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Abstract

Due to flood risk increase in the Netherlands dytime last decades, new river
management strategies are being developed in awgas as river floodplains. As
floodplains of the Rhine River are part of the Na#l Ecological Network of the
Netherlands, these strategies are meant to satedpatin flood protection as well as
nature rehabilitation objectives. Nature rehaliiia implies that former agricultural
land is transformed into natural areas, but vegetas also an important component
which influences the hydraulic roughness of theodiglains which increases peak
discharge. In order to prevent catastrophic floeeh¢s river managers need to forecast
vegetation dynamics. Dynamic Vegetation Models (DVMre used to predict
vegetation succession, but to initialize and va#dhese models, information about the
spatial distribution of vegetation is required.

This research is focused on establishing a metbggolfor mapping and
monitoring floodplain vegetation by the applicatioof imaging spectroscopy
techniques. Vegetation classes are defined acagptdithe concept of Plant Functional
Types (PFTs), because of its appropriateness wkerg lused by DVMs. PFTs are
defined in a wide variety of terms, but in thisdstuhey were defined as vegetation
clusters that have a similar response to water ffopact. This response was measured
by what is known as hydraulic resistance which wharacterized by quantifying
specific plant traits: height, density and flexiyil Since the heterogeneity of PFTs
leads to intimate mixture of classes in a sub-pbmdle Spectral Mixture Analysis
(SMA) was considered an appropriate technique. Si& used to classify into PFTs
imaging spectroscopy data acquired by HyMap and ICAS 2004 and 2001,
respectively.

The methodology was developed using HyMap as basge. In this first
approach, nine PFTs based on plant size were deflneear spectral unmixing was
applied to the first 23 MNF bands from HyMap usite;m endmembers (nine PFT
classes and soil). These were extracted from thagémbased on ground truth
knowledge derived from field data. Three methodsewapplied: unconstrained, semi-
constrained and fully constrained linear unmixifgnally, a temporal analysis was
performed in which both HyMap (2004) and CASI (2D@lere subject to previous
methodology. In this second approach, five PFTewedefined based on plant species

and six endmembers were used.
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Overall classification accuracy of HyMap improved second approach with
respect to first from 66 % to 40 %. Classificatioh woody PFTs showed better
performance (68 %) than herbaceous PFTs (47 %). riDwhrubs Crataegus
monogyna) were classified with 57 % accuracy, shruBanfoucus nigra) with 81 %
and pioneer treessglix sp.) with 64 % in the second approach. Performanc€/ASI
image showed worse results with an overall accurdc®l %. The results from this
research reveal that it is possible to map and tooMmFTs in river floodplains by

applying Spectral Mixture Analysis to hyperspecinahges.
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1 INTRODUCTION

1.1 Context
About half of the Netherlands’ surface area is thss one meter above sea level

and one third of it is actually below sea levethiére were no dikes or dunes, two thirds
of the Netherlands would be flooded on a regulasishdherefore flood rigkis a
continuous threat and it is expected to increastaencoming decades along the river
Rhine. The two main reasons for this are that denehange will cause a significant
increase in the probability of extreme floods amat the potential damage of floods (the
level of investments in areas at risk) is doublewgry three decades (Hooijer, 2002).
Moreover, the room available for improved floodkrisianagement in the future is
rapidly decreasing due to urbanization along thwerribanks (Hooijer, 2002). This
affirmation promotes the potential damage of floodsd that is why flood risk
management strategies should be developed in@atiimn of higher peak discharges in
the future (Hooijer, 2002).

New flood management strategies are intended tercowath flood protection as
well as nature rehabilitation objectives (Baptistle, 2004). Naturalized vegetation, in
floodplains, plays a principal role in nature rehitdiion objectives, but it also
determines flood evolvement because of its infleemit hydraulic resistance (Anderson
2006). Due to management and restructuring in tla@eas, vegetation is subject to
periodical changes. Accurate and up-to-date inftionaon this dynamic vegetation is
of vital importance to river managers because thgimum discharge capacity depends
on it through its hydraulic resistance (Geerlinglet2006). Especially of importance is
to monitor shrubs since they experience fast dgveémt and are the vegetation type
that show highest roughness (Geerling et al., 2005b

Dynamic vegetation models are increasingly beingduw forecast vegetation
evolvement and hence can be used to support rive@ragement strategies. Many
dynamic vegetation models use an approach basg@thonfunctional types (PFTs) as
classification units (Adams et al., 2004; Peng,@@onan et al., 2003; Epstein et al.,
2001; Pausas, 2003; Jauffret, 2003; Pan, 2002¢oirast to ecotopes, traditionally
used as classification units in river floodplaiktaftmann and Knotters, 2006), PFTs
present characteristics that make them more adedoabe used by river manager

! Flood risk is a potential negative impact to areass value that may arise from a flooding event.



nowadays. Ecotopes are the smallest ecologicadtypdi landscape features in a
landscape. They are complex vegetation units watyimg structural and functional
plant types. PFTs are defined in a wide varietieais; it depends on the scale (global,
national, local, etc) or the field of applicatioplant physiology, ecology, etc). In
ecological modeling they are defined as vegetatiosters that have similar response to
environmental factorsEpstein at al., 2001; Gondard et al., 2003) makiregn more
suitable than ecotopes to be applied into DVM.

Mapping and monitoring PFTs in river floodplains lyearly field work
campaigns would take large amounts of time and evbel too expensive. Currently,
aerial photography has been used to discriminagetaéon types or ecotopes within
the Dutch river floodplains. But this is a time saming method with limited spectral
possibilities that does not allow to document withlass variation of vegetation
roughness (Straatsma, 2006). However, new digtabte sensing techniques, such as
advanced multispectral or hyperspectral radiometgesect multiple narrow spectral
bands facilitating fine discrimination between diffint targets and it is less time
consuming than aerial photography. It offers thesgmlity to record cyclic vegetation
changes in distribution since there are imagedablaiin a periodical basis. Despite of
it, little research has been done at present tval®FTs from imaging spectrometry
and no satisfactory methodology exists; the difficlies much in the heterogeneity of
PFTs on the land cover (Sun et al., 2006).

There are different methods to approach classibicatf PFTs based on imaging
spectroscopy techniques. Due to the high heterdtyeoné the PFT classes, pixels
covering more than one class are likely to be fodrds will lead to pixels containing
mixed spectral information of different PFTs. Theseed classes often results in poor
classification accuracy when conventional algorghsuch as the maximum likelihood
classifier (MLC) are used (Borisova, 2005). It mspible to obtain better results if the
mixed pixels are decomposed into different spe@pactral mixture analysis (SMA) is
one of the most often used methods for handlingsfieetral mixture problem (Rosso et
al., 2005; Li et al., 2005; Schmid et al., 2005yiBloova, 2005; Ustin et al., 1999). It is
a physically based model that provides quantitagémates of the distribution of
materials within the image scene at a sub-pixeles¢ialenovsky et al., 2006;
Borisova, 2005). Spectral mixture analysis (SMA$ baen applied successfully before
to derive vegetation classes (Rosso et al., 20€a&l et al., 2005; Li et al., 2005).



1.2 Objective
The objective of this thesis is to develop an imggspectroscopy based method,

using spatial mixture analysis (SMA), for mappingdamonitoring plant functional
types (PFTs) in river floodplains with especial éragis on monitoring the process of

shrub encroachment.

1.3 Research questions
The following research questions are addressdusmiork:

1. How to discriminate plant functional types in aditplain using imaging
spectroscopy techniques?

2. Which methodology can be developed for mappingtdiamctional types using
remote sensing techniques (with especial emphasishoubs)? Is Spectral
Mixture Analysis (SMA) a good method?

3. Is it feasible to monitor shrub encroachment by ganmg two images from two
different sensors, while each of these images ayaed by the previously

developed methodology?

1.4 Outline of the report
Chapter 1 is an introduction to the study, firshtext, importance and problem

definition are described and then objective anceassh questions are presented.
Chapter 2 is a summary of the main contents gathdtging the literature review.

Chapter 3 consists of a description of all matsriahd methods used during this
research, starting from the study area, then ti& ased and a detailed description of
the methodology applied. In chapter 4 results aesgnted and in chapter 5, these
results are discussed. Chapter 6 is a final coimeiusf this study and chapter 7 gives
some recommendations. Then, the list of all litmetconsulted for this study is shown
in the bibliography in chapter 8. Finally, morealktd information can be found in the

appendices in chapter 9, where tables, maps anckfdre presented.



2 LITERATURE REVIEW
2.1 Floodplains

2.1.1 Floodplain characteristics

Flood affects periodically areas known as floodmaalong rivers. A floodplain is
a flat or nearly flat land adjacent to a streamriger that experiences occasional
flooding (Wikipedia, 2006). Flooding process canryvan time, distribution and
strength. Floodplains can support particularly gdosystems, both in productivity and
diversity. These are termed riparian zones or BystéRiparian land is usually more
fertile than the adjoining hillslopes, having betecess to water and other nutrients. As
a result, riparian zones support a higher density diversity of plant species that tend
to grow larger than their terrestrial counterpaRgparian communities are subject to
powerful fluvial forces, principally floods and thassociated geomorphological
processes of erosion and deposition. The actioinede forces (both their magnitude
and frequency) causes spatial diversification ambptant assemblages, and a typical
riparian zone is composed of an unstable mosaipatdhes having distinct floristic
compositions or existing at different successiatagjes (Anderson 2006). The variation
of riparian plant species and associations withadie from the main river is linked to
floodplain inundation duration and frequency, aadcheight above the water table that
depend on the variability in floodplain topograpfisforsheim & Mount, 2001). This
results in a lateral structure of vegetation thah ®e divided into four functional
ensembles on the basis of mean annual flood domt{dnderson 2006). Such a
relationship is shown conceptually in figure 1, whehe flow duration curve (right

side) divides the lateral zonation (left side) idtg, damp, marginal andaquatic zones.
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2.1.2 Flooding events
Along the Rhine river tributaries, the main embaekis, so called winter dikes,

provide protection against flooding. Flood eventdl wccur when the ‘design
discharge’ of the embankment is exceeded (Baptisk ,£2004). Due to climate change
the ‘design discharge’ needed is expected to iserebhis will demand additional flood
reduction measures. In the past these problemsdwbakve been addressed by
heightening the dikes. But nowadays new measueesmanduced which should result
in a more sustainable approach to flood protectguth as lowering floodplains,
removing groynes, removing hydraulic obstacles, ewidg floodplains by dike
replacement and excavating secondary channelsi¢Baptal., 2004). These measures
provide opportunities for ecological rehabilitatidgAloodplains in the river Rhine are
part of the National Ecological Network of the Natlands and many efforts are made
to rehabilitate floodplain nature (Baptist et 2D04).

One approach to reducing the risk of flooding isibgreasing the hydrologic
network capacity. Capacity is principally limite¢ bhe amount of resistance in the
channels that make up the network. Resistance edhdught of the friction that slows
down flow; greater resistance reduces the flow atew that a channel can convey
before overflowing. High resistance is also causgdegetation, which occupies space
in the channel and presents obstacles that slow diown. Plants have a pronounced
effect on flow patterns and morphological developtie rivers (van den Bosch, 2003).
It also happens that vegetation is relatively gasgemove. Therefore, the removal of
vegetation from the area in and near stream chanfleé¢ riparian zone) has been
practiced as measure for flood mitigation (Anderf#06). But a trade-off exists
between the increase in flow depth caused by redebannel capacity due to the
presence of vegetation and the potential decreapeak discharge of the flood wave
that a densely vegetated channel network produasdefson 2006). However the work
from Anderson (2006)proves that the impact of riparian restorationlinsited to
changes in peak depth in the order of 10-20%, wdiifall cover of dense vegetation

may increase overbank duration by between 40-100%is demonstrates that

2 This results were obtained from the applicationttté ROVER (a model to quantify vegetation
roughness) to the upper Murrumbidgee catchmenteaw [South Wales, Australia. This river supports
large irrigated agricultural and irrigated pastal@velopments and an increase in urban developésnt.
at an altitude above 370 m. Wetland forest as agelirassland are composed of different speciestigth
ones we encounter in the Waal river in Netherlandsh ad=ucalyptus sp., Acacia sp., Dichanthium sp.,
Calotis p., etc.



vegetation can be used as main tool for river raitln and at the same time as tool for

flood management.

2.1.3 Hydraulic roughness of vegetation
Floodplain vegetation relates to the discharge @aapahrough its hydraulic

resistance. This influence depends very much owlifferent vegetation types, because
each of them has a distinct hydraulic roughness (len Bosch, 2003). The hydraulic
resistance is the magnitude of the turbul@mesulting from water in laminaregime
passing through an obstacle. Its value affectyéhecity of the regimeand depends on
the shape and characteristics of the obstacle éRaguLauenroth, 1996; Laurent et al.,
2004). Figure 2 shows the hydraulic resistanceesfor different ecotopes, which are
present in the floodplain of the river Waal. Hydrauesistance has been defined in

terms of theNikuradse equivalent roughness® (K) constant.
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Figure 2: Hydraulic resistance by ecotopes in the ver floodplain measured in terms of Nikuradse

equivalent roughness (m) (Geerling et al., 2005b)

As can be observed, bushes have the highest hydrasistance of the presented
ecotopes. This is because they have dense striaggnening at the soil level. Forested

areas leave more freedom to the water as branshanty at a higher level. Herbaceous

® Turbulence is a flow regime characterized by cleastbchastic property changes.

* Laminar flow occurs when a fluid flows in parallayers, with no disruption between the layers.

® The water regime of a freshwater ecosystem is téeajling pattern of water flow over a given tinte.
refers to the duration and timing of flooding rég from surface water (overland flow), precipibat,
and ground water inflow.

® For a given surface roughness is often describadrims of a characteristic roughness heighthis
characteristic height may be taken as the ‘equitaandgrain roughness’ heidistdefined by Nikuradse
(1933) (Schockling et al., 2006).



vegetation and grasslands are the ecotopes thatraost not obstacle for the water to
flow (Suarez-Barranco, 2006). Although comparedgoicultural use area (bare soil,
production grasslands and multifarious grasslandgdgh k ranging from 0.15 to 0.40,
herbaceous vegetation has increased resistan6eo01600.

All ecotopes present hydraulic resistance, hentefathem are of interest to
derive flood behavior using dynamic vegetation nedelowever, a special attention
will be given to shrubs, since this is the ecotdpat mostly affects hydrological

roughness of floodplains.

2.2 Plant Functional Types
2.2.1 Dynamic Vegetation Models

As vegetation is an important component of hydmaulbughness in river
floodplains, dynamic modelling approaches have lakeloped to accurately simulate
the influence of vegetation on flow and morpholagfyrivers (Baptist et al., 2005).
Forecasting vegetation dynamics is a basic compoterbe considered by river
managers when trying to predict flood risk. Pradigtresponse of vegetation or simple
biomass to a changing environment can be done bgaled Dynamic Vegetation
Models (DVMs). These models incorporate explicipresentation of key ecological
processes to forecast vegetation dynamics (Wametiak, 2003; Peng 2000).

Traditionally, ecotopes have been used to chaliaetaegetation types for the
Dutch river floodplains. But using ecotopes in dyimamodelling has some limitations
because one ecotope contains high heterogeneitgrdiag vegetation structure,
response to environment, role in the ecosystemAetew concept has gained terrain in
literature (Epstein at al., 2001; Gondard et aQ02® Paruelo & Lauenroth, 1996;
Laurent et al., 2004; Kleyer, 2002): Plant Funaiofype (PFT) that is more adequate
as input for DVM. This will be described in the nekapter.

An often used DVM in the Netherlands to model vagenh at the regional to
national scale is the model chain SMART2-SUMO2 (Whnk et al., 2005). It is used
to derive plant functional types’ development (Saoenberg et al., 2000; Wamelink et
al., 2005). The SMART2 model simulates soil proess# describes linked biotic and
abiotic processes in the soil solution as wellnathe solid phase. SMART2 delivers the
nitrogen availability to SUMO2 as the sum of exsdriN input and mineralization.
SUMOZ2 is a process oriented model that providesnagtés for nutrient uptake and

litterfall (including roots, branches and stem wpadd models vegetation succession



and biomass production for time steps of one yiarbiomass production in root, shoot
and leaf is simulated for five functional types) fterbs and grasses; (2) dwarf shrubs;
(3) shrubs; (4) pioneer tree; and (5) climax ti€eq(stra et al., 2006b; Wamelink et al.,
2006; Wamelink, 2005). Results from Kooistra et(2006b) demonstrate that imaging
spectrometer derived products can be used foratadial and initialization of DVMs.
PFTs mapping using remote sensing techniques canséfl when initializing or

validating the application of this model chain.

2.2.2 Vegetation classes
As we have seen before, there is a need of knolamgflood risk evolves so that

river managers can derive measures for flood cbrfmderive flood risk evolvement,
river managers require monitoring the spatial distron of vegetation and in a
configuration which can be used by, the previousigntioned, dynamic vegetation
models.

Monitoring vegetation is done on a vegetation @asbasis (Laurent et al., 2004,
Geerling et al., 2006; Zhang et al., 1997). Vegatamay be classified using different
criteria: plant species, plant communities, vegatattypes, vegetation structures,
ecotopes, plant functional types, etc. Plant sgeai® the basic units of biological
classification and they are assigned accordingtongon ancestors (Wikipedia, 2007).
Plant community is the vegetated portion of allititeracting organisms living together
in a specific habitat (Wikipedia, 2007).

In current literature many authors use the termetagn type (Lindstro &
Jaenson, 2003; Nangendo et al., 2005; Song eR@05) but most of them do not
outline its definition. Vegetation type respondsatolassification, but this classification
can be done according to different criteria. Theda might be one or the combination
of some of the next: climate pattern, plant hapipdtenology, growth form and/or
dominant species. In North America, for instancegetation types are based on a
combination of the criteria, while in Europe cldissition often relies much more
heavily on floristic (species) composition alonéliKipedia, 2006)

Vegetation structure, however, refers to one $igetiait of vegetation. It is
characterized primarily by the horizontal and \eattidistribution of plant biomass,
particularly foliage biomass. And it is determinbyg an interacting combination of

environmental, historical factors and species caitiom (Wikipedia, 2006).



According to AEM (Antropogenic Ecotope Mapping &assification system),
ecotopes are the smallest ecologically-distinctdéaape features in a landscape
mapping and classification system (The Ecotope Mupjvorking Group, 2005). As
such, they represent relatively homogeneous, diyagigplicit landscape units that are
useful for stratifying landscapes into ecologicallgtinct features for the measurement
and mapping of landscape structure, function arahgé (e.g. softwood forest). They
are identified using flexible criteria that depemwl the specific application involved.
These are criteria defined within a specific ecaagmapping and classification system
and are defined by the interaction of biotic ando@b components, including
vegetation, soils, hydrology, and other factorsg Htotope Mapping Working Group,
2005). According to Geerling et al. (2005) an epetas a spatial unit of a certain
extension (usually 0.25-1.5 ha), which is homogsrasito vegetation structure and the
main abiotic factors on site. Geerling et al. (200&fine the following ecotopes in
floodplains: Forest cultivated, Agriculture, Wat@nain channel), Bare soil, Pioneer
vegetation, Grassland vegetation, Herbaceous wemet8ush (shrubs and trees <5 m):
Open canopy (20-60% coverage) or Closed canopy¥>6fverage), Forest (>5 m):
Open canopy (20—-60% coverage) or Closed canopy’>6@verage) and water (side

channel).

2.2.3 Plant Functional Types
Classification of vegetation can also be done bgalted Plant Functional Types

(PFTs). The definition of PFT is currently recetyim lot of attention in ecology
(Epstein at al., 2001; Gondard et al., 20B&ruelo & Lauenroth, 1996; Laurent et al.,
2004; Kleyer, 2002). Some methods have been deselépr objective groupings of
species into functional types (Chapin et al. 1996¢gson et al. 1999) but functional
classification is context dependent and we shoutdempect to find a useful, universal
classification into functional groups (Noble & Gitel996). The purpose of developing
a functional classification is to find some genlgrapplicable simplification of the
diversity of life while retaining information abodlhe most important processes and
interactions for the purpose in hand (Noble & Gitayp96). Therefore defining
functional types is an operational procedure, ofedated to a specific scale.

Paruelo & Lauenroth (1996) define it as a groupspécies that share traits
(morphological and physiological attributes) andyph similar role in an ecosystem.

They use five PFT for grassland and shrubland mtrakNorth America; shrubs, C3



grasses, C4 grasses, succulents and forbs (nomgrigntierbs). Plant Functional types
(PFT) provide a logical link between physiologieaid life history strategies at the
plant level and processes at the ecosystem levepi@ 1993). Laurent et al. (2004)
describe it as a group of plants defined by theight, leaf form, phenology and
climatic requirements. They describe eleven PFiggadial scale: tropical broad-leaved
evergreen, rain-green trees, temperate needledeaxargreen and summergreen trees,
temperate broad-leaved evergreen and summer-gmess, tboreal needle-leaved
summer-green and evergreen trees, boreal broadlesavemer-green trees, C3 grasses
and C4 grasses. Kleyer (2002) establishes that falantional types (PFTs) are groups
of plant species with similar plant traits and $imirealized nichéswith respect to
multiple environmental factors. Traits such as pkchitecture and height, seed bank
longevity, attributes of the dispersal or seed Wweignd number are fundamental to
relevant aspects of plant life history, e.g. steragffects, competitive ability or
colonization (Kleyer, 2002). Niche patterns showdult from syndromes, i.e. suites of
attributes of traits or trait states, which repredanctional adaptations of plants the
environment. When comparing syndromes along enmmerial gradients, general
principles about functional plant-environment relas may be identified (Kleyer,
2002). Kleyer (2002) distinguishes PTFs accordiogatiributes fordispersal, seed
production, seed persistence, sapling, resourgaysapd disturbance intensitgpstein

at al. (2001) and Gondard et al. (2003) define tional types as alassification based
on species responses to environmental factors. Peamd) (2000) define PFT as a set of
plant species (e.g. tropical evergreen broad-lemffarest trees) characterized by their
physiognomic and morphological traits and respaasgimate.

Reading these previous definitions two basic pastean be observed. On the one
hand there is a difference in the term PFT dependim the scale. On a global or
national scale (Laurent et al., 2004; Paruelo &draoth, 1996) PFTs are defined by
morphological and physiological attributes (plaaight, leaf form, phenology, etc.) and
climatic requirements. While in a local scale msgpecific traits are used to characterize
PFTs, such asttributes fordispersal, seed production, seed persistence,ngapli

" Plant life-history traits are seed size, seed hteiglant height, leaf weight, leaf area, SLA (mésarf
area/dry weight) and number of seeds per plantt(Aesn & Eriksson, 2003).

8 A niche is a term describing the relational positof a species or population in an ecosystem. It
includes how a population responds to the abundahds resources and enemies and how it affects
those same factors. The abiotic or physical enwiem is also part of the niche. It may include
descriptions of the organism'’s life history, habigamd place in the food chain.
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resource supply and disturbance intengkyeyer, 2002). However, for both scales,
PFTs are considered to play a similar role in twsgstem.

On the other hand definitions are markedly difféi€they come from the field of
plant physiology (Paruelo & Lauenroth, 1996; Ladreinal., 2004; Kleyer, 2002) or the
field of modelling Epstein at al., 2001; Gondard et al., 2008) modelling, definitions
of PFTs are focused on their response to envirotahdéactors and not so much on
plant morphological or physiological traits.

PFTs are relevant to help understand and predetiep distribution in present
and future environments with changing disturbamggmes including climate (Gondard
et al., 2003). Hence, many dynamic vegetation nsodsé plant functional types (PFTs)
as classification unit (Adams et al., 2004; Per@)(2 Bonan et al., 2003; Epstein et al.,
2001; Pausas, 2003; Jauffret, 2003; Pan, 2002).a@lkantages that PFTs have, when
used to represent vegetation patches, comparedhty biome-based classification
systems, are three. First, PFTs are linked toleadt physiology measurements, more
adequate for setting parameters in land modelssesthese models are expanding
beyond their traditional biogeophysical roots to clime biogeochemistry
(photosynthesis and carbon cycle), they requireiSpation of leaf-level and whole-
plant physiological parameters. Second, PFTs atfmaellers to represent land surface
more accurately, since composition and structud@Fofs can be separately specified in
a grid cell. And third, representing vegetationtenms of PFTs allows land models to
better interface with ecosystem dynamic modelsabse the latter typically simulate
vegetation change in terms of the abundance of R&Uis et al., 2006). But multiple
pathways or trajectories are possible in these tacae a result of varying inputs or
processes (Gondard et al., 2003) and a concertedt & refine and standardize the
concept of PFTs should be made (Adams et al., 2004)

In contrast to ecotopes, traditionally used as sdiaation units in river
floodplains (Hartmann and Knotters, 2006), PFTs@ne all these characteristics that
make them more adequate to be used by river managewadays. Ecotopes are
complex units which consist of vegetation with ayuag structure and functional types.
These complex units are simplified in such a wat gpparently they represent spatial
units of certain extension, homogenous as to végatatructure and the main abiotic
factors (e.g. shrubs, grassland, hardwood, et&JsRare more realistic; they do not
form such compact units, but instead they appeartangle disposition throughout the

whole area and same PFTs are likely present ieréift ecotopes. Land cover in terms
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of PFTs is characterized by a great heterogené€ityure 3 shows an example of

ecotopes and PFTs in a landscape.

Ecotopes PFETs

/gy~ Temperate needle-
B sush ﬁ C4 grass e@jzf leaved summer-
green trees
- Softwood forest
|:| Hardwood forest
I:l Grassland

C3 grass
Forbs (nongraminoid

Temperate broad- herbs)

leaved summer-
green trees Thorny bushes

iTemperate needle-leaved evergreen trees

Figure 3: Example of relationship between ecotopesd plant functional types (PFT)

2.3 Spectral Mixture Analysis
2.3.1 Applicability

Evolvement of plant functional types in space igelatively fast process which
must be monitored regularly. Performing field wgdarly would be too expensive and
would take large amounts of time, therefore is feaisible. Currently, mainly aerial
photograph has been used to discriminate vegetbfj@s or ecotopes within the Dutch
river floodplains. Time is required for each of #everal steps of processing negatives
and prints and interpretation of photos. In additguccessful interpretation depends
upon the skill and experiences of the individuagipreter, for instance the boundaries
between different classes are settled manually lwimplies subjectivity. It works with
either black-and-white, true color or color infrdredepending on the source-, which
limits the spectral possibilities. Hence this ifirae consuming method that moreover
does not allow to document within-class variatidrvegetation roughness (Straatsma,
2006).

However, new digital remote sensing techniquesh siscadvanced multispectral

or hyperspectral radiometers, detect multiple nargpectral bands facilitating fine

12



discrimination between different targets. This seissvery high-spectral resolution
facilitates fine discrimination between differeatdets based on their spectral response
in each of the narrow bands. The advantage of spkEttorm remote sensing is the
broad scale, practical, repeatable collection @& dehich makes it applicable to real
world problems (Pengra et al., 2006). Previous egpees have been successfully
developed to monitor vegetation dynamics by remsetesing (Zhang et al., 1997; Rosso
et al., 2005; Schmid et al., 2005; Geerling et20006). Mapping marshland vegetation
in California (Rosso et al., 2005) was carried iou2005. Marshes were mapped using
Spectral Mixture Analysis (SMA) and multiple endnismn spectral mixture analysis
(MESMA). These two methods were compared to ingasti their appropriateness to
characterize marshes species. They suggest thaMME®uld be more successful if
(a) four or five endmember models are tested apdndre than one endmember per
plant species or class is included, to accommodate variations in spectral
characteristics of each component across the so&nmultisensor approach was
investigated by Schmid et al. (2005) to determitanges over time of wetland
characteristics in semiarid environments in Sphimear spectral unmixing was carried
out successfully in a highly dynamic and anthromogaffected wetland area.

Floodplain vegetation has been classified usingotemsensing techniques.
Geerling et al. (2006) proved that using data fusibspectral (CASI) and LIDAR data
gave better results than results from separate siadmially for those vegetation classes
which are important to predict hydraulic roughness,bush and forest (Geerling et al.,
2006). Their study, in the Waal River, consisteddive-class set of vegetation types,
which was considered to be the minimum set to edgéirhydraulic resistance for river
management purposes. The paper from Straatsma)(2@86ribed a new method to
derive hydrodynamic roughness of floodplain surfacke used a combination of
multispectral data (CASI), and airborne laser scaprdata (ALS). Roughness in
vegetated areas was assumed to be a function etatem height and density. The
result was three vegetation maps with distributtdrherbaceous height, herbaceous
density and forest density.

To date research on how to utilize satellite obstgons to map PFTs remains
limited. It appears that at present no satisfactoeghodology exists for the extraction
of PFTs from satellite observations (Sun et alQ68)0The difficulty lies much in the
heterogeneity of PFTs on the land cover. The MadderResolution Imaging
Spectroradiometer (MODIS) Land Team is producingiadoal PFT map for use in the
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Community Land Model (CLM). This MODIS PFT is thalgp global PFT data set
available now, but errors and uncertainties of thaga set are noticeable enough to
compromise credibility of global change researam(&t al., 2006).

There are different methods to approach classificanf PFTs based on
spectroscopic techniques. Due to the high hetemgewf the PFT classes, pixels
covering more than one class are likely to be fodrds will lead to pixels containing
mixed spectral information of different PFTs. Thesi@ed classes often results in poor
classification accuracy when conventional algorghsnch as the maximum likelihood
classifier (MLC) are used (Borisova, 2005). Trawhal classification approaches assign
only one possible value or category per pixel, iostncases, misrepresenting some
components or oversimplifying mixtures of compose(lRosso et al., 2005). It is
possible to obtain better results if the mixed |sxare decomposed into different
spectra. In order to solve the mixed pixel problegientists have developed different
models to unmix the pixels into different proponigsoof the endmembers (Mishev,
1991; Ishoku, 1996). Spectral mixture analysis (SNB\one of the most often used
methods for handling the spectral mixture problénsso et al., 2005; Li et al., 2005;
Schmid et al., 2005; Borishova, 2005; Ustin et999).

The fact that classes can be mapped and quareitatiepresented as a separate
entity in an area that otherwise is classified ag @lass by traditional mapping
approaches, underlines the potential of SMA toofelichanges in vegetation cover.
Because the same endmembers can be used to aadiyze sequence, SMA has the
capability to estimate changes in abundance. Thenpal to estimate the spatial
distribution and abundance of a species, rather tihamatic classes, has great value in
monitoring a biological invasion, because changas be detected and quantified
(Rosso et al., 2005).

Monitoring vegetation with remote sensing techngjisemore complex than only
mapping. Monitoring implies to keep track of vedieta changes in a spatial and
temporal scale. Commonly different sensors will bsed for it. Therefore, a
methodology to monitor vegetation has to be adamteatifferent sensors while dealing
with different spatial resolution, spectral bands)age extension, geo-reference,
radiometric and geometric calibrations, etc. Schmridal. (2005) demonstrated the
complementary use of remotely sensed data togetiiter the SMA technique to
incorporate results derived from hyperspectral dateo a temporal series of

multispectral data. They proved the capacity to eseimembers derived from
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hyperspectral information in the analysis of erigtimultispectral data from different

Sensor.

2.3.2 Description
SMA is a physically based model that provides qtatnte estimates of the

distribution of materials within the image scenea{®hovsky et al., 2006). It assumes
that the spectrum measured by a sensor is a lecwabination of the spectra of all

components within the pixel (Borisova, 2005; Rossal., 2005). In the process of
‘unmixing’, SMA estimates the fit of selected endnieers to the observed value of a
pixel in order to estimate its composition. As aulg each pixel carries information

about the predicted abundance of each of the enthersniRosso et al., 2005).

The mathematical notation of the linear spectrahixing procedure is:
j=m

R=>Rf +e i=l.n  j=1.m
=1

Where Ris the reflectance value of the pixel in bandjiifthe reflectance value
of endmember j in band i; fs the fraction of endmember j in bandiijsethe residual
error per band i, n is the number of bands and timeisiumber of endmembers.

In order to guarantee a physical interpretatiornhef results, two constraints are
usually added to the unmixing problem. The firsé onakes sure that the fractions will
be positive and below 1 while the second constraigures that the sum of all the
recovered fractions adds to unity (Zurita-Millaagt2005):

Jffj =1 and 0=<f;<1
j=1
When these two constraints are not taken into atdgthe process is denominated
unconstrained linear unmixing. When only the fashstraint is considered it is a semi-
constrained linear unmixing. This constraint may gieen more or less weight by
adding this equation to the whole set of functismrany times as required. And finally
when both constraints are added to the calculattbe, method is called fully
constrained linear unmixing.
The root mean square error (RMSE) is the paramesedl to know the fit of the
model and it is defined as:

i=n

RMSE = —Z;le'

15



The higher the maximum RMSE value, the worse the ehditl in terms of
determining the distribution of the abundance val(fechmid et al., 2005). The RMS
image is an important indicator of surface featuheg were not included in the linear
spectral unmixing (Schmid et al., 2005).

2.3.3 Endmember selection
The selection of endmembers can be performed inweays (Plaza et al., 2004):

1) by deriving them directly from the image (imagedmembers); or 2) from field or
laboratory spectra of known target materials (lfprandmembers). These two methods
are discussed below.

1) Deriving endmembers directly from the image (image endmembers)

The advantage of this method is that selected emdees are under similar
atmospheric conditions and spectral/radiometricsdsawith respect to the image
(Malenovsky et al., 2006). In the case of a temiparalysis it is still an advantage
provided that the endmembers are selected fronsdinee image where the SMA is
going to be performed. In case the endmembers cbora a different image,
inaccuracies originated from those biases musbhsidered.

The endmembers can be derived in two different ways

» Directly fromthe purest pixelsin theimage. Pure pixels are areas in the image in
which uniqgue endmembers are represented. Thisitpehnequires reliable field
information in order to locate precisely the pubeefs. The area selected can be
a single pixel or the average of several pixela ihomogeneous area. But for
low spatial resolution this can be difficult to #le since vegetation
distribution can be heterogeneous at the pixelesddlus leading to highly-
mixed pixels (Wang et al., 2006).

* With automated procedures. The endmembers are found with automatic
methods such as PPI (pixel purity index), N-FINDR an@x Cone Analysis
(CCA) (Plaza et al., 2004). These classic approasbkext endmembers based
on the search for spectral convexities in the N\space. They can be partial or
fully automated. Another method, IEA, is based ontaerative process in which
those pixels that reduce the error obtained in tcaimed spectral unmixing

operations are used as endmembers.

® Multidimensional.
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2) Deriving endmembers from field or laboratory spectra of known target
materials (library endmembers)

Spectral libraries are collections of laboratorycége or spectra measured in the
field (Malenovsky et al., 2006; Kooistra et al. 08). They can be collected for different
purposes and are measured using various typesswliiments (portable non-imaging
spectrometers) of often unknown quality or precigialenovsky et al., 2006). Library
endmembers are not recommendable because of mogabklength shifts, unreliable
instrument calibration or significant degrees ofsepwhich are not uncommon to these
data (Malenovsky et al., 2006). Besides field speate not easy to scale up to match
spectra measured by the sensor because it canequadly capture the multiple-
scattering environment of a canopy (Powell et 806).

Another consideration is the number of endmembwtsch is limited by the
dimensionality of the data. The maximum amountrafreembers cannot be more than
the number of bands minus the number of constraifitee constraint is one
(Malenovsky et al., 2006) in the case of semi-aams¢d unmixing and three (second

constraint accounts for two) in the case of fulbnstrained unmixing.

2.3.4 MNF transformation
While hyperspectral imagery are capable of progda continuous spectrum

ranging from 0.44 to 2.48 microns (in the case gMdp) for a given pixel, it also
generates a vast amount of data required for psowgand analysis. Due to the nature
of hyperspectral imagery (i.e. narrow wavebandsichmof the data is redundant (Green
et al., 1988). A minimum noise fraction (MNF) tramshation is used to reduce the
dimensionality of the hyperspectral data by segmegahe noise in the data (Green et
al., 1988). The MNF transform is a linear transfaiora which is essentially two
cascaded Principal Components Analysis (PCA) tramsfbons. The first
transformation decorrelates and rescales the nwmiséhe data. This results in
transformed data in which the noise has unit vagaand no band to band correlations.
The second transformation is a standard PCA of teervhitened data (Green et al.,
1988).

Before applying spectral unmixing to the imagesitecommended to compress
data with MNF transformation in order to improves ttubsequent spectral processing

results. It reduces redundancy, minimizes the amftie of systematic sensor noise
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during image analysis and helps the endmembers torthogonal and uncorrelated.
(Pengra et al., 2006)

2.3.5 Validation
Validation of results may be done using three diifeé approaches (Kooistra et al.,

2007). First an analysis of the spatial continuoag fior the RMSE is used as indicator
of surface features that are not included as endraesrin the linear spectral unmixing
classification. Secondly the validation focuses o comparison between modeled and
observed coverage. This comparison is done by dpeesentation of modeled vs.
observed by means of scatter plots. This givesargétrend of the model accuracy. In
addition, it is done by overlaying field data wittre abundance maps and easing the
visualization of trends. The third method, only kggble to fully constrained linear
unmixing, is a sub-pixel accuracy assessment c&Mg4 (overall sub-pixel accuracy),
which gives an estimation of classification accyrdry adding the values of the
diagonal from the confusion mattfxper pixel. Assuming that the estimated fractions
are correctly positioned within the pixel, the O&Acomputed as follows (Zurita-Milla
at al., 2005):

J’i’imin{fip’ fio}

osA=12 =S min{tp, ) j=1,2,....n
=1

In this equation f represent fraction, p is thedmted and o the observed, while j
are the different endmembers. In this expressienQBA is calculated per pixel. The
minimum fractions of the observed vs. predicted gigel are added for all classes and
weighted to the total predicted fraction, whicliias consequence of the first constraint.

19 A confusion matrix is a plot used to evaluatefiegformance of a classifier during supervised liegrn
Each column of the matrix represents the instancagiredicted class, while each row represents the
instances in an actual class. Values in the didgiirthe matrix count the correct predictions.
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3 MATERIALS AND METHODS

3.1 Study area
This thesis work will focus on the study area Midjerwaard. The Millingerwaard

is a floodplain that is located along the Waal, itte@n branch of the river Rhine in the
Netherlands. It covers around 700 ha and it is parthe Gelderse Poort, a nature
reserve with a surface of 6700 ha located in batvibe cities Arnhem, Nijmegen and
Emmerich, near the Dutch-German border. Before 1880 main function of the
floodplain was agricultural production but in therjpd of 1990-1993 it was gradually
changed into nature. The floodplain was alloweditdergo natural succession and a
regime of natural grazing by cattle and horseemdensities was introduced (Kooistra
et al., 2006b).

The current vegetation of the floodplain considtsnixed patches and ecotones,
i.e., transitions between communities with a domagaof grass, herbaceous vegetation,
shrub, and a large softwood forest (Kooistra et 2006b). Softwood forest in the
Millingerwaard is dominated by willow treeSdix fragilis andSalix alba). The forest
canopy has an open structure with dense undergr@iwtinca dioica, Arctium lappa,
Galium aparine). Some open water bodies exist as well as highngtevater levels due
to the low elevation. The non-forest vegetatiorcharacterized by a heterogeneous
patchy structure of different vegetation successiages. Dominant species &fdica
dioica, Calamagrostis epigejos, andRubus caesius (Kooistra et al., 2006) During high
floods, the whole floodplain except for the higperts of the river dunes is flooded.

The Netherlands The Gelderse Poort
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Figure 4: Study area
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3.2 Data
Several fieldwork campaigns have been carried ouhén Millingerwaard that

resulted in a wide range of data sets availablettier development of this work. In
September 2001 a hyperspectral image was acquiredhéyCompact Airborne
Spectrographic Imager (CASI) operated by NERC (UKJ &nanced by the Ministry
of Traffic and Public Water. In summer 2002 fieldwavas performed by students of
prof. Karle Sykora (Plant Ecology, Wageningen Uniitgfd0 gather vegetation data.
The Geo-Information Centre of Wageningen Univer$@Gl) developed an airborne
imaging spectroscopy campaign in the Millingerwasrd004 (HyEco’04 campaign)
where field data was gathered and hyperspectraesaere acquired using the HyMap
sensor. Another campaign was held by the CGI ir6280/Eco’05 campaign) where
field data was also gathered. During the years 20, the Ark Association

(www.arknature.nl) made also an inventory of wosggcies in the floodplain.

3.2.1 Image data
The images that were used in this research are lyiktage (2004) and CASI

image (2001). HyMap image was acquired on Julyy 2804 by the HyMap sensor. This
sensor uses 126 spectral bands (30 VIR, 32 NIRS\82R1 and 32 SWIR2) ranging
from 400 to 2500 nm (bandwidth 15 - 20 nm) andatiapresolution of 5m (Kooistra et
al., 2005). CASI image was acquired on August 2801 using the Compact Airborne
Spectrographic Imager (CASI) sensor. Spectral infaonas measured in 10 bands (1
blue, 1green, 4 red and 4 NIR) (Verrelst 2004).

In Table 1 a summary of the characteristics of botages is presented. A more

detailed table can be found in Appendix 1.

Table 1: Image data characteristics

Image Year Number of bands Projection Data type Sampling unit
System
HyMap 2004 126 bands UTM ENVI standard  Cells of 51x 5
CASI 2001 16 bands RD Dutch ERDAS Cells of 2 x 2m
coordinate  IMAGINE
system

3.2.2 Field data
Four different sources of field data were used is $tudy: Sykora group, the two

HyEco campaigns from the CGI and Ark Associatiohe Tvailable field data and its

characteristics are summarized in Table 2.
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Table 2: Field data characteristics

Source Year  Field information Vegetation  Projection Data Sampling
type system format unit
Sykora 2002 316 releveés: locationAll VTs RD Dutch Shapefile Area of 2 x
group community name & height coordinate (points) 2m
range. 88 releveés: location system

& height range

HyEco'04 | 2004 21 releveés: location, planHerbaceous RD andShapefile Area of 2 x
campaign community & sps UTM (points) 2m
abundance per community

HyEco'05 | 2005 18 releveés: location, heighfll VTs RD and Shapefile Area of 5 x

campaign per VT, plant community & UTM (points) 5m
genus abundance per
community

Ark 2005- 3896 individual plants: Shrubs and RD Dutch Shapefile Individual

Association| 2006 location, date, elevation, sptrees coordinate (points) plants
name, height, volume, stem system

thickness, appearance, full
grown, damage, eaten by
cow, couple, dear, beaver,
rabbit, mouse, litter, dead or
alive

3.3 Methodology

3.3.1 Overview of methodology
The methodology was developed using exclusively HgNR0O4) as base image.

At the end, a temporal analysis was performed (8@c8.3.5) where both images
(HyMap (2004) and CASI (2001)) were classified. Tdien of this section was to
compare the PFTs distribution of both images to @emformation about vegetation
dynamics in a time step of three years. The metlogimal approach developed for
HyMap was used to classify both images. But sucthasmlogy was subject to some
modifications: PFT classes, number of endmemberdraages extension. On the one
hand, the characteristics of CASI added new conditiand limitations to previous
defined steps, such as number of endmembers aedstoon of the area. These new
limitations had to be taken into account into aoselcHyMap classification, so that
results could be comparable. On the other hand dessens learned from preceding
results were considered in this second approaohdier to apply for improvements.

The methodology consisted first of a conceptual ehodefinition of PFTs
(Section 3.3.2). Second, images and field data wiejecoof a series of preprocessing
steps (Section 3.3.3). HyMap image was masked asizece CASI image was subject
to a projection transformation, an atmospheric exion, masking and resizing. Field

data was adapted to the PFTs model and to the Hykhage characteristics. This
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implied a classification into PFTs, a format convansin some cases, a transformation
of the projection system and the adaptation of shenpling units. Third, spectral
mixture analysis was applied to the image HyMap {{8ec3.3.4) by a selection of
endmembers, a MNF transformation, a linear speatralysis and a validation process.
And finally the temporal analysis was performedcti®m 3.3.5).

3.3.2 Conceptual model of PFTs classification

3.3.2.1 Conceptual model

As was mentioned in section 2.2, PFTs are defindieirature in a wide variety
of terms. In this work, more in accordance withlegaal modeling at local scale, PFTs
were defined as:

“Vegetation clusters that have a similar response to water flow impact”

This response, that originates a great proportibnhyalraulic roughness in
floodplains, is measured by the hydraulic resistandydraulic resistance can be
characterized by the evaluation of specific plaaits under the assumption that similar
response to water flow is induced by similar plamits. Therefore by measuring

specific plant traits, classification of vegetatiato PFTs can be carried out (Figure 5).

Useful to describe

PFTs

ﬂDefined as

Vegetation clusters with similar responseftg Assumption | Similar plant trait
water flow impac

! | Measured by

Hydraulic
resistance

Characterized

Figure 5: Conceptual model of PFTs. Relationship betven PFTs, hydraulic resistance and plant
traits
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The selection of plant traits to establish thisssifacation was done considering

mainly, relevance to hydraulic resistance, buttexise of field data was also taken into

account as well as the separability of spectralatigres:

Relevance to hydraulic resistance. Traits that have an effect on hydraulic
resistance are density of foliage, branch structugdical extent, stem diameter
and rigidity (Anderson et al., 2006; Naden et2006).

Existence of field data for training and validation. The existing data varies
depending on the different datasets. From Ark dafiaich consist of woody
vegetation- the information that we can derivepscses, height, stem diameter
and crown projection per individual plant. The Sykalataset -which consists
mainly of herbaceous vegetation-, has informatioraglot basis of 2x2 m and
it consists of existing species and Braun Blanfuiedex per species. Field
information from the HyEco campaign consists of nisenber of individuals per
existing specie in plots of 2x2 m for 2004 and glot 5x5 m for 2005.

Difference between and within spectral signatures. The chosen traits must have
spectral significance so that it is possible tossify the PFTs using spectral
unmixing techniques. This aspect was initially taketo account only for
herbaceous PFT classes, for woody vegetation it wakiaed in a different
section (3.3.4.1). In this section a final defimiti of the endmembers is

proposed.

According to relevance of hydraulic resistance dath availability, the selected

traits were:

Height. This trait refers to the height (h) of the plahis height refers to actual
height of the plant measured in field but, whes thformation is not available,
the potential height of the plant derived fromrkiieire is acceptable.

Density This trait refers to the density of the brancifleomplex per individual
plant. Thicker foliages cause an increase in Magisircoefficient? along
floodplains (Anderson, 2006) and therefore an iaseein hydraulic resistance.
Due to limited field information, horizontal densiivas not possible to derive,

1 Species abundance index.

12 Manning's roughness coefficient (n) values arelisehe Manning's formula for flow calculation in
open flow channels. It represents the resistanélead flows in channels and floodplains. Highetues
indicate higher hydraulic resistance.

23



therefore only vertical density was considered.sTinait is measured in two
different ways: one for woodyvegetation and another one for herbactous

a) For woody vegetation it is measured by the vertitstribution of branching in
the stem. Two basic structures can be found: shi&swith branches growing
from the bottom part of the stem, so a higher dgnsiassumed, and trees (T),
with branching starting at a certain distance ftbmbottom, in this case density
is assumed to be lower than for shrubs.

b) For herbaceous vegetation this parameter was mehbyréhe leaf type. Two
general leaf types are considered which belongwo different herbaceous
groups: graminoids and forbs. Gramindidare grass or grass-like plants in
which the length dimension of leaves is predominaithh respect to the width
dimension (Figure 6.a). Forbs are non-graminoids sharbwhich the opposite
occurs; the width dimension is predominant (Figut®).6Due to this, the leaf
type for graminoids was termed long (L) and thef lig@e from forbs was
termed broad (B). Results from Liras-Laitas (2005how that
monocotyledonou§ species Calamagrostis epigejos, Agrostis stolonifera) have
different spectral properties than dicotyledorféuspecies Cirsium arvense,
Rubus caesius, Urtica dioica) in the Millingerwaard. Assuming that species with
broad leaf type have thicker foliage than specieth wong leaf type, we
conclude that L type vegetation present less hydraasistance than B type
vegetation.

\ -\ \‘l’ . L ’ ‘
.t '

a) Long leaf type  b) Broad leaf type

Figure 6: Herbaceous leaf types

13'A woody plant is a plant having hard lignifiedstigs or woody parts especially stems. Woody
vegetation, as considered in this research, inslsdbshrubs, shrubs and trees.

1 vascular plants without significant woody tissi®wee or at the ground

5 Includes grasse®gaceae), sedgesEyperaceae), rushes Juncaceae), arrow-grassesl{ncaginaceag),

and quillworts (soetes)

%8 Include graminoid familiePoaceae, Cyperaceae, Juncaceae andJuncaginaceae

7 Include most abundant forbs.
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b)

Flexibility. This trait is described as the ease to bend wiater impact. It is

measured also in different ways depending on thediness.

For all woody vegetation it is measured by the siieameter (d).

For herbaceous vegetation stem diameter (d) is nefesant parameter since it

does not experience big changes compared to treiortbe woody case. So it

is assumed that stem thickness is always underfacinerbaceous vegetation

and hence only one high flexibility type is applied all.

3.3.2.2 PFTs classification
Subject to the PFTs conceptual model defined in seéti®.2.1, the PFT classes

were established. Two different approaches wetevield, one for woody vegetation

and one for herbaceous, which are described aftkleT3. The final classification of

PFT according to this conceptual model is shown inld3.

Table 3: PFTs classes defined according to conceptuabdel

PFTs Resistance Clusters Heigr(l:é;aght f&?ﬁgggg‘ Den;trﬁ;r)r €
Herbaceous
SNL 1 H1D2F1 <0.5 <1 L
SNB 2 H1D1F1 <0.5 <1 B
RNL 3 H2D2F1 >0.5 <1 L
RNB 4 H2D1F1 >0.5 <1 B
Shrubs
H1D2F1 0-0.5 0-5
SWS 2 H2D2F1 0.5-4 0-5 S
H1D2F2 0-0.5 5-15.0
H1D2F3 0-0.5 15-130
MWS 4 H2D2F2 0.5-4 5-15.0 S
H3D2F1 4-35.0 0-5
H3D2F2 5-15.0
H2D2F3 0.5-4 15-130
RWS 6 S
H3D2F3 4-35.0 15-130
Trees
H1D1F1 0-0.5 0-5
H1D1F2 0-0.5 5-15.0
SWT ! H1D1F3 0-0.5 15-130 T
H2D1F1 0.5-4 0-5
H2D1F2 0.5-4 5-15.0
MWT 3 H3D1F1 4-35.0 0-5 T
H3D1F2 4-35.0 5-15.0
RWT 5 H2D1F3 0.5-4 15-130 -
H3D1F3 4-35.0 15-130
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a) Woody vegetation
Woody vegetation classification into PFTs was done thwp subsequent

aggregations. The first led to eighteen clustesebtan plant traits measurements, the
second and final one, led to six classes of hydraesistance. By these two subsequent
aggregations a PFTs classification was obtained dkatciates hydraulic resistance
with plant traits.

For the creation of the first clustering, the fiss¢p was to define groups within
each plant trait. Three groups were created fayhigH), two groups for flexibility (F)
and another three for density (D):

» 3 groups of height: H1 (0<i®.5 m), H2 (0.5<k4 m] and H3 (4<k35 m].
e 2 groups of density: D1 (Trees) and D2 (Shrubs).
» 3 groups of flexibility: F1 (1<d5 cm], F2 (5<¢15 cm] and F3 (15<dl30 cm].

All possible combinations of these groups were iedrrout so that eighteen
clusters were derived (Figure 7). These eighteastets, which are based on specific
plant trait combinations, were regrouped accordmgix PFTs woody classes (SWT,
MWT, etc.) associated to six levels of vegetatigraulic resistance, ranging from
lowest (Resistance 1) to highest resistance (Resist6) (Figure 7):

* Resistance 1. SWT (Soft Woody vegetation with Ttegcture)

* Resistance 2: SWS (Soft Woody vegetation with Shtiuctire)

¢ Resistance 3: MWT (Medium Woody vegetation withel's¢ructure)
* Resistance 4: MWS (Medium Woody vegetation with Stetabcture)
» Resistance 5: RWT (Robust Woody vegetation witresteucture)

* Resistance 6: RWS (Robust Woody vegetation with Sktuzture)
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b) Herbaceous vegetation
Herbaceous vegetation classification into PFTs wa diy only one aggregation.

Figure 7: Classification of woody vegetation into PF§
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As for woody vegetation, the first step was to twegroups within each plant trait. Two
groups were created for height (H), one group Fexilbility (F) and another two for
density (D).

2 groups of height: H1 ¢0.5 m) and H2 (h>0.5 m).
2 groups of density: D1 (Long leave) and D2 (Brteale).




» 1 group of flexibility: F1 (d<1 cm).

All possible combinations of these groups wereiedrout so that four clusters
were derived (Figure 8). They were named accordinfpair PFT herbaceous classes
ranging from lowest (1) to highest (4) hydraulisistance (Figure 8):

* Resistance 1: SNL (Soft Non-woody vegetation withd.teave)

* Resistance 2: SNB (Soft Non-woody vegetation witha@rteave)

» Resistance 3: RNL (Robust Non-woody vegetation Wwihg leave)
* Resistance 4: RNB (Robust Non-woody vegetation Bitbad leave)

4 clusters
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Figure 8: Classification of herbaceous vegetation fo PFTs

3.3.3 Preprocessing

3.3.3.1 Image Data

Various aspects have to be taken into account dgi@cessing a hyperspectral
image. These are internal calibration -correctromf sensor noise-, external calibration
-atmospheric and irradiation correction-, geo-reeing, masking of water and clouds
if necessary and resizing to reduce computatiomes.t
a) HyMap image

HyMap image had been radiometrically, atmosphdyicaind geometrically
corrected before (Kooistra et al., 2005; Kooistralg 2007). Since this image, in UTM
coordinates, was the base map and all data wasfdrared to UTM, no projection
transformation was required. The existence of watelies, such as the river Waal and
small lakes, and also the existing of built o agtioral areas could lead to confusion as
these land cover types are not object of the umgixilassification. Therefore areas
with these land cover types were masked out otba of study.

Two masks were successively applied. First a maskapalied to exclude water
bodies from the image. This was done by calculatimg Normalized Difference
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Vegetation Index or NDVI for the whole image. Vesjein NDVI typically ranges
from 0.1 up to 0.6, with higher values associatdéth greater density and greenness of
the plant canopy. Surrounding soil and rock values @ose to zero while the
differential for water bodies such as rivers andnslahave the opposite trend to
vegetation and the index is negative (Lillesand &f&r, 1994). In order to exclude
water, NDVI values lower or equal to O were masketl Values between 0 and 0.1
were kept because sand was selected as one ofdheembers (4.2.1 Table 7).
NDVI is defined as (Orlovsky, 2002):

_ NIR-RED

NDVI = —————
NIR+ RED

NIR and RED are the reflectivity over the NIR ragso(700-900 nm) and the red
(630-740 nm). This corresponds to bands 19 to 82vamd 14 to17 respectively. Better
results, understood as bigger contrast betweentategeand non-vegetated areas, was
given by the bands 19 in the NIR and 15 in the fidds was evaluated by applying
NDVI transformation to various combinations of REDd NIR bands. The resulting
NDVI images were compared in between. Random lonatof vegetated areas showed
highest NDVI values, while random locations of negetated areas showed lowest
NDVI values, when using bands 19 and 15.

The second mask was meant to select only the draatevest. It implied the
exclusion of most important urban and agricultaedas. This was done by creating a
new vector file in ArcGIS in which such area waswiraThis file was imported to
ENVI as a vector file and exported to ROI. As a RiGlould be used to build a mask.
This mask was applied to the previously masked enagh all pixels with NDVI
values above 0.

Clouds were not observed in the study area, altngugsence of clouds is
indicated by NDVI negative values (Lillesand & Keef 1994) and hence were already
excluded by applying the first mask.

The image was also resized to reduce computattonal The resizing consisted
of suppressing the non-value area resulted frommthsking. Resizing was only done
after MNF transformation was applied due to the Irezence explained in chapter 3. 3.
4. 2. A second resizing was done to HyMap whemftathe temporal analysis (chapter
3.3.5). As the original extension of CASI image iedent than that from HyMap and

the initial study area defined for HyMap was cuQASI, the area of interest had to be
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reduced during the temporal analysis in order tfop@ the unmixing to the same area

in both images.

b) CASI image

CASI image was subject first to a projection transfation from RD to UTM
coordinate system. Then, an atmospheric correcivas applied to it; since only
radiometric and geometric corrections were origgnalone. Finally, masking and
resizing were applied.

Projection transformation was performed in ArcGIS.tefAf this projection
transformation, some spatial inaccuracies were rgbde CASI image was translated
some meters with respect to HyMap and the fiela datready transformed into UTM
coordinates). This was deduced by looking at smeddatures in the image. A
translation of 10 m east was performed to cort@stghift.It was exported into ERDAS
IMAGINE and by the function “Set drop point” was fad 10 m East to the correct
position. This image was subject to the “Modelen” ERDAS before it could be
introduced in ENVI software; to assure the propesge format.

Atmospheric correction was performed in ENVI usitfte “Empirical line
correction”. The application of this function derdad pairs of spectral data from
locations in the image and the field. As no fieléasurements were taken during the
day the image was taken, data from field locatinmese gathered from the HyMap
image -which had been atmospherically correctesdragg that these locations did not
changed much in time. Taking into account too #taeast one dark and bright point
are recommended four locations were chosen: rigke, sandy area and a roof. Then,
the empirical line correction was performed.

Finally the image was masked and resized. As welygap, two subsequent
masks were applied, one with NDVI values greatanthero and another one by setting

the area of interest.

3.3.3.2 Field Data

Before spectral unmixing can be carried out, fiddda must be adapted so that
they can fulfill the concept of PFTs as explainethm section 3.3.2.2 and can be of use
for the unmixing purposes: endmember selection\aidlation. But field data is not
present in a way that fits the needs of the clasgibn procedure, because it was not
gathered based on any specific application. Thezefarojection system, format,
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sampling unit and information have to be modified fulfill specific requisites.
Different procedures were applied to each datasettd their diverse characteristics
(Table 2). These modifications may lead to losaafuracy because assumptions have
to be made.

Field data preprocessing consisted of the followstegps. First, the data about
vegetation had to be re-classified into PFTs softblt information could be adopted
for the image classification. Second, the projecsystem of all field data sets was
transformed from the Dutch RD coordinate systemk@@riehoeksmeting) to the
Universal Transversal Mercator (UTM) system. Thttas format had to be converted in
some cases. And fourth the sampling units of @ $ad to be adapted so that they
could be compared to the image format.

In the next sections the preprocessing of the idiffedata sets is described.

a) Ark Data (2005-2006)
Classification on PFTs (Ark dataset)

This data set consists only of woody vegetationislthe most detailed one
because many variables were measured in the fimldnglividual plant, such as RD
coordinates, height, stem diameter, crown projactd@amages, etc. Based on some of
these measures, classifying each individual platot all six PFT woody classes (Table
3) is immediate because there is information abduhree traits per plant: height, stem
diameter and shrub/tree structiire

However during the implementation of these PFTs ® dimmixing process,
classes were rearranged, because, even thouglsses were represented, some were
very scarce. This made it impossible to extracs etm these classes for endmember
selection or validation assessment. This was the fx classes SWT, MWT and SWS.
Only 72 and 34 plants were classified as SWT and M¥&pectively (in contrast, i.e.
1614 plants were classified as MWS). These plargsgmted a low crown projection
with averages of 0.96 Trand 3.97 mfor each class respectively. Class SWS was more
abundant (1888 plants) but with a small averageverprojection also (1.55 # This,
together with the fact that the pixel surface is¥#5made impossible an approximation
to pure pixels for these three classes.

When applying unmixing to an image all existingtéeas in the field have to be

considered because lack of endmembers lead tadessate results (Malenovsky et al.,

'8 This character of the plant was based on the spf@ciae species have typically a shrub structuréewhi
others have a tree structure.
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2006). Therefore these classes poorly representedd cnot be simply ignored,
especially because some (SWS) are very abundanteHerearrangement was done to
the original six PFT woody classes. Only three oftheere kept:

e Resistance 1: MWS (Medium Woody vegetation with Statubcture)

* Resistance 2: RWT (Robust Woody vegetation witleTateucture)

* Resistance 3: RWS (Robust Woody vegetation with Sktuzture)

All individuals previously classified as SWS weres@sed to join herbaceous
classes if their height was under 0.5 m, and resdiad as MWS if it was above 0.5 m.
Individuals classified as SWT and MWT were assutogdin any of the shrub classes.
Projection transformation (Ark dataset)

The projection system for the Ark dataset was faansed from RD coordinates
to UTM. For some unknown reason transformation afrdmates in ArcGIS software
was constantly resulting in a shift of a couplehohdred meters from the expected
position. This led to the use of alternative cooatie calculator software for the
Netherland¥.

For the use of this software, RD coordinates wengoegd to a text file, after
being converted into UTM, this text file was impadtinto Arc GIS. Then, the
coordinates were displayed and exported to a véitdathat was subsequently joined to
the original Ark data set so that all the inforroatwas contained in the new projected
set (Figure 9). The quality of this transformatioasaexamined by overlaying the plots

to the HyMap image and checking the fit of patlsders and water areas.

19 Coordinate calculator 41downloaded from the Welkailable from
http://www.rdnap.nl/download/download.html
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Figure 9: Ark data, transformation of projection system

Sampling unit adaptation (Ark dataset)

Once the classification of the data was done amd piiojection system was
transformed, the sampling unit of the data was kbecln the Ark dataset the sampling
units are points representing individual plantg, the pixel size of the image is 5x5 m,
and field information has to be comparable to thage. This demands the sampling
unit to be modified. By knowing the number of plielonging to each PFT per pixel
and the crown projection per individual plant, toéal crown projection of each PFT
class per pixel of 5x5 m can be derived. After tbaversion, field knowledge is
immediately comparable to the image information.

This conversion was carried out using the ArcGlSvearfe. The next steps were
followed (Table 10):

« All individuals from each class were extracted frtme Ark dataset (shapefile)
into separate datasets (shapefiles) (s1)
« [Each dataset (s1) was converted to raster usirigeh g9ze of 1x1 m (rl). The

value assigned to each pixel was the crown prajecfThe output extent was
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specified equal to the image to avoid a shift betwthis raster’s origin and the
image'’s.

Each raster (rl) was aggregated in a new rastpixef size 5x5 m. The value
given to each pixel in this new raster (r2) was shen of the values (crown
projection area) of all the pixels of 1x1 existingp each pixel of 5x5. Therefore
the total crown projection per pixel of 5x5 m isokvn.

Parallel to this part, Ark vector data was convettedaster data of 5x5 keeping
the same extent of the image again, and then cta/&y points (pl); each point
representing the center of the pixels. Points difie to zero were selected so
that the remaining points were the center of thmgel in which one or more
Ark measures had been taken (p2).

All aggregated raster sets of 5x5 (r2) were sampsadg these points (p2) and a
table with all volumes per class and pixel was\azti

This table was displayed according to the p2 coatéis and exported as a
vector file (v1).

All points from the vector file (v1) with coveraggeater than 12.5 frout of 25
m? (area of the whole pixel of 5x5 m) were selecteddach class separately
because only these points were used for settinthegndmembers (the ones

with the highest values and purest content) anddbdation (the rest).

34



Ark PFTs and UTM

Selection

r v
Ark data RWS RWT
5x5

1
1
1
]
]
|
)
1
1
1
1
]
]
|
)
1
1
1
1
]
]
|
)
1
1
1
1
]
]
|
)
1
1
1
1
]
|
Aggregation Aggregation Aggregation |
1
1
1
]
]
|
)
1
1
1
1
]
]
|
)
1
1
1
1
]
]
|
)
1
1
1
1
]
]
|
)

MWS RWS RWT
1x1 1x1 1x1
MWS RWS RWT
5x5 5x5 5x5

Vector

Raster
Table
Operation

Image

Software

Figure 10: Ark data, conversion of sampling units

During the endmembers selection a new modificati@s done to these three
woody classes. Due to its high spectral variabilRWS was divided into two classes
(Section 3.3.4.1): RWS and RWSC. The first one (RWShidated bySalix fragilis,
and the second one (RWSC) dominatedQogtaegus monogyna. Therefore a fourth
validation set was created from Ark dataset in otdevalidate RWSC (Figure 11).

35



Ark PFTs in UTM < Central_ptg0 >
Extract by Samples

Crown projection/pixel

Display .XY & Export
1
1
' Crata. m. crown projection 1x1
] . . .
< Vector ; <f0wn prOJectlon/P'Xe'>
| .
[] Raster ! Aggregation
1
]
]
|
)
1
1
1
1
]
]
|
)

= Table Crown projection > 6 f

> Operation Crata. m. crown projection 5x5
/7 Image |

Crataegus m. >6 nf
L___ Software

Figure 11: Creation of validation set for class RWSC

b) Sykora Data (2002)
Classification on PFTs (Sykora dataset)

This data set consists mainly of herbaceous vagetatpe, but shrub vegetation
Is also present and tree species are seldom fdatd. was not gathered by individual
plant but in plots of 2x2. In these plots an exli@asegistration of species and species
abundance in terms of the Braun Blanquet iAli@as collected. Also information on
plant community and height range per plot was awb#l. This information however,
was not of use for this purpose since height ramge an average of the whole plot and
plant communities were described by syntaxonomyerariature which is not related to
plant abundances but to botanical singularity. &€fmee only species and species
abundance per plot was considered to be applicable.

The classification of herbaceous vegetation is dbaiséwo characteristics: height
and leaf type, as explained in chapter 3.3.2.1.i§¥doeight per individual plant or
specie from the field did not exist for these pl@s height per specie was estimated
according to literature. All sources consulted wienend in internet. They are listed in

the end of chapter 9 (bibliography). To derive eagplecies’ height more than two

% Index to express species’ abundance in termsw&rage. Each value is related to a range of cover.
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sources were consulted. Consistency between tloesees was found for most of the
species. Considering that actual height of planés Wkely under potential height,
height was estimated as the average of the valasdfin literature minus certain
quantity’. Under the assumptions that height could be egtnasing literature and
that graminoid species have L leaf type while fonase B leaf type (Figure 6), all
herbaceous species were classified as SNB, SNL, 6®NEB\B (Table 3).

The classification of woody vegetation is done od&sng: height, stem diameter
and shrub/tree structure. No height nor stem diametformation per plant was
available in the dataset, therefore an accurassifieation of these data was not viable,
specially considering the previous classificatibrAtk Data. But a rough classification
was done only considering estimated height of gseaccording to literature (same
process explained for herbaceous vegetation iniguevparagraph). These woody
classes resulted: SWS, MWS, MWT and RWT. All of thearemconsidered in the final
percentages of PFTs per plots but, except for SWSetiistraining or validation was
extracted from them. On the one hand their prese&d¢ew, on the other hand, Ark
dataset —which represents the other source for wyoeepetation- has special
characteristics that do not make it recommendaislenixing or testing with this other
data set. In the Sykora dataset the real heightshech diameter per plant is not
available so height was estimated per specie acgptd literature. This means that
when in Ark data classification, two individualsofn the same specie may be in
different classes -because they have a differeet ir two individuals from different
species may be in the same class -because theysimaNer size-, in the Sykora dataset
classification, it is assumed that all individuadrh one specie belong to the same class.

In Sykora dataset there was a group of 58 treeitwatThe information available
about these trees was that their height was grédsder5 m, and that most of them are
Salix alba. These trees were classified as RWT, assumingthieastem diameter was
greater than 15 cm, and used as validation andinigaset during the temporal analysis
(3.3.5.3).

Individuals classified as SWS class however weresidened for training and
validation. These individuals were solely belongtodRubus sp. This subshrub specie

was not present in Ark data set but it is of giegtortance for river managers since it is

%1 This quantity was assumed as 0.1 m when the ptaanpal height was less than 1 m, 0.2 m when it
was between 1-2 m, 0.5 m when it was between 2afdril m is it was higher than 4 m.
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abundant and rapidly developed in the field. Moexawere is not incompatibility with
Ark SWS class, because this class was disinteginaték dataset.
Projection transformation (Sykora dataset)

The projection transformation of this data set cosgs exactly the same steps as
the transformation executed for Ark data (Figurg 10
Sampling unit adaptation (Sykora dataset)

The sampling units for the Sykora dataset are poegsesenting plots of 2x2 m.
Two considerations have to be taken into accougdirteng these plots. First that the
center of the plots is not necessarily coincideith whe center of the pixels and second
that the pixel size (5x5 m) is greater than the pioe (2x2 m).

For the first consideration a moderate distance éetvthe center of the plots and
the center of the pixel is assumed to be acceptaddause the plot size (2x2 m) is
smaller than the pixel size (5x5 m) and if theahse is small enough the plot still falls
into the pixel. The first threshold distance choseas 0.7 m, but the number of plots
that fell into this group was too small and it wased to 1.5 m (Figure 12).

For the second consideration —the fact that the phat is smaller than the pixel
size- it is assumed that the composition of the iglextensive to the whole pixel in the
same proportion.

As described before, information used from thisads¢t was species type and
species’ abundance per plot. Species have beeniatssbso far to PFTs, so now we
know PFTs’ abundance per plot. But abundance pergalote expressed in terms of
Braun Blanquet (B.B.) index. This index refers torange of cover and for

simplification ranges were converted to mean.

Plot from Sykora

the center of the pixel according to
threshold distance 0.7 mand 1.5 m

Pixel of HyMap
I Extreme position of plot with respect to
2m

[1EN

v
q

Figure 12: Relationship between Sykora plots size-gdion and HyMap pixel size-position
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Table 4. Conversion of Braun-Blanquet cover-abundaoe scale to mean cover

Braun-Blanquet scale Range of cover (%) Mean cover (%)
5 75-100 87.5
4 50-75 62.5
3 25-50 37.5
2 5-25 17.5
1 <5 25
+ <5 25

These mean covers are expressed for various vegesatata so although they are
expressed in terms of percentages they sum upfexadif quantity than one hundred.
For simplification, for this study it is assumed tttebundances are in one unique
stratum. Therefore they were summed and weightedoupne hundred. This was
considered to be accurate enough for validationvelbeless, for the search of
endmembers it was used just as a first approximaiothe purest plots, but B.B.
abundance was carefully studied on those plotsake ffinal decisions. An extra
complication was that some BB abundance additionppet was below one hundred,
for simplification these plots were deleted, beeaunsthe processing, while weighted up
to one hundred, they could be confused with puxelpi when actually they contain
important proportions of soil.

A flowchart with all steps followed apart from tlpeojection transformation is

presented in Figure 13.
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Figure 13: Sykora data, conversion of sampling units

¢) HyEco’05 campaign Data (2005)
Classification on PFTs (HyEco’05dataset)

Available information from this data set is simitarthat of the previous data set.
It consists of existing species and species’ aburelger plot (5x5 m). Although in this
case abundance is expressed in terms of quantglanfs per specie. It consists mainly
of herbaceous vegetation; woody vegetation is scarberefore it has been classified
following the same principle as for Sykora datasstimating height from literature.
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Figure 14: HYyECO’05 data, format conversion

Projection transformation (HyEco’05dataset)

In this case projection transformation was not magu since each plot was
georeferenced using RD coordinates as well as UTM.
Format conversion (HyEco’0O5dataset)

This information was available in Excel format. Bbe spatial representation in
ArcGIS was needed for the consecution of this wdikerefore, the coordinates in
Excel format were saved as “dBASE IV’ and importedArcGIS, here they were

displayed in the view and exported as a shapdfigufe 14).

Sampling unit adaptation (HyEco’0O5dataset)

There is also a shift between the pixel centerthadenter of the plots. Therefore
a selection of the nearest plots to the centeh@fpixel using a threshold of 1.5 m was
done.

Again after the association between species and RETsiow the abundance per

plot in terms of PFTs. This abundance, however, igerms of number of plants of
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every PFT class per plot. It was assumed that eamtt pbvered the same area and a
coverage percentage of PFTs per plot was calculaselon plant number.
d) HyEco’04 campaign Data (2004)

The preprocessing of this data follows the sampssés the data from HyEco’05,
since the datasets are similar. The only differaadbat plots in this case represent an
area of 2x2 m and a new assumption has to be nRdglEs coverage percentages per

plot of 2x2 m are extensible to the pixel areaxd &.

3.3.4 Spectral Mixture Analysis

3.3.4.1 Selection of endmembers

Once image and field data have been adapted tmdleds of the unmixing
classification purpose the conditions for the d&dec of endmembers have been
prepared. This task requires wariness becauserimary and most important key to
success for spectral unmixing is the selectiomefright endmembers.

As described in chapter 2.3.3 several methods eansed for the selection of
endmembers. There is a spectral library availalbenfother studies carried by the
Center of Geo-Information (CGI) of Wageningen Umsigy that may be considered,
but these library endmembers are not recommendwailibe of difficulties to scale up to
match spectra measured by the sensor. Deriving emdb@rs with automatic procedures
is not recommendable since spectra from differentsP¥dgetation classes are very
similar. Therefore, in this study, endmembers waeeved directly from the image.
This method has the advantage that selected endensrate under similar atmospheric
conditions and spectral/radiometric biases witlpeesto the image (see chapter 2). In
the case of the HyMap image this is not of imparéasince it has been internally and
externally calibrated. Moreover the great amountfield knowledge facilitates its
application.

A second consideration is the number of endmembengh is limited by the
number of bands. In the case of a hyperspectrajensach as HyMap, with 126 bands,
this is not an important limiting fact.

For the determination of the endmembers, a selecfi®®OIs? was made. These
regions are meant pure pixels. The following stepee followed:

e First, a group of candidate pixels that were consdiépure’ or nearly ‘pure’

were chosen from Sykora and Ark datasets for eads ¢lTable 5).

%2 Regions Of Interest: field points or polygons uf@ttlassification training and accuracy assessmen
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Table 5: First selection of ROIs for ten PFT endmemlys. Each ROI consists of one pixel

ROls Plot/ID  Year Source Cover  Species (BB%™) OtherPFT  Dist(m)
SNB1 Plot 122 2002 Sykora 79% 50-75Geranium,rethe 12% SNL  1.41
10% RNB
SNB2 Plot 232 2002 Sykora 68% 75-100Trifolium, -2 20% SNL 1.41
Cirsium 6% RNB
SNL1 Plot 63 2002 Sykora 67% 25-50Carex-hirta,25- 19% SNB 1
50Carex-arenaria,25-
50Festuca
SNL2 Plot 139 2002 Sykora 60% 25-50Carex-hirta,25- 24%SNB 1.41
50Cynodon,5-12Festuca 20%RNB
8% RNL
RNB1 Plot 103 2002 Sykora 83% 75-100Urtica,12- 9% SNB 1
25thalictrum, etc. 7% RNL
RNB2 Plot 114 2002 Sykora 78% 50-75Urtica,12- 11% SNB  1.41
50Rumex,25-50Heracleum 7% RNL
RNB3 Plot 110 2002 Sykora 7% 75-100Urtica 16% SNB1.41
RNB4 Plot 251 2002 Sykora 74% 75-100Urtica 11% SNB1.41
9% SNL
RNL1 Plot 219 2002 Sykora 53% 50-75Calamagrostis 20% SNB 141
17% SNL
8% RNB
RNL2 Plot 82 2002 Sykora 50% 50-75Calamagrostis % BNB 1
10% SNL
20% RNB
SWS Plot 224 2002 Sykora 63% 75-100Rubus 36% RNB.41 1
MWS1 | ID91 Ene06 Ark 86% 5Sambucus Herbs
MWS2 | ID 104 Ene06 Ark 84% 4.5Sambucus,1Rosa Herbs
MWS3 | ID 106 Ene06 Ark 80% 5Sambucus Herbs
MWS4 | ID 784 Nov05 Ark 72% 2.5Crataegus Herbs
MWS5 | ID 265 Ene06 Ark 76% 6Sambucus 16% RWS
RWS1 | ID1409 Mar06  Ark 97%  2.5Sambucus,0.5 Safikfr 3% MWS
RWS2 ID 1220 Mar06 Ark 99% 1Salix fragilis 1% MWS
RWS3 ID 1271  Mar06 Ark 89% 1Salix fragilis 11% MWS
RWS4 ID 1114 Mar06 Ark 100%  3Crataegus Herbs
RWS5 ID 1190 Mar06 Ark 80% 2Crataegus,1Sambucus rbdHe
RWT1 ID 2167  Feb06 Ark 100%  2Salix alba Herbs
RWT2 ID 2097 Feb06 Ark 100%  2Salix alba Herbs
RWT3 ID 2232  Feb06 Ark 100%  2Salix alba Herbs

23 Braun Blanquet abundance.
4 Salix fragilis
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* Then, a shapefile was created in ArcGIS containihtpese points (Figure 15).

» Atfter, this shapefile was imported into ENVI wherach point was converted
into a ROI (Figure 15).

* The signatures of each ROI were plotted in ENVI gépdix 2) and studied
comparatively to the rest, with the intention obahng high variability within
classes and favouring the difference between sepelasses. This discussion is
described after Table 5.

e Based on the former discussion a selection of dekenvegetation ROIs was
made (Table 8) in ENVI (Figure 15). These nine mixedpresented the nine
PFTs.

* Finally, a sandy ROI was added as tenth endmembénetdormer set. The
spatial location if the 10 endmembers can be fanrkgure 37.

Between the two pixels regarding class SNB theeehigh variability (Figure 30).
This is understandable once we consider that tleeisp representing each pixel are
completely different in between: SNB1 consist€Gafanium sp. and SNB2 consists of
Trifolium sp. andCircium sp. Because these two last species are more sigmtifitee to
their abundance in the area, pixel SNB2 was salecte

For class SNL there is not such a high variabilitg (e 30). Due to the important
presence ofFestuca sp., pixel SNL1 is preferable. Moreover, this spedgamore
differentiable with SNB1 regarding both patron anagmitude of the signature (Figure
31).

Variability within class RNB is not high (Figure 3T)his is explained by the fact
that all pixels have an important proportion dftica dioica. Pixels with lowest
proportion of class RNL (Table 5), which are RNB®I&RNB4, are considered more
representatives. However, RNB4 has the most outstgrsignature of all, so RNB3 is
considered to be purer and it is selected as ROI.

The two pixels for class RNL have a low inter-vaiigy (Figure 31). This is a
sign that, althouglCalamagrostis epigeos does not cover the whole area -as can be seen
in the coverage percentages (Table 5)-, it detexsnmghly the signature of the pixel.
As RNL2 has a larger proportion of class RNB (Tablethan RNL1, RNL1 is

considered to be more appropriate as ROI.
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Only one pixel was selected for class SWS becausastthe unique acceptable
pixel, hence it was considered valid as ROI fos ttlass. Its signature can be found in
Figure 32.

Five candidate pixels were chosen to represent MW ROl (Table 5). The
three first ROIs -MWS1, MWS2 and MWS3- composedahbucus nigra presented a
similar signature (Figure 33), while there was tasable difference with the other two
—-MWS4 and MWS5-. The inter-variability of this lasta was higher. MWS1 is
considered the best option for ROI since it is @gpnted bysambucus nigra without
presence of any other woody specie in a propodio86% (Table 5)Sambucus nigra
is one of the most abundant woody species in the. ar

In reference to the five candidates for class RW&e was also a high variability
(Figure 34), except for those with presenceésafx fragilis (RWS2 and RWS3). Pixel
RWS?2 is considered the best option because ieiptinest (99% of class RWS).

Pixels RWT2 and RWT3 representing class RWT werg ganilar (Figure 35)
and had the typical tree spectrum, with lower #flace in the NIR, while RWT1 had
an anomalous high reflectance. When looking at dpatial location of the pixels,
RWT2 is more appropriate because pixel RWT3 istegtat the edge of the study area
and the reflectance may be influenced by inconveroebjects in the border. This ROI
is composed bgalix alba.

After these decisions were made, it could be skahQrataegus monogyna was
not represented in any ROI. But this specie is waportant for river managers because
of its abundance and fast development, so it wesldé to include it as a separate ROI:
RWSC. The problem with this class is that there aésgh variability within the three
pixels representing this specie —-MWS4, RWS4 and BVAd this variability was not
size dependent (Figure 36). Therefore a decisionttdmt taken to choose one of the
three different spectra and other sources wereutieals

First the field spectrometry measuremenCoataegus monogyna spectrum from
the internship report of Catherine Teerhuis (2006¥% consulted. These spectra were
also gathered in the Millingerwaard. The same hghability within spectra could be
observed. This specie has a specific structure twim@akes it more variable on

reflectance in the NIR because of high scattering.
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Figure 15: Implementation of ROIs

Then the aerial photograph from 2003 was consuMd¥S4 was not noticeable
while RWS4 and RWS5 were clearly seen, so MWS4 wgpressed. RWS4 was
chosen against RWS5 because it is more pure repagisenof Crataegus monogyna,
RWS?5 also containSambucus nigra (Table 5).

Due to the above reasoning nine ROIs representiimg vegetation endmembers
were selected. To these nine ROIs (Table 8) an®&®kdrfor sand was added, finally ten
ROIs were used for the unmixing.

3.3.4.2 MNF transformation

MNF transformation was applied to the images befloeeunmixing was executed
(Figure 16). This was intended to find data's inher@imensionality by avoiding
information redundancy, minimize systematic senmsmse and get the endmembers to
be orthogonal and uncorrelated.

Two important considerations were taken into actowhile running MNF
transformation with ENVI. The first one concerns tinasking of the image. Image and

mask must be input to the transformation separatélythe image is input with
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previously applied mask, during the PCA transfororatine abundance of “0” DR
causes a strong translation to the new axis tow@ards

The second consideration concerns the extent ok4nasge. When a mask is
introduced into the MNF transformation, the new axesspatially located according to
the multidimensional distribution of the informaticontained on the mask area of the
image; therefore, the result changes if differeasks are applied while it should be
equal for different extents if the mask is exadlig same. The incoherence in ENVI
MNF transformation was that for different extentsd asame mask-image, different
results were derived. In order to manage this iroc@ice a final decision was taken: to
use the complete image.

Once the MNF transformation has been performed, soiye of the new bands
are significant, the others are mainly noisy. Tlws@ bands can be identified by
different approaches. First, by looking at the eigdue$® eigenvalues less than 1 are
usually excluded as noise because eigeninfageih near-unity eigenvalues are
normally noise-dominated (Fang, 2006). But alsodmjistering important breaks in the
slope of the eigenvalues graphical representatiobyolooking at the eigenimages;
noise images can be identify by high sparkling abdence of features. The first 23
bands were chosen to perform the unmixing in HyMgombining this information
(Figure 16).
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Eigenvalue number

Figure 16: Eigenvalues of MNF transformation of HyMapimage

% Digital number that expresses the radiation value pixel. When an image is masked, all DN out of
the masked region are “0".

%6 Special set of scalars associated with a linestesy of equations determined by matrix diagonatinat
(these equations are the linear orthogonal tramsftion from the original bands to the new bands).

*" Refers to each of the new bands after the MNFstoamations.
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3.3.4.3 Linear spectral mixture analysis

Linear spectral unmixing was applied to HyMap imageng the ten endmembers
defined previously (Figure 16). It was performedtimee different ways, each time
including different number of constraints. Thesee¢h methods were designed as:
unconstrained unmixing, semi-constrained unmixing ally constrained unmixing as
explained in section 2.3.2. The unconstrained ammhi-sonstrained versions were
performed in ENVI. But this software does not irgufully constrained unmixing, so
this was implemented using MATLAB software.

The 23 band image resulting from the MNF transforomatvas unmixed using the
ten ROIs previously defined (Table 8). As a reswdt obtained a set of ten abundance
images (one per endmember) and another image WehRMSE value per pixel
(Appendix 3 Figures 38-48). When applying the methaith MATLAB other images
were also produced (Figure 16, red outline): a ludadsified® image and an exitfl&Q
image. The hard classified image can be found ipefydix 3 (Figure 49). All pixel
values from the exitflag image were 1, meaning tiet function converged to a

solution.

%8 The class with the highest fraction in each pigelssigned to that pixel.

29 An integer is assigned to each pixel identifyihg teason why the algorithm terminated. The exitflag
indicates whether the function converged to a &miutl), the number of interactions was exceedgai0
the function was unfeasible (-1).
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Figure 17: Application of Linear Spectral Unmixing to HyMap. In green, MNF transformation
(ENVI), in blue, application of liner spectral unmixing (ENVI and MATLAB (red outline)) and in
pink, sampling of abundance values using field pldbcations for validation purposes (ArcGIS)
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3.3.4.4 Validation

Validation of results was done using the four défg approaches described in
section 2.3.5: an analysis of the spatial contisumap for the RMSE, the comparison
between modeled vs. observed coverage (by meastatiér plots and overlaying field
plots to abundance maps) and a subpixel accuragssment (OSA). The last method
could only be applied to fully constrained unmixifithis is because fully constrained
unmixing is the unique method whose numerical tesale immediately significant in
the physical space; fractions are between zercapdand the addition of all fractions
in one pixel equals to one.

The description of the RMSE image can be found innfe@@0.

The comparison between modeled and observed bysh#astatter plots can be
found in Appendix 4. It was done by the followirtgss (Figure 17):

* The abundance maps (in ENVI format) were exportedRDAS IMAGING
format. In this way they could be used in ArcGIS.

* The preprocessed datasets from Ark, Sykora and tfiecdi campaigns were
assigned as validation sets. For this the pointsl e endmembers were
extracted.

« This validation sets were used, in ArGIS, to sanvalleies from the abundances
maps with the function “Sample”. The output was blg¢awith the modeled
values for each point from the validation sets.

* The output table was exported to Excel. In Exce thodeled values were
confronted to the observ&®d/alues using scatter plots.

The comparison between modeled and observed b{ymgplots to maps can be
found in Appendix 5. Plots in Figures 61, 62 and G8aeas of 5x5 m with more than
50% coverage of that specific PFT. They were creaseshown in Figure 10.

The sub-pixel accuracy assessment was applied tonihe fully constrained
unmixing. The first thing we have to take into amcbwhen we calculate OSA is that it
is a multidimensional index. It is a unique valoeestimate how well all cover types are
modeled into a pixel. Although, when the abundasfcene class is particularly high in
certain plots, the OSA value for those plots canubderstood as an estimation of
accuracy for such class. Always keeping in mind guch value is influenced by the

agreement of all other classes existing in thaglpix

%0 The observed values are the PFTs proportions defiigedthe validation plots, for the years 2002
(Sykora), 2004 (HyEco'04), 2005(HyEco'05) and 2005(8K).
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Therefore, the ideal situation to calculate OSA wlohé by sampling all PFT
classes together using unique validation pointafiorHowever, the construction of the
validation sets in this study makes this impossilblerbaceous classes (SNL, SNB,
RNL and RNB) were validated with plots from 2008,veell as SWS, and each woody
class (MWS, RWS, RWSC and RWT) was validated wittasse plots from 2005-06.

Consequently, OSA was calculated in the next way:

* Herbaceous classes i (SNB, SNL, RNB, RNL) were catedl together. The
expression for OSA was:

iffmin{fip, .}

OSA="L x100 i=1,2,3,4

«  SWS Rubus sp.) was calculated together with herbs (SNB, SNL, RRBIL).
As SWS is in all cases conforming the plots in mitv@n 37% (usually more
than 62%) this index can be considered as indieatfwclass SWS. The equation

was:

osa=-1= x100 1=1,2,3,4,5

* Woody classes k (MWS, RWS and RWT), except for R\W&@Id be joint into

one dataset and hence they were estimated togé@&tieequation was:
k=3
min{f,, £,°}
L x100 k=1,2,3
fo

OSA= X

K=:

[y

 The OSA for RWSC was estimated independently sirkedtidation set was
independent (Figure 11). The equation was:
t=1
S min{f,, 1}

OosA=4 x100 t=1

t=1
o
fk
1

t=
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OSA was also calculated in two different ways fdrvabody sets. First all plots
from the sets were used. Then, the overall accunaasy calculated using exclusively
those plots that contained only the species existirthe final pixels selected as ROIs
for the unmixing procedure (Table 8). These &ubus sp. for class SWSSambucus
nigra for class MWS,Salix fragilis for class RWS Crataegus monogyna for class
RWSC andsalix alba for class RWT.

The OSA values can be found in Table 10 and OSA sapatial distribution can
be found in Appendix 6 (Figures 69, 70 and 71).

3.3.5 Temporal analysis
The temporal analysis was based on the comparisitre #FTs distribution in the

images CASI from 2001 and HyMap from 2004. These iwages were object of a
spectral mixture analysis by adapting the methagiottescribed before.

Some aspects from the previous methodology were fraddin this second
analysis. First, the characteristics of CASI imag&hvi0 bands (HyMap had 126
bands) required a reduced number of endmemberSN# to be applicable. Second,
results derived from previous SMA classification lgggh to HyMap provided key
information to redefine PFTs in order to improve sp@cseparability of classes. And
finally, in order to be more in accordance withulgt applications (Section 1.1), the new
PFTs were redefined taking into account the PFTs aseteed by the DVM SMART2-
SUMO2. These are herbs, dwarf shrubs, shrubs, pidress and climax trees.

These modifications had also to take place in arsclassification of HyMap
image, so that both images could be comparable silihset extension was also slightly
different in this section, because in the compéatiension of the CASI image, previous

subset was cut.

3.3.5.1 PFT conceptual model

The new PFTs classification was based on the PFTsifidassen of the
SMART2-SUMO2 model with some modifications. The modefines five classes:
herbs, dwarf shrubs, shrubs, pioneer trees andhxlimees. Concerning adaptation of
such classes to the area of study the last class eaxaluded. Due to the early
successional stage of the area, “climax trees’seaece. Based on conclusions derived
from previous results, classes are better cladsifiespectral techniques when they are

species-based (Section 5.1). Therefore, PFTs wereedeiin this second approach by
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giving primary importance to plant species andtogthysical measures (such as height
or stem diameter).

These new considerations for the PFTs definition ba&n assimilated into
previously defined PFTs model (Section 3.3.2.1) beean a way, all three traits
(height, density and flexibility) are species rethtAverage plant heightof Crataegus
monogyna is 2.16 m,Sambucus nigra 3.88 m, Salix fragilis 6.98 m andSalix alba
8.00m. Density, understood as foliage thicknessyealt as flexibility, understood as
stiffness, is specific for different species (Arstar, 2006). A detailed study of these
two last traits for the species present in the iMijérwaard is out of the scope of this
thesis. However, average height can give an apmation of hydraulic resistance.
Higher average height of the individuals is assutnetbrrespond to higher resistance.

Therefore, the new woody PFTs were represented hyidincls of the species
defined in previous paragraph (the most abundantodyo species in the
Millingerwaard). Only individuals greater than Gvb(previously classified as MWS/T
and RWS/T) were chosen as field datasets.

Herbs, however, were not represented by specifeciep. This would be non
sense considering their high heterogeneity. Buy twere divided into two groups:
“Grasses” and “Forbs” based on the spectral varigbbbserved in such class
(Appendix 7 Figure 73) and the difference in hydicavesistance (3.3.2.1). Average
height was also calculated for herbs accordingtéoature, 0.56 m for “Grasses” and
0.64 m for “Forbs”.

Therefore, five new PFTs classes were defined (TEble

* Resistance 1:Grasses Graminoid herbs, including high grasses like
Calamagrostis epigeos.

» Resistance 2Forbs. All other herbs, includinrubus sp., Urtica dioica, etc.

» Resistance 3Dwarf shrubs. Crataegus monogyna individuals with medium
and robust resistance (MWS and RWS)

* Resistance 4Shrubs. Sambucus nigra individuals with medium and robust
resistance (MWS and RWS)

* Resistance 5Pioneer trees Salix sp. individuals, includingSalix fragilis with
medium and robust resistance (MWS and RWS) @alk alba with medium
and robust resistance (MWT and RWT)

31 Calculated as the average of all individual pinetater than 0.5 m from Ark dataset
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3.3.5.2 Preprocessing

The preprocessing of the images is defined in @@c3.3.3.1. As the extension
from the two images is not coincident, a new commsloset was defined, so that SMA
could be applied to the same area.

Regarding the preprocessing of the field datantwe characteristics of the CASI
image, with a smaller pixel size than HyMap, and #election of new PFT classes
demanded a new datasets preprocessing followingtdpes defined in section 3.3.3.2
for Sykora and Ark datasets. Data from the HyEcop=agns 2004 and 2005 was not
used.

Concerning woody vegetation two datasets were uddd:and Sykora. For the
preprocessing of the Ark dataset the steps shovigare 10 were followed for both
images. Three sets for endmember selection andati@n were derived for each
image: “Dwarf shrubs”, “Shrubs” and “Pioneer treelsi’.addition, trees from Sykora
datasets were used, but no preprocessing was needed

Concerning herbs (Sykora dataset), the preprocessimgjsted of merging classes
SNL and RNL to derive “Grasses”, as well as SNB aidBRo derive “Forbs”.
Distance of herbaceous plots to the center of tkelpwas considered for HyMap with
a threshold of 1.5 m again. For CASI however it wastaken into account since the
pixel size is smaller. The furthest the plot cob&lfrom the pixel center is 1.4 m and,
considering the inaccuracies resulting from theuaggions made before, taking this

caution was not considered necessary.

3.3.5.3 Spectral mixture analysis
a) Endmember selection

The new endmembers consist of the five PFT classi&sedeabove and a sand
endmember. The endmember selection for each PFT was fbllowing the steps
described in Figure 15. The first candidate ROlsevtbe purest pixels from each PFT.
They were picked from different regions in the areging to avoid the local spectral
effect of specific grouping structures. Detailgtudse ROIs are shown in Table 6. ROIs
for HyMap were not completely covered in the cafavoody vegetation, while for
CASI they were all covered 100% due to the smalélpsize (Table 6). The spectral
variability within herbs can be observed in AppendiFigure 73 (CASI) and Figure 76
(HyMap). The spectral variability within Pioneer dge (those from Sykora and Ark
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dataset) is in Appendix 7 Figure 74 (CASI) and 77NHdp). The spatial location of the
ROls in Table 6 can be found in Appendix 7 Figure 78

The 20 ROIs (HyMap) and 19 ROIs (CASI), defined able 6, were merged per
PFTs. In the case of HyMap, spectra within classee aienilar in the MIR and visible,
except for forbs which presented more variabilitythe case of CASI, they were closer
in the visible, except for dwarf shrubs and the uhiferent sources of pioneer trees.
Therefore, five ROIs resulted, each ROl composeal group of pixels and representing
each PFT (in previous approach they were unique 9ix&b these 5 endmembers, an
endmember for soil was added. This endmember wastsd from the sandy area next
to the river shore, southwest of the area of stlithg. mean spectra of these ROIs can be

found in Appendix 7 Figure 72 (CASI) and 75 (HyMap).

Table 6: Selection of ROIs for six PFT endmembers (Hytap and CASI). Each ROI consists of
various pixels

HyMap (Pixel of 25 m) CASI (Pixel of 4 )
) Crown ] Crown
PFTs Id Species & Year proj. Id Species & Year proj.
(') (L)
263 Carex+Festuca 2002 . 263 Carex+Festuca 2002
- Calamagrostis epig. -
Grasses 2219 Calamagrostis epig. 2002 2210 2002 . .
- Calamagrostis epig. -
282 Calamagrostis epig. 2002 282 2002
Carex+Fest+Cynodon R Carex+Fest+Cynodo -
2139 2002 2139 n 2002
R Geranium+others R
2122 Geranium+others 2002 2122 2002
Urtica+Thalictrum+others2 . Urtica+Thalictrum+o R
2103 002 2103 thers2002
Urtica+Rumex+Heracleum . Urtica+Rumex+Hera R
Forbs 2114 2002 ) 2114 cleum2002 )
2251 Urtica dioica2002 2251 Urtica dioica 2002
2110 Urtica dioica2002 ) 2110 Urtica dioica 2002 )
2232  Trifolium+Circium 2002 ) 2224  Rubus sp. 2002 )
- Trifolium+Circium -
2224 Rubus sp. 2002 2232 2002
Dwarf 784 Crataegus monogyna 18 1665 Crataegus monogyna 4
shrubs 1176 2005-06 16 1295 2005-06 4
265 23 175 4
21 i 4
Shrubs 91 sambucus nigra 2005-06 183 Sggnbggus nigra
560 15 1740 5> 4
822 15 1163 4
2097 Salix alba & Salix fragilis 25 3090 fsr’;‘g?‘ng'ba & Salix 4
i 2006 200506 20 3017 2005-06 4
ioneer
362 ) unknown 359 ) unknown
trees Salix alba 2002 Salix alba 2002
333 unknown 332 unknown
Salix alba & Salix fragilis 16 ) - -
2236 2005-06
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b) MNF transformation

HyMap was unmixed using 23 MNF bands, as it was reef€@ASI was also
transformed at first. Although CASI image is onlynetsting of ten bands, they appear
in a narrow area of the electromagnetic spectruchdata redundancy is likely to be
found. The first eight MNF bands (minimum numbegpply unconstrained unmixing)
were chosen according to the same criteria usedH§diap in section 3.3.3.2. The
eigenvalues from CASI are shown in Figure 18.

However, the result from linear unmixing appliedth® eight MNF bands was
compared to the unmixing applied to the ten origlmends and no improvement was
observed. This comparison was done by means @B adjustment to the one-to-one
line. Therefore, the final decision was to use tee original bands for all three
methods: unconstrained, semi-constrained and dalhstrained unmixing.

Eigenvalues
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Figure 18: Eigenvalues from MNF transformation of CAS image

c) Linear Spectral Unmixing

HyMap first 23 MNF bands and CASI 10 original bangsre subject to a linear
spectral unmixing using the six endmembers preWodsfined. The three methods
were again applied: unconstrained, semi-constraared! fully constrained unmixing.
The steps followed are shown in Figure 17.
Validation

Validation of results was done following similar thedology as in section
3.3.4.4: analysis of the RMSE image, comparison &éetwpredicted and observed
coverage (by means of plots and overlaying fielthda the abundance maps) and sub-

pixel accuracy assessment (OSA).
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OSA was calculated using two validation sets, omenfr2002 for herbaceous
PFTs (grasses and forbs together) and another ama, 2005-06, for woody PFTs
(dwarf shrubs, shrubs and pioneer trees togethesas calculated first as the average
of all plots and then separately per PFT. This wasedwy using only the plots covered
by such PFT by 50 % or more. Results are shown iteTeh
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4 RESULTS

This chapter presents a summary of the most imporesults. Many of these

results are located in the Appendices. This wilkpecified in each section.

4.1 PFT classes
The conceptual definition of the PFT classes as défin Table 3 went through

two consecutive modifications during next stepshiea methodology. These were first,
when classifying Ark field dataset into PFTs (Seca® 3.2) and second, when dealing
with the spectral characterization of the endmeml§§ection 3.3.4.1). The final PFTs
defined are detailed in Table 7. Resistance isesgmd in separate scales for herbaceous
and woody vegetation, being 1 the lowest resistahle corresponding traits related to

each PFT, as defined in section 3.3.2.2, are spedifi¢able 7.
Table 7: PFTs classes

. . Flexibility Density (Tree,
PFTs Resistance Height (Height (Stem thickness Shrub, Soecies
(m)) (cm)) Herbaceous)
Herbaceous
SNL 1 H1D2F1 <0.5 <1 I
SNB 2 H1D1F1 <05 <1 Graminoids
RNL 3 H2D2F1 >0.5 <1 Forbs
RNB 4 H2D1F1 > 0.5 <1
Shrubs
SWS 1 - - Rubus sp.
2 0-0.5 0-35 Sambucus nigra
Crataegus
MWS monogyna
0.5-35 0-15 Rosa canina
S Cornus sanguinea
Crataegus
RWSC 3 0-35 15-130
monogyna
Salix fragilis
RWS 5 0-35 15-130 Sambucus nigra
Trees
RWT 4 0.5-35 15-130 T Salix alba

4.2 Spectral Mixture Analysis

4.2.1 Endmembers
The previous nine PFT classes and soil were useddsembers for the spectral
unmixing of the HyMap image. The final nine vegetatROIs are described in Table 8.

Spectral signatures for all the different ROIls, ulithg sand, are presented in Figure 19.
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Table 8: Final selection of ROIs for nine PFTs

PFT ROI Plot/ID Year  Sour Cover Species(BB%™) OtherPFT Dist
SNB SNB2 Plot 232 2002 Syk  68% 75-100Trifolium,1220% SNL 141
25 Cirsium 6% RNB
SNL SNL1 Plot 63 2002 Syk  67% 25-50Carex-hirta,23:9% SNB 1
50Carex-arenaria,25-
50Festuca
RNB RNB3 Plot 110 2002 Syk  77% 75-100Urtica 16% SNB 1.41
RNL RNL1 Plot 219 2002 Syk  53% 50-75Calamagrostis 0% 5NB 1.41
17% SNL
8% RNB
SWS SWS Plot 224 2002 Syk  63% 75-100Rubus 36% RNB .41 1
MWS MWS1 ID2041 Ene06 Ark 86% 5Sambucus Herbs
RWS RWS2 ID 746 Mar06 Ark 99% 1Salix fragilis 1% MWS
RWSC | RWS4 ID 694 Mar06 Ark 100%  3Crataegus Herbs
RWT | RWT2 D206 Feb06 Ark 100%  2Salix alba Herbs
Endmembers
6000 —_SNB
5000 — RNB
@ 4000 / — SNL
g 3000 "\ RNL
2 2000 / P SWS
—MWS
1000 - AL —RWS
O -t | — RWSC
I8 833333 ®ERESIII | —RwT
o O o O « — — — AN N
Wavelenght (nm) — Sand

Figure 19: Endmember spectra for sand and nine PFTs @htified in the Millingerwaard
4.2.2 Abundance maps

Linear unmixing was applied using the ten identifendmember spectra (Figure
19) and abundance maps for the PFTs in the Millingard were produced. The
abundance maps are presented in Appendix 3. Forutlvenstrained and semi-
constrained unmixing, eleven maps were derived.tR@rfully constrained unmixing,

thirteen maps were derived (including exitflag dradd classified map). The first ten

%2 Braun Blanquet abundance

59



maps in both cases are abundance maps, each fiiectiap is related to one
endmember, and it contains the modeled frattigrer pixel of such endmember
(Figures 38-47). Bright areas represent higher ivastand dark areas lower fractions.
The eleventh map is the RMSE, which is given peelp(kigure 48). Brighter areas
represent areas with higher RMS error. The other vaps, exclusive outcome from
the fully unmixing algorithm, are the exitflag mapd the hard classified map (Figure
49). The exitflag map has a value of 1 for all pxehich means that the function

converged to a solution in all pixels.

4.2.3 Validation

4.2.3.1 RMSE analysis

The RMSE images for both, the unconstrained and t@ned unmixing
approach, presented comparable spatial error pat{@ppendix 3 Figure 48). Slight
variations can be observed, but the highest RMS&egahre always found in the same

regions. In Figure 20 the lighter regions with ahhRMSE are indicated.

Legend
RMSE
High : 11.115827

I Low : 0.000000

Figure 20: RMSE image from HyMap unconstrained unmixng (using 10 endmembers)

% The outcome fractions are expressed in a propootioof one.
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Table 9: Cover type in regions with high RMSE

Region Cover typein regions with high RMSE

A Area with patches of forest which relates to leigghadows, also some buildings and areas
richer in uncovered soil. This forest patches havdifferent structure than the forest in
region J from where the forest endmember (RWT) sascted and also other species such
asPopulus sp

B Soil and buildings

C Presence of forest and shrubs combined with sand

D Wet soil and water

E Wet soil and water

F Presence of herbaceous species subkeatha aquatica andLycopus europaeus

G Patchy area dbalium, Urtica, Ranunculus, Alopecurus, Trifolium, etc

H Area rich in species such bslium, Bromus, Potentilla, Eryngium, Medicago andAvena

I Aquatic vegetation Folygonium Amphibiun) and Chenopodium rubra strongly mixed over
sand dunes

Other Paths and borders

The lighter regions with high RMSE in Figure 20 werempared with the
vegetation map of the Millingerwaard (Van Gelooti& Ronde 2002) and other sources
such as an aerial photograph from 2003. The cgyastexisting in them are presented
in Table 9.

4.2.3.2 Comparison between modeled and observed cov  er
a) Presentation in scatter plots

Scatter plots representing modeled vs. predictecerege can be found in
Appendix 4. This appendix is divided into threetsets: unconstrained (Figures 50-
53), semi-constrained (Figures 54-57) and fullystained unmixing (Figures 57-61).
In each section four figures are found. In thetfiigure, herbaceous PFTs modeled
abundances are compared to observed abundances2@@2 In the second figure,
woody PFTs modeled abundances are compared to obsabuendances from 2002
(SWS) and 2005-06 (the rest). In the third figurebbeeous modeled abundances are
compared to observed abundances from 2004 andiithfégure herbaceous modeled
abundances are compared to observed abundanceg0fim

For the representation of the observed vs. modededrage by means of scatter
plots there are two different aspects of intereésst, the adjustment of the points to the
regression line which is measured byaRd secondly, the adjustment of the regression

line to the one to one line. The one to one lin¢ghes ideal line because it represents
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modeled coverage equals to observed coverageliii@ibas its origin in zero and has a
slope of forty-five degrees. This equation is y.= x
b) Overlaying field data to the abundance maps

Field data overlaid to abundance maps can be fauAghpendix 5. Figures 62-64
present all PFT abundance maps overlaid to the validalots. Figures 65-68 present
abundance maps of MWS, RWS, RWSC and RWT, overlasd With all individual
plants that belong to such PFT class, and then, adetd individual plants from the
species used as ROI for the unmixing procedureléT@p This is, for instance, MWS
overlaid first to plants from class MWS, and thenindividuals fromSambucus nigra.

By overlaying field data to the abundance maps are deduce general trends of
agreement or disagreement using a visual appréecthe constraining did not make a
noticeable difference, this overlaying was doneyanler the unconstrained unmixing

fractional maps.

4.2.3.3 Sub-pixel accuracy assessment by OSA
The average OSA value and its standard deviationshosvn in Table 10 for
herbaceous vegetation and woody vegetation sepaeaté finally together. These two

groups are subdivided into PFTs as was explaineedtios 3.3.4.4.

Table 10: OSA value for HyMap fully constrained unmxing with 10 endmembers

Vegetation types Most abundant v;(“e daartioofn S.elec.tion of OSA OSA
PFTs plots validation plots Mean Stdev

Plots 02 All 39.12 21.44

Herbaceous SNIELSRNNBL;)RNL Plots 04 All 35.61 28.99

vegetation Plots 05 All 36.42 27.26
Average all plots 38.79 21.85

Plots 02 All 52.72 14.19

SWS > 62%Rubus sp. 55.25 10.63

< 62%Rubus sp. 49.18 18.51

MWS Plots 05-06 Al 40.57 39.85

Only Sambucus n. 54.33 41.03

Mixed Sambucus n. 43.23 36.81

Woody Other species 0.00 0.00
vegetation RWS Plots 05-06 Al _ N 37.07 38.70
Only Salix fragilis 71.29 6.97

Mixed Salix f. 65.22 33.77

Other species 11.59 28.39

RWSC Plots 05-06 RWSglots 40.90 40.06

RWT Plots 05-06  All &alix alba) 35.94 33.22

Average all plots 42.24 34.31

Average purest plots 44.23 37.74

All Average all plots 40.06 27.16
Average purest plots 41.30 30.34
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In the case of woody vegetation the OSA value wasutzed first using all plots
from such PFT and then selecting only those plot®emEal exclusively by the species
used as ROI for the unmixing procedure (Table &pld 10 will be discussed in chapter
5.2.4.

In addition, with the aim to find spatial patterms OSA values, the OSA values
per plot were overlaid to the image of the Millingaard (Appendix 6). Figure 69
shows distribution of OSA value for herbaceous pleigure 70 shows two images, one
with the distribution of OSA for SWS plots and anotbee for plots of MWS, RWS
and RWT together. Figure 71 shows distribution 8”0values for plots of RWSC.

4.3 Temporal analysis
4.3.1 PFT classes

For the temporal analysis, PFT classes were redefisedescribed in section
3.3.5.1. The new PFTs classification is shown in &all. Resistance goes from 1
(lowest resistance) to 5 (highest resistance). Then have the plant species and
average height per PFT. Regarding density and fl@xiltihe information is incomplete,
but as explained in section 3.3.5.1 measuremetnar available. Finally the new
PFTs created for the temporal analysis are relatatieggreviously defined PFTs in
Table 7.

Table 11: PFTs classes for the temporal analysis

Plant
PFTs Resistance . Height Density Flexibility Previous PFTs
Species
o Long
Grasses 1 Graminoids 0.56 m - All SNL & RNL
leaves
Non-
o Broad
Forbs 2 graminoid 0.64m - SNB, RNB & SWS
leaves
herbs
Dwarf Crataegus Crataegus monogyna
3 2.16m - -
shrubs monogyna from MWS & RWS
Sambucus Sambucus nigra from
Shrubs 4 ) 3.88m - -
nigra MWS & RWS
Pioneer 5 Slixalba&  8.00 m and Slix alba & fragilis
trees Slix fragilis 6.98 m from MWS & RWS
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4.3.2 Spectral Mixture Analysis
The 6 endmember spectra (5 PFTs and sand) foundper&ix 7 (Figure 72 and

75) were used for the unmixing of HyMap and CASI ges respectively. The

abundance maps produced by the unconstrained umgnegin be found in Appendix 8.
Figure 79 shows abundance maps for all five PFTHigvlap and CASI. Figure 80

shows abundance map for Sand and RMSE for HyMap &81.0 he abundance maps
produced by semi-constrained and fully constraunechixing are not shown since they
did not present relevant improvements. In addittbe, hard classified images for both,
HyMap and CASI, produced by fully constrained unmixare shown in Figure 81.

The validation of the unmixing results was doneamgalyzing the RMSE image,
presenting modeled vs. predicted fractions by scaft linear plots, overlying plots to
abundance images and by the OSA value. The resutssammarized in next
paragraphs.

The RMSE maps can be seen in Figure 21. ConcerninglyMap image (Figure
21.a) the same comments made in 4.2.3.1 Table @pkcable, because this error
image is very similar to the error image producgdthe previous HyMap unmixing
using 10 endmembers. Concerning the CASI image (Eiglb) we can observe a very
high RMSE value. The maximum RMSE is 389, while theamis 5 (the maximum
RMSE value for HyMap was 12 and the mean 0.4). \&greater than 10 are the 19 %
of the total, values greater than 50 are the 1 %heftotal. In addition to the regions
with RMSE values encountered for HyMap in 4.2.3.bl&®, that are again present in
CASI (Figure 21.b), other important regions showghherror. These are regions A, B
and C in Figure 21.b.

RMSE
HyMap 6 end

RMSE
CASI 6 end

Legend
RMS Error

High : 12.278155
. ]

Legend
RMS Error
.High : 389.163727

Low : 0.000000

Low : 0.000000

Figure (a) Figure (b)
Figure 21: RMSE image from HyMap and CASI unconstraned unmixing (using 6 endmembers)
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Region A is a grazing area. Region B and C areorsgirich in Crataegus
monogyna, individuals ofSalix alba and abundance of woody species not considered as
endmembers, such &psa canina, Acer pseudoplatanus, Salix cinerea, Salix viminalis,
etc. In addition, in those region plants are grauipea more loosely configuration than
in other regions. Especially very high errors avand in region D where houses are
situated. As a general trend, high errors are founere big trees are located (of any of
the species).

The comparison between modeled vs. predicted fnastby means of scatter or
linear plots can be found in Appendix 9. Figure &2vgs 5 scatter plots from HyMap
unconstrained unmixing, one per PFT. Figure 83 shovgsalter plots from CASI
herbaceous PFTs (grasses and forbs) and 3 linearfpdot CASI woody PFTs (dwarf
shrubs, shrubs and pioneer trees). These linets plere used instead of scatter plots
because the crown projection of woody species o®BICAlidation plots were in all
cases greater to 4°nfthe pixel area), therefore for all plots the extpd modeled
coverage was 1. Therefore, if the modeled fractivae equal to the observed fractions
(ideal situation) the red line in Figure 83 shouddthe equationy = 1.

The observed values overlaid to the abundance mspsn Appendix 10. The
abundance maps from HyMap unconstrained unmixirgy strown in Figures 84
(grasses, forbs and dwarf shrubs) and 85 (shrubdspameer trees). The abundance
maps from CASI unconstrained unmixing are shown gufés 86 (grasses, forbs and
dwarf shrubs) and 87 (shrubs and pioneer trees).

Finally, OSA was calculated for both images using tésults from the fully
constrained unmixing (Table 12). It was done sdprdor herbaceous and woody

vegetation as explained in section 3.3.5.3.

Table 12: OSA value for HyMap and CASI fully constiained unmixing with 6 endmembers

. Most abundant Year of validation OSA Mean OSA Stdev
Vegetation types | "prrs e 500) plots HyMap CASI HyMap CAS|
Herbaceous Grasses Plots 02 48.90 39.10 20.20 28.71
vegetation Forbs Plots 02 51.29 38.48 27.43 31.24
Average herbs 47.91 41.25 27.09 30.16
Dwarf shrubs Plots 05-06 57.70 4.00 37.05 11.01
Woody vegetation Shrubs Plots 05-06 81.08 41.64 33.63 38.90
Pioneer trees Plots 05-06 64.08 41.86 33.79 71.70
Average woods 68.01 21.15 43.92 34.57
All Average all 66.98 21.87 43.44 34.62
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5 DISCUSSION

This chapter is organized following the structufeh® previous chapter and, at
the same time, addressing the research questisedpa section 1.3. Each of the
answers to the research questions can be foundhisnchapter and they will be

summarized at the end of each section.

5.1 PFT classes
A first view on the study area of the Millingerwdandicates the high complexity

of its vegetation composition. Intimate mixture ménts from different species, ages,
sizes, and structural types may be encountereds dbimplexity is favored by the
presence of cattle and horses in a low densitychvhllows a highly varied vegetation
to develop and creates grazed areas unevenlybdistd (Schmidt et al., 2005). When
referring to classification into plant functiongpes as defined in this study, vegetation
complexity in floodplains is meant to be simplifiedo a number of PFT classes with
common hydrological roughness. But we must consitiet PFTs, as acting and
reacting units in vegetation dynamics to changimgrenmental conditions, may not be
easily observed in nature (Skarpe, 1996). Despithisffact vegetation was classified
into PFTs in the Millingerwaard. A group of plant cheteristics was considered to be
relevant for the definition of these classes (®&cB8.3.2.1). At the highest level, the
woodiness of the plant was used as main plantfoad first division into PFTs. At the
next level, other characteristics were considesddvant; height, stem diameter, and
branching for woody vegetation and height and kyat for non-woody vegetation.
These characters are relevant to determine hydreatighness of vegetation according
to literature (Anderson et al., 2006; Naden et 2006). However, some important
aspects are missing, such as inherent speciebifigxidistribution of plants in a stand,
stand compaction and orientation of the plant wébpect to the local flow direction
(Anderson 2006). Regarding species flexibility,eepler study of mechanical properties
of each of the species found in the Millingerwaesas considered out of the scope of
this thesis. Stand structure is an important fatdoaccount for. The effective drag
coefficient for one stem within a group of stem&ess than that for an isolated stem due
to sheltering effects (Anderson 2006), therefoneghmess synergize when plants are
grouped. However, stand characteristics are nosilplesto derive by using spectral

information exclusively. But group structure can bmapped by using LIDAR in
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combination with spectral methods (Geerling et2006). The orientation of the plants
with respect to the local flow direction is notiaherent characteristic of the vegetation,
instead it implies the interaction between eartbfg/siognomy, flow direction and
vegetation distribution, therefore it cannot beegrated into the definition of PFTs
Recognizing all previous plant traits as relevagtcombining all of them and assuming
the high heterogeneity of the area, a high numlbedPF's is expected (Table 7). A
smaller set of classes would have also been appteprTo estimate hydraulic
resistance for river management purposes, fiveselasre considered to be enough
(Geerling et al, 2006). This number would have dsen enough for the application
into the model chain SMART2-SUMOZ2 in which only fieFTs are considered
(Wamelink et al, 2005). However, the above reagpninelevant plant traits and
heterogeneity- together with the application oé&n spectral unmixing, which requires
an exhaustive registration of all endmembers ptesethe area (Malenovsky et al.,
2006), led finally to the selection of nine PFT césséTable 7).

Plant functional types were in first instance meamt be composed of a
heterogeneous set of species with a similar hydraalighness. Hydraulic roughness
was characterized by physical characteristics {@®@&.3.2.1): height, stem diameter,
branching and leaf type. This characterization ydraulic roughness and therefore,
PFTs, can be summarized as size-based. But facirgpéutral characterization of PFTs
(Section 3.3.4.1) it became a fact that groups daseplant size were not represented
by unique or similar spectral signatures. Furtheendahere was a high variability
within signatures representing one unique classt asay be observed in the ROIs
spectra shown in Appendix 2. This could be expediaded on the evidence that
signatures of vegetation are related to propeaseieaf thickness, leaf surface structure,
chlorophyll-carotenoid content, dry matter contend leaf internal structure (Kumar et
al., 2001), as well as reflectance in the canopglléLaw et al., 1994); canopy density
and canopy structure (Rosso et al., 2005). Thespeepties are interrelated to floristic
composition (Schmidtlein & Sassin, 2002) and notlempsize. SMA has the potential
to estimate the spatial distribution and abundawica species, rather than thematic
classes (Rosso et al., 2005). It has been usedvgyad authors to discriminate species
at the sub-pixel level (Rosso et al., 2005; LileR805). It can also be used to identify
clusters at a larger scale; hygrophytic vegetatvais mapped by Schmid et al. (2005)
and Powell et al. (2006) mapped vegetation presentban land cover. But in these

cases vegetation was mapped against soil or inquengurface. Although separability
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by SMA appears to perform better when it is spebi@sed, some authors claim that
compared to many other vegetation attributes, aeties composition is difficult to
detect by remote sensing techniques (Schmidtlein $i8a2002).

Once the endmember selection was carried out #rbeca fact that PFT classes
were represented by ROIs with presence of uniqaeisp (Table 8). This was contrary
to the first approach of size-based PFTs charactenzat was more in accordance
with PFTs as vegetation clusters based on a divisyospecies, species-based PFTs.
This was the consequence of the high variabiligoentered within the spectra of ROIs
representing same PFT. This spectra variability wasd to be strongly correlated, in
most cases, to species because ROIs containing Sa@cees were spectrally similar
while ROls containing different species were unldaeh other (Appendix 2 and Table
5). So in search for unique spectra representing P&3 and taking into account that
some species were especially abundant in the ax@ah@&nce, more important to be
considered by river managers, a group of ROIs vedscted representing PFTs as
unique species. This fact became noticeable abutfitout the validation results
(Section 3.3.4.4). In Figures 65-68 from Appendixw® observe that agreement
decreases when the abundance map of one PFT (e.§)M\verlaid to individual
plants classified as such PFT (e.g. MWS), and incseaken it is overlaid to individual
plants from specific specie§gmbucus nigra). Being these species in all cases, those
species present in the ROIs used for the endmendferition during the unmixing
procedure (Table 8). In Table 10 (Section 4.2.3.8)can observe also how the OSA
value increases in all cases when it is calculatethe average of those plots with pure
presence of such species.

A first conclusion from this first part of the sy that trying to map vegetation
clusters as closed blocks determined by size-bREdd using linear spectral unmixing
does not give good results. However, species-bBsdd give better results. Therefore
we can say that vegetation classification via speatnmixing should be done in
species-based clusters. This may be understoodaalsm answer to the first research
question: “How to discriminate plant functional gin a floodplain using spectroscopy

techniques?”
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5.2 Spectral Mixture Analysis
The spectral mixture analysis approach for thesdiaation of the HyMap image

was developed taking several assumptions into atcdine first assumption regards
the linearity of the spectral mixing model. When agply SMA we assume that the
spectrum measured by a sensor is a linear combmatithe spectra of all components
within the pixel (Borisova, 2005). However thisdarity is only true when photons

interact with one material instead of several mal®r It happens in general with

materials such as snow or bare soil but not alwatfsvegetation. Only part of the light

is directly reflected by vegetation, the rest is@bed or transmitted to other layers,
from which it can be reflected to the sensor agdims results in a reflection that

interacts with more than one object and a non-fispactral mixing (Malenovsky et al,

2006), which is the real situation in the Millingexard.

The other three assumptions are related to fielh @ad might have led to
uncertainty in the final results. The first onehat field data from the years 2002, 2004,
2005 and 2006 were used as training and validateis to classify a HyMap image
from the year 2004. This assumption seems to becedly problematic when dealing
with the endmember selection from the image (Sec3i@d.4.1). During this procedure,
the evidence of existence of PFT classes at spesiiéis is based on field knowledge
from the years 2002 and 2005-06. This implies thatkey step of the image unmixing
is base on important inaccuracies. If the covemaige reference location from 2002
used as endmember (e.g. RNB) was not RNB in 20@mare but for example RWT,
the whole system of equations is confused andnhecuracies are extensive to the rest
of PFTs results. Regarding medium and robust woodjeta¢ion this assumption is
acceptable because this data was derived fromehes 2005-06, and we can assume
that its distribution has not dramatically changeda period of one or two years.
Nevertheless, herbaceous vegetation as well ad swaly vegetation was derived
from the year 2002, and taking into account thédrapolvement of this plant types, an
important variation in spatial distribution in adle-year period is expected. These facts
are supported by the scatter plots shown in Appeddand Appendix 9. In general
woody classes (except for RWT) show a better trérach herbaceous classes. The
average OSA value (Table 10) as well, is lowerHerbaceous (38%) than for woody
vegetation (42%). However, for the case of smalbdyovegetation (SWS), also from
2002, the OSA value is relatively high, 52%. We ntagie into account that, in this
case, onlyRubus sp. was into class SWS. This means that the defintibBWS was

69



already in accordance with the concept of specased PFTs and a better accuracy can
be expected.

The second assumption refers to the purity of tixelp used as ROIs for the
endmembers setup. As it may be observed in thé galaction of endmembers (Table
8) the purity of the ROIs is rarely 100%, moreowes encounter quite low values as
53%, 63% or 67%, while we are assuming that theycampletely pure. This is a fact
derived from the available field information in cbmation with the pixel size of the
HyMap image. This could be solved by, either exegutield campaigns in accordance
with this application, hence gathering accurat®rimiation of PFT pure plots, or by
making available a reliable PFTs endmembers’ library.

The third assumption is done when facing the neeelate the spatial sampling
unit of the available field data with the spatiahdition of the pixels in the image. The
coverage of those plots (Sykora and HyEco’'04 datasetaller than the pixel size it is
assumed to be proportionally extensive to the afd¢lae whole pixel where it is located,
although the majority of those plots are not eventered with respect to the pixel's
center. Also, the coverage of those plots (HyEcal@faset) with the same size of the
pixel but not centered with respect to the centethe pixel it is assumed to be
extensive to the whole pixel where it falls in. Atite same assumption is done when
presuming that the entire crown projection of thoskviduals whose stem coordinates
are located into one pixel belong also to that Ip{#ek dataset). There is not a clear
correlation between some of these factors and acgwf results which may indicate

that this inaccuracy is not very relevant.

5.2.1 Abundance maps
The results of the spectral unmixing, in the abmedamaps, are expressed as

abundance values. These values should lie, in yhe@worthe range between 0 and 1.
When the unconstrained model was used, proportie@ne out of this range as we can
see in Appendix 3 (unconstrained and semi-congdagbundance maps). This may be
due to one or more of the following reasons: 1) lihear mixture model does not

adequately fit the data; 2) the endmembers areylbddisen and do not represent the
extremes of the distribution of reflectance valt@sthat endmember; 3) the number of
endmembers is not sufficient to describe the datta (Schmid et al., 2005). A

combination of these factors may explain the ineateuresults obtained in this study.

As argued before, when referring to vegetationpalmear mixture model is expected,
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while in this study, the unmixing function was as®ad to be linear. Non-linear models
are still under study. The paper from Nielsen (308liows that, although not fully
satisfactory, the semi-parametric model gives bettstimates of endmember
abundances than the linear model (using arbitnadyrembers from AVIRIS data). Due
to previous spatial and qualitative inaccuracieglisas pixel coverage) described in
previous paragraphs, the final ROIs chosen (Tabl&i@ure 19) were not the ideal
spectral representation of the endmembers. The aeunfbendmembers, ten, does not
seem to be small to represent the area of studgt &l. (2005) used nine endmembers
to map marsh species, good accuracy for some spe@s found by performing a
qualitative comparison. Rosso et al. (2005) defigigtht endmembers to map species in
marshland vegetation with correlations around @d@ Schmid et al. (2005) used five
endmembers to map hygrophytic vegetation with IoMIE and fractional values
between zero and one. The problem was more intoctimeeptual model of PFTs
(Figure 5) and how this model was applied to theindein of PFTs in the
Millingerwaard (Section 3.3.2.2) than into the numlteelf. Species-based PFTs were
more appropriate than size-based PFTs in termseaditish separability as discussed in
section 5.1. In a sense the spectral variabiligeobed within PFT classes is not caused
because the number of endmembers is not enougtielsause the clustering was not
the appropriate. Théeffreis-Matusita separability measure could hagenbused to
compute ROI spectral separability in ENVI.

In the comparison between the abundance maps (App8hwe can observe how
higher fractional values are complementary betwaaps of different PFTs. This is a
result of the linear spectral model itself. This dze clearly observed between classes
such as SNB (Figure 38) and SNL (Figure 39), or MWS (feig8) and RWSC (Figure
45).

Regarding the hard classified image derived froenftily constrained unmixing
(Figure 22) the next things are observed. The patdiderbaceous classes are well
located. Nevertheless, the accuracy in the didtdbwf each of the classes SNB, SNL,
RNB and RNL separately is uncertain. SWRiI{us sp.) encountered in the centre of
the study area (A) is also feasible. MWSartibucus nigra) is well mapped locally (B),
but some areas were overestimated, like the ar@av@St to the forest. The wide
forested area (D) in the south of the lake was red@s RWSC(rataegus monogyna)
when it is mainly RWT $alix alba). This confusion was originated during the

endmembers spectra definition; we observe in Fig@dow the RWSC spectrum is
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similar to the RWT spectra. This may explain aldoyVRWT class is underestimated.
The sandy area (E) southwest of Figure 22 v@tenopodium rubra was the only

important area mapped ass RWT. The forested ardaeimorth (F) was classified as
RWS &lix fragilis) confused withalix alba and other tree species, but it was locally

well mapped in the western part of area (E).

Hard classified
HyMap
10 endmembers

A — F
B
C

E
Legend D

—No value —RWSC g RNL
mmSand gmRWT ggSNB
=IMWS = SNL pggSWS
mRWS  gmRNB

Figure 22: Hard classified image from fully constrained unmixng

5.2.2 RMSE analysis
Regions with high RMSE values are regions thatdowit be explained by means

of the selected endmembers (Figure 20). This is tduthe existence of other land

covers than those represented by the endmembets,tbe influence of other factors

that modify the expected reflectance of the coypes$ represented by the regions of
interest, such as moisture or shadow. Shadow isnpartant component to account for,
Powell et al. (2006) applied MESMA using paired eedmbers, shadowed and not,
with accurate results. To avoid effect of shadowssirecommended to combine

unmixing methods with the use of LIDAR or other biased images (Geerling et al.,
2006).

From the comparison between regions with high roeamsquare error and field
knowledge, possible reasons of endmember absendeecaderived. Referring to Figure
20 and Table 10, region A corresponds to an ardapatches of forest with a different
structure from that of the forest in region J frarhere the forest endmember (RWT)

was selected and also with presence of other spscieh asPopulus sp. Areas with
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forest are also related to presence of shadow ditea.shadow component was not
accounted for as endmember; pure pixels representaf shadow areas were not
encountered due to the relatively large pixel €5 m). Buildings and areas with
uncovered soil found in regions A and B were notstdered as endmembers either and
hence a high error in these areas was expectedorR€gis a sand dune with scarce
presence of forest and shrubs; the intimate spauisdure of these endmembers with
shadow might be causing higher errors. The straadfithe forest here is also different.
Other regions such as D, E and borders are wes$ arha soil richer in moisture. Area
F, with presence of herbaceous species suchMagha aquatica and Lycopus
europaeus, can be explained with a high error since theseisg were not considered
as endmembers, due to the high variability of sgsedhe plant functional types were
finally represented by a small set of species. 3&me occurs with region H; species
such asLolium perenne, Bromus hordeaceus, Potentilla sp., Eryngium campestre,
Medicago sp. andAvena sp. are not included as endmembeRegion G is a patchy area
of Galium sp., Urtica dioica, Ranunculus sp., Alopecurus sp., Trifolium sp., etc
Although some of these species are accounted fen@gmembers -such bistica dioica
andTrifolium sp.- they are not very abundant -presenc®afca dioica is under 15%'

in all pixels of this area-. Aquatic vegetation IsusPolygonium Amphibiun and dune
vegetation such ashenopodium rubra were not represented as endmembers either and
this can explain the high RMSE existing in regioll. paths in the image have also a
high RMSE. Paths are mainly sandy but as the pixzel isi quite broad the reflectance
in these areas is an intimate mixture of sand anitla variety of the species existing in

the borders of the paths.

5.2.3 Comparison between predicted and observed cover
Presented in scatter plots

The comparison between predicted and observed agedry means of scatter
plots shows a low agreement with low Walues and bad adjustment to the one to one
line (Appendix 4). There is not a clear improvemethile constraining the unmixing
method. Appendix 4 is divided in three parts: urstained, semi-constrained and fully
constrained unmixing where this can be observee. félt that fractional values are

commonly negative or greater than 1 when uncoms&daunmixing is applied indicates

% This percentage is considering the simplificatidrtie Braun-Blanquet index explained in section
3.3.3.2 for Sykora dataset
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that either the endmembers chosen are not goaptesent the area or that the linearity
of the unmixing process is not possible. This wiasaay discussed in section 5.2.1.
When constraints are applied, the unmixing processill unfit; however fractions are
mathematically forced to be between 0-1 and to spnto 1 in each pixel. Therefore,
senseless results can be expected.

Herbaceous observed fractions (Figure 50) show nbriwaver agreement with
modeled fractions than woody vegetation (Figure Bktept for class RWT. As it was
established in section 5.2, the assumptions reggitie time period existing between
the moments when field data was gathered and wiernntage was taken was more
acceptable for sets containing woody vegetationti@nother hand herbaceous species
composition is much more varied than that of woegygetation leading to a more
complex identification in the unmixing process. @pideeper into herbaceous
vegetation we can observe that agreement is bett@ost cases for grass type herbs
(SNL and RNL) (Figure 50), this is explained by thetfthat forbs present much more
heterogeneity regarding leaf type and plant strectiPerformance improved when
validation sets from the years 2004 and 2005 wesed Figure 52 and 53). This
coincides with the year when the image was takeeciBp data about grazed areas
would have been useful for a better mapping of teebaceous types. Grazed areas
appear to have a much higher LAI (so apparentlyughrhigher RSR) at a given
biomass compared to the ungrazed ones (Schmidt 208b).

Regarding woody vegetation, the best prediction Yeamd for classes MWS,
RWSC and RWS (Figure 51). MWS has a positive traftipugh R is very low (0.07)
showing a high dispersion. Its prediction improwedhe area where the endmember
was selected from, but is worse for the rest (Fag2@). This may be due to spectral
influence of other herbaceous coverage into thenemnaber chosen (MWS ROI was
covered by Sambucus in 86%, Table 8) which mightdiecident for all pixels around
that ROI with presence @mbucus nigra. But it can be also a consequence of specific

grouping structure in different areas (Figure 23).

% Remote Sensing Reflectance
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Legend Legend

71\*7 MWS endmember ‘% e Sambucus nigra || *  Sambucus nigra
« Sambucus nigra Predicted MWS fractions Predicted MWS fractions
Predicted MWS fractions High : 1.99186 High : 1.99186

High : 1.99186
Low : -2.95059 Low : -2.95059

Low : -2.95059
_

Figure (a) Figure (b) Figure (c)
Figure 23: Picture (a) details the region where thermimember MWS was selected; we can observe
a better trend in the agreement between modeled armbserved. In picture (b), which is not very far
from the region (a), the agreement is lower, althagh we can still observe certain trend. In picture
(c) there is not agreement and the trend is oppositto what it is expected

RWSC shows a negative trend when validated with RpSs (Figure 51),
composed mainly bysalix fragilis and Sambucus nigra, but it is positive when it is
validated using plots composed exclusivelyGrataegus monogyna of all sizes (Figure
51). RWS shows also a positive trend (Figure 51)taed® is higher (0.24). This class
endmember was represented by a 99% pure pix&dldf fragilis (Table 8) which may
explain this improvement.

Class SWS show a low?Rvalue in the unconstrained (Figure 51) and fully
constrained (Figure 59) but improves in the semst@amed unmixing (Figure 55) by
reaching the value of 0.21. We can observe in thé&tex plot (Figure 50) that the SWS
fraction is overestimated for low values of coveramd underestimated for high values.
However, using other validation methods (Sectiéh4.SWS distribution appears to be
more accurate.

The RWT distribution is badly predicted (Figure 543%.found for class MWS this
class is exclusively well mapped in the region wehéte endmember was selected
(Figure 24.a) and into a small region close to ithwsimilar characteristics (Figure
24.c).
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Predicted RWT fractions
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I Low : -1.42387
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Legend

7&7 RWT endmember

o Salix alba

Predicted RWT fractions
High : 2.53248

Legend
o Salix alba

High : 2.53248

Low : -1.42387

Low : -1.42387

Figure (a) \ Figre b) : T ' Figure (c)
Figure 24: Picture (a) details the region where therelmember RWT was selected; we can observe a
medium agreement. In picture (b), the agreement idow. In picture (c) there is a partial good
agreement, we can observe a very bad agreement hretedges, this can be explained by the stronger
presence of water in this edges.

But the mapping is negative for many other wideiaeg in whichSalix alba is
present, this can be explained by the existing 1stdeg/ species that influence the pixel
overall spectrum and also the specific stand siradn the different regions. To get a
better mapping of forested areas the endmembeRWi class should have been
chosen from other areas, like the wide forested araler the lake (Figure 25 A). This
could have been done based on field data from 2@@2h was gathered from this
forested area. This data was not used becausesitpaarly documented regarding

species and plant sizes.

High : 253248

/
i
) + RWT individuals 02
Predicted RWT fractions
A
=

Low : -1.42387

Figure 25: RWT individual from 2002 overlaid to theRWT abundance map

Presented by overlaying plots to maps
From the observation to the overlay between plot$ m@aps we may derive
similar trends to what was discussed in the pres/gmction (scatter plots) but also some

new aspects are emphasized now.
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Regarding non-woody vegetation, pictures showingsgrtype herbs (SNL and
RNL) show a higher agreement than forbs (SNB and RRBjure 62), as observed in
the scatter plots. However, small woody vegeta{®wS) seems to have a stronger
agreement than that derived from the scatter pfotgire 63).

Medium and robust woody vegetation overlay was ss&sk using three different
approaches. First, only the plStswith high specific PFTs density were overlaid te th
abundance maps (Figures 63 and 64). Then, all ohatN$ belonging to that specific
PFT class were overlaid (Figures 65.a, 65.b, 66.8, 66a, 67.b and 68.a). These plots
and individuals were heterogeneous regarding glp@ties but homogeneous regarding
plant size. And finally exclusively individuals fro one species were overlaid to the
fractional maps (Figures 65.c, 65.d, 66.c, 67.cj @nd 68.b).

Plots overlaid over fractional maps from classes Ma8 RWS show in general
an unsatisfactory agreement in spatial trend beallagreement is found (Figure 63).
Plots from RWSC overlaid over RWSC fractional mapg(ife 64) shows good
agreement. Plots from RWT (Figure 63) show local ragineements in a few small
patches in the western side of the southern aremr@i26 A). Here, the endmember
was chosen. The high values existing in the easielenof B are striking. This area is
rich in sand and dune vegetation suchChsenopodium rubra. As discussed in section
5.2.2, a high RMSE was found here, which meansttigamodel couldn’t really predict
the coverage in this region.

"
M.

Figure 26: RWT plots overlaid to RWT abundance map.

Regarding individual plants, individuals from clad8WS overlaid to the
abundance map (Figures 65.a and 65.b) show a wergdoeement while if we overlay
Sambucus nigra individuals the agreement increases (Figures &3dc65.d). The same
occurs with class RWS, the agreement occurs now hooadly since the distribution of

% These PFT plots are areas of 5x5 m with more théh &iverage of that specific PFT.
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Salix fragilis is not so broad (Figure 66). When we confront radlividuals from class
RWS to the abundance map of RWSC the coincidence Imeagonsidered almost
random (Figures 67.a and 67.b), but if what we @yer$ only Crataegus monogyna
individuals we observe clear trends of agreememgjufiei 67.c), excepting the southern
region. Here the grouping density appears to bselo@-igure 67.d). It is not observed
that the individuals in this region are youngerntha the center of the study area.
Average height and crown projection are 3.36 m &ddin the southern region, while
they are 2.62 m and 2.3%rn the center. The good trend agreement observetei
center of the study area (Figure 67.c) may be exgtaby the fact that the endmember
chosen for RWSC was covered 100% @nataegus monogyna. This is contradictory,
although, when we go back to the endmember seteetial take up the discussion on
the spectra fronCrataegus monogyna (Section 3.3.4.1), in which we deduced a high
within variability. But it supports the conclusidhat species-based PFTs are better
mapped by using spectral techniques (Section 5.Rgparding RWT class, bad
predictions are clear for both RWT afdlix alba (Figure 68) as it was discussed in

section 5.2.2.

5.2.4 Sub-pixel accuracy assessment (OSA)
The overall sub-pixel accuracy will be discusserfrtwo different view points.

First it will be discussed looking at the averagéuga and secondly, looking at its
spatial distribution. In general, the results based®SA show low values with averages
lower than 50% (Table 10). The standard deviat®marmally high, showing a big

range of values and hence the low reliability of tlesults. The first fact that can be
observed by looking at the values is that the dvaczuracy for woody vegetation (42
%) is higher than that for herbaceous vegetatidh 43, as derived from previous
validation approaches. For herbaceous PFTs, accusaligher using validation sets
from the years 2002 (39 %) and lower for the y@&@4 (35 %) and 2005 (36 %). This
is contradictory with results derived from scaféats (Figures 50, 51 and 52) in which
it seems that there is a slight improvement in 2884 2005. The small differences
observed from both validation methods should notcbesidered highly significant;

especially taking into account that few plots wesed for 2004-05 (5 and 8) while
more than 100 were used for 2002. Small woody iget appears to be better

predicted also using this parameter showing ortbeofargest OSA values; over 50 %.
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Another fact that may be observed is that predictimproves for woody
vegetation when it is based on species ratherwhan it is based on PFTs themselves
(Table 10). Always OSA values increase when fraetionaps are validated with plots
pure in species, decrease when these species xed mith others and decrease even
more if these species are not present. For instateees MWS average OSA is 40 %, if
we select only those plots composedSaifbucus nigra it increases to 54 %, if those
plots containSambucus nigra mixed with other species the average is 43 %,hen t
contrary, if the plots are composed of other spgethe average is 0 %. The difference
is smaller though when considering the overall ager(40 % all plots and 41 % purest
plots), but this is explainable by the fact thadréhare more herbaceous plots —where no
difference between species was made- and hence ttese more weight than the
woody plots in the final overall accuracy value.

If we take a look now at the spatial distributidnQSA (Appendix 6), we find out
as discussed in section 5.2.3 that in all caseWeeall accuracy increases in those

regions where the endmember was selected.

5.2.5 Description of an optimal methodology to map PFTs in river
floodplains

This section is the answer to the second reseaueltign: “Which is the best
methodology for mapping PFTs using linear spectraiinimg?”

The best methodology to map PFT in a floodplain basedorevious results
(assuming that the endmembers will be selected thenimage) is:

1. To have a hyperspectral image and a set of fietd daailable, both from the
same year and period of the year.

2. Field data should be gathered according to the tbgeof the SMA application.
This means that, ideally, plots should be basexdgnid with the same pixel size
and origin as the image. This could be done bybéstang a reference location
in the field as origin, and a fixed orientation.dtative data should be gathered
in the form of percentages of species coveragepfmrin a unique stratum.
Grazed areas should be specified. The groupingtgiesfssuch species (number
of stems per surface unit) should be considerecussc of its relevance for
hydraulic roughness.

3. The definition of plant functional types should d@ne based on the conceptual
model shown in section 3.3.2.1. Relevant traits digtermine vegetation
roughness are: height, density and flexibility. Tdpmplication of this model to
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the definition of the PFT classes should be donedbasea study of the most
relevant species in the area. This study shoultudiec mean height, foliage
density and inherent species flexibility of sterBased on these data, species
can be arranged by hydraulic resistance and coateis PFTs.

4. Spectral mixture analysis should be applied follayihe steps described in
section 3.3.4. Grazed areas and shadow should bsideoed as separate
endmembers. This method should be combined witlusleeof LIDAR or other
IR based images to improve grouping structure sdildy.

5.3 Temporal analysis
The temporal analysis was designed and performied tife results of SMA on

HyMap were obtained. Therefore, some of the commhssderived from the previous
discussion (Sections 5.1 and 5.2) were adoptedarspectral mixture analysis applied
in this temporal study. Therefore, two differenintgs will be discussed here: the
comparison between HyMap and CASI images clasdificatand the comparison
between the first HyMap image classification (usieg endmembers) and the second

HyMap image classification (using six endmembers).

5.3.1 Spectral Mixture Analysis
As it was inferred from previous results low acayravas not a consequence of

the number of endmembers but of the division ofetaion into PFTs (Section 5.1).
The introduction, in this second approach, of fhecges-based (Section 5.1) definition
of PFTs raised the accuracy of the HyMap classificatAverage OSA value for the
HyMap image was 40 % in the previous approach @dlil) against 66 % in this
second approach (Table 12). In the case of herbacesgetation it increased from 37
% to 47 %, and in the case of woody vegetation fi#o to 68 %. This raise was
although the number of PFTs was reduced from teixto s
In this second approach we observe again that beooa classes (47 %) show a
less accurate distribution than woody classes (§8 b the case of high coverage of
specific PFT this value increases, e.g. pixels caveranore than 50 % by shrubs have
81 % of accuracy. This may be due to a combinaifdwo facts:
1. Field data for herbaceous classes belong to 2002 yea&rs previous to when
the image was taken, 2004) while they have a fagtement.
2. Herbaceous vegetation classification into PFTs “gsisand “forbs” implies
high heterogeneity of species and spectral sigeatur
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OSA results (Table 12) from CASI image (2001), supgwe first fact because in
this case, that herbs field data was gatheredrctodbe image date (2002), herbs show
more accuracy than woody vegetation, which was ggath further (2005-06). OSA
value for herbaceous vegetation is 41 % while is%2%or woody vegetation. OSA
value for herbaceous classes is still higher foMEy (47 %) than for CASI (41 %),
which shows the low overall accuracy of the CASksification. However, while the
OSA value is 41 % for shrubs and 41 % for pioneeedy it drops to 4 % for dwarf
shrubs, which might be causing such low average @84e for woody vegetation. The
reason for this might be that in 2001, when thegenavas taken, the ROI used as
endmember for dwarf shrubs (Table 6) did not héaeedrown projection they showed
when the data field was gathered (2005-06).

Another factor that might be causing an improvemerthe results from HyMap
image is the endmember used for pioneer trees.réwiqus approach, ROIs for
endmember definition of trees were not selecteh fitve wide forested area in the south
of the lake (Figure 25 A). This was because of uagdies regarding the field data
gathered in this area in 2002. In this case, bectus area was not correctly mapped in
previous approach (Figure 22 D and Figure 25 A)adeim 2002 was used together
with data from 2005-06 to make up the ROI for piemees. OSA value for HyMap
improved from 35 % (Table 10) to 64 % (Table 12).

Besides, ROIs representing the endmembers wereumque pixels. In this
approach they were conformed by a combination xélpi These pixels were selected
preferably from different regions in the area tduee exclusion for grouping effects.

Regarding the distribution of OSA values (Appendly e may observe two
things. Comparatively, OSA values are higher for Hy\lassification than for CASI,
as inferred from the average values (Table 12) #eneral trend, in the HyMap image,
values are higher in those regions were plantsrem@ densely grouped (Figures 89.a
and 90.a).

From the abundance maps observed in Appendix 8 we ahbserve that clear
trends and complementary features are shown idigtebution of PFTs in the case of
HyMap (Figure 79). CASI abundance maps show, in ggnéss clear trends and
redundancy of high fractions in same areas foethffit classes, e.g. grasses and shrubs.

HyMap RMSE image shows similar values and featurssmguten or six
endmembers. Therefore, discussion made in sectibh B applicable here, except for
region J which did not show high RMSE. Regarding @ASI image a very high

81



RMSE values are found. These are specified in gedti®8.2. These high errors are an
indication that the endmembers in the CASI unmixivgre not correctly addressed.
High errors appear in regions with presence of gr&egions with presence of
Crataegus monogyna (dwarf shrubs) show high RMSE value as well. Higiors are
encountered too in regions with other tree spg@estion 4.3.2) because they were not
considered as endmembers. In general, we may ab#@t/high errors in CASI do not
show clear trends as they show in HyMap. Instdael; are more evenly distributed in a

sparkling configuration. This indicates low preoisin the unmixing model.

RMSE RMSE 4 RMSE

HyMap 10 end 4 HyMap 6 end & CASI 6 end

Legend Legend
RMS Error b RMS Error
.High 1 12.278155 ] .High : 389.163727

Legend
RMSE
.High 1 11.1158

Low: 0 Low : 0.000000 Low : 0.000000

Figure (a) Figure (b) Figure (c)

Figure 27: RMSE image from the unconstrained unmixig of HyMap image using 10 endmembers
(a), using 6 endmembers (b) and CASI image usingghdmembers (c)

From the scatter plots shown in Appendix 9 (Figur¢ 82 may derive that
classification of all PFTs for HyMap show a positivend close to the one to one line
(100 to 100 in this case). However, the disperasiill quite high, with low Rvalues.
Plots with higher observed coverage show less diggethan the rest. Figure 83 shows
the scatter plots resulting from the CASI classtima We can see that trends are worse
for all PFT classes.

In Appendix 10 (Figures 84 and 85) we observe a gwedd of agreement
between the abundance maps from HyMap and the pfatach PFT. Figures 86 and
87, from CASI, show a lower agreement, except fer ctass Pioneer trees, which is
good mapped in some regions but in others is osttmated. One possible explanation
for this is that its ROI spectrum was confused whiga one from grass (Figure 72).

Apart from the fact that woody vegetation coveresklarea in 2001 than in 2005-

06, other important factors may be causing alsodoeurate results in the case of the
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CASI image as the number of spectral bands. HyMagenwith 126 bands, shows in
this study more adequate characteristics to claggimate mixtures of vegetation PFTs
than the multispectral image CASI, with 10 bandsother cause of low is that this
image was initially in RD coordinates and it wasnsformed to UTM, as explained in
section 3.3.3.1. During this projection transforimat some spatial inaccuracies were
observed. A translation of 10 m east was perfortoedorrect this shift as a practical
solution. But, likely, the geo-referencing of thA®l image support inaccuracies which
might have affected the unmixing procedure. On¢hefpossible reasons behind this

shift might the specific geometrical correctiorstilhage was object to.

5.3.2 Monitoring PFTs in river floodplains
This section is the answer to the last resequoestion: “Is it feasible to monitor

shrubs encroachment by comparing two hyperspeatnages from two different
sensors, while each of these images is analyzéideyrevious methodology?”

Changes in vegetation distribution between the 3y&001 and 2004 can be
derived from the comparison of the hard classifiedges presented in Figure 28.
Figure 29 shows these changes quantitative. AcogidirFigure 29, grasses and dwarf
shrubs increased their extension from 2001 to 2@6d, forbs, shrubs, trees and sand

decreased.

Hard classified
CASI
6 endmembers

Legend
—No value

— Grasses

— Forbs

m Dwraf shrubs

m Shrubs
m Pioneer trees
mSand

Hard classified
HyMap
6 endmembers

[ INo value [ Forbs
B Dwarf shrubs [ Grasses
B Shrubs [ sand
Il Pioneer trees

Figure (a)

Figure 28: Hard classified maps from fully constrained unmixirg, CASI 2001 (a) and HyMap 2004

(b)
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Extension of PFTs
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Figure 29: Changes in the extension of PFTs according the classification of the images CASI
(2001) and HyMap (2004).

However, the unreliability of the CASI image clagstion, as discussed in
section 5.3.1, disables these affirmations. Aftiér rmonitoring PFTs using spectral
techniques is feasible as long as mapping PFTs isiblea Therefore, the same
considerations regarding mapping PFT explained itise&.2.5 should be applied
here.
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6 CONCLUSIONS

This thesis was aimed to develop an imaging spswobpy-based method for
mapping and monitoring plant functional types iweri floodplains, with special
emphasis on monitoring the process of shrub enbroant.

In despite of the high heterogeneity of vegetatioa river floodplain it is possible
to map PFTs by using Spectral Mixture Analysis. Ahhigimber of PFT classes is not
required to reach a high classification accuraayweler, of primary importance is the
division of vegetation into PFTs. This division shibdatisfy two conditions: a) the
spectral separability of classes and b) the chanaeation into classes that show
different hydraulic roughness. The woodiness ofplaat must lead the division at the
highest level. At a second level, most abundantdyapecies must serve as basis for
the division. Shrubs and trees show relatively hat#ssification accuracy with respect
to herbs. Herbaceous vegetation show improvedtsesdien divided into two groups:
graminoids and forbs. Graminoids are more easagsified than forbs. Classification
performs better for those pixels covered mainlyubjque species. Woody species, due
to their different mean height, foliage density aniderent stem flexibility can be used
by river managers to map differences on hydraolighness of river floodplains.

An optimal methodology should involve the use ofhgperspectral image
(HyMap) rather than a multispectral image (CASI).I¢Fidata is necessary to support
the endmember selection and validation assessm&nttemporal and spatial
coordination between image and field data is aromamt requirement. Qualitative data
in the field should be gathered, for this applizatiin the form of percentages of species
coverage per plot in a unique stratum. Grazed askasld be specified. Grouping
density must be considered because of its impcetémchydraulic roughness. LiDAR
data may be used to support spectral techniquéseimnalysis of grouping structures
and shadow in future research. The preprocessinthefimages must include an
atmospheric correction, an accurate geo-referenamg a masking of the area of
interest. SMA is applied first by a selection of erambers (preferably from the image,
but it could be also done from a reliable endmemibigrary). It is recommended not to
use a unique pixel per endmember but instead bgingepixels from different regions
in the study area, as accuracy improves in theonegihere the endmembers are
selected. Then, it follows a MNF transformation, efhis necessary to reduce the data

and exclude noise. After the linear unmixing islagaf a validation analysis should be
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performed. Different validation approaches will erlthe different aspects of the
classification accuracy.

In this way, changes of PFTs distribution in time barderived from a time series
of hyperspectral images. But, previously, in order reduce some uncertainties,
previous methodology should be tested using fielh &dnd hyperspectral images from
same acquisition year and period of the year.

Imaging spectroscopy techniques show in this rebetar be a promising tool to
map vegetation in river floodplains. The developadthodology could improve the
efficiency of the tasks of the river managers witspect to monitoring nature
rehabilitation and flood risk management. Howegeme effort has to be done to bring
to an agreement the conditions for the applicatibapectral techniques and the needs

of the ecological models with respect to the chiaraation of PFTSs.
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7/ RECOMMENDATIONS

In this chapter several recommendations for futasearch are listed:

PFTs abundance maps obtained by spectral mixturgssmahay be used to
initiate or validate the dynamic vegetation model A 2-SUMO?2 to address
the potential of remote sensing techniques whenlaiting vegetation models.
Spectral mixture analysis could be applied to aifipdzand selection and test
whether there is an improvement or not. The respaisplant canopies to
radiation is a function of the intensity of radwatiin various spectral regions,
and the absorbing and transmitting properties efwibgetation. Leaves reflect
little in the blue and red wavelengths due to gsomn by photosynthetic
pigments, and reflect strongly in the near-infragtR) due to intra-and inter-
leaf scattering. At the canopy level, multiple seahg between layers of
vegetation increases NIR reflectance and is relat@dnopy geometry and leaf
optical properties (Law et al., 1994; Gao et abQ3. The reflectance in the
NIR region incorporates also a nonlinear (inteagtiterm related to multiple
scattering (Gilabert et al., 2002).

Horizontal density of plants, which has an impattate in hydraulic roughness
(Anderson, 2006), could be mapped using LAI inderwid by using spectral
techniques.

Combination of spectral methods, such as SMA, whith ase of LiIDAR or
other IR based images could be tested. This woubditiahe effect of shadows
and improve the separability between different giog structures (Geerling et
al., 2006).

The application of advanced unmixing techniqueshsas MESMA (Multiple
Endmember Spectral Mixture Analysis) can give impabvesults. MESMA is
recommended to face the high heterogeneity of watiget in the
Millingerwaard. The spatial and spectral variapjliivhich is a challenge in the
Millingerwaard, it is potentially addressed by nplt# endmember spectral
mixture analysis (MESMA) (Powell et al., 2005). Thsethod allows the
number and type of endmembers to vary on a per piaxsis (Powell et al.,
2005). MESMA is especially recommended when theeediferent spectra for

the same specie (Rosso et al., 2005). It allowgHersimultaneous testing of
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more than one endmember per class which appear®doice higher accuracy
(Rosso et al., 2005).

Evidential reasoning should be also tested to mapsPFhis method relates
indexes as LAI, EVI, albedo, etc. with PFTs. It wapleed by Sun et al. (2006)
at a global scale using MODIS images. Past reseaslsiown that evidential
reasoning can produce better results comparedditiobnal classifiers (Sun et
al., 2006).

VCNNC (Vegetation Community based Neural Networlk<Sifier) could also

be used in future research. It provides sub-pixattional abundance of
vegetation species with high accuracy (Wang ef@06), which constitutes
useful information in these areas.

Further work using medium-resolution sensors like M® and MERIS is

recommended to upscale the approach from the flaodgevel to the river

catchment scale.
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APPENDIX 1: Information on images
Table 13: Characteristics of HyMap image and CASlmage

HyMap CASI

Acquisition date 28" July 2004 (Strip number 1) PRAugust 2001
IFOV (Instantaneous| 2.5 mrad along track
Field Of View) 2.0 mrad across track
Field of view 61.3 degrees
Pixels 1538 along track 288 along track

512 across track 512 across track
Swath 2300 m at 5 m GIFOV (along track)

4600 m at 10 GIFQV (along track)
Spectral configuration
VIS Spectrometer (1)

Number of bands | 30 6
Band number 1-30 1-6
Spectral range 450-890 nm 437-705 nm
Spectral resolution | 8.1-16.2 nm 18 nm

NIR Spectrometer (2)
Number of bands | 32 4
Band numbers 31-62 7-10
Spectral range 890-1350 nm 729-890 nm
Spectral resolution | 14.5-16.9 nm 18 nm

SWIRL1 Spectrometer (3)
Number of bands | 32
Band numbers 63-94
Spectral range 1400-1800 nm
Spectral resolution | 13.1-15.6
SWIR2 Spectrometer (4)
Number of bands | 32

Band numbers 95-126
Spectral range 1950-2480 nm
Spectral resolution | 18.3-21.3 nm
Data scaling
Final HyMap units L [uW / cm2 sr nm]
(calibrated at-sensor
radiance)
Data rescaling L = 1000 DN (bands 1-62)

L = 4000 DN (bands 63-126)
Data formats

HyEco-1_rad.bsq Band Sequential (BSQ). Calibrated
radiance X,y: pixels [] Z:{W / cm2 sr
nmj
HyEco-1_rad_geo.img Band Interleaved by Line (BIL)
Sampling
Line rate (lines per second)16 Hz
Resampling Bilinear
Pixel size 5x5m 2x2m
Map projection UTM, Zone 31 N Stereographic.
RD Dutch Coordinate System
Geodetic Datum WGS-84 Bessel
Parameters of stripl
Flight altitude 2300 m (above sea level)
Flight heading 0 deg
Solar position Air mass: 1.192

Zenith: (refracted): 33.050
Azimuth: 178.913

Cos incidence: 0.838

Cos zenith: 0.838

Solar day Solar time: 717.495




Acquisition time
calculation

Acquisition time

Start latitude / start
longitude

End latitude / end
longitude

Dimensions raw (x =
across track, y = along
track, z = spectral bands)
[pixels]

Dimensions geocoded (X 1
long.,y=lat.,z=

Julian day: 53214.984

UTC (Universal Time) = GMT
(Greenwich

Mean Time)

GMT = MEST -2 (Middle European
Summer

Time)

MEST = Local time

11:38 hrs UTC

13:38 hrs MEST (or local time)
51.8953 N /5.9947 E

51.8525 N/ 5.9936 E
512, 1538, 126 (198'438'912 bytes =
189 MB)

- 581, 1416, 126 (207°319'392 bytes =
197 MB)

spectral bands) [pixels]

Source: Kooistra et al. (20

05), Verrelst (2004) &wkrling et al. (2006).



APPENDIX 2: Endmembers selection

Small herbs
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Figure 30: ROIs spectra small herbs
Robust herbs
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Figure 31: ROIs spectra robust herbs
Small shrubs
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Figure 32: ROIs spectra small shrubs
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Figure 33: ROIs spectra medium shrubs
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Figure 34: ROIs spectra robust shrubs
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Figure 35: ROIs spectra robust trees



Crataegus monogyna
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Figure 36: ROIs spectra RWSC
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Figure 37: Location of final nine PFT endmembers




APPENDIX 3: Abundance maps and RMSE map.
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Figure 38: SNB abundance maps
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Figure 40: RNB abundance maps
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Figure 41: RNL abundance maps
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Figure 43: MWS abundance maps
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Figure 44: RWS abundance maps
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Figure 46: RWT abundance maps
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Figure 47: Sand abundance maps
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APPENDIX 4: Comparison of observed vs.

plo

ts

a) Unconstrained linear spectral unmixing

modeled by means of scatter
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Figure 50: Herbaceous PFTs fractions predicted by unewstrained unmixing compared to fractions
observed in the field in 2002
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Figure 51. Woody PFTs fractions predicted by unconstrened unmixing compared to fractions
observed in the field in 2002 (SWS) and 2005-06 &t
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Figure 52: Herbaceous PFTs fractions predicted by unctwstrained unmixing compared to fractions
observed in the field in 2004
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Figure 53: Herbaceous PFTs fractions predicted by unewstrained unmixing compared to fractions
observed in the field in 2005

b) Semi-constrained linear spectral unmixing
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Figure 54: Herbaceous PFTs fractions predicted by seirgonstrained unmixing compared to
fractions observed in the field in 2002
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Figure 55: Woody PFTs fractions predicted by semi-coiained unmixing compared to fractions
observed in the field in 2002 (SWS) and 2005-06 &t
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Figure 56: Herbaceous PFTs fractions predicted by sergonstrained unmixing compared to
fractions observed in the field in 2004
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Figure 57: Herbaceous PFTs fractions predicted by sersonstrained unmixing compared to
fractions observed in the field in 2005

c) Fully constrained linear spectral unmixing
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Figure 58: Herbaceous PFTs fractions predicted by flyy constrained unmixing compared to
fractions observed in the field in 2002
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Figure 59: Woody PFTs fractions predicted by fully costrained unmixing compared to fractions
observed in the field in 2002 (SWS) and 2005-06 &t
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Figure 60: Herbaceous PFTs fractions predicted by flyy constrained unmixing compared to
fractions observed in the field in 2004
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Figure 61: Herbaceous PFTs fractions predicted by flyy constrained unmixing compared to
fractions observed in the field in 2005
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APPENDIX 5: Comparison of observed vs. modeled by overlaying plots to
maps
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Figure 62: Abundance map of herbaceous PFTs overlaidith validation plots from 2002
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Figure 63: Abundance maps of small woody vegetatioaverlaid with validation plots from 2002
and medium and robust woody vegetation overlaid wit validation plots from 2005-06
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Legend
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Figure 64: Abundance maps of RWSC overlaid with vatiation plots from 2005-06
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Figure 65: Abundance map of MWS overlaid with MWS irdividual plants (a) and (b) and
Sambucus nigra(c) and (d), field data from 2005-06
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Figure (c)
Figure 66: Abundance map of RWS overlaid with RWS idividual plants (a) and (b) and Salix
fragilis (c), field data from 2005-06
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Figure 67: Abundance map of RWSC overlaid with RWS ndividual plants (a) and (b) and
Crataegus monogyn&c) and (d), field data from 2005-06
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Figure 68: Abundance map of RWT overlaid with RWT individual plants (a) and Salix alba (b),

field data from 2002 and 2005-06
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APPENDIX 6: OSA (Overall Sub-pixel Accuracy) spatial distribution
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Figure 69: Overall sub-pixel accuracy spatial distibution for herbaceous vegetation (SNB, SNL,
RNB and RNL)
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Figure 70: Overall sub-pixel accuracy spatial distipution for small woody vegetation (SWS) and
medium and robust woody vegetation (MWS, RWS and RW)
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Figure 71: Overall sub-pixel accuracy spatial distdution for RWSC
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APPENDIX 7: Temporal analysis. Endmembers
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Figure 72: Endmembers spectra from CASI
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Figure 73: Spectrum of various herbaceous plots (CA¥ Red spectra correspond to forbs while
blue correspond to grasses
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Figure 74: Spectrum of Pioneer treesSalix sp) (CASI). Red spectra correspond to isolated
individuals or small groups in the western area whe blue spectra correspond to the forested area

on the East
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b) HyMap image

Endmembers HyMap

6000
5000 —— Grasses

T —— Forbs
wo | NS
2000 I ~ — Shrubs

—— Pioneer trees
N Sand
-

TTTTTTTTITT

Reflectance

/

1000 -

o

8 8 ® 48 9N QI W

n © o = o < ©

o o o \—| — - \—| —i
Wavelenght (nm)

24

0.44
1.75

o)
C”.
i

2.14
2.27

Figure 75: Endmembers spectra from HyMap
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Figure 76: Spectrum of various herbaceous plots (Hylp). Red spectra correspond to forbs while
blue correspond to grasses
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Figure 77: Spectrum of Pioneer treesSalix sp) (HyMap). Red spectra correspond to isolated
individuals or small groups in the western area whe blue spectra correspond to the forested area
on the East
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Figure 78: Endmember location for HyMap and CASI
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APPENDIX 8: Temporal analysis. Abundance maps and RMSE maps
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Figure 79: Abundance maps of the PFTs classes Gra$rbs, Dwarf shrubs, Shrubs and Pioneer tress. Et row corresponds to HyMap unconstrained unmixing
and second row corresponds to CASI unconstrained umixing.
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Figure 80: Abundance maps for Sand and RMSE from uranstrained unmixing, HyMap (a)/(c) and

CASI (b)/(d)
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Figure 81: Hard classified maps from fully constraired unmixing, HyMap (a) and CASI (b)



APPENDIX 9: Temporal analysis

. Comparison of observed vs. modeled by
means of plots

a) HyMap Unconstrained Unmixing

Grasses y= ll.?:jS_ngl-G;g.OSl Forbs y =0.8244x - 1.2705
- R?2 =0.096
200 200
150 - L 150 |
B | R g 00
§ 0 /4‘/'1"—“,‘ R w % 0
S 50 §.r g 40608040 s 0
-100 -50
-150 -100
Observed Observed
Dwarf shrubs y = 0.6949x + 27.922 Shrubs y =1.1994x + 10.877
R2=0.0141 R2 =0.0902
300
8 8
o] ©
© ©
o (o]
= = 10
-200
Observed Observed
Pioneer trees y =1.7604x - 32.949
R? =0.0864
300
200 :
E 100 . . i E ) e " . ./
S Ol ; :
= o pie200 " 40 60 80 190
-200 |
Observed

Figure 82: PFTs fractions predicted by HyMap unconstained unmixing compared to fractions

observed in the field in the years 2002 (Grass arfebrbs) and 2005-06 (Dwarf shrubs, Shrubs and
Pioneer trees)
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b) CASI Unconstrained Unmixing
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Figure 83: PFTs fractions predicted by CASI unconstraned unmixing compared to fractions
observed in the field in the years 2002 (Grass arfeébrbs) and 2005-06 (Dwarf shrubs, Shrubs and
Pioneer trees)
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APPENDIX 10: Temporal analysis. Comparison of observed vs. modeled
by overlaying plots to maps

a) HyMap Unconstrained Unmixing
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Figure 84: HyMap abundance maps of Grass, Forbs andwarf shrubs overlaid with individual
plants from each class respectively, field data fra 2002 (Grass and Forbs) and 2005-06 (Dwarf
shrubs)
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Figure 85: HyMap abundance maps of Shrubs and Pionedrees overlaid with individual plants
from each class respectively, field data from 20086
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b) CASI Unconstrained Unmixing
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Figure 86: CASI abundance maps of Grass, Forbs andvizarf shrubs overlaid with individual
plants from each class respectively, field data fra 2002 (Grass and Forbs) and 2005-06 (Dwarf

shrubs)
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Figure 87: CASI abundance maps of Shrubs and Pione#érees overlaid with individual plants from
each class respectively, field data from 2005-06
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APPENDIX 11: Temporal analysis.

spatial distribution
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Figure 88: Overall sub-pixel accuracy spatial distribution for herbs. Results from fully constrained

unmixing HyMap (a) and CASI (b)
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Figure 89: Overall sub-pixel accuracy spatial distidution for woody vegetation I. Results from fully

OSA (Overall Sub-pixel Accuracy)
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Figure (b)

constrained unmixing HyMap (a) and CASI (b)
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Figure 90: Overall sub-pixel accuracy spatial distdution for woody vegetation Il. Results from
fully constrained unmixing HyMap (a) and CASI (b)
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