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Abstract 

Digital soil mapping (DSM) is a method to model the relationship between observed soil profile 

data with environmental covariates to predict soil properties at unvisited locations. The aim of 

this study is to focus on the usability of legacy soil maps with different scales as environmental 

covariates in DSM to predict three target variables (pH, Cation Exchange Capacity (CEC) and 

soil depth) for the area of Sanmetanga province in Burkina Faso. Four methods were used to 

include legacy soil map information in DSM, namely: 1) Regression kriging with legacy soil 

map as categorical variable (CAT); 2) Stratified kriging using the delineations of the legacy soil 

map as map unit boundaries (STK); 3) Legacy soil map used as observed information obtained 

from the accompanying report (OBS); and 4) Combining the OBS result with kriged residuals 

(OBSRES). Regression kriging without use of legacy soil map information is used as a reference 

method (RK). The accuracy of all methods was assessed with the Correlation (r), Mean Error 

(ME) and the Root Mean Square Error (RMSE). The best method for predicting the soil 

properties pH and CEC was the CAT method using a legacy soil map with a scale of 1:100.000, 

where the pH had an r of 0.53, an ME of -0.004 and an RMSE of 0.76 and the CEC had an r of 

0.59, an ME of 0.011 [cmol+/kg] and a RMSE of 4.54. The best method for predicting soil depth 

was the reference method, which had an r of 0.26, an ME of 0.32 [cm], and an RMSE of 61.42. 

For the reference method, the predicted pH had an r of 0.48, an ME of -0.009 and RMSE of 0.78, 

for CEC an r of 0.54, an ME of 0.047 and RMSE of 4.71. The obtained results show that the soil 

map provided disappointingly little information. However, the methods and data used in this 

thesis create a basis for a possibly more accurate DSM using legacy soil maps for the province in 

Burkina Faso, which should be extended to include a much denser soil profile dataset and more 

adequate environmental covariates including more detailed soil information from the legacy soil 

maps. 

Keywords: Digital Soil Mapping, Legacy Soil Map, Regression Kriging, Stratified Kriging, 

Variogram 
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1. Introduction 

1.1 Context and background 

Soil is very important part of the natural environment and can be seen as a life support system. 

Without soil, human life would be impossible. A few of many important soil functions are: to 

filtrate groundwater, hold and provide nutritious substances and water necessary for plant 

growth, act like a living source for many organisms and decomposing substances, and to absorb, 

store and reflect the sun’s energy (Mitschang, 2008).  

Soil mapping started many decades ago, meaning that the world is rich with soil data (Mayr et 

al., 2008). Most of the data are unused (Rossiter, 2008) due to the lack of digital availability, 

technology and inconsistencies in mapping, extent and spatial distribution of the numerous 

surveys and associated data. These legacy data may consist of soil maps with legends, soil 

survey reports and/or soil profile descriptions (Minasny and McBratney, 2010). Legacy soil data 

can be a valuable source of information on the spatial variation of soil properties (Mayr et al., 

2010). Practical studies have shown that soil properties derived from soil survey maps have the 

same quality as maps obtained using spatial interpolation (Bregt et al., 1987).  

The rise and the advances in technology such as GPS, remote and proximal sensing, digital 

elevation models (DEM) and Geographic Information Systems (GIS), have resulted in the 

production of digital soil data and class maps, needing only limited, expensive, fieldwork and 

laboratory analysis. This approach is now widely known as digital soil mapping (DSM). DSM  is 

formulated as ‘‘the creation and population of spatial soil information systems by numerical 

models inferring the spatial and temporal variation of soil types and soil properties from soil 

observation and knowledge and from related environmental variables’’ (Lagacherie et al., 2006). 

DSM combines soil observations with auxiliary data or covariates (such as correlated 

environmental variables and remote sensing images), using statistical models to predict soil type 

and properties at unobserved locations in a landscape (Dobos, 2006). The well-known equation 

from Jenny (1941)  S = f (CL, O, R, P, T) represents the soil (S) as a function of the covariates: 

climate (CL), organisms (O), relief (R), parental material (P), and time (T). The equation can be 

seen as the foundation for DSM and it offers an idea for understanding the relationships between 

soil and environmental variables (McBratney et al., 2003). This equation is later adapted by 

McBratney et al. (2003) to S = f (s, c, o, r, p, a, n), where soil is included as a factor because soil 

can be predicted from other soil properties. The soil (S) is a function of the covariates: soil (s), 

climate (c), organisms (o), relief (r), parental material (p), age (a) and spatial position (n).The s 

refers to soil information either from a prior map, from remote or proximal sensing or expert 

knowledge. 
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There is an urgent need for accurate, up-to-date and spatially referenced soil information (soil 

maps) by the modeling community (GlobalSoilMap.Net, 2013), farmers and land users, and 

policy and decision makers (European_Commission, 2006; UNEP, 2007). As has been 

demonstrated by many studies, legacy soil data can play an important role in DSM, especially 

when there is a lack of resources to collect new soil data (Bui and Moran, 2001, 2003; 

McBratney et al., 2003). However, the use of legacy soil data is challenging due to a number of 

problems related to the variable nature of the data, such as varying availability of numeric data, 

varying methods applied and the associated need for harmonization, varying precision of soil 

descriptions, varying precision or lack of georeferencing, varying adequacy of location, 

distribution of soil observations and varying consistencies of map extent, legend etc., as well as 

related to the licensing of the data. 

According to McBratney et al. (2003) and Minasny and McBratney (2010) the appropriate 

method to develop useful digital soil maps depends on the availability, amount and type of data, 

which preferably includes both legacy soil maps and soil point data. Heuvelink and Bierkens 

(1992) showed that if legacy soil maps and soil profile data are jointly included in DSM a more 

accurate soil map is obtained than using either of them separately. Legacy soil maps could be 

used as soil covariates (Hartemink et al., 2008) or as a source for calibrating DSM procedures 

that take into account the soil surveyor knowledge (Lagacherie et al., 1995; Bui and Moran, 

2001; Bui, 2004).  

Stein et al. (1988) and Boucneau (1998) used soil polygons from legacy soil maps to perform  

kriging within strata. Goovaerts and Journel (1995), Hengl et al. (2004) and Liu et al. (2006) use 

soil map information to inform the local mean of the random function used to model the soil 

property statistically, followed by kriging the stationary residuals and hereafter combined 

together to obtain final estimates. Odgers et al. (2014) disaggregated and harmonized the legacy 

soil map units to sample the polygons of a legacy soil map to generate a number of realizations 

of the potential soil class distribution by using classification trees. Grimm et al. (2008) used the 

legacy soil map as a factor in machine learning techniques, such as random forests, which is an 

ensemble learning method for classification and/or regression. In another machine learning  

method, Artificial Neural Networks (ANN), the legacy soil map is used to learn algorithms 

(Behrens et al., 2005). 
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1.2 Problem definition 

The people of Burkina Faso are highly dependent on pastoral and agricultural resources to 

support their livelihood. Growing population pressure has led to overgrazing and increased 

cropping intensity, leading to serious degradation of the natural environment, such as reduced 

vegetation cover and degraded soil fertility (van Lieshout et al., 1997). As a consequence, there 

is an increasing risk for food shortage and famine. In order to improve the life quality of the 

Burkina Faso population and recover the agricultural production, one must properly use and 

manage the soil. In order to know how to manage which soil to yield optimal agricultural 

production, information about soil type or soil properties that influence agronomic production 

must be known. Therefore producing accurate and relevant soil property maps would not only 

contribute to worldwide DSM activities but would more importantly be very useful for Burkina 

Faso and its policy and decision makers. In this research three key soil properties, acidity or 

alkalinity (pH in H2O), Cation Exchange Capacity (CEC) and the soil depth (Depth), will be 

studied.  

Considering the available methods, the problem considered is which method is best for the case 

study area to include legacy soil map in DSM. And whether this method or this inclusion will 

produce a more accurate soil property map than DSM using another method or without using 

legacy soil maps. 

 

1.3 Research objective 

General objective: 

The objective of this research is to devise, apply and test methods for including legacy soil maps 

in digital soil mapping to improve the spatial prediction of the top soil pH, Cation Exchange 

Capacity (CEC) and soil depth for Sanmatenga province, Burkina Faso.  

Research questions: 

1. Which methods can be used to include legacy soil maps in DSM to model the 

relationship between soil properties and environmental covariates? 

2. How can the accuracy of the results of each method be assessed? 

3. How can these methods be implemented in R software? 

4. Which results are obtained when the methods are applied to the area of Sanmatenga 

province with different legacy soil map scales? 

5. Which of the selected methods produces the most accurate soil maps and how accurate 

are these maps compared to DSM without using legacy soil maps? 
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1.4 Outline 

This report includes five chapters. The first chapter introduced the purpose of this study as well 

as the background and problem of including legacy soil map information in DSM. The second 

chapter describes the study area, the input data (soil profile data and environmental covariates), 

the methods and software (R and ArcGIS) used in this research. The third chapter presents the 

results of the predicted soil properties maps and summary statistics (correlation, mean error, root 

mean squared error, mean, median, min, max) of predicted soil properties. The fourth chapter 

discusses the results presented in Chapter 3. In the last chapter, a conclusion is made on this 

study. 
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2. Materials and methods 

2.1 Study area description 

The study area is the province of Sanmatenga located in the centre-north of Burkina Faso (Figure 

2.1) and has an area around 7579 km
2
. It stretches north-south from Universe Transverse 

Mercator (UTM) coordinates 1544 to 1418 (126 km) and east-west from UTM co-ordinates 753 

to 657 (96 km). 

Two-thirds of the area is situated in the Soudano-Sahelian agroclimatic zone, where the north 

part stretches into the South-Sahelian zone and the south into the North-Soudanian zone. The 

average annual rainfall is around 650 mm with an average temperature of 35 °C. 

Geologically, two major strata can be distinguished in the area: the Birimian and the Antѐ-

Birimian stratum. The Birimian, dated between 2400-2170 million years ago and consisting of 

mainly meta-vulcanic rock, is situated in the southern, and a little bit in the north-eastern part of 

the province. The Antѐ-Birimian stratum, dated before 2400 million years ago, covers the larger 

part of the province. 

The major kinds of land use in the study area are traditional rain-fed agriculture and extensive 

grazing. 

 

Figure 2. 1 Map of Burkina Faso and study area Sanmatenga province 
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2.2 Methods for Including Legacy Soil Maps in DSM 

Soil properties can be predicted from covariates measured at the same (or neighboring) locations. 

The predictive approaches may be different in every case study. In this research, the following 

geostatistical methods to include legacy soil maps in DSM were used. 

2.2.1 Common DSM with regression kriging (RK) without legacy soil map 

A commonly used DSM method is regression-kriging (Odeh et al., 1994; Goovaerts, 1997; 

Hengl et al., 2004), which is further referred as RK in this research. The method involves linear 

regression of the soil properties with the covariates as explanatory variables, followed by kriging 

of the regression residuals. Next, the regression predictions are summed up with the kriged 

residuals to obtain a final prediction map. This method will be used as a reference model. 

Assume the observations of soil properties be specified as z(s1), z(s2), . . ., z(sn), where si 

(i=1,...,n) is a geographic location with x and y coordinates and n is the number of observations. 

In the case of RK, a soil property at a new, unvisited location (s0) is predicted by summing up the 

linear predicted values and the kriged residuals (Eq. 1.): 

                                                                       =         +              (Eq. 1) 

where the        is fitted using linear regression analysis, and the residuals    are interpolated 

using simple kriging (Eq.2.):  

                                               
 
   

 
   

          
 
                     (Eq. 2) 

where the   
 
 are the estimated regression coefficients of the environmental covariates, qk(s0) is 

the k-th external covariate at location   , q0 = 1 so that   
  

 is the intercept of the regression, p is 

the number of covariates,    are kriging weights, which is selected in such a way that minimize 

the expected squared prediction error, and       are the regression residuals. The kriging weights 

are derived from a semivariogram. The semivariogram is a measure of spatial similarity between 

observations as a function of distance and consists of an experimental and model variogram. The 

experimental variogram is determined by calculating half the variance of each pair of points with 

regard to the other points in the dataset until every point has paired up with each other. Hereafter 

the half variances versus distance between the points are plotted. Next, a model variogram is 

computed with simple mathematics to fit a trend in the experimental variogram. The 

semivariogram consist of a nugget, sill and range. The nugget indicates the presence of short-

range spatial variability including measurement error. The sill value means that the residuals 

values have a large mean deviation and shows high variability. The range is the distance at which 

there is little or no autocorrelation among points.  
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2.2.2 DSM including legacy soil map as categorical variable in RK (CAT) 

In this method, the legacy soil map is incorporated in the RK method where the legacy soil map 

is treated as an additional covariate, to be specific as a categorical explanatory variable qt(s0). 

This categorical covariate variable qt(s0) is represented by as many dummy variables as there are 

categories, where the value of each of the qt(s0)  is either 0 or 1, indicating the absence or 

presence of the specific category (i.e. soil type). The following equation shows the incorporated 

categorical variable in reference method (Eq. 3.): 

           
 
   

 
   

             
 
             

 
                   (Eq. 3) 

 

Where r is the number of soil types,     is the regression coefficient and    (s0) is the presence-

absence of the t-th soil type (i.e. has a value of 1 or 0).  

2.2.3 DSM including legacy soil map delineations in Stratified kriging (STK) 

In this approach, the delineations of the legacy soil map are used as a boundary to perform a 

within-stratum interpolation. Soil map delineations can be used as an auxiliary variable to 

improve the spatial interpolation of soil properties (Stein et al., 1988; Boucneau, 1998). The 

boundaries of the soil map divide the study area into a number of polygons that are represented 

by a legend that consists of different or associated soil types. Observations located in polygons of 

the same soil type are kriged using ordinary kriging (Eq. 4.). Observations outside a stratum are 

not used. For each stratum, at least ten soil observations should be available, otherwise the 

stratum has to be merged. Some mapping units will have a small number of soil observations to 

fit a variogram, therefore the observations in each stratum have to be standardized, where a 

general variogram was computed for kriging per stratum. The standardizing process was done 

per stratum by dividing each observation in a stratum by the standard deviation of the 

observations in that particular stratum. Hereafter a general variogram was computed by 

increasing the coordinates of the soil observations of each stratum with an increment that should 

be at least twice the width of the study area in order to group the far lying observations and 

polygon from the same stratum together and to make a distinction between the observations of 

the other strata.  

                                                                      
 
                                                                       (Eq. 4) 

where    are the kriging weights,       are the observations, and        are the predicted soil 

properties. The kriging weights are calculated by minimizing the expected squared prediction 

error, under the condition of unbiasedness. The latter is achieved by the constraint    
 
    = 1. 
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2.2.4 DSM including legacy soil map as observed information (OBS) 

Based on expert knowledge, lookup tables and/or representative soil profiles attributed to the 

legend or mapping unit from an accompanying report, the given information about soil properties 

from the legacy soil map was used as observed information. Soil properties values, measured 

from the soil profile(s) in the report that are supposed to represent a mapping unit, are assigned 

to that particular mapping unit. Soil associations in a map unit will be taken under consideration 

such as when the percentage soil type proportion is given. If more than one soil profile was given 

to represent a mapping unit and the portion of the soil class association was given in the report of 

the legacy soil map than the soil property value was determined by a weighed mean (Eq. 5). 

When no information is given on the proportions within soil associations than the arithmetic 

mean was taken. When mapping units did not have a representative soil profile or no observed 

information was available for such units than this mapping unit was merged with other mapping 

units that had similar soil types.  

                  
     

 
   

   
 
   

      (Eq. 5) 

where wi is given weight and xi is the value. 

2.2.5      OBS combined with kriged residual (OBSRES) 

In this method, the OBS predicted soil properties are overlaid with the soil profile to calculate 

and interpolate the residuals with simple kriging, followed by summing up the kriged residuals 

with the OBS predicted soil property. In other words, the approach applies simple kriging to the 

residuals of the OBS method and combines the two results.  

 

2.3 Data description and pre-processing 

2.3.1 Soil profile data description 

As target variables were used, the cation exchange capacity of the fine earth fraction (CEC) 

expressed in cmol+/kg of the topsoil, the pH measured in H2O of the topsoil and the depth of the 

soil expressed in cm. The soil depth, that is further referred as Depth, are censored data obtained 

by taking the maximum observed depth of the soil profile sample. These soil profile data were 

obtained from the Africa Soil Profile Database (AfSP) version 1.1 which is maintained by 

Leenaars (2013). The AfSP is a compilation of standardized legacy soil data of 16,711 soil 

profiles, of which 15,500 are geo-referenced, for 38 Sub-Saharan African countries. The soil 

profile data were derived from over 450 data sources, both digital and analogue, from holdings 

(organizations) such as ISRIC, FAO, WOSSAC and IRD. The data were standardized to the e-

SOTER conventions and validated according to routine rules (Leenaars, 2013).  
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2.3.2 Environmental covariates 

The following auxiliary maps were used as environmental covariates: the 100m resolution digital 

elevation model (DEM) with the derivatives slope (SLOPE), relative elevation (RELEV), 

curvature (CURVATURE) and aspect (ASPECT). Curvature and aspect was derived from the 

DEM in ArcGIS 10.1 and the DEM and the other derivates were obtained from International Soil 

Reference and Information Centre (ISRIC), which was preprocessed by Köthe (2013) from 

Scilands GmbH. These variables represent the relief in the scorpan model. The European Space 

Agency (ESA) GlobCover map (LANDCOV), the enhanced vegetation index (EVI) with a 

resolution of 250m and the soil wetness index (SWI) with 100m resolution was used to represent 

the organism in the scorpan model. For the parent material in the scorpan model, the geology 

map (GEOLOGY) of Burkina Faso with scale of 1:1.000.000 was used. For the climate, the 

average land surface temperature of the day (TEMPDAY) and night (TEMPNIGHT) with a 

resolution of 1km were used. The following legacy soil maps of Burkina Faso with a scale of 

1:100.000 (SM100K), 1:500.000 (SM500K) and 1:1.000.000 (SM1M) was used to represent the 

soil in the scorpan model. The environmental covariates with their sources and references are 

given in Table 2.1. 

Table 2. 1 Environmental Covariates 

Variable Unit Source Reference 

EVI 250 m 
https://lpdaac.usgs.gov/lpdaac/products/modis_products_Tabl

e/vegetation_indi 

(LP_DAAC, 

2001) 

Land cover 250 m http://due.esrin.esa.int/globcover/  (ESA, 2009) 

Soil map BF 
Scale 

1:100.000 
http://library.wur.nl/WebQuery/isric/23904 (Asten, 1995) 

Soil map BF 

(North 

Center) 

Scale 

1:500.000 
http://library.wur.nl/WebQuery/isric/17498  (Boulet, 1968a) 

Soil map BF 

(South 

Center) 

Scale 

1:500.000 
http://library.wur.nl/WebQuery/isric/17713 (Kaloga, 1968a) 

Soil map BF 
Scale 

1:1000.000 
http://library.wur.nl/WebQuery/isric/17497 

(Guillobez, 

1985) 

TEMPNIGHT 1km ftp://africagrids.net/1000m/MYD11A2/LST_night/  (AfSIS, 2013a) 

TEMPDAY 1km ftp://africagrids.net/1000m/MYD11A2/LST_day/ (AfSIS, 2013b) 

DEM 100m ISRIC (Köthe, 2013) 

SWI 100m ISRIC (Köthe, 2013) 

Relative 

Elevation 
100m ISRIC (Köthe, 2013) 

Slope 100m ISRIC (Köthe, 2013) 

Aspect 100m ISRIC (Köthe, 2013) 

Curvature 100m ISRIC (Köthe, 2013) 

Geology BF 
Scale 

1:1000.000 
ISRIC (Köthe, 2013) 

https://lpdaac.usgs.gov/lpdaac/products/modis_products_Table/vegetation_indi
https://lpdaac.usgs.gov/lpdaac/products/modis_products_Table/vegetation_indi
http://due.esrin.esa.int/globcover/
http://library.wur.nl/WebQuery/isric/17498
ftp://africagrids.net/1000m/MYD11A2/LST_night/
ftp://africagrids.net/1000m/MYD11A2/LST_day/
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2.3.3 Legacy soil maps 

The SM1M had a physiographic map legend with associated soil classes (Figure 2.2) with no 

accompanied report. The legend of the SM500K map (Figure 2.3 and 2.4) employs a hierarchical 

soil class order according to the French Soil Classification System (CPCS, 1967). The main soil 

classes area are divided into raw mineral soils, weakly developed soils, vertisols, brown soils, 

ferallitic soils, sodic soils and hydromorphic soils. Raw mineral soils are soils that have not 

undergone any significant pedological development and that have no or little organic matter in 

the upper 20 cm of the profile. Weakly developed soils are soils with a humiferous horizon that 

shows the beginning signs of geochemical alteration. Vertisols are dark-coloured clay soils 

dominated by swelling and shrinking clay minerals. Brown soils are soils characterized by mull 

type humus. Ferallitic soils are composed of almost completely weathered primary minerals. 

Sodic soils are characterized by alkaline salts in solution and the presence of exchangeable 

sodium. Hydromorphic soils are partly or entirely saturated with water over extended periods of 

time. A more detailed soil class description can be found in Latham (1982). The SM100K map 

(Figure 2.5) has a physiographic map legend. The highest level of the legend concerns geology, 

which is subsequently disaggregated into major landforms, minor landforms, and in some cases a 

fourth landform level. According to the corresponding report van Lieshout et al. (1997), the soils 

in the area are strongly correlated with the mapped geomorphological features. The major 

landforms were divided in: Hills (A), Indurated caps (B), Slopes (C), Bottomlands (D) and 

Aeolian complexes (E). The major landform classes were presented by capital letters in the map 

unit code followed by an integer, which represent the minor landforms such as lower, middle and 

upper slopes. A second integer represents the different land elements such as valleys, 

bottomland, etc... The ‘soil’ maps will be generalized with other mapping units based on 

hierarchically higher mapping units or similar soil type properties or soil descriptions. SM100K 

was already digitized whereas SM500K and SM1M still need to be digitized. 
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Figure 2. 2 SM1M of Burkina Faso 
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Figure 2. 3 SM500K of north-centre Burkina Faso 

 

 

Figure 2. 4 SM500K of south-centre Burkina Faso 
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Figure 2. 5 SM100K of part study area, Sanmatenga 
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2.3.4 Mask, Extent, Resolution and File format 

All covariates will be used in the same extent and resolution. The covariates were transformed to 

100m resolution using the resample tool in ArcGIS. First, a mask was created in ArcGIS, which 

has the same extent as the SM100K, which is the extent of the province of Sanmatenga. Water 

bodies were masked out, because digital soil mapping only produces maps for areas that are 

covered by soil. Hereafter all the variables were masked to the same extent using the extract by 

mask tool in ArcGIS, followed by a conversion to ASCII text file. In Appendix 1 the 

preprocessed environmental covariates maps are presented. 

2.3.5 Exploratory data analysis (EDA) 

Exploratory data analysis (EDA) was used prior to the actual geostatistical modeling to examine 

the properties and quality of the data with the help of graphic techniques and descriptive 

statistics. The examination consists of checking the marginal distributions, general trends, and 

checks for outliers and anomalies. In this study, histograms were used to examine the distribution 

of the data. For geostatistical methods to be optimal, it is required that the data reasonably fit a 

normal distribution and are stationary. Data were considered stationary when the mean and 

variance are more or less constant in space (Bohling, 2005). Data transformations were applied 

to data that are not normally distributed. There are several transformation methods. The most 

common are natural logarithm, square root type, reciprocal, and Box-Cox. To back transform the 

predicted values to original scale, the variance needs to be taken under consideration. The 

following example equations were used to back transform the logarithm type (Eq. 6) and square 

root type (Eq. 7) to the original scale by considering the variance: 

        E(  ) = exp(        + 0.5*σ² )                        (Eq. 6) 

                                           E(  ) =        
2
  +  σ                                                                 (Eq. 7) 

where        is the predicted soil property value, σ is the variance of the predicted soil property 

and E(  ) is the back transformed predicted soil property value to original scale. 

2.3.6 Digitization of soil maps 

As stated before, SM500K and SM1M needed to be digitized. Digitization was done in ArcGIS 

Desktop10.1. Geo-referencing was necessary to align the maps with existing geographically 

referenced data. Control points were selected randomly on each map and a polynomial 

transformation was applied to convert the geometry of the entire map to the reference geometry. 

The following guidelines were followed to select control points:  

 Points should be taken on recognizable places where they represent the same object or 

geographic location, e.g. street, boundaries, building, etc. 
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 Points should be taken near each of the corners of the image and spread out over the 

entire image.  

After geo-referencing, the soil maps were clipped to the same extent as the study area with the 

mask, before the digitization process was started. The first step of digitization was to create a 

new feature data set in a geodatabase and set the coordinate system to WGS 1984 Web Mercator 

Auxiliary Sphere. Hereafter a new feature class was created in the feature data set. The type of 

feature stored in the feature class was set on polygon features and a new field name of LegendNR 

with the data type text was created. Next, the topology was created in the feature data set to set 

the some digitization rules for the feature class. The cluster tolerance was set on 10 m and the 

rules for the feature class was set to must not have gaps and must not overlap, where the rest of 

the settings were left on default. With the Editor toolbar in ArcGIS the digitization process can 

be started by clicking on start editing followed by create features on the Editor toolbar. On the 

create features window the construction tool polygon was use to digitize the soil maps. After 

finishing digitizing, the attribute table with field name LegendNR was filled in with the 

corresponding mapping units’ number or code of the legacy soil maps. In SM500K a distinction 

between legend code was made because the research area occurred both in the north-center and 

the south-center of the legacy soil maps of Burkina Faso. LegendNR that has NC before an 

integer means that the mapping unit belongs to the legend of the North-Center of the legacy soil 

map of Burkina Faso where NC stands for North-Center and the integer for the legend number in 

the legacy soil map of Burkina Faso. The same applies for the LegendNR SC that stands for 

South-Center from the South-Center legacy soil map of Burkina Faso. These legacy soil maps 

were resampled to 100 m resolution.  

2.3.7 Reclassification and generalization of legacy soil maps 

Reclassification with specified criteria is conducted to create more generalized layers. Layers 

with many classes or levels are difficult to handle during the interpolation process, especially 

with regression kriging. Many levels often cause inaccuracies by not performing accurate 

predictions. This happens if there is none or too few observations in a soil class to perform 

stratified kriging and it may also take much calculation time and load. The soil maps were 

classified to merge classes to avoid inaccuracies in the predictions and save computation time.  

 

2.4 Assessment of models accuracy 

Cross-validation was used to evaluate the model fitting and to quantify the accuracy of the 

methods. In this study Leave-One-Out cross validation was used. Leave-One-Out cross 

validation uses a single observation from the original data as validation data and the remaining 

observations were used to build the model. This was repeated until all observations of the 

original data were used once as validation data. The outcome is an average of the models. As 
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result, the target variable was predicted. These predictions and prediction errors for all locations 

were subsequently used to calculate three validation measures: the Correlation (r), the Mean 

Error (ME) and the Root Mean Squared Error (RMSE). The r measures the degree of linear 

relationship between the observed and predicted values, where a correlation of 1 or -1 implies a 

perfect linear correlation. It was calculated with Eq. 8. ME indicates the degree of bias in the 

predictions (Bello-Pineda and Hernández-Stefanoni, 2007), and should be close to zero. It was 

calculated with Eq. 9. RMSE measures the difference between the observed value and predicted 

value; smaller RMSE means that the model has predicted well (Odeh et al., 1994). It is 

calculated using Eq. 10. 

 

                
                

   

           
              

   

                 (Eq. 8) 

          
 

 
                           

 
        (Eq. 9)                

                 

 
                           

 
 

 
             (Eq. 10) 

where    is the observed soil property value,     is the mean of he observed soil property,    is the 

predicted soil property value,    is the mean predicted soil property, n is the number of 

observations. 

 

2.5 Software implementation 

2.5.1 Modeling Flow Chart 

The modeling flow chart in Figure 2.2 represents the methodological framework of this study. 
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Figure 2. 6 Modeling flow chart 
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2.5.2 ArcGIS Desktop 10.1 

ArcGIS is a geographic information system for mapping, manipulating, visualizing, compiling, 

analyzing, creating, designing, discovering, sharing and storing maps and geographic 

information, which is developed by ESRI Company. ArcGIS desktop 10.1 standard version is 

one of the ArcGIS products, which runs in a Microsoft Windows environment. In this research, 

ArcGIS was used for digitization, pre-processing the target variables as well the environmental 

covariates to the same extent and resolution, reclassification and assigning values to the soil 

maps and conversion of all variables to ASCII files, which were later used in R.  

2.5.3 R and contributed packages 

In this research R and contributed packages were used. R is open source software for data 

analysis, statistical computing and graphics. R provides a wide variety of statistical and graphical 

techniques, and is highly extensible. The packages, which were used in this research, were gstat, 

raster, rgdal, sp and maptools.  The gstat package supports kriging, variogram modelling and 

visualization and cross-validation (Pebesma et al., 2013). The sp package provides classes and 

methods for spatial data (Pebesma et al., 2012). The raster package provides classes and 

functions to perform reading, writing, manipulating, analyzing and modeling of large geographic 

(spatial) data sets in 'raster' format (Hijmans et al., 2013). The package rgdal provides access to 

projection/transformation operations as well as read and write access to spatial data in different 

formats (Keitt et al., 2011). Maptools is a set of tools for manipulating and reading geographic 

data, in particular ESRI shapefiles (Lewin-Koh et al., 2011).  

2.5.4 Software implementation for the methods 

All methods were performed in R except OBS, which was executed in ArcGIS because this was easier 

and less time consuming. 

2.5.4.1 RK 

The following steps for the RK method were executed: 

1. Fit regression model. Overlay covariates with the locations of observations of the 

dependent variable, and fit a regression model on the resulting dataset. The tool over of 

the package sp was used to perform the overlay. The basic package stats provides the tool 

lm to fit linear models and step to select covariates that are significant and can improve 

the model prediction accuracy. The criteria for selecting the covariates are based on the 

Akaike Information Criterion (AIC).  

2. Compute variogram. The residuals from the regression models were used to calculate a 

variogram. First, an experimental semi-variogram was computed with the variogram tool 

followed by fit.variogram from the gstat package to fit a semi-variogram model. 
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3. Apply regression model. Apply the regression model to all locations in the study area to 

generate a map of the target variable. This was done with the predict tool from base 

package  stat. 

4. Krige the residuals. The residuals were kriged with simple kriging to the same area. 

5. Combine results. Add the map with kriged residuals to the map of the regression 

predictions. 

6. Cross-validate results. Repeat step 4 and use krige.cv instead of the krige tool. The 

obtained results were used to calculate the r, ME, and RMSE. 

2.5.4.2 CAT 

This method was executed exactly the same as the RK method, except that in the first step, the 

legacy soil map was added to the environmental covariate as a factor with the as.factor() tool 

from the sp package. It is possible that the legacy soil map will be left out during the stepwise 

covariate selection procedure because it is not statistically significant. When this occurs the 

legacy soil map is manually incorporated in the linear model. 

2.5.4.3 STK 

The following steps were executed for STK: 

1. Overlay soil property with legacy soil map. This was done with the over tool. 

2. Make subset of data. To make a subset of each soil type stratum which includes the 

soil property values, the command data[ which(data$part.a==1), ] was used. The 

integer in the script indicates the soil type or stratum ID. 

3. Standardize soil property value per stratum. Calculate per stratum the standard 

deviation of the soil property and divide the soil property value by the standard 

deviation for that stratum. 

4. Calculate general variogram. Stretch the coordinates per stratum with at least twice 

the width of the study area. Hereafter combine the strata together with the rbind() tool 

to make one dataframe. Calculate the experimental variogram and fit the variogram. 

5. Krige standardize soil property per stratum. Krige per stratum the standardized values 

with ordinary kriging using the general variogram. 

6. Combine the strata. Back-transform the kriged standardized values by multiplying 

these with the standard deviation of the stratum. Combine the strata with the rbind() 

tool to make one dataframe and plot the prediction maps. 

7. Cross validate model Step 4 was repeated where krige.cv was used instead of krige. 

The obtained results were used to calculate the r, ME and RMSE. 
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2.5.4.4 OBS 

For this method, reports of the legacy soil maps were required to gather information about the 

soil properties. SM1M does not have an accompanied report thus no research will be done for 

SMIM in this method. The report of SM100k was van Lieshout et al. (1997) and for SM500K 

these were Boulet (1968b) and Kaloga (1968b). When the values of the soil properties were 

determined then these were assigned to the accompanied mapping unit in ArcGIS with the 

reclass tool. In this method, validation was applied by using the soil observations from the AfSP 

database as observed information and the predicted map as prediction. The differences between 

these two were used to calculate the validation measurers r, ME and RMSE. 

2.5.4.5 OBSRES 

The following steps were executed for OBSRES: 

1. Overlay soil property observations with OBS map. This was done with the over tool. 

2. Calculate residuals. Subtract the overlaid values from the soil property values. 

3. Compute variogram. The residuals were used to calculate a variogram. First, an 

experimental semi-variogram was fitted with the variogram tool followed by 

fit.variogram from the gstat package to fit a semi-variogram model. 

4. Krige the residuals. The residuals were kriged with simple kriging to the same area 

with the krige function. 

5. Combine results. Add the map with kriged residuals to the map of the OBS prediction 

map. 

6. Cross-validate results. Repeat step 4 and use krige.cv instead of the krige tool. The 

obtained results were used to calculate the r, ME, and RMSE. 
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3. Results 

3.1 Model input data 

3.1.1 Exploratory data analysis 

In total 218 pH observations were used. Figure 3.1 shows the spatial distribution of pH sample 

points in the study area and the boxplot of the data. The pH range is from 3.9 to 9.1, the mean is 

5.6 and median is 5.5. The pH value of the 1
st
 quartile soil profiles is 5 and 3

rd
 quartile is 6.2.  

Figure 3. 1 Spatial distribution of pH sample points and box plot of pH values 
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The spatial distribution of the 206 CEC observations and the corresponding boxplot are shown in 

Figure 3.2. The CEC value ranges between 1.6 and 29.6 cmol+/kg, the mean is 7.3 and median is 

5.5. The CEC value of the 1
st
 quartile soil profiles is 3.8 and 3

rd
 quartile is 8.5.  

 

Figure 3. 2 Spatial distribution of CEC sample points and box plot of CEC values 

 

 

 

 

 

 

 

 

 



23 

 

The spatial distribution of the 215 Depth observations and the corresponding boxplot are shown 

in Figure 3.3. The Depth range is from 3 to 244 cm, the mean is 78.8 and median is 64. The 

Depth value of the 1
st
 quartile soil profiles is 22.5 and 3

rd
 quartile is 125.  

 

Figure 3. 3 Spatial distribution of Depth sample points and box plot of Depth values 
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Figure 3.4 shows the histograms of the soil properties and the covariates. It can be observed that  

CEC, Depth and SLOPE are not normally distributed The CEC data and the SLOPE data were 

log transformed while for Depth a square root transformation was used. Figure 3.5 shows the 

histograms of the transformed variables. 

 

 
Figure 3. 4 Histograms of the soil properties and the environmental covariates 
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Figure 3. 5 Histogram of the transformed CEC, Depth and Slope data 

3.1.2 Results of digitized legacy soil maps 

Figure 3.6 shows the SM500K and SM1M soil maps. The SM500K map has 24 mapping units 

and the SM1M has 10 mapping units. The description of the legend number, which corresponds 

with the map unit code, for SM1M and SM500K are described in the Appendix 2 in Tables A2. 1 

and A2. 3, respectively. 

 

Figure 3. 6 Legacy soil maps SM5000K (left) and SM1M (right) 



26 

 

3.1.3 Results of generalized legacy soil maps 

3.1.3.1 Generalized SM1M map 

The mapping units of the SM1M map were generalized based on similarity of soil types. The 

original legend of SM1M is presented in Appendix 2 Table A2.1. Mapping unit with codes 2 and 

3 were merged together and the same applies to mapping units 8, 9 and 10. Hereafter a class 

number was assigned to each of the merged mapping units (see Appendix 2, Table A2.2). 

Finally, a reclassification was made for the classes that have less than 10 observation points. 

Since class 3 has only two observations of each soil property it was merged with class 2, which 

has similar pedogenesis while both units also include vertisols. For similar reasons class 5 was 

merged with class 1, and class 6 was merged with class 4. Class 7 was merged with class 1, 

because both comprise raw minerals soils, which are at an embryonal stage of soil development. 

After reclassification, only 3 classes remained. Table 3.1 shows the generalized classes. 

Table 3. 1 Generalized SM1M classes 

Original 

Map Units 
Soil Types Pedogenesis 

Nr. Of pH 

Observations 
Nr. Of CEC 

Observations 
Nr. Of Depth 

Observations 

New 

Class 

nr. 

2, 3, 14 and 

23 

- Lithosols 

- Weakly 
Developed 

Soils 

- Brown 

Soils 

- Embryonal 22 20 22 1 

4 and 5 
- Vertisols 

- Brown 
Soils 

- Vertic 34 31 34 2 

8,9,10 and 20 

- Lithosols 

- Weakly 
Developed 

Soils 

- Ferallitic 
Soils 

- Ferruginous 

- Embryonal 
162 155 159 3 

 

Figure 3.7 shows the generalized SM1M map. Legend with value number 1, which is equal to 

class 1 of the generalized SM1M . From the map can be seen that class number 3 dominates the 

study area. 
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Figure 3. 7 Generalized SM1M map  

3.1.3.2 Generalized SM500K map 

The original legend of SM500K is presented in Appendix 2 Table A2.3 with the number of soil 

property observations. The mapping units of the SM500K map were generalized based on 

hierarchical higher mapping unit followed by the similarity of soil types and/or description, when 

the former is not applicable. Mapping units belonging to the same main soil type were merged 

together and a unique class number was assigned to each of the seven generalized soil types (see 

Appendix 2 Table A2.4). A reclassification was made for the classes that have less than 10 

observation points. Class 7 has no observations so this soil class needed to be merged and 

reclassified into an existing class. Because of the reported similarity of units SC23 and NC01 it 

was merged with class 1. Class 5 also needs to be reclassified since it has only one observation. 

The description of class 5 that consist the mapping unit NC39, and SC44 are respectively leached 

alkali soils associated with gravels and lithomorphic vertisols and lithosols on granite. These 

description matches most to the description that was provided in class 1 with mapping unit NC01 

and NC02 compared to the other class, so class 5 was also reclassified in class 1. To have a 

numerical order of classes, class 6 was reclassified as class 5. After reclassification, the soil map 

has 5 classes left as shown in Table 3.2.  
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Table 3. 2 Generalized SM500K classes 

Original Map 

Units 
Soil Class 

Nr. Of pH 

Observations 
Nr. Of CEC 

Observations 
Nr. Of Depth 

Observations 
New 

Class  Nr. 

NC01, 

NC02,NC39,SC
23 and SC44 

Raw Mineral Soils 
Vertisols 
Sodic Soils 

26 25 26 1 

NC04 and NC05 
Weakly Developed 

Soils 
101 95 101 2 

NC19, NC20, 

NC21, NC22, 
NC23 and SC30 

Brown Soils 27 25 27 3 

NC27, NC28, 

NC31, NC32, 
NC33 and SC40 

Ferallitic Soils 28 26 26 4 

NC43, NC44, 

NC45,SC45 and 

SC49 

Hydromorphic 
Soils 

36 35 35 5 

 

Figure 3.8 shows the generalized SM500K map with the legend value number equals to the new 

class number. From the map can be seen that class number 2 dominates the study area. 
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Figure 3. 8 Generalized SM500K map  

3.1.3.3 Generalized SM100K map  

The map legend of SM100K and the number of accompanying soil properties observations is 

presented in appendix Table A2.5. As can be seen in the table, mapping units C31, C41, C51, 

D2, D3 and E has less than 10 observation, so these mapping units needs to be merged. Mapping 

unit C31 was merged together with C32 because they represent the minor landform, lower slope. 

The mapping unit C41 was merged with C42 because it has a lower or middle Birimian slope, 

which was equivalent with mapping unit C42. C51 was merged with C52 due to the similar 

characteristics of geology and minor landform, the Birimian valleys. D2 were put together with 

mapping unit D3 because they represent the major landform bottomlands. Mapping unit E is a 

different individual class and cannot be merged with other mapping units based on the geology 

and/or landforms. The mapping unit E represents the Aeolian complex which are sand dunes that 

are formed during the late-pleistocene with a slight relief (van Lieshout et al., 1997). In the same 

report, ‘complex’ was described as a wide variation of soil types. The soil type in this mapping 

unit correspond the most with the mapping unit of D3. Therefore mapping unit E was merged 

together with D2 and D3. After the merging process, a class number was assigned to the 

mapping units. Mapping unit W will not have a class number assigned because it is not necessary 
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in this research and therefore removed. After reclassification, the soil map has 10 classes left as 

shown in table 3.3. 

Table 3. 3 Generalized SM100K classes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 shows the generalized SM100K map where the legend value number equals to the 

new class number.  

Map Unit  

Code 

Physiographic  

units 

Nr. Of pH 

Observations 

Nr. Of CEC 

 Observations 

Nr. Of Depth 

 Observations 

Class 

Nr. 

AC1 
Hills and 

upper slopes 
17 17  17  1  

B1 Plateau 13 12   13 2 

B2 

Eroded or less  

developed 
indurated cap 

20  19 19  3  

C21 
Crusted  

middle slope 
12 10  10  4 

C22 
Non-crusted 

middle slope 
33 31  32 5 

C31 and C32 

Eroded and  

non-eroded  

lower slope 

42 42 41 6  

C41 and C42 

Crusted and  

non-crusted 

lower/middle 

Birimien slope 

31  31 32 7  

C51 and C52 

Crusted and  

non-crusted 

 Birimien valleys 

13 12 12 8 

D1 
Bottom-land 

small valley 
16  16  16 9 

D2, D3 and E 

Bottom-land large 

valley and 

Aeolian complex 

21  16 21  10  
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Figure 3. 9 Generalized SM100K map  
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3.2 Model results 

3.2.1 Regression Kriging (RK)  

In this section, the intermediate RK results for soil pH are given, while the intermediate RK 

results for CEC and Depth are provided in Appendix 3. For the latter properties, similar 

procedures were followed. Table 3.4 lists statistics of the selected covariates and the 

corresponding regression coefficients obtained by stepwise regression of pH. 

Table 3. 4 Statistics of the regression analysis for pH using RK 

Variable Estimate Std. Error Significance     

(Intercept)  9.008 1.449 2.65e-09 *** 

SWI -0.188 0.063 0.003 **  

RELEV -0.023 0.018 0.005 **  

EVI  0.000 0.000 0.063 .   

As can be seen in table 3.4, only three covariates were selected by stepwise regression, i.e. only 

these variables can be used to partially explain the spatial variation in pH in a linear model. The 

SWI and RELEV variables are relative high significant variables and the EVI less significant. 

The predictor variables SWI and RELEV have negative regression coefficients while the EVI 

have a positive regression coefficient. Table 3.5 lists statistics of the regression residuals. 

Table 3. 5 pH residuals after regression using RK 

Residuals: 

Min 1Q Median 3Q Max 

-1.98 -0.57 -0.13 0.56 3.56 

A variogram was calculated and fitted for the residuals, see Figure 3.10. The variogram has a 

nugget of 0.40 and a spherical component with a partial sill of 0.43 and a range of 13000 m. The 

relatively high nugget means that at very small distances there is a large variability in the 

residuals. The high sill value means that the residuals values have a large mean deviation and 

shows high variability. The large range means that the points are wider spread compared to each 

other. 
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Figure 3. 10 Variogram of pH residuals  

The residuals were kriged using the variogram and the obtained results were added to the 

regressed results to make the final RK prediction. Table 3.6 shows summary statistics of the 

predicted values for pH, CEC and Depth and Figure 3.11 shows the predicted pH, CEC and 

Depth map obtained with RK.  

Table 3. 6 Summary statistics of pH, CEC and Depth obtained using RK 

    RK   

 

pH 

CEC 

[cmol+/kg] 

Depth 

[cm] 

Min. 2.6 2.4 31.3 

1st Quartile 5.4 5.7 71.6 

Median 5.6 6.4 80.8 

Mean 5.6 6.8 82.4 

3rd Quartile 5.8 7.4 92.8 

Max. 7.8 24.8 166.9 

Table 3.6 shows that the interquartile values of the individual predicted soil properties are close 

to their mean. 
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Figure 3. 11 Maps of pH, CEC and Depth predicted using RK 
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3.2.2 Legacy Soil Map as categorical variable in RK (CAT)  

The intermediate results of this method are shown in appendix A3. The method is similar to the 

RK method, where the only difference lies in the regression part where the legacy soil map is 

incorporated as categorical variable. Sometimes the legacy soil map was omitted due that they 

are simply not significant enough to reduce the residual error of the fit for the model. When such 

case occurs, the legacy soil map is manually incorporated in the regression model even if they 

are not significant. For the soil property pH the regression model omitted the SM100K and 

SM500K, for CEC the SM1M and for the Depth SM100K, thus for these model the legacy soil 

map is manually incorporated.  

Table 3. 7 Summary statistics for pH, CEC and Depth predicted using CAT with SM100K, 

SM500K and SM1M  

SM100K SM500K SM1M SM100K SM500K SM1M SM100K SM500K SM1M

Min. 2.2 3.1 2.7 2.1 2.5 2.5 32.6 28.1 27.6

1st Quartile 5.3 5.4 5.4 5.5 5.7 5.7 72.4 69.2 69.2

Median 5.6 5.7 5.7 6.5 6.5 6.4 82.8 79.2 79.4

Mean 5.6 5.7 5.6 6.9 6.8 6.8 83.9 80.1 80

3rd Quartile 5.9 5.9 5.8 7.8 7.5 7.4 95.2 91 91.4

Max. 8 7.6 7.9 35.5 28.9 24.5 157.3 148.8 156.3

CEC Depth

CAT

pH

 

Table 3.7 shows summary statistics for pH, CEC and Depth with SM100K, SM500K and SM1M 

in CAT. The interquartiles of the predicted values for all the soil properties have values that are 

close to their mean value. The predicted pH, CEC and Depth map using legacy soil maps 

SM100K, SM500K and SM1M in CAT are shown respectively in Figures 3.12, 3.13 and 3.14.  
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Figure 3. 12 Maps of pH predicted using CAT with SM100K, SM500K and SM1M  
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Figure 3. 13 Maps of CEC predicted using CAT with SM100k, SM500K and SM1M  
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Figure 3. 14 Maps of Depth predicted using CAT with SM100k, SM500K and SM1M  
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3.2.3 Stratified Kriging (STK) using Legacy Soil Map 

The intermediate results of the STK methods (such as variogram) can be found in appendix 3. 

The summary statistics for pH, CEC and Depth predicted with legacy maps SM100K, SM500K 

and SM1M using STK are given in table 3.8. 

Table 3. 8 Summary statistics for pH, CEC and Depth predicted using STK with SM100K, 

SM500K and SM1M 

SM100K SM500K SM1M SM100K SM500K SM1M SM100K SM500K SM1M

Min. 4.4 4.5 4.4 4.2 3.7 3 27.3 38.9 34.9

1st Quartile 5.5 5.6 5.7 6.2 6.9 6.8 81.1 77.5 84.3

Median 5.5 5.8 5.7 6.7 7.2 6.9 84.5 77.5 84.3

Mean 5.6 5.7 5.6 6.8 7.4 7.2 82.9 77.9 80.6

3rd Quartile 5.8 5.8 5.7 6.7 7.3 7.4 89.2 77.7 84.3

Max. 8.2 7.5 7.8 16.8 16.9 20.9 174.6 140.7 125.9

STK

pH CEC Depth

 

The predicted pH, CEC and Depth maps using legacy soil maps SM100K, SM500K and SM1M 

STK are shown in figure 3.15, 3.16 and 3.17, respectively. The maps of all the soil properties 

show smoothing and are less detailed when using coarser resolution legacy data.  
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Figure 3. 15 Maps of pH predicted using STK with SM100K, SM500K and SM1M  
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Figure 3. 16 Maps of CEC predicted using STK with SM100K, SM500K and SM1M  
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Figure 3. 17 Maps of Depth predicted using STK with SM100K, SM500K and SM1M  
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3.2.4 Legacy Soil Map as observed trend (OBS)  

For this method, the weighted averaged listed in the reports of SM100K and SM500K were 

mapped. Table A3.23 and A3.24 of appendix 3 give the soil properties values gathered from 

SM100K and SM500K reports. In some cases mapping units do not have a value because soil 

profiles (NA) or analytical results (NAR) were lacking. In these cases mapping units were 

merged and generalized according to Tables 3.2 and 3.3 for SM500K and SM100K, respectively. 

Tables 3.9 and 3.10 show the soil properties derived from the SM100K and SM500K report, 

respectively.  

Table 3. 9 Weighted mean soil properties values derived from the SM100K report 

Map 

Unit 

 code 

pH 
CEC 

(cmol +/kg) 

DEPTH 

(cm) 

AC1 7.1 23.3 104.7 

B1 8.3 11.0 25 

B2 8.3 11.0 19.8 

C21 5.5 3.5 102.5 

C22 6.4 6.9 86.3 

C31 6.5 9.1 125.6 

C32 7.1 9.6 121 

C41 5.9 8.4 108.3 

C42 6.3 11.5 117.7 

C51 7.3 25.5 120 

C52 7.3 25.5 80 

D1 5.9 7.5 100 

D2 6.3 10.8 120 

D3 6.3 3.7 122 

E 6.3 0.8 147.9 
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Table 3. 10 Weighted mean soil properties values derived from the SM500K report 

Map Unit 

Code 

 

pH CEC 

(cmol +/kg) 

DEPTH 

(cm) 

NC01 6 6.3 28.3 

NC02 6 6.3 28.3 

NC04 6 6.7 55.8 

NC05 6.7 6.5 123.9 

NC19 7.6 11.3 140 

NC20 

NC21 
7.2 9.3 153 

NC22 7.6 11.3 120 

NC23 7.3 13.8 106.7 

NC27 

NC28 
6.5 4.5 189.4 

NC31 6.7 6.3 200 

NC32 5.5 5.6 160 

NC33 5.5 5.6 160 

NC39 6 6.3 28.3 

NC43 6 3.5 155 

NC44 

NC45 
7.1 9.5 136 

SC23 6 6.3 28.3 

SC30 6 6.3 140 

SC40 5.9 7.6 164 

SC44 6 6.3 28.3 

SC45 5.9 7.6 164 

SC49 5.9 4.5 171 

Table 3.11 shows the summary statistics for the predicted values of pH, CEC and Depth with 

legacy soil maps SM100K and SM500K using OBS.  
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Table 3. 11 Summary statistics for pH, CEC and Depth predicted using OBS with SM100K and 

SM500K  

SM100K SM500K SM100K SM500K SM100K SM500K

Min. 5.5 5.5 0.8 3.5 19.8 28.3

1st Quartile 6.4 6 6.9 6.5 86.2 55.8

Median 7.1 6 9.6 6.7 104.7 123.9

Mean 6.9 6.3 9.9 6.9 95 102.2

3rd Quartile 7.1 6.7 11 6.7 121 136

Max. 8.3 7.6 25.5 13.8 147.9 200

OBS

pH CEC Depth

 

The predicted pH, CEC and Depth map using legacy soil maps SM100K and SM500K in OBS 

are shown in Figures 3.18, 3.19 and 3.20. 

 

 

Figure 3. 18 Maps of pH predicted using OBS with SM100K and SM500K  
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Figure 3. 19 Maps of CEC predicted using OBS with SM100K and SM500K  

 

Figure 3. 20 Maps of Depth predicted using OBS with SM100K and SM500K  
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3.2.5 OBS combined with kriged residuals (OBSRES)  

The intermediate results of the OBSRES methods can be found in Appendix 3. Summary 

statistics of the predicted values of pH, CEC and Depth with legacy maps SM100K and SM500K 

using OBSRES are given in Table 3.12. 

Table 3. 12 Summary statistics for pH, CEC and Depth predicted using OBSRES with SM100K 

and SM500K 

OBSRES 

  

pH CEC Depth 

SM100K SM500K SM100K SM500K SM100K SM500K 

Min. 3.8 4.3 1.3 4.4 33.2 41.1 

1st Quartile 6.4 6 8.2 7.8 105.5 74 

Median 7.1 6 10.9 8 125.1 74 

Mean 7 6.4 11.3 8.3 114.3 104.5 

3rd Quartile 7.1 6.7 12.3 8.2 140.3 142 

Max. 11 9.8 30.1 17.6 167.5 259.9 
 

Table 3.12 shows the summary statistics of the predicted values of pH, CEC and Depth with 

legacy soil maps SM100K and SM500K using OBSRES. The predicted pH, CEC and Depth map 

using legacy soil maps SM100K and SM500K in OBSRES are shown in Figures 3.21, 3.22 and 

3.23. 
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Figure 3. 21 Maps of pH predicted using OBSRES with SM100K and SM500K  

 

Figure 3. 22 Maps of CEC predicted using OBSRES with SM100K and SM500K  



49 

 

 

Figure 3. 23 Maps of Depth predicted using OBSRES with SM100K and SM500K  
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3.3 Assessment of model accuracy 

All methods were evaluated by the ME and RMSE. The ME and RMSE of all the methods for 

pH, CEC and Depth are given in Tables 3.13, 3.14 and 3.15, respectively. For pH, the highest r is 

found in the CAT method using SM100K. The lowest ME was obtained with the CAT method 

using the SM1M. The lowest RMSE was obtained with the CAT method using SM100K. The 

correlation of OBS and OBSRES using both legacy soil maps are negative. The ME of OBS 

using SM100K and the OBSRES using both legacy soil maps are relatively high. The ME of 

OBSRES have higher ME compared to the OBS method. 

Table 3. 13 Accuracy of pH predictions of all methods 

RK

SM100K SM500K SM1M SM100K SM500K SM1M SM100K SM500K SM100K SM500K

r 0.479 0.534 0.492 0.493 0.386 0.349 0.413 -0.166 -0.078 -0.255 -0.256

ME -0.009 -0.004 -0.007 -0.001 -0.037 -0.002 -0.003 -1.181 -0.823 -1.645 -1.266

RMSE 0.784 0.755 0.783 0.777 0.830 0.837 0.813 1.742 1.365 2.229 1.905

pH

CAT STK OBS OBSRES

 
 

Table 3.14 shows the r, ME and RMSE of the five methods for CEC content. The highest r is 

found in the CAT method using SM100K. The lowest ME is obtained at the STK method using 

the SM500K. The lowest RMSE is obtained in the CAT method using SM100K. The correlation 

of OBS using SM500K and OBSRES using SM500K are negative. The ME of OBS using 

SM100K and the OBSRES using both legacy soil maps are relatively high. The ME of OBSRES 

have higher ME compared to the OBS method. 

Table 3. 14 Accuracy of CEC predictions of all methods 

RK

SM100K SM500K SM1M SM100K SM500K SM1M SM100K SM500K SM100K SM500K

r 0.541 0.585 0.556 0.541 0.313 0.324 0.392 0.208 -0.002 0.185 -0.089

ME 0.046 0.011 0.048 0.048 -0.012 0.009 -0.035 -3.798 -0.071 -5.434 -1.544

RMSE 4.708 4.537 4.655 4.709 5.335 5.297 5.180 8.089 5.915 9.150 6.345

CEC

CAT STK OBS OBSRES
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Table 3.15 shows the r, ME and RMSE of the five methods for Depth. The highest r is found in 

the RK. The lowest ME is obtained at the STK method using the SM1M. The lowest RMSE is 

obtained in the CAT method using SM100K. The correlation of STK using SM100K is negative. 

The ME of OBS and OBSRES using both legacy soil maps are high. The ME of OBSRES have 

higher ME compared to the OBS method. 

Table 3. 15 Accuracy of Depth predictions of all methods 

RK

SM100K SM500K SM1M SM100K SM500K SM1M SM100K SM500K SM100K SM500K

r 0.259 0.256 0.251 0.241 -0.043 0.081 0.174 0.009 0.094 0.010 0.086

ME 0.032 0.093 0.081 0.069 0.066 0.039 0.037 -16.116 -23.396 -35.392 -42.526

RMSE 61.415 61.567 61.466 61.656 66.454 63.761 62.519 73.376 81.012 79.915 90.316

Depth

CAT STK OBS OBSRES
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4. Discussion 

4.1 Model input: data quality and uncertainty 

The model performance is poor for all methods applied, both with and without inclusion of 

legacy soil maps. One of the main reasons of the poor performance is the low quantity or density 

of available soil profile data (approximately 1/50 km
2
) and the uneven distribution of the data 

over geographic and covariate space. No data were available for the north-center and west part of 

the study area. For future improvement, collecting additional samples according to a design that 

covers geographic and covariate space may well improve the models and the predictions.  

Other reasons that contribute to the poor model performance are related to the resolution or scale 

of the available, and unavailable, environmental covariates. During each preprocessing 

procedure of the covariates, the uncertainty in the data increases which will affect the accuracy 

and performance of the models. For example, increasing the resolution of the covariates EVI, 

LANDCOV, TEMPNIGHT and TEMPDAY. When increasing the resolution, the small-scale 

information is used to predict information for large-scale image and with every prediction there 

is an accompanied uncertainty. The fact that the legacy soil maps depict soil associations rather 

than individual soil types, combined with an even further generalization of the legend units and 

possible misclassification might have played an important role for the high errors. 

 

4.2 Model results 

4.2.1 RK 

The RK method uses stepwise regression to select significant covariates based on the AIC 

criterion and leave out the least significant ones. For soil property pH, only SWI, RELEV and 

EVI are significant. CEC also has three significant predictors namely ASPECT, LANDCOV and 

TEMPNIGHT and Depth only two, namely DEM and RELEV. When the SWI value increases 

the value for pH increases with decreasing SWI and RELEV and increasing EVI. It is remarkable 

that only few predictors are significant in the regression. This may be due to the combination of 

the high-resolution predictor variables and the biased or not-randomly spread legacy soil profile 

locations and the varying accuracy of geo-referencing of the profile data. High-resolution 

predictors may give much detail, if informed by sufficient well-distributed accurately geo-

referenced profile data, otherwise it may lead to insignificant relations with the soil profile data. 

The predicted interquartile values of each soil property are close to the mean value, this is due to 

that kriging predict values that are close to the mean based on the relative short range of the 

fitted variogram.  



53 

 

4.2.2 CAT 

The CAT method is the same as the RK whereas the legacy soil map is used as a covariate. For 

the soil property pH the regression model omitted the SM100K and SM500K, for CEC the 

SM1M and for the Depth SM100K, thus for these model the legacy soil map is simply not 

significant enough to reduce the residual error of the fit for the model. For pH, CEC and Depth, 

the predicted values including legacy soil maps are hardly different from the values predicted 

when not including the legacy soil maps (RK), which means that none of the soil maps (both 

considered significant and insignificant) contributes much to the prediction, except for the 

predicted ranges (min-max values). This may due to the scale of the legacy soil maps with map-

units that depict soil associations rather than individual soil types.   

4.2.3 STK 

The pH values predicted with the three legacy soil maps using STK do not differ much from 

each other. Similar for the predicted CEC values. The legacy maps had impact on the predicted 

maximum value for CEC. The Depth predicted values using SM100K was overall higher than 

the other predicted Depth values with the other soil maps except the minimum values which was 

the lowest of the other soil maps. This might be cause by soil properties with high values, which 

tend to contribute more in a large-scale legacy soil map, which consist more polygon and small 

area than in a small-scale legacy map. The reason for this is when predicting an unknown 

location of a large-scale map, there is a possibility that there are few observations in a smaller 

area or polygon and when there are fewer observations than the high value tend to contribute 

more on the prediction for the unknown areas. In a small-scale map, the area for prediction is 

relative larger and there are relative more dense observations which minimized the contribution 

of the high values to the prediction. This also applies to low values. However, there are 

exceptions when the observation values consist either of only high or low values. An example of 

this is the CEC using SM100K, which contain only high value. Although these values were 

standardize before it was use to predict the unknown area, to obtain better results for the CEC 

and Depth it is recommended to normal distribute these soil property values prior to 

standardizing.  

4.2.4 OBS 

The results obtained with the OBS method may be biased or maybe even unrealistic because data 

of representative soil profiles are averaged and used to represent large areas with heterogeneous 

soil type assemblages. For the SM100K weighted averages could be assessed, when the 

percentage proportion of soil types in a mapping unit was provided in the report, which improves 

the prediction. All together, the soil profiles have been originally identified, after augering, as 

representative for the soil types occurring in the mapping units, making OBS the reference 

approximation of the geographic soil property value distribution in the area.  
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4.2.5 OBSRES 

The obtained predicted OBSRES results are mostly higher than the OBS predicted results. This 

may be due that the residuals obtained from the difference between the observed AfSP soil 

property value and the OBS soil property value are not normally distributed. Transformation of 

the residuals might lead to better predictions. The variogram in Figure A3. 15 and A3. 16 show 

that the pH and Depth, both for the SM100K and SM500K, have high nuggets indicating high 

short-distance variation, or measurement errors.  

 

4.3 Model comparison  

The validation statistics suggest that the CAT method using SM100K is the best method for 

predicting the soil properties pH and CEC. The Depth was best predicted by the RK and CAT 

methods using SM100K, giving similar results, but RK resulted in a lower ME, which makes RK 

the best method for predicting the Depth. Although the SM100K was not significant and the 

SM1M was significant during the regression for pH (same explanation applies for Depth) in the 

CAT method, the SM100K performed slightly better than the SM1M. This was due to the 

manually incorporation of the SM100K which influence the significance of other regression 

coefficients. For the STK method, the use of SM1M predicted better compared to using the other 

soil maps. This is due do the fact that the coarse scale of the SM1M map implies a smaller 

number of mapping units with a larger number of observations in the unit. More observations 

reduce the prediction error and increase the accuracy. The OBS method using the SM500K 

predicted pH and CEC well compared to using the SM100K probably due that SM500K is a soil 

map and the SM100K is a physiographic map with soil association legend. However, the 

correlation between the observed and predicted values, using the SM500K is lower than when 

using the SM100K. Similarly, the OBS method using the SM100K predicted Depth better in 

terms of ME and RMSE than when using the SM500K while the correlation between the 

observed and predicted values is lower. This is due to SM100K is calculated with a weighted 

mean that considers the proportion of soil association in a map unit whereas the SM500K is 

calculated with the arithmetic mean that assumes that a map unit is equally distributed with 

different soil which might not be the true. The correlation results for the OBSRES method, using 

the SM100K and SM500K, are better than those for the OBS method. However the ME and 

RMSE are higher compared to the OBS method this may be due that the residuals, that was 

kriged and combined, are not normal distributed. Overall, the OBS and OBSRES methods 

produced the worst results, according to validation statistics. However, the judgment of which 

method predicts best may be biased because the results of all methods were cross-validated with 

the same AfSP data. An independent validation data set would be very useful to make an 

empirical judgment. 
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5. Conclusions 

The aim of this study was to devise methods for including legacy soil maps in digital soil 

mapping to improve the spatial prediction of soil properties as pH, Cation Exchange Capacity 

(CEC) and soil depth, which was tested for the area of Sanmatenga province, Burkina Faso. To 

achieve this goal the following five research questions are answered: 

1. Which methods can be used to include legacy soil maps in DSM to model the 

relationship between soil properties and environmental covariates? 

 

There are several ways to include legacy soil maps in DSM to model the relationship 

between the selected soil properties and environmental covariates. Five statistical 

methods were identified and used in this study, namely 1) Regression kriging without use 

of legacy soil map information is used as a reference method (RK); 2) Regression kriging 

with legacy soil map as categorical variable (CAT); 3) Stratified kriging using the 

delineations of the legacy soil map as map unit boundaries (STK); 4) Legacy soil map 

used as observed information obtained from the accompanying report (OBS); and 

5) Combining the OBS result with kriged residuals (OBSRES). These methods are 

explained in section 2.2.  

 

2. How can the accuracy of the results of each method be assessed? 

 

The accuracy of each method was assessed with the r, ME and RMSE, obtained from the 

leave one out cross-validation. The method for accuracy assessment is described in 

section 2.4. Note that the reference for this accuracy assessment is the available AfSP 

data.  

 

3. How can these methods be implemented in R software? 

 

The methods RK, CAT, STK, OBSRES were successfully implemented in R with the 

following packages gstat, raster, rgdal, sp and maptools, whereas OBS was performed in 

ArcGIS 10.1. The details of how these methods were implemented are briefly described 

in chapter 2.5 and the used R scripts are given in Appendix 4. 
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4. Which results are obtained when the methods are applied to the area of Sanmatenga 

province with different legacy soil map scales? 

 

The results are given in chapter 3.2. Near similar statistic results were obtained when 

using the different map scales in the CAT method compared to the RK method. The only 

difference was in the minimum and maximum values. Maps of pH, CEC and Depth using 

CAT with the legacy soil maps show smoothing and clear indication of the extreme 

values as the scale of the legacy soil map decreases. The predicted pH and CEC map 

using SM100K in STK show more detail compared to the other legacy maps. The OBS 

and OBSRES methods both resulted in different predictions when using different legacy 

soil maps (SM100K and SM500K) which have different scales and legends. 

 

5. Which of the selected methods produces the most accurate soil maps and how 

accurate are these maps compared to DSM without using legacy soil maps? 

In terms of r, ME and RMSE the CAT method using the SM100K performed best to 

predict soil properties pH and CEC. Soil Depth is best mapped by the RK method, this 

without using legacy maps. The performance though is only slightly better than the CAT 

method using legacy map SM100K. The OBS and the OBSRES methods produced the 

worst results according to cross validation. Although no methods performed well they are 

not considered wrong either, because the methods are modeled in different ways with 

different type of soil maps with different legends and scales. Moreover, the methods were 

built with only few legacy soil observations with varying accuracy of geo-referencing and 

different legacy soil maps with inaccuracies and different legends for different degrees of 

generalization, which possibly is an insufficient basis to construct a qualitative prediction 

model for this area with high variability at short distances. However, the use of the 

selected methods create a basis for a possibly more accurate DSM using legacy soil maps 

for the province in Burkina Faso, which should be extended to include a much denser soil 

profile dataset and more adequate covariates including more detailed soil information 

from the legacy soil maps. 
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Appendices 

Appendix 1: Covariates 
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Appendix 2: Generalization and reclassification of legacy soil maps 

Table A2. 1 Mapping units with soil types and soil description of SM1M 

Map 

Unit  
Code 

Soil Types Pedogenesis 
Nr. Of pH 

Observations 
Nr. Of CEC 

Observations 
Nr. Of Depth 

Observations 

2 

- Lithosols 

- Weakly Developed 

Soils 
- Brown Soils 

- Embryonal 1 1 1 

3 

- Lithosols 

- Weakly Developed 
Soils 

- Brown Soils 

- Embryonal 12 12 12 

4 
- Vertisols 
- Brown Soils 

- Vertic 32 29 32 

5 - Vertisols - Vertic 2 2 2 

8 

- Lithosols 
- Weakly Developed 

Soils 

- Ferallitic Soils 

- Ferruginous 

- Embryonal 
62 58 63 

9 

- Lithosols 
- Weakly Developed 

Soils 

- Ferallitic Soils 

- Ferruginous 

- Embryonal 
57 55 56 

10 

- Lithosols 

- Weakly Developed 

Soils 

- Ferallitic Soils 

- Ferruginous 

- Embryonal 
43 42 40 

14 
- Lithosols 

- Weakly Developed 

Soils 
- Embryonal 0 0 0 

20 
- Weakly Developed 
Soils 

- Ferallitic Soils 

- Little 

Characterized 
0 0 0 

23 - Raw Mineral Soils -------- 9 7 9 
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Table A2. 2 Generalized SM1M classes 

Map 

Unit  
Code 

Soil Types Pedogenesis 
Nr. Of pH 

Observations 
Nr. Of CEC 

Observations 
Nr. Of Depth 

Observations 
Class 

nr. 

2 and 3 

- Lithosols 
- Weakly 

Developed Soils 

- Brown Soils 

- Embryonal 13 13 13 1 

4 
- Vertisols 

- Brown Soils 
- Vertic 32 29 32 2 

5 - Vertisols - Vertic 2 2 2 3 

8,9 and 

10 

- Lithosols 

- Weakly 

Developed Soils 
- Ferallitic Soils 

- Ferruginous 

- Embryonal 
162 155 159 4 

14 
- Lithosols 
- Weakly 

Developed Soils 
- Embryonal 0 0 0 5 

20 
- Weakly 

Developed Soils 

- Ferallitic Soils 

- Little 
Characterized 

0 0 0 6 

23 
- Raw Mineral 

Soils 
-------- 9 7 9 7 
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Table A2. 3 Mapping units with soil types and soil description of SM500K 

Map 

Unit 

Code 
Soil Description Soil Class 

NC01 Lithosols and iron caps Raw Mineral Soils 

NC02 Lithosols on various rocks Raw Mineral Soils 

NC04 Association of lithosols on iron cap Weakly Developed Soils 
NC05 Association of leached ferruginous soils with sandy clay material Weakly Developed Soils 

NC19 Clay materials with gravels from basic rock Brown Soils 

NC20 Association of leached ferruginous soils with eolian sands Brown Soils 

NC21 Association with gravel soils Brown Soils 

NC22 Clay material from granites Brown Soils 
NC23 Association with gravel soils Brown Soils 

NC27 
Leached ferruginous tropical material with low internal drainage 

and eolian sands 
Ferallitic Soils 

NC28 
Leached ferruginous tropical material with low internal drainage 
and associated with gravel 

Ferallitic Soils 

NC31 
Leached ferruginous tropical material with low internal drainage 

associated with gravel and brown soils covered by sandy clay 

material derived from granites 
Ferallitic Soils 

NC32 
Leached ferruginous tropical material with low internal drainage 
associated with hydromorphic soils on clayey material derived 

from slate 
Ferallitic Soils 

NC33 
Leached ferruginous tropical material with low internal drainage 
and clayey fine sand 

Ferallitic Soils 

NC39 Leached alkali soils associated with gravels Sodic Soils 

NC43 
Hydromorphic soils with pseudogley structures associated with 
leached ferruginous soils on aeolian or clayey sands 

Hydromorphic Soils 

NC44 
Hydromorphic soils with pseudogley structures associated with 

brown soils on clay materials 
Hydromorphic Soils 

NC45 
Hydromorphic soils with pseudogley structures associated  
with brown soils on clay materials and leached ferruginous  

soils on eolian or clayey sands 
Hydromorphic Soils 

SC23 Clay and lithosols material on iron cap Vertisols 

SC30 Lithosols on basic or neutral rocks Brown Soils 

SC40 
Association of weakly developed hydromorphic soils with gravel 

materials 
Ferallitic Soils 

SC44 Lithomorphic Vertisols and Lithosols on granite Sodic Soils 

SC45 
Association of weakly developed hydromorphic with sandy loam 

alluvial materials 
Hydromorphic Soils 

SC49 Leached ferruginous tropical or depleted sandy clay materials Hydromorphic Soils 
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Table A2. 4 Generalized SM500K classes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Map Unit 

Code 
Soil Class 

Class  

Nr. 
Nr. Of pH 

Observations 
Nr. Of CEC 

Observations 
Nr. Of Depth 

Observations 

NC01 and 

NC02 
Raw Mineral 

Soils 
1 25 24 25 

NC04 and 

NC05 

Weakly 
Developed 

Soils 
2 101 95 101 

NC19, 

NC20, 
NC21, 

NC22, 

NC23 and 
SC30 

Brown Soils 3 27 25 27 

NC27, 

NC28, 

NC31, 
NC32, 

NC33 and 

SC40 

Ferallitic Soils 4 28 26 26 

NC39 and 

SC44 
Sodic Soils 5 1 1 1 

NC43, 

NC44, 
NC45,SC45 

and SC49 

Hydromorphic 
Soils 

6 36 35 35 

SC23 Vertisols 7 0 0 0 
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Table A2. 5 Mapping units with their soil types and soil description of SM100K 

Map 

Unit  

Code 

Physio-

grapic  

units 

Soil Description 

Nr. Of 

pH 

Observ. 

Nr. Of 

CEC 

Observ. 

Nr. Of 

Depth 

Observ. 

AC1 

Hills and 

upper 

slopes 

Soils are shallow to moderately deep, usually dark  

(reddish) brown and sandy clay loams. At the foot-

slopes of the hills, there are colluviums deposition 

consisting many accumulated stones, forming shal-

low soils. Soils on the hill are mostly moderately 

deep. The A-horizon is dark brown and contains up 

to abundant stones. The B-horizon has dark red color 

and contains few stones. The B/C - horizon consist 

of olive yellow in situ weathered greenstone with 

texture varying from sandy loam to silty clay loam. 

17 17  17  

B1 Plateau 

Nearly flat to gently sloping; medium to many do-

minant surface gravel; moderately often exposure of 
hard hardened plinthite; slight sheet erosion; no to 

medium hard surface sealing; moderately to ex-

cessively well drained; very shallow (depth limited 

by hardened plinthite and/or dominant ironstone 

gravel);mottles absent; yellowish brown, light brown 

grey or dark brown sandy loams; abundant 

ironstones nodules present. 

13 12   13 

B2 

Eroded or 

less  

developed 

indurated 

cap 

Nearly flat to gently sloping; very few to abundant  

surface gravel; slight to moderate sheet erosion; 

moderately well drained; shallow to moderately  

deep; none to few mottles; yellowish brown to strong  

brown sandy loams or silt loams; few to many 

abundant ironstones gravel. 

20  19 19  

C21 

Crusted  

middle 

slope 

Nearly flat; surface crust with none to common 

gravel; no rock outcrops; moderate sheer erosion,  

sometimes also some gully erosion; medium to thick 

hard crust, sometimes extremely hard, alternated by 

areas with a small (<20cm) sand cover; (moderately) 

well drained. 

12 10  10  

C22 

Non-
crusted 

middle 

slope 

Nearly flat; surface often covered with, up to many,  

gravel; sometimes rock outcrops; slight to severe 
sheet erosion, sometime gully erosion ; wind deposit 

on can occur; thin and sometimes thick slightly hard 

to very hard surface sealing; moderately well to 

somewhat excessively drained. 

33 31  32 

C31 

Eroded  

lower 

slope 

Flat to nearly flat; medium thick and very hard 

surface crust; moderately well to well drained; 

texture is sandy clay loam. 

4 4   4 

C32 

Non-

eroded  

lower  

slope 

Flat to nearly flat: soils have none to many gravel;  

some have deposition; other soils have slight to  

moderate sheer or rill erosion or water/wind 

deposition; none to medium thick, slightly hard to 

sometimes very hard surface sealing; somewhat 

excessively to moderately well drained. 

38 38  37  

C41 

Crusted 
lower 

/middle 

Birimien 

Flat/level to gently sloping; none to common 
medium gravel; moderate to severe sheet erosion; 

slightly hard to hard medium crust; poorly to 

moderately well drained. 

4 4  4  
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slope 

C42 

Non-

crusted 
lower/ 

middle 

Birimien 

slope 

Mainly water deposition, sometimes water erosion; 
none to thin slightly hard to hard surface sealing; 

sometimes fine surface cracks; moderately well to 

well drained. 

27  27 28  

C51 

Crusted 

 Birimien 

valleys 

Nearly flat to gently sloping; common coarse gravel; 

severe sheet erosion also some gullies; hard medium 

surface sealing; somewhat excessively drained; deep 

yellowish red sands to loamy sands; no rocks; no 

mottles; no nodules. 

1 1 1 

C52 

Non-

crusted 

 Birimien 

valleys 

Gently sloping; few to dominant medium gravel to 

boulders; both water erosion as water deposition; 

none to slightly hard thin surface sealing; 

sometimes-fine cracks; moderately well to well 

drained. 

12 11 11 

D1 

Bottom-

land small 

valley 

Flat /level; surface, sometimes very few gravel; no 
rock outcrops; water deposition; thin hard surface 

sealing to medium hard surface sealing; moderately 

well to poorly drained. 

16  16  16 

D2 

Bottom-

land large 

valley 

Flat/level; surface gravel is rare; no rock outcrops;  

water deposition; strongly variable surface sealing 

ranging from thin to very thick and from slightly 

hard to very hard surface sealing; moderately well to 

poorly drained. 

10  8 10  

D3 
Bottom-

land plain 

No surface gravels; no rock outcrops; mostly water 

deposition; none to medium (slightly) hard surface 

sealing; somewhat poorly (imperfectly) drained. 

9 6  9 

E 
Aeolian 

complex 

(Nearly) flat; slight sheet erosion features on top of 

the dunes; thin to medium (slightly) hard surface 

sealing on top of the dunes; in depressions thick and 
up to extremely hard; somewhat excessively drained 

on top of the old dunes to poorly in depressions. 

2 2  2 

W   Water 0 0  0 
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Appendix 3: Model interim results 

1. RK 

Table A3. 1 Statistics of the regression analysis for CEC using RK 

Variable Estimate Std. Error Pr(>|t|) 

(Intercept) -2.2002818 1.4272943 0.12477 

aspect 0.0007594 0.0004100 0.06549 . 

landcov2 -0.2094790 0.0987654 0.03516 * 

landcov3 -0.2235865 0.1534659 0.14672 

landcov4 -0.3088596 0.1614157 0.05713 . 

landcov5 0.6503222 0.4410013 0.14189 

tempnight 0.1997272 0.0703478 0.00499 ** 
 

Table A3. 2 CEC residuals after regression using RK 

Residuals: 

Min 1Q Median 3Q Max 

-1.5480 -0.3831 -0.0511 0.34083 1.5340 

 

 

 

Figure A3. 1 Variogram of CEC residuals using RK 
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Table A3. 3 Statistics of the regression analysis for Depth using RK 

Variable Estimate Std. Error Significance 

(Intercept) 55.20284 17.30838 0.00164 ** 

dem -0.16760 0.06149 0.00696 ** 

relelev 0.16721 0.06313 0.00869 ** 
 

Table A3. 4 Depth residuals after regression using RK 

Residuals: 

Min 1Q Median 3Q Max 

-7.0703    -3.1727   0.0807     3.0524   7.9470 

 

 

 

Figure A3. 2 Variogram of Depth residuals using RK 

 

 

 

 

 

 

 

 

 

 



71 

 

2. CAT 

Table A3. 5 Statistics of the regression analysis for pH using CAT with SM100K 

Variable Estimate Std. Error Significance 

(Intercept) 9.5125135 1.5691790 6.36e-09 *** 

swi -0.2053337 0.0714213 0.00447 **  

relelev -0.0251636 0.0091951 0.00675 **  

evi 0.0003950 0.0002369 0.09696 .   

sm100k2 -0.4496914 0.3358269 0.18204     

sm100k3 -0.3757355 0.3021964 0.21516     

sm100k4 0.2505545 0.3745730 0.50431     

sm100k5 0.0814647 0.2745407 0.76697     

sm100k6 -0.2360588 0.2628704 0.37024     

sm100k7 0.0088190 0.3009095 0.97665     

sm100k8 0.0524462 0.3390502 0.87722     

sm100k9 -0.0988936 0.3271627 0.76275     

sm100k10 0.0830636 0.3072840 0.78719     
 

Table A3. 6 pH residuals after regression in CAT using SM100K 

Residuals: 

Min 1Q Median 3Q Max 

-1.96     -0.63   -0.10     0.58  3.22 
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Figure A3. 3 Variogram of pH residuals using CAT with SM100K 

Table A3. 7 Statistics of the regression analysis for pH using CAT with SM500K 

Variable Estimate Std. Error Significance 

(Intercept) 8.2851491 1.6102107 6.12e-07 *** 

swi -0.1507861 0.0699935 0.0324 *   

relelev -0.0196503 0.0086706 0.0245 *   

evi 0.0003941 0.0002264 0.0832 .   

sm500k2 0.0884845 0.2052198 0.6668     

sm500k3 -0.0485744 0.2464691 0.8440     

sm500k4 -0.1876843 0.2521435 0.4575     

sm500k5 -0.1311167 0.2490568 0.5991     

 

Table A3. 8 pH residuals after regression in CAT using SM500K 

Residuals: 

Min 1Q Median 3Q Max 

-2.070   -0.57    -0.06    0.56   3.45 
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Figure A3. 4 Variogram of pH residuals using CAT with SM500K 

Table A3. 9 Statistics of the regression analysis for pH using CAT with SM1M 

Variable Estimate Std. Error Significance 

(Intercept) 8.6748729 1.4664014 1.31e-08 *** 

swi -0.1604806 0.0648571 0.0141 *   

relelev -0.0211424 0.0081437 0.0101 *   

evi 0.0004096 0.0002242 0.0691 .   

sm1m2 -0.4295761 0.2547062 0.0932 .   

sm1m3 -0.1896094 0.2074514 0.3618     

 

Table A3. 10 pH residuals after regression in CAT using SM1M 

Residuals: 

Min 1Q Median 3Q Max 

-1.99 -0.55 -0.12 0.57 3.53 
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Figure A3. 5 Variogram of pH residuals using CAT with SM1M 

Table A3. 11 Statistics of the regression analysis for CEC using CAT with SM100K 

Variable Estimate Std. Error Pr(>|t|)   

(Intercept) -2.0065438 2.0622466 0.3318   

aspect 0.0006368 0.0004268 0.1373   

landcov2 -0.2226903 0.1025242 0.0311 * 

landcov3 -0.2293779 0.1611281 0.1562   

landcov4 -0.2286556 0.1684736 0.1763   

landcov5 0.9061246 0.4601081 0.0504 . 

tempnight 0.1971768 0.0969156 0.0433 * 

sm100k2 -0.4219083 0.2406668 0.0812 . 

sm100k3 -0.3845320 0.2177471 0.0790 . 

sm100k4 -0.2948728 0.2905577 0.3115   

sm100k5 -0.1307320 0.2189196 0.5511   

sm100k6 0.0372434 0.2224775 0.8672   

sm100k7 0.0957079 0.1996669 0.6322   

sm100k8 -0.3273343 0.2296264 0.1557   

sm100k9 -0.0822245 0.2499809 0.7426   

sm100k10 -0.3855908 0.2739394 0.1609   
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Table A3. 12 CEC residuals after regression in CAT using SM100K 

Residuals: 

Min 1Q Median 3Q Max 

-1.26    -0.39   -0.04    0.37   1.30 

 

 

Figure A3. 6 Variogram of CEC residuals using CAT with SM100K 

Table A3. 13 Statistics of the regression analysis for CEC using CAT with SM500K 

Variable Estimate Std. Error Pr(>|t|)     

(Intercept) -4.0609927 1.7427110 0.02081 *   

aspect  0.0008099 0.0004159 0.05295 .   

landcov2 -0.2317720 0.0994935 0.02086 *   

landcov3 -0.2591814 0.1567155 0.09977 .   

landcov4 -0.3608365 0.1625236 0.02756 *   

landcov5 0.7377421 0.4479245 0.10116     

tempnight 0.2819231 0.0836850 0.00091 *** 

sm500k2 0.3344040 0.1612199 0.03937 *   

sm500k3 0.2633161 0.1753517 0.13481     

sm500k4 0.2348063 0.1938898 0.22735     

sm500k5 0.1112017 0.1669902 0.50625     
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Table A3. 14 CEC residuals after regression in CAT using SM500K 

Residuals: 

Min 1Q Median 3Q Max 

-1.49    -0.37    -0.07  0.39  1.59 

 

 

 

Figure A3. 7 Variogram of CEC residuals using CAT with SM500K 

Table A3. 15 Statistics of the regression analysis for CEC using CAT with SM1M 

Variable Estimate Std. Error Pr(>|t|)   

(Intercept) -1.7686495 1.7018435 0.3000   

aspect 0.0007372 0.0004142 0.0766 . 

landcov2 -0.2089368 0.0994307 0.0369 * 

landcov3 -0.2222728 0.1542473 0.1512   

landcov4 -0.3113140 0.1622158 0.0564 . 

landcov5 0.6680590 0.4443648 0.1343   

tempnight 0.1808507 0.0807821 0.0263 * 

sm1m2 -0.0158124 0.1824278 0.9310   

sm1m3 -0.0665846 0.1669652 0.6905   
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Table A3. 16 CEC residuals after regression in CAT using SM1M 

Residuals: 

Min 1Q Median 3Q Max 

-1.52  -0.36    -0.04  0.35 1.53 

 

 

 

Figure A3. 8 Variogram of CEC residuals using CAT with SM1M 

Table A3. 17 Statistics of the regression analysis for Depth using CAT with SM100K 

Variable Estimate Std. Error Pr(>|t|)    

(Intercept) 55.57704 19.64379 0.00513 ** 

dem -0.17461 0.06912 0.01229 *  

relelev 0.18552 0.07053 0.00918 ** 

sm100k2 0.75728 1.40728 0.59109    

sm100k3 2.02174 1.25948 0.11000    

sm100k4 2.04101 1.55491 0.19079    

sm100k5 1.15929 1.17903 0.32665    

sm100k6 1.47552 1.13056 0.19333    

sm100k7 1.65737 1.20417 0.17023    

sm100k8 0.06361 1.37825 0.96323    

sm100k9 1.44662 1.39936 0.30247    

sm100k10 0.51575 1.29899 0.69176    



78 

 

Table A3. 18 Depth residuals after regression in CAT using SM100K 

Residuals: 

Min 1Q Median 3Q Max 

-7.42     -3.11  -0.16   2.98      7.51 

 

 

 

Figure A3. 9 Variogram of Depth residuals using CAT with SM100K 

Table A3. 19 Statistics of the regression analysis for Depth using CAT with SM500K 

Variable Estimate Std. Error Pr(>|t|)    

(Intercept) 54.90419 18.87808 0.00403 ** 

dem -0.17166 0.06626 0.01026 *  

relelev 0.18213 0.06707 0.00717 ** 

sm500k2 0.88946 0.87194 0.30887    

sm500k3 1.58896 1.04673 0.13053    

sm500k4 0.77195 1.13874 0.49859    

sm500k5 2.01295 1.02934 0.05185 .  
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Table A3. 20 Depth residuals after regression in CAT using SM500K 

Residuals: 

Min 1Q Median 3Q Max 

-7.66    -3.15   -0.08      3.07     7.69 

 

 

Figure A3. 10 Variogram of Depth residuals using CAT with SM500K 

Table A3. 21 Statistics of the regression analysis for Depth using CAT with SM1M 

Variable Estimate Std. Error Pr(>|t|)   

(Intercept) 43.07347 18.65218 0.0219 * 

dem -0.13120 0.06521 0.0455 * 

relelev 0.13929 0.06578 0.0354 * 

sm1m2 1.75600 1.05577 0.0978 . 

sm1m3 1.76623 0.91294 0.0544 . 
 

Table A3. 22 Depth residuals after regression in CAT using SM1M 

Residuals: 

Min 1Q Median 3Q Max 

-7.05  -3.15     0.06    2.91     7.56 
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Figure A3. 11 Variogram of Depth residuals using CAT with SM1M 

 

3. STK 

 

 

Figure A3. 12 Variogram of pH using STK with SM100K, SM500K and SM1M  
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Figure A3. 13 Variogram of CEC using STK with SM100K, SM500K and SM1M  

 

  

Figure A3. 14 Variogram of Depth using STK with SM100K, SM500K and SM1M  
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4. OBS 

Table A3. 23 OBS SM100K results from report 

Map 

Unit 

code 

Soil 

Type 

Soil 

Type  

Pro-

portion 

(%) 

Repre-

sentive 

 Soil 

Profiles 

Avg. 

Soil 

Profile 

pH 

Avg. 

Soil 

Profile 

CEC 

(cmol 

+/kg) 

Avg. Soil 

Profile 

DEPTH 

(cm) 

Weighte

d Mean 

Map 

Unit 

pH 

Weighted 

Mean 

Map Unit 

CEC 

(cmol 

+/kg) 

Weighte

d Mean 

Map 

Unit 

DEPTH 

(cm) 

AC1 

AC1a 10 
26.2 NAR NAR 40 

7.1 23.3 104.7 

33.1 7 14.8 25 

AC1b 35 

740 6.6 20.9 120 

768 7.5 27.9 120 

769 7.3 28.8 40 

807 6.9 23.5 110 

AC1c 55 

741 7 20.2 120 

805 7.2 24.5 120 

918 7.2 25.9 127 

B1 
B1a NA 2.4 NAR NAR 40 

NA NA 25 
B1b NA 715 NAR NAR 10 

B2 

B2a 50 32.3 NAR NAR 5 

8.3 11 19.8 

B2b 10 801 8.3 11 100 

B2c 5 

712 NAR NAR 70 

760 NA NA NA 

908 NA NA NA 

Bare 

rock 
35 NA NA NA NA 

C21 

C21a 35 22.1 NAR NAR 70 

5.5 3.5 102.5 
C21b 65 

12.1 NAR 4.1 120 

12.2 NAR 1.3 120 

12.7 5.5 5.2 120 

C22 

C22a 40 
12.8 5.5 6.2 120 

6.4 6.89 86.3 

33.2 6 4.9 120 

C22b 30 
27.1 NAR NAR 25 

13.5 7.2 8.7 50 

C22c 30 30.4 NAR NAR 90 

C31 C31a 65 13.4 6.3 9 130 6.5 9.1 125.8 
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C31b  10 
719 NA NA NA 

913 NAR NAR 110 

D1c 10 13.2 5.9 7.5 120 

C32a 15 

12.3 NAR 9.7 130 

13.3 7.1 7.7 115 

34.2 7.8 14.1 120 

C32 

C32a 50 

12.3 NAR 9.7 130 

7.1 9.6 121 

13.3 7.1 7.7 115 

34.2 7.8 14.1 120 

C32b 10 
12.4 NAR 6.1 130 

33.5 6.5 4.8 120 

C32c 10 31.6 NAR NAR 90 

C32d 10 33.3 6.7 12.1 120 

C32e 10 2.6 NAR NAR 120 

C32f 10 
13.1 6.2 4.8 130 

34.4 6.4 9.2 120 

C41 

C41a NA 917 6.5 12 100 

6 8.4 108.3 
C41b NA 

743 5.6 6.4 120 

803 5.7 6.7 105 

C42 

C42a 20 

738 6.9 14.9 120 

6.3 11.5 117.7 

739 6.1 8.7 100 

742 5.9 7 120 

C42b 30 
772 6.5 18.8 120 

920 5.9 8.5 120 

C42c 50 

776 6.6 18.8 120 

778 5.6 12.1 120 

780 5.7 7.8 110 

790 6.7 7.4 120 

792 6.8 7.3 120 

C51 C51a 100 799 NAR NAR 120 NA NA 120 

C52 

C52a 25 
770 7.3 28.8 40 

7.3 25.5 80 

919 7.3 22.3 120 

C52b 15 911 NAR NAR 120 

C52c 25 
746 NAR NAR 120 

905 NA NA NA 

C52d 20 728 NAR NAR 30 

C52e 5 706 NAR NAR 60 
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C52f 10 703 NAR NAR 30 

D1 

D1a 40 17.2 NAR NAR 70 

5.9 7.5 100 D1b 20 28.4 NAR NAR 120 

D1c 40 13.2 5.9 7.5 120 

D2 

D2a 40 33.4 6.4 11.5 120 

6.3 10.8 120 
D2b 35 

13.7 6 8.6 120 

34.3 6.5 9.2 120 

D2c 25 
13.6 6.3 10.6 120 

34.5 6.5 13.8 120 

D3 
D3a 40 

12.5 NAR 0.8 100 

NA 3.7 122 16.2 NAR NAR 120 

D3b 60 12.6 NAR 5.7 130 

E 

Ea 45 16.3 NAR NAR 220 

NA 0.8 147.9 

Eb 45 16.4 NAR NAR 80 

D3a 5 
12.5 NAR 0.8 100 

16.2 NAR NAR 120 

NA 5 NA NA NA NA 

 

Table A3. 24 OBS SM500K results from report 

Map 

Unit 

Code 

Representive 

 Soil Profiles 

Avg. 

Soil 

Profile 

pH 

Avg. 

Soil 

Profile 

CEC 

(cmol 

+/kg) 

Avg. 

Soil 

Profile 

DEPTH 

(cm) 

Average 

Map 

Unit 

pH 

AverageMap 

Unit CEC 

(cmol +/kg) 

Average 

Map 

Unit 

DEPTH 

(cm) 

NC01 

HVF99 6.2 6.7 20 

6 6.3 28.3 HVC58 5.9 3.4 30 

HVG50 5.9 8.8 35 

NC02 NA NA NA NA NA NA NA 

NC04 

HVC19 NAR NAR 30 

6 6.7 55.8 

HVG75 NAR NAR 170 

HVF99 6.2 6.7 20 

HVE57 NAR NAR 50 

HVC58 5.9 3.4 30 

HVG50 5.9 8.8 35 

NC05 HVC79 6.6 4.3 55 6.7 6.5 123.9 
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HVD39 NAR NAR 180 

HVC86 NAR NAR 140 

HVD70 5.8 7.2 200 

HVD49 NAR NAR 160 

HVC60 8.3 6.1 160 

HVC86 6.4 5.2 140 

HVD71 7.2 9.4 60 

HVC85 5.8 4.6 20 

NC19 
HVE99 NAR NAR 180 

NAR NAR 140 
HVE50 NAR NAR 100 

NC20 

NC21 

HVC53 NAR NAR 115 

7.2 9.3 153 

HVC41 6.5 5.4 200 

HVC52 7.9 13.2 110 

HVC99 NAR NAR 180 

HVD1 NAR NAR 160 

NC22 HVE83 7.6 11.3 120 7.6 11.3 120 

NC23 

HVB47 NAR NAR 120 

7.3 13.8 106.7 HVB50 7.3 13.8 140 

HVD74 NAR NAR 60 

NC27 

NC28 

HVB7 NAR NAR 250 

6.5 4.5 189.4 

HVA3 NAR NAR 230 

HAV5 6.5 6.6 140 

HVA16 6.9 4.5 170 

HVB7 6.5 3.1 175 

HVA5 5.8 1.9 200 

HVG23 5.5 3 180 

HVD30 7.5 5.5 180 

HVD31 6.8 7.2 180 

NC31 HVD40 7 6.3 200 6.7 6.3 200 

NC32 NA NA NA NA NA NA NA 

NC33 HVD75 5.5 5.6 160 5.5 5.6 160 

NC39 NA NA NA NA NA NA NA 

NC43 
HVE2 6 3.5 150 

6 3.5 155 
HVE43 NAR NAR 160 

NC44 

NC45 

HVE51 NAR NAR 140 

7.1 9.5 136 HVD84 6.9 11.4 170 

HVE92 6.4 9.9 160 
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HVE94 7.7 9.1 160 

HVE93 7.5 7.8 50 

SC23 NA NA NA NA NA NA NA 

SC30 VOB41 NAR NAR 140 NAR NAR 140 

SC40 VOH26 5.9 7.6 164 5.9 7.6 164 

SC44 NA NA NA NA NA NA NA 

SC45 NA NA NA NA NA NA NA 

SC49 VOA10 5.9 4.5 171 5.9 4.5 171 
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5. OBSRES 

 

  

Figure A3. 15 Variogram of pH, CEC and Depth using OBSRES with SM100K 

 

 
 
Figure A3. 16 Variogram of pH, CEC and Depth using OBSRES with SM500K 
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Appendix 4: R scripts 

1. EDA 

 
setwd('C:/Users/User/Desktop/Thesis/c002CharlWong/Workspace/a1ExternalFormattedData/Exploratory data 

analysis')  

# Load libraries 

library(sp) 

library(rgdal) 

library(maptools) 

library(gstat) 

library(raster) 

#Read Soil Profiles 
SpH <- read.table("SoilProfilepH.txt", header = TRUE) 

SDepth <- read.table("SoilProfileDepth.txt", header = TRUE) 

SCEC <- read.table("SoilProfileCEC.txt", header = TRUE) 

# make spatial 

coordinates(SpH) <- ~x+y 

coordinates(SDepth) <- ~x+y 

coordinates(SCEC) <- ~x+y 

# read boundary study area 

StudyArea <- readShapePoly("MaskAOI.shp") 

# plot observations on study area 

spplot(SpH, zcol = "pH", xlim = c(-178000,-60000), 
       ylim = c(1420000,1575000), cex = 1.4, main = "pH", 

       key.space = list(x = 0.02, y = 0.25, corner = c(0,2)), 

       sp.layout = list("sp.polygons", StudyArea),col.regions = bpy.colors(5)) 

dev.print(png, file="pHProfilesonStudyArea.png", width=600, height=700) 

spplot(SDepth, zcol = "Depth", xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), cex = 1.4, main = "Depth (cm)", 

       key.space = list(x = 0.02, y = 0.25, corner = c(0,2)), 

       sp.layout = list("sp.polygons", StudyArea),col.regions = bpy.colors(5)) 

dev.print(png, file="DepthProfilesonStudyArea.png", width=600, height=700) 

spplot(SCEC, zcol = "cec", xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), cex = 1.4, main = "CEC (cmol+/kg)", 

       key.space = list(x = 0.02, y = 0.25, corner = c(0,2)), 
       sp.layout = list("sp.polygons", StudyArea),col.regions = bpy.colors(5)) 

dev.print(png, file="CECProfilesonStudyArea.png", width=600, height=700) 

#Boxplot for outliers 

par(mfrow=c(1,1)) 

boxplot(SpH$pH, main='ph') 

dev.print(png, file="BoxPlotPH.png", width=600, height=700) 

boxplot(SDepth$Depth, main='Depth') 

dev.print(png, file="BoxPlotDepth.png", width=600, height=700) 

boxplot(SCEC$cec, main='CEC') 

dev.print(png, file="BoxPlotCEC.png", width=600, height=700) 

# Read covariates 
DEM <- readGDAL("prb2_demofaoi.txt") 

SLOPE <- readGDAL("prb3_slopeaoi.txt") 

SWI <- readGDAL("psb4_swiofaoi.txt") 

ASPECT <- readGDAL("prb5_aspectaoi.txt") 

CURVATURE <- readGDAL("prb6_curvatureaoi.txt") 

RELATIVEELEVATION <- readGDAL("prb17_relativeElevationaoi.txt") 

EVI <- readGDAL("psb07_eviofaoi.txt") 

LANDCOVER <- readGDAL("psb08_landcoveraoi.txt") 
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LANDSURFACTEMPNIGHT <- readGDAL("psb09_landsurfacetempnightaoi.txt") 

LANDSURFACTEMPDAY <- readGDAL("psb10_landsurfacetempdayaoi.txt") 

GEOLOGY <- readGDAL("prb18_geologyaoi.txt") 

SM100K <- readGDAL("soilmap100k.txt") 

SM500K <- readGDAL("soilmap500k.txt") 

SM1M <- readGDAL("soilmap1m.txt") 
#Plot covariates 

spplot(DEM, col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main="DEM") 

dev.print(png, file="DEM.png", width=600, height=700) 

spplot(SLOPE, col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main="SLOPE") 

dev.print(png, file="SLOPE.png", width=600, height=700) 

spplot(SWI, col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main="SWI") 

dev.print(png, file="SWI.png", width=600, height=700) 

spplot(ASPECT, col.regions = bpy.colors(), xlim = c(-178000,-60000),  

       ylim = c(1420000,1575000), main="Aspect") 
dev.print(png, file="Aspect.png", width=600, height=700) 

spplot(CURVATURE, col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main="Curvature") 

dev.print(png, file="Curvature.png", width=600, height=700) 

spplot(EVI, col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main="EVI") 

dev.print(png, file="EVI.png", width=600, height=700) 

spplot(LANDCOVER, col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main="Landcover") 

dev.print(png, file="Landcover.png", width=600, height=700) 

spplot(GEOLOGY, col.regions = bpy.colors(), xlim = c(-178000,-60000), 
       ylim = c(1420000,1575000), main="Geology") 

dev.print(png, file="Geology.png", width=600, height=700) 

spplot(LANDSURFACTEMPNIGHT, col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main="Landsurface temperature Night") 

dev.print(png, file="LANDSURFACTEMPNIGHT.png", width=600, height=700) 

spplot(LANDSURFACTEMPDAY, col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main="Landsurface temperature Day") 

dev.print(png, file="LANDSURFACTEMPDAY.png", width=600, height=700) 

spplot(RELATIVEELEVATION, col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main="Relative Elevation") 

dev.print(png, file="RELATIVEELEVATION.png", width=600, height=700) 

spplot(SM100K, col.regions = bpy.colors(), xlim = c(-178000,-60000), 
       ylim = c(1420000,1575000), main="Soil map 1:100.000") 

dev.print(png, file="SM100K.png", width=600, height=700) 

spplot(SM500K, col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main="Soil map 1:500.000") 

dev.print(png, file="SM500K.png", width=600, height=700) 

spplot(SM1M, col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main="Soil map 1:1.000.000") 

dev.print(png, file="SM1M.png", width=600, height=700) 

#Plot histograms of Soil profiles and environmental covariates 

par.ori <- par(no.readonly = TRUE)  # save original setting graphics 

par(mfrow=c(3,4)) 
hist(SpH$pH, main = "pH", xlab=NA) 

hist(SDepth$Depth, main = "Depth", xlab=NA) 

hist(SCEC$cec, main = "CEC", xlab=NA) 

hist(DEM$band1, main = "DEM", xlab = NA, xlim=c(250,400)) 
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hist(SLOPE$band1, main = "SLOPE", xlab = NA, xlim=c(0,10)) 

hist(SWI$band1, main = "SWI", xlab = NA) 

hist(ASPECT$band1, main = "ASPECT", xlab = NA) 

hist(CURVATURE$band1, main = "CURVATURE", xlab = NA, xlim=c(-0.6,0.6)) 

hist(RELATIVEELEVATION$band1, main = "Rel. Elevation", xlab = NA, xlim=c(0,100)) 

hist(EVI$band1, main = "EVI", xlab = NA, xlim=c(500,3000)) 
hist(LANDSURFACTEMPNIGHT$band1, main = "LandTempNight", xlab = NA) 

hist(LANDSURFACTEMPDAY$band1, main = "LandTempDay", xlab = NA) 

dev.print(png, file="Histograms.png", width=600, height=700) 

#Transform data 

SCEC$logcec <- log(SCEC$cec) 

SDepth$sqrtdepth <- sqrt(SDepth$Depth) 

SLOPE$logslope <- log(SLOPE$band1) 

#Histogram of log transformed data 

par.ori <- par(no.readonly = TRUE)   

par(mfrow=c(3,3)) 

hist(SCEC$logcec, main= 'Log CEC', xlab=NA) 

hist(SDepth$sqrtdepth, main= 'Sqrt Depth', xlab=NA) 
hist(SLOPE$logslope, main= 'log Slope', xlab=NA) 

dev.print(png, file="TransformedHistograms.png", width=600, height=700) 

#Look at correlation of data 

cor(SpH@data) 

 

2. RK_pH 

setwd('C:/Users/User/Desktop/Thesis/c002CharlWong/Workspace/a1ExternalFormattedData/RegressionKriging')  

# Load libraries 

library(sp) 
library(rgdal) 

library(maptools) 

library(gstat) 

library(raster) 

#Read Soil Profiles 

SpH <- read.table("SoilProfilepH.txt", header = TRUE) 

# Make spatial 

coordinates(SpH) <- ~x+y 

# Read covariates 

DEM <- readGDAL("prb2_demofaoi.txt") 

SLOPE <- readGDAL("prb3_slopeaoi.txt") 
SWI <- readGDAL("psb4_swiofaoi.txt") 

ASPECT <- readGDAL("prb5_aspectaoi.txt") 

CURVATURE <- readGDAL("prb6_curvatureaoi.txt") 

RELATIVEELEVATION <- readGDAL("prb17_relativeElevationaoi.txt") 

EVI <- readGDAL("psb07_eviofaoi.txt") 

LANDCOVER <- readGDAL("psb08_landcoveraoi.txt") 

LANDSURFACTEMPNIGHT <- readGDAL("psb09_landsurfacetempnightaoi.txt") 

LANDSURFACTEMPDAY <- readGDAL("psb10_landsurfacetempdayaoi.txt") 

GEOLOGY <- readGDAL("prb18_geologyaoi.txt") 

# Add explanatory data to SpH object 

SpH$dem <- over(SpH, DEM)$band1 

SpH$slope <- over(SpH, SLOPE)$band1 
SpH$swi <- over(SpH, SWI)$band1 

SpH$aspect <- over(SpH, ASPECT)$band1 

SpH$curv <- over(SpH, CURVATURE)$band1 
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SpH$relelev <- over(SpH, RELATIVEELEVATION)$band1 

SpH$evi <- over(SpH, EVI)$band1 

SpH$landcov <- over(SpH, LANDCOVER)$band1 

SpH$tempnight <- over(SpH, LANDSURFACTEMPNIGHT)$band1 

SpH$tempday <- over(SpH, LANDSURFACTEMPDAY)$band1 

SpH$geology <- over(SpH, GEOLOGY)$band1 
#Log transform data 

SpH$logslope <- log(SpH$slope) 

#Hist new log transformed data 

hist(SpH$logslope, main = "Log SLOPE", xlab = NA) 

#Look at correlation of data 

cor(SpH@data) 

#Convert to factors 

SpH$geology <- as.factor(SpH$geology) 

SpH$landcov <- as.factor(SpH$landcov) 

#Regression of ph data 

regph <- step(lm(pH~dem+logslope+swi+aspect+curv+relelev+evi+landcov+tempnight+tempday+geology, data = 

SpH)) 
summary(regph) 

# Read MAsk 

mask <- readGDAL("maskaoi.txt") 

# Add residual to SpH 

SpH$res <- regph$residuals 

# Calculate variogram of residual 

SpHres <- gstat(id="resids", formula = res~1, data = SpH) 

vSpHres <- variogram(SpHres, boundaries=c(1000, 3:15*2000)) 

plot(vSpHres, plot.nu=T) 

vgmph1 <- vgm(nugget = .35, psill = 0.45, range = 10000, model = "Sph") 

plot(vSpHres,vgmph1, plot.nu=T) 
vgmres <- fit.variogram(vSpHres, vgmph1, fit.method=7) 

plot(vSpHres, vgmres, main="RK pH Variogram") 

dev.print(png, file="RKVariogramFittedResidualPH.png", width=600, height=700) 

vgmres 

# Interpret results 

summary(regph) 

summary(regph)$r.squared 

# Kriging of data 

SpH.rk <- krige(res~1, SpH, newdata = mask, vgmres, beta=0, debug.level=-1) 

#Create data frame 

regdata <- data.frame(swi=SWI$band1, relelev=RELATIVEELEVATION$band1, evi=EVI$band1) 

#Predict NA areas 
lm_pred <- predict(regph, regdata) 

#Add Residuals 

SpH.rk$pH.pred <- SpH.rk$var1.pred + lm_pred 

#Plot Predictions of pH 

spplot(SpH.rk, zcol = "pH.pred", col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main="pH ") 

dev.print(png, file="RK_PHPred.png", width=600, height=700) 

#Calculate evaluation measure 

crossval <- function(linmodel, vgm1, alldata){ 

  output <- numeric() 

  for (i in 1:nrow(alldata)){ 
    pred <- krige(res~1, alldata[-i,], newdata = alldata[i,], vgm1, beta=0) 

    lin <- predict(linmodel, alldata[i,]) 

    pred <- pred$var1.pred+lin  

    output <- c(output, pred - alldata[i,]$pH) 
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  } 

  return(output) 

} 

# call function crossval 

cv <- crossval(regph, vgmres, SpH) 

obs <- SpH$pH 
pred <- cv+SpH$pH 

summary(obs) 

summary(pred) 

# correlation observed and predicted, ideally 1 

cor(obs, pred) 

#Mean Absolute Error 

me <- function(obs, pred)(mean(obs-pred)) 

me(obs, pred) 

#RMSE 

rmse <- function(obs, pred) sqrt(mean((obs-pred)^2)) 

rmse(obs, pred) 

 

3. CAT_pH with SM1M 

setwd('C:/Users/User/Desktop/Thesis/c002CharlWong/Workspace/a1ExternalFormattedData/CATRegressionKrigin
g')  

# Load libraries 

library(sp) 

library(rgdal) 

library(maptools) 

library(gstat) 

library(rgeos) 

library(raster) 

#Read Soil Profiles 

SpH <- read.table("SoilProfilepH.txt", header = TRUE) 

# make spatial 
coordinates(SpH) <- ~x+y 

# Read covariates 

DEM <- readGDAL("prb2_demofaoi.txt") 

SLOPE <- readGDAL("prb3_slopeaoi.txt") 

SWI <- readGDAL("psb4_swiofaoi.txt") 

ASPECT <- readGDAL("prb5_aspectaoi.txt") 

CURVATURE <- readGDAL("prb6_curvatureaoi.txt") 

RELATIVEELEVATION <- readGDAL("prb17_relativeElevationaoi.txt") 

EVI <- readGDAL("psb07_eviofaoi.txt") 

LANDCOVER <- readGDAL("psb08_landcoveraoi.txt") 

LANDSURFACTEMPNIGHT <- readGDAL("psb09_landsurfacetempnightaoi.txt") 

LANDSURFACTEMPDAY <- readGDAL("psb10_landsurfacetempdayaoi.txt") 
GEOLOGY <- readGDAL("prb18_geologyaoi.txt") 

SM1M <- readGDAL("soilmap1m.txt") 

# Add explanatory data to SpH object 

SpH$dem <- over(SpH, DEM)$band1 

SpH$slope <- over(SpH, SLOPE)$band1 

SpH$swi <- over(SpH, SWI)$band1 

SpH$aspect <- over(SpH, ASPECT)$band1 

SpH$curv <- over(SpH, CURVATURE)$band1 

SpH$relelev <- over(SpH, RELATIVEELEVATION)$band1 

SpH$evi <- over(SpH, EVI)$band1 
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SpH$landcov <- over(SpH, LANDCOVER)$band1 

SpH$tempnight <- over(SpH, LANDSURFACTEMPNIGHT)$band1 

SpH$tempday <- over(SpH, LANDSURFACTEMPDAY)$band1 

SpH$geology <- over(SpH, GEOLOGY)$band1 

SpH$sm1m <- over(SpH, SM1M)$band1 

#Log transform data 
SpH$logslope <- log(SpH$slope) 

#Convert to factors 

SpH$geology <- as.factor(SpH$geology) 

SpH$landcov <- as.factor(SpH$landcov) 

SpH$sm1m <- as.factor(SpH$sm1m) 

#Regression of ph data 

regph <- step(lm(pH~dem+logslope+swi+aspect+curv+relelev+evi+landcov+tempnight+tempday+geology+sm1m, 

data = SpH)) 

summary(regph) 

regph <-lm(pH~swi+relelev+evi+sm1m, data = SpH) 

summary(regph) 

# Read MAsk 
mask <- readGDAL("maskaoi.txt") 

# Add residual to SpH 

SpH$res <- regph$residuals 

# Calculate variogram of residual 

SpHres <- gstat(id="resids", formula = res~1, data = SpH) 

vSpHres <- variogram(SpHres, boundaries=c(1000,6000,8000,16000,19000,21000,10:12*2300)) 

plot(vSpHres, plot.nu=T) 

vgmph1 <- vgm(nugget = .36, psill = 0.45, range = 9500, model = "Sph") 

plot(vSpHres, vgmph1, main="Variogram CAT SM1M pH") 

vgmres <- fit.variogram(vSpHres, vgmph1, fit.method=7) 

plot(vSpHres, vgmres, main="Variogram CAT SM1M pH") 
dev.print(png, file="CATVariogramFittedResidualPHSM1M.png", width=600, height=700) 

vgmres 

# Interpret results 

summary(regph) 

summary(regph)$r.squared 

# Kriging of residual data 

SpH.CAT <- krige(res~1, SpH, newdata = mask, vgmres, beta=0, debug.level=-1) 

#Create data frame 

regdata <- data.frame(swi=SWI$band1, relelev=RELATIVEELEVATION$band1, evi=EVI$band1, 

sm1m=as.factor(SM1M$band1)) 

#Predict NA areas 

lm_pred <- predict(regph, regdata) 
#Add Residuals 

SpH.CAT$pH.pred <- SpH.CAT$var1.pred + lm_pred 

#Plot Predictions of pH 

spplot(SpH.CAT, zcol = "pH.pred", col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main="pH using SM1M") 

dev.print(png, file="CAT_PHPredSM1M.png", width=600, height=700) 

#Calculate evaluation measure 

crossval <- function(linmodel, vgm1, alldata){ 

  output <- numeric() 

  for (i in 1:nrow(alldata)){ 

    pred <- krige(res~1, alldata[-i,], newdata = alldata[i,], vgm1, beta=0, debug.level=-1) 
    lin <- predict(linmodel, alldata[i,]) 

    pred <- pred$var1.pred+lin  

    output <- c(output, pred - alldata[i,]$pH) 

  } 
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  return(output) 

} 

# call function crossval 

cv <- crossval(regph, vgmres, SpH) 

obs <- SpH$pH 

pred <- cv+SpH$pH 
summary(obs) 

summary(pred) 

# correlation observed and predicted, ideally 1 

cor(obs, pred) 

#Mean Error 

me <- function(obs, pred)(mean(obs-pred)) 

me(obs, pred) 

#RMSE 

rmse <- function(obs, pred) sqrt(mean((obs-pred)^2)) 

rmse(obs, pred) 

 

4. STK_pH with SM1M 

 

setwd('C:/Users/User/Desktop/Thesis/c002CharlWong/Workspace/a1ExternalFormattedData/StratifiedKriging')  

# Load libraries 

library(sp) 

library(rgdal) 

library(maptools) 
library(gstat) 

library(rgeos) 

library(raster) 

#Read Soil Profiles 

SpH <- read.table("SoilProfilepH.txt", header = TRUE) 

# Make spatial 

coordinates(SpH) <- ~x+y 

# Read Soil Map 1:1.000.000 

soilmap1m <- readGDAL("soilmap1m.txt") 

#Overlay Soil Map Soil Profiles 

SpH$soilmap1m <- over(SpH, soilmap1m)$band1 

#Convert to factors 
SpH$soilmap1m <- as.factor(SpH$soilmap1m) 

#Create subset 

SpHpart.1 <- SpH[ which(SpH$soilmap1m==1), ] 

SpHpart.2 <- SpH[ which(SpH$soilmap1m==2), ] 

SpHpart.3 <- SpH[ which(SpH$soilmap1m==3), ] 

#Calculate Standaard deviation pH per stratum 

Stdev1 <- sd(SpHpart.1$pH) 

Stdev2 <- sd(SpHpart.2$pH) 

Stdev3 <- sd(SpHpart.3$pH) 

#Standardized pH values  

SpHpart.1$StdpH <- (SpHpart.1$pH)/Stdev1 
SpHpart.2$StdpH <- (SpHpart.2$pH)/Stdev2 

SpHpart.3$StdpH <- (SpHpart.3$pH)/Stdev3 

#Create dummy coordinates 

SpHpart.1$dummycoordinates <- coordinates(SpHpart.1) + 400000 

SpHpart.2$dummycoordinates <- coordinates(SpHpart.2)  

SpHpart.3$dummycoordinates <- coordinates(SpHpart.3) - 700000 

#Make data frame of the part to add the dummy coordinates 
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SpHpart.1 <- as(SpHpart.1, "data.frame") 

coordinates(SpHpart.1) = ~ dummycoordinates.x + dummycoordinates.y  

SpHpart.2 <- as(SpHpart.2, "data.frame") 

coordinates(SpHpart.2) = ~ dummycoordinates.x + dummycoordinates.y  

SpHpart.3 <- as(SpHpart.3, "data.frame") 

coordinates(SpHpart.3) = ~ dummycoordinates.x + dummycoordinates.y  
#Combine the data frame and add dummy coordinates 

SpH.std <- rbind((SpHpart.1), (SpHpart.2),(SpHpart.3)) 

#Create one part variogram to use as general variogram in prediction 

gph1 <- gstat(formula = StdpH~1, data = SpH.std) 

vgph1 <- variogram(gph1,width= 1e5, boundaries = 

c(800,1500,3000,6000,10000,12000,14500,19500,25500,26000,30000)) 

plot(vgph1, plot.nu=T) 

vgmph1 <- vgm(nugget = .46, psill = 0.44, range = 8000, model = "Sph") 

plot(vgph1, vgmph1, plot.nu=T) 

vgmph1 <- fit.variogram(vgph1, vgmph1, fit.method=7) 

plot(vgph1, model = vgmph1, main="Variogram STK pH SM1M") 

vgmph1 
dev.print(png, file="STKVariogramFittedResidualpH1M.png", width=600, height=700) 

#Make data frame of the part 

SpHpart.1 <- as(SpHpart.1, "data.frame") 

coordinates(SpHpart.1) = ~ x + y  

SpHpart.2 <- as(SpHpart.2, "data.frame") 

coordinates(SpHpart.2) = ~ x + y  

SpHpart.3 <- as(SpHpart.3, "data.frame") 

coordinates(SpHpart.3) = ~ x + y  

#Predict 

x1 <- krige(StdpH ~ 1, SpHpart.1, newdata= subset(soilmap1m,soilmap1m$band1 ==1), vgmph1, debug.level=-1) 

x2 <- krige(StdpH ~ 1, SpHpart.2, newdata= subset(soilmap1m,soilmap1m$band1 ==2), vgmph1,debug.level=-1) 
x3 <- krige(StdpH ~ 1, SpHpart.3, newdata= subset(soilmap1m,soilmap1m$band1 ==3), vgmph1, debug.level=-1) 

#Transform predicted value back by multiplying with the st.dev. 

x1$pred.val <- x1$var1.pred * Stdev1 

x2$pred.val <- x2$var1.pred  * Stdev2 

x3$pred.val <- x3$var1.pred  * Stdev3 

#Combine and plot predictions 

SpH.stk <- rbind(as.data.frame(x1), as.data.frame(x2),as.data.frame(x3)) 

coordinates(SpH.stk) <- c("x", "y") 

SpH.stk <- as(SpH.stk, "SpatialPixelsDataFrame") 

#Plot prediction map 

spplot(SpH.stk["pred.val"], col.regions = bpy.colors(), main="pH using SM1M",  

       xlim = c(-178000,-60000), ylim = c(1420000,1575000), sp.layout=list("sp.points",SpH,pch=1)) 
dev.print(png, file="STK_pHPredSM1M.png", width=600, height=700) 

#Calculate evaluation measure 

SpH.stk.cv1 <- krige.cv(StdpH ~ 1, SpHpart.1, vgmph1, debug.level=-1) 

SpH.stk.cv2 <- krige.cv(StdpH ~ 1, SpHpart.2, vgmph1,debug.level=-1) 

SpH.stk.cv3 <- krige.cv(StdpH ~ 1, SpHpart.3,  vgmph1, debug.level=-1) 

#Transform predicted value back by multiplying with the st.dev. 

y1 <- SpH.stk.cv1$observed  * Stdev1 

y2 <- SpH.stk.cv2$observed * Stdev2 

y3 <- SpH.stk.cv3$observed  * Stdev3 

z1 <- SpH.stk.cv1$var1.pred  * Stdev1 

z2 <- SpH.stk.cv2$var1.pred  * Stdev2 
z3 <- SpH.stk.cv3$var1.pred  * Stdev3 

obs <- c(y1, y2,y3) 

pred <- c(z1,z2,z3) 

summary(obs) 
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summary(pred) 

# correlation observed and predicted, ideally 1 

cor(obs, pred) 

#Mean Error 

me <- function(obs, pred)(mean(obs-pred)) 

me(obs, pred) 
#RMSE 

rmse <- function(obs, pred) sqrt(mean((obs-pred)^2)) 

rmse(obs, pred) 

 

5. OBS_pH with SM500K 

 

setwd('C:/Users/User/Desktop/Thesis/c002CharlWong/Workspace/a1ExternalFormattedData/OBS')  
# Load libraries 

library(sp) 

library(rgdal) 

library(maptools) 

library(gstat) 

library(raster) 

# Read pH Soil Map 1:500.000  

soilmap500kph <- readGDAL("obsph500k.txt") 

#Read Soil Profiles 

SpH <- read.table("SoilProfilepH.txt", header = TRUE) 

# make spatial 
coordinates(SpH) <- ~x+y 

#Overlay Observed soil map 1:500.000 with soil profiles 

SpH$soilmap500kph <- over(SpH, soilmap500kph)$band1 

obs <- SpH$pH 

pred <-SpH$soilmap500kph 

summary(obs) 

summary(pred) 

# correlation observed and predicted, ideally 1 

cor(obs, pred) 

#Mean Absolute Error 

me <- function(obs, pred)(mean(obs-pred)) 

me(obs, pred) 
#RMSE 

rmse <- function(obs, pred) sqrt(mean((obs-pred)^2)) 

rmse(obs, pred) 

 #Plot soil property pH sm500K 

spplot(soilmap500kph, col.regions = bpy.colors(), main="pH using SM500K",  

      xlim = c(-178000,-60000), ylim = c(1420000,1575000)) 

dev.print(png, file="OBS_pHPredSM500K.png", width=600, height=700) 

          

                       

6. OBSRES_pH with SM500K 
 

setwd('C:/Users/User/Desktop/Thesis/c002CharlWong/Workspace/a1ExternalFormattedData/OBSRES')  

# Load libraries 
library(sp) 

library(rgdal) 

library(maptools) 

library(gstat) 
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library(raster) 

#Read Soil Profiles 

SpH<- read.table("SoilProfilepH.txt", header = TRUE) 

# make spatial 

coordinates(SpH) <- ~x+y 

# Read covariates 
SM500KpH<- readGDAL("obsph500k.txt") 

#Add SpH$pH to obs 

obs <- SpH$pH 

# Make new variable pred1 

pred1 <- over(SpH, SM500KpH)$band1 

# Calculate and residual and add to SpH 

SpH$res <- pred1 - obs 

# Calculate variogram of residual 

SpHres <- gstat(formula = res~1, data = SpH) 

vSpHres <- variogram(SpHres, boundaries=c(500, 1000, 

3000,7500,9100,10000,12000,15000,20000,22000,24000,27000)) 

plot(vSpHres, plot.nu=T) 
vgmDepth1 <- vgm(nugget = 2.4, psill = 11, range = 4500, model = "Sph") 

plot(vSpHres,vgmDepth1) 

vgmres <- fit.variogram(vSpHres, vgmDepth1, fit.method=7) 

plot(vSpHres, vgmres, main="OBSRES pH fitted variogram SM500K") 

dev.print(png, file="OBSRESVariogramFittedResidualpHSM500K.png", width=600, height=700) 

vgmres 

# Read MAsk 

mask <- readGDAL("maskaoi.txt") 

# Simple kriging of residual 

SpH.obsres <- krige(res~1, SpH, newdata = mask, vgmres, beta=0, debug.level=-1) 

#Add Residuals to OBS result 
SpH.obsres$pH.pred <- SpH.obsres$var1.pred+ SM500KpH$band1 

#Plot Predictions of pH 

spplot(SpH.obsres, zcol = "pH.pred", col.regions = bpy.colors(), xlim = c(-178000,-60000), 

       ylim = c(1420000,1575000), main=" pH using SM500K") 

dev.print(png, file="OBSRES_pHPredSM500K.png", width=600, height=700) 

#Calculate evaluation measure 

crossval <- function(vgm1, alldata){ 

  output <- numeric() 

  for (i in 1:nrow(alldata)){ 

    pred <- krige(res~1, alldata[-i,], newdata = alldata[i,], vgm1, beta=0) 

    pred <- pred$var1.pred 

    output <- c(output, pred ) 
  } 

  return(output) 

} 

# call function crossval 

cv <- crossval(vgmres, SpH) 

obs <- SpH$pH 

pred <- cv+pred1 

summary(obs) 

summary(pred) 

# correlation observed and predicted, ideally 1 

cor(obs, pred) 
#Mean Error 

me <- function(obs, pred)(mean(obs-pred)) 

me(obs, pred) 

#RMSE 
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rmse <- function(obs, pred) sqrt(mean((obs-pred)^2)) 

rmse(obs, pred) 

 

 

 


