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Abstract 
 

The aim of this study is to retrieve pixel-based canopy cover and crown diameter for a boreal 
mountain forest located in the Swiss National Park to help evaluating the quality of the 
protection provided by the forest against natural hazards. The methodology involved the use 
of a radiative forest canopy reflectance model – the Geometric-Optical Mutual Shadowing 
(GOMS) model of Li and Strahler, high resolution ROSIS and multi-angular CHRIS/PROBA 
data. 
The ROSIS image was classified in 5 classes (sunlit background, sunlit canopy, shadow, 
riverbed and road). This classification was used to spatially unmix the nadir CHRIS image 
and retrieve the signatures of the sunlit background, sunlit canopy and shadow endmembers. 
The 5 CHRIS angular acquisitions were then spectrally unmixed using those 3 endmembers to 
provide images of the proportion of sunlit background for each viewing angle. Finally, the Li-
Strahler model was inverted over the proportion images using stand and tree parameters, 
viewing and solar angles, slope and aspect data. Since the field measurements could not be 
obtained simultaneously, the canopy cover and crown diameter reference data was computed, 
by using LiDAR-derived tree data. 

The backward CHRIS viewing angles did not provide realistic results for a sufficient number 
of pixels and were discarded from the study. The analysis showed that the proportion of sunlit 
background was underestimated for the nadir viewing angle and overestimated for the 
forward scatter viewing angles. As a consequence, both the canopy cover and the crown 
diameter were overestimated for the nadir viewing angle and underestimated for the forward 
scatter viewing angles. The correlation between the model inversion output and the reference 
data were very weak. The combination of the inversion outputs for the individual viewing 
angles did not provide better results. The results were better for the canopy cover (R-squares 
between 0.01 and 0.13) than for the crown diameter (R-squares between 0.01 and 0.05). The 
nadir estimate provided the best results for the canopy cover. No best estimate could be 
distinguished for the crown diameter. 
The poor quality of the results might be due to the presence of small trees in the understory, 
the assumption that the relative illumination and viewing geometry of the ROSIS and CHRIS 
nadir images were identical, the assumption of Lambertian behaviour of the canopy 
endmember for the spectral unmixing, the choice of an ellipsoid crown shape and the use of a 
random distribution to characterize the repartition of the trees over the scene for the model 
inversion. 

Further research should first compare the model outputs to the field data. Then, different 
crown shapes may be used for the model inversion. It may also be useful to input the pixel 
tree density. To solve for the non-Lambertian behaviour of the canopy endmember, one could 
try to simulate the canopy signature for the zenith angles corresponding to the CHRIS 
acquisition geometry. Finally, to be able to evaluate the quality of the protection provided by 
the forest, the study area has to be extended to the whole forested area. This should involve 
the collection of protection, meteorological and soil data. 
 

Keywords: 

Conifer forest, canopy cover, crown diameter, hazard protection, multi-angular data, 
CHRIS/PROBA, Li-Strahler BRF model 
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1 Introduction 

1.1 Context and background 

Forests are an important component of the earth’s biosphere; they cover 30 % of the land 
surface (FAO, 2006). Besides their wide geographic extent, forest ecosystems have a great 
importance with regard to human well-being: they provide us with a wide range of services 
such as biodiversity, soil and water protection, supply of wood and non-timber forest 
products, carbon sequestration and socio-cultural services (MEA, 2005). In addition, forest 
ecosystems can protect human habitations and activities from natural hazards (Stoffel et al., 
2006). This protection service is especially important in mountainous areas where not only 
floods but also mudslides, avalanches, stone falls and earthquakes can occur (Hewitt, 1992). If 
the forest management is adapted to take the hazards into account, forests can reduce the 
frequency and the magnitude of the hazards events and thus reduce the damages caused to 
humans and their activities (Schönenberger et al., 2005). 
First of all, a protection forest has to be dense enough to fix the snow and the ground and to 
block the falling rocks effectively. Secondly, to resist to storms and to offer a long term 
protection, the forest has to be stable (Motta and Haudemand, 2000). In practice, this means 
that the tree density shouldn’t exceed a certain threshold. Therefore, tree density is an 
important forest parameter to ensure a good protection level. When considering the flood 
hazard, it is necessary to take also the green part of the trees into consideration. Indeed, the 
leaves physically intercept the rain and they evapotranspirate water absorbed from the ground, 
increasing the recharge of the groundwater aquifers for the next rain event (Xiao et al., 1998). 
Therefore, for monitoring purposes, information on Canopy Cover (CC) and Leaf Area Index 
(LAI) is required. Finally, four parameters are of particular interest when assessing the hazard 
protection level provided by a forest, namely tree density, standing timber volume, canopy 
cover and LAI. 
Remote sensing techniques are able to retrieve those four parameters over large forest areas. 
Indeed, canopy cover and LAI were among the first parameters estimated using satellite 
images, and later, retrieval of stand density was achieved through the inversion of geometric-
optical radiative transfer models of the forest canopy, and the standing timber volume can be 
estimated from LiDAR data. Remote sensing techniques can therefore improve the 
monitoring of mountainous forests with respect to their protective role, especially in areas that 
are difficult to access.  

New developments in this field involve the use of multi-angular data and canopy radiative 
transfer models. The combined use of both sources of information is capable of retrieving 
forest stand parameters. The multi-angular data and the inversion process are described in the 
next two paragraphs. 

 

1.1.1 Information content of multi-angular data 

Multi-angular data represent a set of mono-angular data of the same target acquired from 
different viewing angles. At the beginning, multi-angular data were obtained by gathering 
mono-angular data acquired by the sensor over a few overpasses of the target. Many weeks 
were usually necessary to acquire a sufficient number of images with different viewing 
geometries. Due to the changes of vegetation, sun geometry and atmospheric conditions, it 
was very complex to use multi-angular data (Diner et al., 1999). In the 90s, special platforms 
with a high hinging capacity were built to acquire the multi-angular data. They enable the 
sensor to take several images from different points of the trajectory during the overpass. The 
images from the different angles are then acquired in a few minutes, which minimizes the 
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changes of vegetation, sun geometry and atmosphere characteristics. Examples of such remote 
sensing instruments are: the Multi-angle Imaging SpectroRadiometer (MISR), the 
POLarization and Directionality of the Earth’s Reflectances (POLDER) and the Compact 
High Resolution Imaging Spectrometer - Project for On-Board Autonomy (CHRIS/PROBA). 
Since these data contain directional information in addition to the standard spectral 
information of remote sensing acquisitions, multi–angular sensors open a wider range of 
scientific applications in cloud, aerosols, cryosphere and vegetation studies (Diner et al., 
1999). It was shown that multi–angular data enables a better discrimination of canopy 
structural details (Diner et al., 2005) such as foliage clumping index that cannot be calculated 
using mono-angular data (Chen et al., 2003). In addition, Weiss et al. (2000) showed that 
using multi-angular data instead of mono-angular nadir data improves the accuracy of the 
estimates of LAI, the Fraction of Absorbed Photosynthetically Active Radiation (fAPAR), the 
leaf chlorophyll content and the canopy cover. 

 

1.1.2 The inversion of canopy radiative transfer models 

A method to retrieve these forest parameters is to invert a canopy radiative transfer model. A 
canopy radiative model uses a range of inputs to simulate the spectral signature of a canopy. 
Model inversion can produce estimates only for the inputs of the model. Before realising the 
inversion itself, the model has to be calibrated since it uses the measured spectral signatures 
and the calibrated parameters to calculate the chosen parameter. One can divide canopy 
radiative transfer models into two categories: 1D or turbid medium models and 3-dimensional 
or geometric optical models. The 3D models perform better than the 1D models: Le Roux et 
al. (1997) found that the simulations of the 3D Radiation Interception in Row Intercropping 
(RIRI) model (Sinoquet and Bonhomme, 1992) matched the field measurements better than 
the simulations of the turbid Scattering by Arbitrarily Inclined Leaves (SAIL) model 
(Verhoef, 1984). In addition Asrar et al.(1992) compared Shultis’ 1D model (1988) to 
Myneni’s 3D model (1990) and concluded that the reflectance and the fAPAR of a 
heterogeneous canopy could only be correctly estimated by using the 3D radiative model. The 
3D canopy models are able to simulate the Bidirectional Reflectance Factor (BRF) of a scene. 
They can be inverted over multi-angular data. For example, Lacaze and Roujean (2001) 
successfully inverted the G-function and HOt SpoT (GHOST) model over muli-angular 
POLDER data to retrieve the vegetation clumping index. 

 

1.2 Problem definition 

Mountain forests are of particular importance for the protection of human lives and activities. 
The study area was therefore chosen in a mountainous area, namely, in the Eastern Ofenpass 
valley, located in the East of Switzerland. It was used as a test site to investigate if protection-
related forest parameters could be retrieved by inverting a canopy radiative transfer model 
over multi-angular remote sensing data. 
The Li-Strahler Geometric-Optical Mutual Shadowing (GOMS) BRF model (1985; 1992) has 
been chosen for the study. It was inverted over the multi angular CHRIS data available for the 
study area. Both the model and the data are further described in section 2. 

As aforementioned, the canopy cover is an important parameter to take into account when 
evaluating the hazard protection level provided by a forest. The code used for the model 
inversion enabled the retrieval of both canopy cover and crown diameter. Therefore, this 
study solely focussed on the estimates of canopy cover and crown diameter. 
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1.3 Research objectives and research questions 

The objective of this study was to evaluate the hazard protection level provided by the 
mountainous boreal forest of the study area by assessing the canopy cover and crown 
diameter. The performance of the Li-Strahler model inversion to estimate those parameters 
was evaluated, as well as the added value of the use of multi-angular CHRIS data to produce 
the estimates. The research questions associated to these goals are: 

(A) What is the quality of the protection against natural hazards provided by the 
mountainous boreal forest of the study area? 

(B) How accurately can structural parameters be estimated over a mountainous 
forest using multi-angular CHRIS data and the Li-Strahler model? 

This study used the version of the Li-Strahler model of 1992 which accounts for the mutual 
shadowing effects. The methodology described by Schaaf et al. (1994) was used to deal with 
the slope of the study area. 

 

1.4 Report outline 

Chapter 2 presents the materials used in the study: the study area, the remote sensing images 
and the field and elevation data. The Li-Strahler model which was inverted to retrieve the 
forest structural parameters is extensively described. Chapter 3 describes the methods used to 
retrieve the results. An important place is given to the methods used to obtain the inputs for 
the model inversion. Chapter 4 presents the final inversion outputs and the intermediary 
results of the different steps of the methodology. Chapter 5 discusses the results and the 
methodology. The conclusions and recommendations for further research are presented in 
Chapter 6. 
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2 Materials 

2.1 Study area 

The study area is located in the Eastern Ofenpass valley, which is part of the Swiss National 
Park (SNP) (Figure 1). It has been used for a number of environmental studies (Koetz et al., 
2004; Morsdorf et al., 2004; Koetz et al., 2005) and is described by Koetz et al. (2004). The 
Ofenpass represents an inner-alpine valley at an average altitude of about 1900 m above sea 
level, with an annual precipitation of 900–1100 mm.  

 

 
Figure 1: Location of the Swiss National Park. 

 
The study area is located on a rather flat area downhill the valley, on the South facing 
mountainside. Its extent is approximately 1600 by 500 meters. The location and the extent of 
the study area were chosen in such a way to avoid as much as possible the topographic effects 
on the results. The study area was selected based on criteria of spatial homogeneity for 
topographic and illumination conditions. A sensitivity analysis showed that the mean and the 
standard deviation of the CHRIS reflectances varied very little while raising the slope from 0 
to 10.5% and decreasing the illumination from 100 to 85%. A slope of 10.5% and an 
illumination of 85% were thus chosen as boundary conditions. 

Figure 2 shows a situation map of the study area with the plots used during the field work. 
The data was georeferenced in the Swiss coordinate system whose parameters are given in 
Appendix 8.1. The study area contains 4 core test sites from the SNP2002 field data campaign 
(Koetz, 2003): the sites STA 1 and 2 are located in a dense forest area and the sites LWF 1 
and 2 are located in a low density area. A plot of the Long-term Forest Ecosystem Research 
(LWF) is also present in the study area. It is a long term plot used by the Swiss Federal 
Institute for Forest, Snow and Landscape Research (WSL) in the frame of the Long-term 
Forest Ecosystem Research program.  

Swiss  
National 
Park 
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Figure 2: Map of the situation of the study area and of the measurement sites. 

The forest of the study area is largely dominated by mountain pine (Pinus montana ssp. 
arborea) and contains some stone pine (Pinus cembra L.). The understory is characterized by 
low and dense vegetation composed mainly of various Ericaceae and Sesleria species.  

The forest of the study area is old. The LWF plot stand has regenerated after a period of clear 
cutting in the 18th and 19th centuries and has been without any management since the 
foundation of the Swiss National Park in 1914. The age of the trees ranges from 90 to 200 
years, the average being 150 years. More than 20% of the stand is constituted by upright 
standing dead trees. 

 

2.2 Multi-angular CHRIS data 

The CHRIS/PROBA instrument and its capacities are extensively described by Barnsley et al. 
(2004). CHRIS measures the reflectance of the scene in the spectral wavelength range from 
400 to 1050 nm with 18, 37 or 62 spectral bands, at a spatial resolution of either 17 or 34 m. 
The user can choose between full swath (13 km) and half swath recording. CHRIS is 
programmed to offer 5 operational modes. These are described in Table 1. 

Table 1: Characteristics of the 5 operational modes of CHRIS  
(Source: Barnsley et al., 2004). 

 Swath 
width 

Spatial 
resolution  

Number of 
spectral bands 

Intended use 

Mode 1 Full 34 m 62  
Mode 2 Full 17 m 18 studies of water bodies 

Mode 3 Full 17 m 18 studies of land surface 
and atmospheric aerosols 

Mode 4 Full 17 m 18 studies of chlorophyll 
Mode 5 Half 17 m 37  
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Thanks to the hinging capacity of the PROBA platform, CHRIS can acquire up to 5 images 
from 5 different viewing zenith angles between -60° and +60° from zenith (in theory: ±55°, 
±36° and 0°) in a few minutes when passing over the scene.  

 
The 5 images of the study area were recorded on June 27th 2004, in the operational mode 3 of 
CHRIS, under partly cloudy conditions (1/8th cloud cover). The viewing geometry of the 5 
images is shown in Table 2. The position of the sun at the recording moment was 
characterized by a zenith angle of -24.3º and an azimuth angle of 161.0º. A polar view of the 
situation is represented in Figure 3. It shows that the AC, AA and A9 images are in the 
forward scatter direction and the AB and AD images in the backscatter direction. 

 

Table 2: Acquisition geometry of the five CHRIS images as of June 27, 2004.  

CHRIS 
image 

Chronological 
order 

Theoretical 
Zenith 

Angle (º) 

Effective 
Viewing 
Zenith 

Angle (º) 

Viewing 
Azimuth 
Angle (º) 

AC 1 +55 +51.1 357.0 
AA 2 +36 +33.3 341.2 
A9 3 0 +21.2 315.2 
AB 4 -36 -37.8 216.0 
AD 5 -55 -54.6 208.9 

 

Figure 3: Polar plot of the acquisition geometry of the CHRIS images and  
of the illumination geometry as of June 27, 2004. 

The 5 images have been geometrically and radiometrically corrected by Kneubühler et al. 
(2005). The result of the preprocessing of the CHRIS data is geo-corrected Hemispherical-
Directional Reflectance Factor (HDRF) data, following the reflectance terminology of 
Schaepman-Strub et al. (2006), with a spatial resolution of 18 meters. The CHRIS images are 
shown in Figure 4. The AC image presents a big cloud which was masked for the results 
analyses. 
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Figure 4: CHRIS and ROSIS images as used in the study. 
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2.3 High resolution ROSIS data 

The Reflective Optics Imaging Spectrometer (ROSIS) is a pushbroom imaging spectrometer. 
It records the spectral signal with a 2-dimensional CDD array in 115 spectral bands in the 
spectral range 430 - 850 nm, with a sampling interval of 4 nm (Schulz and Piepen, 1998). 
The ROSIS image of the study area is presented in Figure 4. It was acquired on August 14th 
2002. As described by Schaepman et al. (2004), the ROSIS spectrometer was operated 
onboard of the DLR (German Aerospace Centre) Dornier DO-228 aircraft. The local 
illumination and observation conditions were a solar zenith angle of 45.3 º, a solar azimuth 
angle of 122.9 º and the flight heading of 293 º. There was no cloud coverage at the overflight 
time. The flight line was oriented close to the principal plane of the sun to minimize the 
directional effects. The image was geo-atmospherically corrected to obtain geocoded, 
topographically and atmospherically corrected surface reflectances (Koetz, 2003). The spatial 
resolution of the ROSIS data is 1m. 

 

2.4 LiDAR data 

The Light Detection and Ranging (LiDAR) data of the study area was acquired in October 
2002. The helicopter flight covered a total area of about 14 km2. The LiDAR system used was 
the Falcon II Sensor developed and maintained by the German company TopoSys. It is a 
pushbroom laser altimeter recording both first and last reflection from the laser signal on the 
ground (first/last pulse). The flight was conducted with a nominal height over ground of 850 
m, leading to an average point density of more than 10 points per square meter (p/m2). A 
smaller subset of the area (0.6 km2) was overflown with a height of 500 m above ground, 
resulting in a point density of more than 20 p/m2, thus, combining the two datasets yields to a 
point density of more than 30 p/m2 for both first and last pulse. The LiDAR data and its 
quality are further described by Morsdorf et al. (2004). In their study, they used the LiDAR 
data to derivate the geographic location and geometric characteristics of the trees. They 
validated the results with field data.  

In this study, the LiDAR data itself was not used, but the outputs from Morsdorf et al. (2004). 
Processed altimetric data was provided about more than 18000 trees in the study area. It 
contained: x and y coordinates, height, crown diameter, crown volume, crown area and height 
of the base of the crown. This data was used to calculate the v parameter (see Table 3) and to 
compute the reference images of canopy cover and crown diameter to check the results of the 
study. 
 

2.5 Digital elevation model 

The terrain topography is described by a Digital Elevation Model (DEM) with a spatial 
resolution of 18 meters. The DEM was used to correct geometrically both the CHRIS images 
and the ROSIS data. However, the DEM pixels were not co-registered to the CHRIS data: 
there was a shift of 9 meters in the x axis and of 5 meters in the y axis. To obtain a DEM co-
registered to the CHRIS data, the elevation data was resampled to 1 meter, then cut to the 
extent of the CHRIS images and aggregated again to 18 meters. 

In this study, slope, illumination and aspect data were derived from the DEM, using the 
topographic modelling possibilities of ENVI. The slope and illumination data were used to 
define the study area (see paragraph 2.1). The aspect data was used together with the slope 
data as an input for the inversion of the Li-Strahler model. The slope and aspect images are 
shown in Appendix 8.2. 
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2.6 Stand and tree data  

Most of the forest stand and tree data was collected on the LWF plot monitored by the Swiss 
Federal Institute for Forest, Snow and Landscape Research (WSL) in the frame of the Long-
term Forest Ecosystem Research program (see the map in Figure 2). The LWF plot contains 
2456 trees with a diameter at brEast height larger than 0.12 m over an area of 2 ha. The tree 
density is 1228 trees/ha. The height of the trees and the crown radius (r) were measured and 
enabled the retrieval of the mean tree height from ground to mid-crown (h) and the mean 
crown radius (R). The height of the crown base was visually estimated on the 4 core test sites 
during the field campaign of August 7-15, 2002. Together with the height of the trees, it 
enabled the retrieval of the mean half height of the crown (b). The stand and tree data is 
summarized in Table 3. More details about the collection of this data can be found in 
(Schaepman et al., 2004). 

Table 3: Recapitulative table of the stand and tree characteristics  
(Source: Schaepman et al., 2004). 

Parameter Notation  Unit Value 
Tree density  l ha-1 1228 
Mean half height of the crown b m 2.5 
Mean horizontal crown radius R m 0.882 

Coefficient ( )
( )2

2

rvariance

rmean
ω =  v m-2 1.235 

Mean tree height from ground to mid-crown h m 9.5 
 

 

2.7 GOMS model 

2.7.1 Origin and evolution of the model 

The Li-Strahler model (1985) is one of the first 3D canopy reflectance models. It was 
designed to model the nadir or near-nadir Bidirectional Reflectance Factor (BRF) of a conifer 
forest on a flat terrain. It uses parallel ray geometry to describe the illumination and viewing 
and it models the conifer trees as solid Lambertian cones casting shadows on a contrasting 
Lambertian background. The cones are randomly distributed and overlap freely. Geometric 
calculations are used to calculate the proportion of the following 4 components: sunlit canopy, 
shadowed canopy, sunlit background and shadowed background in the pixel. Knowing the 
signature of those four components and the illumination angle, the model calculates the nadir 
BRF of the pixel.  
Li and Strahler (1986) showed that their model could also be used to simulate BRF patterns if 
extended from nadir viewing to arbitrary illuminating and viewing directions. They did the 
necessary modifications and they also corrected a weakness of the model of 1985: the 
assimilation of the trees to opaque cones. With opaque cones, the shadowed areas are black 
and do not emit any radiation which does not correspond to reality and causes errors when the 
shadowed areas are viewed by the sensor. Therefore, Li and Strahler modified the model to 
make the canopy translucent. 
In 1992, Li and Strahler (1992) included the mutual shadowing effects in their model, thus 
obtaining a GOMS model. This enables to better simulate the high brightness of a forested 
scene when the illumination or/and the viewing directions have large zenith angles. This time, 
the model was developed with an ellipsoid as the basic crown shape to make the model more 
generally applicable than the cone shape used in the previous versions. 
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In 1994, Schaaf and Strahler (1994) extended the model of 1992 to compute the BRF and the 
Directional Hemispherical Reflectance (DHR) of vegetation on non flat terrain.  

The advantages of the Li-Strahler model are that it is invertible, it accounts for mutual 
shadowing effects at high Solar Zenith Angles (SZA) and it has been proven that the ellipsoid 
model of 1992 performs better than the cone and cylinder models for North American boreal 
coniferous forests (Peddle et al., 1999). It has successfully been used in different studies for 
example to calculate the tree size and density in semiarid woodlands in West Africa (Franklin 
and Strahler, 1988), to simulate the canopy shadow of semiarid woodlands in California 
(Franklin et al., 1991), to estimate the tree size of a Californian forest (Woodcock et al., 1994; 
Woodcock et al., 1997) and to retrieve the crown closure and the crown diameter of the Three 
Gorges forest in China (Zeng et al., 2007).  
 

2.7.2 The geometric basis of the model 

This section describes the model version of 1994 as used in this study. The subscripts i, v and 
s refer respectively to the illumination, the viewing and the slope angles. 

 

2.7.2.1 The geometric model of the forested scene 

Strahler and Jupp (1990) explained that the forest is modelled as a collection trees that are 
randomly distributed over the scene, following the Poisson law. The trees are represented by 
an ellipsoid on a stick. Since the trunks are not taken into account in the model, the stick is 
just a term to represent the height of the ellipsoid above the background; it has a null 
thickness and does not cast a shadow. The ellipsoids are assumed to be translucent 
Lambertian surfaces. They cast their shadows on the background, also assumed Lambertian. 

Four parameters are necessary to describe the forest: l = density of the trees, r = crown 
horizontal radius, b = half height of the crown and h = height of the crown base (Figure 5). 
Lognormal distributions for the parameters h and r are very typical in forestry and are 
therefore used in the model.  

 
Figure 5: Tree geometry parameters. 

 

2.7.2.2 The four model components 

Based on the above description of the forest geometry, the scene can be decomposed into 4 
components: sunlit canopy (C), sunlit background (B), shadowed canopy (T) and shadowed 
background (Z) as depicted in Figure 6. 

b 

r 

h 
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The scene consists of the four components only, as shown in equation (1). Then, for a given 
viewing direction, the spectral signature of a pixel is the area-weighted sum of the signatures 
of the 4 components. This is transposed mathematically in equation (2).  

1KKKK ztgc =+++  (1) 

ZKTKGKCK P ztgc +++=  (2) 

Where Kc, Kg, Kt and Kz are the proportions of the pixel area covered by sunlit canopy, sunlit 
background, shadowed canopy and shadowed background viewed by the sensor, P is the 
spectral signature of the pixel, C, G, T, and Z are the spectral signatures of sunlit canopy, 
sunlit background, shadowed canopy and shadowed background (Source: Li and Strahler, 
1986). 

 

Figure 6: The four components of the Li-Strahler model  
(Source: Franklin and Strahler, 1988). 

 

Based on geometrics, the proportion of each of the four components can be calculated using 
forest and tree structural parameters. To invert the model, the proportion of viewed sunlit 
background (Kg) is of particular interest. It is calculated according to an overlap function, as 
described in the next paragraph. 
 

2.7.2.3 The proportion of viewed sunlit background and the overlap 
function  

The viewed proportion of each of the four components depends on the size and shape of the 
tree crowns, on the illumination and viewing angles, on the slope and aspect of the scene and 
on the degree of overlap of the crowns and components, which is a function of the tree 
density. Strahler and Jupp (1990) proved that it is possible to estimate the proportion of each 
component using geometric optics and Boolean models in flat terrain conditions. Here is an 
overview of the calculation of the viewed sunlit background proportion Kg. 

Since the tree distribution is random, the Boolean models can be applied. They show that the 

gap probability between objects within a layer is ( )φθ,Âλe ⋅−  where l is the density of the object 
centres on the plane at the base of the layer, u the zenith angle, f the azimuth angle and 

Shadowed 
canopy 

Sunlit 
canopy 

Shadowed background 
Sunlit background 

Sun Satellite 



 29 

( )φθ,Â  is the average of the function( )r,θ,A φ  representing the area of a sphere of radius r 
projected at angles u and f onto the base of the layer. So the proportion of viewed background 

is ( )vv ,θÂλe φ⋅− and the proportion of sunlit background is ( )ii ,θÂλe φ⋅− . Kg is the proportion of 
background that is both viewed and sunlit. It is given by the joint probability of the two events 
“the point of background is sunlit” and “the point of background is viewed”. If those two 
variables were independent the joint probability would be: 

( ) ( ) ( ) ( )[ ]vviivvii ,θÂ,θÂλ,θÂλ,θÂλ eee φφφφ +⋅−=⋅−⋅⋅− . However, the variables are not independent 
since when illumination and viewing positions are coincident, each sunlit background point is 
visible and each shadowed background point is not visible. This is what creates the hotspot 
effect.  

The proportion of viewed sunlit background has been proven to be:  

( ) ( ) ( )[ ]vv,iivvii ,θ,θÔ,θÂ,θÂλ
g eK

φφφφ −+⋅−=
 

(3) 

Where ( )vv,ii ,θ,θÔ φφ is the mean of the overlap function ( )r,vv,ii ,θ,θO φφ between illumination and 
viewing shadows of the crowns projected onto the background (Source: Strahler and Jupp, 
1990). 
 

This expression can be simplified by introducing vi φφφ −= and the anglesiθ′ and vθ′  defined 

by the function tanθ
r

b
θtan ⋅=′ . Theθ′ angles are the zenith angles of the normals to the 

tangents of the ellipsoid surface at the point of intersection of a ray at angle u that passes 
through the ellipsoid centre. This replacesiθ by the angle iθ′ that would generate the same 

shadow area if the crown shape was a sphere. Similarly, vθ is replaced by the anglevθ′ that 
would hide the same area from view if the crown shape was a sphere. For the nadir view, 

( ) 2rπ0,0A ⋅= , and for the off-nadir view, ( ) ( )
θsecrπ

θcos

rπ

θcos

0,0A
θ,A 2

2

′⋅⋅=
′

⋅=
′

=φ , because 

the area of the projection of the ellipsoid is the same whatever the azimuth angle f. Thus, 

( ) θsecRπθ,Â 2 ′⋅⋅=φ and equation (3) can be re-written as follows (Li and Strahler, 1992): 

( )[ ]φ,θ,θÔθsecθsecRπλ
g

vivi
2

eK ′′−′+′⋅⋅⋅−=  (4) 

 

Li and Strahler (1992) proved that the exact solution  for the overlap function on the principal 
plane is:  

( ) ( )( )vivi θsecθseccossin
π

1
,θ,θÔ ′+′−=′′ tttφ  (5) 

Where t is given by:  

( )vi

vi

θsecθsecb

cosθtanθtanh
cos

′+′
′−′⋅

=
φ

t  (6) 

 

Kc, Kt and Kz are calculated in the same way as Kg. Equation (2) can then be used to 
calculate the spectral signature of the pixel for different illumination and viewing geometry, 
thus yielding BRF patterns. However, these equations do not take the mutual shadowing of 
the crowns into account and are then only valid for small solar and viewing angles. 
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2.7.2.4 The mutual shadowing 

The mutual shadowing effect happens when the illumination and/or the viewing point are 
closed to the horizon: at such large zenith angles, the top of the trees are more likely 
illuminated and visible than the lower portions of the crown. Thus, the scene appears brighter 
than a model only based on random shadowing would predict. This effect is particularly 
important in the dense forests where the trees are close to one another. Li and Strahler (1992) 
developed a methodology to solve this problem. The mutual shadowing equations are 
important for the retrieval of the BRF at large zenith angles using the forward model, but they 
are not needed for the model inversion. The calculations are too complex to be presented here. 
One should retain that the mutual shadowing problem was solved by calculating the true 
proportion of sunlit canopy viewed by the sensor (Kc) and replacing it in the model 
calculations. Equation (4) is thus still valid. However, it can only be used for flat forested 
scenes, which is not the case of the Ofenpass study area. The model has to be adjusted to 
account for slope and aspect. This is done following the methodology described by Schaaf et 
al. (1994), as explained in the next section. 

 

2.7.2.5 The slope and aspect 

As shown in Figure 7, the slope of the terrain influences the shadowing within the forest: both 
the shadow of the crown on the background (Figure 7a and b) and the shadowed area within 
the crown (Figure 7c and d) are bigger on a slope facing away from sun than on a slope facing 
toward sun. It is then necessary to use the aspect to determine whether the slope faces away or 
toward the sun. 

Figure 7: Effect of the slope on the shadowing within a forest stand  
(Source: Gemmell, 1998). 

 
In the calculations, slope and aspect are accounted for by means of several coordinate system 
transformations (Schaaf et al., 1994). This process is described here.  
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Figure 8a shows the starting situation where the geometry is characterised by a slope anglesθ , 

slope aspectsφ , solar zenith angleiθ , solar azimuth angleiφ , viewing zenith anglevθ and 

viewing azimuth anglevφ .  

The first transformation changes the crown ellipsoids into spheres (see section 2.7.2.3): the 
angles iθ and vθ are replaced by the anglesiθ′ and vθ′ which would generate the same shadow 
area with a spherical crown shape. The situation is depicted in Figure 8b. 

Once the crowns are represented by spheres and the trunks ignored, a second transformation 
converting the entire scene to the slope coordinate system can be performed. The y-axis 
remains the same and the scene is rotated about it. The slope normal becomes the z’-axis and 
the x’-axis runs along the slope surface, as drawn in Figure 8c. The slope angle sθ ′′  and the 

slope aspectsφ ′′ are set to zero. The solar and viewing zenith and azimuth angles are redefined 

against the z’ and x’-axis toiθ ′′ , vθ ′′ , iφ ′′ and vφ ′′ . 

 

   

Figure 8: The coordinate transformations required to accommodate a sloping terrain 
in the Li-Strahler model (Source: Schaaf et al., 1994). 

 
Once the illumination and viewing angles are transformed in the slope coordinate system, the 
scene with the crown spheres (Figure 8c) can be treated as a flat surface. Equation (4) is then 
written as:  

( )[ ]φ,θ,θÔθsecθsecRπλ
g

vivi
2

eK ′′′′−′′+′′⋅⋅⋅−=  (7) 

 

The reflectance of each pixel for each couple of viewing zenith vθ ′′  and viewing azimuth vφ ′′  
angle are then calculated using equation (7) and the similar equations for Kc, Kt and Kz. 
These reflectance values are then associated back to the coordinates and viewing angles in the 
true space (Figure 8b) and finally, to a combination of true view zenithvθ and true view 

azimuth vφ angles (situation in Figure 8a) by transforming the crown spheres back into 

ellipsoids and by adding the slope aspectsφ .  

 

2.7.3 The model inversion 

2.7.3.1 The “treeness” parameter 

The model inversion is realized by introducing a new variable called “treeness” parameter that 
enables the retrieval of two forest parameters: the canopy cover and the crown diameter. The 
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treeness parameter, noted m, is defined by Woodcock (1994) as : 2rΛm ⋅= , where L is the 
number of trees in the pixel. The quantity m·p then represents the area of the pixel that would 
be covered by the tree crowns if they did not overlap. m is like a crown area index. It is an 
important parameter in the interface between the remote sensing signal and the forest 

parameters. The mean of m for a pixel is given by 2RΛM ⋅= , where R is the average crown 
radius for the trees in the pixel. M can be used to re-write equation (7) as follows: 

( )[ ]φ,θ,θÔθsecθsecMπ
g

vivieK ′′′′−′′+′′⋅⋅−=  (8) 

 
Therefore, using equations (5), (6) and (8), M can be inferred as: 

( )
( ) ( )ttt sincosπθsecθsec

Kln
M

vi

g

+−⋅+
−

=  (9) 

 

The variance of m, used later in the computation of the forest parameters (see next paragraph) 
is calculated over the whole image because its value is too close to zero for single pixels. It is 
noted V(m).  

 

2.7.3.2 Calculation of canopy cover and crown diameter  

Using the treeness parameter, the canopy cover (CC) and the mean crown diameter (CD) can 
be calculated for each pixel in the image, as shown in equations (10) to (12).  

Mπe1CC ⋅−−=  (10) 

( ) ( ) ( )
ω2

Mω1ωmV4Mω1
R

22
2

⋅
⋅+−⋅⋅+⋅+

=  (11) 

2R2DC ⋅=  (12) 

 

2.7.3.3 Inputs for model inversion 

In this study, the Li-Strahler model was inverted using the code in Interactive Data Language 
(IDL) of Zeng et al. (2007). It retrieves the pixel based variables forest canopy cover (CC) 
and crown diameter (CD). Those two parameters can be retrieved using only one component: 
the sunlit background. In addition, Peddle et al. (1999) found that three components are 
sufficient to calculate the proportion of sunlit background: sunlit background, sunlit canopy 
and shadow. The inputs required to invert the model are listed in Table 4. Since the forest of 
the study area consists of a unique type of forest, only one set of tree characteristics is 
necessary. The proportion of sunlit background is the input that influences the results most.  
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Table 4: Input parameters to invert the Li-Strahler model. 

 Input parameter Notation Unit 

Solar zenith angle iθ  Degree Sun geometry 

Solar azimuth angle iφ  Degree 

Viewing zenith angle vθ  Degree Viewing geometry 

Viewing azimuth angle vφ  Degree 

Tree density l m-2 Stand characteristics 

Proportion of sunlit background  Kg Unitless 

Mean half height of the crown b m 

Mean crown radius R m 

Coefficient ( )
( )2

2

rvariance

rmean
ω =  v m-2 

Tree characteristics 

Mean height of the crown base h m 

Slope sθ  Degree Terrain characteristics  

Aspect sφ  Degree 

 

 

The data for this study include multi-angular CHRIS data, a high resolution ROSIS image, 
forest and tree data from both a field campaign and a LiDAR study and a DEM. These data 
were processed to produce the inputs to invert the Li-Strahler model, following the 
methodology described in the next section. 
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3 Methods 
Most of the methodology was dedicated to the retrieval of the images of the sunlit background 
proportion (Kg) required to invert the model. This is not a straightforward process. Section 3.2 
briefly describes the first failed attempt to retrieve the Kg images before presenting 
extensively the successful methodology. Section 3.3 explains how the inversion of the Li-
Strahler model was conducted. Section 3.4 describes the preparation of the reference data. 
Finally, section 3.5 presents the methodology used to analyse the different results obtained 
during the study. However, the first methodological step focussed on creating a mask of the 
forest in the study area. 

 

3.1 Study area forest mask 

As seen in section 2.1, the study area was selected based on two criteria: slope less than 10% 
and illumination more than 85%. A mask fitting those two conditions was built in ENVI and 
then imported in ArcMap. The scan of the topographic map was imported in ArcMap and 
georeferenced using 5 ground control points. It was used to avoid the riverbed and the road 
while drawing the study area polygon. The polygon was then converted to a raster having the 
same extent (121 x 67 pixels) and the same cell size (18 meters) as the CHRIS subsets using 
the “To Raster” conversion tool of the Arc toolbox. The raster was exported to the TIFF 
format so it could be used in ENVI. This TIFF file is the study area mask. 

In parallel, Regions Of Interest (ROI) of forest, meadow and riverbed were drawn on the 
CHRIS A9 subset. They were used to classify CHRIS A9 into 3 classes using the maximum 
likelihood method. The classified image was used together with the TIFF study area mask to 
build the study area forest mask in ENVI. The flowchart of these actions is shown in Figure 9. 
 

3.2 The images of the sunlit background proportion  

3.2.1 Overview of the two tested methodologies 

This section gives a global overview of the two tested methodologies. The general idea of 
both the first attempt and the final methodology is presented, notably in the form of 
flowcharts. The steps of the final methodology are extensively described in the following of 
section 3.2. 
 

3.2.1.1 First methodology 

Since the 1 meter resolution of the ROSIS image enables to find pure pixels of sunlit canopy, 
sunlit background and shadow, it was resampled to the CHRIS spectral bands and used to 
collect the signatures of those 3 endmembers. However, the magnitudes of the ROSIS and 
CHRIS reflectance values are different. Following Hall et al. (1991), the signatures of a forest 
ROI in both ROSIS and CHRIS A9 image were used to calculate a scaling factor for each 
band. The endmembers signatures obtained from the ROSIS image were then multiplied by 
the scaling factors to scale them to the CHRIS magnitude. The CHRIS A9 image was then 
spectrally unmixed using the scaled endmembers signatures, thus yielding the image of the 
sunlit background proportion. A flowchart of this method is shown in Appendix 8.3. 

Unfortunately, the unmixing results were not successful. The proportion images of the 
endmembers presented in Appendix 8.4 (left column) show that the spatial patterns of sunlit 
canopy and sunlit background are “complementary”: Kg is null where Kc is non null and the 
other way around. This indicates that the signatures of sunlit canopy and sunlit background 
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are too close and cannot be unmixed. The analysis of the signatures of each point ROI of 
sunlit background revealed 2 groups of ROIs. The group with the lower reflectance values and 
thus closer to the signature of the sunlit canopy was excluded from the sunlit background 
ROI, raising its signature. The second unmixing did not provide better results (see Appendix 
8.4, right column). Therefore, another methodology was implemented to obtain the Kg 
images.  
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Figure 9: Flowchart of the preparation of the study area forest mask. 
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3.2.1.2 Final methodology 

This method encompassed classifying the high resolution ROSIS image to spatially unmix the 
CHRIS image and thus yield the endmembers signatures directly from the CHRIS A9 image. 

After removing the noisy bands and resampling the ROSIS data to the CHRIS spectral bands, 
the ROSIS image was classified in 5 generic classes: shadow, sunlit background, sunlit 
canopy, riverbed and road. Then, to perform the spatial unmixing, the classification and the 
CHRIS A9 image were resized to exactly the same geographic extent. The CHRIS signatures 
of the sunlit canopy, sunlit background and shadow endmembers could then be retrieved. The 
5 CHRIS images were resized to the study area extent and to 12 bands before being spectrally 
unmixed, thus yielding the images of the proportion of the sunlit background. This 
methodology is extensively described in the following and its flowchart is shown in Figure 
10. 

 

3.2.2 Retrieval of the CHRIS endmembers signatures: spatial unmixing 

3.2.2.1 ROSIS data preparation 

A visual examination of the individual bands of the ROSIS image revealed the presence of 
some noisy bands, especially in the short wavelengths. Koetz (2003) used three methods to 
identify them. His results are shown in Table 5. The visual analysis considers the first 15 
bands as noisy. The correlation matrix shows low correlation between the first 15 bands, 
revealing that they are affected with high noise. The signal to noise ratio calculated for the 
homogeneous Stabelchod meadow was less than 10 for the first 32 bands. In this study, the 
ROSIS data is used to obtain a classification at 1 m resolution. For this purpose, it was 
preferred not to use any noisy band in order to improve the classification result. In the end, the 
first 32 bands were removed. 

Table 5: Noisy band list of the ROSIS image (Source: Koetz, 2003). 

Deficiency Noisy bands  
Visual striping 1 to 15 
Correlation matrix 1 to 15 
Signal to noise ratio < 10 1 to 32 

 

In addition, the analysis of a number of spectral signatures revealed the presence of a narrow 
pit about 0.760 mm. It does not correspond to a water absorption feature and its origin is 
unknown. So the bands involved in this pit, bands 82 to 86, were discarded. The first 15 bands 
were already not present in the ROSIS data file provided for this study: there were 100 bands 
instead of 115. So the only the first 17 bands and bands 82 to 86 were removed. 
For the sake of consistency, it was decided to decrease the number of ROSIS bands by 
resampling the ROSIS data to the CHRIS bands. The spectral range of the ROSIS data was 
smaller than the one of CHRIS, especially after removing the noise. The resampled ROSIS 
data had only 12 bands which correspond to bands 3 to 14 of the CHRIS data. 

 

3.2.2.2 Classification of the ROSIS image 

Peddle et al. (1999) and Schaaf et al. (1994) showed that one endmember for both shadowed 
canopy and shadowed background is sufficient to retrieve the sunlit background proportion. 
Therefore, the ROSIS image was classified into 5 classes: sunlit canopy, sunlit background, 
shadow, riverbed and road, using the maximum likelihood classifier. 
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Figure 10: Flowchart of the methodology to obtain the images of the  
proportion of sunlit background. 

 



 39 

The endmembers were collected from ROIs. The points from the shadow ROI were collected 
in the dark areas. The sunlit canopy points were collected among the bright tree pixels, 
preferentially located in the South Eastern part of the tree, since the sun was in the South East 
of the study area at the recording time. The ROI for the sunlit background included both 
pixels from the meadows and from the bright West-East “paths” in the forest. The classes 
riverbed and road were solely used to locate the non-forest pixels which are also of 
importance for the spatial unmixing (see paragraph 3.2.2.3). Figure 11 shows the endmembers 
signatures. 
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Figure 11: Signatures of the five endmembers used to classify the ROSIS image. 

 

3.2.2.3 Retrieval of the endmembers signatures: linear spatial unmixing 

Let ‘ne’ represent the number of endmembers. Assuming that the scene is composed of 
exactly ‘ne’ endmembers and that each endmember contributes linearly to the pixel signature, 
the general equation of spectral mixing can be written as:  

e

ne

1e
e SK P ⋅=∑

=
     where      1K

ne

1e
e =∑

=
 (13) 

where P is the pixel signature, ne the number of endmembers, Ke the proportion of the eth 
endmember in the pixels and Se the spectral signature of the eth endmember. 

 

The linear spatial unmixing of the CHRIS A9 image can retrieve the endmembers signatures 
if the endmembers proportions are known. Those proportions can be derived thanks to the 
classified ROSIS image. Indeed, one CHRIS pixel can be matched with 324 (=18*18) ROSIS 
pixels. Thus, the proportion of a given endmember is the number of pixels classified as this 
endmember in a CHRIS pixel divided by 324. It is therefore crucial that the ROSIS and 
CHRIS data are properly coregistered. In addition, to perform the spatial unmixing, it was 
necessary to assume that the viewing and illumination conditions of the CHRIS A9 image and 
ROSIS acquisitions were similar. This is why the CHRIS near-nadir A9 image was chosen 
among the 5 CHRIS scenes: its viewing conditions were closest to the ones of the ROSIS 
image. 
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The linear spatial unmixing was run according to the image fusion approach of Zurita-Milla et 
al. (2006). The fusion process consists of three different phases:  

a) Computation of the proportions of each endmember in each pixel of the low 
resolution image using the high resolution classification image,  

b) Computation of the endmembers signatures using the low resolution image and  
c) Composition of the fused image with the spatial resolution of the high resolution 

image and the spectral resolution of the low resolution image.  

The spatial unmixing problem was solved band per band, for a given neighbourhood size of 
the low resolution image, as shows equation (14). 

222 l
j

ne
j,l

ne,ll
j ESK P +⋅=  (14) 

where j is the low resolution image band number ( [ ]3;14j ∈ ), l the size of the square 
neighbourhood, ne the number of endmembers, P is a l2 column vector containing the 
reflectance values in band j for each low resolution pixel in the neighbourhood, K is a (l2xne) 
matrix containing the proportions of each endmember in each low resolution pixels in the 
neighbourhood, S is the unknown ne-column vector of the endmembers reflectances in band j 
and E is the l2 column vector of the residual error of the pixels in the neighbourhood. 

 

For a given band j, if no neighbourhood is taken into account (l=1), then there are n unknowns 
(the n reflectance values of the n endmembers in band j) for one equation, and (14) cannot be 
solved. The use of the neighbourhood of l by l pixels is to provide more equations in order to 
be able to solve (14). In the image fusion case, it is interesting to keep l as small as possible to 
preserve as much as possible the spectral information of the low resolution image in the fused 
output image. However, in the context of this study, the goal of the spatial unmixing was to 
retrieve endmembers signatures that are valid for the entire study area. Therefore, the 
neighbourhood was chosen as large as possible: equal to the entire CHRIS subset. This 
approach consisting in using the entire image was also used by Strahler and Jupp (1990). 
The images for the spatial unmixing cannot contain any pixel that is not a number (NaN). 
Given the oblique shape of the ROSIS scene, the biggest subset that could be used had an 
extent of 540 by 432 meters (see Appendix 8.5 for the coordinates of the subset). In the end, 
the steps a) and b) were performed using the subsets to compute the signatures sunlit canopy, 
sunlit background and shadow using the entire subset as the neighbourhood. 
 

3.2.3 Retrieval of the sunlit background proportion images: linear spectral 
unmixing 

Like the spatial unmixing, the spectral unmixing was based on equation (13). However, here 
the goal was to retrieve the endmembers proportions Kj in each pixel. To reach this goal, it 
was necessary to know the endmembers spectral signatures. 

The linear spectral unmixing was realized according to Zurita-Milla et al. (2007). Thus, 
Equation (13) had to be rewritten in matrix notations as shown in equation (15). 

nbnenenb,nb EKS P +⋅=  (15) 

where nb is the number of bands, ne is the number of endmembers, Pnb is the nb-column 
vector containing the reflectance values of the pixel in the nb bands, Snb,ne is the (nbxne) 
matrix containing the ne endmembers signatures reflectance values in the nb bands, Kne is the 
unknown ne-column vector containing the proportions of the ne endmembers and Enb is the 
nb-column vector containing the spectral error for the nb bands. 
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The fully constrained option was chosen to perform the linear spectral unmixing because it 
restricts the solutions for the endmembers proportions in the plausible physical domain: the 
proportions have to be positive, smaller than one and they have to sum up to one, as described 
mathematically in equations (16) and (17). The constrained approach was also chosen by 
Strahler and Jupp (1990). 

1K0 e ≤≤   where [ ]ne1;e∈  (16) 

1K
ne

1e
e =∑

=
 (17) 

where ne is the number of endmembers and Ke is the proportion of the endmember e. 

 
Because of the set of inequalities in (17), the linear spectral unmixing was done by solving a 
constrained lEast squares problem. The solution for the proportions vector K has to yield the 
smallest possible residual error. The proportion of each endmember and the spectral Root 
Mean Square Error (RMSE) were calculated for each pixel. The RMSE represents the mean 
reflectance error by band, as shows equation (18). However, this measure is not handy to 
compare the RMSE between pixels. Therefore, a percentage RMSE was calculated using 
equation (19). 
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Prior to performing the spectral unmixing, the five CHRIS scenes were resized to fit the study 
area extent. The subsets used have an extent of 121 samples by 67 lines, being 2178 by 1206 
meters. The map coordinates used to delineate the subsets are given in Table 6.  

Table 6: Map coordinates delineating the study area subsets for the five CHRIS scenes. 

 Upper left corner Lower right corner  
x coordinate (m) 812700 814878 
y coordinate (m) 172260 171054 

 

Assuming that the endmembers signatures do not depend on the viewing angle (assumption of 
Lambertian behaviour) and that only their proportions are different, the 5 CHRIS subsets were 
spectrally unmixed using the endmembers signatures of sunlit canopy, sunlit background and 
shadows from the spatial unmixing (paragraph 3.2.2). Since only three “forest” endmembers 
were considered, the non forest pixels yielded irrelevant proportions and were therefore 
masked. 
In addition, only the spectral bands 3 to 14 were used to perform the fully constrained spectral 
unmixing. Bands 1-2 (blue) and bands 15-18 (water absorption) were discarded because they 
contain less relevant information about vegetation and possibly bring some noise in the 
unmixing. As a result, for the 5 CHRIS images, the mean of the percentage RMSE (see next 
paragraph for the definition) for the forest in the study area decrease from 0.089 to 0.070 of 
when using only bands 3 to 14. 
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3.3 The inversion of the Li-Strahler model 

The model inversion was done according to Zeng et al. (2007), for each CHRIS viewing 
angle. It enabled the retrieval of crown diameter (CD) and canopy cover (CC) from the input 
data, as shown in Figure 12. A recapitulative of the input data with their values and associated 
images is presented in Appendix 8.2. 
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Figure 12: Flowchart of the model inversion. 

 
Thresholds were used to avoid unrealistic results: the canopy cover is restricted to the interval 
[0;1] and the crown diameter was assumed to vary in the interval [0;14]. If the model outputs 
were beyond these ranges, the pixel was set to NaN. The pixel value was also NaN when its 
Kg is null, because of the logarithm used in the calculation of the mean of the treeness 
parameter M (see paragraph 2.7.3.1). 
 

3.4 Preparation of the reference data 

Two reference images were created from the tree data described in section 2.4: one for the 
canopy cover and one for the crown diameter. The tree data was imported into ArcMap using 
the x and y coordinates recorded with the tree parameters. A shapefile with one point per tree 
was then created, as well as an attribute table containing the tree parameter values. Since the 
canopy cover has a surface dimension whereas the crown diameter data is linked to the point 
location of the tree, two distinct methodologies had to be implemented to obtain the canopy 
cover and crown diameter images.  

 

3.4.1 The canopy cover image 

To obtain the canopy cover image from the derived LIDAR data, it was necessary to compute 
the area covered by tree crowns in each pixel. First, a buffer was created around each point 
using the crown radius from the attribute table. During the processing, the discs were 
dissolved to remove any overlap between the crowns, creating a unique multipart polygon 
which represents the canopy. 

In order to overlay this polygon with the pixels squares, a shapefile containing squares 
polygons corresponding to the pixels had to be created. The shapefile was obtained by 
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converting a raster with 121*67 different values (from 1 in the upper left corner to 8107 in the 
lower right corner) to polygon features. 

The multipart canopy polygon was then intersected with the pixels squares polygons, yielding 
a shapefile containing one multipart canopy polygon for each pixel. The area of those 
polygons was calculated and then divided by 324, which is the area of the 18 by 18 meters 
pixels. Those two parameters were stored in new fields in the attribute table. Finally, the 
shapefile was exported to a TIFF file, using the canopy cover field to fill in the image. A 
flowchart describing the different steps is presented in Figure 13. 
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Figure 13: Flowchart of the preparation of the canopy cover reference image. 
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3.4.2 The crown diameter image 

The crown diameter image represents the mean crown diameter of the trees located in the 
pixel. It was created thanks to a custom tool using twice the “Point Density” function from the 
Spatial Analyst Toolbox. This function calculates the density of point features around each 
output raster cell. The input parameters include a “population field” whose value determines 
the weight the point, the output cell size, the neighbourhood shape and the neighbourhood 
size. The neighbourhood shape was set to “rectangle” and the neighbourhood height and 
neighbourhood width were set to 1 cell in order to count only the points that are inside the 
pixel. Setting the other parameters to the values indicated in Figure 14, the “Point Density” 
function was used to compute a raster of the tree density (“number of trees per square meter”) 
and a raster of the crown diameter containing the sum of the diameter of the trees in the pixel 
per square meter (“sum diameter per square meter”). Finally, the “sum diameter per square 
meter” was divided by the “number of trees per square meter” to provide the mean crown 
diameter in the pixel.  
In addition, the “sum diameter per square meter” raster was transformed into a raster of the 
number of trees per pixel to give a better idea of the density of the stand and to support the 
analysis of the results. It is presented in Appendix 8.5. 

Finally, the rasters were transformed to an ENVI format and the no data pixels were set to 
“NaN”. The script used to perform this step is presented in Appendix 8.7.1. 
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Figure 14: Flowchart of the preparation of the crown diameter reference image. 
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3.5 Methods for the analysis of the results 

3.5.1 Confusion matrix and accuracy of the classification of the ROSIS 
image 

The confusion matrix of the classification was calculated using the so-called “ground truth 
ROIs”. The ground truth ROIs were visually selected on the ROSIS image. For each class, the 
number of points in the ROI was proportional to the number of pixels in this class on the 
classified image.  

Based on the confusion matrix, the overall accuracy, the producer’s and user’s accuracy and 
the omission and commission errors were calculated, as well as the Kappa coefficient. The 
latter indicates the percentage of errors avoided by the classification, compared to a random 
classification. 
 

3.5.2 Validation samples for the analysis of the results 

The validation sample had to cover only pixels included in the forest of the study area and 
having values for the output image of each viewing angle and for the two reference images. 
Those pixels were selected using the script presented in Appendix 8.7.2. 
Since the pixel size is rather small, an error of one tree per pixel can result in non-negligible 
differences in the canopy cover and mean crown diameter of the pixel. Therefore, it was 
chosen to analyse the results based on squared samples of 2 by 2 pixels. This approach 
aggregating the pixels in a square window to validate the results was also used by Zeng et al. 
(2007). Because of the irregular shape of the usable area obtained in the previous step, the 
outputs were not resampled, but squared ROIs were drawn. There were 79 validation samples 
ROIs. They are presented in Appendix 8.8. The mean value of either canopy cover or crown 
diameter were calculated per validation sample for the model outputs and the reference 
images and used to calculate the Pearson R, R-square and RMSE of the correlation between 
the reference data and the model outputs. 
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4 Results 

4.1 Intermediary results 

4.1.1 ROSIS classification 

The output of the maximum likelihood classification of the ROSIS image is presented in 
Figure 15. The classes road and riverbed have been merged to represent a single non-
vegetation class. 

 

 
Figure 15: Classification of the ROSIS image in four classes:  

the three components of the Li-Strahler model and the non vegetated areas. 

 

A visual examination of the classification as compared to the RGB ROSIS image revealed a 
good overlap of the patterns of the different classes. The good quality of the classification was 
confirmed by the confusion matrix presented in Appendix 8.9. The overall accuracy of the 
classification was 92.6%, meaning that 92.6% of the ground truth pixels were put in the 
correct class. The Kappa coefficient was 0.89. For all the classes, the producer’s accuracy was 
higher than 87% and the user’s accuracy was higher than 75%. 
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4.1.2 Endmembers signatures from the spatial unmixing 

The spatial unmixing technique enabled the retrieval of the endmember signatures in terms of 
CHRIS reflectances. The signatures of sunlit background, sunlit canopy and shadow are 
shown in Figure 16. 
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Figure 16: CHRIS signatures of the 3 endmembers derived from the spatial unmixing. 

 

4.1.3 Spectral unmixing results and sunlit background proportion images 

The output of the spectral unmixing were the images of the proportions of sunlit background, 
sunlit canopy and shadow and the image of the RMSE, expressed as a percentage of the total 
reflectance of the pixel for the five CHRIS viewing angles. 

 

4.1.3.1 Spectral unmixing results for the A9 viewing angle 

Figure 17 presents the results for the A9 viewing angle. A visual examination of the 
proportion images shows that the results are coherent with reality: the proportion of sunlit 
background is high in the meadow while the proportion of sunlit canopy is high in the forest. 
Shadow is present in all the forest, but its proportion is higher in the dense stand than in the 
stands that have a lower density, which also makes sense. One can refer to the map of the 
stand density in Appendix 8.5. 

Since no field data is available to validate the proportion images, the RMSE is the only 
quality indicator of the spectral unmixing. One can see on Figure 17 that the patterns of high 
RMSE percentage correspond to the meadow, the road and the riverbed, which were not taken 
into account in the analysis of the model inversion outputs. The RMSE percentage of the 
study area forest was below 10%. The Western part (3 to 10%) had a higher RMSE than the 
Eastern part (0 to 5%). 
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Figure 17: Output of the spectral unmixing for the A9 CHRIS image:  

the three proportions images and the image of the root mean square error. 

 

4.1.3.2 Sunlit background proportion and RMSE images for the other 
viewing angles 

Figure 18 presents the sunlit background proportion images for the AC, AA, AB and AD 
viewing angles, since the model inversion requires only those. For each angle, the 
corresponding RMSE image is also shown to give an idea of the quality of the spectral 
unmixing. 

 

AC spectral unmixing results 
The high proportion of sunlit background in the Western part of the AC image is caused by 
cloud contamination. The sunlit background proportion of the non cloudy part of the forest is 
null. The analysis of the unmixing results shows that the entire reflectance is attributed to the 
shadow endmember. This is due to the large zenith angle in the forward scattering direction of 
the CHRIS AC image: the sensor then mainly sees shadowed canopy. 
In addition to the null Kg, the RMSE is large: 5 to 30% of the pixel reflectance. It was 
therefore decided to discard the AC angle in the following of the study. 
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AA spectral unmixing results 
The AA image of Kg contains many null pixels, especially in the Eastern part of the study area 
forest. The pixels with a non null Kg can be found in the Western part of the study area, where 
the forest is less dense. The high number of pixels with a null Kg can be explained, as for the 
AC image, by the forward direction of the AA viewing. The RMSE of most pixels was lower 
than 10%. The exceptions are the meadow and the denser forest stand. 
 

AB spectral unmixing results 

The proportions of sunlit background in the AB image were well related to the forest density: 
low Kg in dense stands and higher Kg in less dense stands. The RMSE for the AB image was 
lower than 10% for all the pixels in the study area forest. However, the higher values of the 
RMSE are located in the Western part of the image. In the Eastern part of the forest, the 
RMSE was lower than 5%. 

 
AD spectral unmixing results 

One will first notice the oblique line of pixels having a null Kg and a high RMSE. This is 
probably due to sensor malfunctioning. It was not visible in the CHRIS AD image itself but 
appeared during the image processing. Since this artefact was not present in the forest of the 
study area it had no consequence on the results for this zone. 
The AD image of Kg showed the same pattern as the AB one: low Kg in dense stands and 
higher Kg in less dense stands. However, the Kg is usually lower than in the AB image. This 
can be explained by the higher zenith angle of AD: the sensor records more canopy and less 
background. The RMSE in the forested part of the study area is lower than 10%. It seems that 
the unmixing performed better in the Eastern part where some pixels had a RMSE lower than 
5%. 

 
Summary of the spectral unmixing results 

The spectral unmixing yielded the best results for the A9, AB and AD viewing angles (lowest 
RMSE). The patterns of the sunlit background proportion follow the density of the forest in 
the real world. In addition, the results are better for the Eastern part of the forest of the study 
area. 
The AC viewing angle was discarded for the following of the study.  
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Figure 18: Images of the proportion of the sunlit background and the image of the root mean square 

error for the AC, AA, AB and AD viewing angles. 
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4.2 The reference images of canopy cover and crown diameter 

As shown in Figure 19, the reference data covers only the Eastern part of the forest of the 
study area. Therefore, only this part was used later on for the analysis of the results. The 
canopy cover varied between 0 and 63%, the higher values corresponding to the dense stands. 
The crown diameter varied between 1.6 and 6.2 meters. However, most pixels had a mean 
crown diameter comprised between 2 and 4 meters. 
 

 
Figure 19: Reference images of canopy cover and crown diameter. 

 

4.3 Final results 

4.3.1 Number of usable pixels depending on the number of viewing angles 
considered 

When examining the five output images of the model inversion, it appeared that many pixels 
did not retrieve valid results for all angles. In addition, the pixels which did not have a 
reference values and those located outside the study area were also discarded. Thus, a number 
of pixels could not be used for the analysis of the results. The number of usable pixels 
depended on the number of viewing angles considered, as shown in Table 7.  

Table 7: Number of usable pixels depending on the number of viewing angles considered. 

 Number of usable pixels 
Viewing angles used Canopy cover Crown diameter 

AC AA A9 AB AD 40 49 
AA A9 AB AD 154 160 

A9 AB AD 425 430 
 
The spreading of the 160 usable pixels when taking the AA viewing angle into account did 
not enable the drawing of a sufficient number of validation samples. The AA viewing angle 
was thus discarded. So finally, only the A9, AB and AD viewing angles were used for the 
analysis of the results. 

Figure 20 shows the images of the usable pixels when using the A9, AB and AD viewing 
angles for both canopy cover and crown diameter analysis. The usable pixels were located in 
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the Eastern part of the forest of the study area. Note that they are preferentially located in the 
low density stands. 

 
Figure 20: Images of the usable pixels when using the A9, AB and AD viewing angles 

for the analysis of the canopy cover and crown diameter results. 

 

4.3.2 Canopy cover results 

4.3.2.1 Using individual viewing angles 

The output images of the model inversion for the canopy cover are shown in Figure 21. Due 
to the thresholds applied during the inversion, all the pixels resulted in a value between 0 and 
1. However, one can notice that the [0,1] interval is not entirely covered for the AB and AD 
viewing angles: the maximum canopy cover decreases with the increasing zenith angle (from 
A9 to AB to AD).  

 
Figure 21: Output images of the model inversion for the canopy cover 

for the A9, AB and AD viewing angles. 
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The three graphs in Figure 22 show the estimated canopy cover for the A9, AB and AD 
viewing angles against the reference canopy cover value for each of the 79 validation 
samples. Those graphs confirm the tendency observed on the images of the estimate to 
decrease with the zenith angle: the maximum canopy cover is about 0.83 for the A9 estimate, 
0.55 for the AB estimate and 0.39 for the AD estimate. Not only the maximum of the estimate 
decreases, but the whole cloud of points lowers when the zenith angle increases. The cloud of 
points for the A9 angle is above the y = x dotted line, and below it for the AB and AD angles. 
This means that the canopy cover was overestimated with the A9 angle and underestimated 
with the AB and AD angles. In addition, the vertical scattering of the points also decreases 
with increasing zenith angle.  

In the ideal situation where the inputs would be perfectly accurate and where the model 
inversion would yield perfect results, the estimates for the 3 angles would be equal to the 
reference value and the correlation between the estimates for the 3 angles and the reference 
data would have an R-square of 1. As shown in Figure 22, this is not the case here. The R-
squares values are low (0.13, 0.08 and 0.01 for the A9, AB and AD angles respectively) 
which indicates weak relationships. These values let one think that the estimates of the A9 
angles are best. This is confirmed by the fact that A9 provides the best estimates for 45 of the 
79 validation samples, against 29 and 5 for the AB and AD angles respectively. All these 
indications show that the quality of the estimate decreases from A9 to AB and to AD, i.e. 
when the viewing zenith angle increases. 

 
(a) (b) (c) 

Figure 22: Comparison between the model outputs and the reference data for the canopy cover for the 
A9 (a), AB (b) and AD (c) viewing angles (79 validation samples). 

 

The rather high R-squares values presented in Table 8 show the rather strong correlations 
between the estimates for the different angles and prove the good coherence of the outputs of 
the model inversion for the three angles. 

Table 8: Correlation matrix of the canopy cover estimates 
for the A9, AB and AD viewing angles (79 validation samples). 

 A9 AB AD 
A9 1.00 0.61 0.39 
AB 0.61 1.00 0.54 
AD 0.39 0.54 1.00 
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4.3.2.2 Combining the angles 

Since both the AB and AD angles underestimated the canopy cover, the interesting angle 
combinations to try were: the mean of the 3 angles: mean(A9,AB,AD), the mean of A9 and 
AB: mean(A9,AB), the mean of A9 and AD: mean(A9,AD) and the linear combination of the 
3 angles.  

The scatter plots of mean(A9,AB,AD), mean(A9,AB) and mean(A9,AD) against the reference 
canopy cover are presented in Figure 23, together with the R-square and the RMSE of the 
linear regression. In the mean(A9,AB,AD) and mean(A9,AD) plots, most of the points are 
below the y = x line, showing that those two variables underestimated the canopy cover. The 
cloud of points in the mean(A9,AB) plot seems more evenly distributed. However, its R-
square is low, like for the other 2 combinations. The means of the estimates also have a weak 
correlation to the canopy cover reference data. 
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(a) (b) (c) 

Figure 23: Comparison between mean(A9,AB,AD) (a), mean(A9,AB) (b), mean(A9,AD) (c) 
and the reference canopy cover (79 validation samples). 

 

The three cases presented above are particular cases of a multiple linear regression with no 
constant and where the regression coefficients are either 1 or 0. A multiple linear regression 
was then performed to see if other regression coefficients for the A9, AB estimation and AD 
estimates and the addition of a constant in the regression equation could explain the 
dependent variable “reference canopy cover”. 

The graph in Figure 24 shows that the canopy cover was underestimated by the linear 
combination. The R-square and adjusted R-square are low, revealing a weak correlation 
between the linear combination estimate and the reference canopy cover.  

The regression coefficients for the A9, AB and AB estimates are close to 0, compared to the 
value of the constant, meaning that most of the variance in the reference data is explained by 
the constant. This explains the horizontal shape of the cloud of points. In addition, standard 
errors of the A9, AB and AB coefficients are large compared to their magnitude (Table 9). 

Finally, the linear combination of the A9, AB and AB estimates is not a good predictor for the 
canopy cover. 

y = x y = x y = x 
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Figure 24: Comparison between the linear combination estimate 

and the reference canopy cover. 

 

Table 9: Coefficients and their standard errors for the multiple linear regression  
of the reference canopy cover over the A9, AB and AD estimates. 

  A9 AB AD Constant  
Regression coefficient -0,29 0,12 0,17 0,31 
Standard error of the coefficient 0,18 0,15 0,07 0,02 

 

4.3.2.3 Comparison of the estimates 

Table 10 recapitulates the R-squares and the RMSE obtained for the tested estimates for the 
canopy cover. It is not possible to discriminate the estimates based on their RMSE, since they 
all have similar values. The estimates combining several viewing angles have (adjusted) R-
squares varying between 0.10 and 0.13. They perform better than the AB and AD angles 
alone, but worse than the A9 angle, except for the linear combination. With R-squares values 
of 0.13 and RMSE values of 0.053 – 0.054, the A9 angle and the linear combination provide 
the best estimates. However, the linear combination is more complicated than the simple 
mono-angular A9 estimate for an equivalent performance. And, as seen in the previous 
paragraph, the linear combination explains most of the variance of the reference canopy cover 
by a constant, which is not very realistic. Therefore, the A9 estimate can be considered as the 
best estimate of the canopy cover. 
 

Table 10: Comparative table of the R-squares and RMSE obtained with  
the different mono or multi-angular estimates for the canopy cover. 

Estimate R-square RMSE  
A9 estimate 0.13 0.054 
AB estimate 0.08 0.055 
AD estimate 0.01 0.057 
mean(A9,AB,AD) 0.10 0.055 
mean(A9,AB) 0.12 0.054 
mean(A9,AD) 0.10 0.055 
linear combination 0.16 0.053 
Adjusted R-square of the 
multiple linear combination 0.13  
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4.3.3 Crown diameter results 

4.3.3.1 Using individual viewing angles 

The output images of the crown diameter show that the estimate has a tendency to decrease 
when the viewing zenith angle increases (Figure 25). Due to the applied thresholds, all the 
pixels have a value between 0 and 14. However, the maximum crown diameter found in the 
tree data was 6.80 meters, so one can see that the crown diameter was over estimated for 
many pixels. On the other hand, the order of magnitude of the estimates is correct.  

 

 
Figure 25: Output images of the model inversion for the crown diameter 

for the A9, AB and AD viewing angles. 

 

The graphs in Figure 26 confirm the tendency of the estimate to decrease with the zenith 
angle observed on the images: the maximum crown diameter is about 12.2 for the A9 
estimate, 7.6 for the AB estimate and 6.1 for the AD estimate. Not only the maximum of the 
estimate decreases, but the whole cloud of points lowers when the zenith angle increases. The 
first graph shows that the crown diameter was overestimated for the A9 angle, while the 
second and third graphs show that the crown diameter was underestimated for the AB and AD 
angles. In addition, the vertical scattering of the points also decreased when the zenith angle 
increases. One can also note that the 3 estimates present a higher variability (values between 1 
and 13 for the A9 estimate) than the reference data computed from the LiDAR estimate of 
crown diameter (values between 2 and 4). The high variability of the CHRIS estimates 
corresponds more to the crown diameter variability observed on the field, which suggest that 
the CHRIS estimates are more realistic. 

 

The estimates of the crown diameter present a weak correlation with the reference data: 
Figure 26 shows R-squares of 0.01, 0.05 and 0.01 for the A9, AB and AD estimates 
respectively. The correlations with the reference crown diameter were very weak. It seems 
that the estimates of the AB angle are better. However, they provide the best estimate for the 
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crown diameter only 22 times out of the total 79 validation samples, against 39 times for the 
A9 angle and 18 for the AD angle. 

 

 
(a) (b) (c) 

Figure 26: Comparison between the model outputs and the reference data for the crown diameter for 
the A9 (a), AB (b) and AD (c) viewing angles (79 validation samples). 

 

Table 11 presents the R-squares values of the correlations between the estimates for the 
different angles. The rather high R-squares values show the quite strong correlations between 
the estimates for the different angles and indicate a rather good coherence of the outputs of 
the model inversion between the three angles. 
 

Table 11: Correlation matrix of the crown diameter estimates 
for the A9, AB and AD viewing angles (79 validation samples). 

  A9 AB AD 
A9 1.00 0.49 0.27 
AB 0.49 1.00 0.36 
AD 0.27 0.36 1.00 

 

4.3.3.2 Combining the angles 

Since both the AB and AD angles underestimated the crown diameter, the interesting angle 
combinations to try were: the mean of the 3 angles: mean(A9,AB,AD), the mean of A9 and 
AB: mean(A9,AB), the mean of A9 and AD: mean(A9,AD) and the linear combination of the 
3 angles.  

The scatter plots of mean(A9,AB,AD), mean(A9,AB) and mean(A9,AD) against the reference 
crown diameter, the R-square and the RMSE of the linear regression are presented in Figure 
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27. In the three graphs, most of the points are below the y = x line, indicating that the three 
variables underestimated the crown diameter. The three R-square is low, indicating that the 
three tested means have a weak correlation with the crown diameter reference data. 

 
Figure 27: Comparison between mean(A9,AB,AD) (a), mean(A9,AB) (b), mean(A9,AD) (c) 

and the reference crown diameter (79 validation samples). 

 

Similar to the canopy cover, a multiple linear regression was performed to verify if another 
combination of the A9, AB and AD estimates could explain the dependent variable “reference 
crown diameter”. The R-square and adjusted R-square of the correlation between the linear 
combination estimate and the reference crown cover were low (Figure 28), which indicated a 
weak correlation between the linear combination estimate and the reference canopy cover. In 
addition, the graph shows that the points representing the estimated value against the 
reference value are grouped in a cloud. The cloud has a horizontal shape and is centred on the 
y = x line. This implies that the low crown diameters were overestimated and the higher 
values were underestimated. The horizontal shape of the cloud of points can be explained by 
the high value of the coefficient of constant (Table 12). Moreover, it also has the smaller 
standard error, meaning that the constant has the most significant regression coefficient. 
Finally, the linear combination of the A9, AB and AB estimates was not a good predictor for 
the crown diameter. 
 

Table 12: Coefficients and their standard errors for the multiple linear regression  
of the reference crown diameter over the A9, AB and AD estimates. 

  A9 AB AD Constant  
Regression coefficient -0,002 0,08 -0,02 2,94 
Standard error of the coefficient 0,05 0,05 0,03 0,09 
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Figure 28: Comparison between the linear combination estimate  

and the reference crown diameter. 

 

4.3.3.3 Comparison of the estimates 

Table 13 shows that the RMSE values all have similar values. It is therefore not possible to 
discriminate the estimates based of their RMSE. The estimates combining several viewing 
angles have (adjusted) R-squares of 0.01 or 0.02. They perform as good as or better than the 
A9 and AD estimates, but worse than the AB estimate. With an R-square value of 0.05, the 
latter seems to be the best estimate. However, as seen earlier (paragraph 4.3.2.1), it provided 
the best estimate for the crown diameter only 22 times out of 79, against 39 times for the A9 
angle and 18 for the AD angle. It is therefore impossible to designate a best estimate of the 
crown diameter. 

 

Table 13: Comparative table of the R-squares and RMSE obtained with  
the different mono or multi-angular estimates for the crown diameter. 

Estimate R-square RMSE  
A9 estimate 0.01 0.363 
AB estimate 0.05 0.356 
AD estimate 0.01 0.362 
mean(A9,AB,AD) 0.02 0.360 
mean(A9,AB) 0.02 0.360 
mean(A9,AD) 0.01 0.362 
linear combination 0.06 0.354 
Adjusted R-square of the 
multiple linear combination 0.02  

 

4.3.4 Qualitative analysis of the final results 

Even though the correlation between the obtained estimates and the reference data for both 
canopy cover and crown diameter were weak, some interpretations can be derived. First of all, 
the model outputs fitted the reasonable threshold set for the inversion for an important number 
of pixels in the forest of the study area. Then, the three mono-angular estimates were rather 
highly correlated, showing the good coherence of the outputs. And last, the crown diameter 
results were coherent with the canopy cover results. Since the model sets the tree density for 
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each pixel (following the Poisson law), a high canopy cover implies a big crown diameter and 
the other way around. The observations of the estimates showed that both the crown diameter 
and the canopy cover were overestimated for the A9 angle and underestimated for the AB and 
AD angles.  
 

4.3.5 Comparison between the quality of the canopy cover and crown 
diameter results 

To facilitate the comparison between the canopy cover and crown diameter results, the R-
squares values already presented in Table 10 and Table 13 were gathered in Table 14. The 
latter shows that, excepting the AD estimate, the (adjusted) R-squares vary between 0.08 and 
0.13 for the canopy cover and between 0.01 and 0.05 for the crown diameter. This indicates 
that the estimates obtained for the canopy cover are better than the estimates obtained for the 
crown diameter. 

Table 14: Comparative table of the R-squares and RMSE obtained with the different mono or multi-
angular estimates for canopy cover and crown diameter. 

Estimate Canopy cover Crown diameter 
A9 0.13 0.01 
AB 0.08 0.05 
AD 0.01 0.01 
mean(A9,AB,AD) 0.10 0.02 
mean(A9,AB) 0.12 0.02 
mean(A9,AD) 0.10 0.01 
linear combination 0.16 0.06 
Adjusted R-square of the 
multiple linear regression 0.13 0.02 

 

4.4 Implications of the mono-angular canopy cover r esults on the 
quality of the sunlit background proportion images 

Since the sunlit background proportion is the only changing parameter between the model 
inversions for the three angles, it can be related to the mono-angular canopy cover results. 
Using equations (9) and (10), the canopy cover can be expressed as: 

( )agK1CC −=  (20) 

Where a is given by:  

( )ttt sincosπvsecθisecθ

π
a

+−⋅+
=








 (21) 

 
Equation (20) shows that the canopy cover and the sunlit background proportion are 
negatively related by a “power” relationship. This is illustrated for the three angles in the 
graphs of Figure 29.  
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Figure 29: Relationships between the estimation of the canopy cover and the proportions of sunlit 
background for the A9 (a), AB (b) and AD (c) viewing angles (79 validation samples). 

 

Since the canopy cover was overestimated with the A9 angle, it can then be inferred that the 
sunlit background proportion was underestimated for the A9 angle. Similarly, one can 
conclude that the sunlit background proportion was overestimated for the AB and AD angles. 

The continuous lines represent the “power” regression line between the 
estimated canopy cover and the proportion of sunlit background used as 

input for the A9, AB and AD viewing angles. 
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5 Discussion 
This section first discusses why the quality of the estimates is so poor (paragraph 5.1). It then 
proposes some reasons which could explain why the sunlit background proportion was 
underestimated for the A9 viewing angle (paragraph 5.2) and explores the effects of the zenith 
viewing angle on the results (paragraph 5.3). Paragraph 5.4 gives some clues to explain why 
the results are better for the canopy cover than for the crown diameter. Finally, paragraph 5.5 
discusses the results in the framework of the evaluation of the quality of the protection 
provided by the forest. 
 

5.1 Poor quality of the estimates 

There are many available examples of studies which successfully inverted the Li-Strahler 
model to estimate a number of parameter. Among them, Woodcock et al. (1997) estimated the 
treeness parameter m, achieving good correlation with the field measured m: the R-squares 
varied between 0.46 and 0.93, depending on the forest tree species. Franklin and Strahler 
(1988) and Gemmell (1998) both found high R-squares values for the correlation between the 
model inversion output for the canopy cover and the ground measurements: respectively 0.62 
to 0.78 and 0.76. Similarly, Zeng et al. (2007) found R-squares of 0.61 and 0.39 for the 
correlation between the estimated and measured canopy closure and crown diameter.  
The inversion of the Li-Strahler model was successful in all the above mentioned case, so 
why are the R-squares values obtained for canopy cover and crown diameter in this study so 
low? Some possible explanations are explored in this paragraph. 

 

5.1.1 Lack of ground truth data 

Even if the methodology was assumed to be perfect, with no assumption, this study would 
probably end up with poor results. Since the error propagates through the methodological 
steps, if one of the intermediary results is not accurate, the final results will also be affected 
by errors. Because of the lack of ground truth data to check the outputs of each step, the errors 
are only noticed on the final results. In addition, the quality of the reference data used to 
analyse the final results is questionable. 

 

5.1.1.1 Bias of the classification of the ROSIS image 

The classification of the ROSIS image was validated by the confusion matrix presented in 
Appendix 8.9. Both the overall accuracy and the Kappa coefficient were high (92.6% and 
0.89), indicating the good quality of the classification. However, this confusion matrix was 
not built using ground truth data, but using ROIs visually selected on the original ROSIS 
image (paragraph 3.5.1). Since it was important to be sure of the component in the pixels used 
both to obtain the classification and to evaluate it, the pixels used for the “ground truth” ROIs 
were chosen with the same visual method as to select the pixels for the training areas. So, in 
the end, the same type of pixels, located in the same areas of the image where it is possible to 
distinguish between sunlit canopy and sunlit background were used. It is obvious that the 
confusion matrix would show a high overall accuracy and a good Kappa coefficient. 

 

5.1.1.2 Uncertainty of the endmembers signatures 

It would also have been interesting to compare the endmembers signatures obtained by linear 
spatial unmixing to signatures measured in situ. However, the field work focussed on sunlit 
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endmembers and no field spectrum was available for the shadow endmember. Also the field 
spectra of the sunlit canopy and the sunlit background did not take the bark into account. 
Since the bark represent a non negligible proportion of both endmembers (Figure 31 page 66 
and Figure 32 page 68), it was not appropriate to use the field spectra to check the outputs of 
the linear spatial unmixing. In addition, the field campaign did not take place during the 
CHRIS overflight (June 27th 2004), but on August 14th 2002, so the phenological state of the 
vegetation was different and probably influenced the signature of the vegetation. 

 

5.1.1.3 Validating the image of the proportion of sunlit background 

The quality of the images of the proportion of sunlit background was roughly assessed using 
the only available indicator: the RMSE of the spectral unmixing. However, Peddle et al. 
(1999) used nadir photographs taken from a helicopter flying at a height of 100m over the 
forest to validate the endmembers proportions. No such photographs were available for the 
study area. 
 

5.1.1.4 Uncertainty of the LiDAR-derived data  

As one can see in Figure 30, the adjusted R-square of the correlation between the LiDAR-
estimated and the field-measured crown diameter is rather low (0.20). In addition, the graph 
shows that the majority points are below the y = x line, which mean that the LiDAR tends to 
overestimate the crown diameter. This is be because the LiDAR sees clumped tree crowns as 
one big crown and cannot measure the individual diameter of clumped trees. Morsdorf et al. 
(2004) thus computed an artificial diameter for each tree group which seems to have 
overestimated the field crown diameter. 

 

 
Figure 30: Correlation between the LiDAR-derived and the field-measured crown diameter  

(Source: Morsdorf et al., 2004). 

 

First of all, the LiDAR-derived crown diameter data was used to calculate the v coefficient 
(Table 3 page 26), which is one of the model inputs. The value used to invert the model is 
probably not correct and therefore probably induced some errors in the model outputs. 

y=x 
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However, the model is not very sensitive to variance in the tree shape and size parameters, 
including the v parameter (Franklin and Strahler, 1988). 

 
The LiDAR-derived data was also used to derive the reference images because the field data 
available for the LWF1, LWF2, STA1 and STA2 plots could not be used to validate the data. 
The plots measure 20 x 20 meters which is about the pixel size of the results (18 x 18 meters) 
and poses the same problem as comparing the results to the reference images on a pixel basis 
(see paragraph 3.5.2). In addition, when overlaid with the images, the plots partly cover 4 
pixels, which makes the comparison to a single pixel impossible. However, seeing the graph 
in Figure 30 one can doubt the appropriateness of the LiDAR-derived reference maps to 
validate the final results of the study. 

The analysis of the results showed that the A9 estimate overestimated the reference crown 
diameter. Since the LiDAR tended to overestimate the crown diameter, it can then be inferred 
that the A9 estimate overestimated the field-measured crown diameter, and more than the 
LiDAR estimate. 
In addition, the fact that the LiDAR overestimated the crown diameter implies that the mean 
crown diameter per pixel calculated from this data is also overestimated. The mean of the 
reference crown diameter is 3.18 m which is much higher than the 1.76 m field value reported 
by Schaepman et al. (2004). However, one would then expect that the use of the LiDAR data 
would yield an overestimated canopy cover, which is not the case. Indeed, the mean of the 
reference canopy cover is 31.9% which is underestimated compared the field values reported 
by Schaepman et al. (2004): 55%, 46%, 77% and 79% for the LWF1, LWF2, STA1 and 
STA2 plots respectively (see Figure 2 page 22 for the location of the plots). 
 

5.1.2 Methodology assumptions  

In addition to the lack of ground data, many assumptions were made at the different steps of 
the methodology. The emphasis here is on the assumptions that possibly lead to some errors. 

 

5.1.2.1 Spectral mixing equation 

The spectral mixing equation shown in equation (13) states that the reflectance of the pixel 
can be expressed as a linear combination of the endmembers signatures. It assumes that the 
chosen endmembers cover the scene entirely and that they contribute linearly to the pixel 
reflectance. The latter assumption is not completely true: Borel and Gerstl (1994) showed that 
non linear mixing is caused by multiple reflections between endmembers and that it is more 
important in the Near Infra Red (NIR) part of the spectrum, where the reflectance of the 
vegetation endmember is high. However, the linear mixing equation was used consistently 
during the study: the endmembers were derived from the ROSIS image using the linear spatial 
unmixing and they were used to spectrally unmix the CHRIS images, also linearly. 
 

5.1.2.2 Assumptions for the linear spatial unmixing 

The linear spatial unmixing assumes that the classification of the ROSIS image is accurate 
and uses it to derive the endmembers proportions in the CHRIS A9 pixels to calculate the 
endmembers signatures according to the CHRIS reflectances. 

Beyond the accuracy of the classification, the solar and viewing geometry of the ROSIS and 
CHRIS A9 images are also involved. Since the endmembers proportions viewed by the sensor 
depends of the solar and viewing angles, according to the geometric basis of Li-Strahler 
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theory: it had to be assumed that the illumination and viewing conditions of the ROSIS and 
CHRIS A9 images were similar. However, if the relative zenith angles between the sun and 
the CHRIS A9 or ROSIS images are comparable (43.2 against 45.3°), there is a difference of 
more than 30° between the relative azimuth angle between the sun and the CHRIS A9 or 
ROSIS images (154.2 against 122.9°). So the assumption of similar illumination and viewing 
condition is not correct.  

 

5.1.2.3 Assumptions for the linear spectral unmixing 

To be able to use the signatures calculated for the A9 image to spectrally unmix the other four 
CHRIS images which have different viewing conditions, the endmembers were assumed to be 
Lambertian. This assumption was also made by Li and Strahler (1986). However, Abdou et al. 
(2001) showed that there were important deviations in the HDRF pattern of a concrete tarmac 
form that of an equivalent Lambertian surface, especially in the forward scatter direction for 
which the best results of this study were obtained. Looking at vegetation, Grant (1987) reports 
that leaves are not Lambertian reflectors. Since the endmembers contain mostly leaves, they 
are probably not Lambertian reflectors either. 

In addition, the composition of the components themselves possibly changes with the zenith 
azimuth angle. For example, the needles of Pinus Montana are clumped on the shoots and a 
large proportion of bark is visible from high viewing zenith angles, as shown in Figure 31. 
But when the viewing zenith angle decreases, the bark of the trunk and branches is more and 
more hidden by the shoots. Using the same signatures for the sunlit and shadowed canopy 
components to spectrally unmix the 5 CHRIS images is then not accurate.   
 

 
Figure 31: Picture of two crowns of Pinus Montana  (Source: Koetz B.). 
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5.1.2.4 Assumptions of the Li-Strahler model 

The theory of the Li-Strahler model and its inversion rely on a number of assumptions. They 
are not all relevant to this study because the model inversion was performed directly on the 
images of the sunlit background proportion. The spectral unmixing step was not part of the 
inversion and the related assumption of Lambertian behaviour was discussed in the previous 
paragraph. For the purpose of this section, only the discussable assumptions are presented 
here. 

The early versions of the model were designed for forests with sparse trees casting their 
shadows on a contrasting background. The forest of the study area is dense and Li and 
Strahler (1986) expected the accuracy of the model to decrease with the increasing tree 
density, so the quality of the results might be not so good. In addition, the background 
(understory) in the study area consists mainly of various Ericaceae and Sesleria species, but 
also contains a non negligible amount of bark and small Pinus Montana trees. So, the needles 
and bark elements are not specific to the sunlit canopy signature, but participate to the 
signature of the background as well. 

The model was inverted using an ellipsoid crown shape. But as shown in Figure 31, the top of 
the trees which are the most visible part of the tree for the sensor have a shape closer to the 
cone than to the ellipsoid. Rautiainen et al. (2004) observed considerable differences in the 
HDRF of conifer forests simulated by the Kuusk–Nilson forest reflectance model (2000) 
when using cone, cylinder, ellipsoid, and cone over cylinder as crown shapes. However, the 
ellipsoid crown shape was successfully used to invert the model for conifer forests by Peddle 
et al. (1999) and Zeng et al. (2007). 

The use of the Boolean model (paragraph 2.7.2.3) requires assuming that the trees are 
randomly distributed. But the forest of the study area presents two zones with different 
densities, so the trees are preferentially located in the dense zone and their distribution might 
not be considered as random. 
Finally, an underlying assumption related to the inversion of the Li-Strahler model is that the 
BRF and HRDF patterns are similar: the forward model calculates BRF values, whereas 
HDRF CHRIS data was provided as input for the model inversion. However, this was also the 
case in the above-mentioned studies, which showed that the inversion of the Li-Strahler 
model performs well when inputting HDRF instead of BRF data. 
 

5.2 Underestimation of the sunlit background propor tion for the A9 
viewing angle 

The analysis of the results showed that both canopy cover and crown diameter were 
overestimated for the A9 viewing angle, implying that the sunlit background proportion was 
underestimated and that the classification of the ROSIS image was not completely accurate.  

An explanation for this might be the regeneration of the forest stand present in the understory 
of the forest (Figure 32). The spectral signature of the small trees is very similar to the 
signature of the canopy, but they do not belong to the crown layer. So, in case the small trees 
were sunlit, they participated to the proportion of sunlit canopy when they should have 
counted as sunlit background, and it could then happen that a ROSIS pixel was classified as 
sunlit canopy instead of sunlit background. Since the linear spatial unmixing was based on the 
classification, the errors would have implied the retrieval of incorrect signatures for both 
sunlit background and sunlit canopy. As a consequence of the error transmission, the 
proportion of sunlit background would then be under estimated. 



 68 

 
Figure 32: Picture of the understory of the forest of the study area (Source: Koetz B.). 

 

5.3 Influence of the zenith angle  

The viewing zenith angle influences more the reflectance of vegetation and of conifer forests 
in particular than the viewing azimuth angle. Deering et al. (1999) who measured approximate 
BRF values over boreal conifer forests with the PARABOLA instrument found that the 
extreme values for the BRF were located in the principal plane where only the viewing zenith 
angle varies. Therefore, the values of the CHRIS reflectances and the subsequent model 
outputs can be examined according to the zenith angle. 
 

5.3.1 Why AC and AA viewing angles could not be used 

The reflectances measured by the CHRIS sensor were low. For the sake of interpretability, the 
pixel values for all the bands were multiplied by 1000 during the pre-processing. In addition 
to this, the viewing direction influences the magnitude of the measured reflectance. When the 
satellite is in the backward direction, it records the sunlit parts of the ground objects whereas 
when it is situated in the forward direction it mainly records the shadowed side of the objects. 
This effect is accentuated by the viewing zenith angle: when it increases, the scene becomes 
brighter (in the backward direction, until the hotspot is reached) or darker (in the forward 
direction). 
 As shown in  

Figure 3 (page 23), the AC and AA viewing angles are in the forward scatter direction, AC 
having the highest zenith angle. Therefore, in those two directions, the proportion of shadows 
is high and the proportion of sunlit background is likely to be low or even null, yielding no 
data pixels after the model inversion, especially in the AC direction. In addition, the 
reflectances are very low and it is more difficult to distinguish the components, which makes 
the RMSE of the spectral unmixing higher.  
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5.3.2 Decrease of the quality of the canopy cover estimate from A9 to AB to 
AD viewing angle 

As explained in the previous paragraph, the images associated to the AB and AD viewing 
angles which are in the backward direction are brighter and have higher reflectances. The A9 
viewing angle is actually situated in the forward direction, but it is close to nadir and thus 
does not suffer from low reflectance values.  
The main difference between the A9, AB and AD viewing angles that could explain the 
decreasing quality of the canopy cover estimate is the zenith angle which increases from A9 
to AB to AD. This is to be related to the reflectance of the sunlit canopy which depends on the 
zenith angle because of the visible proportion of bark (paragraph 5.1.2.3). 

However, no trend of decreasing estimate quality with the increase of the zenith angle was 
observed for the crown diameter results. It might be because of their very poor quality that 
would reflect the reference data too randomly. 

 

5.4 Better results for canopy cover  

The canopy cover is directly related to area measures: the area of canopy and the total area 
viewed from nadir. Areas are easily measurable on remote sensing images. It can therefore be 
better calculated by the inversion of the geometric model of Li-Strahler. 

The measure of the crown diameter, however, relies on the division of the area covered by the 
canopy by the number of trees. The number of trees per pixel is simulated by the Li-Strahler 
model following the Poisson law. It is determined based on probabilities and may or may not 
correspond to the real number of trees in the pixel. The model outputs for the crown diameter 
are therefore less reliable than for the canopy cover. 

The better quality of the canopy cover results compared to the crown diameter results was 
also observed by Zeng et al. (2007). 

 

5.5 Evaluation of the findings in the framework of the evaluation of the 
quality of the protection provided by the forest 

To evaluate the level of protection provided by a forest against the natural hazards different 
types of information are needed. The canopy cover and crown diameter on which this study 
focused are two parameters among the required variables. These two parameters are of 
interest especially in the framework of the flood and avalanche hazard.  

The canopy cover is directly related to the free rainfall proportion (proportion of the rain 
which falls straight to the ground without striking the canopy = 1 – canopy cover) which is an 
input of Rutter’s rainfall interception model (1971). However, the knowledge of the amount 
of intercepted rainfall is not sufficient to evaluate the quality of the protection provided by the 
forest regarding to the flood hazard. The soil water storage capacity (Sidle et al., 2000) and 
the rainfall interception of the forest understory should also be taken into account.  

The landslide hazard is closely related to rainfall interception: the presence of forest canopy 
cover improves slope stability (Montgomery et al., 2000; Keim and Skaugset, 2003). 
Landslide modeling requires additional data about slope, groundwater and root strength 
(Weimin and Sidle, 1995). 

The canopy cover is an input of Hedstrom and Pommeroy’s snowfall interception model 
(1998). The crown diameter, combined with the canopy cover, enables the retrieval of the 
canopy gap diameter which is also required to run Hedstrom and Pommeroy’s model. Besides 
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the amount of intercepted snowfall one also needs to know whether the avalanche starting 
zone is forested (Frey and Thee, 2002). 

The canopy cover and crown diameter do not directly participate in evaluating the quality of 
the protection provided by a forest regarding to the rockfall hazard. An indicator of the latter 
is the percentage of rocks that pass through the sloping forest. This can be calculated by 
models that usually require the DEM of the area and the tree density (Dorren, 2003). The tree 
species should also be taken into account since they do not all have the same mechanical 
resistance to rockfall (Stokes et al., 2005). 

Finally, when evaluating the protection provided by a forest, the forest structural parameters 
including canopy cover and crown diameter are essential. The tree species, the soil and the 
understory also play a role in the protection, so the whole forest ecosystem is important. 
However, the knowledge of all these parameters only enables to evaluate the resistance of the 
forest to the hazards at a given moment. When talking about protection, the time dimension 
should also be included. It is important that the forest ecosystem is able to provide a good 
protection on a long term scale and therefore that the forest has a good elasticity (Brang, 
2001). The concepts of resistance and elasticity were defined by Grimm and Wissel (1997): 
the resistance is the capacity of the forest to stay essentially unchanged despite the hazard 
impacts and the elasticity is the speed of return to the referential state or dynamics after the 
hazard disturbance.  
Moreover, the size of the forest considered in this study is too small to allow the evaluation of 
the protection provided by the forest. The area to take into account depends on the hazard: one 
should use the whole watershed area for the flood, the whole slope for the landslide, the crest 
area for the avalanche and the slope situated below the escarpment. 
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6 Conclusion 

6.1 Main findings 

This study did not successfully retrieve reliable estimates for canopy cover and crown 
diameter in the studied forest. The R-squares of the correlation between the estimates for the 
different angles and the reference data were very low (between 0.01 and 0.13). Since the 
results are not reliable, they cannot be used to evaluate the quality of the protection against the 
natural hazards provided by the studied forest. Besides, meteorological and soil data as well 
as additional forest structural parameters are necessary for this purpose. Therefore, using the 
outcomes of this study, it is not possible to assess the quality of the protection provided by the 
forest. Even though the results were disappointing, a careful analysis of the results enabled to 
draw of a number of interesting conclusions. 

The backward CHRIS viewing angles (AB and AD) performed better with respect to the 
retrieval of the canopy cover and crown diameter than the forward viewing angles (AC and 
AA) which did not enable the retrieval of estimates for a sufficient amount of pixels to be 
taken into account in the results analysis. Even though the A9 viewing angle is situated 
somewhat in the backward direction, it performed well. 

Regarding the A9, AB and AD viewing angles, it was show that proportion of sunlit 
background was underestimated for the A9 viewing angle and overestimated for the AB and 
AD viewing angles. As a consequence, both the canopy cover and the crown diameter were 
overestimated for the A9 viewing angle and underestimated for the AB and AD viewing 
angles. However, all the estimated values were in the correct order of magnitude. The 
estimates obtained by combining the A9, AB and AD estimates did not yield better results 
than the A9, AB and AD estimates themselves. Despite its high values, the inversion output 
for theA9 near-nadir viewing angle provided the best estimate of the canopy cover. No best 
estimate could be distinguished for the crown diameter.  
Finally, the analysis of the results showed that the quality of the estimates was better for the 
canopy cover than for the crown diameter and that the quality of the estimates of the canopy 
cover decreases when the viewing zenith angle increases. In addition, the A9, AB and AD 
CHRIS estimates for the crown diameter presented a higher variability than the LiDAR 
estimates which suggests that they are more realistic. 
 

The poor quality of the results for both the canopy cover and the crown diameter might have 
been caused by a number of errors that added up and propagated through the methodology. 
The main possible sources of errors are summarized here. 

First, the presence of forest regeneration in the understory might have lead to misclassify 
some ROSIS sunlit background pixels as sunlit canopy. Then, the assumption that the relative 
illumination and viewing geometry of the ROSIS and CHRIS images were similar might have 
caused the spatial unmixing of the CHRIS A9 image to provide incorrect endmembers 
signatures. In the spectral unmixing step, because of the increasing amount of visible bark 
with increasing viewing angle, the assumption that the signatures of the sunlit and shadowed 
canopy do not depend on the viewing angle was probably in correct. For the model inversion, 
the choice of an ellipsoid crown shape and the use of a random distribution to characterize the 
repartition of the trees over the scene might be not very well adapted to the studied forest. 
Finally, the lack of ground truth data to control the outputs at each step of the methodology 
facilitated the error propagation during the study. Since they were computed using the poor 
LiDAR-derived tree crown diameter data, the reference images of canopy cover and crown 
diameter do not reliably represent the spatial variations of the canopy cover and crown 
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diameter on the field. Therefore, a weak correlation between the inversion outputs and the 
reference data does not necessarily imply a weak correlation between the inversion outputs 
and the field measurements.  

 

6.2 Recommendations 

Further research should first compare the outputs of the model inversion with field data. The 
estimates might show better correlation coefficients with the field measurements than with the 
reference data computed from the LiDAR-derived tree data. The coefficient ω (Table 4) 
which is one of the inputs for the model inversion should be calculated with field data and 
compared to the value used in this study. If the difference between the value used for ω in this 
study and the field value is too large, it would be interesting to re-invert the Li-Strahler model 
using the field value. The performance of the inversion outputs to estimate the field canopy 
cover and crown diameter should then be evaluated using field data. The inversion could also 
be performed using a cone or an ellipsoid with a conical top as a tree crown shape. It would 
also be interesting to input different tree densities values, e.g. in the form of a tree density 
image. However, a more accurate image of the proportion of the sunlit background has to be 
obtained in order to retrieve better results. Every step of the methodology can be subject to 
improvement. One could first try to get the endmembers signatures to spectrally unmix the 
five CHRIS images directly. A signature model could provide a sunlit background signature 
that would take the small trees (and the dead wood) into account and simulate the increasing 
proportion of bark in the canopy with the viewing angle to provide more realistic sunlit and 
shadowed canopy signatures. The underestimation of the sunlit background proportion for the 
A9 viewing angle might then be avoided.  

Regarding to the evaluation of the quality of the protection provided by the forest, it is 
necessary to extend the study area to be able to provide a global overview of the structural 
characteristic of the whole forested area providing the protection. The inversion of the Li-
Strahler model may then require one set of tree parameters per tree species. Besides, on 
should also collect the meteorological, soil and other kinds of data which influence the quality 
of the protection provided by the forest. 
Moreover, the poor quality of the LiDAR estimates might be improved by using the 
information contained in the multiple scattering of the waves within the canopy. Kotchenova 
et al. (2003) recently developed a model which simulates the propagation of LiDAR pulses 
through forest canopies, taking the multi-scattering events into account. In addition, their 
model is able to simulate off-nadir and multi-angular observations. The retrieval of forest 
canopy parameters could be supported by the Earth observation mission Carbon-3D (Hese et 
al., 2005) which would enable to acquire multi-angular data in the visible, NIR and short-
wave infra red part of the electromagnetic spectrum and LiDAR data simultaneously. The 
Carbon-3D data might help to improve the accuracy of the estimates of canopy parameters by 
correcting for the contribution of the understory, as suggested by Eriksson et al. (2006). 
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8 Appendices 
 

8.1 Parameters used for the spatial reference in Ar cMap 

 

Source: Swisstopo 
Projection Oblique Mercator (azimuth) 
Units Meters 
Scale factor at centre of projection 1 
Longitude of centre of projection 7° 26' 22.50'' 
Latitude of centre of projection 46° 57' 08.66'' 
Azimuth of centre of projection 90° 
False Easting  -9419820.5907 m 
False Northing 200000 m 
X shift 0 
Y shift 0 
Spheroid Bessel 1841 
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8.2 Model inputs 

 

 

8.2.1 CHRIS viewing angles and solar illumination angles 

 

 Zenith angle (º) Azimuth angle (º) 
AD -54.59 208.88 
AB  -37.76 216.02 
A9  21.21 315.20 
AA 33.33 341.17 
AC 51.15 357.01 
Sun 24.30 161.00 

 

 

 

8.2.2 Stand and tree characteristics 

 

Parameter Notation  Unit Value 
Tree density  l ha-1 1228 
Mean half height of the crown b m 2.5 
Mean horizontal crown radius R m 0.882 

Coefficient ( )
( )2

2

rvariance

rmean
ω =  v m-2 1.235 

Mean tree height from ground 
to mid-crown h m 9.5 

 

 

 

8.2.3 Terrain data 
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8.2.4 Sunlit background proportions images for the 5 CHRIS angles  
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8.3 Flowchart of the first methodology to retrieve the sunlit background 
proportion images 
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8.4 Unmixing output of the first methodology 
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8.5 Geographical characteristics of the images subs ets for spatial 
unmixing 

 
 Extent Upper left corner 

coordinates (m) 
Lower right corner 

coordinates (m) 
Subset area on the 
map 

540*432 m x = 813 384 
y = 171 882 

x = 813 924 
y = 171 450 

Classification subset 
in ENVI 

540*432 pixels x = 813 384 
y = 171 882 

x = 813 923 
y = 171 451 

CHRIS A9 subset in 
ENVI 30*24 pixels 

x = 813 384 
y = 171 882 

x = 813 906 
y = 171 468 

 

 
 

 

8.6 Map of the number of trees per pixel 

 

 



 85 

8.7 IDL scripts 

 

8.7.1 Make_no_data.pro: to fill in the pixels without data with “NaN”  

 

pro make_no_data 
; Created by Jochem Verrelst 
 
cd, 'D:\Valerie\Data\Data_Val\IDL' 
envi, /restore_base_save_files 
envi_batch_init, log_file='batch.log' 
 
;Open the data file 
data=envi_pickfile(Title= 'Select the data file', / no_change) 
 
ENVI_OPEN_FILE,data, r_fid=fid_data 
IF (fid_data eq -1)  THEN BEGIN 
 ENVI_BATCH_EXIT 
 print, 'bad data entry' 
 RETURN 
ENDIF 
 
ENVI_FILE_QUERY,fid_data,ns=nsc,nl=nlc,nb=nbc, bnam es=bnamesCH 
dimsc = [-1,0,nsc-1,0,nlc-1] 
data = ENVI_GET_DATA(fid=fid_data, dims=dimsc, pos= 0) 
 
;Locate the no data pixels and fill them with "NaN"  
data[where(data lt -1)]=!VALUES.F_NAN 
 
;Save the output file to disk 
bnames=['canopy_cover'] 
descrip='pixel_canopy_cover' 
file_type=ENVI_FILE_TYPE('ENVI Standard') 
ENVI_WRITE_ENVI_FILE, data, out_name='canopy_cover' , $ 
file_type=file_type, bnames=bnames, descrip=descrip  
 
end 
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8.7.2 Overlay_all_data.pro: to set to NaN all the pixels having NaN or 0 in 
one of the model output or reference or mask images 

 

pro overlay_all_data 
; 190206 created by Jochem Verrelst 
 
;PURPOSE 
; 1- This script first loads all the data in a mult i-layer "matrix" 
; 2- Then set to NaN all the pixels having NaN or 0  in any layer 
; 3- Then it saves the multi-layer "matrix" with th e NaN pixels  
;    to an ENVI file (one band per layer) 
; 4- Finally, it calculates the number of usable pi xels 
 

 
 
cd, 'D:\Valerie\Data\Data_Val\IDL' 
 
; envi, /restore_base_save_files 
envi_batch_init, log_file='batch.log' 
 
 
 
; 1- Open the model output files 
modeloutputs=envi_pickfile(Title= 'Select the model  outputs',$ 
             /multiple_files, /no_change) 
;Sort the model output layers alphabetically 
modeloutputs=modeloutputs[SORT(modeloutputs)] 
 
valid=envi_pickfile(Title= 'Select the reference da ta', /no_change) 
forestmask=envi_pickfile(Title= 'Select the mask', /no_change) 
 
; Put all the paths together 
; so that they can all be opened in one loop. 
allpath=[valid, modeloutputs, forestmask] 
 
a=N_ELEMENTS(allpath) 
FOR i=0, a-1 DO BEGIN 
    modelo=allpath(i) 
    ENVI_OPEN_FILE,modelo, r_fid=fid_modelo 
        IF (fid_modelo eq -1)  THEN BEGIN 
           ENVI_BATCH_EXIT 
          PRINT, 'bad data entry' 
           RETURN 
        ENDIF 
    ENVI_FILE_QUERY,fid_modelo,ns=nso,nl=nlo,nb=nbo ,bnames=bnameso 
    dimso = [-1,0,nso-1,0,nlo-1] 
    data = ENVI_GET_DATA(fid=fid_modelo, dims=dimso , pos=0) 
        IF i EQ 0 THEN BEGIN 
        new=SIZE(data,/dimensions) 
        alldata=FLTARR(new[0], new[1],a) 
        ENDIF 
    alldata[*,*,i]=data 
ENDFOR 
 
 
; 2- Set to NaN all the pixels having NaN or 0 in a ny layer 
FOR b=0, a-1 DO BEGIN 
    FOR c=0, new[1]-1 DO BEGIN 
    v=WHERE(~FINITE(alldata[*,c,b]) or alldata[*,c, b] eq .0) 
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    if v[0] ne -1 then   alldata[v,c,*]=!Values.F_N AN 
    ENDFOR 
ENDFOR 
 
 

 
; 3- Save the multi-layer "matrix" with the NaN pix els to an ENVI file 
; We are interested in 
; 5, 4 (without AC) or 3 (without AC and AA) viewin g angles 
IF a-2 eq 5 THEN bnames=['ref','A9','AA','AB','AC', 'AD','forest mask'] 
IF a-2 eq 4 THEN bnames=['ref','A9','AA','AB','AD', 'forest mask'] 
IF a-2 eq 3 THEN bnames=['ref','A9','AB','AD','fore st mask'] 
 
descrip='All layers are stacked' 
file_type=ENVI_FILE_TYPE('ENVI Standard') 
ENVI_WRITE_ENVI_FILE, alldata, out_name='alldata', $ 
file_type=file_type, bnames=bnames, descrip=descrip  
 
 
 
; 4- Calculate the number of usable pixels: 
; Put the reference data in a line 
ref_line=REFORM(alldata[*,*,0],N_ELEMENTS(alldata[* ,*,0])) 
 
; Locate the NaN pixels from the line and 
; then calculate the number of 'valid' elements in the line  
; = number of usable pixels 
ref_no_nan=ref_line[WHERE(FINITE(ref_line))] 
print, 'number of usable pixels: ', N_ELEMENTS(ref_ no_nan) 
 
 
end 
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8.8 Map of the validation samples 
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8.9 Confusion matrix and accuracies of the classifi cation of the ROSIS image 

 

  Ground truth 
Error of 

commission 

 Class name 
Sunlit 

background 
Sunlit 

canopy Shadow Riverbed Road total Pixels % 

User 
accuracy 

Sunlit 
background 50 7 0 0 0 57 7 12.3 87.7 

Sunlit 
canopy 4 142 1 0 0 147 5 3.4 96.6 

Shadow 0 6 56 0 0 62 6 9.7 90.3 

Riverbed 0 0 0 20 1 21 1 4.8 95.2 

Road 0 0 0 3 9 12 3 25.0 75.0 C
la

ss
ifi

ca
tio

n 
re

su
lt 

Total 54  155 57 23 10 299 22 7.4 92.6 

Pixels 4 13 1 3 1 22    Error of 
omission 

% 7.4 8.4 1.8 13.0 10.0 7.4    

Producer accuracy 92.6 91.6 98.2 87.0 90.0 92.6    

 

Overall classification accuracy: 92.6% 

Kappa coefficient: 0.89 


