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Abstract 

Due to flood risk increase in the Netherlands during the last decades, new river 

management strategies are being developed in areas such as river floodplains. As 

floodplains of the Rhine River are part of the National Ecological Network of the 

Netherlands, these strategies are meant to safeguard both flood protection as well as 

nature rehabilitation objectives. Nature rehabilitation implies that former agricultural 

land is transformed into natural areas, but vegetation is also an important component 

which influences the hydraulic roughness of the floodplains which increases peak 

discharge. In order to prevent catastrophic flood events river managers need to forecast 

vegetation dynamics. Dynamic Vegetation Models (DVM) are used to predict 

vegetation succession, but to initialize and validate these models, information about the 

spatial distribution of vegetation is required.  

This research is focused on establishing a methodology for mapping and 

monitoring floodplain vegetation by the application of imaging spectroscopy 

techniques. Vegetation classes are defined according to the concept of Plant Functional 

Types (PFTs), because of its appropriateness when being used by DVMs. PFTs are 

defined in a wide variety of terms, but in this study they were defined as vegetation 

clusters that have a similar response to water flow impact. This response was measured 

by what is known as hydraulic resistance which was characterized by quantifying 

specific plant traits: height, density and flexibility. Since the heterogeneity of PFTs 

leads to intimate mixture of classes in a sub-pixel scale Spectral Mixture Analysis 

(SMA) was considered an appropriate technique. SMA was used to classify into PFTs 

imaging spectroscopy data acquired by HyMap and CASI in 2004 and 2001, 

respectively.  

The methodology was developed using HyMap as base image. In this first 

approach, nine PFTs based on plant size were defined. Linear spectral unmixing was 

applied to the first 23 MNF bands from HyMap using ten endmembers (nine PFT 

classes and soil). These were extracted from the image based on ground truth 

knowledge derived from field data. Three methods were applied: unconstrained, semi-

constrained and fully constrained linear unmixing. Finally, a temporal analysis was 

performed in which both HyMap (2004) and CASI (2001) were subject to previous 

methodology. In this second approach, five PFTs were redefined based on plant species 

and six endmembers were used.  
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Overall classification accuracy of HyMap improved in second approach with 

respect to first from 66 % to 40 %. Classification of woody PFTs showed better 

performance (68 %) than herbaceous PFTs (47 %). Dwarf shrubs (Crataegus 

monogyna) were classified with 57 % accuracy, shrubs (Sambucus nigra) with 81 % 

and pioneer trees (Salix sp.) with 64 % in the second approach. Performance of CASI 

image showed worse results with an overall accuracy of 21 %. The results from this 

research reveal that it is possible to map and monitor PFTs in river floodplains by 

applying Spectral Mixture Analysis to hyperspectral images. 
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1  INTRODUCTION 

1.1 Context 
About half of the Netherlands’ surface area is less than one meter above sea level 

and one third of it is actually below sea level. If there were no dikes or dunes, two thirds 

of the Netherlands would be flooded on a regular basis. Therefore flood risk1 is a 

continuous threat and it is expected to increase in the coming decades along the river 

Rhine. The two main reasons for this are that climate change will cause a significant 

increase in the probability of extreme floods and that the potential damage of floods (the 

level of investments in areas at risk) is doubling every three decades (Hooijer, 2002). 

Moreover, the room available for improved flood risk management in the future is 

rapidly decreasing due to urbanization along the river banks (Hooijer, 2002). This 

affirmation promotes the potential damage of floods. And that is why flood risk 

management strategies should be developed in anticipation of higher peak discharges in 

the future (Hooijer, 2002).  

New flood management strategies are intended to cover both flood protection as 

well as nature rehabilitation objectives (Baptist et al., 2004). Naturalized vegetation, in 

floodplains, plays a principal role in nature rehabilitation objectives, but it also 

determines flood evolvement because of its influence on hydraulic resistance (Anderson 

2006). Due to management and restructuring in these areas, vegetation is subject to 

periodical changes. Accurate and up-to-date information on this dynamic vegetation is 

of vital importance to river managers because the maximum discharge capacity depends 

on it through its hydraulic resistance (Geerling et al., 2006). Especially of importance is 

to monitor shrubs since they experience fast development and are the vegetation type 

that show highest roughness (Geerling et al., 2005b).  

Dynamic vegetation models are increasingly being used to forecast vegetation 

evolvement and hence can be used to support river management strategies. Many 

dynamic vegetation models use an approach based on plant functional types (PFTs) as 

classification units (Adams et al., 2004; Peng, 2000; Bonan et al., 2003; Epstein et al., 

2001; Pausas, 2003; Jauffret, 2003; Pan, 2002). In contrast to ecotopes, traditionally 

used as classification units in river floodplains (Hartmann and Knotters, 2006), PFTs 

present characteristics that make them more adequate to be used by river manager 

                                                 
1 Flood risk is a potential negative impact to an asset or value that may arise from a flooding event. 
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nowadays. Ecotopes are the smallest ecologically-distinct landscape features in a 

landscape. They are complex vegetation units with varying structural and functional 

plant types. PFTs are defined in a wide variety of terms; it depends on the scale (global, 

national, local, etc) or the field of application (plant physiology, ecology, etc). In 

ecological modeling they are defined as vegetation clusters that have similar response to 

environmental factors (Epstein at al., 2001; Gondard et al., 2003) making them more 

suitable than ecotopes to be applied into DVM.  

Mapping and monitoring PFTs in river floodplains by yearly field work 

campaigns would take large amounts of time and would be too expensive. Currently, 

aerial photography has been used to discriminate vegetation types or ecotopes within 

the Dutch river floodplains. But this is a time consuming method with limited spectral 

possibilities that does not allow to document within-class variation of vegetation 

roughness (Straatsma, 2006). However, new digital remote sensing techniques, such as 

advanced multispectral or hyperspectral radiometers, detect multiple narrow spectral 

bands facilitating fine discrimination between different targets and it is less time 

consuming than aerial photography. It offers the possibility to record cyclic vegetation 

changes in distribution since there are images available in a periodical basis. Despite of 

it, little research has been done at present to derive PFTs from imaging spectrometry 

and no satisfactory methodology exists; the difficulty lies much in the heterogeneity of 

PFTs on the land cover (Sun et al., 2006).  

There are different methods to approach classification of PFTs based on imaging 

spectroscopy techniques. Due to the high heterogeneity of the PFT classes, pixels 

covering more than one class are likely to be found. This will lead to pixels containing 

mixed spectral information of different PFTs. These mixed classes often results in poor 

classification accuracy when conventional algorithms such as the maximum likelihood 

classifier (MLC) are used (Borisova, 2005). It is possible to obtain better results if the 

mixed pixels are decomposed into different spectra. Spectral mixture analysis (SMA) is 

one of the most often used methods for handling the spectral mixture problem (Rosso et 

al., 2005; Li et al., 2005; Schmid et al., 2005; Borishova, 2005; Ustin et al., 1999). It is 

a physically based model that provides quantitative estimates of the distribution of 

materials within the image scene at a sub-pixel scale (Malenovsky et al., 2006; 

Borisova, 2005). Spectral mixture analysis (SMA) has been applied successfully before 

to derive vegetation classes (Rosso et al., 2005; Schmid et al., 2005; Li et al., 2005).  
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1.2 Objective 
The objective of this thesis is to develop an imaging spectroscopy based method, 

using spatial mixture analysis (SMA), for mapping and monitoring plant functional 

types (PFTs) in river floodplains with especial emphasis on monitoring the process of 

shrub encroachment. 

1.3 Research questions 
The following research questions are addressed in this work: 

1. How to discriminate plant functional types in a floodplain using imaging 

spectroscopy techniques? 

2. Which methodology can be developed for mapping plant functional types using 

remote sensing techniques (with especial emphasis on shrubs)? Is Spectral 

Mixture Analysis (SMA) a good method? 

3. Is it feasible to monitor shrub encroachment by comparing two images from two 

different sensors, while each of these images is analyzed by the previously 

developed methodology? 

1.4 Outline of the report 
Chapter 1 is an introduction to the study, first context, importance and problem 

definition are described and then objective and research questions are presented. 

Chapter 2 is a summary of the main contents gathered during the literature review. 

Chapter 3 consists of a description of all materials and methods used during this 

research, starting from the study area, then the data used and a detailed description of 

the methodology applied. In chapter 4 results are presented and in chapter 5, these 

results are discussed. Chapter 6 is a final conclusion of this study and chapter 7 gives 

some recommendations. Then, the list of all literature consulted for this study is shown 

in the bibliography in chapter 8. Finally, more detailed information can be found in the 

appendices in chapter 9, where tables, maps and figures are presented.    
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2 LITERATURE REVIEW 

2.1 Floodplains 

2.1.1 Floodplain characteristics 
Flood affects periodically areas known as floodplains along rivers. A floodplain is 

a flat or nearly flat land adjacent to a stream or river that experiences occasional 

flooding (Wikipedia, 2006). Flooding process can vary in time, distribution and 

strength. Floodplains can support particularly rich ecosystems, both in productivity and 

diversity. These are termed riparian zones or systems. Riparian land is usually more 

fertile than the adjoining hillslopes, having better access to water and other nutrients. As 

a result, riparian zones support a higher density and diversity of plant species that tend 

to grow larger than their terrestrial counterparts. Riparian communities are subject to 

powerful fluvial forces, principally floods and the associated geomorphological 

processes of erosion and deposition. The action of these forces (both their magnitude 

and frequency) causes spatial diversification amongst plant assemblages, and a typical 

riparian zone is composed of an unstable mosaic of patches having distinct floristic 

compositions or existing at different successional stages (Anderson 2006). The variation 

of riparian plant species and associations with distance from the main river is linked to 

floodplain inundation duration and frequency, and to height above the water table that 

depend on the variability in floodplain topography (Florsheim & Mount, 2001). This 

results in a lateral structure of vegetation that can be divided into four functional 

ensembles on the basis of mean annual flood durations (Anderson 2006). Such a 

relationship is shown conceptually in figure 1, where the flow duration curve (right 

side) divides the lateral zonation (left side) into dry, damp, marginal and aquatic zones. 

 
Figure 1: Lateral profile of a fully featured ripari an zone including a lateral zonation based on 
inundation frequency (Anderson 2006) 



 5 

2.1.2 Flooding events 
Along the Rhine river tributaries, the main embankments, so called winter dikes, 

provide protection against flooding. Flood events will occur when the ‘design 

discharge’ of the embankment is exceeded (Baptist et al., 2004). Due to climate change 

the ‘design discharge’ needed is expected to increase. This will demand additional flood 

reduction measures. In the past these problems would have been addressed by 

heightening the dikes. But nowadays new measures are introduced which should result 

in a more sustainable approach to flood protection, such as lowering floodplains, 

removing groynes, removing hydraulic obstacles, widening floodplains by dike 

replacement and excavating secondary channels (Baptist et al., 2004). These measures 

provide opportunities for ecological rehabilitation. Floodplains in the river Rhine are 

part of the National Ecological Network of the Netherlands and many efforts are made 

to rehabilitate floodplain nature (Baptist et al., 2004).  

One approach to reducing the risk of flooding is by increasing the hydrologic 

network capacity. Capacity is principally limited by the amount of resistance in the 

channels that make up the network. Resistance can be thought of the friction that slows 

down flow; greater resistance reduces the flow of water that a channel can convey 

before overflowing. High resistance is also caused by vegetation, which occupies space 

in the channel and presents obstacles that slow flow down. Plants have a pronounced 

effect on flow patterns and morphological development in rivers (van den Bosch, 2003). 

It also happens that vegetation is relatively easy to remove. Therefore, the removal of 

vegetation from the area in and near stream channels (the riparian zone) has been 

practiced as measure for flood mitigation (Anderson 2006). But a trade-off exists 

between the increase in flow depth caused by reduced channel capacity due to the 

presence of vegetation and the potential decrease in peak discharge of the flood wave 

that a densely vegetated channel network produces (Anderson 2006). However the work 

from Anderson (2006)2 proves that the impact of riparian restoration is limited to 

changes in peak depth in the order of 10-20%, while a full cover of dense vegetation 

may increase overbank duration by between 40-100%. This demonstrates that 

                                                 
2 This results were obtained from the application of the ROVER (a model to quantify vegetation 
roughness) to the upper Murrumbidgee catchment in New South Wales, Australia. This river supports 
large irrigated agricultural and irrigated pastoral developments and an increase in urban development. It is 
at an altitude above 370 m. Wetland forest as well as grassland are composed of different species with the 
ones we encounter in the Waal river in Netherlands, such as Eucalyptus sp., Acacia sp., Dichanthium sp., 
Calotis sp., etc.  



 6 

vegetation can be used as main tool for river restoration and at the same time as tool for 

flood management. 

2.1.3 Hydraulic roughness of vegetation 
Floodplain vegetation relates to the discharge capacity through its hydraulic 

resistance. This influence depends very much on the different vegetation types, because 

each of them has a distinct hydraulic roughness (van den Bosch, 2003). The hydraulic 

resistance is the magnitude of the turbulence3 resulting from water in laminar4 regime 

passing through an obstacle. Its value affects the velocity of the regime5 and depends on 

the shape and characteristics of the obstacle (Paruelo & Lauenroth, 1996; Laurent et al., 

2004). Figure 2 shows the hydraulic resistance values for different ecotopes, which are 

present in the floodplain of the river Waal. Hydraulic resistance has been defined in 

terms of the Nikuradse equivalent roughness6 (K) constant. 

 
Figure 2: Hydraulic resistance by ecotopes in the river floodplain measured in terms of Nikuradse 

equivalent roughness (m) (Geerling et al., 2005b) 

 
As can be observed, bushes have the highest hydraulic resistance of the presented 

ecotopes. This is because they have dense structure beginning at the soil level. Forested 

areas leave more freedom to the water as branching starts at a higher level. Herbaceous 

                                                 
3 Turbulence is a flow regime characterized by chaotic, stochastic property changes. 
4 Laminar flow occurs when a fluid flows in parallel layers, with no disruption between the layers.  
5 The water regime of a freshwater ecosystem is the prevailing pattern of water flow over a given time. It 
refers to the duration and timing of flooding resulting from surface water (overland flow), precipitation, 
and ground water inflow. 
6 For a given surface roughness is often described in terms of a characteristic roughness height k. This 
characteristic height may be taken as the ‘equivalent sandgrain roughness’ height ks defined by Nikuradse 
(1933) (Schockling et al., 2006). 

Ecotopes 



 7 

vegetation and grasslands are the ecotopes that are almost not obstacle for the water to 

flow (Suarez-Barranco, 2006). Although compared to agricultural use area (bare soil, 

production grasslands and multifarious grasslands), with k ranging from 0.15 to 0.40, 

herbaceous vegetation has increased resistance, 0.66 to 1.00. 

All ecotopes present hydraulic resistance, hence all of them are of interest to 

derive flood behavior using dynamic vegetation models. However, a special attention 

will be given to shrubs, since this is the ecotope that mostly affects hydrological 

roughness of floodplains.  

2.2 Plant Functional Types 

2.2.1 Dynamic Vegetation Models 
As vegetation is an important component of hydraulic roughness in river 

floodplains, dynamic modelling approaches have been developed to accurately simulate 

the influence of vegetation on flow and morphology of rivers (Baptist et al., 2005). 

Forecasting vegetation dynamics is a basic component to be considered by river 

managers when trying to predict flood risk. Predicting response of vegetation or simple 

biomass to a changing environment can be done by so called Dynamic Vegetation 

Models (DVMs). These models incorporate explicit representation of key ecological 

processes to forecast vegetation dynamics (Wamelink et al., 2003; Peng 2000).  

Traditionally, ecotopes have been used to characterize vegetation types for the 

Dutch river floodplains. But using ecotopes in dynamic modelling has some limitations 

because one ecotope contains high heterogeneity regarding vegetation structure, 

response to environment, role in the ecosystem, etc. A new concept has gained terrain in 

literature (Epstein at al., 2001; Gondard et al., 2003; Paruelo & Lauenroth, 1996; 

Laurent et al., 2004; Kleyer, 2002): Plant Functional Type (PFT) that is more adequate 

as input for DVM. This will be described in the next chapter. 

An often used DVM in the Netherlands to model vegetation at the regional to 

national scale is the model chain SMART2-SUMO2 (Wamelink et al., 2005). It is used 

to derive plant functional types’ development (Schouwenberg et al., 2000; Wamelink et 

al., 2005). The SMART2 model simulates soil processes; it describes linked biotic and 

abiotic processes in the soil solution as well as in the solid phase. SMART2 delivers the 

nitrogen availability to SUMO2 as the sum of external N input and mineralization. 

SUMO2 is a process oriented model that provides estimates for nutrient uptake and 

litterfall (including roots, branches and stem wood) and models vegetation succession 
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and biomass production for time steps of one year; the biomass production in root, shoot 

and leaf is simulated for five functional types: (1) herbs and grasses; (2) dwarf shrubs; 

(3) shrubs; (4) pioneer tree; and (5) climax tree (Kooistra et al., 2006b; Wamelink et al., 

2006; Wamelink, 2005). Results from Kooistra et al. (2006b) demonstrate that imaging 

spectrometer derived products can be used for validation and initialization of DVMs. 

PFTs mapping using remote sensing techniques can be useful when initializing or 

validating the application of this model chain. 

2.2.2 Vegetation classes 
As we have seen before, there is a need of knowing how flood risk evolves so that 

river managers can derive measures for flood control. To derive flood risk evolvement, 

river managers require monitoring the spatial distribution of vegetation and in a 

configuration which can be used by, the previously mentioned, dynamic vegetation 

models.  

Monitoring vegetation is done on a vegetation classes’ basis (Laurent et al., 2004; 

Geerling et al., 2006; Zhang et al., 1997). Vegetation may be classified using different 

criteria: plant species, plant communities, vegetation types, vegetation structures, 

ecotopes, plant functional types, etc. Plant species are the basic units of biological 

classification and they are assigned according to common ancestors (Wikipedia, 2007). 

Plant community is the vegetated portion of all the interacting organisms living together 

in a specific habitat (Wikipedia, 2007). 

In current literature many authors use the term vegetation type (Lindstro & 

Jaenson, 2003; Nangendo et al., 2005; Song et al., 2005) but most of them do not 

outline its definition. Vegetation type responds to a classification, but this classification 

can be done according to different criteria. The criteria might be one or the combination 

of some of the next: climate pattern, plant habitat, phenology, growth form and/or 

dominant species. In North America, for instance, vegetation types are based on a 

combination of the criteria, while in Europe classification often relies much more 

heavily on floristic (species) composition alone. (Wikipedia, 2006)  

 Vegetation structure, however, refers to one specific trait of vegetation. It is 

characterized primarily by the horizontal and vertical distribution of plant biomass, 

particularly foliage biomass. And it is determined by an interacting combination of 

environmental, historical factors and species composition (Wikipedia, 2006). 
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According to AEM (Antropogenic Ecotope Mapping & classification system), 

ecotopes are the smallest ecologically-distinct landscape features in a landscape 

mapping and classification system (The Ecotope Mapping Working Group, 2005). As 

such, they represent relatively homogeneous, spatially-explicit landscape units that are 

useful for stratifying landscapes into ecologically distinct features for the measurement 

and mapping of landscape structure, function and change (e.g. softwood forest). They 

are identified using flexible criteria that depend on the specific application involved.  

These are criteria defined within a specific ecological mapping and classification system 

and are defined by the interaction of biotic and abiotic components, including 

vegetation, soils, hydrology, and other factors (The Ecotope Mapping Working Group, 

2005). According to Geerling et al. (2005) an ecotope is a spatial unit of a certain 

extension (usually 0.25–1.5 ha), which is homogenous as to vegetation structure and the 

main abiotic factors on site. Geerling et al. (2005) define the following ecotopes in 

floodplains: Forest cultivated, Agriculture, Water (main channel), Bare soil, Pioneer 

vegetation, Grassland vegetation, Herbaceous vegetation, Bush (shrubs and trees <5 m): 

Open canopy (20–60% coverage) or Closed canopy (>60% coverage), Forest (>5 m): 

Open canopy (20–60% coverage) or Closed canopy (>60% coverage) and water (side 

channel). 

2.2.3 Plant Functional Types 
Classification of vegetation can also be done by so called Plant Functional Types 

(PFTs). The definition of PFT is currently receiving a lot of attention in ecology 

(Epstein at al., 2001; Gondard et al., 2003; Paruelo & Lauenroth, 1996; Laurent et al., 

2004; Kleyer, 2002). Some methods have been developed for objective groupings of 

species into functional types (Chapin et al. 1996, Hodgson et al. 1999) but functional 

classification is context dependent and we should not expect to find a useful, universal 

classification into functional groups (Noble & Gitay, 1996). The purpose of developing 

a functional classification is to find some generally applicable simplification of the 

diversity of life while retaining information about the most important processes and 

interactions for the purpose in hand (Noble & Gitay, 1996). Therefore defining 

functional types is an operational procedure, often related to a specific scale.   

Paruelo & Lauenroth (1996) define it as a group of species that share traits 

(morphological and physiological attributes) and play a similar role in an ecosystem. 

They use five PFT for grassland and shrubland in central North America; shrubs, C3 
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grasses, C4 grasses, succulents and forbs (nongraminoid herbs). Plant Functional types 

(PFT) provide a logical link between physiological and life history7 strategies at the 

plant level and processes at the ecosystem level (Chapin 1993). Laurent et al. (2004) 

describe it as a group of plants defined by their height, leaf form, phenology and 

climatic requirements. They describe eleven PFTs at global scale: tropical broad-leaved 

evergreen, rain-green trees, temperate needle-leaved evergreen and summergreen trees, 

temperate broad-leaved evergreen and summer-green trees, boreal needle-leaved 

summer-green and evergreen trees, boreal broadleaved summer-green trees, C3 grasses 

and C4 grasses. Kleyer (2002) establishes that plant functional types (PFTs) are groups 

of plant species with similar plant traits and similar realized niches8 with respect to 

multiple environmental factors. Traits such as plant architecture and height, seed bank 

longevity, attributes of the dispersal or seed weight and number are fundamental to 

relevant aspects of plant life history, e.g. storage effects, competitive ability or 

colonization (Kleyer, 2002). Niche patterns should result from syndromes, i.e. suites of 

attributes of traits or trait states, which represent functional adaptations of plants to the 

environment. When comparing syndromes along environmental gradients, general 

principles about functional plant-environment relations may be identified (Kleyer, 

2002). Kleyer (2002) distinguishes PTFs according to attributes for dispersal, seed 

production, seed persistence, sapling, resource supply and disturbance intensity. Epstein 

at al. (2001) and Gondard et al. (2003) define functional types as a classification based 

on species responses to environmental factors.  And Peng (2000) define PFT as a set of 

plant species (e.g. tropical evergreen broad-leaf rainforest trees) characterized by their 

physiognomic and morphological traits and response to climate. 

Reading these previous definitions two basic patterns can be observed. On the one 

hand there is a difference in the term PFT depending on the scale. On a global or 

national scale (Laurent et al., 2004; Paruelo & Lauenroth, 1996) PFTs are defined by 

morphological and physiological attributes (plant height, leaf form, phenology, etc.) and 

climatic requirements. While in a local scale more specific traits are used to characterize 

PFTs, such as attributes for dispersal, seed production, seed persistence, sapling, 

                                                 
7 Plant life-history traits are seed size, seed weight, plant height, leaf weight, leaf area, SLA (mean leaf 
area/dry weight) and number of seeds per plant (Austrheim & Eriksson, 2003). 
8 A niche is a term describing the relational position of a species or population in an ecosystem. It 
includes how a population responds to the abundance of its resources and enemies and how it affects 
those same factors. The abiotic or physical environment is also part of the niche. It may include 
descriptions of the organism's life history, habitat, and place in the food chain. 
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resource supply and disturbance intensity (Kleyer, 2002). However, for both scales, 

PFTs are considered to play a similar role in the ecosystem. 

On the other hand definitions are markedly different if they come from the field of 

plant physiology (Paruelo & Lauenroth, 1996; Laurent et al., 2004; Kleyer, 2002) or the 

field of modelling (Epstein at al., 2001; Gondard et al., 2003).  In modelling, definitions 

of PFTs are focused on their response to environmental factors and not so much on 

plant morphological or physiological traits. 

PFTs are relevant to help understand and predict species distribution in present 

and future environments with changing disturbance regimes including climate (Gondard 

et al., 2003). Hence, many dynamic vegetation models use plant functional types (PFTs) 

as classification unit (Adams et al., 2004; Peng, 2000; Bonan et al., 2003; Epstein et al., 

2001; Pausas, 2003; Jauffret, 2003; Pan, 2002). The advantages that PFTs have, when 

used to represent vegetation patches, compared to other biome-based classification 

systems, are three. First, PFTs are linked to leaf-level physiology measurements, more 

adequate for setting parameters in land models; since these models are expanding 

beyond their traditional biogeophysical roots to include biogeochemistry 

(photosynthesis and carbon cycle), they require specification of leaf-level and whole-

plant physiological parameters. Second, PFTs allow modellers to represent land surface 

more accurately, since composition and structure of PFTs can be separately specified in 

a grid cell. And third, representing vegetation in terms of PFTs allows land models to 

better interface with ecosystem dynamic models, because the latter typically simulate 

vegetation change in terms of the abundance of PFTs (Sun et al., 2006). But multiple 

pathways or trajectories are possible in these models as a result of varying inputs or 

processes (Gondard et al., 2003) and a concerted effort to refine and standardize the 

concept of PFTs should be made (Adams et al., 2004). 

In contrast to ecotopes, traditionally used as classification units in river 

floodplains (Hartmann and Knotters, 2006), PFTs present all these characteristics that 

make them more adequate to be used by river managers nowadays. Ecotopes are 

complex units which consist of vegetation with a varying structure and functional types. 

These complex units are simplified in such a way that apparently they represent spatial 

units of certain extension, homogenous as to vegetation structure and the main abiotic 

factors (e.g. shrubs, grassland, hardwood, etc.). PFTs are more realistic; they do not 

form such compact units, but instead they appear in a tangle disposition throughout the 

whole area and same PFTs are likely present in different ecotopes. Land cover in terms 
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of PFTs is characterized by a great heterogeneity. Figure 3 shows an example of 

ecotopes and PFTs in a landscape. 

 

 
Figure 3: Example of relationship between ecotopes and plant functional types (PFT) 
 

2.3 Spectral Mixture Analysis 

2.3.1 Applicability 
Evolvement of plant functional types in space is a relatively fast process which 

must be monitored regularly. Performing field work yearly would be too expensive and 

would take large amounts of time, therefore is not feasible. Currently, mainly aerial 

photograph has been used to discriminate vegetation types or ecotopes within the Dutch 

river floodplains. Time is required for each of the several steps of processing negatives 

and prints and interpretation of photos. In addition successful interpretation depends 

upon the skill and experiences of the individual interpreter, for instance the boundaries 

between different classes are settled manually which implies subjectivity. It works with 

either black-and-white, true color or color infrared -depending on the source-, which 

limits the spectral possibilities. Hence this is a time consuming method that moreover 

does not allow to document within-class variation of vegetation roughness (Straatsma, 

2006). 

However, new digital remote sensing techniques, such as advanced multispectral 

or hyperspectral radiometers, detect multiple narrow spectral bands facilitating fine 
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discrimination between different targets. This sensor's very high-spectral resolution 

facilitates fine discrimination between different targets based on their spectral response 

in each of the narrow bands. The advantage of space platform remote sensing is the 

broad scale, practical, repeatable collection of data which makes it applicable to real 

world problems (Pengra et al., 2006). Previous experiences have been successfully 

developed to monitor vegetation dynamics by remote sensing (Zhang et al., 1997; Rosso 

et al., 2005; Schmid et al., 2005; Geerling et al., 2006).  Mapping marshland vegetation 

in California (Rosso et al., 2005) was carried out in 2005. Marshes were mapped using 

Spectral Mixture Analysis (SMA) and multiple endmember spectral mixture analysis 

(MESMA). These two methods were compared to investigate their appropriateness to 

characterize marshes species. They suggest that MESMA could be more successful if 

(a) four or five endmember models are tested and (b) more than one endmember per 

plant species or class is included, to accommodate for variations in spectral 

characteristics of each component across the scene. A multisensor approach was 

investigated by Schmid et al. (2005) to determine changes over time of wetland 

characteristics in semiarid environments in Spain. Linear spectral unmixing was carried 

out successfully in a highly dynamic and anthropogenic-affected wetland area.  

Floodplain vegetation has been classified using remote sensing techniques. 

Geerling et al. (2006) proved that using data fusion of spectral (CASI) and LIDAR data 

gave better results than results from separate data, specially for those vegetation classes 

which are important to predict hydraulic roughness, i.e. bush and forest (Geerling et al., 

2006). Their study, in the Waal River, consisted of a five-class set of vegetation types, 

which was considered to be the minimum set to estimate hydraulic resistance for river 

management purposes. The paper from Straatsma (2006) described a new method to 

derive hydrodynamic roughness of floodplain surface. He used a combination of 

multispectral data (CASI), and airborne laser scanning data (ALS). Roughness in 

vegetated areas was assumed to be a function of vegetation height and density. The 

result was three vegetation maps with distribution of herbaceous height, herbaceous 

density and forest density. 

To date research on how to utilize satellite observations to map PFTs remains 

limited. It appears that at present no satisfactory methodology exists for the extraction 

of PFTs from satellite observations (Sun et al., 2006). The difficulty lies much in the 

heterogeneity of PFTs on the land cover. The Moderate Resolution Imaging 

Spectroradiometer (MODIS) Land Team is producing a global PFT map for use in the 
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Community Land Model (CLM). This MODIS PFT is the only global PFT data set 

available now, but errors and uncertainties of this data set are noticeable enough to 

compromise credibility of global change research (Sun et al., 2006).  

There are different methods to approach classification of PFTs based on 

spectroscopic techniques. Due to the high heterogeneity of the PFT classes, pixels 

covering more than one class are likely to be found. This will lead to pixels containing 

mixed spectral information of different PFTs. These mixed classes often results in poor 

classification accuracy when conventional algorithms such as the maximum likelihood 

classifier (MLC) are used (Borisova, 2005). Traditional classification approaches assign 

only one possible value or category per pixel, in most cases, misrepresenting some 

components or oversimplifying mixtures of components (Rosso et al., 2005). It is 

possible to obtain better results if the mixed pixels are decomposed into different 

spectra. In order to solve the mixed pixel problem, scientists have developed different 

models to unmix the pixels into different proportions of the endmembers (Mishev, 

1991; Ishoku, 1996). Spectral mixture analysis (SMA) is one of the most often used 

methods for handling the spectral mixture problem (Rosso et al., 2005; Li et al., 2005; 

Schmid et al., 2005; Borishova, 2005; Ustin et al., 1999).  

The fact that classes can be mapped and quantitatively represented as a separate 

entity in an area that otherwise is classified as one class by traditional mapping 

approaches, underlines the potential of SMA to follow changes in vegetation cover. 

Because the same endmembers can be used to analyze a time sequence, SMA has the 

capability to estimate changes in abundance. The potential to estimate the spatial 

distribution and abundance of a species, rather than thematic classes, has great value in 

monitoring a biological invasion, because changes can be detected and quantified 

(Rosso et al., 2005). 

Monitoring vegetation with remote sensing techniques is more complex than only 

mapping. Monitoring implies to keep track of vegetation changes in a spatial and 

temporal scale. Commonly different sensors will be used for it. Therefore, a 

methodology to monitor vegetation has to be adapted to different sensors while dealing 

with different spatial resolution, spectral bands, image extension, geo-reference, 

radiometric and geometric calibrations, etc. Schmid et al. (2005) demonstrated the 

complementary use of remotely sensed data together with the SMA technique to 

incorporate results derived from hyperspectral data into a temporal series of 

multispectral data. They proved the capacity to use endmembers derived from 
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hyperspectral information in the analysis of existing multispectral data from different 

sensor. 

2.3.2 Description 
SMA is a physically based model that provides quantitative estimates of the 

distribution of materials within the image scene (Malenovsky et al., 2006). It assumes 

that the spectrum measured by a sensor is a linear combination of the spectra of all 

components within the pixel (Borisova, 2005; Rosso et al., 2005). In the process of 

‘unmixing’, SMA estimates the fit of selected endmembers to the observed value of a 

pixel in order to estimate its composition. As a result, each pixel carries information 

about the predicted abundance of each of the endmembers (Rosso et al., 2005).  

The mathematical notation of the linear spectral unmixing procedure is: 

iij

mj

j
iji efRR += ∑

=

=1

            ni ...1=      mj ...1=  

Where Ri is the reflectance value of the pixel in band i, Rji is the reflectance value 

of endmember j in band i, fji is the fraction of endmember j in band i, ei is the residual 

error per band i, n is the number of bands and m is the number of endmembers. 

In order to guarantee a physical interpretation of the results, two constraints are 

usually added to the unmixing problem. The first one makes sure that the fractions will 

be positive and below 1 while the second constraint ensures that the sum of all the 
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When these two constraints are not taken into account, the process is denominated 

unconstrained linear unmixing. When only the first constraint is considered it is a semi-

constrained linear unmixing. This constraint may be given more or less weight by 

adding this equation to the whole set of function as many times as required. And finally 

when both constraints are added to the calculation, the method is called fully 

constrained linear unmixing. 

The root mean square error (RMSE) is the parameter used to know the fit of the 

model and it is defined as: 
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The higher the maximum RMSE value, the worse the model fit in terms of 

determining the distribution of the abundance values (Schmid et al., 2005). The RMS 

image is an important indicator of surface features that were not included in the linear 

spectral unmixing (Schmid et al., 2005). 

2.3.3 Endmember selection 
The selection of endmembers can be performed in two ways (Plaza et al., 2004): 

1) by deriving them directly from the image (image endmembers); or 2) from field or 

laboratory spectra of known target materials (library endmembers). These two methods 

are discussed below. 

1) Deriving endmembers directly from the image (image endmembers)  

The advantage of this method is that selected endmembers are under similar 

atmospheric conditions and spectral/radiometric biases with respect to the image 

(Malenovsky et al., 2006). In the case of a temporal analysis it is still an advantage 

provided that the endmembers are selected from the same image where the SMA is 

going to be performed. In case the endmembers come from a different image, 

inaccuracies originated from those biases must be considered. 

The endmembers can be derived in two different ways:  

• Directly from the purest pixels in the image. Pure pixels are areas in the image in 

which unique endmembers are represented. This technique requires reliable field 

information in order to locate precisely the pure pixels. The area selected can be 

a single pixel or the average of several pixels in a homogeneous area. But for 

low spatial resolution this can be difficult to achieve since vegetation 

distribution can be heterogeneous at the pixel scale, thus leading to highly-

mixed pixels (Wang et al., 2006).  

• With automated procedures. The endmembers are found with automatic 

methods such as PPI (pixel purity index), N-FINDR or Convex Cone Analysis 

(CCA) (Plaza et al., 2004). These classic approaches select endmembers based 

on the search for spectral convexities in the N-D9 space. They can be partial or 

fully automated. Another method, IEA, is based on an iterative process in which 

those pixels that reduce the error obtained in constrained spectral unmixing 

operations are used as endmembers.  

                                                 
9 Multidimensional. 



 17 

2) Deriving endmembers from field or laboratory spectra of known target 

materials (library endmembers)  

Spectral libraries are collections of laboratory spectra or spectra measured in the 

field (Malenovsky et al., 2006; Kooistra et al., 2005). They can be collected for different 

purposes and are measured using various types of instruments (portable non-imaging 

spectrometers) of often unknown quality or precision (Malenovsky et al., 2006). Library 

endmembers are not recommendable because of possible wavelength shifts, unreliable 

instrument calibration or significant degrees of noise, which are not uncommon to these 

data (Malenovsky et al., 2006). Besides field spectra are not easy to scale up to match 

spectra measured by the sensor because it cannot adequately capture the multiple-

scattering environment of a canopy (Powell et al., 2006). 

Another consideration is the number of endmembers, which is limited by the 

dimensionality of the data. The maximum amount of endmembers cannot be more than 

the number of bands minus the number of constraints. The constraint is one 

(Malenovsky et al., 2006) in the case of semi-constrained unmixing and three (second 

constraint accounts for two) in the case of fully-constrained unmixing.   

2.3.4 MNF transformation 
While hyperspectral imagery are capable of providing a continuous spectrum 

ranging from 0.44 to 2.48 microns (in the case of HyMap) for a given pixel, it also 

generates a vast amount of data required for processing and analysis. Due to the nature 

of hyperspectral imagery (i.e. narrow wavebands), much of the data is redundant (Green 

et al., 1988). A minimum noise fraction (MNF) transformation is used to reduce the 

dimensionality of the hyperspectral data by segregating the noise in the data (Green et 

al., 1988). The MNF transform is a linear transformation which is essentially two 

cascaded Principal Components Analysis (PCA) transformations. The first 

transformation decorrelates and rescales the noise in the data. This results in 

transformed data in which the noise has unit variance and no band to band correlations. 

The second transformation is a standard PCA of the noise-whitened data (Green et al., 

1988). 

Before applying spectral unmixing to the image, it is recommended to compress 

data with MNF transformation in order to improve the subsequent spectral processing 

results. It reduces redundancy, minimizes the influence of systematic sensor noise 
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during image analysis and helps the endmembers to be orthogonal and uncorrelated. 

(Pengra et al., 2006) 

2.3.5 Validation 
Validation of results may be done using three different approaches (Kooistra et al., 

2007). First an analysis of the spatial continuous map for the RMSE is used as indicator 

of surface features that are not included as endmembers in the linear spectral unmixing 

classification. Secondly the validation focuses on the comparison between modeled and 

observed coverage. This comparison is done by the representation of modeled vs. 

observed by means of scatter plots. This gives a general trend of the model accuracy. In 

addition, it is done by overlaying field data with the abundance maps and easing the 

visualization of trends. The third method, only applicable to fully constrained linear 

unmixing, is a sub-pixel accuracy assessment called OSA (overall sub-pixel accuracy), 

which gives an estimation of classification accuracy by adding the values of the 

diagonal from the confusion matrix10 per pixel. Assuming that the estimated fractions 

are correctly positioned within the pixel, the OSA is computed as follows (Zurita-Milla 

at al., 2005): 
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In this equation f represent fraction, p is the predicted and o the observed, while j 

are the different endmembers. In this expression the OSA is calculated per pixel. The 

minimum fractions of the observed vs. predicted per pixel are added for all classes and 

weighted to the total predicted fraction, which is 1 as consequence of the first constraint.  

                                                 
10 A confusion matrix is a plot used to evaluate the performance of a classifier during supervised learning. 
Each column of the matrix represents the instances in a predicted class, while each row represents the 
instances in an actual class. Values in the diagonal of the matrix count the correct predictions. 
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3 MATERIALS AND METHODS 

3.1 Study area 
This thesis work will focus on the study area Millingerwaard. The Millingerwaard 

is a floodplain that is located along the Waal, the main branch of the river Rhine in the 

Netherlands. It covers around 700 ha and it is part of the Gelderse Poort, a nature 

reserve with a surface of 6700 ha located in between the cities Arnhem, Nijmegen and 

Emmerich, near the Dutch-German border. Before 1990 the main function of the 

floodplain was agricultural production but in the period of 1990-1993 it was gradually 

changed into nature. The floodplain was allowed to undergo natural succession and a 

regime of natural grazing by cattle and horses in low densities was introduced (Kooistra 

et al., 2006b).  

The current vegetation of the floodplain consists of mixed patches and ecotones, 

i.e., transitions between communities with a dominance of grass, herbaceous vegetation, 

shrub, and a large softwood forest (Kooistra et al., 2006b). Softwood forest in the 

Millingerwaard is dominated by willow trees (Salix fragilis and Salix alba). The forest 

canopy has an open structure with dense undergrowth (Urtica dioica, Arctium lappa, 

Galium aparine). Some open water bodies exist as well as high ground water levels due 

to the low elevation. The non-forest vegetation is characterized by a heterogeneous 

patchy structure of different vegetation succession stages. Dominant species are Urtica 

dioica, Calamagrostis epigejos, and Rubus caesius (Kooistra et al., 2006).  During high 

floods, the whole floodplain except for the higher parts of the river dunes is flooded.  

 
Figure 4: Study area 

The Millingerwaard 

The Gelderse Poort The Netherlands 
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3.2 Data 
Several fieldwork campaigns have been carried out in the Millingerwaard that 

resulted in a wide range of data sets available for the development of this work. In 

September 2001 a hyperspectral image was acquired by the Compact Airborne 

Spectrographic Imager (CASI) operated by NERC (UK) and financed by the Ministry 

of Traffic and Public Water. In summer 2002 fieldwork was performed by students of 

prof. Karle Sykora (Plant Ecology, Wageningen University) to gather vegetation data. 

The Geo-Information Centre of Wageningen University (CGI) developed an airborne 

imaging spectroscopy campaign in the Millingerwaard in 2004 (HyEco’04 campaign) 

where field data was gathered and hyperspectral images were acquired using the HyMap 

sensor. Another campaign was held by the CGI in 2005 (HyEco’05 campaign) where 

field data was also gathered. During the years 2005-2006, the Ark Association 

(www.arknature.nl) made also an inventory of woody species in the floodplain. 

3.2.1 Image data 
The images that were used in this research are HyMap image (2004) and CASI 

image (2001). HyMap image was acquired on July 28th 2004 by the HyMap sensor. This 

sensor uses 126 spectral bands (30 VIR, 32 NIR, 32 SWIR1 and 32 SWIR2) ranging 

from 400 to 2500 nm (bandwidth 15 - 20 nm) and a spatial resolution of 5m (Kooistra et 

al., 2005). CASI image was acquired on August 15th 2001 using the Compact Airborne 

Spectrographic Imager (CASI) sensor. Spectral information is measured in 10 bands (1 

blue, 1green, 4 red and 4 NIR) (Verrelst 2004).  

In Table 1 a summary of the characteristics of both images is presented. A more 

detailed table can be found in Appendix 1. 

Table 1: Image data characteristics 
Image Year Number of bands Projection 

System 
Data type Sampling unit 

HyMap 2004 126 bands UTM ENVI standard Cells of 5 x 5m 
CASI 2001 16 bands RD Dutch 

coordinate 
system 

ERDAS 
IMAGINE 

Cells of 2 x 2m 

3.2.2 Field data 
Four different sources of field data were used in this study: Sykora group, the two 

HyEco campaigns from the CGI and Ark Association. The available field data and its 

characteristics are summarized in Table 2. 
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Table 2: Field data characteristics 
Source Year Field information Vegetation 

type 
Projection 
system 

Data 
format 

Sampling 
unit 

Sykora 
group 

2002 316 releveés: location, 
community name & height 
range. 88 releveés: location 
& height range   

All VTs RD Dutch 
coordinate 
system 

Shapefile 
(points) 

Area of 2 x 
2 m 

HyEco'04 
campaign 

2004 21 releveés: location, plant 
community & sps 
abundance per community 

Herbaceous RD and 
UTM 

Shapefile 
(points) 

Area of 2 x 
2 m 

HyEco'05 
campaign 

2005 18 releveés: location, height 
per VT, plant community & 
genus abundance per 
community 

All VTs RD and 
UTM 

Shapefile 
(points) 

Area of 5 x 
5 m 

Ark 
Association 

2005-
2006 

3896 individual plants: 
location, date, elevation, sp 
name, height, volume, stem 
thickness, appearance, full 
grown, damage, eaten by 
cow, couple, dear, beaver, 
rabbit, mouse, litter, dead or 
alive 

Shrubs and 
trees 

RD Dutch 
coordinate 
system 

Shapefile 
(points) 

Individual 
plants 

 
 

3.3 Methodology 

3.3.1 Overview of methodology 
The methodology was developed using exclusively HyMap (2004) as base image. 

At the end, a temporal analysis was performed (Section 3.3.5) where both images 

(HyMap (2004) and CASI (2001)) were classified. The aim of this section was to 

compare the PFTs distribution of both images to derive information about vegetation 

dynamics in a time step of three years. The methodological approach developed for 

HyMap was used to classify both images. But such methodology was subject to some 

modifications: PFT classes, number of endmembers and images extension. On the one 

hand, the characteristics of CASI added new conditions and limitations to previous 

defined steps, such as number of endmembers and extension of the area. These new 

limitations had to be taken into account into a second HyMap classification, so that 

results could be comparable. On the other hand some lessons learned from preceding 

results were considered in this second approach in order to apply for improvements. 

The methodology consisted first of a conceptual model definition of PFTs 

(Section 3.3.2). Second, images and field data were object of a series of preprocessing 

steps (Section 3.3.3). HyMap image was masked and resized. CASI image was subject 

to a projection transformation, an atmospheric correction, masking and resizing. Field 

data was adapted to the PFTs model and to the HyMap image characteristics. This 
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implied a classification into PFTs, a format conversion in some cases, a transformation 

of the projection system and the adaptation of the sampling units. Third, spectral 

mixture analysis was applied to the image HyMap (Section 3.3.4) by a selection of 

endmembers, a MNF transformation, a linear spectral analysis and a validation process. 

And finally the temporal analysis was performed (Section 3.3.5).  

3.3.2 Conceptual model of PFTs classification 

3.3.2.1 Conceptual model 

As was mentioned in section 2.2, PFTs are defined in literature in a wide variety 

of terms. In this work, more in accordance with ecological modeling at local scale, PFTs 

were defined as: 

 “Vegetation clusters that have a similar response to water flow impact”  

This response, that originates a great proportion of hydraulic roughness in 

floodplains, is measured by the hydraulic resistance. Hydraulic resistance can be 

characterized by the evaluation of specific plant traits under the assumption that similar 

response to water flow is induced by similar plant traits. Therefore by measuring 

specific plant traits, classification of vegetation into PFTs can be carried out (Figure 5).  

 
 
Figure 5: Conceptual model of PFTs. Relationship between PFTs, hydraulic resistance and plant 
traits 

 

Vegetation clusters with similar response to 
water flow impact 

Useful to describe 
PFTs 

Defined as 

Hydraulic 
resistance 

Measured by 

Characterized by 

Similar plant traits Assumption 
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The selection of plant traits to establish this classification was done considering 

mainly, relevance to hydraulic resistance, but existence of field data was also taken into 

account as well as the separability of spectral signatures: 

• Relevance to hydraulic resistance. Traits that have an effect on hydraulic 

resistance are density of foliage, branch structure, vertical extent, stem diameter 

and rigidity (Anderson et al., 2006; Naden et al., 2006). 

• Existence of field data for training and validation. The existing data varies 

depending on the different datasets. From Ark data -which consist of woody 

vegetation- the information that we can derive is species, height, stem diameter 

and crown projection per individual plant. The Sykora dataset -which consists 

mainly of herbaceous vegetation-, has information on a plot basis of 2x2 m and 

it consists of existing species and Braun Blanquet11 index per species. Field 

information from the HyEco campaign consists of the number of individuals per 

existing specie in plots of 2x2 m for 2004 and plots of 5x5 m for 2005. 

• Difference between and within spectral signatures. The chosen traits must have 

spectral significance so that it is possible to classify the PFTs using spectral 

unmixing techniques. This aspect was initially taken into account only for 

herbaceous PFT classes, for woody vegetation it was evaluated in a different 

section (3.3.4.1). In this section a final definition of the endmembers is 

proposed. 

According to relevance of hydraulic resistance and data availability, the selected 

traits were:  

• Height. This trait refers to the height (h) of the plant. This height refers to actual 

height of the plant measured in field but, when this information is not available, 

the potential height of the plant derived from literature is acceptable. 

• Density. This trait refers to the density of the branch-leaf complex per individual 

plant. Thicker foliages cause an increase in Manning’s coefficient12 along 

floodplains (Anderson, 2006) and therefore an increase in hydraulic resistance. 

Due to limited field information, horizontal density was not possible to derive, 

                                                 
11 Species abundance index. 
12 Manning's roughness coefficient (n) values are used in the Manning's formula for flow calculation in 
open flow channels. It represents the resistance to flood flows in channels and floodplains. Higher values 
indicate higher hydraulic resistance. 
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therefore only vertical density was considered. This trait is measured in two 

different ways: one for woody13 vegetation and another one for herbaceous14.  

a) For woody vegetation it is measured by the vertical distribution of branching in 

the stem. Two basic structures can be found: shrubs (S), with branches growing 

from the bottom part of the stem, so a higher density is assumed, and trees (T), 

with branching starting at a certain distance from the bottom, in this case density 

is assumed to be lower than for shrubs. 

b) For herbaceous vegetation this parameter was measured by the leaf type. Two 

general leaf types are considered which belong to two different herbaceous 

groups: graminoids and forbs. Graminoids15 are grass or grass-like plants in 

which the length dimension of leaves is predominant with respect to the width 

dimension (Figure 6.a). Forbs are non-graminoids herbs in which the opposite 

occurs; the width dimension is predominant (Figure 6.b). Due to this, the leaf 

type for graminoids was termed long (L) and the leaf type from forbs was 

termed broad (B). Results from Liras-Laitas (2005) show that 

monocotyledonous16 species (Calamagrostis epigejos, Agrostis stolonifera) have 

different spectral properties than dicotyledonous17 species (Cirsium arvense, 

Rubus caesius, Urtica dioica) in the Millingerwaard. Assuming that species with 

broad leaf type have thicker foliage than species with long leaf type, we 

conclude that L type vegetation present less hydraulic resistance than B type 

vegetation. 

 
Figure 6: Herbaceous leaf types 

 

                                                 
13 A woody plant is a plant having hard lignified tissues or woody parts especially stems. Woody 
vegetation, as considered in this research, includes subshrubs, shrubs and trees.  
14 Vascular plants without significant woody tissue above or at the ground 
15 Includes grasses (Poaceae), sedges (Cyperaceae), rushes (Juncaceae), arrow-grasses (Juncaginaceae), 
and quillworts (Isoetes) 
16 Include graminoid families Poaceae, Cyperaceae, Juncaceae and Juncaginaceae 
17 Include most abundant forbs.  

b) Broad leaf type a) Long leaf type 
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• Flexibility . This trait is described as the ease to bend with water impact. It is 

measured also in different ways depending on the woodiness.  

a) For all woody vegetation it is measured by the stem diameter (d). 

b) For herbaceous vegetation stem diameter (d) is not a relevant parameter since it 

does not experience big changes compared to the ones in the woody case. So it 

is assumed that stem thickness is always under 1cm for herbaceous vegetation 

and hence only one high flexibility type is applied for all.  

3.3.2.2 PFTs classification 

Subject to the PFTs conceptual model defined in section 3.3.2.1, the PFT classes 

were established. Two different approaches were followed, one for woody vegetation 

and one for herbaceous, which are described after Table 3. The final classification of 

PFT according to this conceptual model is shown in Table 3. 

Table 3: PFTs classes defined according to conceptual model 

PFTs Resistance Clusters 
Height(Height 

(m)) 
Flexibility(Stem 
thickness (cm)) 

Density(Tree, 
Shrub) 

Herbaceous 

SNL 1 H1D2F1 ≤ 0.5 <1 L 

SNB 2 H1D1F1 ≤ 0.5 <1 B 

RNL 3 H2D2F1 > 0.5 <1 L 

RNB 4 H2D1F1 > 0.5 <1 B 

Shrubs 

H1D2F1 0-0.5 0-5 
SWS 2 

H2D2F1 0.5-4 0-5 
S 

H1D2F2 0-0.5 5-15.0 
H1D2F3 0-0.5 15-130 
H2D2F2 0.5-4 5-15.0 
H3D2F1 0-5 

MWS 4 

H3D2F2 
4-35.0 

5-15.0 

S 

H2D2F3 0.5-4 15-130 
RWS 6 

H3D2F3 4-35.0 15-130 
S 

Trees 

H1D1F1 0-0.5 0-5 
H1D1F2 0-0.5 5-15.0 
H1D1F3 0-0.5 15-130 

SWT 1 

H2D1F1 0.5-4 0-5 

T 

H2D1F2 0.5-4 5-15.0 
H3D1F1 4-35.0 0-5 MWT 3 
H3D1F2 4-35.0 5-15.0 

T 

H2D1F3 0.5-4 15-130 
RWT 5 

H3D1F3 4-35.0 15-130 
T 
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a) Woody vegetation 

Woody vegetation classification into PFTs was done by two subsequent 

aggregations. The first led to eighteen clusters based on plant traits measurements, the 

second and final one, led to six classes of hydraulic resistance. By these two subsequent 

aggregations a PFTs classification was obtained that associates hydraulic resistance 

with plant traits.  

For the creation of the first clustering, the first step was to define groups within 

each plant trait. Three groups were created for height (H), two groups for flexibility (F) 

and another three for density (D): 

• 3 groups of height: H1 (0<h≤0.5 m), H2 (0.5<h≤4 m] and H3 (4<h≤35 m]. 

• 2 groups of density: D1 (Trees) and D2 (Shrubs).   

• 3 groups of flexibility: F1 (1<d≤5 cm], F2 (5<d≤15 cm] and F3 (15<d≤130 cm].  

All possible combinations of these groups were carried out so that eighteen 

clusters were derived (Figure 7). These eighteen clusters, which are based on specific 

plant trait combinations, were regrouped according to six PFTs woody classes (SWT, 

MWT, etc.) associated to six levels of vegetation hydraulic resistance, ranging from 

lowest (Resistance 1) to highest resistance (Resistance 6) (Figure 7): 

• Resistance 1: SWT (Soft Woody vegetation with Tree structure) 

• Resistance 2: SWS (Soft Woody vegetation with Shrub structure) 

• Resistance 3: MWT (Medium Woody vegetation with Tree structure)  

• Resistance 4: MWS (Medium Woody vegetation with Shrub structure) 

• Resistance 5: RWT (Robust Woody vegetation with Tree structure) 

• Resistance 6: RWS (Robust Woody vegetation with Shrub structure) 
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Figure 7: Classification of woody vegetation into PFTs 
 

b) Herbaceous vegetation 

Herbaceous vegetation classification into PFTs was done by only one aggregation. 

As for woody vegetation, the first step was to create groups within each plant trait. Two 

groups were created for height (H), one group for flexibility (F) and another two for 

density (D).  

• 2 groups of height: H1 (h≤0.5 m) and H2 (h>0.5 m). 

• 2 groups of density: D1 (Long leave) and D2 (Broad leave).   
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• 1 group of flexibility: F1 (d<1 cm). 

All possible combinations of these groups were carried out so that four clusters 

were derived (Figure 8). They were named according to four PFT herbaceous classes 

ranging from lowest (1) to highest (4) hydraulic resistance (Figure 8): 

• Resistance 1: SNL (Soft Non-woody vegetation with Long leave) 

• Resistance 2: SNB (Soft Non-woody vegetation with Broad leave) 

• Resistance 3: RNL (Robust Non-woody vegetation with Long leave) 

• Resistance 4: RNB (Robust Non-woody vegetation with Broad leave) 

 
Figure 8: Classification of herbaceous vegetation into PFTs 
 

3.3.3 Preprocessing 

3.3.3.1 Image Data 

Various aspects have to be taken into account before processing a hyperspectral 

image. These are internal calibration -correction from sensor noise-, external calibration 

-atmospheric and irradiation correction-, geo-referencing, masking of water and clouds 

if necessary and resizing to reduce computational time.  

a) HyMap image 

HyMap image had been radiometrically, atmospherically and geometrically 

corrected before (Kooistra et al., 2005; Kooistra et al., 2007). Since this image, in UTM 

coordinates, was the base map and all data was transformed to UTM, no projection 

transformation was required. The existence of water bodies, such as the river Waal and 

small lakes, and also the existing of built o agricultural areas could lead to confusion as 

these land cover types are not object of the unmixing classification. Therefore areas 

with these land cover types were masked out of the area of study. 

Two masks were successively applied. First a mask was applied to exclude water 

bodies from the image. This was done by calculating the Normalized Difference 
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Vegetation Index or NDVI for the whole image. Vegetation NDVI typically ranges 

from 0.1 up to 0.6, with higher values associated with greater density and greenness of 

the plant canopy. Surrounding soil and rock values are close to zero while the 

differential for water bodies such as rivers and dams have the opposite trend to 

vegetation and the index is negative (Lillesand & Kiefer, 1994). In order to exclude 

water, NDVI values lower or equal to 0 were masked out. Values between 0 and 0.1 

were kept because sand was selected as one of the endmembers (4.2.1 Table 7). 

NDVI is defined as (Orlovsky, 2002): 

REDNIR

REDNIR
NDVI

+
−=  

 
NIR and RED are the reflectivity over the NIR regions (700-900 nm) and the red 

(630-740 nm). This corresponds to bands 19 to 32 and band 14 to17 respectively. Better 

results, understood as bigger contrast between vegetated and non-vegetated areas, was 

given by the bands 19 in the NIR and 15 in the red. This was evaluated by applying 

NDVI transformation to various combinations of RED and NIR bands. The resulting 

NDVI images were compared in between. Random locations of vegetated areas showed 

highest NDVI values, while random locations of non-vegetated areas showed lowest 

NDVI values, when using bands 19 and 15. 

The second mask was meant to select only the area of interest. It implied the 

exclusion of most important urban and agricultural areas. This was done by creating a 

new vector file in ArcGIS in which such area was drawn. This file was imported to 

ENVI as a vector file and exported to ROI. As a ROI it could be used to build a mask. 

This mask was applied to the previously masked image with all pixels with NDVI 

values above 0.  

Clouds were not observed in the study area, although presence of clouds is 

indicated by NDVI negative values (Lillesand & Kiefer, 1994) and hence were already 

excluded by applying the first mask. 

The image was also resized to reduce computational time. The resizing consisted 

of suppressing the non-value area resulted from the masking.  Resizing was only done 

after MNF transformation was applied due to the incoherence explained in chapter 3. 3. 

4. 2. A second resizing was done to HyMap when facing the temporal analysis (chapter 

3.3.5). As the original extension of CASI image is different than that from HyMap and 

the initial study area defined for HyMap was cut in CASI, the area of interest had to be 
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reduced during the temporal analysis in order to perform the unmixing to the same area 

in both images.  

 

b) CASI image 

CASI image was subject first to a projection transformation from RD to UTM 

coordinate system. Then, an atmospheric correction was applied to it; since only 

radiometric and geometric corrections were originally done. Finally, masking and 

resizing were applied. 

Projection transformation was performed in ArcGIS. After this projection 

transformation, some spatial inaccuracies were observed. CASI image was translated 

some meters with respect to HyMap and the field data (already transformed into UTM 

coordinates). This was deduced by looking at specific features in the image. A 

translation of 10 m east was performed to correct this shift. It was exported into ERDAS 

IMAGINE and by the function “Set drop point” was shifted 10 m East to the correct 

position. This image was subject to the “Modeler” in ERDAS before it could be 

introduced in ENVI software; to assure the proper image format.  

Atmospheric correction was performed in ENVI using the “Empirical line 

correction”. The application of this function demanded pairs of spectral data from 

locations in the image and the field. As no field measurements were taken during the 

day the image was taken, data from field locations were gathered from the HyMap 

image -which had been atmospherically corrected- assuming that these locations did not 

changed much in time. Taking into account too that at least one dark and bright point 

are recommended four locations were chosen: river, lake, sandy area and a roof. Then, 

the empirical line correction was performed. 

Finally the image was masked and resized. As well as HyMap, two subsequent 

masks were applied, one with NDVI values greater than zero and another one by setting 

the area of interest.  

3.3.3.2 Field Data 

Before spectral unmixing can be carried out, field data must be adapted so that 

they can fulfill the concept of PFTs as explained in the section 3.3.2.2 and can be of use 

for the unmixing purposes: endmember selection and validation. But field data is not 

present in a way that fits the needs of the classification procedure, because it was not 

gathered based on any specific application. Therefore projection system, format, 
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sampling unit and information have to be modified to fulfill specific requisites. 

Different procedures were applied to each dataset due to their diverse characteristics 

(Table 2).  These modifications may lead to loss of accuracy because assumptions have 

to be made.  

Field data preprocessing consisted of the following steps. First, the data about 

vegetation had to be re-classified into PFTs so that field information could be adopted 

for the image classification. Second, the projection system of all field data sets was 

transformed from the Dutch RD coordinate system (Rijksdriehoeksmeting) to the 

Universal Transversal Mercator (UTM) system. Third, the format had to be converted in 

some cases. And fourth the sampling units of all sets had to be adapted so that they 

could be compared to the image format. 

In the next sections the preprocessing of the different data sets is described.  

a) Ark Data (2005-2006) 

Classification on PFTs (Ark dataset) 

This data set consists only of woody vegetation. It is the most detailed one 

because many variables were measured in the field per individual plant, such as RD 

coordinates, height, stem diameter, crown projection, damages, etc. Based on some of 

these measures, classifying each individual plant into all six PFT woody classes (Table 

3) is immediate because there is information about all three traits per plant: height, stem 

diameter and shrub/tree structure18.   

However during the implementation of these PFTs to the unmixing process, 

classes were rearranged, because, even though all classes were represented, some were 

very scarce. This made it impossible to extract sets from these classes for endmember 

selection or validation assessment. This was the case for classes SWT, MWT and SWS. 

Only 72 and 34 plants were classified as SWT and MWT respectively (in contrast, i.e. 

1614 plants were classified as MWS). These plants presented a low crown projection 

with averages of 0.96 m2 and 3.97 m2 for each class respectively. Class SWS was more 

abundant (1888 plants) but with a small average crown projection also (1.55 m2). This, 

together with the fact that the pixel surface is 25 m2, made impossible an approximation 

to pure pixels for these three classes. 

When applying unmixing to an image all existing features in the field have to be 

considered because lack of endmembers lead to less accurate results (Malenovsky et al., 

                                                 
18 This character of the plant was based on the specie. Some species have typically a shrub structure while 
others have a tree structure.  
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2006). Therefore these classes poorly represented could not be simply ignored, 

especially because some (SWS) are very abundant. Hence a rearrangement was done to 

the original six PFT woody classes. Only three of them were kept: 

• Resistance 1: MWS (Medium Woody vegetation with Shrub structure) 

• Resistance 2: RWT (Robust Woody vegetation with Tree structure) 

• Resistance 3: RWS (Robust Woody vegetation with Shrub structure)  

All individuals previously classified as SWS were assumed to join herbaceous 

classes if their height was under 0.5 m, and re-classified as MWS if it was above 0.5 m. 

Individuals classified as SWT and MWT were assumed to join any of the shrub classes.  

Projection transformation (Ark dataset) 

The projection system for the Ark dataset was transformed from RD coordinates 

to UTM. For some unknown reason transformation of coordinates in ArcGIS software 

was constantly resulting in a shift of a couple of hundred meters from the expected 

position. This led to the use of alternative coordinate calculator software for the 

Netherlands19.  

For the use of this software, RD coordinates were exported to a text file, after 

being converted into UTM, this text file was imported into Arc GIS. Then, the 

coordinates were displayed and exported to a vector file that was subsequently joined to 

the original Ark data set so that all the information was contained in the new projected 

set (Figure 9). The quality of this transformation was examined by overlaying the plots 

to the HyMap image and checking the fit of paths, borders and water areas.  

                                                 
19 Coordinate calculator 41downloaded from the Web. Available from 
http://www.rdnap.nl/download/download.html 
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Figure 9: Ark data, transformation of projection system 
 
Sampling unit adaptation (Ark dataset) 

Once the classification of the data was done and the projection system was 

transformed, the sampling unit of the data was checked. In the Ark dataset the sampling 

units are points representing individual plants, but the pixel size of the image is 5x5 m, 
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specified equal to the image to avoid a shift between this raster’s origin and the 

image’s. 

• Each raster (r1) was aggregated in a new raster of pixel size 5x5 m. The value 

given to each pixel in this new raster (r2) was the sum of the values (crown 

projection area) of all the pixels of 1x1 existing into each pixel of 5x5. Therefore 

the total crown projection per pixel of 5x5 m is known. 

• Parallel to this part, Ark vector data was converted to raster data of 5x5 keeping 

the same extent of the image again, and then converted to points (p1); each point 

representing the center of the pixels. Points different to zero were selected so 

that the remaining points were the center of those pixel in which one or more 

Ark measures had been taken (p2).  

• All aggregated raster sets of 5x5 (r2) were sampled using these points (p2) and a 

table with all volumes per class and pixel was derived.  

• This table was displayed according to the p2 coordinates and exported as a 

vector file (v1).  

• All points from the vector file (v1) with coverage greater than 12.5 m2 out of 25 

m2 (area of the whole pixel of 5x5 m) were selected for each class separately  

because only these points were used for setting up the endmembers (the ones 

with the highest values and purest content) and for validation (the rest). 
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Figure 10: Ark data, conversion of sampling units 
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Figure 11: Creation of validation set for class RWSC 
 

 
b) Sykora Data (2002) 

Classification on PFTs (Sykora dataset) 

This data set consists mainly of herbaceous vegetation type, but shrub vegetation 

is also present and tree species are seldom found. Data was not gathered by individual 
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plant communities were described by syntaxonomy nomenclature which is not related to 
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specie from the field did not exist for these plots, so height per specie was estimated 

according to literature. All sources consulted were found in internet. They are listed in 

the end of chapter 9 (bibliography). To derive each species’ height more than two 

                                                 
20 Index to express species’ abundance in terms of coverage. Each value is related to a range of cover.  
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sources were consulted. Consistency between these sources was found for most of the 

species. Considering that actual height of plants was likely under potential height, 

height was estimated as the average of the values found in literature minus certain 

quantity21. Under the assumptions that height could be estimated using literature and 

that graminoid species have L leaf type while forbs have B leaf type (Figure 6), all 

herbaceous species were classified as SNB, SNL, RNB or RNB (Table 3). 

The classification of woody vegetation is done considering: height, stem diameter 

and shrub/tree structure. No height nor stem diameter information per plant was 

available in the dataset, therefore an accurate classification of these data was not viable, 

specially considering the previous classification of Ark Data. But a rough classification 

was done only considering estimated height of species according to literature (same 

process explained for herbaceous vegetation in previous paragraph). These woody 

classes resulted: SWS, MWS, MWT and RWT. All of them were considered in the final 

percentages of PFTs per plots but, except for SWS, no set for training or validation was 

extracted from them. On the one hand their presence is low, on the other hand, Ark 

dataset –which represents the other source for woody vegetation- has special 

characteristics that do not make it recommendable for mixing or testing with this other 

data set. In the Sykora dataset the real height and stem diameter per plant is not 

available so height was estimated per specie according to literature. This means that 

when in Ark data classification, two individuals from the same specie may be in 

different classes -because they have a different size- or two individuals from different 

species may be in the same class -because they have similar size-, in the Sykora dataset 

classification, it is assumed that all individual from one specie belong to the same class. 

In Sykora dataset there was a group of 58 tree locations. The information available 

about these trees was that their height was greater than 5 m, and that most of them are 

Salix alba. These trees were classified as RWT, assuming that the stem diameter was 

greater than 15 cm, and used as validation and training set during the temporal analysis 

(3.3.5.3).   

Individuals classified as SWS class however were considered for training and 

validation. These individuals were solely belonging to Rubus sp. This subshrub specie 

was not present in Ark data set but it is of great importance for river managers since it is 

                                                 
21 This quantity was assumed as 0.1 m when the plant potential height was less than 1 m, 0.2 m when it 
was between 1-2 m, 0.5 m when it was between 2-4 m and 1 m is it was higher than 4 m. 
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abundant and rapidly developed in the field. Moreover there is not incompatibility with 

Ark SWS class, because this class was disintegrated in Ark dataset.   

Projection transformation (Sykora dataset) 

The projection transformation of this data set comprises exactly the same steps as 

the transformation executed for Ark data (Figure 10).  

Sampling unit adaptation (Sykora dataset) 

The sampling units for the Sykora dataset are points representing plots of 2x2 m. 

Two considerations have to be taken into account regarding these plots. First that the 

center of the plots is not necessarily coincident with the center of the pixels and second 

that the pixel size (5x5 m) is greater than the plot size (2x2 m).  

For the first consideration a moderate distance between the center of the plots and 

the center of the pixel is assumed to be acceptable because the plot size (2x2 m) is 

smaller than the pixel size (5x5 m) and if the distance is small enough the plot still falls 

into the pixel. The first threshold distance chosen was 0.7 m, but the number of plots 

that fell into this group was too small and it was raised to 1.5 m (Figure 12).  

For the second consideration –the fact that the plot size is smaller than the pixel 

size- it is assumed that the composition of the plot is extensive to the whole pixel in the 

same proportion. 

As described before, information used from this data set was species type and 

species’ abundance per plot. Species have been associated so far to PFTs, so now we 

know PFTs’ abundance per plot. But abundance per plot came expressed in terms of 

Braun Blanquet (B.B.) index. This index refers to a range of cover and for 

simplification ranges were converted to mean. 

 

 
Figure 12: Relationship between Sykora plots size-position and HyMap pixel size-position 

 
  

Pixel of HyMap 

5 m 

5 m 

0.7 m 

1.5 m 

Plot from Sykora 

2 m 

2 m 

Extreme position of plot with respect to 
the center of the pixel according to 
threshold distance 0.7 m and 1.5 m 



 39 

 

 

Table 4: Conversion of Braun-Blanquet cover-abundance scale to mean cover 
Braun-Blanquet scale Range of cover (%) Mean cover (%) 

5 75-100 87.5 

4 50-75 62.5 

3 25-50 37.5 

2 5-25 17.5 

1 <5 2.5 

+ <5 2.5 

 

These mean covers are expressed for various vegetation strata so although they are 

expressed in terms of percentages they sum up a different quantity than one hundred. 

For simplification, for this study it is assumed that abundances are in one unique 

stratum. Therefore they were summed and weighted up to one hundred. This was 

considered to be accurate enough for validation. Nevertheless, for the search of 

endmembers it was used just as a first approximation to the purest plots, but B.B. 

abundance was carefully studied on those plots to take final decisions. An extra 

complication was that some BB abundance addition per plot was below one hundred, 

for simplification these plots were deleted, because in the processing, while weighted up 

to one hundred, they could be confused with pure pixels, when actually they contain 

important proportions of soil.  

A flowchart with all steps followed apart from the projection transformation is 

presented in Figure 13. 
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Figure 13: Sykora data, conversion of sampling units 
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Figure 14: HyECO’05 data, format conversion 
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every PFT class per plot. It was assumed that each plant covered the same area and a 

coverage percentage of PFTs per plot was calculated based on plant number.  

d) HyEco’04 campaign Data (2004) 

The preprocessing of this data follows the same steps as the data from HyEco’05, 

since the datasets are similar. The only difference is that plots in this case represent an 

area of 2x2 m and a new assumption has to be made: PFTs coverage percentages per 

plot of 2x2 m are extensible to the pixel area of 5x5 m. 

3.3.4 Spectral Mixture Analysis 

3.3.4.1 Selection of endmembers 

Once image and field data have been adapted to the needs of the unmixing 

classification purpose the conditions for the selection of endmembers have been 

prepared. This task requires wariness because the primary and most important key to 

success for spectral unmixing is the selection of the right endmembers. 

As described in chapter 2.3.3 several methods can be used for the selection of 

endmembers. There is a spectral library available from other studies carried by the 

Center of Geo-Information (CGI) of Wageningen University that may be considered, 

but these library endmembers are not recommended because of difficulties to scale up to 

match spectra measured by the sensor. Deriving endmembers with automatic procedures 

is not recommendable since spectra from different PFTs vegetation classes are very 

similar. Therefore, in this study, endmembers were derived directly from the image. 

This method has the advantage that selected endmembers are under similar atmospheric 

conditions and spectral/radiometric biases with respect to the image (see chapter 2). In 

the case of the HyMap image this is not of importance since it has been internally and 

externally calibrated. Moreover the great amount of field knowledge facilitates its 

application.  

A second consideration is the number of endmembers, which is limited by the 

number of bands. In the case of a hyperspectral image such as HyMap, with 126 bands, 

this is not an important limiting fact.  

For the determination of the endmembers, a selection of ROIs22 was made. These 

regions are meant pure pixels. The following steps were followed:    

• First, a group of candidate pixels that were considered ‘pure’ or nearly ‘pure’ 

were chosen from Sykora and Ark datasets for each class (Table 5).  

                                                 
22 Regions Of Interest: field points or polygons used for classification training and accuracy assessment. 
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Table 5: First selection of ROIs for ten PFT endmembers. Each ROI consists of one pixel 
ROIs Plot/ID Year Source Cover Species (BB%23) OtherPFT Dist(m)  

SNB1 Plot 122 2002 Sykora  79%  50-75Geranium, others. 12% SNL 

10% RNB 

1.41 

SNB2 Plot 232 2002 Sykora  68% 75-100Trifolium,12-25 

Cirsium 

20% SNL 

6% RNB 

1.41 

SNL1 Plot 63 2002 Sykora  67% 25-50Carex-hirta,25-

50Carex-arenaria,25-

50Festuca 

19% SNB 

 

1 

SNL2 Plot 139 2002 Sykora  60% 25-50Carex-hirta,25-

50Cynodon,5-12Festuca 

24%SNB 

20%RNB 

8% RNL 

1.41 

RNB1 Plot 103 2002 Sykora  83% 75-100Urtica,12-

25thalictrum, etc.  

9% SNB 

7% RNL 

1 

RNB2 Plot 114 2002 Sykora  78% 50-75Urtica,12-

50Rumex,25-50Heracleum 

11% SNB 

7% RNL 

1.41 

RNB3 Plot 110 2002 Sykora  77% 75-100Urtica 16% SNB 1.41 

RNB4 Plot 251 2002 Sykora  74% 75-100Urtica 11% SNB 

9% SNL 

1.41 

RNL1 Plot 219 2002 Sykora  53% 50-75Calamagrostis  20% SNB 

17% SNL 

8% RNB 

1.41 

RNL2 Plot 82 2002 Sykora  50% 50-75Calamagrostis 22% SNB 

10% SNL 

20% RNB 

1 

SWS Plot 224 2002 Sykora  63% 75-100Rubus 36% RNB 1.41 

MWS1 ID 91 Ene06 Ark  86% 5Sambucus Herbs  

MWS2 ID 104 Ene06 Ark  84% 4.5Sambucus,1Rosa Herbs  

MWS3 ID 106 Ene06 Ark  80% 5Sambucus Herbs  

MWS4 ID 784 Nov05 Ark 72% 2.5Crataegus Herbs  

MWS5 ID 265 Ene06 Ark  76% 6Sambucus 16% RWS  

RWS1 ID 1409 Mar06 Ark  97% 2.5Sambucus,0.5 Salixfra24 3% MWS  

RWS2 ID 1220 Mar06 Ark 99% 1Salix fragilis 1% MWS  

RWS3 ID 1271 Mar06 Ark  89% 1Salix fragilis 11% MWS  

RWS4 ID 1114 Mar06 Ark  100% 3Crataegus Herbs  

RWS5 ID 1190 Mar06 Ark  80% 2Crataegus,1Sambucus Herbs  

RWT1 ID 2167 Feb06 Ark  100% 2Salix alba Herbs  

RWT2 ID 2097 Feb06 Ark  100% 2Salix alba Herbs  

RWT3 ID 2232 Feb06 Ark 100% 2Salix alba Herbs  

 

 

 

                                                 
23 Braun Blanquet abundance. 
24 Salix fragilis 
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• Then, a shapefile was created in ArcGIS containing all these points (Figure 15).  

• After, this shapefile was imported into ENVI where each point was converted 

into a ROI (Figure 15).  

• The signatures of each ROI were plotted in ENVI (Appendix 2) and studied 

comparatively to the rest, with the intention of avoiding high variability within 

classes and favouring the difference between separate classes. This discussion is 

described after Table 5. 

• Based on the former discussion a selection of definitive vegetation ROIs was 

made (Table 8) in ENVI (Figure 15). These nine pixels represented the nine 

PFTs.  

• Finally, a sandy ROI was added as tenth endmember to the former set. The 

spatial location if the 10 endmembers can be found in Figure 37. 

Between the two pixels regarding class SNB there is a high variability (Figure 30). 

This is understandable once we consider that the species representing each pixel are 

completely different in between: SNB1 consists of Geranium sp. and SNB2 consists of 

Trifolium sp. and Circium sp. Because these two last species are more significant due to 

their abundance in the area, pixel SNB2 was selected. 

For class SNL there is not such a high variability (Figure 30). Due to the important 

presence of Festuca sp., pixel SNL1 is preferable. Moreover, this spectra is more 

differentiable with SNB1 regarding both patron and magnitude of the signature (Figure 

31).    

Variability within class RNB is not high (Figure 31). This is explained by the fact 

that all pixels have an important proportion of Urtica dioica. Pixels with lowest 

proportion of class RNL (Table 5), which are RNB3 and RNB4, are considered more 

representatives. However, RNB4 has the most outstanding signature of all, so RNB3 is 

considered to be purer and it is selected as ROI.  

The two pixels for class RNL have a low inter-variability (Figure 31). This is a 

sign that, although Calamagrostis epigeos does not cover the whole area -as can be seen 

in the coverage percentages (Table 5)-, it determines highly the signature of the pixel. 

As RNL2 has a larger proportion of class RNB (Table 5) than RNL1, RNL1 is 

considered to be more appropriate as ROI. 
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Only one pixel was selected for class SWS because it was the unique acceptable 

pixel, hence it was considered valid as ROI for this class. Its signature can be found in 

Figure 32. 

Five candidate pixels were chosen to represent MWS pure ROI (Table 5). The 

three first ROIs -MWS1, MWS2 and MWS3- composed of Sambucus nigra presented a 

similar signature (Figure 33), while there was a noticeable difference with the other two 

–MWS4 and MWS5-. The inter-variability of this last two was higher. MWS1 is 

considered the best option for ROI since it is represented by Sambucus nigra without 

presence of any other woody specie in a proportion of 86% (Table 5). Sambucus nigra 

is one of the most abundant woody species in the area.   

In reference to the five candidates for class RWS, there was also a high variability 

(Figure 34), except for those with presence of Salix fragilis (RWS2 and RWS3). Pixel 

RWS2 is considered the best option because it is the purest (99% of class RWS).  

Pixels RWT2 and RWT3 representing class RWT were very similar (Figure 35) 

and had the typical tree spectrum, with lower reflectance in the NIR, while RWT1 had 

an anomalous high reflectance. When looking at the spatial location of the pixels, 

RWT2 is more appropriate because pixel RWT3 is located at the edge of the study area 

and the reflectance may be influenced by inconvenient objects in the border. This ROI 

is composed by Salix alba. 

After these decisions were made, it could be seen that Crataegus monogyna was 

not represented in any ROI. But this specie is very important for river managers because 

of its abundance and fast development, so it was decided to include it as a separate ROI: 

RWSC. The problem with this class is that there was a high variability within the three 

pixels representing this specie –MWS4, RWS4 and RWS5- and this variability was not 

size dependent (Figure 36). Therefore a decision had to be taken to choose one of the 

three different spectra and other sources were consulted.  

First the field spectrometry measurement of Crataegus monogyna spectrum from 

the internship report of Catherine Teerhuis (2006) was consulted. These spectra were 

also gathered in the Millingerwaard. The same high variability within spectra could be 

observed. This specie has a specific structure which makes it more variable on 

reflectance in the NIR because of high scattering. 
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Figure 15: Implementation of ROIs 
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previously applied mask, during the PCA transformation the abundance of “0” DN25 

causes a strong translation to the new axis towards 0.  

The second consideration concerns the extent of mask-image. When a mask is 

introduced into the MNF transformation, the new axes are spatially located according to 

the multidimensional distribution of the information contained on the mask area of the 

image; therefore, the result changes if different masks are applied while it should be 

equal for different extents if the mask is exactly the same. The incoherence in ENVI 

MNF transformation was that for different extents and same mask-image, different 

results were derived. In order to manage this incoherence a final decision was taken: to 

use the complete image. 

Once the MNF transformation has been performed, only some of the new bands 

are significant, the others are mainly noisy. The noise bands can be identified by 

different approaches. First, by looking at the eigenvalues26; eigenvalues less than 1 are 

usually excluded as noise because eigenimages27 with near-unity eigenvalues are 

normally noise-dominated (Fang, 2006). But also by registering important breaks in the 

slope of the eigenvalues graphical representation or by looking at the eigenimages; 

noise images can be identify by high sparkling and absence of features. The first 23 

bands were chosen to perform the unmixing in HyMap by combining this information 

(Figure 16).  
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Figure 16: Eigenvalues of MNF transformation of HyMap image 
 

                                                 
25 Digital number that expresses the radiation value of a pixel. When an image is masked, all DN out of 
the masked region are “0”. 
26 Special set of scalars associated with a linear system of equations determined by matrix diagonalization 
(these equations are the linear orthogonal transformation from the original bands to the new bands). 
27 Refers to each of the new bands after the MNF transformations. 
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3.3.4.3 Linear spectral mixture analysis 

Linear spectral unmixing was applied to HyMap image using the ten endmembers 

defined previously (Figure 16). It was performed in three different ways, each time 

including different number of constraints. These three methods were designed as: 

unconstrained unmixing, semi-constrained unmixing and fully constrained unmixing as 

explained in section 2.3.2. The unconstrained and semi-constrained versions were 

performed in ENVI. But this software does not include fully constrained unmixing, so 

this was implemented using MATLAB software. 

The 23 band image resulting from the MNF transformation was unmixed using the 

ten ROIs previously defined (Table 8). As a result we obtained a set of ten abundance 

images (one per endmember) and another image with the RMSE value per pixel 

(Appendix 3 Figures 38-48). When applying the method with MATLAB other images 

were also produced (Figure 16, red outline): a hard classified28 image and an exitflag29 

image. The hard classified image can be found in Appendix 3 (Figure 49). All pixel 

values from the exitflag image were 1, meaning that the function converged to a 

solution.   

                                                 
28 The class with the highest fraction in each pixel is assigned to that pixel. 
29 An integer is assigned to each pixel identifying the reason why the algorithm terminated. The exitflag 
indicates whether the function converged to a solution (1), the number of interactions was exceeded (0) or 
the function was unfeasible (-1). 
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Figure 17: Application of Linear Spectral Unmixing to HyMap. In green, MNF transformation 
(ENVI), in blue, application of liner spectral unmixing (ENVI and MATLAB (red outline)) and in 
pink, sampling of abundance values using field plot locations for validation purposes (ArcGIS) 
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3.3.4.4 Validation 

Validation of results was done using the four different approaches described in 

section 2.3.5: an analysis of the spatial continuous map for the RMSE, the comparison 

between modeled vs. observed coverage (by means of scatter plots and overlaying field 

plots to abundance maps) and a subpixel accuracy assessment (OSA). The last method 

could only be applied to fully constrained unmixing. This is because fully constrained 

unmixing is the unique method whose numerical results are immediately significant in 

the physical space; fractions are between zero and one, and the addition of all fractions 

in one pixel equals to one. 

The description of the RMSE image can be found in Figure 20.  

The comparison between modeled and observed by means of scatter plots can be 

found in Appendix 4. It was done by the following steps (Figure 17):  

• The abundance maps (in ENVI format) were exported to ERDAS IMAGING 

format. In this way they could be used in ArcGIS. 

• The preprocessed datasets from Ark, Sykora and the HyEco campaigns were 

assigned as validation sets. For this the points used as endmembers were 

extracted.  

• This validation sets were used, in ArGIS, to sample values from the abundances 

maps with the function “Sample”. The output was a table with the modeled 

values for each point from the validation sets. 

• The output table was exported to Excel. In Excel the modeled values were 

confronted to the observed30 values using scatter plots. 

The comparison between modeled and observed by overlying plots to maps can be 

found in Appendix 5. Plots in Figures 61, 62 and 63 are areas of 5x5 m with more than 

50% coverage of that specific PFT. They were created as shown in Figure 10. 

The sub-pixel accuracy assessment was applied only to the fully constrained 

unmixing. The first thing we have to take into account when we calculate OSA is that it 

is a multidimensional index. It is a unique value to estimate how well all cover types are 

modeled into a pixel. Although, when the abundance of one class is particularly high in 

certain plots, the OSA value for those plots can be understood as an estimation of 

accuracy for such class. Always keeping in mind that such value is influenced by the 

agreement of all other classes existing in that pixel. 

                                                 
30 The observed values are the PFTs proportions derived from the validation plots, for the years 2002 
(Sykora), 2004 (HyEco’04), 2005(HyEco’05) and 2005-06 (Ark). 
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Therefore, the ideal situation to calculate OSA would be by sampling all PFT 

classes together using unique validation points for all. However, the construction of the 

validation sets in this study makes this impossible. Herbaceous classes (SNL, SNB, 

RNL and RNB) were validated with plots from 2002, as well as SWS, and each woody 

class (MWS, RWS, RWSC and RWT) was validated with separate plots from 2005-06.  

Consequently, OSA was calculated in the next way: 

• Herbaceous classes i (SNB, SNL, RNB, RNL) were calculated together. The 

expression for OSA was: 
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• SWS (Rubus sp.) was calculated together with herbs (SNB, SNL, RNB, RNL). 

As SWS is in all cases conforming the plots in more than 37% (usually more 

than 62%) this index can be considered as indicative of class SWS. The equation 

was: 
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• Woody classes k (MWS, RWS and RWT), except for RWSC, could be joint into 

one dataset and hence they were estimated together. The equation was: 
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• The OSA for RWSC was estimated independently since its validation set was 

independent (Figure 11). The equation was: 
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OSA was also calculated in two different ways for all woody sets. First all plots 

from the sets were used. Then, the overall accuracy was calculated using exclusively 

those plots that contained only the species existing in the final pixels selected as ROIs 

for the unmixing procedure (Table 8).  These are: Rubus sp. for class SWS, Sambucus 

nigra for class MWS, Salix fragilis for class RWS, Crataegus monogyna for class 

RWSC and Salix alba for class RWT. 

The OSA values can be found in Table 10 and OSA values spatial distribution can 

be found in Appendix 6 (Figures 69, 70 and 71). 

3.3.5 Temporal analysis 
The temporal analysis was based on the comparison of the PFTs distribution in the 

images CASI from 2001 and HyMap from 2004. These two images were object of a 

spectral mixture analysis by adapting the methodology described before. 

Some aspects from the previous methodology were modified in this second 

analysis. First, the characteristics of CASI image, with 10 bands (HyMap had 126 

bands) required a reduced number of endmembers for SMA to be applicable. Second, 

results derived from previous SMA classification applied to HyMap provided key 

information to redefine PFTs in order to improve spectral separability of classes. And 

finally, in order to be more in accordance with future applications (Section 1.1), the new 

PFTs were redefined taking into account the PFTs as conceived by the DVM SMART2-

SUMO2. These are herbs, dwarf shrubs, shrubs, pioneer trees and climax trees.  

These modifications had also to take place in a second classification of HyMap 

image, so that both images could be comparable. The subset extension was also slightly 

different in this section, because in the complete extension of the CASI image, previous 

subset was cut.  

3.3.5.1 PFT conceptual model 

The new PFTs classification was based on the PFTs classification of the 

SMART2-SUMO2 model with some modifications. The model defines five classes: 

herbs, dwarf shrubs, shrubs, pioneer trees and climax trees. Concerning adaptation of 

such classes to the area of study the last class was excluded. Due to the early 

successional stage of the area, “climax trees” are scarce. Based on conclusions derived 

from previous results, classes are better classified by spectral techniques when they are 

species-based (Section 5.1). Therefore, PFTs were defined in this second approach by 
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giving primary importance to plant species and not to physical measures (such as height 

or stem diameter). 

These new considerations for the PFTs definition can be assimilated into 

previously defined PFTs model (Section 3.3.2.1) because in a way, all three traits 

(height, density and flexibility) are species related. Average plant height31 of Crataegus 

monogyna is 2.16 m, Sambucus nigra 3.88 m, Salix fragilis 6.98 m and Salix alba 

8.00m. Density, understood as foliage thickness, as well as flexibility, understood as 

stiffness, is specific for different species (Anderson, 2006). A detailed study of these 

two last traits for the species present in the Millingerwaard is out of the scope of this 

thesis. However, average height can give an approximation of hydraulic resistance. 

Higher average height of the individuals is assumed to correspond to higher resistance. 

Therefore, the new woody PFTs were represented by individuals of the species 

defined in previous paragraph (the most abundant woody species in the 

Millingerwaard). Only individuals greater than 0.5 m (previously classified as MWS/T 

and RWS/T) were chosen as field datasets.  

Herbs, however, were not represented by specific species. This would be non 

sense considering their high heterogeneity. But they were divided into two groups: 

“Grasses” and “Forbs” based on the spectral variability observed in such class 

(Appendix 7 Figure 73) and the difference in hydraulic resistance (3.3.2.1). Average 

height was also calculated for herbs according to literature, 0.56 m for “Grasses” and 

0.64 m for “Forbs”. 

Therefore, five new PFTs classes were defined (Table 11):  

• Resistance 1: Grasses. Graminoid herbs, including high grasses like 

Calamagrostis epigeos.  

• Resistance 2:  Forbs. All other herbs, including Rubus sp., Urtica dioica, etc. 

• Resistance 3: Dwarf shrubs. Crataegus monogyna individuals with medium 

and robust resistance (MWS and RWS) 

• Resistance 4: Shrubs. Sambucus nigra individuals with medium and robust 

resistance (MWS and RWS) 

• Resistance 5: Pioneer trees. Salix sp. individuals, including Salix fragilis with 

medium and robust resistance (MWS and RWS) and Salix alba with medium 

and robust resistance (MWT and RWT) 

                                                 
31 Calculated as the average of all individual plant greater than 0.5 m from Ark dataset  
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3.3.5.2 Preprocessing 

The preprocessing of the images is defined in section 3.3.3.1. As the extension 

from the two images is not coincident, a new common subset was defined, so that SMA 

could be applied to the same area. 

Regarding the preprocessing of the field data, the new characteristics of the CASI 

image, with a smaller pixel size than HyMap, and the selection of new PFT classes 

demanded a new datasets preprocessing following the steps defined in section 3.3.3.2 

for Sykora and Ark datasets. Data from the HyEco campaigns 2004 and 2005 was not 

used.  

Concerning woody vegetation two datasets were used: Ark and Sykora. For the 

preprocessing of the Ark dataset the steps shown in Figure 10 were followed for both 

images. Three sets for endmember selection and validation were derived for each 

image: “Dwarf shrubs”, “Shrubs” and “Pioneer trees”. In addition, trees from Sykora 

datasets were used, but no preprocessing was needed. 

Concerning herbs (Sykora dataset), the preprocessing consisted of merging classes 

SNL and RNL to derive “Grasses”, as well as SNB and RNB to derive “Forbs”. 

Distance of herbaceous plots to the center of the pixels was considered for HyMap with 

a threshold of 1.5 m again. For CASI however it was not taken into account since the 

pixel size is smaller. The furthest the plot could be from the pixel center is 1.4 m and, 

considering the inaccuracies resulting from the assumptions made before, taking this 

caution was not considered necessary. 

3.3.5.3 Spectral mixture analysis  

a) Endmember selection 

The new endmembers consist of the five PFT classes defined above and a sand 

endmember. The endmember selection for each PFT was done following the steps 

described in Figure 15. The first candidate ROIs were the purest pixels from each PFT. 

They were picked from different regions in the area, trying to avoid the local spectral 

effect of specific grouping structures. Details of these ROIs are shown in Table 6. ROIs 

for HyMap were not completely covered in the case of woody vegetation, while for 

CASI they were all covered 100% due to the small pixel size (Table 6). The spectral 

variability within herbs can be observed in Appendix 7 Figure 73 (CASI) and Figure 76 

(HyMap). The spectral variability within Pioneer trees (those from Sykora and Ark 
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dataset) is in Appendix 7 Figure 74 (CASI) and 77 (HyMap). The spatial location of the 

ROIs in Table 6 can be found in Appendix 7 Figure 78. 

The 20 ROIs (HyMap) and 19 ROIs (CASI), defined in Table 6, were merged per 

PFTs. In the case of HyMap, spectra within classes were similar in the MIR and visible, 

except for forbs which presented more variability. In the case of CASI, they were closer 

in the visible, except for dwarf shrubs and the two different sources of pioneer trees. 

Therefore, five ROIs resulted, each ROI composed of a group of pixels and representing 

each PFT (in previous approach they were unique pixels). To these 5 endmembers, an 

endmember for soil was added. This endmember was selected from the sandy area next 

to the river shore, southwest of the area of study. The mean spectra of these ROIs can be 

found in Appendix 7 Figure 72 (CASI) and 75 (HyMap).  

Table 6: Selection of ROIs for six PFT endmembers (HyMap and CASI).  Each ROI consists of 
various pixels 

 HyMap (Pixel of 25 m2) CASI (Pixel of 4 m2) 

PFTs Id Species & Year 
Crown 
proj. 
(m2) 

Id Species & Year 
Crown 
proj. 
(m2)  

263 Carex+Festuca 2002 
- 

263 Carex+Festuca 2002 
- 

2219 Calamagrostis epig. 2002 
- 

2210 
Calamagrostis epig. 
2002 

- 

282 Calamagrostis epig. 2002 
- 

282 
Calamagrostis epig. 
2002 

- 
Grasses 

2139 
Carex+Fest+Cynodon 
2002 

- 
2139 

Carex+Fest+Cynodo
n 2002 

- 

2122 Geranium+others 2002 
- 

2122 
Geranium+others 
2002 

- 

2103 
Urtica+Thalictrum+others2
002 

- 
2103 

Urtica+Thalictrum+o
thers2002 

- 

2114 
Urtica+Rumex+Heracleum
2002 

- 
2114 

Urtica+Rumex+Hera
cleum2002 

- 

2251 Urtica dioica2002 
- 

2251 Urtica dioica 2002 
- 

2110 Urtica dioica2002 
- 

2110 Urtica dioica 2002 
- 

2232 Trifolium+Circium 2002 
- 

2224 Rubus sp. 2002 
- 

Forbs 

2224 Rubus sp. 2002 
- 

2232 
Trifolium+Circium 
2002 

- 

784 18 1665 
4 Dwarf 

shrubs 1176 

Crataegus monogyna 
2005-06 16 1225 

Crataegus monogyna 
2005-06 4 

265 23 175 
4 

91 21 183 
4 

560 15 1740 4 
Shrubs 

822 

Sambucus nigra 2005-06 

15 1163 

Sambucus nigra 
2005-06 

4 

2097 25 3090 4 

2096 

Salix alba & Salix fragilis 
2005-06 20 3017 

Salix alba & Salix 
fragilis 
2005-06 

4 

362 unknown 359 unknown 

333 
Salix alba 2002 

unknown 332 
Salix alba 2002 

unknown 

Pioneer 

trees 

2236 
Salix alba & Salix fragilis 
2005-06 

16 - - - 
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b) MNF transformation 

HyMap was unmixed using 23 MNF bands, as it was before. CASI was also 

transformed at first. Although CASI image is only consisting of ten bands, they appear 

in a narrow area of the electromagnetic spectrum and data redundancy is likely to be 

found. The first eight MNF bands (minimum number to apply unconstrained unmixing) 

were chosen according to the same criteria used for HyMap in section 3.3.3.2. The 

eigenvalues from CASI are shown in Figure 18.  

However, the result from linear unmixing applied to the eight MNF bands was 

compared to the unmixing applied to the ten original bands and no improvement was 

observed. This comparison was done by means of R2 and adjustment to the one-to-one 

line. Therefore, the final decision was to use the ten original bands for all three 

methods: unconstrained, semi-constrained and fully constrained unmixing.    
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Figure 18: Eigenvalues from MNF transformation of CASI image 
 

c) Linear Spectral Unmixing  

HyMap first 23 MNF bands and CASI 10 original bands were subject to a linear 

spectral unmixing using the six endmembers previously defined. The three methods 

were again applied: unconstrained, semi-constrained and fully constrained unmixing. 

The steps followed are shown in Figure 17.  

Validation 

Validation of results was done following similar methodology as in section 

3.3.4.4: analysis of the RMSE image, comparison between predicted and observed 

coverage (by means of plots and overlaying field data to the abundance maps) and sub-

pixel accuracy assessment (OSA). 
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OSA was calculated using two validation sets, one from 2002 for herbaceous 

PFTs (grasses and forbs together) and another one, from 2005-06, for woody PFTs 

(dwarf shrubs, shrubs and pioneer trees together). It was calculated first as the average 

of all plots and then separately per PFT. This was done by using only the plots covered 

by such PFT by 50 % or more. Results are shown in Table 12. 
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4 RESULTS 
This chapter presents a summary of the most important results. Many of these 

results are located in the Appendices. This will be specified in each section. 

4.1 PFT classes 
The conceptual definition of the PFT classes as defined in Table 3 went through 

two consecutive modifications during next steps in the methodology. These were first, 

when classifying Ark field dataset into PFTs (Section 3.3.3.2) and second, when dealing 

with the spectral characterization of the endmembers (Section 3.3.4.1). The final PFTs 

defined are detailed in Table 7. Resistance is expressed in separate scales for herbaceous 

and woody vegetation, being 1 the lowest resistance. The corresponding traits related to 

each PFT, as defined in section 3.3.2.2, are specified in Table 7. 

Table 7: PFTs classes 

PFTs Resistance 
Height (Height 

(m)) 

Flexibility 
(Stem thickness 

(cm)) 

Density (Tree, 
Shrub, 

Herbaceous) 
Species 

Herbaceous 
SNL 1 H1D2F1 ≤ 0.5 <1 
SNB 2 H1D1F1 ≤ 0.5 <1 

Graminoids 

RNL 3 H2D2F1 > 0.5 <1 
RNB 4 H2D1F1 > 0.5 <1 

Forbs 

Shrubs 
SWS 1 - - Rubus sp. 

2 0-0.5 0-35 

MWS 
 0.5-35 0-15 

Sambucus nigra 
Crataegus 
monogyna 

Rosa canina 
Cornus sanguinea 

RWSC 3 0-35 15-130 
Crataegus 

monogyna 

RWS 5 0-35 15-130 

S 
 

Salix fragilis 
Sambucus nigra 

Trees 

RWT 4 0.5-35 15-130 T Salix alba 

 

4.2 Spectral Mixture Analysis 

4.2.1 Endmembers 
The previous nine PFT classes and soil were used as endmembers for the spectral 

unmixing of the HyMap image. The final nine vegetation ROIs are described in Table 8. 

Spectral signatures for all the different ROIs, including sand, are presented in Figure 19. 
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Table 8: Final selection of ROIs for nine PFTs 
PFT ROI  Plot/ID Year Sour

. 

Cover Species (BB%32) OtherPFT Dist  

SNB SNB2 Plot 232 2002 Syk 68% 75-100Trifolium,12-

25 Cirsium 

20% SNL 

6% RNB 

1.41 

SNL SNL1 Plot 63 2002 Syk 67% 25-50Carex-hirta,25-

50Carex-arenaria,25-

50Festuca 

19% SNB 

 

1 

RNB RNB3 Plot 110 2002 Syk 77% 75-100Urtica 16% SNB 1.41 

RNL RNL1 Plot 219 2002 Syk 53% 50-75Calamagrostis  20% SNB 

17% SNL 

8% RNB 

1.41 

SWS SWS Plot 224 2002 Syk 63% 75-100Rubus 36% RNB 1.41 

MWS MWS1 ID 2041 Ene06 Ark 86% 5Sambucus Herbs  

RWS RWS2 ID 746 Mar06 Ark 99% 1Salix fragilis 1% MWS  

RWSC RWS4 ID 694 Mar06 Ark 100% 3Crataegus Herbs  

RWT RWT2 ID 206 Feb06 Ark 100% 2Salix alba Herbs  
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Figure 19: Endmember spectra for sand and nine PFTs identified in the Millingerwaard 

4.2.2 Abundance maps 
Linear unmixing was applied using the ten identified endmember spectra (Figure 

19) and abundance maps for the PFTs in the Millingerwaard were produced. The 

abundance maps are presented in Appendix 3. For the unconstrained and semi-

constrained unmixing, eleven maps were derived. For the fully constrained unmixing, 

thirteen maps were derived (including exitflag and hard classified map). The first ten 

                                                 
32 Braun Blanquet abundance 
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maps in both cases are abundance maps, each fractional map is related to one 

endmember, and it contains the modeled fraction33 per pixel of such endmember 

(Figures 38-47). Bright areas represent higher fractions and dark areas lower fractions. 

The eleventh map is the RMSE, which is given per pixel (Figure 48). Brighter areas 

represent areas with higher RMS error. The other two maps, exclusive outcome from 

the fully unmixing algorithm, are the exitflag map and the hard classified map (Figure 

49). The exitflag map has a value of 1 for all pixels which means that the function 

converged to a solution in all pixels.  

4.2.3 Validation 

4.2.3.1 RMSE analysis 

The RMSE images for both, the unconstrained and constrained unmixing 

approach, presented comparable spatial error patterns (Appendix 3 Figure 48). Slight 

variations can be observed, but the highest RMSE values are always found in the same 

regions. In Figure 20 the lighter regions with a high RMSE are indicated.  

 
Figure 20: RMSE image from HyMap unconstrained unmixing (using 10 endmembers) 
 

                                                 
33 The outcome fractions are expressed in a proportion out of one.   
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Table 9: Cover type in regions with high RMSE 
Region Cover type in regions with high RMSE 

A Area with patches of forest which relates to bigger shadows, also some buildings and areas 

richer in uncovered soil. This forest patches have a different structure than the forest in 

region J from where the forest endmember (RWT) was selected and also other species such 

as Populus sp 

B Soil and buildings 

C Presence of forest and shrubs combined with sand 

D Wet soil and water 

E Wet soil and water 

F Presence of herbaceous species such as Mentha aquatica and Lycopus europaeus 

G Patchy area of Galium, Urtica, Ranunculus, Alopecurus, Trifolium, etc 

H Area rich in species such as Lolium, Bromus, Potentilla, Eryngium, Medicago and Avena 

I Aquatic vegetation (Polygonium Amphibiun) and Chenopodium rubra strongly mixed over 

sand dunes 

Other Paths and borders 

 

The lighter regions with high RMSE in Figure 20 were compared with the 

vegetation map of the Millingerwaard (Van Geloof & de Ronde 2002) and other sources 

such as an aerial photograph from 2003. The cover types existing in them are presented 

in Table 9. 

4.2.3.2 Comparison between modeled and observed cov er 

a) Presentation in scatter plots 

Scatter plots representing modeled vs. predicted coverage can be found in 

Appendix 4. This appendix is divided into three sections: unconstrained (Figures 50-

53), semi-constrained (Figures 54-57) and fully constrained unmixing (Figures 57-61). 

In each section four figures are found. In the first figure, herbaceous PFTs modeled 

abundances are compared to observed abundances from 2002. In the second figure, 

woody PFTs modeled abundances are compared to observed abundances from 2002 

(SWS) and 2005-06 (the rest). In the third figure herbaceous modeled abundances are 

compared to observed abundances from 2004 and in fourth figure herbaceous modeled 

abundances are compared to observed abundances from 2005.   

For the representation of the observed vs. modeled coverage by means of scatter 

plots there are two different aspects of interest. First, the adjustment of the points to the 

regression line which is measured by R2 and secondly, the adjustment of the regression 

line to the one to one line. The one to one line is the ideal line because it represents 
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modeled coverage equals to observed coverage. This line has its origin in zero and has a 

slope of forty-five degrees. This equation is y = x.   

b) Overlaying field data to the abundance maps  

Field data overlaid to abundance maps can be found in Appendix 5. Figures 62-64 

present all PFT abundance maps overlaid to the validation plots. Figures 65-68 present 

abundance maps of MWS, RWS, RWSC and RWT, overlaid first with all individual 

plants that belong to such PFT class, and then, overlaid to individual plants from the 

species used as ROI for the unmixing procedure (Table 8). This is, for instance, MWS 

overlaid first to plants from class MWS, and then, to individuals from Sambucus nigra. 

By overlaying field data to the abundance maps we can deduce general trends of 

agreement or disagreement using a visual approach. As the constraining did not make a 

noticeable difference, this overlaying was done only over the unconstrained unmixing 

fractional maps.  

4.2.3.3 Sub-pixel accuracy assessment by OSA  

The average OSA value and its standard deviation are shown in Table 10 for 

herbaceous vegetation and woody vegetation separately and finally together. These two 

groups are subdivided into PFTs as was explained in section 3.3.4.4.   

 

Table 10: OSA value for HyMap fully constrained unmixing with 10 endmembers 

Vegetation types Most abundant 
PFTs 

Year of 
validation 

plots 

Selection of 
validation plots  

OSA 
Mean 

OSA 
Stdev 

Plots 02 All 39.12 21.44 
Plots 04 All 35.61 28.99 

SNL,SNB,RNL 
& RNB 

Plots 05 All 36.42 27.26 
Herbaceous 
vegetation 

 Average all plots 38.79 21.85 
All 52.72 14.19 
≥ 62% Rubus sp. 55.25 10.63 SWS 

Plots 02 

< 62% Rubus sp. 49.18 18.51 
All 40.57 39.85 
Only Sambucus n. 54.33 41.03 
Mixed Sambucus n. 43.23 36.81 

MWS Plots 05-06 

Other species 0.00 0.00 
All 37.07 38.70 
Only Salix fragilis 71.29 6.97 
Mixed Salix f. 65.22 33.77 

RWS Plots 05-06 

Other species 11.59 28.39 
RWSC Plots 05-06 RWSC plots 40.90 40.06 
RWT Plots 05-06 All (Salix alba) 35.94 33.22 

Average all plots 42.24 34.31 

Woody 
vegetation 

 
Average purest plots 44.23 37.74 
Average all plots 40.06 27.16 All  
Average purest plots 41.30 30.34 
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In the case of woody vegetation the OSA value was calculated first using all plots 

from such PFT and then selecting only those plots covered exclusively by the species 

used as ROI for the unmixing procedure (Table 8). Table 10 will be discussed in chapter 

5.2.4. 

In addition, with the aim to find spatial patterns on OSA values, the OSA values 

per plot were overlaid to the image of the Millingerwaard (Appendix 6). Figure 69 

shows distribution of OSA value for herbaceous plots. Figure 70 shows two images, one 

with the distribution of OSA for SWS plots and another one for plots of MWS, RWS 

and RWT together. Figure 71 shows distribution of OSA values for plots of RWSC. 

4.3 Temporal analysis  

4.3.1 PFT classes 
For the temporal analysis, PFT classes were redefined as described in section 

3.3.5.1. The new PFTs classification is shown in Table 11. Resistance goes from 1 

(lowest resistance) to 5 (highest resistance). Then, we have the plant species and 

average height per PFT. Regarding density and flexibility the information is incomplete, 

but as explained in section 3.3.5.1 measurements are not available. Finally the new 

PFTs created for the temporal analysis are related to the previously defined PFTs in 

Table 7. 

Table 11: PFTs classes for the temporal analysis 

PFTs Resistance 
Plant 

Species 
Height Density Flexibility Previous PFTs 

Grasses 1 Graminoids 0.56 m 
Long 

leaves 
- All SNL & RNL 

Forbs 2 

Non-

graminoid 

herbs 

0.64 m 
Broad 

leaves 
- SNB, RNB & SWS 

Dwarf 

shrubs 
3 

Crataegus 

monogyna 
2.16 m -- - 

Crataegus monogyna 

from MWS & RWS 

Shrubs 4 
Sambucus 

nigra 
3.88 m - - 

Sambucus nigra from 

MWS & RWS 

Pioneer 

trees 
5 

Salix alba & 

Salix fragilis 

8.00 m and 

6.98 m 
- - 

Salix alba & fragilis 

from MWS & RWS 
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4.3.2 Spectral Mixture Analysis 
The 6 endmember spectra (5 PFTs and sand) found in Appendix 7 (Figure 72 and 

75) were used for the unmixing of HyMap and CASI images respectively. The 

abundance maps produced by the unconstrained unmixing can be found in Appendix 8. 

Figure 79 shows abundance maps for all five PFTs for HyMap and CASI. Figure 80 

shows abundance map for Sand and RMSE for HyMap and CASI. The abundance maps 

produced by semi-constrained and fully constrained unmixing are not shown since they 

did not present relevant improvements. In addition, the hard classified images for both, 

HyMap and CASI, produced by fully constrained unmixing are shown in Figure 81. 

The validation of the unmixing results was done by analyzing the RMSE image, 

presenting modeled vs. predicted fractions by scatter or linear plots, overlying plots to 

abundance images and by the OSA value. The results are summarized in next 

paragraphs. 

The RMSE maps can be seen in Figure 21. Concerning the HyMap image (Figure 

21.a) the same comments made in 4.2.3.1 Table 9 are applicable, because this error 

image is very similar to the error image produced by the previous HyMap unmixing 

using 10 endmembers. Concerning the CASI image (Figure 21.b) we can observe a very 

high RMSE value. The maximum RMSE is 389, while the mean is 5 (the maximum 

RMSE value for HyMap was 12 and the mean 0.4). Values greater than 10 are the 19 % 

of the total, values greater than 50 are the 1 % of the total. In addition to the regions 

with RMSE values encountered for HyMap in 4.2.3.1 Table 9, that are again present in 

CASI (Figure 21.b), other important regions show a high error. These are regions A, B 

and C in Figure 21.b.  

 
Figure 21: RMSE image from HyMap and CASI unconstrained unmixing (using 6 endmembers) 

Figure (a) Figure (b) 

A 
B 

C 

D 
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Region A is a grazing area. Region B and C are regions rich in Crataegus 

monogyna, individuals of Salix alba and abundance of woody species not considered as 

endmembers, such as Rosa canina, Acer pseudoplatanus, Salix cinerea, Salix viminalis, 

etc. In addition, in those region plants are grouped in a more loosely configuration than 

in other regions. Especially very high errors are found in region D where houses are 

situated. As a general trend, high errors are found where big trees are located (of any of 

the species). 

The comparison between modeled vs. predicted fractions by means of scatter or 

linear plots can be found in Appendix 9. Figure 82 shows 5 scatter plots from HyMap 

unconstrained unmixing, one per PFT. Figure 83 shows 2 scatter plots from CASI 

herbaceous PFTs (grasses and forbs) and 3 linear plots from CASI woody PFTs (dwarf 

shrubs, shrubs and pioneer trees). These linear plots were used instead of scatter plots 

because the crown projection of woody species on CASI validation plots were in all 

cases greater to 4 m2 (the pixel area), therefore for all plots the expected modeled 

coverage was 1. Therefore, if the modeled fractions were equal to the observed fractions 

(ideal situation) the red line in Figure 83 should be the equation y = 1.  

The observed values overlaid to the abundance maps are in Appendix 10. The 

abundance maps from HyMap unconstrained unmixing are shown in Figures 84 

(grasses, forbs and dwarf shrubs) and 85 (shrubs and pioneer trees). The abundance 

maps from CASI unconstrained unmixing are shown in Figures 86 (grasses, forbs and 

dwarf shrubs) and 87 (shrubs and pioneer trees). 

Finally, OSA was calculated for both images using the results from the fully 

constrained unmixing (Table 12). It was done separately for herbaceous and woody 

vegetation as explained in section 3.3.5.3.  

 

Table 12: OSA value for HyMap and CASI fully constrained unmixing with 6 endmembers 
OSA Mean OSA Stdev Vegetation types Most abundant 

PFTs (≥50%) 
Year of validation 

plots HyMap CASI HyMap CASI 
Grasses Plots 02 48.90 39.10 20.20 28.71 
Forbs Plots 02 51.29 38.48 27.43 31.24 

Herbaceous 
vegetation 

 Average herbs 47.91 41.25 27.09 30.16 
Dwarf shrubs Plots 05-06 57.70 4.00 37.05 11.01 
Shrubs Plots 05-06 81.08 41.64 33.63 38.90 
Pioneer trees Plots 05-06 64.08 41.86 33.79 71.70 Woody vegetation 

 Average woods 68.01 21.15 43.92 34.57 
All  Average all 66.98 21.87 43.44 34.62 

 



 66 

5 DISCUSSION 

This chapter is organized following the structure of the previous chapter and, at 

the same time, addressing the research questions posed in section 1.3. Each of the 

answers to the research questions can be found in this chapter and they will be 

summarized at the end of each section. 

5.1 PFT classes  
A first view on the study area of the Millingerwaard indicates the high complexity 

of its vegetation composition. Intimate mixture of plants from different species, ages, 

sizes, and structural types may be encountered. This complexity is favored by the 

presence of cattle and horses in a low density, which allows a highly varied vegetation 

to develop and creates grazed areas unevenly distributed (Schmidt et al., 2005). When 

referring to classification into plant functional types as defined in this study, vegetation 

complexity in floodplains is meant to be simplified into a number of PFT classes with 

common hydrological roughness. But we must consider that PFTs, as acting and 

reacting units in vegetation dynamics to changing environmental conditions, may not be 

easily observed in nature (Skarpe, 1996). Despite of this fact vegetation was classified 

into PFTs in the Millingerwaard. A group of plant characteristics was considered to be 

relevant for the definition of these classes (Section 3.3.2.1). At the highest level, the 

woodiness of the plant was used as main plant trait for a first division into PFTs. At the 

next level, other characteristics were considered relevant; height, stem diameter, and 

branching for woody vegetation and height and leaf type for non-woody vegetation. 

These characters are relevant to determine hydraulic roughness of vegetation according 

to literature (Anderson et al., 2006; Naden et al., 2006). However, some important 

aspects are missing, such as inherent species flexibility, distribution of plants in a stand, 

stand compaction and orientation of the plant with respect to the local flow direction 

(Anderson 2006). Regarding species flexibility, a deeper study of mechanical properties 

of each of the species found in the Millingerwaard was considered out of the scope of 

this thesis. Stand structure is an important factor to account for. The effective drag 

coefficient for one stem within a group of stems is less than that for an isolated stem due 

to sheltering effects (Anderson 2006), therefore roughness synergize when plants are 

grouped. However, stand characteristics are not possible to derive by using spectral 

information exclusively. But group structure can be mapped by using LIDAR in 



 67 

combination with spectral methods (Geerling et al., 2006). The orientation of the plants 

with respect to the local flow direction is not an inherent characteristic of the vegetation, 

instead it implies the interaction between earth’s physiognomy, flow direction and 

vegetation distribution, therefore it cannot be integrated into the definition of PFTs. 

Recognizing all previous plant traits as relevant, by combining all of them and assuming 

the high heterogeneity of the area, a high number of PFTs is expected (Table 7). A 

smaller set of classes would have also been appropriate. To estimate hydraulic 

resistance for river management purposes, five classes are considered to be enough 

(Geerling et al, 2006). This number would have also been enough for the application 

into the model chain SMART2-SUMO2 in which only five PFTs are considered 

(Wamelink et al, 2005). However, the above reasoning –relevant plant traits and 

heterogeneity- together with the application of linear spectral unmixing, which requires 

an exhaustive registration of all endmembers present in the area (Malenovsky et al., 

2006), led finally to the selection of nine PFT classes (Table 7).  

Plant functional types were in first instance meant to be composed of a 

heterogeneous set of species with a similar hydraulic roughness. Hydraulic roughness 

was characterized by physical characteristics (Section 3.3.2.1): height, stem diameter, 

branching and leaf type. This characterization of hydraulic roughness and therefore, 

PFTs, can be summarized as size-based. But facing the spectral characterization of PFTs 

(Section 3.3.4.1) it became a fact that groups based on plant size were not represented 

by unique or similar spectral signatures. Furthermore, there was a high variability 

within signatures representing one unique class, as it may be observed in the ROIs 

spectra shown in Appendix 2. This could be expected based on the evidence that 

signatures of vegetation are related to properties as leaf thickness, leaf surface structure, 

chlorophyll-carotenoid content, dry matter content and leaf internal structure (Kumar et 

al., 2001), as well as reflectance in the canopy level (Law et al., 1994); canopy density 

and canopy structure (Rosso et al., 2005). These properties are interrelated to floristic 

composition (Schmidtlein & Sassin, 2002) and not to plant size. SMA has the potential 

to estimate the spatial distribution and abundance of a species, rather than thematic 

classes (Rosso et al., 2005). It has been used by several authors to discriminate species 

at the sub-pixel level (Rosso et al., 2005; Li et al, 2005). It can also be used to identify 

clusters at a larger scale; hygrophytic vegetation was mapped by Schmid et al. (2005) 

and Powell et al. (2006) mapped vegetation present in urban land cover. But in these 

cases vegetation was mapped against soil or impervious surface. Although separability 
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by SMA appears to perform better when it is species based, some authors claim that 

compared to many other vegetation attributes, plant species composition is difficult to 

detect by remote sensing techniques (Schmidtlein & Sassin, 2002).  

Once the endmember selection was carried out it became a fact that PFT classes 

were represented by ROIs with presence of unique species (Table 8). This was contrary 

to the first approach of size-based PFTs characterization. It was more in accordance 

with PFTs as vegetation clusters based on a division by species, species-based PFTs. 

This was the consequence of the high variability encountered within the spectra of ROIs 

representing same PFT. This spectra variability was found to be strongly correlated, in 

most cases, to species because ROIs containing same species were spectrally similar 

while ROIs containing different species were unlike each other (Appendix 2 and Table 

5). So in search for unique spectra representing each PFT and taking into account that 

some species were especially abundant in the area and, hence, more important to be 

considered by river managers, a group of ROIs was selected representing PFTs as 

unique species. This fact became noticeable all throughout the validation results 

(Section 3.3.4.4). In Figures 65-68 from Appendix 5 we observe that agreement 

decreases when the abundance map of one PFT (e.g. MWS) is overlaid to individual 

plants classified as such PFT (e.g. MWS), and increases when it is overlaid to individual 

plants from specific species (Sambucus nigra). Being these species in all cases, those 

species present in the ROIs used for the endmember definition during the unmixing 

procedure (Table 8). In Table 10 (Section 4.2.3.3) we can observe also how the OSA 

value increases in all cases when it is calculated as the average of those plots with pure 

presence of such species. 

A first conclusion from this first part of the study is that trying to map vegetation 

clusters as closed blocks determined by size-based PFTs using linear spectral unmixing 

does not give good results. However, species-based PFTs give better results. Therefore 

we can say that vegetation classification via spectral unmixing should be done in 

species-based clusters. This may be understood also as an answer to the first research 

question: “How to discriminate plant functional types in a floodplain using spectroscopy 

techniques?” 
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5.2 Spectral Mixture Analysis 
The spectral mixture analysis approach for the classification of the HyMap image 

was developed taking several assumptions into account. The first assumption regards 

the linearity of the spectral mixing model. When we apply SMA we assume that the 

spectrum measured by a sensor is a linear combination of the spectra of all components 

within the pixel (Borisova, 2005). However this linearity is only true when photons 

interact with one material instead of several materials. It happens in general with 

materials such as snow or bare soil but not always with vegetation. Only part of the light 

is directly reflected by vegetation, the rest is absorbed or transmitted to other layers, 

from which it can be reflected to the sensor again. This results in a reflection that 

interacts with more than one object and a non-linear spectral mixing (Malenovsky et al, 

2006), which is the real situation in the Millingerwaard.  

The other three assumptions are related to field data and might have led to 

uncertainty in the final results. The first one is that field data from the years 2002, 2004, 

2005 and 2006 were used as training and validation sets to classify a HyMap image 

from the year 2004. This assumption seems to be especially problematic when dealing 

with the endmember selection from the image (Section 3.3.4.1). During this procedure, 

the evidence of existence of PFT classes at specific sites is based on field knowledge 

from the years 2002 and 2005-06. This implies that the key step of the image unmixing 

is base on important inaccuracies.  If the coverage of a reference location from 2002 

used as endmember (e.g. RNB) was not RNB in 2004 anymore but for example RWT, 

the whole system of equations is confused and the inaccuracies are extensive to the rest 

of PFTs results. Regarding medium and robust woody vegetation this assumption is 

acceptable because this data was derived from the years 2005-06, and we can assume 

that its distribution has not dramatically changed in a period of one or two years. 

Nevertheless, herbaceous vegetation as well as small woody vegetation was derived 

from the year 2002, and taking into account the rapid evolvement of this plant types, an 

important variation in spatial distribution in a three-year period is expected. These facts 

are supported by the scatter plots shown in Appendix 4 and Appendix 9. In general 

woody classes (except for RWT) show a better trend than herbaceous classes. The 

average OSA value (Table 10) as well, is lower for herbaceous (38%) than for woody 

vegetation (42%). However, for the case of small woody vegetation (SWS), also from 

2002, the OSA value is relatively high, 52%. We must take into account that, in this 

case, only Rubus sp. was into class SWS. This means that the definition of SWS was 



 70 

already in accordance with the concept of species-based PFTs and a better accuracy can 

be expected.  

The second assumption refers to the purity of the pixels used as ROIs for the 

endmembers setup. As it may be observed in the final selection of endmembers (Table 

8) the purity of the ROIs is rarely 100%, moreover we encounter quite low values as 

53%, 63% or 67%, while we are assuming that they are completely pure. This is a fact 

derived from the available field information in combination with the pixel size of the 

HyMap image. This could be solved by, either executing field campaigns in accordance 

with this application, hence gathering accurate information of PFT pure plots, or by 

making available a reliable PFTs endmembers’ library. 

The third assumption is done when facing the need to relate the spatial sampling 

unit of the available field data with the spatial condition of the pixels in the image. The 

coverage of those plots (Sykora and HyEco’04 datasets) smaller than the pixel size it is 

assumed to be proportionally extensive to the area of the whole pixel where it is located, 

although the majority of those plots are not even centered with respect to the pixel’s 

center. Also, the coverage of those plots (HyEco’05 dataset) with the same size of the 

pixel but not centered with respect to the center of the pixel it is assumed to be 

extensive to the whole pixel where it falls in. And the same assumption is done when 

presuming that the entire crown projection of those individuals whose stem coordinates 

are located into one pixel belong also to that pixel (Ark dataset). There is not a clear 

correlation between some of these factors and accuracy of results which may indicate 

that this inaccuracy is not very relevant. 

5.2.1 Abundance maps 
The results of the spectral unmixing, in the abundance maps, are expressed as 

abundance values. These values should lie, in theory, in the range between 0 and 1. 

When the unconstrained model was used, proportions were out of this range as we can 

see in Appendix 3 (unconstrained and semi-constrained abundance maps). This may be 

due to one or more of the following reasons: 1) the linear mixture model does not 

adequately fit the data; 2) the endmembers are badly chosen and do not represent the 

extremes of the distribution of reflectance values for that endmember; 3) the number of 

endmembers is not sufficient to describe the data set (Schmid et al., 2005). A 

combination of these factors may explain the inaccurate results obtained in this study. 

As argued before, when referring to vegetation, a non-linear mixture model is expected, 
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while in this study, the unmixing function was assumed to be linear. Non-linear models 

are still under study. The paper from Nielsen (2001) shows that, although not fully 

satisfactory, the semi-parametric model gives better estimates of endmember 

abundances than the linear model (using arbitrary endmembers from AVIRIS data). Due 

to previous spatial and qualitative inaccuracies (such as pixel coverage) described in 

previous paragraphs, the final ROIs chosen (Table 8, Figure 19) were not the ideal 

spectral representation of the endmembers. The number of endmembers, ten, does not 

seem to be small to represent the area of study. Li et al. (2005) used nine endmembers 

to map marsh species, good accuracy for some species was found by performing a 

qualitative comparison. Rosso et al. (2005) defined eight endmembers to map species in 

marshland vegetation with correlations around 0.50 and Schmid et al. (2005) used five 

endmembers to map hygrophytic vegetation with low RMSE and fractional values 

between zero and one. The problem was more into the conceptual model of PFTs 

(Figure 5) and how this model was applied to the definition of PFTs in the 

Millingerwaard (Section 3.3.2.2) than into the number itself. Species-based PFTs were 

more appropriate than size-based PFTs in terms of spectral separability as discussed in 

section 5.1. In a sense the spectral variability observed within PFT classes is not caused 

because the number of endmembers is not enough, but because the clustering was not 

the appropriate. The Jeffreis-Matusita separability measure could have been used to 

compute ROI spectral separability in ENVI.  

In the comparison between the abundance maps (Appendix 3) we can observe how 

higher fractional values are complementary between maps of different PFTs. This is a 

result of the linear spectral model itself. This can be clearly observed between classes 

such as SNB (Figure 38) and SNL (Figure 39), or MWS (Figure 43) and RWSC (Figure 

45). 

Regarding the hard classified image derived from the fully constrained unmixing 

(Figure 22) the next things are observed. The patches of herbaceous classes are well 

located. Nevertheless, the accuracy in the distribution of each of the classes SNB, SNL, 

RNB and RNL separately is uncertain. SWS (Rubus sp.) encountered in the centre of 

the study area (A) is also feasible. MWS (Sambucus nigra) is well mapped locally (B), 

but some areas were overestimated, like the area (C) west to the forest. The wide 

forested area (D) in the south of the lake was mapped as RWSC (Crataegus monogyna) 

when it is mainly RWT (Salix alba). This confusion was originated during the 

endmembers spectra definition; we observe in Figure 19 how the RWSC spectrum is 
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similar to the RWT spectra. This may explain also why RWT class is underestimated. 

The sandy area (E) southwest of Figure 22 with Quenopodium rubra was the only 

important area mapped ass RWT. The forested area in the north (F) was classified as 

RWS (Salix fragilis) confused with Salix alba and other tree species, but it was locally 

well mapped in the western part of area (E).  

 
Figure 22: Hard classified image from fully constrained unmixing 
 

5.2.2 RMSE analysis 
Regions with high RMSE values are regions that could not be explained by means 

of the selected endmembers (Figure 20). This is due to the existence of other land 

covers than those represented by the endmembers, or to the influence of other factors 

that modify the expected reflectance of the cover types represented by the regions of 

interest, such as moisture or shadow. Shadow is an important component to account for, 

Powell et al. (2006) applied MESMA using paired endmembers, shadowed and not, 

with accurate results. To avoid effect of shadows it is recommended to combine 

unmixing methods with the use of LIDAR or other IR based images (Geerling et al., 

2006). 

From the comparison between regions with high root mean square error and field 

knowledge, possible reasons of endmember absence can be derived. Referring to Figure 

20 and Table 10, region A corresponds to an area with patches of forest with a different 

structure from that of the forest in region J from where the forest endmember (RWT) 

was selected and also with presence of other species such as Populus sp. Areas with 

A 
F 

D 

C 

E 

B 
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forest are also related to presence of shadow area. The shadow component was not 

accounted for as endmember; pure pixels representative of shadow areas were not 

encountered due to the relatively large pixel size (5x5 m). Buildings and areas with 

uncovered soil found in regions A and B were not considered as endmembers either and 

hence a high error in these areas was expected. Region C is a sand dune with scarce 

presence of forest and shrubs; the intimate spectral mixture of these endmembers with 

shadow might be causing higher errors. The structure of the forest here is also different. 

Other regions such as D, E and borders are wet areas with soil richer in moisture. Area 

F, with presence of herbaceous species such as Mentha aquatica and Lycopus 

europaeus, can be explained with a high error since these species were not considered 

as endmembers, due to the high variability of species, the plant functional types were 

finally represented by a small set of species. The same occurs with region H; species 

such as Lolium perenne, Bromus hordeaceus, Potentilla sp., Eryngium campestre, 

Medicago sp. and Avena sp. are not included as endmembers.  Region G is a patchy area 

of Galium sp., Urtica dioica, Ranunculus sp., Alopecurus sp., Trifolium sp., etc. 

Although some of these species are accounted for as endmembers -such as Urtica dioica 

and Trifolium sp.- they are not very abundant -presence of Urtica dioica is under 15%34 

in all pixels of this area-. Aquatic vegetation such as Polygonium Amphibiun and dune 

vegetation such as Chenopodium rubra were not represented as endmembers either and 

this can explain the high RMSE existing in region I. All paths in the image have also a 

high RMSE. Paths are mainly sandy but as the pixel size is quite broad the reflectance 

in these areas is an intimate mixture of sand and a wide variety of the species existing in 

the borders of the paths.  

5.2.3 Comparison between predicted and observed cover 
Presented in scatter plots 

The comparison between predicted and observed coverage by means of scatter 

plots shows a low agreement with low R2 values and bad adjustment to the one to one 

line (Appendix 4). There is not a clear improvement while constraining the unmixing 

method. Appendix 4 is divided in three parts: unconstrained, semi-constrained and fully 

constrained unmixing where this can be observed. The fact that fractional values are 

commonly negative or greater than 1 when unconstrained unmixing is applied indicates 

                                                 
34 This percentage is considering the simplification of the Braun-Blanquet index explained in section 
3.3.3.2 for Sykora dataset  
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that either the endmembers chosen are not good to represent the area or that the linearity 

of the unmixing process is not possible. This was already discussed in section 5.2.1. 

When constraints are applied, the unmixing process is still unfit; however fractions are 

mathematically forced to be between 0-1 and to sum up to 1 in each pixel. Therefore, 

senseless results can be expected.  

Herbaceous observed fractions (Figure 50) show normally lower agreement with 

modeled fractions than woody vegetation (Figure 51), except for class RWT. As it was 

established in section 5.2, the assumptions regarding the time period existing between 

the moments when field data was gathered and when the image was taken was more 

acceptable for sets containing woody vegetation. On the other hand herbaceous species 

composition is much more varied than that of woody vegetation leading to a more 

complex identification in the unmixing process. Going deeper into herbaceous 

vegetation we can observe that agreement is better in most cases for grass type herbs 

(SNL and RNL) (Figure 50), this is explained by the fact that forbs present much more 

heterogeneity regarding leaf type and plant structure. Performance improved when 

validation sets from the years 2004 and 2005 were used (Figure 52 and 53). This 

coincides with the year when the image was taken. Specific data about grazed areas 

would have been useful for a better mapping of the herbaceous types. Grazed areas 

appear to have a much higher LAI (so apparently a much higher RSR35) at a given 

biomass compared to the ungrazed ones (Schmidt et al., 2005).  

Regarding woody vegetation, the best prediction was found for classes MWS, 

RWSC and RWS (Figure 51). MWS has a positive trend, although R2 is very low (0.07) 

showing a high dispersion. Its prediction improves in the area where the endmember 

was selected from, but is worse for the rest (Figure 23). This may be due to spectral 

influence of other herbaceous coverage into the endmember chosen (MWS ROI was 

covered by Sambucus in 86%, Table 8) which might be coincident for all pixels around 

that ROI with presence of Sambucus nigra. But it can be also a consequence of specific 

grouping structure in different areas (Figure 23).  

                                                 
35 Remote Sensing Reflectance 
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Figure 23: Picture (a) details the region where the endmember MWS was selected; we can observe 
a better trend in the agreement between modeled and observed. In picture (b), which is not very far 
from the region (a), the agreement is lower, although we can still observe certain trend. In picture 
(c) there is not agreement and the trend is opposite to what it is expected 

 

RWSC shows a negative trend when validated with RWS plots (Figure 51), 

composed mainly by Salix fragilis and Sambucus nigra, but it is positive when it is 

validated using plots composed exclusively by Crataegus monogyna of all sizes (Figure 

51). RWS shows also a positive trend (Figure 51) and the R2 is higher (0.24). This class 

endmember was represented by a 99% pure pixel of Salix fragilis (Table 8) which may 

explain this improvement.  

Class SWS show a low R2 value in the unconstrained (Figure 51) and fully 

constrained (Figure 59) but improves in the semi-constrained unmixing (Figure 55) by 

reaching the value of 0.21. We can observe in the scatter plot (Figure 50) that the SWS 

fraction is overestimated for low values of coverage and underestimated for high values. 

However, using other validation methods (Section 5.2.4) SWS distribution appears to be 

more accurate. 

The RWT distribution is badly predicted (Figure 51). As found for class MWS this 

class is exclusively well mapped in the region where the endmember was selected 

(Figure 24.a) and into a small region close to it with similar characteristics (Figure 

24.c).  

Figure (a) Figure (b) Figure (c) 
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Figure 24: Picture (a) details the region where the endmember RWT was selected; we can observe a 
medium agreement. In picture (b), the agreement is low. In picture (c) there is a partial good 
agreement, we can observe a very bad agreement in the edges, this can be explained by the stronger 
presence of water in this edges. 
 

But the mapping is negative for many other wide regions in which Salix alba is 

present, this can be explained by the existing understory species that influence the pixel 

overall spectrum and also the specific stand structure in the different regions. To get a 

better mapping of forested areas the endmember for RWT class should have been 

chosen from other areas, like the wide forested area under the lake (Figure 25 A). This 

could have been done based on field data from 2002 which was gathered from this 

forested area. This data was not used because it was poorly documented regarding 

species and plant sizes.  

 
Figure 25: RWT individual from 2002 overlaid to the RWT abundance map 

 

Presented by overlaying plots to maps 

From the observation to the overlay between plots and maps we may derive 

similar trends to what was discussed in the previous section (scatter plots) but also some 

new aspects are emphasized now. 

A  

Figure (a) Figure (b) Figure (c) 
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Regarding non-woody vegetation, pictures showing grass type herbs (SNL and 

RNL) show a higher agreement than forbs (SNB and RNB) (Figure 62), as observed in 

the scatter plots. However, small woody vegetation (SWS) seems to have a stronger 

agreement than that derived from the scatter plots (Figure 63).   

Medium and robust woody vegetation overlay was assessed using three different 

approaches. First, only the plots36  with high specific PFTs density were overlaid to the 

abundance maps (Figures 63 and 64). Then, all individuals belonging to that specific 

PFT class were overlaid (Figures 65.a, 65.b, 66.a, 66.b, 67a, 67.b and 68.a). These plots 

and individuals were heterogeneous regarding plant species but homogeneous regarding 

plant size. And finally exclusively individuals from one species were overlaid to the 

fractional maps (Figures 65.c, 65.d, 66.c, 67.c, 67.d and 68.b). 

Plots overlaid over fractional maps from classes MWS and RWS show in general 

an unsatisfactory agreement in spatial trend but local agreement is found (Figure 63). 

Plots from RWSC overlaid over RWSC fractional map (Figure 64) shows good 

agreement. Plots from RWT (Figure 63) show local high agreements in a few small 

patches in the western side of the southern area (Figure 26 A). Here, the endmember 

was chosen. The high values existing in the eastern side of B are striking. This area is 

rich in sand and dune vegetation such as Chenopodium rubra. As discussed in section 

5.2.2, a high RMSE was found here, which means that the model couldn’t really predict 

the coverage in this region. 

 

 
Figure 26: RWT plots overlaid to RWT abundance map. 

 
Regarding individual plants, individuals from class MWS overlaid to the 

abundance map (Figures 65.a and 65.b) show a very low agreement while if we overlay 

Sambucus nigra individuals the agreement increases (Figures 65.c and 65.d). The same 

occurs with class RWS, the agreement occurs now more locally since the distribution of 
                                                 
36 These PFT plots are areas of 5x5 m with more than 50% coverage of that specific PFT. 

A  
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Salix fragilis is not so broad (Figure 66). When we confront all individuals from class 

RWS to the abundance map of RWSC the coincidence may be considered almost 

random (Figures 67.a and 67.b), but if what we overlay is only Crataegus monogyna 

individuals we observe clear trends of agreement (Figure 67.c), excepting the southern 

region. Here the grouping density appears to be looser (Figure 67.d). It is not observed 

that the individuals in this region are younger than in the center of the study area. 

Average height and crown projection are 3.36 m and 3.1 in the southern region, while 

they are 2.62 m and 2.3 m2 in the center. The good trend agreement observed in the 

center of the study area (Figure 67.c) may be explained by the fact that the endmember 

chosen for RWSC was covered 100% by Crataegus monogyna. This is contradictory, 

although, when we go back to the endmember selection and take up the discussion on 

the spectra from Crataegus monogyna (Section 3.3.4.1), in which we deduced a high 

within variability. But it supports the conclusion that species-based PFTs are better 

mapped by using spectral techniques (Section 5.2.1). Regarding RWT class, bad 

predictions are clear for both RWT and Salix alba (Figure 68) as it was discussed in 

section 5.2.2. 

5.2.4 Sub-pixel accuracy assessment (OSA) 
The overall sub-pixel accuracy will be discussed from two different view points. 

First it will be discussed looking at the average values and secondly, looking at its 

spatial distribution. In general, the results based on OSA show low values with averages 

lower than 50% (Table 10). The standard deviation is normally high, showing a big 

range of values and hence the low reliability of the results. The first fact that can be 

observed by looking at the values is that the overall accuracy for woody vegetation (42 

%) is higher than that for herbaceous vegetation (38 %), as derived from previous 

validation approaches. For herbaceous PFTs, accuracy is higher using validation sets 

from the years 2002 (39 %) and lower for the years 2004 (35 %) and 2005 (36 %). This 

is contradictory with results derived from scatter plots (Figures 50, 51 and 52) in which 

it seems that there is a slight improvement in 2004 and 2005. The small differences 

observed from both validation methods should not be considered highly significant; 

especially taking into account that few plots were used for 2004-05 (5 and 8) while 

more than 100 were used for 2002. Small woody vegetation appears to be better 

predicted also using this parameter showing one of the largest OSA values; over 50 %. 
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Another fact that may be observed is that prediction improves for woody 

vegetation when it is based on species rather than when it is based on PFTs themselves 

(Table 10). Always OSA values increase when fractional maps are validated with plots 

pure in species, decrease when these species are mixed with others and decrease even 

more if these species are not present. For instance, class MWS average OSA is 40 %, if 

we select only those plots composed of Sambucus nigra it increases to 54 %, if those 

plots contain Sambucus nigra mixed with other species the average is 43 %, on the 

contrary, if the plots are composed of other species the average is 0 %.  The difference 

is smaller though when considering the overall average (40 % all plots and 41 % purest 

plots), but this is explainable by the fact that there are more herbaceous plots –where no 

difference between species was made- and hence these have more weight than the 

woody plots in the final overall accuracy value.  

If we take a look now at the spatial distribution of OSA (Appendix 6), we find out 

as discussed in section 5.2.3 that in all cases the overall accuracy increases in those 

regions where the endmember was selected.  

5.2.5 Description of an optimal methodology to map PFTs in river 
floodplains 

This section is the answer to the second research question: “Which is the best 

methodology for mapping PFTs using linear spectral unmixing?” 

The best methodology to map PFT in a floodplain based on previous results 

(assuming that the endmembers will be selected from the image) is: 

1. To have a hyperspectral image and a set of field data available, both from the 

same year and period of the year.   

2. Field data should be gathered according to the objective of the SMA application. 

This means that, ideally, plots should be based in a grid with the same pixel size 

and origin as the image. This could be done by establishing a reference location 

in the field as origin, and a fixed orientation. Qualitative data should be gathered 

in the form of percentages of species coverage per plot in a unique stratum. 

Grazed areas should be specified. The grouping density of such species (number 

of stems per surface unit) should be considered because of its relevance for 

hydraulic roughness.  

3. The definition of plant functional types should be done based on the conceptual 

model shown in section 3.3.2.1. Relevant traits to determine vegetation 

roughness are: height, density and flexibility. The application of this model to 
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the definition of the PFT classes should be done based on a study of the most 

relevant species in the area. This study should include: mean height, foliage 

density and inherent species flexibility of stems. Based on these data, species 

can be arranged by hydraulic resistance and conceived as PFTs.  

4. Spectral mixture analysis should be applied following the steps described in 

section 3.3.4. Grazed areas and shadow should be considered as separate 

endmembers. This method should be combined with the use of LiDAR or other 

IR based images to improve grouping structure separability. 

5.3 Temporal analysis 
The temporal analysis was designed and performed after the results of SMA on 

HyMap were obtained. Therefore, some of the conclusions derived from the previous 

discussion (Sections 5.1 and 5.2) were adopted in the spectral mixture analysis applied 

in this temporal study. Therefore, two different things will be discussed here: the 

comparison between HyMap and CASI images classifications and the comparison 

between the first HyMap image classification (using ten endmembers) and the second 

HyMap image classification (using six endmembers).   

5.3.1 Spectral Mixture Analysis  
As it was inferred from previous results low accuracy was not a consequence of 

the number of endmembers but of the division of vegetation into PFTs (Section 5.1). 

The introduction, in this second approach, of the species-based (Section 5.1) definition 

of PFTs raised the accuracy of the HyMap classification. Average OSA value for the 

HyMap image was 40 % in the previous approach (Table 10) against 66 % in this 

second approach (Table 12). In the case of herbaceous vegetation it increased from 37 

% to 47 %, and in the case of woody vegetation from 42 % to 68 %. This raise was 

although the number of PFTs was reduced from ten to six.  

In this second approach we observe again that herbaceous classes (47 %) show a 

less accurate distribution than woody classes (68 %).  In the case of high coverage of 

specific PFT this value increases, e.g. pixels covered in more than 50 % by shrubs have 

81 % of accuracy. This may be due to a combination of two facts:  

1. Field data for herbaceous classes belong to 2002 (two years previous to when 

the image was taken, 2004) while they have a fast evolvement. 

2. Herbaceous vegetation classification into PFTs “grasses” and “forbs” implies 

high heterogeneity of species and spectral signatures.  
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OSA results (Table 12) from CASI image (2001), support the first fact because in 

this case, that herbs field data was gathered closer to the image date (2002), herbs show 

more accuracy than woody vegetation, which was gathered further (2005-06). OSA 

value for herbaceous vegetation is 41 % while is 21 % for woody vegetation. OSA 

value for herbaceous classes is still higher for HyMap (47 %) than for CASI (41 %), 

which shows the low overall accuracy of the CASI classification. However, while the 

OSA value is 41 % for shrubs and 41 % for pioneer trees, it drops to 4 % for dwarf 

shrubs, which might be causing such low average OSA value for woody vegetation. The 

reason for this might be that in 2001, when the image was taken, the ROI used as 

endmember for dwarf shrubs (Table 6) did not have the crown projection they showed 

when the data field was gathered (2005-06). 

Another factor that might be causing an improvement in the results from HyMap 

image is the endmember used for pioneer trees. In previous approach, ROIs for 

endmember definition of trees were not selected from the wide forested area in the south 

of the lake (Figure 25 A). This was because of uncertainties regarding the field data 

gathered in this area in 2002. In this case, because this area was not correctly mapped in 

previous approach (Figure 22 D and Figure 25 A), data from 2002 was used together 

with data from 2005-06 to make up the ROI for pioneer trees. OSA value for HyMap 

improved from 35 % (Table 10) to 64 % (Table 12).  

Besides, ROIs representing the endmembers were not unique pixels. In this 

approach they were conformed by a combination of pixels. These pixels were selected 

preferably from different regions in the area to reduce exclusion for grouping effects. 

Regarding the distribution of OSA values (Appendix 11) we may observe two 

things. Comparatively, OSA values are higher for HyMap classification than for CASI, 

as inferred from the average values (Table 12). As a general trend, in the HyMap image, 

values are higher in those regions were plants are more densely grouped (Figures 89.a 

and 90.a).  

From the abundance maps observed in Appendix 8 we may observe that clear 

trends and complementary features are shown in the distribution of PFTs in the case of 

HyMap (Figure 79). CASI abundance maps show, in general, less clear trends and 

redundancy of high fractions in same areas for different classes, e.g. grasses and shrubs.  

HyMap RMSE image shows similar values and features using ten or six 

endmembers. Therefore, discussion made in section 5.2.1 is applicable here, except for 

region J which did not show high RMSE.  Regarding the CASI image a very high 
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RMSE values are found. These are specified in section 4.3.2. These high errors are an 

indication that the endmembers in the CASI unmixing were not correctly addressed. 

High errors appear in regions with presence of grass. Regions with presence of 

Crataegus monogyna (dwarf shrubs) show high RMSE value as well. High errors are 

encountered too in regions with other tree species (Section 4.3.2) because they were not 

considered as endmembers. In general, we may observe that high errors in CASI do not 

show clear trends as they show in HyMap. Instead, they are more evenly distributed in a 

sparkling configuration. This indicates low precision in the unmixing model.     

 
 
Figure 27: RMSE image from the unconstrained unmixing of HyMap image using 10 endmembers 
(a), using 6 endmembers (b) and CASI image using 6 endmembers (c) 

 

From the scatter plots shown in Appendix 9 (Figure 82) we may derive that 

classification of all PFTs for HyMap show a positive trend close to the one to one line 

(100 to 100 in this case). However, the dispersion is still quite high, with low R2 values. 

Plots with higher observed coverage show less dispersion than the rest. Figure 83 shows 

the scatter plots resulting from the CASI classification. We can see that trends are worse 

for all PFT classes.  

In Appendix 10 (Figures 84 and 85) we observe a good trend of agreement 

between the abundance maps from HyMap and the plots of each PFT. Figures 86 and 

87, from CASI, show a lower agreement, except for the class Pioneer trees, which is 

good mapped in some regions but in others is over estimated. One possible explanation 

for this is that its ROI spectrum was confused with the one from grass (Figure 72).  

Apart from the fact that woody vegetation covered less area in 2001 than in 2005-

06, other important factors may be causing also low accurate results in the case of the 

Figure (a) Figure (b) Figure (c) 
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CASI image as the number of spectral bands. HyMap image, with 126 bands, shows in 

this study more adequate characteristics to classify intimate mixtures of vegetation PFTs 

than the multispectral image CASI, with 10 bands. Another cause of low is that this 

image was initially in RD coordinates and it was transformed to UTM, as explained in 

section 3.3.3.1. During this projection transformation, some spatial inaccuracies were 

observed. A translation of 10 m east was performed to correct this shift as a practical 

solution. But, likely, the geo-referencing of the CASI image support inaccuracies which 

might have affected the unmixing procedure. One of the possible reasons behind this 

shift might the specific geometrical correction this image was object to. 

5.3.2 Monitoring PFTs in river floodplains 
   This section is the answer to the last research question: “Is it feasible to monitor 

shrubs encroachment by comparing two hyperspectral images from two different 

sensors, while each of these images is analyzed by the previous methodology?”  

Changes in vegetation distribution between the years 2001 and 2004 can be 

derived from the comparison of the hard classified images presented in Figure 28. 

Figure 29 shows these changes quantitative. According to Figure 29, grasses and dwarf 

shrubs increased their extension from 2001 to 2004, and forbs, shrubs, trees and sand 

decreased.   

 
 
Figure 28: Hard classified maps from fully constrained unmixing, CASI 2001 (a) and HyMap 2004 
(b) 
 

Figure (a) Figure (b) 
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Figure 29: Changes in the extension of PFTs according to the classification of the images CASI 
(2001) and HyMap (2004). 
 

However, the unreliability of the CASI image classification, as discussed in 

section 5.3.1, disables these affirmations. After all, monitoring PFTs using spectral 

techniques is feasible as long as mapping PFTs is feasible. Therefore, the same 

considerations regarding mapping PFT explained in section 5.2.5 should be applied 

here. 
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6 CONCLUSIONS 
This thesis was aimed to develop an imaging spectroscopy-based method for 

mapping and monitoring plant functional types in river floodplains, with special 

emphasis on monitoring the process of shrub encroachment.  

In despite of the high heterogeneity of vegetation in a river floodplain it is possible 

to map PFTs by using Spectral Mixture Analysis. A high number of PFT classes is not 

required to reach a high classification accuracy. However, of primary importance is the 

division of vegetation into PFTs. This division should satisfy two conditions: a) the 

spectral separability of classes and b) the characterization into classes that show 

different hydraulic roughness. The woodiness of the plant must lead the division at the 

highest level. At a second level, most abundant woody species must serve as basis for 

the division. Shrubs and trees show relatively high classification accuracy with respect 

to herbs. Herbaceous vegetation show improved results when divided into two groups: 

graminoids and forbs. Graminoids are more easily classified than forbs. Classification 

performs better for those pixels covered mainly by unique species. Woody species, due 

to their different mean height, foliage density and inherent stem flexibility can be used 

by river managers to map differences on hydraulic roughness of river floodplains.  

An optimal methodology should involve the use of a hyperspectral image 

(HyMap) rather than a multispectral image (CASI). Field data is necessary to support 

the endmember selection and validation assessment. A temporal and spatial 

coordination between image and field data is an important requirement. Qualitative data 

in the field should be gathered, for this application, in the form of percentages of species 

coverage per plot in a unique stratum. Grazed areas should be specified. Grouping 

density must be considered because of its importance for hydraulic roughness. LiDAR 

data may be used to support spectral techniques in the analysis of grouping structures 

and shadow in future research. The preprocessing of the images must include an 

atmospheric correction, an accurate geo-referencing and a masking of the area of 

interest. SMA is applied first by a selection of endmembers (preferably from the image, 

but it could be also done from a reliable endmembers’ library). It is recommended not to 

use a unique pixel per endmember but instead by merging pixels from different regions 

in the study area, as accuracy improves in the region where the endmembers are 

selected. Then, it follows a MNF transformation, which is necessary to reduce the data 

and exclude noise. After the linear unmixing is applied, a validation analysis should be 
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performed. Different validation approaches will underline different aspects of the 

classification accuracy. 

In this way, changes of PFTs distribution in time can be derived from a time series 

of hyperspectral images. But, previously, in order to reduce some uncertainties, 

previous methodology should be tested using field data and hyperspectral images from 

same acquisition year and period of the year. 

Imaging spectroscopy techniques show in this research to be a promising tool to 

map vegetation in river floodplains. The developed methodology could improve the 

efficiency of the tasks of the river managers with respect to monitoring nature 

rehabilitation and flood risk management. However, some effort has to be done to bring 

to an agreement the conditions for the application of spectral techniques and the needs 

of the ecological models with respect to the characterization of PFTs. 
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7 RECOMMENDATIONS 
In this chapter several recommendations for future research are listed: 

• PFTs abundance maps obtained by spectral mixture analysis may be used to 

initiate or validate the dynamic vegetation model SMART2-SUMO2 to address 

the potential of remote sensing techniques when simulating vegetation models. 

• Spectral mixture analysis could be applied to a specific band selection and test 

whether there is an improvement or not. The response of plant canopies to 

radiation is a function of the intensity of radiation in various spectral regions, 

and the absorbing and transmitting properties of the vegetation. Leaves reflect 

little in the blue and red wavelengths due to absorption by photosynthetic 

pigments, and reflect strongly in the near-infrared (NIR) due to intra-and inter- 

leaf scattering. At the canopy level, multiple scattering between layers of 

vegetation increases NIR reflectance and is related to canopy geometry and leaf 

optical properties (Law et al., 1994; Gao et al., 2003). The reflectance in the 

NIR region incorporates also a nonlinear (interaction) term related to multiple 

scattering (Gilabert et al., 2002). 

• Horizontal density of plants, which has an important role in hydraulic roughness 

(Anderson, 2006), could be mapped using LAI index derived by using spectral 

techniques. 

• Combination of spectral methods, such as SMA, with the use of LiDAR or 

other IR based images could be tested. This would avoid the effect of shadows 

and improve the separability between different grouping structures (Geerling et 

al., 2006). 

• The application of advanced unmixing techniques such as MESMA (Multiple 

Endmember Spectral Mixture Analysis) can give improved results. MESMA is 

recommended to face the high heterogeneity of vegetation in the 

Millingerwaard. The spatial and spectral variability, which is a challenge in the 

Millingerwaard, it is potentially addressed by multiple endmember spectral 

mixture analysis (MESMA) (Powell et al., 2005). This method allows the 

number and type of endmembers to vary on a per pixel basis (Powell et al., 

2005). MESMA is especially recommended when there are different spectra for 

the same specie (Rosso et al., 2005). It allows for the simultaneous testing of 
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more than one endmember per class which appears to produce higher accuracy 

(Rosso et al., 2005).  

• Evidential reasoning should be also tested to map PFTs. This method relates 

indexes as LAI, EVI, albedo, etc. with PFTs. It was applied by Sun et al. (2006) 

at a global scale using MODIS images. Past research has shown that evidential 

reasoning can produce better results compared to traditional classifiers (Sun et 

al., 2006). 

• VCNNC (Vegetation Community based Neural Network Classifier) could also 

be used in future research. It provides sub-pixel fractional abundance of 

vegetation species with high accuracy (Wang et al. 2006), which constitutes 

useful information in these areas. 

• Further work using medium-resolution sensors like MODIS and MERIS is 

recommended to upscale the approach from the floodplain level to the river 

catchment scale. 
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9 APPENDIXES



 I 

APPENDIX 1: Information on images 
Table 13: Characteristics of HyMap image and CASI image 
 HyMap CASI 
Acquisition date 28th July 2004 (Strip number 1) 15th August 2001 
IFOV (Instantaneous 
Field Of View) 

2.5 mrad along track 
2.0 mrad across track 

 

Field of view 61.3 degrees  
Pixels 1538 along track 

512 across track 
288 along track 
512 across track 

Swath 2300 m at 5 m GIFOV (along track) 
4600 m at 10 GIFOV (along track) 

 

Spectral configuration   
VIS Spectrometer (1) 

Number of bands 
Band number 
Spectral range 
Spectral resolution 

 
30 
1-30 
450-890 nm 
8.1-16.2 nm 

 
6 
1-6 
437-705 nm 
18 nm 

NIR Spectrometer (2) 
Number of bands 
Band numbers 
Spectral range 
Spectral resolution 

 
32 
31-62 
890-1350 nm 
14.5-16.9 nm 

 
4 
7-10 
729-890 nm 
18 nm 

SWIR1 Spectrometer (3) 
Number of bands 
Band numbers 
Spectral range 
Spectral resolution 

 
32 
63-94 
1400-1800 nm 
13.1-15.6 

 
 
 

SWIR2 Spectrometer (4) 
Number of bands 
Band numbers 
Spectral range 
Spectral resolution 

 
32 
95-126 
1950-2480 nm 
18.3-21.3 nm 

 

Data scaling   
Final HyMap units 
(calibrated at-sensor 
radiance) 

L [µW / cm2 sr nm] 
 

 

Data rescaling 
 

L = 1000 DN (bands 1-62) 
L = 4000 DN (bands 63-126) 

 

Data formats   
HyEco-1_rad.bsq  Band Sequential (BSQ). Calibrated 

radiance X,y: pixels [ ] Z: [µW / cm2 sr 
nm] 

 

HyEco-1_rad_geo.img Band Interleaved by Line (BIL)  
Sampling   
Line rate (lines per second)  16 Hz   
Resampling Bilinear  
Pixel size 5 x 5 m 2 x 2 m 
Map projection  UTM, Zone 31 N Stereographic. 

RD Dutch Coordinate System 
Geodetic Datum WGS-84 Bessel 
Parameters of strip1   
Flight altitude  2300 m (above sea level)  
Flight heading 0 deg  
Solar position 
 

Air mass: 1.192 
Zenith: (refracted): 33.050 
Azimuth: 178.913 
Cos incidence: 0.838 
Cos zenith: 0.838 

 

Solar day Solar time: 717.495  



 II  

 Julian day: 53214.984 
Acquisition time 
calculation 
 

UTC (Universal Time) = GMT 
(Greenwich 
Mean Time) 
GMT = MEST -2 (Middle European 
Summer 
Time) 
MEST = Local time 

 

Acquisition time 11:38 hrs UTC 
13:38 hrs MEST (or local time) 

 

Start latitude / start 
longitude 

51.8953 N / 5.9947 E  

End latitude / end 
longitude 

51.8525 N / 5.9936 E  

Dimensions raw (x = 
across track, y = along 
track, z = spectral bands) 
[pixels] 

512, 1538, 126 (198’438’912 bytes = 
189 MB) 
 

 

Dimensions geocoded (x = 
long., y = lat., z = 
spectral bands) [pixels] 

581, 1416, 126 (207’319’392 bytes = 
197 MB) 
 

 

 
Source: Kooistra et al. (2005), Verrelst (2004) and Geerling et al. (2006). 
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APPENDIX 2: Endmembers selection 
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Figure 30: ROIs spectra small herbs 
 

Robust herbs
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Figure 31: ROIs spectra robust herbs 
 

Small shrubs
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Figure 32: ROIs spectra small shrubs 
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Medium Shrubs
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Figure 33: ROIs spectra medium shrubs 
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Figure 34: ROIs spectra robust shrubs 
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Figure 35: ROIs spectra robust trees 
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Crataegus monogyna
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Figure 36: ROIs spectra RWSC 
 
 

 
Figure 37: Location of final nine PFT endmembers 
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APPENDIX 3: Abundance maps and RMSE map. 
 

 
Figure 38: SNB abundance maps 

 
Figure 39: SNL abundance maps 
 

 
Figure 40: RNB abundance maps 
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Figure 41: RNL abundance maps 
 

 
Figure 42: SWS abundance maps 
 

 
Figure 43: MWS abundance maps 
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Figure 44: RWS abundance maps 
 

 
Figure 45: RWSC abundance maps 
 

 
Figure 46: RWT abundance maps 



 IX 

 
Figure 47: Sand abundance maps 

 
Figure 48: RMSE abundance maps 
 

 
Figure 49: Hard classified image from fully constrained unmixing 



 X 

APPENDIX 4: Comparison of observed vs. modeled by means of scatter 
plots 
a) Unconstrained linear spectral unmixing 
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Figure 50: Herbaceous PFTs fractions predicted by unconstrained unmixing compared to fractions 
observed in the field in 2002 
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MWS cover y = 1.3904x - 52.962
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Figure 51: Woody PFTs fractions predicted by unconstrained unmixing compared to fractions 
observed in the field in 2002 (SWS) and 2005-06 (rest) 
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Figure 52: Herbaceous PFTs fractions predicted by unconstrained unmixing compared to fractions 
observed in the field in 2004 

SNB cover y = 0.5068x - 22.544
R2 = 0.2525

-50

0

50

100

0 20 40 60 80 100

Observed

M
o

d
el

ed

 

SNL cover y = 1.2358x + 14.818
R2 = 0.4426

-20

0

20

40

60

80

100

0 20 40 60 80 100

Observed

M
o

d
el

ed

 



 XII  

RNB cover y = 0.0695x - 1.4994
R2 = 0.0053

-40
-20

0
20
40
60
80

100

0 20 40 60 80 100

Observed

M
o

d
el

ed

 

RNL cover y = -0.1899x + 14.412
R2 = 0.02

-40
-20

0
20

40
60
80

100

0 20 40 60 80 100

Observed

M
o

d
el

ed

 
Figure 53: Herbaceous PFTs fractions predicted by unconstrained unmixing compared to fractions 
observed in the field in 2005 

b) Semi-constrained linear spectral unmixing 
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Figure 54: Herbaceous PFTs fractions predicted by semi-constrained unmixing compared to 
fractions observed in the field in 2002 
 

SWS cover y = 0.2244x + 22.108
R2 = 0.2179

0

20

40

60

80

100

0.00 20.00 40.00 60.00 80.00 100.00

Observed

M
o

d
el

ed

 

MWS cover y = 1.4735x - 49.724
R2 = 0.068

-100

-50

0

50

100

0 20 40 60 80 100

Observed

M
o

d
el

ed

 



 XIII

RWS cover y = 0.9038x - 40.853
R2 = 0.229

-40

-20
0

20

40

60
80

100

0 50 100 150

Observed

M
o

d
el

ed

RWT cover y = -0.5471x + 56.734
R2 = 0.1551

-40

-20

0
20

40
60

80

100

0 50 100 150

Observed

M
o

d
el

ed

RWSC cover y = 0.5325x + 25.518
R2 = 0.0257

-50

0

50

100

0 20 40 60 80

Observed RWSC

M
o

d
el

ed

RWSC cover y = -1.1485x + 116.62
R2 = 0.2515

-100

-50

0

50

100

0 50 100 150

Observed RWS

M
o

d
el

ed

 
 
 
Figure 55: Woody PFTs fractions predicted by semi-constrained unmixing compared to fractions 
observed in the field in 2002 (SWS) and 2005-06 (rest) 
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Figure 56: Herbaceous PFTs fractions predicted by semi-constrained unmixing compared to 
fractions observed in the field in 2004 
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Figure 57: Herbaceous PFTs fractions predicted by semi-constrained unmixing compared to 
fractions observed in the field in 2005 
 

c) Fully constrained linear spectral unmixing 
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Figure 58: Herbaceous PFTs fractions predicted by fully constrained unmixing compared to 
fractions observed in the field in 2002 
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Figure 59: Woody PFTs fractions predicted by fully constrained unmixing compared to fractions 
observed in the field in 2002 (SWS) and 2005-06 (rest) 
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Figure 60: Herbaceous PFTs fractions predicted by fully constrained unmixing compared to 
fractions observed in the field in 2004 
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Figure 61: Herbaceous PFTs fractions predicted by fully constrained unmixing compared to 
fractions observed in the field in 2005 
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APPENDIX 5: Comparison of observed vs. modeled by overlaying plots to 
maps 

 

 
Figure 62: Abundance map of herbaceous PFTs overlaid with validation plots from 2002 
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Figure 63: Abundance maps of small woody vegetation overlaid with validation plots from 2002 
and medium and robust woody vegetation overlaid with validation plots from 2005-06 
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Figure 64: Abundance maps of RWSC overlaid with validation plots from 2005-06 
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Figure 65: Abundance map of MWS overlaid with MWS individual plants (a) and (b) and 
Sambucus nigra (c) and (d), field data from 2005-06 
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Figure 66: Abundance map of RWS overlaid with RWS individual plants (a) and (b) and Salix 
fragilis (c), field data from 2005-06 
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Figure (c) 

Figure (b) 
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Figure 67: Abundance map of RWSC overlaid with RWS individual plants (a) and (b) and 
Crataegus monogyna (c) and (d), field data from 2005-06 
 

Figure (a) Figure (b) 

Figure (d) Figure (c) 
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Figure 68: Abundance map of RWT overlaid with RWT individual plants (a) and Salix alba (b), 
field data from 2002 and 2005-06 

Figure (a) Figure (b) 
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APPENDIX 6: OSA (Overall Sub-pixel Accuracy) spatial distribution 

 
Figure 69: Overall sub-pixel accuracy spatial distribution for herbaceous vegetation (SNB, SNL, 
RNB and RNL) 
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Figure 70: Overall sub-pixel accuracy spatial distribution for small woody vegetation (SWS) and 
medium and robust woody vegetation (MWS, RWS and RWT) 

 
Figure 71: Overall sub-pixel accuracy spatial distribution for RWSC 
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APPENDIX 7: Temporal analysis. Endmembers 
a) CASI image 
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Figure 72: Endmembers spectra from CASI  
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Figure 73: Spectrum of various herbaceous plots (CASI).  Red spectra correspond to forbs while 
blue correspond to grasses 
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Figure 74: Spectrum of Pioneer trees (Salix sp.) (CASI). Red spectra correspond to isolated 
individuals or small groups in the western area while blue spectra correspond to the forested area 
on the East  
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b) HyMap image 
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Figure 75: Endmembers spectra from HyMap 
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Figure 76: Spectrum of various herbaceous plots (HyMap).  Red spectra correspond to forbs while 
blue correspond to grasses 
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Figure 77: Spectrum of Pioneer trees (Salix sp.) (HyMap). Red spectra correspond to isolated 
individuals or small groups in the western area while blue spectra correspond to the forested area 
on the East 
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Figure 78: Endmember location for HyMap and CASI
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APPENDIX 8: Temporal analysis. Abundance maps and RMSE maps 

 

 
Figure 79: Abundance maps of the PFTs classes Grass, Forbs, Dwarf shrubs, Shrubs and Pioneer tress. First row corresponds to HyMap unconstrained unmixing 
and second row corresponds to CASI unconstrained unmixing. 
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Figure 80: Abundance maps for Sand and RMSE from unconstrained unmixing, HyMap (a)/(c) and 
CASI (b)/(d) 
 

 
 
Figure 81: Hard classified maps from fully constrained unmixing, HyMap (a) and CASI (b) 

Figure (a) Figure (b) Figure (d) Figure (c) 

Figure (a) Figure (b) 
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APPENDIX 9: Temporal analysis. Comparison of observed vs. modeled by 
means of plots 
 

a) HyMap Unconstrained Unmixing 
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Figure 82: PFTs fractions predicted by HyMap unconstrained unmixing compared to fractions 
observed in the field in the years 2002 (Grass and Forbs) and 2005-06 (Dwarf shrubs, Shrubs and 
Pioneer trees) 
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b) CASI Unconstrained Unmixing 
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Figure 83: PFTs fractions predicted by CASI unconstrained unmixing compared to fractions 
observed in the field in the years 2002 (Grass and Forbs) and 2005-06 (Dwarf shrubs, Shrubs and 
Pioneer trees) 
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APPENDIX 10: Temporal analysis.  Comparison of observed vs. modeled 
by overlaying plots to maps 
a) HyMap Unconstrained Unmixing 

 
Figure 84: HyMap abundance maps of Grass, Forbs and Dwarf shrubs overlaid with individual 
plants from each class respectively, field data from 2002 (Grass and Forbs) and 2005-06 (Dwarf 
shrubs) 
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Figure 85: HyMap abundance maps of Shrubs and Pioneer trees overlaid with individual plants 
from each class respectively, field data from 2005-06 
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b) CASI Unconstrained Unmixing  

 

 
Figure 86: CASI abundance maps of Grass, Forbs and Dwarf shrubs overlaid with individual 
plants from each class respectively, field data from 2002 (Grass and Forbs) and 2005-06 (Dwarf 
shrubs) 
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Figure 87: CASI abundance maps of Shrubs and Pioneer trees overlaid with individual plants from 
each class respectively, field data from 2005-06 
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APPENDIX 11: Temporal analysis. OSA (Overall Sub-pixel Accuracy) 
spatial distribution 

 
Figure 88: Overall sub-pixel accuracy spatial distribution for herbs. Results from fully constrained 
unmixing HyMap (a) and CASI (b) 

 
Figure 89: Overall sub-pixel accuracy spatial distribution for woody vegetation I. Results from fully 
constrained unmixing HyMap (a) and CASI (b) 
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Figure 90: Overall sub-pixel accuracy spatial distribution for woody vegetation II. Results from 
fully constrained unmixing HyMap (a) and CASI (b) 

Figure (a) Figure (b) 


