}	1353	1332	1299	1271	1238	1207	869	818	776			
C_{13}	$\begin{aligned} & 1359 \\ & 1203 \end{aligned}$	1339	1318	1288	1272	1234	910	836	792	761		
C_{14}	$\begin{aligned} & 1365 \\ & 1228 \end{aligned}$	$\begin{aligned} & 1349 \\ & 1200 \end{aligned}$	1331	1305	1280	1255	950	902	854	812	776	750
C_{15}	$\begin{aligned} & 1356 \\ & 1224 \end{aligned}$	$\begin{aligned} & 1339 \\ & 1199 \end{aligned}$	1321	1294	1272	1248	$\begin{aligned} & 961 \\ & 744 \end{aligned}$	930	872	830	793	764
C_{16}	$\begin{aligned} & 1348 \\ & 1220 \end{aligned}$	$\begin{aligned} & 1331 \\ & 1196 \end{aligned}$	1311	1286	1266	1243	929	844	808	776	737	
C17	$\begin{aligned} & 1353 \\ & 1240 \end{aligned}$	$\begin{aligned} & 1338 \\ & 1217 \end{aligned}$	$\begin{aligned} & 1323 \\ & 1195 \end{aligned}$	1301	1280	1261	948	898	860	823	791	770
C_{18}	$\begin{aligned} & 1358 \\ & 1254 \end{aligned}$		$\begin{aligned} & 1327 \\ & 1214 \end{aligned}$	$\begin{aligned} & 1314 \\ & 1193 \end{aligned}$	1293	1273	$\begin{aligned} & 948 \\ & 778 \end{aligned}$	$\begin{aligned} & 904 \\ & 756 \end{aligned}$	873	862	806	
C19	$\begin{aligned} & 1353 \\ & 1251 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1232 \end{aligned}$	1327	$\begin{aligned} & 1307 \\ & 1195 \end{aligned}$	1287	1270	$\begin{aligned} & 990 \\ & 772 \end{aligned}$	$\begin{aligned} & 958 \\ & 752 \end{aligned}$	925	855	822	794
C_{20}	$\begin{aligned} & 1343 \\ & 1245 \end{aligned}$		1316 1209	$\begin{aligned} & 1297 \\ & 1191 \end{aligned}$	1279	1262	$\begin{aligned} & 965 \\ & 781 \end{aligned}$	$\begin{aligned} & 947 \\ & 746 \end{aligned}$	898	866	834	806
C_{21}	$\begin{aligned} & 1350 \\ & 1258 \end{aligned}$	1338	1325	$\begin{aligned} & 1308 \\ & 1207 \end{aligned}$	$\begin{aligned} & 1292 \\ & 1189 \end{aligned}$	1273	$\begin{aligned} & 942 \\ & 754 \end{aligned}$	878	847	819	793	772
C_{22}	$\begin{aligned} & 1354 \\ & 1269 \end{aligned}$	$\begin{aligned} & 1343 \\ & 1253 \end{aligned}$	$\begin{aligned} & 1332 \\ & 1238 \end{aligned}$	$\begin{aligned} & 1318 \\ & 1222 \end{aligned}$	$\begin{aligned} & 1301 \\ & 1206 \end{aligned}$	$\begin{aligned} & 1287 \\ & 1190 \end{aligned}$	860	830	805	784	766	

and $900 \mathrm{~cm}^{-1}$ of pure milkfat with the same fats with 10% beef tallow added. The technique and apparatus described in Chapter 3 was used. I did not cool, however, to $-180^{\circ} \mathrm{C}$.

The spectra were studied at a gradually increasing temperature, and it was examined at which temperature the absorption bands at 922 and $835 \mathrm{~cm}^{-1}$ disappeared (Figure 49).

The results of three samples of milkfats without and with beef tallow are collected in Table 29. A temperature interval existed for these samples, where the pure milkfats showed no more these bands, and in the samples with 10% beef tallow absorption still existed. For the $922 \mathrm{~cm}^{-1}$ this region is between 27.5 and $29.5^{\circ} \mathrm{C}$, for the $835 \mathrm{~cm}^{-1}$ band from 29.5 to $30.5^{\circ} \mathrm{C}$. The samples were arbitrarily chosen. For a general validity

Table 29. Temperature range (${ }^{\circ} \mathrm{C}$) for the disappearance of absorption bands at 922 and $835 \mathrm{~cm}^{-1}$ in pure milkfat and in milkfat with 10% beef tallow.

Absorption band	$922\left(\mathrm{~cm}^{-1}\right)$		$835\left(\mathrm{~cm}^{-1}\right)$	
	Milkfat pure	$\begin{aligned} & \text { Milkfat } \\ & +10 \% \\ & \text { beef } \\ & \text { tallow } \end{aligned}$	Milkfat pure	Milkfat $+10 \%$ beef tallow
Sample I	27.0-27.5	29.5-30.5	25.0-27.0	30.5-31.0
Sample II	27.0-27.5	29.5-30.0	28.0-29.5	32.0-33.5
Sample III (Fig. 54)	26.0-27.5	33.0-37.5	27.5-28.0	31.0-33.0

Table 30. Detection of beef tallow in milkfat, using the 922 and $835 \mathrm{~cm}^{-1}$ absorption bands.

Beef tallow added (\%)	Beef tallow observed (\%)
0	-
10	~ 5
5	$5-10$
4	<5
2	<5
0	-

of the method the seasonal variations and perhaps the origin of the samples should be taken into account, as I did before (De Ruig, 1968). From Dutch milkfat produc-tion-data and origin are always known.

In another laboratory experiment samples of milkfat were mixed with $0-10 \%$ beef tallow. The absorption bands at 922 and $835 \mathrm{~cm}^{-1}$ were recorded at room temperature with the pure milkfat in the reference beam. Using the presence of these bands, it proved that less as 2% of beef tallow was semiquantitatively detectable (Table 30).

7.3 The detection of beef tallow in lard

The infrared spectra of lard differs from that of beef tallow. There is, however, no distinct difference between the spectra of pure lard and lard which contains a few per cent of beef tallow. So, the spectra of the fats themselves are not suitable for the detection of adulteration.

A more favourable situation occurred when instead of the fats the so-called Bömerglycerides thereof were studied. The Bömerglycerides consist of saturated triglycerides, obtained by crystallizing the fat sample twice from diethyl ether according to a standard procedure.

Table 31. Composition of the saturated fractions of beef tallow and of lard in \% of total fat (Jurriens, 1966).

| Triglyceride | $\begin{array}{l}\text { Beef } \\ \text { tallow }\end{array}$ | Lard | Melting points | | |
| :--- | :--- | :--- | :--- | :---: | :---: |$]$

Melting points reported by (1) Chapman (1957a); (2) Hugenberg \& Lutton (1963); (3) Lutton \& Hugenberg (1960).
[] $=$ forms not obtained unless special precautions.

Table 32. Crystallization behaviour of pure beef tallow, pure lard and lard with 6\% beef tallow.

Pure beef tallow:

Pure lard:
Lard $+6 \%$ beef tallow: $\quad a \xrightarrow{43-45^{\circ}} \beta^{\prime} \xrightarrow{45-47.5^{\circ}} \beta \xrightarrow{63^{\circ}}$ liquid

The composition of these saturated fractions of beef tallow and lard differs from each other (Table 31). In beef tallow, the main triglycerides ${ }^{1}$ are PPS and PSS, and in lard SPS and PPS. Chapman (1957a) already demonstrated that for some mixed triglycerides normally only two crystallizing forms are found: for SPS the β^{\prime}, and for PSP the β form is omitted. PPS and PSS show all three. The melting points of the various forms are indicated in Table 31. Under special conditions β^{\prime} SPS and β PSP were prepared by Lutton \& Hugenberg (1960) and Hugenberg \& Lutton (1963).

From these observations and the composition of the Bömerglycerides the reported crystallization behaviour (beef tallow: β^{\prime}, lard: β) indeed is plausible. I have found that beef tallow admixed to lard tends the fat to crystallize into the β^{\prime} form, like beef tallow, but unlike pure lard, and I believe that this phenomenon offers a tool for the detection of beef tallow in lard.

1. In the following means $M=$ myristate, $P=$ palmitate, $S=$ stearate, $S P S=$ glycerol-1,3-distea-rate-2-palmitate, etc.

The following results were obtained when a sample of lard was admixed with 6% beef tallow. The a forms of the pure fats and of the mixture were obtained by chilling the samples down to $0^{\circ} \mathrm{C}$. When slowly warmed up, the pure sample of beef tallow changed from α form into β^{\prime} form into liquid, the pure sample of lard from α into β into liquid while for the mixture three transtitions were observed: $a \rightarrow \beta^{\prime} \rightarrow \beta \rightarrow$ liquid (Table 32). Whether a β^{\prime} or a β form is present can be concluded from the infrared spectra by the distinguishing criteria mentioned before (Sections 7.1, 2.4 and 5.4).

The method is still under investigation, but already it can be expected that under proper conditions amounts as little as 5% of beef tallow in lard can be detected by infrared spectroscopic determination of the crystallization state of the Bömerglycerides.

Summary

Natural fats have been characterized by using 'characteristic values'. One of the modern techniques for analysing fats is infrared spectroscopy. Analytical chemists must now relate modern technical data to classical results.

Classical and modern techniques have been used to detect adulterating of fats. But as yet no satisfactory way has been found of detecting animal fats adulterating other animal fats.

At the Netherlands Government Dairy Station at Leiden infrared spectroscopy of natural fats indicated that infrared spectra needed further fundamental study.

Natural fat consists of $\mathbf{9 5 \%}$ or more triglyceride. An interesting characteristic of triglycerides is their polymorphism, i.e. they can crystallize into three forms: $a, \beta^{\prime \prime}$ and β (Chapter 2). Chapman's idea ($1962,1965 b$) that these forms can be deduced from infrared spectra, is confirmed (Chapter 5, Section 7.1).

A number of absorption bands in the infrared spectra of triglycerides have already been assigned to molecular vibrations. For a further interpretation, vibrational analyses of other long chain compounds were considered and applied to triglycerides. The number of bands in band progressions has been theoretically considered. It is concluded from experimental results that the methyl end groups probably contribute to these band progressions (Chapter 4).

The list of infrared spectra between 1500 and $400 \mathrm{~cm}^{-1}$ of all saturated monoacid triglycerides from C_{7} to C_{22}, includes the crystalline and liquid states (Figs. 21-36). Infrared spectra of C_{2} to C_{6} in the liquid form are also given (Figs. 16-20). The frequencies of the absorption bands in the crystalline forms are given and the majority of the strong and medium bands were assigned to molecular vibrations (Tables 10-25, Chapter 5).
From some deuterated compounds additional information about molecular vibrations could be obtained (Sections 3.4 and 5.5).

To describe the intramolecular behaviour as apparent from vibrational spectra, the concept 'diathesis' of chemical compounds is introduced (Chapter 6).

The presented infrared spectra of triglycerides (Figs. 21-36, Tables 10-25) can be used for the identification of these compounds.

The chain length of the fatty acid radicals of triglycerides can be read from the number and position of certain bands in the solid-state spectra. The band progressions due to methylene wagging and rocking-twisting modes (between 1385 and $1185 \mathrm{~cm}^{-1}$, and between 1060 and $720 \mathrm{~cm}^{-1}$, respectively) can be used for this purpose(Table 28).

Some applications of solid-state infrared spectra for the detection of beef tallow in milk fat and in lard are elaborated.

Literature

Abrahamsson, S.	1959a	On the crystal structure of 2 D-methyloctadecanoic acid. Acta Cryst. 12 (1959): 304-309.
Abrahamsson, S.	1959 b	Solid state behaviour of long branched-chain fatty acids. Arkiv Kemi 14 (1959): 65-83. Structures and infrared spectra of monomethyloctadecanoic acids. Arkiv Kemi 14 (1959): 57-63. A rapid method for the determination of trans-unsaturation in fats and derivatives. J. Am. Oil Chemists' Soc. 46 (1969): 552-553. Physical and chemical characteristics of oils, fats, and waxes. Table I, 1-46. Official and tentative methods of the Am. Oil I. Fischmeister
Chemists' Soc. (1946).		

Brown, J. K. \& N. Sheppard	1950	Some infra-red spectroscopic studies of rotational isomerism. Disc. Faraday Soc. 9 (1950): 144-154.
Brown, J. K. \& N. Sheppard	1954a	Infra-red spectroscopic studies of rotational isomerism. Part 2. The n-alkyl bromides. Trans. Faraday Soc. 50 (1954): 535540.
Brown, J. K. \& N. Sheppard	1954b	Infra-red spectroscopic studies of rotational isomerism. Part 3. The n-propyl halides. Trans. Faraday Soc. 50 (1954): 1164 1173.
Brown, J. K. \& N. Sheppard	1955	Infra-red spectroscopic studies of rotational isomerism in the polymethylene halides. Proc. Roy. Soc. 231A (1955): 555-574.
Brown, J. K., D. M. Simpson	1950	The interpretation of the vibrational spectra of the n-paraffins. Disc. Faraday Soc. 9 (1950): 261-274.
Brown, J. K., D. M. Simpson	1954a	The interpretation of the infra-red and Raman spectra of the n-paraffins. Phil. Trans. Roy. Soc. (London) 247A (1954): 35-58.
Brown, J. K., D. M. Simpson	1954b	Quelques observations sur les spectres infrarouges des paraffines normales à l'état de solide cristallin. J. Phys. Radium 15 (1954): 593-595.
Buchheim, W.	1970	Electronenbeugungsuntersuchungen an Trilaurin-Kristallen. Ein Beitrag zur Kristallstruktur der verschiedenen Modifikationen. Kieler Ber. 22 (1970): 3-61.
Carter, M. G. R. \& T. Malkin	1939a	An X-ray and thermal examination of the glycerides. Part V. Unsymmetrical mixed triglycerides. J. Chem. Soc. 1939: 577581.
Carter, M. G. R. \& T. Malkin	1939b	An X-ray and thermal examination of the glycerides. Part VII. Unsymmetrical mixed triglycerides. J. Chem. Soc. 1939: 15181521.
Chapman, D.	1956a	Infrared spectra and the polymorphism of glycerides. Part I. J. Chem. Soc. 1956: 55-60.
Chapman, D.	1956b	Infrared spectra and the polymorphism of glycerides. Part II. 1:3-diglycerides and saturated triglycerides. J. Chem. Soc. 1956: 2522-2528.
Chapman, D.	1956c	Infrared spectroscopy applied to studies of polymorphism. Spectrochim. Acta 11 (1956): 609-617.
Chapman, D.	1957a	Infrared spectra and the polymorphism of glycerides. Part III. Palmitodistearins and dipalmitostearins. J. Chem. Soc. 1957: 2715-2720.
Chapman, D.	1957b	The $720 \mathrm{~cm}^{-1}$ band in the infrared spectra of crystalline longchain compounds. J. Chem. Soc. 1957: 4489-4491.
Chapman, D.	1958a	An infrared spectroscopic examination of some anhydrous sodium soaps. J. Chem. Soc. 1958: 784-789.
Chapman, D.	1958b	Infrared spectra and the polymorphism of glycerides. Part IV. Myristopalmitins and myristostearins. J. Chem. Soc. 1958: 3186-3188.
Chapman, D.	1958c	Infrared spectra and the polymorphism of glycerides. Part V. 1: 2-diglycerides. J. Chem. Soc. 1958: 4680-4682.
Chapman, D.	1960	Infrared spectroscopic characterization of glycerides. J. Am. Oil Chemists' Soc. 37 (1960): 73-77.
Chapman, D.	1962	The polymorphism of glycerides. Chem. Rev. 62 (1962): 433456.

Chapman, D.	1965a
Chapman, D.	1965b
Chapman, D., A. C. Davies	1957
Chouteau, J.	1961
Clarkson, C. E. \& T. Malkin	1934
 T. Malkin	1934
 D. Chapman	1957
Duffy, \mathbf{P}.	1853
Filer, L. J., S. S. Sidhu, H. E. Longenecker	1946
Freeman, N. K.	1968
Grüntzig, W.	1939
Gunstone, F. D.	1964
Heintz, W.	1849
Hilditch, T. P. \& P. N. Williams	1964
Holman, R. T. (Ed.)	1952f
Hugenberg, F. R. \& E. S. Lutton	1963
Jackson, F. L. \& E. S. Lutton	1950
 A. J. Mabis	1963
 A. J. Mabis	1966
Joglekar R. B. \& H. E. Watson	1930
Jones, R. N., R. G. Sinclair	1952
Jurriens, G.	1968

Intrared spectroscopy of lipids. J. Am. Oil Chemists' Soc. 42 (1965): 353-371.

The structure of lipids by spectroscopic and X-ray techniques. Methuen \& Co, London, 1965.
The structure of the major component glyceride of cocoa butter, and of the major oleodisaturated glyceride of lard. J. Chem. Soc. 1957: 1502-1509.

La spectrographie infra-rouge: Application aux corps gras. Revue Française des Corps Gras 8 (1961): 267-284.
Alternation in long-chain compounds. Part II. An X-ray and thermal investigation of the triglycerides. J. Chem. Soc. 1934: 666-671.
Alternation in long-chain compounds. Part II. An X-ray and thermal investigation of the triglycerides. J. Chem. Soc. 1948: 985-987.
The infrared spectra of some monocarboxylic acids. J. Chem. Soc. 1957: 1746-1751.
On certain isomeric transformations of fats. J. Chem. Soc. 5 (1853): 197-210.

X-ray investigation of glycerides. III. Diffraction analyses of symmetrical monoöleyl-disaturated triglycerides. J. Am. Chem. Soc. 68 (1946): 167-171.
Applications of infrared absorption spectroscopy in the analysis of lipids. J. Am. Oil Chemists' Soc. 45 (1968): 798-809. U'ber die Schmelzpunktsalternation der höheren, einsäurigen Triglyzeride. Z. anorg. allgem. Chemie 240 (1939): 313-321. The long spacing of polymorphic crystalline forms of longchain compounds, with special reference to triglycerides. Chemistry \& Industry 1964: 84-89.
Uber das Schmeizen von Stearin aus Hammentalg. J. praktische Chemie 48 (1849): 382.
The chemical constitution of natural fats. Chapman \& Hall. London, 4th ed., 1964.
Progress in the chemistry of fats and other lipids. Vol. 1. Pergamon, Oxford (1952).
Beta prime of 2-palmitoyldistearin. J. Chem. Engineering Data 8 (1963): 606-608.
The polymorphism of certain behenyl mixed triglycerides. A new metastable crystalline form of triglycerides. J. Am. Chem. Soc. 72 (1950): 4519.
Crystal structure of β-tricaprin. Nature 197 (1963): 681-682.
Refinement of the structure of β-tricaprin. Acta Cryst. 21 (1966): 770-781.

The physical properties of pure triglycerides. J. Indian Inst. Sci. 13A (1930): 119-127.
Band progressions in the infrared spectra of fatty acids and related compounds. J. Am. Chem. Soc. 74 (1952): 2575-2578.

Analysis of glycerides and composition of natural oils and fats. In: H. A. Boekenoogen (Ed.), Oils, fats and fat products. Interscience, London, 1968, pp. 217-298.

Kaufman, H. P.	1958	Analyse der Fette und Fettprodukte. I, II. Springer, Berlin, 1958.
Kellner, L.	1945	The C-C valency vibrations of organic molecules. Trans. Faraday Soc. 41 (1945): 217-223.
Kirby, E. M., M. J. Evans-Vader \& M. A. Brown	1965	Determination of the length of polymethylene chains in salts of saturated and unsaturated fatty acids by infrated spectroscopy. J. Am. Oil Chem. Soc. 42 (1965): 437-446.
Kirkwood, J. G.	1939	The skeletal modes of vibration of long chain molecules. J. Chem. Phys. 7 (1939): 506-509.
 E. Samhammer	1961	Röntgenographische Untersuchungen über die Kristallstruktur einiger Triglyceride. Milchwissenschaft 16 (1961): 201-208.
Knoop, E., P. Wauschkuhn	1966	Die Kristallmodifikationen der gesättigten Triglyceride. XVII International Dairy Congress (1966), C, 275-282.
Krimm, S., C. Y. Liang \&	1956	Infrared spectra of high polymers. II. Polyethylene. J. Chem. Phys. 25 (1956): 549-562.
G. B. B. M. Sutherland		
Krimm, S., M. Tasumi \& C. G. Opaskar	1967	Planarity of the carbon chain in crystalline polyethylene. Polymer Letters 5 (1967): 105-111.
Larsson, K.	1963	The crystal structure of the β-form of triglycerides. Proc. Chem. Soc. 87 (1963): 87-88.
Larsson, K.	1965a	The crystal structure of the β-form of trilaurin. Arkiv Kemi 23 (1965): 1-15.
Larsson, K.	1965b	Solid state behaviour of glycerides. Arkiv Kemi 23 (1965): 35-56.
Liang, C. Y., G. B. B. M. Sutherland	1956	Infrared spectra of high polymers. I. Experimental methods and general theory. J. Chem. Phys. 25 (1956): 543-548.
Loskit, K.	1928	Zur Kenntnis der Triglyceride. Z. phys. Chem. 134 (1928): 135-155.
Lutton, E. S.	1945	The polymorphism of tristearin and some of its homologs. J. Am. Chem. Soc. 67 (1945): 524-527.
Lutton, E. S.	1950	Review of the polymorphism of saturated even glycerides. J. Am. Oil Chem. Soc. 27 (1950): 276-281.
Lutton, E. S. \& A. J. Fehl	1970	The polymorphism of odd and even saturated single acid triglycerides, $\mathrm{C}_{8}-\mathrm{C}_{22}$. Lipids 5 (1970): 90-99.
Luttou, E. S. \& F. R. Hugenberg	1960	Beta phase of 2 -stearoyldipalmitin. J. Chem. Engineering Data 5 (1960): 489-490.
Malkin, T.	1931	Alternation in long-chain compounds. New X-ray data for long-chain ethyl and methyl esters and iodides, and a preliminary thermal examination of the esters. J. Chem. Soc. 133 (1931) 2796-2805.
Malkin, T.	1933	Rotating molecules and the liquid crystalline state. Trans. Faraday Soc. 1933: 977-982.
Malkin, T.	1954	The polymorphism of glycerides. In: Progress in the chemistry of fats and other lipids. Vol. 2, p. 1-50, Pergamon, London, 1954.
Malkin, T. \& M. L. Meara	1939a	An X-ray and thermal examination of the glycerides. Part IV. Symmetrical mixed triglycerides. J. Chem. Soc. 1939: 103-108.
Malkin, T. \& M. L. Meara	1939b	An X-ray and thermal examination of the glycerides. Part VI. Symmetrical mixed triglycerides (continued). J. Chem. Soc. 1939: 1141-1144.

Mehlenbacher, V. C.	1960	0.
Meiklejohn, R. A., R. J. Meyer, S. M. Aronovic, V. W. Meloch	1957	Characterization of long-chain fatty acids by infrared spectroscopy. Anal. Chem. 29 (1957): 329-334.
Mizushima, S.	1954	Structure of molecules and internal rotation. Acad. Press, New York, 1954.
Müller, \mathbf{A}.	1928	A further X-ray investigation of long chain compounds. Proc. Roy. Soc. A120 (1928): 437-459.
Müller, A.	1932	An X-ray investigation of normal paraffins near their melting points. Proc. Roy. Soc. A138 (1932): 514-530.
Nguyên Dinh-Nguyên \& E. A. Stenhagen	1967	Procédé de deutération de composés organiques. French Pat. No. 1.466.088 (1967).
Nielsen, J. R. \& C. E. Hathaway	1963	Infrared spectra of normal paraffins in the hexagonal crystal form. J. Mol. Spectrosc. 10 (1963): 366-377.
Nielsen, J. R. \& R. F. Holland	1960	The $\mathrm{b}_{1 \mathbf{u}}$ methylene wagging and twisting fundamentals in crystalline polyethylene. J. Mol. Spectrosc. 4 (1960): 488-498.
Nielsen, J. R. \& R. F. Holland	1961	Dichroism and interpretation of the infrared bands of oriented crystalline polyethylene. J. Mol. Spectrosc. 6 (1961): 394-418,
O'Connor, R. T.	1955	Infrared absorption spectra. J. Am. Oil Chemists' Soc. 32 (1955): 624-633.
O'Connor, R. T.	1956	Application of infrared spectrophotometry to fatty acid derivatives. J. Am. Oil Chemists' Soc. 33 (1956): 1-15.
O'Connor, R. T.	1961	Recent progress in the applications of infrared absorption spectroscopy to lipid chemistry. J. Am. Oil Chemists' Soc. 38 (1961): 648-659.
O'Connor, R. T. (chairman)	1970	Report of the Instrumental Techniques Committee, 1969-70. J. Am. Oil Chemists' Soc. 47 (1970): 552A-556A, and earlier yearly reports.
O'Connor, R. T., R. O. Feuge	1955	The infrared spectra of mono-, di-, and triglycerides. J. Am. Oil Chemists' Soc. 32 (1955): 88-93.
Othmer, P.	1915	Studien über das spontane Kristallisationsvermögen. IV. Uber die Entstehung instabiler Kristallarten einiger Triglyceride. Z. Anorg. Chem. 91 (1915): 237-241.
Perron, R., J. Petit \& A. Mathieu	1969	A study of palmitic-stearic triglycerides and their binary mixtures by differential thermal analysis (DTA)- I- Pure triglycerides. Chem. Phys. Lipids 3 (1969): 11-28.
Pitzer, K. S.	1940	The vibration frequencies and thermodynamic functions of long chain hydrocarbons. J. Chem. Phys. 8 (1940): 711-720.
Primas, H. \& H. H. Günthard	1953a	Die Infrarotspektren von Kettenmolekeln der Formel $\mathrm{R}^{\prime} \mathrm{CO}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{COR}^{\prime \prime}$. I. Rocking- und Twisting-Grundtöne. Helv. Chim. Acta. 36 (1953): 1659-1670.
 H. H. Günthard	1953b	Die Infrarotspektren von Kettenmolekeln der Formel $\mathbf{R}^{\prime} \mathrm{CO}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{COR}^{\prime \prime}$. II. Die Normalschwingungen des Symmetrietypus B_{u}. Helv. Chim. Acta 36 (1953): 1791-1803.
Quimby, O. T.	1950	Microscopic appearance of polymorphic forms of one-acid triglycerides. J. Am. Chem. Soc. 72 (1950): 5064-5068.
Rasmussen, R. S., R. R. Brattain \& P. S. Zucco	1947	Infra-red absorption spectra of some octenes. J. Chem. Phys. 15 (1947): 135-140.

Roos, J. B.	1963
De Ruig, W. G.	1968
De Ruig, W. G.	1971
Schachtschneider, J. H. \& R. G. Snyder	1963
Sheppard, N.	1959
Sinclair, R. G., R. N. Jones	1952a
Sinclair, R. G., A. F. Mc Kay, R. N. Jones	1952b
Snyder, R. G.	1960
Snyder, R. G.	1961
Snyder, R. G. \& J. H. Schachtschneider	1962
Snyder, R. G. \& J. H. Schachtschneider	1963
Susi, H.	1959
Von Sydow, E.	1955
Von Sydow, E.	1956
 T. Shimanouchi	1962
Tasumi,M., T. Miyazawa	1962
Thompson, H. W. \& P. Torkington	1945
Tschamler, H.	1953

Detection of foreign fat in milk fat. Part IV of IDF Annual Bulletin 1963.
The detection of foreign fat in milk fat. I. Infrared spectroscopy of Dutch butterfat. Neth. Milk \& Dairy J. 22 (1968): 104-113.
Automatic temperature controllers for infrared cells. J. Scientific Instr., in press.
Vibrational analysis of the n-paraffins-II. Normal co-ordinate calculations. Spectrochimica Acta 19 (1963): 117-168.
Rotational isomerism about C-C bonds in saturated molecules as studied by vibrational spectroscopy. In: H. W. Thompson (Ed.), Advances in spectroscopy. Interscience, New York, 1959, p. 288-353.
The infrared absorption spect1a of saturated fatty acids and esters. J. Am. Chem. Soc. 74 (1952): 2570-2575.

The infrared absorption spectra of unsaturated fatty acids and esters. J. Am. Chem. Soc. 74 (1952): 2578-2585.

Vibrational spectra of crystalline n-paraffins. Part I. Methylene rocking and wagging modes. J. Mol. Spectrosc. 4 (1960): 411-434.
Vibrational spectra of crystalline n-paraffins. II. Intermolecular effects. J. Mol. Spectrosc. 7 (1961): 116-144.
Vibrational analysis of the extended n-paraffins. Proc. int. symp. molecular struct. and spectrosc., Tokyo, 1962, A117, 1-4.
Vibrational analysis of the n-paraffins-I. Assignments of infrared bands in the spectra of $\mathrm{C}_{3} \mathrm{H}_{8}$ through $n-\mathrm{C}_{19} \mathrm{H}_{40}$. Spectrochimica Acta 19 (1963): 85-116.
Identification of position isomers of some stearic acid derivatives by infrared spectroscopy. Study of trans 6. through 11octadecenoic acids and corresponding contiguously substituted dihydroxystearic acids in the crystalline state. Anal. Chem. 31 (1951): 910-913.
The infrared absorption of the different crystal forms of some normal fatty acids. Acta Chem. Scand. 9 (1955): 1119-1126. The normal fatty acids in solid state. A crystal structure investigation. Arkiv Kemi 9 (1956): 231-254.
Band progressions in the infrared spectra of $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{\mathbf{n}} \mathrm{X}$ type molecules. Proc. int. symp. molecular struct. and spectroscopy, Tokyo, 1962, A118, 1-4.
Normal vibrations and force constants of polymethylene chain. J. Mol. Spectrosc. 9 (1962): 261-287.

The vibrational spectra of esters and ketones. J. Chern. Soc. 1945: 640-645.
Systematische Ultrarot-Untersuchung der (C-O-C)-Gruppe in organischen Verbindungen. Spectrochim. Acta 6 (1953): 95-97.

Tschamler, H.	1954
Vand, V.	1951
Vand, V. \& I. P. Bell	1951
Weygand, C. \& W. Grüntzig	1932
Wheeler, D. H.	1945
Williams, K. A.	1966
Wolff, J. P.	1968
Zbinden, R.	1964

Frequency assignments for normal aliphatic compounds: I. The normal paraffins in the range $1450 \mathrm{~cm}^{-1}$ to $650 \mathrm{~cm}^{-1}$. J. Chem. Phys. 22 (1954): 1845-1854.

Method for determining the signs of the structure factors of long-chain compounds. Acta Cryst 4 (1951): 104-105.
A direct determination of the crystal structure of the β form of trilaurin. Acta Cryst 4 (1951): 465-469.
Das Polymorphensystem der natürlichen einsäurigen Triglyceride. Z. Anorg. Chem. 206 (1932): 304-312.
Infrared absorption spectroscopy in fats and oils. In: Progress in the chemistry of fats and other lipids. Vol 2, p. 268-291, Pergamon, London, 1954.
Oils, fats and fatty foods. Churchill, London, 4th ed. 1966. Manuel d'analyse des corps gras. Azoulay, Paris, 1968. Infrared spectroscopy of high polymers. Acad. Press, New York, London, 1964.

Curriculum vitae

De schrijver van dit proefschrift behaalde in 1950 het diploma HBS-B aan de le Chr. HBS-B te Amsterdam. In hetzelfde jaar begon hij zijn academische studie aan de Vrije Universiteit te Amsterdam. Het candidaatsexamen, letter e, werd afgelegd in juli 1954; het doctoraalexamen met hoofdvak organische chemie en bijvakken chemische fysiologie en bedrijfseconomie in februari 1958.

Gedurende de vervulling van zijn militaire dienstplicht is hij een jaar als biochemicus werkzaam geweest in het klinisch laboratorium van het Centraal Militair Hospitaal te 's-Gravenhage.

In 1960 kwam hij in dienst bij N.V. Philips Gloeilampenfabrieken te Eindhoven, als medewerker op het Natuurkundig Laboratorium.
Sinds 1963 is hij verbonden aan het Rijkszuivelstation te Leiden. Hier is hij thans hoofd van de afdeling Radiologie en Spectrofotometrie.

[^0]: 1. In the triglycerides I investigated, this band was mostly observed between 900 and $895 \mathrm{~cm}^{-1}$ (band C in tables 10-25).
