Institute of Earth Sciences

Holocene and future response of suspended sediment yield to land use and climate change:

a case study for the Meuse basin

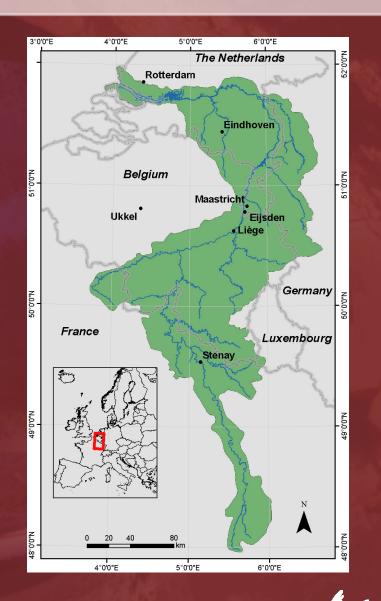
EGU General Assembly, April 16th 2008, Vienna, Austria

Philip Ward (philip.ward@falw.vu.nl)

Co-authors:

Ronald van Balen, Gert Verstraeten, Hans Renssen, Jef Vandenberghe

vrije Universiteit amsterdam


Structure of presentation

• Aims and Rationale

Approach and Methods

Results

Conclusions

Aims

Use a simple modelling approach to:

- estimate the background level of Meuse suspended sediment yield (SY) prior to significant human influence (4000-3000 BP);
- estimate the long-term changes in SY in the periods 4000-3000 BP, 1000-2000 AD, and the 21st Century AD;
- delineate the effects of land use and climate change on SY.

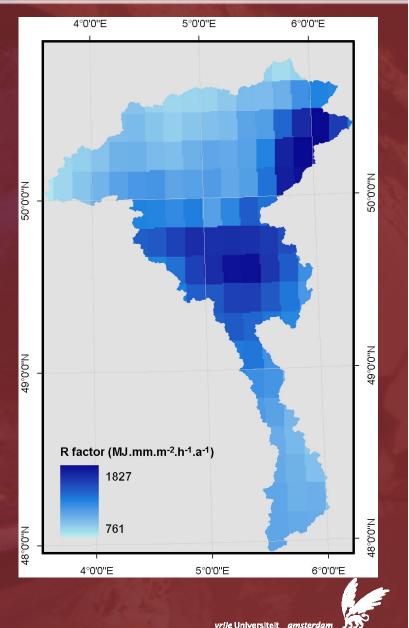
WATEM/SEDEM

- GIS-based spatially distributed soil erosion and sediment delivery model.
- Erosion based on RUSLE.

 $E = R \cdot K \cdot LS_{2D} \cdot C \cdot P$

 Sediment delivery based on transport capacities per gridcell.

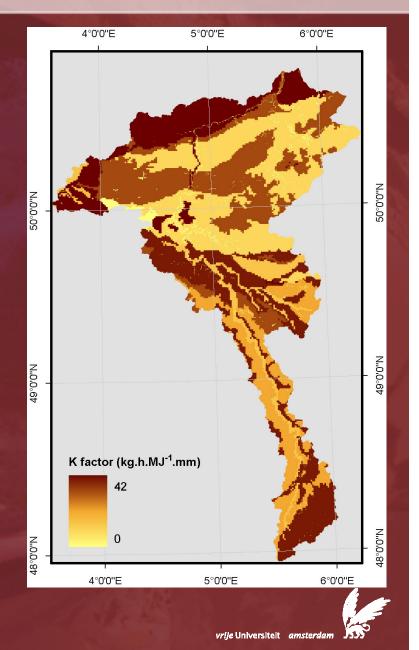
• Routing and slope based on DEM (100m x 100m).

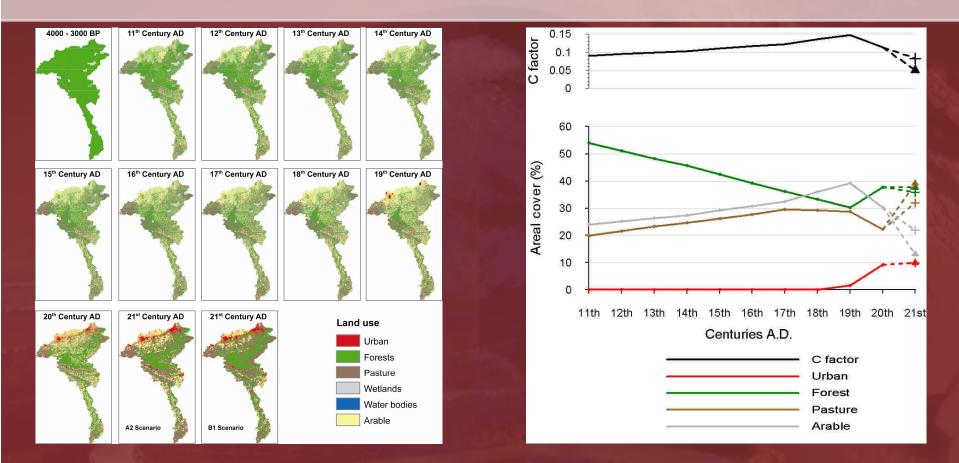

R factor

R factor: Rainfall erosivity

 Based on relationship between daily precipitation and R factor (Verstraeten et al., 2006).

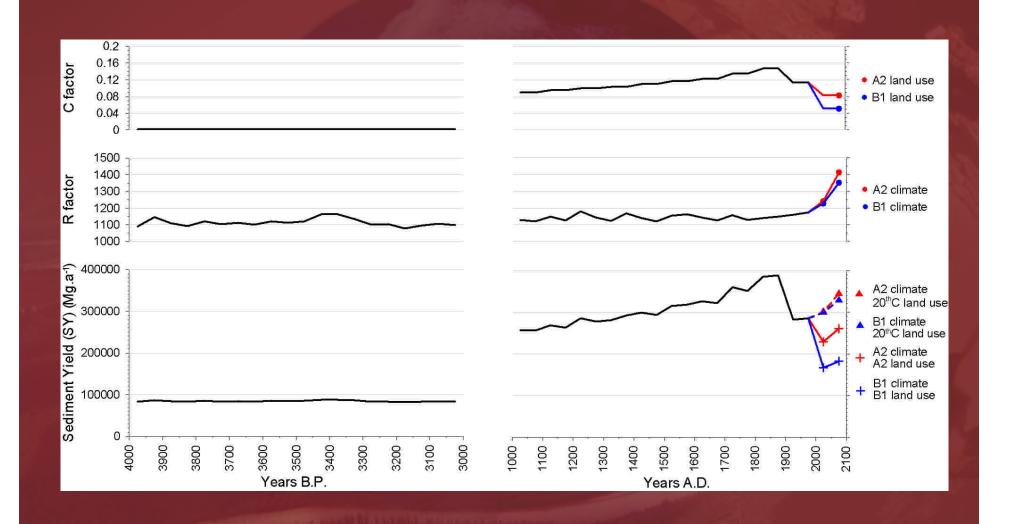
$$R = \sum_{d=1}^{d=360} a \cdot pre_{d}^{1.8067}$$


- Daily temperatures obtained from climate model ECBilt-CLIO-VECODE, downscaled to Meuse basin (Ward et al., 2008).
- Spatial distribution compares well to observations (Bollinne et al., 1979).


K factor

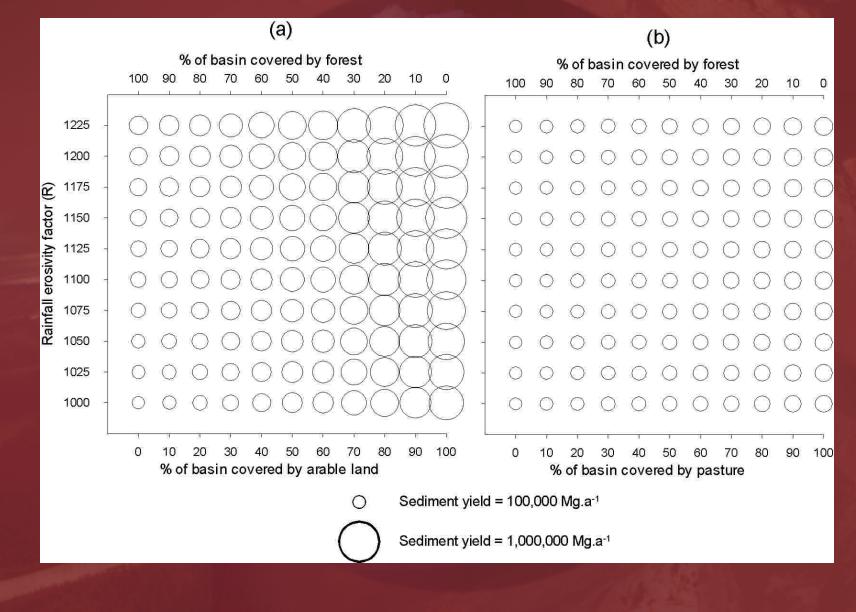
K factor: Soil erodibility

- Based on European Soil Database (ESDB) (Van Liedekerke et al., 2006) data on:
 - soil texture;
 - stoniness.
- Bare rock on steep slopes of Ardennes have little influence on total sediment yield.


C factor

Land use \rightarrow Crop factors (Verstraeten et al., 2003)Water, Urban:0Forests, Wetlands0.001Pasture:0.005Arable:0.37

Late Holocene and future sediment yield


vrije Universiteit amsterdam

Effects of climate vs. land use change

	Change in SY between 4000-3000 BP and 20 th Century A			Century AD
	δSY (Mg. a ⁻¹)		δSY (%)	
Climate change only	+8,475		+9%	
Land use change only	+181,174		+198%	
Climate and land use change	+189,649		+207%	
	Change i	n SY between tl	ne 20 th and 21 st Centi	uries AD
	Change i A2 sce		ne 20 th and 21 st Centi B1 scei	
	C			
Climate change only	A2 sce	nario	B1 scei	nario
Climate change only Land use change only	A2 sce δSY (Mg. a ⁻¹)	nario δSY (%)	B1 scer δSY (Mg. a ⁻¹)	nario δSY (%)

Sensitivity of SY to climate and land use change

vrije Universiteit amsterdam

Conclusions

- Three-fold increase in Meuse SY between 4000-3000 BP and 1000-2000 AD, almost entirely due to conversion of forest to agriculture.
- For 21st Century, SY is extremely sensitive to scenario (land use and climate) used. Large increase in rainfall erosivity simulated for 21st Century; but resultant increases in SY more than compensated for by land use driven SY decrease.
- Sensitivity of SY to climatic change increases as forested area decreases.
- Simple modelling approach assists in the identification of long-term trends and mechanisms.
- However, due to simplification absolute values must be treated with caution.

Thank you!

Poster

Strong increase in the flood frequency of the River Meuse in response to Holocene and future climate and land use change: a new perspective for long-term modelling.

- Poster Hall A Poster Board A0178
- Today author in attendance: 17.30-19.00

