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Abstract  12 

 13 

Quantifying and understanding the complex fluctuations of physiological signals is the focus 14 

of many research. The complexity of physiological signals reflect the ability of organisms to 15 

adapt and function within an ever changing environment. The most studied physiological 16 

signal to reflect the autonomic imbalance in cases of disease, chronic stress and impaired 17 

welfare, in both human and animals is Heart Rate Variability (HRV). Given the limitations of 18 

current HRV analyses, like spectral or total entropy analyses, it is suggested to improve our 19 

understanding by decomposing the heart rate fluctuations with a dynamic model, based on a 20 

Bayesian approach for time series analysis. 21 

The model consists of three components describing the interbeat-intervals dynamics: (1) level 22 

and trend, (2) autoregressive process of order 2 and (3) observation error (white noise). The 23 

analysis also detects abrupt changes and slightly growing deteriorations. A dataset with 24 

continuous ECG  recordings from 2 pigs was analysed. The model decomposed total Heart 25 

Rate dynamics successfully in the time domain. So, it was possible to detect abrupt changes 26 

and slightly growing deteriorations in RR-interval in terms of the moments of occurrence, the 27 

magnitude, the duration and recovery. 28 
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 32 

Introduction 33 

 34 

Early detection of alteration in health status is of great importance in farm animals, as early 35 

intervention after e.g. infection can minimize symptoms, may shorten the recovery period and 36 

diminishes production losses due to disease. Most early warning systems in animals focus on 37 

the early detection of disease symptoms or infectious agents. When a certain population of 38 

pathogens is present, it is uncertain whether, when and to what extent animals will get ill or 39 

how capable the animals are to cope with the present pathogenic load without showing 40 

symptoms. This is caused by differences in the capability to maintain a certain health state 41 

under varying conditions.  42 

The complexity of cardiovascular dynamics has been studied as an indicator for autonomic 43 

balance or health state. To describe the variations in both instantaneous heart rate and 44 



 
 

fluctuations in RR-intervals over time, the term that has become conventionally accepted is 45 

“Heart Rate Variability“ (HRV) (Malik 1996). In both humans and animals, high complexity 46 

of HRV is associated with good health and high adaptive capacity. Low complexity of HRV 47 

has become a popular marker for autonomic imbalance in cases of disease, chronic stress and 48 

impaired welfare (Malik 1996; Goldberger, Challapalli et al. 2001; von Borell, Langbein et al. 49 

2007) and has gained widespread acceptance as a clinical and investigational tool (Billman 50 

2011). 51 

HRV is usually measured under one of the two common settings: short term measurements 52 

under controlled laboratory conditions, or long term measurements derived from 24 hour 53 

ECG-recordings made while performing daily activities. The current methods used to describe 54 

HRV deliver conventional time domain measures, spectral measures, geometric measures, 55 

and a variety of nonlinear variables. Each single variable derived from the different methods 56 

reflects a different aspect of HRV. They all show significant associations with physiological 57 

outcome or state, but it is still unclear which is the best variable to describe and assess HRV 58 

(Kleiger, Stein et al. 2005). Therefore, the clinical utility and predictive value of the existing 59 

HRV measurements is under discussion, which focusses on (1) the relationship between the 60 

autonomic nervous system (parasympathic and sympathic effects) and the descriptive 61 

variables of HRV and (2) the substantial variance in HRV within and between normal 62 

individuals (Goldberger, Challapalli et al. 2001; Peng, Costa et al. 2009). It can be concluded 63 

that we still lack an effective reconstruction method for the phenomenon of interbeat 64 

fluctuations in heart rate, that is characterized by a non-stationary process and a degree of 65 

stochasticity (Ghasemi, Sahimi et al. 2006). 66 

The goal of this paper is to show the first experiences with an adaptive dynamic model that is 67 

able to analyse the non-stationary and non-linear heart rate fluctuations in the time-domain in 68 

terms of fast and slow variation. We used the model to analyse time series of ECG recordings 69 

(RR-intervals) of 2 pigs to show that it reveals the non-stationary complexity of the cardiac 70 

function both in terms of fast and slow variation simultaneously, as well as the detection of 71 

the moment of occurrence and extent of changes in its dynamics. Results are presented and it 72 

is discussed whether this model can be used in longitudinal on farm settings as an online 73 

monitoring tool to detect process disturbances in early stage. 74 

 75 

Materials & Methods  76 

 77 

Experimental protocol 78 

Four crossbred pigs (Yorkshire x Landrace) were kept together in a pen with rubber flooring 79 

(150 cm wide and 120 cm deep) from 11 days until 86 days of age. Milk replacer (Sprayfo 80 

Pork, Husdyr Systemer as, Mosby, Norge) was provided ad libitum with an automatic 81 

wetfeeder (Mambo, Husdyr Systemer as, Mosby, Norge). Milk replacer was slowly reduced 82 

until the Mambo was removed at 46 days of age. Solid piglet feed (pellets) were available ad 83 

libitum from the start of the experiment. Water was provided ad libitum during the 84 

experimental period. The pigs were exposed to a 12h light (6am until 6 pm) - 12 h dark (6pm 85 

until 6 am) photoperiod. Temperature was kept at 28o C from start until 35 days, at 25o C until 86 

64 days age and at 24o C until the end of the experiment. Average relative humidity of the air 87 



 
 

was 55% during the experiment. The pigs had 2 weeks for acclimatization to the housing 88 

facility and weaning regime. At the age of 26 days, two of the four pigs were surgically 89 

equipped (intra-abdominal) with implantable telemetry transmitters (Data Science 90 

International, DSI, St Paul, MN) to record continuously temperature, activity and cardiac 91 

activity (ECG) until the end of the experiment. When the pigs were 35 days old, the two pigs 92 

without implants were removed from the pen to enlarge individual space. The growth curve of 93 

the two pigs with implants was similar to the curves of the animals that did not have surgical 94 

treatment. One pig at the time was monitored during 24 hours (weekdays) and 72 hours 95 

(weekends). Every day the pens were cleaned and the animals were inspected clinically. 96 

During the experimental period no signs of illness appeared.1.  97 

 98 

Data acquisition telemetry system & video recording 99 

The telemetry system (Data Science International, DSI, St Paul, MN, USA) consisted of 100 

implantable transmitters with two bio-potential leads (positive and negative) for measuring 101 

ECG signal, a temperature sensor to measure body temperature and one blood pressure fluid 102 

filled catheter (model TL11M2-D70-PCT; 49 grams, 33cc), a data exchange matrix and 103 

receivers (DSI PhysioTel® Receivers - RMC-1 Model for Large Animals). Only the ECG 104 

recordings were analysed in this paper. Signal strength between transmitter and receiver was 105 

recorded and expressed in a physical meaningless number ranging from 0 to 51 units. No data 106 

were recorded when signal strength dropped below 17 units. During the experimental period 107 

video recordings were made with a Sanyo (type RC506CH) camera and Samsung SHR-2040 108 

digital recording system of the complete pen during the light period (6am until 6pm). 109 

Telemetry data of the implants were collected with DSI Dataquest A.R.T.™ version 4.31. The 110 

ECG signal was measured and stored at 1 kHz. 111 

 112 

Data pre-processing 113 

The length (time in msec) of the RR-interval was derived from the raw ECG data with the 114 

Ponemah Physiology Platform version 5.0 software (Data Science International, DSI, St Paul, 115 

MN, USA). Due to weak radio or transfer signal or high noise some R-peaks were incorrectly 116 

detected, resulting in extreme RR-intervals (RR 200 msec or RR 700 msec). These RR-117 

intervals (denoted as extreme RR-intervals), together with sections where no PQRS complex 118 

could be detected (denoted as missing RR-intervals), were omitted from the data series. 119 

Subsequently, equidistant time series were formed by averaging the RR-intervals per second 120 

(further indicated as averaged or observed RR-intervals). Missing values in the time series 121 

were replaced by interpolated data and weighted zero in the analysis.  122 

 123 

                                                 
1 The established principles of laboratory animal use and care were followed as well as the Dutch law on animal experiments. The 
Wageningen University Animal Care and Use Committee (Lelystad Department) approved the experiment under number 2011040.f. 

 



 
 

Data selection 124 

From the experiments we randomly selected and analysed one hour of one pig (pig #231 from 125 

15:00 until 16:00 on the 23d of January 2012). For detailed explanation of the Bayesian 126 

model for analysis of HRV, two periods of 5 minutes were selected within this hour. The two 127 

periods of 5 minutes were selected, one with high and one with low activity of the pig based 128 

on the video recordings.  129 

 130 

Modelling and analysis  131 

Variation in interbeat intervals was decomposed in three parts: 132 

 
interbeat level& autoregression white

+
interval trend component noise

 133 

 134 

Level and trend represent slow dynamic variation, the autoregression component and the 135 

white noise represent fast dynamic variation. The white noise represents the independent 136 

random residual error. Figure 1 shows a simulated series of 5 min (=300 sec) illustrating  the 137 

3 components of the model.  138 
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 140 

Figure 1: Simulated time series of RR intervals of 5 minutes (300 sec.) showing the 3 141 

components: level and trend (thick straight line); auto-regression component (thin fluctuating 142 

line) and white noise scattered around the thin line (points). 143 

 144 

A dynamic model was formulated for analysis of the time series of averaged RR-intervals per 145 

second tY . The dynamic model consisted of an observation and a system equation. The 146 

observation equation (1) described the relation between the observation and the parameters: 147 

 t t t tY Z  (1) 148 

with the parameters: t (level), tZ  (autoregression, AR2) and ~ 0,t t tN k V  (observation 149 

error or white noise, with unknown variance tV  and weight tk equal to the number of beats per 150 

second). The system equations (2) and (3) describe the evolution of the parameters over time: 151 

RR (msec) 

Time (seconds) 
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 154 

with level t , trend or incremental change t  , two autoregression coefficients 1,t  and 2,t  155 

with system errors 1...5,t  normally distributed with zero mean and variance matrix tW . The 156 

dynamic parameters are locally constant and follow a random walk. Two kinds of parameter 157 

estimates were achieved: online estimates, which were based on observations from the past 158 

only, and retrospective estimates, which were based on all observations from the whole time 159 

series. All parameters were recursively estimated following the Bayesian approach to the 160 

analysis of time series according to (West and Harrison 1997) including a monitoring 161 

procedure followed by automatic intervention to detect process disturbances.  162 

The results describing variation in the time domain were linked to results in the frequency 163 

domain. Level and trend corresponded to ultralow frequency variation, the pseudo (or 164 

stochastic) cyclic behaviour, described by the autoregression AR(2) component corresponded 165 

with low frequency variation and the white noise (or random error) corresponded to the high 166 

frequency variation. From the parameter estimates at any point in time the correlogram, 167 

spectrum and variances were calculated (Diggle 1990). 168 

Results and Discussion 169 

 170 

Within the complete analysed hour, 147 RR-intervals were indicated as extreme values and 171 

left out of this analysis. Out of the 3600 averaged RR-intervals, 3480 intervals were classified 172 

by the monitoring routine as normal, 51 as warnings and 69 as outliers. According to the 173 

video recordings, between 15:00 and 15:30, the pigs were mostly resting/sleeping. After this 174 

period they awoke, stood up and started eating and drinking, at 15:44 the pigs lied down 175 

again.  176 

The results of the analysis are shown in figures 2 to 5. Figures 2a and b show the observed 177 

(averaged per second) and forecasted RR intervals for the two periods of 5 minutes within the 178 

hour. Figure 2a shows the period of 5 minutes in which the pig was mostly resting and figure 179 

2b shows a more active period where the pig was eating, drinking and playing with its pen 180 

mate. Even during these short periods a substantial variation in RR-intervals was detected. 181 

 182 



 
 

183 
 184 

 185 

Figure 2a&b Observed and forecasted RR-interval; 2a: Selection of 5 min. period (resting): 186 

above and 2b (active): below; observed values (grey points), forecasts (black line), upper and 187 

lower level of 90% confidence interval (light grey lines). 188 

 189 

Figure 3a and b show the estimated parameters for level ( t ) and trend ( t ) for the selected 190 

hour, representing the slow changing dynamics. Level was accurately estimated at any point 191 

in time. More active periods were described by a shorter RR-interval and changes in level 192 

were easily picked up, even sudden changes. Figure 4b shows the trend t . In the first period 193 

of the hour, the trend was not significantly different from zero (the confidence intervals were 194 

not above or below zero). It resulted in a more or less constant level, which is shown in figure 195 

3a. Only at t=15:36 a significant negative trend was seen, followed by a significant positive 196 

trend, which resulted in an temporary reduction of RR-interval. This is the period the pig was 197 

active and was detected by a change in level and trend by the model. Thus, the moment of 198 

occurrence of changes in trend of RR-intervals were properly detected by the analysis and 199 

could directly be related to the behaviour of the animals. Rapid changes (e.g. at t=15:10 and 200 

t=15:12) did not result in a change in level or trend. However, the variance of the process 201 

increased, which resulted in a larger confidence interval.  202 



 
 

 203 

 204 

Figure 3a: Estimated level t  (above) and 3b: Trend  t  or incremental growth (below); 205 

online estimates (grey points); retrospective estimates (black line) incl. 90% confidence 206 

interval (light grey lines) 207 

 208 

In fig 4a and 4b the parameter estimates that describe the fast dynamics changes are shown. 209 

These are the autoregression component tZ the forecast variance tQ  and observation variance 210 

tS . The variances fluctuated, even during both 5 minute periods. The variances increased, 211 

especially after abrupt changes. The two AR-parameters 1,t  and 2,t  described the properties 212 

of the AR(2)-process, i.e. the shape and rate of decay of random deviations from the base 213 

level. In figure 5 1,t  and 2,t  are plotted for both selected periods of 5 minutes.  214 

The AR-process is stable when the AR-parameters lie within the triangle (figure 5). If they lie 215 

outside the triangle, the process is unstable and the heart rate will exponentially grow or 216 

decline which is physiologically not possible in living organisms. When the AR-parameters 217 

lie within the triangle and below the parabola the decay of the deviations follows a decaying 218 

cycle, otherwise they follow a decaying curve.  219 

The stochastic cycle during the resting and active period showed different characteristics. It 220 

appeared that when the pig was resting, the AR-parameters lied clustered together and more 221 

to the left in the upper part above the parabola. In this area, the fluctuations around the base 222 

level are characterized by a relatively fast exponential decay (dark grey cluster in figure 5). 223 

When the pig was more active, the estimated AR-parameters lied in a strip near to the right 224 



 
 

side of the triangle (light grey strip in figure 5) where the decay of fluctuations appear to be 225 

slower (light grey line in figure 5). 226 

 227 

228 

 229 

Figure 4a & b: Autoregression component tZ and variances within the two selected periods of 230 

5 minutes; 4a sleep (above) 4b active (below): Online estimates (grey points); retrospective 231 

estimates (black line) incl. 90% confidence interval (light grey lines).  232 

Forecast variance tQ  (------) and observation variance tS  (white noise,  - . -)  233 

 234 

235 
 236 

Figure 5 Retrospective estimated AR parameters 1,t  and 2,t  showing the two selected 5 237 

minute periods while sleeping (dark grey line 15:03-15:08) and active (light grey line 15:31-238 

15:36).  239 

 240 

The first two components level ( t ) and trend ( t ) adjust the base level of heart rate to the 241 

required set point according the behaviour and physiological demands at that moment. 242 



 
 

Significant trends appeared whenever an increase or decrease in base level is required to meet 243 

the physiological needs. Changes in RR-interval at arousal were described by a decreasing 244 

trend, followed by a slow increasing trend to adjust to the desired level again. Sudden fast 245 

changes in level (mainly drops in RR-intervals) were not detected by trend since the process 246 

variance increased simultaneously. This indicates that the level and trend components of the 247 

model reflect the slow dynamic changes in RR-interval.  248 

Within 5 minute periods substantial variation in interbeat interval can be seen. This actual, 249 

more subtle, variation in RR-intervals cannot be described accurately by models based on the 250 

assumption of a stationary process, like the Fast Fourier Transformation (FFT). They were, 251 

however, captured by the decomposing model, which moment by moment follows every 252 

fluctuation and any changes in dynamics. These fast dynamic fluctuations around the slowly 253 

changing base level is described by the autoregression and error components, corresponding 254 

to low and high frequency variation. The AR2-process ensured that the modelled RR-interval 255 

oscillated around the base level that was set by level and trend. This process with more or less 256 

decaying deviations can be seen as continuously fine-tuning towards the desired heart rate.  257 

As expected, the random error component t  could not be captured within any pattern or 258 

related to any cause. This is the white noise component, which is shown as random scattering 259 

around the AR oscillations as shown in figure 1. As shown in figure 4 the variance of this 260 

white noise component was not constant within the 5 minute periods. So, the white noise 261 

variance is dynamically changing even within short periods.  262 

The parameters were estimated online at each moment of the time series and together 263 

characterized the total dynamic variation in RR-interval and the dependency between 264 

successive observations in the actual situation. The accuracy of the online estimates was 265 

improved afterwards by the backward smoothing procedure, resulting in the retrospective 266 

estimates.  267 

 268 

Conclusion 269 

 270 

Our model is based on a beat to beat calculation, which is necessary for timely detection of 271 

the dynamical changes in HRV that apparently occur continuously over time. Techniques that 272 

cannot calculate on a beat to beat basis, such as other time or frequency domain techniques, 273 

overlook the dynamic changes when a mean value over a longer time period is calculated, and 274 

therefore provide less (detailed) information.  275 

We concluded that the adaptive dynamic model is able to analyse the non-stationary and non-276 

linear heart rate fluctuations in the time-domain in terms of fast and slow variation. The 277 

model detects sudden changes as well as slightly growing deteriorations. 278 

These characterisations of dynamics will differ depending on the physiological state of the 279 

animal and may be individually different. Further research will focus on the relation between 280 

estimated parameter values and the physiological state of animals. After the physiological 281 

interpretation of the parameters with respect to the autonomic nervous system the model will 282 

be further developed as an online monitoring tool that can be used to detect early alterations 283 

in physiological state of animals in husbandry systems. 284 
 285 
 286 
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