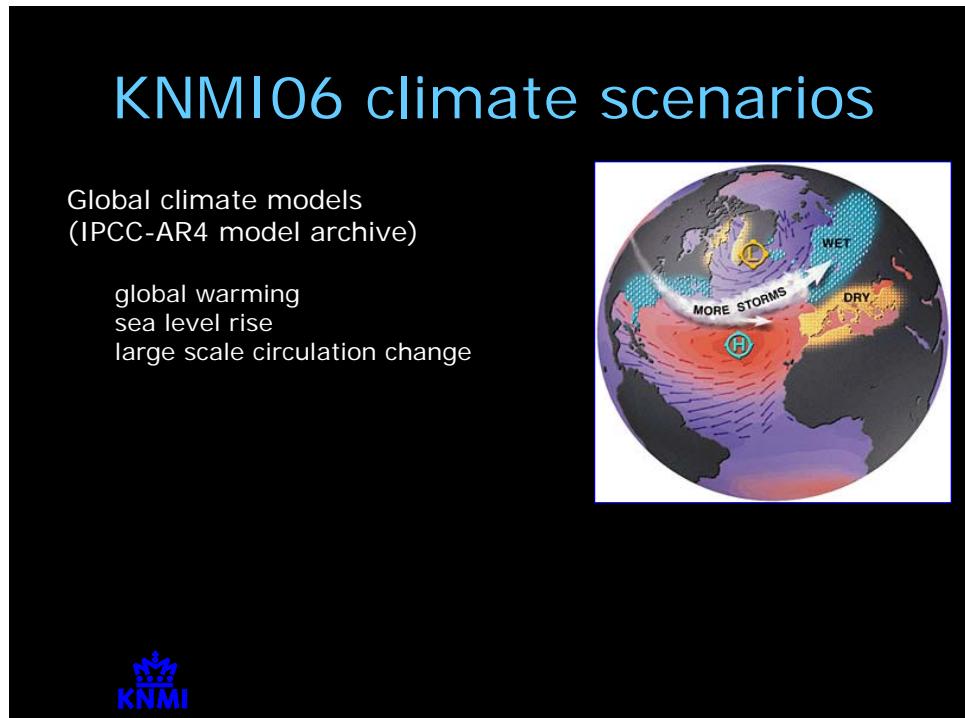
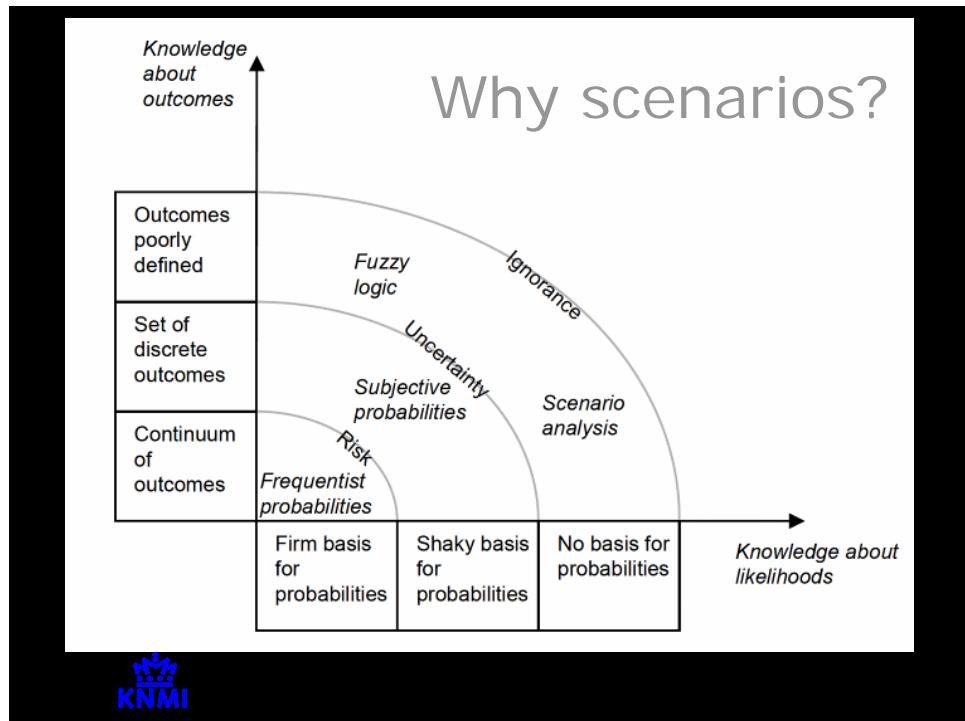

The Dutch series of climate change scenarios for local adaptation strategies

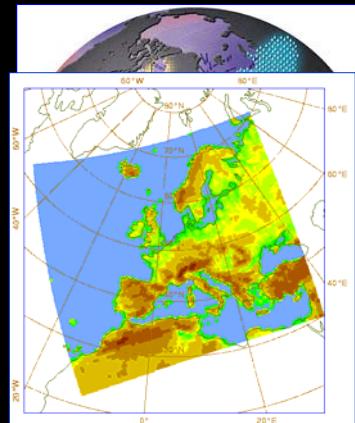
Janette Bessembinder et al.

KNMI06 climate scenarios



- In 2006, KNMI issued 4 general climate scenarios, which describe the local changes in the Netherlands

www.knmi.nl/climatescenarios

- Provide common basis for the national adaptation goal of 'climate proofing' the Netherlands

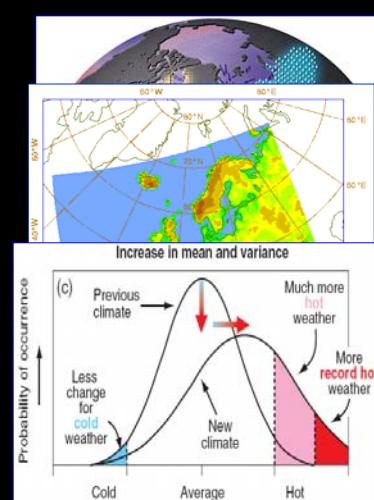


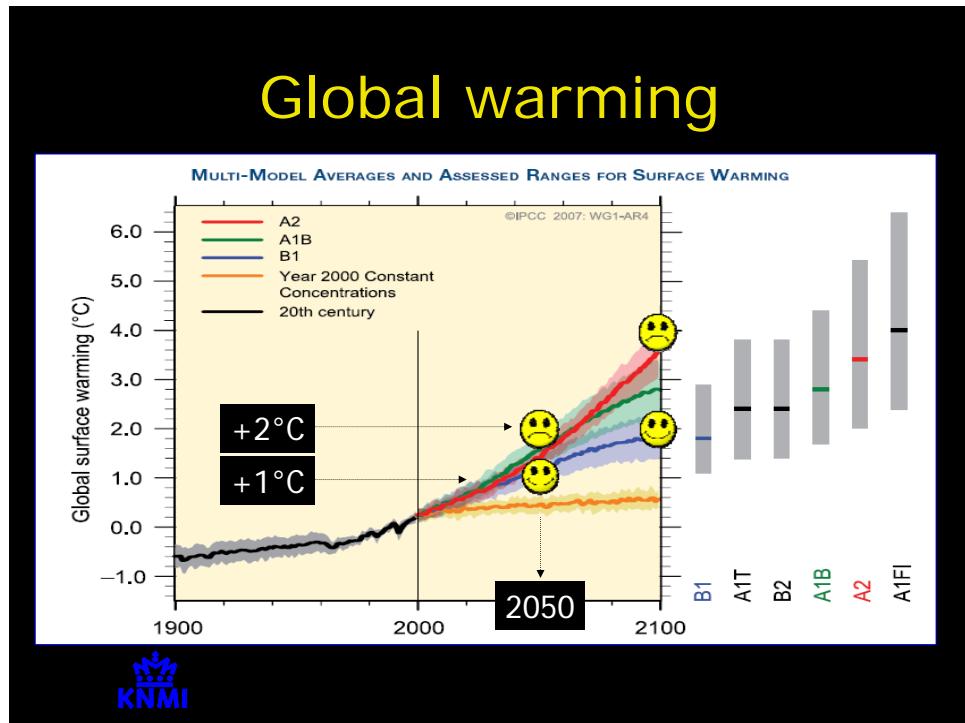
KNMI06 climate scenarios

Global climate models
(IPCC-AR4 model archive)

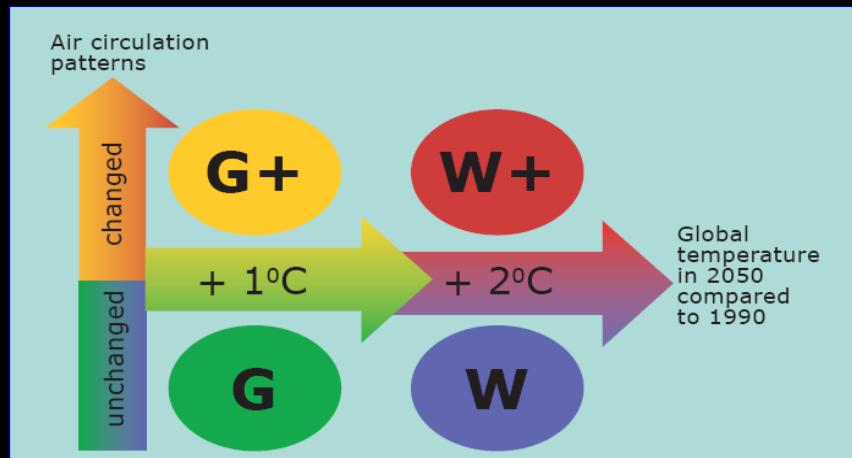
Regional climate models
(RACMO + RCMs from PRUDENCE)

temperature and precipitation
details for Western Europe derived
by statistical (down) scaling


KNMI06 climate scenarios


Global climate models
(IPCC-AR4 model archive)

Regional climate models
(RACMO + RCMs from PRUDENCE)


Observations

long observation series
for assessing changes in local
extremes and for generating
representative time series

KNMI06 climate scenarios

Local change in 2050

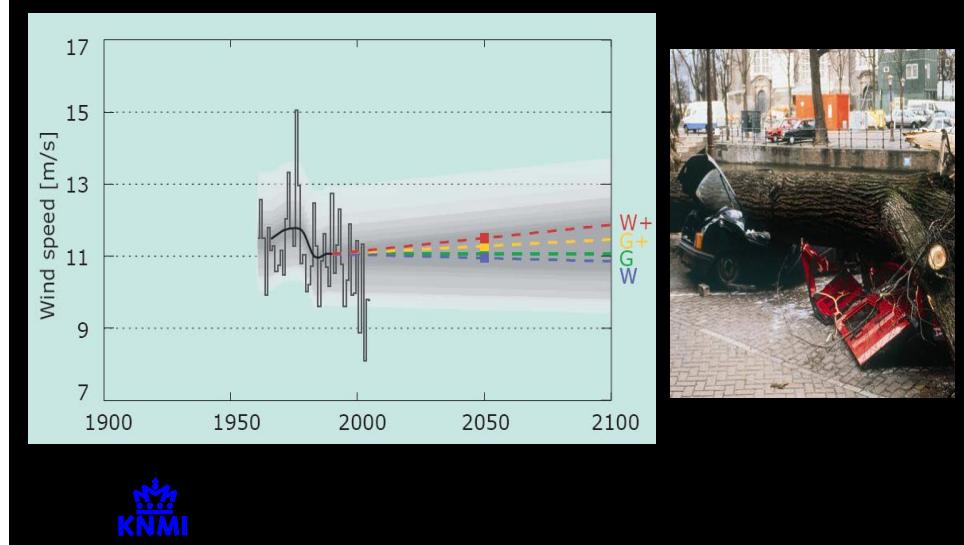
Global temperature rise Change in air circulation patterns	G +1°C no	G+ +1°C yes	W +2°C no	W+ +2°C yes
---	-----------------	-------------------	-----------------	-------------------

Winter ³	average temperature coldest winter day per year	+0.9°C +1.0°C	+1.1°C +1.5°C	+1.8°C +2.1°C	+2.3°C +2.9°C
---------------------	--	------------------	------------------	------------------	------------------

change in temperature extremes > change in mean

Summer ³	10-day precipitation sum exceeded once in 10 years	+4%	+6%	+8%	+12%
	maximum average daily wind speed per year	0%	+2%	-1%	+4%
	average temperature warmest summer day per year	+0.9°C +1.0°C	+1.4°C +1.9°C	+1.7°C +2.1°C	+2.8°C +3.8°C

... in particular for the scenarios with change in circulation

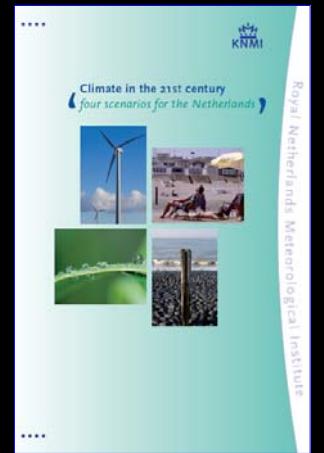

Sea level	daily precipitation sum exceeded once in 10 years	+13%	+5%	+27%	+10%
	potential evaporation absolute increase	+3%	+8%	+7%	+15%
		15-25 cm	15-25 cm	20-35 cm	20-35 cm

Summer rainfall

Change in wind storms

Local change in 2050

Global temperature rise Change in air circulation patterns		G +1°C no	G+ +1°C yes	W +2°C no	W+ +2°C yes
Winter ³	average temperature	+0.9°C	+1.1°C	+1.8°C	+2.3°C
	coldest winter day per year	+1.0°C	+1.5°C	+2.1°C	+2.9°C
	average precipitation amount	+4%	+7%	+7%	+14%
	number of wet days (≥ 0.1 mm)	0%	+1%	0%	+2%
	10-day precipitation sum exceeded once in 10 years	+4%	+6%	+8%	+12%
	maximum average daily wind speed per year	0%	+2%	-1%	+4%
	Summer ³	+0.9°C	+1.4°C	+1.7°C	+2.8°C
	average temperature	+1.0°C	+1.9°C	+2.1°C	+3.8°C
	warmest summer day per year	+3%	-10%	+6%	-19%
	average precipitation amount	-2%	-10%	-3%	-19%
daily precipitation sum exceeded					
much discussion on sea level rise					
Sea level absolute increase		15-25 cm	15-25 cm	20-35 cm	20-35 cm



Delta committee scenarios	KNMI'06 scenarios
'Plausible upper limit' of possibilities	Range of most likely outcomes
Specifically for the objective of this committee: long-term safety against flooding	General for everyone: wide range of applications
Targeted at 2100 and later	Targeted at 2050 and 2100
Basis is IPCC 'likely' upper estimate of global temperature rise (+6°C in 2100 w.r.t. 1990)	Basis is IPCC 'best estimates' for global temperature rise (+2°C or +4° in 2100 w.r.t. 1990)
Extreme extrapolation of uncertainty ice sheet dynamics	Less extreme extrapolation of uncertainty ice sheet dynamics
↓	↓
Maximum sea level rise in 2100 of 120 cm (excl. 10 cm subsidence)	Highest scenario for sea level rise in 2100 is 85 cm (excl. subsidence)

Conclusions

1. Strategies for local adaptation to changing climate conditions are needed for many sectors of society
2. KNMI06 climate scenarios address uncertainties at global, regional and local scales

www.knmi.nl/climatescenarios

Outlook

1. KNMInext will include new research results (AR5)
2. EC-EARTH and RACMO2 will be used, but in the context of other models, because single GCM or RCM projections don't sample the full range of possible future climates

Outlook

3. At present no spatial differentiation in the scenarios (all spatial variation results from the present climate), but indications for coastal effects, etc.
4. Fastly growing number of customer services (tailoring climate information) for various stakeholders (professional users and policy makers); they require smart combinations of observations and scenarios/projections

What is "Tailoring"?

- Dialogue about user requirements (which data, detail, intended way to use)
- Deliver data in requested format
- Guidance during use (e.g. pre-processing for impact models)
- Guidance during use in policy processes (how deal with uncertainties)

 Interactive process

Examples of “Tailoring”

Gas production: Does the chance at extreme low temperatures change up to 2030?

Refineries: potential effecten of climate change in the Netherlands around 2030 and 2050 (extreme rainfall and temperatures, wind)

Road safety: Data on “dangerous weather”-conditions around 2020 (extreme rainfall, heat waves)

Spatial planning provinces: maps with spatial variation in climate variables around 1990 and 2050

Urban water management: Do extreme rainfall intensities per hour and per day change in the same way around 2050-2100?