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Abstract  
 

Two adjacent precision farming fields located in south of the Netherlands were examined to delineate 

homogenous management zones for site-specific management. Spatially sensing like electrical 

conductivity (ECa), pH value, colour aerial photograph and digital elevation model (DEM) data 

sources were being obtained for these fields due to the advancements of proximal and remote sensing 

technologies. However, little attention was given to the over-information due to such a large volume 

of data from the technological progresses. The objective of the study was to develop and test the 

method of identifying key soil parameters to delineate management zones needed for precision farm 

management. Three scenario were considered for this study: i) combined analysis of both fields, ii) 

separate analysis of each field and iii) combined analysis of both fields but using national available 

geo-data sources (DEM and aerial photograph). Principal component analysis was used to identify soil 

variables which explain most of the soil variation for each scenario. Three principal components were 

retained for both scenario I and II while two principal components for scenario III. The spatial 

coherence and spatial distribution maps of the identified ECa’s, optical soil indices and elevation soil 

parameters were analysed using geo-statistical techniques. Unsupervised k-mean clustering algorithm 

was then performed to delineate potential management zones using the identified soil parameter for 

each scenario. Three optimal management zones per scenario were found most convenient based on 

the separable and overlapping nature of the classes. To assess the goodness of the defined management 

zones for each scenario, geo-referenced potato yield were examined and compared using ANOVA. In 

addition geo-located organic matter samples on field one were used for validation purpose. Significant 

mean differences of potato yield among and between the management zones for scenario I and II were 

found. Significant mean differences of organic matter were also found. In general the method can be 

operable for precision agriculture at field level using apparent electrical conductivity, colour aerial 

photographs and elevation sensing data sources.  

 

 Key words: Precision farming, k-mean clustering, management zones, principal component analysis. 

 

 

 

 

 

 

 

 

 

 

 



                                                           Acknowledgement                 

ii | P a g e  

 

Acknowledgement  
 

First and foremost, I would like to thank Almighty God who made me healthy and let me finish the 

course.  

I am grateful to my supervisors Dr. Lammert Kooistra and Dr. Harm Bartholomeus from the 

Laboratory of Geo-information Science and Remote Sensing of Wageningen University in the 

Netherlands for their guidance, constructive comments and encouragements during the whole MSc 

research period and of course throughout my stay in MGI programme. Without their support 

completion of the research would have not been possible.  

I would like also extend my appreciation to Mr. Jacob van den Borne and his colleagues for providing 

me with complete data sources needed for the study. I could not finish the study without the use of van 

den Bornes’s data.  

Lastly, but not least I want to acknowledge my study advisor Willy ten Haaf, Dr. Sytze de Bruin, Dr. 

Jan Verbesselt and all Geo-information Science and remote sensing staff members of Wageningen 

University for their great contribution in developing my knowledge and skills for future career and 

education.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                           Table of content                 

iii | P a g e  

 

Table of content 

Abstract ....................................................................................................................................... i 

Acknowledgement ...................................................................................................................... ii 

Table of content ......................................................................................................................... iii 

List of tables ............................................................................................................................... v 

List of figures ........................................................................................................................... vii 

Chapter 1. Introduction .............................................................................................................. 1 

1.1. Background ...................................................................................................................... 1 

1.2. Statement of the problem ................................................................................................. 2 

1.3. Research Objective and question ..................................................................................... 2 

1.4. Organization of the thesis ................................................................................................ 3 

Chapter 2. Literature review ....................................................................................................... 4 

2.1. Field variation and sensing technology ........................................................................... 4 

2.2. Definition and concepts of management zones ............................................................... 6 

Chapter 3. Materials and Methods ........................................................................................... 11 

3.1. Study area and datasets .................................................................................................. 11 

3.2. Datasets .......................................................................................................................... 11 

3.2.1. Electromagnetic induction measurement ................................................................ 11 

3.2.2. DEM generation and colour aerial photographs ..................................................... 12 

3.2.3. Veris sensing technology and validation datasets ................................................... 13 

3.3. Principal component analysis ........................................................................................ 13 

3.4. Geo-statistics and clustering algorithm ......................................................................... 14 

3.5. Crop yield of potential management zones ................................................................... 15 

Chapter 4. Result ...................................................................................................................... 16 

4.1. Conventional statistics of soil properties and crop yield ............................................... 16 

4.2. Principal component analysis ........................................................................................ 17 

4.3. Map of selected soil parameters .................................................................................... 25 

4.4. Management zone delineation ....................................................................................... 30 

4.5. Crop productivity and management zone validation ..................................................... 34 

4.5.1. Potato yield map verse management zones visual comparison .............................. 34 

4.5.2. Management zones validations using Potato yield ................................................. 35 

4.5.3. Management zone validation using organic matter ................................................ 38 

Chapter 5. Discussion ............................................................................................................... 40 



                                                           Table of content                 

iv | P a g e  

 

Chapter 6. Conclusion .............................................................................................................. 44 

Chapter 7. Recommendation .................................................................................................... 45 

Chapter 8. Reference ................................................................................................................ 46 

Appendix .................................................................................................................................. 51 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                           List of tables                 

v | P a g e  

 

List of tables  

 
Table 1. Soil properties assessed by EMI sensing techniques and with respective accuracy .................. 6 

Table 2. Descriptive statistics of the soil variables (N for number of observation and CV for 

coefficient of variation) for field one. ........................................................................................... 16 

Table 3. Descriptive statistics of the soil variables (N for number of observation and CV for 

coefficient of variation) for field two. ........................................................................................... 17 

Table 4.Correlation matrix of the soil variables used for principal component analysis in scenario I. . 17 

Table 5. Rotated factor loading of the first three PCs and the communalities of each variable of 

scenario I. ...................................................................................................................................... 18 

Table 6. Correlation matrix of the soil variables used for principal component in scenario II. The top is 

for field one and bottom for field two. .......................................................................................... 20 

Table 7. Principal components and variations explained by each component for both fields of scenario 

II .................................................................................................................................................... 21 

Table 8. Unrotated factor loading of the first three principal component and the communalities of soil 

parameters for field one of scenario II .......................................................................................... 21 

Table 9. Unrotated factor loading of the first three Principal component and the communalities of soil 

parameters for field two of scenario II .......................................................................................... 22 

Table 10. Correlation matrix of soil variables of scenario III. .............................................................. 23 

Table 11. Principal Components and variations explained by each component of scenario III. ........... 23 

Table 12. Unrotated factor loading of the first two PCs and the communalities of soil variables for 

field two of scenario III. ................................................................................................................ 24 

Table 13. Parameters of models fitted to semivariograms of the NDRG, ECa-V1, and ECa-H1 soil 

variables of scenario I. .................................................................................................................. 25 

Table 14. Parameters of models fitted to semivariograms of the NDRG, ECa-V1, and ECa-H1 soil 

variables of scenario II and field one. ........................................................................................... 27 

Table 15. Parameters of models fitted to semivariograms of the ECa-V1, RmB and elevation soil 

variables of scenario II field two. .................................................................................................. 28 

Table 16. Parameters of models fitted to semivariograms of the NDRG and elevation ....................... 29 

Table 17. Descriptive statistics of the potato yield (ton/ha) management zones for scenario I. ........... 36 

Table 18. ANOVA output for comparison of yield variation between management zones for scenario I.

 ....................................................................................................................................................... 36 

Table 19. Descriptive statistics of the potato yield (ton/ha) management zones for field 1 under 

scenario II. ..................................................................................................................................... 36 

Table 20. ANOVA output for comparison of yield variation between management zones for field 1 

under scenario II. ........................................................................................................................... 37 

Table 21. Descriptive statistics of the potato yield (ton/ha) management zones for field 2 under 

scenario II. ..................................................................................................................................... 37 

Table 22. ANOVA output for comparison of yield variation between management zones for field 2 

under scenario II. ........................................................................................................................... 38 

Table 23.Descriptive statistics of the potato yield (ton/ha) management zones for scenario III. .......... 38 

Table 24. ANOVA output for comparison of yield variation between management zones for scenario 

III ................................................................................................................................................... 38 

Table 25 . Descriptive statistics of Organic matter management zones for field 1under scenario II. ... 39 

Table 26. ANOVA output for comparison of organic matter variation between management zones for 

field ............................................................................................................................................... 39 



                                                           List of tables                 

vi | P a g e  

 

Table 27. Selected soil variables in order of contribution with respective percent of total cumulative 

variance explained in each scenario. Significance F-test and p-values of ANOVA test are also 

summarized. .................................................................................................................................. 41 

 



                                                                            

vii | P a g e  

 

List of figures  

 
Figure 1. Different categories of proximal soil sensors based on how they operate taken from (Rossel 

et al., 2011). ............................................................................................................................................. 5 

Figure 2. The evolution of site-specific crop management from a uniform to a totally site-specific 

approach (Whelan and Taylor, 2013) ...................................................................................................... 7 

Figure 3. Study area and location of the experimental fields with pH value measurement locations ... 11 

Figure 4. Coil schematic and depth of exploration in both a) vertical b) horizontal orientation 

(Catalano, 2011) .................................................................................................................................... 12 

Figure 5. Methodological framework of principal component analysis ................................................ 14 

Figure 6. Potential management zonation framework for scenario I..................................................... 15 

Figure 7. Rotated loading matrix plots of scenario I, a) first and second principal component and b) 

first and third Principal component. ...................................................................................................... 19 

Figure 8. Field one loading matrix plots of scenario II, first and second principal component (left) and 

first and third principal component (right). ........................................................................................... 22 

Figure 9. Field two loading matrix plots of scenario II, first and second principal components (left) and 

first and third principal component (right). ........................................................................................... 23 

Figure 10. Unrotated loading matrix plots of the first and second principal components. .................... 24 

Figure 11. Interpolated maps using kriging of, a) NDRG b) ECa-V1 c) ECa-H1 soil variables for 

scenario I. .............................................................................................................................................. 26 

Figure 12. Interpolated maps using kriging of, a) ECa-V1 b) NDRG c) ECa-H1 soil variables for 

scenario II field one. .............................................................................................................................. 28 

Figure 13. Interpolated maps using kriging of, a) RmB b) ECa-V1 c) elevation soil variables of 

scenario II field two. .............................................................................................................................. 29 

Figure 14.  Interpolated maps using kriging of, elevation (right) and NDRG (left) soil variables of 

scenario III. ............................................................................................................................................ 30 

Figure 15. Potential management zones using NDRG, ECa-V5 and ECa-H1 soil variables for field 1 

and 2 under scenario I. .......................................................................................................................... 31 

Figure 16. Potential managements zones using ECa-H1, ECa-V1 and NDRG soil variables for field 1 

under scenarion II. ................................................................................................................................. 32 

Figure 17. Potential management zones using RmB, ECa-V1 and elevation for field 2 under scenario 

II. ........................................................................................................................................................... 33 

Figure 18. Potential management zones using Elevation and NDRG for field 1 and 2 under scenario 

III. .......................................................................................................................................................... 33 

Figure 19. Kriged maps of potato yield for field 1. The lines indicate fertilizer treatments level. ....... 34 

Figure 20. Kriged maps of potato yield for field 2. ............................................................................... 35 

 
Appendix 1.PCA scree plots of scenario I (left) and III (right) ............................................................. 51 

Appendix 2.PCA scree plot of scenario II, field one (left) and field two (right) ................................... 51 

Appendix 3. Semivariograms of soil variables and their fitted curves and parameters for scenario I. . 52 

Appendix 4. Semivariograms of soil variables and their fitted curves and parameters for scenario II. 53 

Appendix 5. Semivariograms of soil variables and their fitted curves and parameters for scenario II. 54 

Appendix 6. Semivariograms of soil variables and their fitted curves and parameters for scenario III.54 

Appendix 7. Normalized potato yield distribution map field one (top) and field two (bottom) ........... 55 

Appendix 8. Interpolated maps of pH value (a) and ECa-V.5 (b) using kriging. .................................. 56 

Appendix 9. Organic matter measurement location displayed over management zones for field 1. .... 57 

 



                                                           Chapter 1. Introduction                 

1 | P a g e  

 

Chapter 1. Introduction 

 
This chapter explores the background of precision agriculture, the statement of the problem, the 

research objective and research questions and describes the organization of the thesis.  

1.1. Background  

 
In contrast to traditional farming, today’s site-specific farming system is capable of producing high 

quality and amount for the ever growing world population (Bongiovanni and Lowenberg-Deboer, 

2004; McBratney et al., 2005; Tilman et al., 2002). The general aim of site-specific farming 

management is to increase profitability of crop production and to reduce unwanted environmental 

impacts (Gebbers and Adamchuk, 2010; Godwin et al., 2003). 

Adamchuk et al. (2011a) defined precision agriculture as the management strategy based on 

information technologies implemented to optimize agriculture production. Corwin and Lesch (2005); 

and Viscarra Rossel and McBratney (1998) also extensively defined precision agriculture as the 

application of information and communication technologies to within-field data gathering and 

management driven systems which provides spatial and temporal information on how, where and 

when to apply inputs to the agricultural farming system. 

Progress in farm management concepts and precision agriculture; have begun to exploit within-field 

heterogeneity so that variable input rate applications, more precise management and yield monitoring 

could be applied. It is based on observing and responding to intra- and inter-field variations. Precision 

agriculture relies on new technologies like sensing technology, information technology and geospatial 

tools with due consideration of farmers ability to locate precise Ground position system (GPS) 

locations and management experiences for best management decisions (Auernhammer, 2001; Cox, 

2002; Plant, 2001). These practices in return maximize profitability, improve sustainability and reduce 

input demands (Bongiovanni and Lowenberg-Deboer, 2004; Gebbers and Adamchuk, 2010; Whelan 

and McBratney, 2000). 

Besides recently evolving management practices, precision agriculture needs detailed soil information 

in terms of mapping and characterization of soil variations to support decision making and assist 

farmers for site-specific management. Precision agriculture is all about applying the correct input in 

the correct amount at a correct place in needed time (Fleming et al., 2000). There exist soil physical, 

chemical and biological variability and variation within short distances both horizontally and vertically 

which comes from complex processes and interactions that takes place in the soil environment 

(Stenberg et al., 2010). Mzuku et al. (2005) study showed that soil physical properties exhibited 

significant spatial variability across management zones of production fields. In a related study of 

(Gaston et al., 2001), location and density of weeds was influenced by spatial variability of soil clay 

and soil organic matter (SOM).  

Recent innovations in sensing technology, water management, proximal sensing, on-the-go soil, and 

yield monitoring and crop management complemented the spatially sparse soil data to investigate the 

field variations. More specifically proximal soil sensing (PSS) techniques which is used for the 

investigation purpose is defined as field based techniques that can be used to measure soil chemical, 

physical, biological and mineralogical properties from a distance of approximately less than 2 m above 

the soil surface (Rossel et al., 2011). With the availability those innovations, characterization of 



                                                           Chapter 1. Introduction                 

2 | P a g e  

 

unavoidable spatial and temporal soil and crop inter- and intra-fields variations is examined by 

(Boydell and McBratney, 2002; Reyniers et al., 2006). 

Nowadays geo-referenced spatially dense and coverage of extensive information sources are becoming 

available. Given the fact that soil and crop properties measurements can be acquired at high spatial and 

temporal resolution, data availability in respect is growing quickly (Vitharana et al., 2008). The 

adoption and implementation of such precision agriculture innovations are also advancing in 

developing countries (Batte and Arnholt, 2003; Maohua, 2001; McBratney et al., 2005) even though, 

proper decision-support systems of implementing, insufficient recognition of temporal variation and 

lack of integrated farm management remains major stumbling obstacles for adoption (McBratney et 

al., 2005; Tilman et al., 2002).  

1.2. Statement of the problem 

  
Precision agriculture practice is becoming evident especially due to the increment of available datasets 

from development of different proximal sensors. Soil properties like apparent electrical conductivity 

(ECa), soil pH, digital elevation model (DEM) and their derivative information used for soil 

characterization and management zone delineation apparently are becoming available through high 

spatial and temporal resolution mobile and on-the-go sensors (Thessler et al., 2011).  

Consequently, large volume of soil and crop data is available starting recently in precision agriculture 

farming due to the advancement of remote sensing and proximal soil sensing technologies (Gibbons, 

2000; Zhang et al., 2002b). However, little attention was given to the over-information due to such a 

large volume of data from the technological advancements. It is believed that the availability of 

ancillary information or information from different sensors with different accuracy might contribute to 

characterization of variability or inter-correlation of soil and crops at high spatial and temporal 

resolution. But this might also result or end-up in a sort of data redundancy. Consequently, selection of 

most important parameters which explain most of the existing variations remains essential component 

of precision farming. In line with this (Van Meirvenne et al., 2013) selected key parameters based 

from a list of soil properties, topography attribute, EMI measurement, and gamma ray measurements 

data sources for site-specific management. A previous study of (Vitharana et al., 2008) also conducted 

a related study based on ECa and top and sub-soils data sources.  

Further development and testing of the methods is then critical in this regard as: proximal sensing 

technology, on-the-go soil and crop sensing and measurement, water management and focuses on 

management zones focuses are evolving through time. Improvement and testing of the method on 

broader scope of spatial coverage of fields, crops production system, and data sources is not 

intensively investigated yet to confirm broader implementation and application to define better 

performing management zones. Besides efficient use of inputs, sustainability of environmental is 

becoming centre of concerns (Gibbons, 2000). This gap motivates the researcher to develop and test 

the methodology introduced by (Van Meirvenne et al., 2013). 

1.3. Research Objective and question 

 
The main objective of the research is to develop and test the methodology of identify key sensing 

based soil variables to delineate management zones for a precision agriculture farm. To achieve this 

objective the following research questions have been developed.  

RQ1. Which sensing based soil variables describes most of soil variations within fields?  
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RQ2. How to define management zones in precision agricultural farm using soil parameters?  

RQ3. How to evaluate the potential performance of the method used to define management classes?  

1.4. Organization of the thesis 

 
The report includes seven chapters. The first chapter introduced background and problem statement of 

precision farming, proximal sensing and management zone delineation. It also presented the objectives 

and research questions of the study. 

The second chapter presents literature review regarding field variations, sensing based technology, 

used sensors and definitions of management zones.  

The third chapter introduced the study area, descriptions of input dataset and the methods used. This 

chapter also presented the description of validation methods. 

The fourth chapter presented the results section. Conventional statistics of input data, principal 

component analysis, interpolation of selected soil variables, management zone delineation, 

management zone and crop yield map visual assessment, and management zone delineation are 

presented in this chapter. 

The fifth chapter discusses the result of the paper. Own results and other finding results are discussed. 

Conclusion sections are included in the sixth chapter. Finally recommendation remarks are included in 

chapter seven.  
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Chapter 2. Literature review  

This section covers literature reviews on field variation and sensing technology, definition and 

concepts of management zones, and clustering algorithms.  

2.1. Field variation and sensing technology  

Spatial heterogeneity in soil properties is part of an agricultural field due to the soil forming factors 

and soil forming process. Such a variability of chemical and physical soil properties obviously 

happens in agricultural farming and is even unavoidable in small fields of precision agricultural farms 

(McBratney and Pringle, 1999). Acquiring high temporal and spatial resolution data, in a real-time 

data with high quality sensors to detects within-field variations increases agricultural production 

(Pierce and Elliott, 2008). Due to this, the knowledge of spatial variability of soil properties within an 

agricultural field is a critical issue for successful site-specific crop management, especially in 

precision farming (Thessler et al., 2011).  

Obtaining and analysing soil properties are important bottlenecks in the traditional farming system. 

Traditional management practices assume similar soil type and management practice over the entire 

field. However, intra-and inter- field spatial variability of soil properties and yield is unavoidable. 

Inherently variable water holding capacity, resistance to root growth, acidity, nutrient deficiency, 

texture, depth and other related soil properties are some of the causes for yield variations within a 

field. So homogenous management practices for such a field with ends-up with less eco-friendly and 

an-uneconomical practices (Patabendige et al., 2003).  

The basic principle of precision agriculture lies in: sensing, recognizing, managing field variability 

and implement decision accordingly (Pierce et al., 1999). Finding sensed data which addresses within-

field variability is a critical step in precision agriculture, as proper decision management is impossible 

without understanding such variability. Precision farming is based on observing and responding to 

intra-field variations. Advancement in recent remote sensing, VIS-NIR reflectance spectrum and 

proximal soil sensing methods has made it possible to rapidly acquire soil data and crops data (Figure 

2). Large quantities of inexpensive high spatial and temporal resolution soil data and even in real time 

data can be acquired nowadays by proximal sensors as frequent as every second (Chang and Laird, 

2002; Moral et al., 2010; Rossel et al., 2011; Viscarra Rossel and McBratney, 1998), besides 

identifying variation of soil properties due increasing of resolutions for crop and soil measurement 

(Figure 2). 

Today quite a numbers of advanced soil sensors have been investigated to manage field variability. In 

a broad scope field variability can be achieved by either map-based or sensor-based approaches. 

Sensor-based approaches are relatively expensive and less available. This sensor-based approach 

describes soil properties and crop parameters using real time sensors in an on-the-go fashion to control 

variable rate application (Zhang et al., 2002a). In contrast map-based approach is implemented with 

the availability of GPS technologies, remote sensing, yield monitoring and soil sampling which help to 

produce site-maps for field management.  

 

Focusing on proximal soil sensing, it can be performed when a sensor detects signal from the soil 

being in contact with or close to the soil (Rossel et al., 2011). Kuang et al. (2012) categorised proximal 

sensors into five main categories: 

I. Reflectance based soil sensors  

II. Conductivity, resistivity and permittivity based soil sensors  

III. Radiation based soil sensors  



                                                           Chapter 2. Literature review                 

5 | P a g e  

 

IV. Strength based soil sensors  

V. Electro-chemical soil sensors  
 

Proximal sensors can also be furthered grouped in to different groups based on: the way they measure, 

the energy sources, the way they operate and method of inferring with soil (Figure 1). The mobile on-

the-go operating sensors are becoming an interdisciplinary field of research (Adamchuk et al., 2011b).  

 

Although different sensors out of the listed above are implemented in the mechanized precision 

farming of the study field, for this study EMI (EM38-MK2) sensor, Veris pH Manager sensing and 

unmanned aerial vehicle techniques are used.  

EM38-MK2 

The ability of soil to conduct electricity is usually quantified by electrical resistivity or electrical 

conductivity. The EM38-MK2 Ground Conductivity Meter is contact less and invasive methods of 

measuring soil electrical conductivity. ECa first was introduced for salinity evaluation (Rhoades, 

1993), which nowadays is greatly used for field-variability characterization to define management 

zones for efficient and sustainable utilization of farm inputs (Fleming et al., 2000; Moral et al., 2010; 

Vitharana et al., 2008). In contrast to aerial and satellite remote sensing, on-the-go sensors that operate 

beneath the soil surface minimize weather and field disturbances (Frazier et al., 1997).  

 The EM38-MK2 sensor which measures the soil ECa consists of a transmitter and receiver coils on 

both ends of horizontal bar at a distance of 1 meter. The transmitter coil at or above the ground surface 

is energised with an alternating current creating a primary magnetic field in the soil. This magnetic 

field causes a current to flow in the soil and that inspires a second magnetic field on that with the 

receiver is measured. The technical details of the instrument are described by Davis et al. (1997) and 

McNeill (1980).  

Apparently soil ECa has become one of the most frequently used measurements to characterize within 

field variability of precision farm as it is a function of a multiple soil properties (Al-Gaadi, 2012; 

Corwin and Lesch, 2003; Sudduth et al., 2001). Different authors investigated the use of ECa to 

characterize several soil properties with varying degree of accuracy and some of them are presented 

(Table 1). More details about the sensing techniques and accuracy assessed can be found at (Khakural 

et al., 1998; Sheets and Hendrickx, 1995; Sudduth et al., 2001; Sudduth et al., 2003; Sudduth et al., 

2005).  

 

Figure 1. Different categories of proximal soil sensors based on how they operate taken from (Rossel et al., 

2011).  
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Table 1. Soil properties assessed by EMI sensing techniques and with respective accuracy 

Soil property  Plat form  R
2
  Reference 

soil compaction  On-line  0.66 (Al-Gaadi, 2012)  

clay On-line 0.693 (Williams and Hoey, 1987) 

Soil Moisture content  Online 0.67- 75 (Christy, 2008; Mouazen et al., 

2005) 

salinity On-line  (Farahani and Buchleiter, 2004) 

Chemical properties 

( Ca
++

, Mg
++

, K
+
) 

On-line 0.26 – 0.85 (Christy, 2008; Shaner et al., 

2008) 

SOM On-line 0.44 – 0.83 (Christy, 2008; Muñoz and 

Kravchenko, 2011; Shonk, 1991) 

Total nitrogen On-line  0.86 (Christy, 2008; Kuang and 

Mouazen, 2013)  

Soil pH On-line 0.43 (Christy, 2008) 

 

Veris pH 

Veris pH manager which take soil samples within grid samples was used. The sensor is commercially 

built on mobile sensor platform for soil pH measurement (Veris Technologies). It collects geo-

referenced soil samples so that soil pH map can be produced. Regarding the accuracy performance of 

the instrument: soil pH might vary from 5.4 to 8.0 over distances of about 150 m in most transects. In 

some sections soil pH varied about 2 pH units over a 12 m distance (Bianchini and Mallarino, 2002). 

On the other hand (Brouder et al., 2005) concluded soil data samples from smaller grids provide much 

information on the natural distribution pH or lime requirement. Lauzon et al. (2005) added a grid 

spacing of 30 meter or less is required to adequately asses the spatial distribution of soil pH, 

phosphorous and potassium properties. 

 

Imaging cameras 

Aerial and satellite imagery is a promising approach especially in contactless and inaccessible fields 

(Mulder et al., 2011). It is also an excellent means of analysing the landscape variability of soil based 

on reflectance (Frazier et al., 1997; Lamb and Brown, 2001). However, vegetation, weather, crop 

residue and other factors limits the proper functionality of this technique. Moreover colour aerial 

photographs nowadays are available or can be acquired at low cost to estimate spatial distribution of 

soil properties. Unmanned airborne vehicles (UAVs) are used for this purpose. A UAV remote sensing 

technique provides or has potential to provide high spatial and temporal resolutions, highly flexible 

image acquisition program though payload of the platform is the limiting factor. Different indices can 

be derived from the colour aerial photographs to assess spatial distribution of some soil parameters 

like organic matter and moisture content (Bartholomeus and Kooistra, 2012).  

2.2. Definition and concepts of management zones  

 

Designing management zones contributes a lot for better management of farm inputs, crop 

management, and environmental impacts. These activities are the core practices in precision 

agriculture and in variable input rate application. Though defined indifferent ways based on scale and 

goal; the most comprehensive one “management zones are sub-regions of a field that express a 

homogeneous combination of yield limiting factors for which a single crop input is appropriate to 

attain maximum efficiency of farm inputs” (Doerge, 1999). Consequently, a management zone within 

a field may be crop, nutrient and parameter specific.  

http://www.veristech.com/index.aspx
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Delineation of management zones for a specific input or parameter considers factors directly 

influencing the status and availability of that particular input or parameter (Zhang et al., 2002b). This 

implies that management zone with in a field may be different for different inputs used, nitrogen 

versus phosphorus fertilizer for example. So while delineating nitrogen management zone, factor 

mainly influencing the status of nitrogen situations are considered accordingly. Fleming et al. (2000) 

extends the definition of management zone to individual nutrient maps for variable rate input 

application or on-go fertilizer treatment. Referring to management of field variation, management 

zones can be defined as geographical areas that can be treated as homogenous so that input application 

and decision making can be treated separately for each zone.  

Referring back to historical background of management zones, farmers experiences have been playing 

an important role (Crookston, 1996). Farmers might have qualitative information on their field 

variation based on their past production history. Conventional farmers’ management practices are 

based on expertise of farmers and long-term knowledge of the respective fields in contrast to the 

recent developed data-driven management approach. Due to further advancement of GPS, geographic 

information systems (GIS), remote sensing technology, real-time yield and soil proximal sensors, 

delineation of management zone nowadays is data-driven approaches. 

The concept of management zone in precision farming is the most important concept for variable input 

application rate and efficient management of fields. Depending on: natural variability within a field, 

size of the field (spatial coverage) and management factors, the numbers of appropriate management 

zones could vary for a certain field (Zhang et al., 2002b). The number of appropriate management 

zones within a field is influenced by tehnological equpiment used and practical applicability patterns 

of classes. So it is common practice to modify or remove excessive detailes among the mamagement 

zones as it prohobits practicability of operations in a real situation. On the other hand it is believed that 

considering more limiting variables can more advantageous to define better performing management  

 

Figure 2. The evolution of site-specific crop management from a uniform to a totally site-specific approach 

(Whelan and Taylor, 2013) 
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zones. Density and spatial scale of data, cost of the data, relationship with the crop, stability and 

repeatable characterstics of data needs to be considered during management zoning strategey (Doerge, 

2009). 

The concept of management zone in precision farming again is critical for variable input application 

rate and efficient management of fields. Different authors indicated that management zone delineation 

approach combines different techniques to visualize, identify and locate spatial distributions within 

fields for input rate (Doerge, 1999). Soil properties, aerial photographs, topography factors and yield 

maps have all been suggested as logical basis to define homogenous zones in agricultural fields 

(Fleming et al., 2000; Schepers et al., 2004; Schepers et al., 2000).  

Soil sensors are becoming more fast, accurate, wireless and efficient to provides on time and cost 

efficient quantitative results with time (Rossel et al., 2011). Remote and proximal soil sensing 

principles on broader scope are expected to fulfil the spatial and temporal resolution demands of soil 

characterization. Airplane or satellite remote sensing is becoming a promising approach to characterize 

soil field variations. However remote sensing suffers from spatial and temporal resolution inadequacy 

short comings (McBratney et al., 2003). Moreover, remote sensing is preferred under low atmospheric 

disturbance and less cloud effects.  

 

Currently, there is no site-specific management prescription method and algorithm proven to be the 

most favourable for all variables involved in crop production. As a result authors developed different 

methods to define management zones in precision agriculture (Li et al., 2007; Van Meirvenne et al., 

2013). Depending on; data sources, growers’ expertise, soil and crop characteristics, computer literacy, 

location of field and methods or technique used, different delineation approaches are forwarded. Many 

researchers used one or multiple information sources and methods to delineate sub-field management 

zones. Following paragraphs presents some of the approaches used to delineate potential management 

zones implement by different studies depending on the determining factors listed in the above lines. 

They are presented in the following paragraphs. 

Franzen and Nanna (2003) presented basic data anlysis approach for delineation of management zones 

in Des Moines, IA, United States. They used topography, yield, soil survery aerial photographs, 

satellite imagery and ECa attributes data sources for analysis. Results of individual and combination of 

these variables and their correlation coefficient to nitrate were compared. Subset of variables 

consisting topogarphy, satellite imagery and yield mapping results highest and most consisitent 

correlation while use of combination of all the variables together resulted worse the result. Three years 

later in 2006, subsequent study by smae authors confirmed the same result. (Schepers et al., 2004) 

conducted a study with a hypothesis of spatial and temporal variations of soil properties affects the 

spatial variability of yield. The authors used aerial-photos, elevation, yield, soil samples and apparent 

electrical conductivity (ECa) and soil attributes on irrigated field. Principal component analysis (PCA) 

used to aggregate the landscape attributes and finally four management zones were identified. 

In another study (Jaynes et al., 2003) used multi-year sampled data to determine management zones on 

Iowa corn field, USA. Three step processing of partitioning, interpretation and profiling is followed by 

K-mean cluster analysis. The authors used cluster analysis to interpret temporal and spatial patterns in 

six years of corn yield measurements. Once the clusters are obtained, a conical multiple discriminate 

analysis is performed to reveal which field attribute contributed significantly towards classifiyning 

yield in to clusters. (Brock et al., 2005) also proposed unsupervised clustering with special focus on 

usage of fuzzy c-mean to develop management zones from geo-referenced multi-year yield data. 
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Management zones are compared for diffent crops on the same field to evaluate the effectivenss of the 

study strategy. 

 

Management zone analyst software was developed for management zone delination though (Kitchen et 

al., 2005). The authors used ECa and elevation multiyear data sources to define management zones 

which later was compared with management zones defined using yiled map. King et al. (2005) also 

investigated the relationship between ECa and yield map for delination of management zones and 

fuzzy clustering was uesd to define the management zones. Finally they conclude that the combination 

use of yield and ECa data defined more approprite classes than individual use.  

 

Song et al. (2009) introduced an integrated approach of soil and yield with remotely sensed 

(Quickbird) image in northern China. A fuzzy k-mean algorithm was used for delineation purpose. 

Long et al. (1994) also investigated the uses of aerial photographs remotely sensed images of growing 

crops to accurately delineate management units which later used to predict grain yield. 

Ortega and Santibáñez (2007) compared and evaluated three zoning methods using multiple soil 

fertilities data sources for consecutive years. Xin-Zhong et al. (2009) also presented an approach to 

delineate management zone using soil properties sampled from tobacco field in central China. The 

authors assessed the spatial variability and spatial distribution and maps were constructed using geo-

techniques. Principal component analysis and clustering algorithms were then performed to define 

homogenous management zones.  

Li et al. (2007) presented an approach which integrates soil and landscape properties with remote 

sensing images to delinate mangement zones. Normalized fifference vegetation index (NDVI), EC, 

organic matter, total Nitrogen, recent yield and cation exchange capacity data sources are used for 

implementation. They performed principal component analysis and resulted two principal components 

explaining 87.7 % of the total variability. Fuzzy c-mean cluster was allowed for clustering and finally 

resulted three management zones. To assess the the accuracy of the defined management zones, 139 

georeferenced soil and crop yield sample points accross each management zone was analyzed using 

statistical variance. Significant statistical differences between the chemical properties of soil samples 

and yield data in each defined management zone was found. 

  

More recently, Vitharana et al. (2008) investigated an approach for selection of key soil parameters 

due to large dataset coming out of advancement on-go-soil, terrain modelling and yield mapping 

sensing. Top and sub-soil properties, EC and topographic attributes are collected from an agriculture 

field in Belgium. 110 top and sub-soil point samples at two depths, EMI (ECa), topographic attribiutes 

and three year consecutive yield data sources were used. Principal component analysis retained three 

principal components explaining 67 % of the total variations. A fuzzy k-mean classification is also 

applied to define four potential management class. Four years later (Van Meirvenne et al., 2013) tested 

and developed the method. Fortunatily the same key parameters as the previous study were selected. 

The authors also implementd stepwise multivariate regression analysis to evaluate the performance 

power of the key variables. This helps identiy how helpful the selected variableas were for specific 

crop on the field.  

Cluster analysis is the search for clusters in the data, in such a way that classes belonging to the same 

cluster resemble each other, whereas classes in different clusters are dissimilar (Ortega and 

Santibáñez, 2007). Fields with similar soil properties, landscape and crop properties are divided in to 

potential management zones, beside quantifying variability pattern and reducing the empirical nature 

of defined management zones. Boydell and McBratney (2002); Fraisse et al. (2001); Stafford et al. 
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(1999) implemented fuzzy clustering on yield monitor data to define spatial potential management 

zones. On the other hand (Jaynes et al., 2003) implemented cluster analysis to interpret spatial and 

temporal patterns of multi-year corn yield.  

 The split of the field to homogenous subfields and consecutive merge can be performed using 

different clustering algorithms depending on the measure of similarity used and in their weighting 

criterion as reviewed by different authors in connection with management zones. The clustering 

algorithm methods could be classified as: fuzzy k-mean, fuzzy c-mean and hierarchical clustering. The 

simplest unsupervised K-means or fuzzy K-mean to solve clustering problems is most commonly used 

clustering method (Ortega et al., 2002). Hierarchical clustering which start with each point in a single 

cluster and subsequently merge clusters according to some criterion or constraint is also a common 

clustering approach.  
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Chapter 3. Materials and Methods 

3.1. Study area and datasets 

 
The study is conducted on two adjacent potato fields of about an area 22 hectare (51

0
18’54” North and 

5
0
10’12” East) at van den Borne Aardappelen precision farm in south of the Netherlands (Figure 3). 

ECa, pH value, colour aerial photographs and digital elevation model (DEM) data sources from both 

fields were used for this study. Three case scenarios were considered for this study depending on data 

usage and spatial scale or coverage.  

i. Combined analysis of both adjacent fields  

ii. Separate analysis of the adjacent fields (field one and field two, Figure 3)  

iii. Combined analysis of the adjacent fields but, using easily available public elevation and 

RGB aerial photographs data sources. 

Potato yield from 2013 growing season and partly located organic matter sample data sources were 

used to validate the defined management zones.  

 

Figure 3. Study area and location of the experimental fields with pH value measurement locations 

3.2. Datasets 

3.2.1. Electromagnetic induction measurement 

 
A physical and chemical characteristic of a soil determines the electrical conductivity (ECa) of soil. 

The ability of soil to conduct electricity is usually quantified by electrical resistivity or conductivity. 

Electrical conductivity measurements have been used to determine salinity using probes inserted to 

soil. However, recently soil ECa in millisiemens per metre (mS/m), which is used for multiple soil 

properties characterization, can be measured using the non-invasive, non-destructive EM38-MK2 

(Geonics Ltd., Canada) sensor.  
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The EM38-MK2 sensor is composed of a transmitter coil and receiver coil installed on both ends of 

the bar. It consists of both horizontal and vertical coils at a 0.5 and 1.0 m distance where 

measurements are taken in both horizontal (ECa0.5H and ECa1.0H) and vertical (ECa0.5V and 

ECa1.0V) orientation at three effective depths. The depths ranges are: 1.5 m and 0.75 m for vertical 

dipole mode and 0.75 m and 0.38 m for horizontal dipole model (Figure 4). The sensor is mounted on 

wooden sled and pulled by an all-terrain vehicle which drove with a speed range of 1-13 m/s and an 

average speed of 4 m/s along about 5 m transect and more than meter spacing. The sensor is connected 

to GPS receiver and towed at ground level using an all-terrain vehicle so that geo-referenced data can 

recorded on- the-go fashion (Vitharana et al., 2008). ECa values could be affected by moisture content, 

porosity, salt content, temperature and clay content. As a result ECa measurement values are 

standardized to reference temperature of 25
O
C for further analysis according to (Sheets and Hendrickx, 

1995).  

 ECa25= ECaT (0.4470 + 0.403e 
-T/26.815

) 

 

Where ECa25 is the standard temperature at 25
O
C and ECaT is the ECa value at soil temperature in 

field. The theoretical depth of influence (DOI) is the depth below the sensor at which 70 % of the 

cumulative influence of the signal is obtained (Van Meirvenne et al., 2013). The ECa measurements 

for this study were done on 2013-03-25.  

 

 

Figure 4. Coil schematic and depth of exploration in both a) vertical b) horizontal orientation (Catalano, 

2011) 

3.2.2. DEM generation and colour aerial photographs  

 
Recent, very detailed and accurate, AHN2 elevation data were used for this study (AHN.NL). The data 

was collected by airborne laser scanning (LiDAR) on aircraft platform. The detail elevation data, one 

point in every half meter is sampled as part of the country’s Current Height Netherlands (AHN) 

project and with accuracy of 5 cm was interpolated to build DEM. The height of the study fields 

ranges from 28 m to 32 m with maximum difference of 3.86 m. For the analysis, the AHN2 DEM 

value, where the other soil parameters and topographic measurement located, was extracted. 

A colour aerial photograph of the study area taken on 2008 was obtained from the Wageningen 

University GeoDesk data portal. The RGB colour aerial photograph composed of three bands (red, 

green and blue) with spatial resolution of 0.25 x 0.25 meter was projected to overlay other datasets. 

http://www.ahn.nl/
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RGB aerial photograph was then cropped by the extent of study fields for further usage. Four indices, 

normalized difference Red and Green (NDRG), Red minus Blue (R‐B), ratio index (R/B) and sum of 

all the visible light (SUMVIS), were derived from the colour aerial photo for spatial distribution 

investigation of soil properties (Bartholomeus and Kooistra, 2012). Then elevation and derived indices 

values were extracted at exact locations where the pH measurements located ( 

Figure 5).  

3.2.3. Veris sensing technology and validation datasets  
 

Geo-referenced pH values of the study fields were obtained from the Veris pH Manager Instrument 

(Veris technologies). The Veris pH Manager is built on the Mobile Sensor Platform (MSP) which also 

holds a GPS to recorded spatial locations. The pH measurements were done at sampling density of 

about 40 samples per ha. On the other hand denser ECa measurements were done at sampling density 

of about 1860 samples per hectare.  

The pH measurements were located at different spatial locations than the ECa measurements besides 

the sampling density differences. To spatially link these two spatial datasets, nearest co-located ECa 

measurements at the pH measurement locations were selected using spatial join algorithm in 

commercial ArcGIS software ( 

Figure 5). In this way a dataset consisting of 10 variables at 849 coincident locations with pH 

measurement location were prepared. Namely pH values, four ECa measurements, elevation, and four 

aerial photograph indices variables in total were used for this study.  

Geo-referenced potato yield (ton/ha) collected in 2013-10-6/7 growing season for both adjacent fields 

by yield combiner machine was used for validation purpose. The yield combiner in this case is 

composed of a GPS receiver, yield sensor and user terminal in the cabin so that spatial analysis could 

be done. In addition to potato yield, existing partly located soil organic matter samples for field one 

were available for validation.  

3.3. Principal component analysis 

 

Principal component analysis (PCA) is a dimension reduction method which uses correlated variables 

and identifies orthogonal linear recombination of the variables that summarize the principal sources of 

variability in the data as described by (Abdi and Williams, 2010; Demšar et al., 2013). The authors 

also explained PCA as most popular and dimension reduction method besides exploring the 

relationship of the variables. Measurements values of ECa (both vertical and horizontal), pH value, 

and extracted topographic attributes (elevation value and RGB colour soil indices), composing a total 

of 10 input variables were used as input for PCA. The data sources were subjected to PCA to identify 

key variables explaining most variation. So applying the PCA, set of variables were reduced to 

components prior to analysis. A correlation matrix was used to equal consideration of all the variables.  

 

The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy (MSA) was evaluated to assure the 

viability of the data set for PCA analysis. Higher values conveniently between 0.5 and 1 value is 

suggested for good analysis as explained by (Van Meirvenne et al., 2013). Besides to this KMO 

measure, the Bartlett’s test of sphericity which checks the significance of correlation between 

variables was evaluated (Jolliffe, 2005). The correlation matrix of the input variables was also 

considered.  

http://www.veristech.com/index.aspx
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To decide the selection of retained principal components (PC), explained variances percentage for 

each PC and plot of their eigen values (scree plot) were considered (Cattell, 1966; Van Meirvenne et 

al., 2013; Vitharana et al., 2008). To improve the analysis of the retained factors, a varimax rotation 

was applied for scenario I. Finally from each of the retained factors, a key variable with highest 

loading was identified (Van Meirvenne et al., 2013). All the multivariate analysis was done in SPSS 

(v. 20.0) software.  

 
 

 
 
 

Figure 5. Methodological framework of principal component analysis 

3.4. Geo-statistics and clustering algorithm  

 

Soil variation is more continuous than discrete and therefore calls for a continuous approach for soil 

classification. To characterize the spatial distribution of the selected soil variables, semi-variance 

analyses were carried out on these selected soil variables using a statistical software package (R 

version-3.0.2). The spatial structure of each selected soil variable for each retained PCA was analysed 

geo-statistically. A linear variograms were computed, modelled and fitted using residual maximum 

likelihood (RMEL) method. Finally the fitted model was used in ordinary kriging technique to 

produce the continuous values of each selected soil parameters. Five meter grid resolution was used to 

interpolate the selected soil variables for each scenario to generate continuous soil variable maps 

(Ortega and Santibáñez, 2007). 

With the objective of identifying clusters occurring in the dataset used and generating homogenous 

sub-fields, interpolated maps of the selected soil variables were classified in to potential management 

classes using k-means classification clustering algorithm (De Gruijter and McBratney, 1988; Whelan 

and McBratney, 2003; Fridgen et al., 2000; Li et al., 2007; Moral et al., 2010; Morari et al., 2009; Van 

Meirvenne et al., 2012; Vitharana et al., 2008). The grouping algorithm method produces a continuous 

grouping of objects by assigning partial class membership values, which is to be preferred for 

grouping properties in the soil continuum (Odeh et al., 1992). It assigns and determines individuals to 

geographical and taxonomical continuous classes. The algorithm search clusters in the data, in such a 
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way that objects belonging to the same cluster resembles each other, whereas objects in different 

clusters are dissimilar (Ortega and Santibáñez, 2007).. 

Figure 6 shows the potential management zonation method for scenario I in this regard. Three of the 

selected soil variables (NDRG, ECa-V1 and ECa-H1) were interpolated to 5 meter grid resolution to 

generate continuous property maps. K-mean clustering was then implemented on the three soil 

variables to create potential management zones. R statistical software package was used to perform the 

k-mean clustering and ArcGIS commercial software was used to produce the maps.  

3.5. Crop yield of potential management zones 

 

The potato yield data was pre-processed for spatial distribution yield investigation. Geo-referenced 

potato yield values were assigned to the defined management zones for each scenario as similarly 

implemented by (Fraisse et al., 2001; Van Meirvenne et al., 2013). Final analysis of variance 

(ANOVA) was performed on potato yield between and among the defined management zones to 

validate whether there is significant mean yield difference between and among the defined 

management zones. The Tukey HSD test (“Honest Significant Difference”) was used to make 

comparisons between management zones for samples of different sizes (Molin and Castro, 2008). 

Geo-referenced organic matter samples partly located on field one collected on 2013-06-28 were also 

used for validation purposed.  

 
 

 
 

Figure 6. Potential management zonation framework for scenario I  
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Chapter 4. Result 
 

The result section of the study as stated in the outline of the paper is organized according to the three 

scenarios. Results are presented and analysed per scenario simplicity. The basic principles and 

implementations of the methods used are presented per scenario of each topic.  

4.1. Conventional statistics of soil properties and crop yield  

 

Descriptive statistics: means, standard deviation (SD), coefficient of variation (CV), maximum values 

and minimum values, ECa’s measurements, pH value, RGB aerial photograph indices, DEM and 

potato yield data sources are presented in Table 2.  

 
Table 2. Descriptive statistics of the soil variables (N for number of observation and CV for coefficient of 

variation) for field one.  

 

The summary statistics for the sensing based soil properties are presented in Table 2 and Table 3 for 

field one and field two respectively. Of the EMI measurements, ECa-Vertical (both at 0.5 and 1 m) 

showed higher average value than ECa-Horizontal (both at 0.5 and 1meter). The variance of field one 

vertical and horizontal of ECa measurements at both 0.5 and 1 meter remains similar while some 

variation is observed for field two. Exceptionally higher absolute coefficient of variance value for 

ECa-H1 of field one is observed compared to the other ECa measurement. The low average value of 

ECa-H in both fields might be due to the lower conductivity of the top soil as the area is known for 

water stress. On the other hand the mean value of ECa-V.5 for both fields is higher than ECa-V1 

(Table 2 and Table 3).  

 

The soil pH of the area ranges from 6.3 to 8.29 and 6.26 to 8.77 for field one field two respectively. 

Field one has 7.09 mean pH value while 7.43 for field two. The soil in this regard might be roughly 

categorised as neutral soil. The coefficient of variance was also 6.51 and 6. 87 for field one and field 

two respectively. The descriptive statistics also shows high (above 328 ) variability of potato yield in 

both fields. An average mean potato yield of 63.91 and 61.67 was recorded for field one and field two 

respectively. Lower (~ 0) value of yield was recorded probably refers to harvesting or driving lines. In 

contrast few high values outliers of yield records were also found.  
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Table 3. Descriptive statistics of the soil variables (N for number of observation and CV for coefficient of 

variation) for field two. 

 

4.2. Principal component analysis  

 

4.2.1. Scenario I 

The output of PCA, KMO and Bartlett’s test of spherity was used to assess the suitability of factor 

analysis for the variables. Bartlett’s test of spherity indicates significant correlation level between the 

variables having a value of 0.00 which is less than 0.05 satisfying the requirement. The KMO measure 

of sampling adequacy was found 0.60 indicating the PCA is appropriate for analysis for the variables. 

KMO should be between 0.5 and 1 for the appropriateness consideration of further step (Van 

Meirvenne et al., 2013). In addition, substantial correlations matrix was used for appropriateness 

check-up of the factor analysis for the variables. For the used soil variables, more than 20 correlations 

between the soil parameters were found satisfying the requirement (greater than 0.30 correlations 

Table 4). According to Johnson and Wichern (2002) if there are few correlations above 0.3, it is not 

appropriate to carry further analysis, clearly we do not have that problem.  

Table 4.Correlation matrix of the soil variables used for principal component analysis in scenario I.  
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A first rule which considers principal components with eigen value greater than one needs to 

considered is followed. The scree plot which shows the plot of eigen value on ordinate versus number 

of components on abscissa was considered next to help for deciding the number of components 

(Appendix 2). Considering the default setting, four PC’s appear to be important components with 

eigen value greater than 1. Four of these PC’s explained 80.32 % of the total variation in the dataset. 

However, the natural break from the scree plot was not so clear to decide (Appendix 1). Therefore 

forced factor extraction PCA procedure was applied to optimize the interpretation. Then three PC’s 

explaining 70% (PC1 33.9%, PC2 21.7% and PC3 14.35% ) of the total variance were retained (Li et 

al., 2007). Table 5 presents the loadings and communalities of the three rotated PCs of sensing based 

soil parameters. Almost all of the variables resulted communality value greater than 0.6 except pH 

value which gives less than 0.51.  

Table 5. Rotated factor loading of the first three PCs and the communalities of each variable of scenario I. 

 

 
 
Figure 7 presents the rotated loadings matrix plot or factor pattern matrix of the retained PCs to show 

the correlation among the components and variables. The first PC was strongly associated with optical 

soil indices. Most of the indices contributed high (> 0.90) loadings values, with NDRG the highest 

loading (0.98) value. All the other soil variables contributed lower loadings for PC1. Combination of 

soil variables contributed for the PC2. ECa-H1, pH value and elevation contributed for PC2 loadings 

with highest loading value of 0.83 from ECa-H1. Elevation was in an inverse relationship with ECa-

H1. The third component is mainly related to ECa-vertical (both at 0.5 and 1 meter) depths. Both ECa-

V.5 and ECa-V1 showed comparable high loadings of 0.89 and 0.88 values respectively. NDRG has 

0.60 loading for the third PC.  

 

In this regard PCA determined which soil variables are most important in characterization most of the 

variability in data source used. As a result PCA identified, NDRG, ECa-H1 and ECa-V1 as foremost 

soil variables for delineation of potential management zones in the current study under scenario I, 

unlike to (Fraisse et al., 1999; Van Meirvenne et al., 2012; Vitharana et al., 2008) who identified ECa, 

soil pH and elevation as key soil parameters. Out of the total 10 soil variables used, three of them were 

retained by explaining about 70 % of the variations that exists. Looking back at the correlation matrix, 
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there exist weak correlations among these selected soil variables indicating to an independent spatial 

distribution. Both ECa-H1and ECa-V1 this days can be obtained from an intensive on-the-go 

observations and of course NDRG can also be easily obtained by UAV sensors (Adamchuk et al., 

2005). RGB colour aerial photographs are available geo-data at the national level in the country.  

 
a)                                                                                                    b) 

 

Figure 7. Rotated loading matrix plots of scenario I, a) first and second principal component and b) first 

and third Principal component. 

4.2.2. Scenario II  

In this section the adjacent fields are treated separately for analysis purpose and the output results are 

presented side by side. KMO and Bartlett’s test of spherity was used to assess appropriateness of data 

for PCA for both fields and a significant correlation among soil variables was found. The Bartlett’s 

test of spherity was found 0.00 for both fields. The KMO measure of sampling adequacy which tells 

the appropriateness of the data was found to be 0.62 and 0.66 for field one and field two respectively 

(Van Meirvenne et al., 2013; Vitharana et al., 2008). Correlations assessment was also done for 

appropriateness check-up of the factor analysis in similar manner as in scenario I. And more 

correlations with values greater than 0.30 among the soil variables with were found for both fields.  

PCs with eigen value greater than one were retained for further analysis, the first rule. The scree plot 

was also considered as a complement to help the decision of PCs selection (Appendix 2). Using a 

default setting, three PCs appear to be with clear Eigen eigenvalue greater than one. The scree plots 

test of both fields in this case also showed a natural break at eigen value greater than one (Appendix 

2). And it was decided to retain three PCs for further analysis. The three PCs accounts for 72.87% and 

69.35% (Table 6) of the variability for field one and field two respectively (Li et al., 2007). The total 

variance explained by each PC and cumulative percentage of variations explained for both field one 

and field two are presented (Table 7). 

Table 8 gives the principal communality loadings of the three principal components and the 

communalities of each soil variable for field one. Almost all of the soil variables resulted communality 

value greater than 0.55 except pH value with lower 0.37 value. The first PC was dominantly connected 

with the four optical soil indices. Out of these four, NDRG has the largest loading (0.96) and SUMVIS 
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with absolute lowest loading (-0.79) value. The correlation matrix (Table 6) showed a high correlation 

matrix among NDRG, RmB, and R-M. Other soil variables showed by far low loadings contribution s 

to PC1in this regard. 

ECa-V1 was the strongest contributor for the second PC with loadings value of (0.88). ECa-V.5 also 

was the second highest (0.86) contributor for the second PC. Elevation though with opposite sign 

contributed (-0.72) loading for the same PC. 

The third PC was strongly associated with ECa-H1 and ECa-H.5 while ECa-H1 having the highest 

(0.74) loading. ECa-H1 and ECa-H.5 also showed strong association with positive sign. The pH value 

with 0.59 loading was a third contributor for this PC but still it remains with very low contribution for 

the other two PCs.  

In summary, the result of PCA for field one, suggested that the overall spatial variability of the 

considered total soil variables was aggregated in to three principal components and NDRG, ECa-V1 

and ECa-H1were identified as the most dominant soil variables for the three components respectively. 

Table 6. Correlation matrix of the soil variables used for principal component in scenario II. The top is for 

field one and bottom for field two.  
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Table 7. Principal components and variations explained by each component for both fields of scenario II 

 
 
Table 8. Unrotated factor loading of the first three principal component and the communalities of soil 

parameters for field one of scenario II  

 

 

 
Table 9 gives the principal communality loadings of the three principal components and the 

communalities of each soil variable for field two. Most of the soil parameters showed a communality 

greater than 0.6, with exceptionally low (0.09) from pH value. R-B, R/B and NDRG showed most 

significant influence on first PC with highest (0.987) loading from R-B. For the second PC four of the 

ECa measurements showed large contributions rate relative to other soil variables. Highest loading 

(0.89) was contributed from ECa-V1. Elevation and SUMVIS on the other hand contributed large 

contribution for the third PC with highest loading (0.87) from elevation, although each of them 

correlated in opposite direction. The pH value variable appeared weakly related to the three PC 

appearing to be less informative compared to other soil variables.  

In summary R-B, ECa-V1 and elevation were selected for the three PCs respectively by explaining 

most of the variability of data source for field two. Although the same datasets was used as field one, 

different soil variables were selected out of the PCA analysis. 

  Field one  Field two   

Principal Components Variance Explained (%)   Variance Explained (%)  

individual Cumulative  individual Cumulative 

1 31.24 31.24  36.59 36.59 

2 26.56 57.8  18.21 54.8 

3 15.07 72.87  14.54 69.35 
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Table 9. Unrotated factor loading of the first three Principal component and the communalities of soil 

parameters for field two of scenario II 

 

 

 

 

Figure 8. Field one loading matrix plots of scenario II, first and second principal component (left) and first 

and third principal component (right).  

It seems reasonable to tentatively identify the first principal component as NDRG, R-B, and R/B, and 

all have high loadings on it (Figure 8). On the other hand elevation and SUMVIS seems identifiable on 

the second principal component though on opposite directions (Jolliffe, 2005).  
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Figure 9. Field two loading matrix plots of scenario II, first and second principal components (left) and 

first and third principal component (right).  

4.2.3. Scenario III 

For this scenario available geo-data, elevation and colour aerial photographs data sources were used. 

Table 10 provides the correlations matrix between the soil variables which basically showed the 

appropriateness of the dataset for factor analysis. The Kaiser-Meyer-Olkin (KMO) measure of 

sampling adequacy for the overall dataset and the KMO measure for each individual variable were 

found 0.56. Bartlett's test of sphericity for data suitability reduction was also found significant with 

value of 0.000. 

Table 10. Correlation matrix of soil variables of scenario III.  

variables Elevation NDRG R-B RmB SUMVIS 

 Elevation 1.00 -0.03 -0.01 -0.06 -0.42 

NDRG -0.03 1.00 0.96 0.88 -0.52 

RB -0.01 0.96 1.00 0.76 -0.48 

RmB -0.06 0.88 0.76 1.00 -0.44 

SUMVIS -0.42 -0.52 -0.48 -0.44 1.00 

 
Two meaningful initial principal components were retained for further factor analysis based eigen 

value greater one. The natural break of the scree plot test criterion also coincides with eigen value 

greater than one. The total variance explained by each PC and cumulative percentage of explained 

variations is presented in Table 11. 

Table 11. Principal Components and variations explained by each component of scenario III.  

Principal Components Variance explained (%)  

individual Cumulative 

1 61.6 61.6 

2 25.4 87.1 
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Table 12 gives the principal communality loadings of the two principal components and the 

communalities of each soil variables. All soil variables in this case showed high communality value. 

Communality apparently refers to the total influence on a single observed variable from all the 

components associated with and it ranges from zero to one (Jolliffe, 2005).  

The first PC was dominantly connected to R-B, R/B, and NDRG with highest loading contributed by 

NDRG. Elevation presented a lowest (-0.13) absolute loading value for the first PC. On the other hand 

elevation and SUMVIS presented large contribution for the second PC relative to the other soil 

variables. Elevation showed highest (0.92) loading for the second PC. In summary, PCA aggregated 

the soil parameters in two principal components accounting for the majority of spatial variations in the 

data used. Elevation and NDRG were selected for each component respectively.  

Table 12. Unrotated factor loading of the first two PCs and the communalities of soil variables for field 

two of scenario III.  

 

 

 

 

 

 

 

The PCA also produces a plot of the variables used for the current scenario on axes representing the 

two unrotated components. As shown from (Figure 10), it seems reasonable to tentatively identify the 

first principal component associated with NDRG, R-B, and R/B, and all have high loadings on it. 

Elevation and SUMVIS were also identified on the second principal component though in opposite 

directions. 

 

 

 

 

 

 

 

 

 

Figure 10. Unrotated loading matrix plots of the first and second principal components.  
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4.3. Map of selected soil parameters  

4.3.1. Scenario I  

Semivariograms of the selected variables: NDRG, ECa-H1 and ECa-V1 were computed to examine 

the spatial structures or correlations after observing a normal distribution for most of the variables. 

Spherical or exponential models were fitted to the parameters depending on which fits best to the data 

curve as described by (Liu et al., 2006; Zhu and Lin, 2010). Best fitted models were selected for each 

soil variable. The experimental and fitted semivariograms models of the selected soil variables are 

presented (Appendix 3). Each of NDRG and ECa-V1 showed a spatial autocorrelation from their 

semivariogram cloud and a reasonable model. Both ECa-V1 and NDRG were modelled by exponential 

and spherical models respectively. ECa-H1was not successfully modelled neither spherical nor 

exponential and of course less spatially structured. Parameters of models fitted to the computed 

semivariograms are presented (Table 13). There seems a presence of small nugget variance in three of 

soil variables. This might probably be due to short range variability and unaccountable measurement 

error (Li et al., 2007). 

Each of the soil variables was then interpolated using ordinary kriging geostatistics method to create 

continuous soil variables map of 5 x 5 meter resolution same for all variables, which later helps to 

define the management classes (Van Meirvenne et al., 2013). Extracted NDRG pixel values and 

nearest co-located ECa-H1 and ECa-V1 variables at 849 (for both fields) locations were used for the 

interpolation. 

 
Table 13. Parameters of models fitted to semivariograms of the NDRG, ECa-V1, and ECa-H1 soil 

variables of scenario I.  

 

 

 

 

 

Kriged maps of the three soil variables were produced and are presented in Figure 11. There seems in 

general very little distinct pattern similarity between NDRG and ECa-V1 although, it is not straight 

forward. Lower value of NDRG is observed in the eastern part of field one. And relative lower values 

of NDRG for field two is observed in southern and northern parts of field partly. A higher value of 

NDRG is also observed in the western parts of field one. This might be probably due to the vegetation 

edge influence. The presences of vegetation on border of field one might be the cause for high outlier 

value of NDRG index in the lower western part.  

Unlike ECa-V1, ECa-H1 generally showed a clear inter-field distinction between fields than intra-zone 

distinction both fields. The distinction between the adjacent fields is more pronounced than the 

distinction within zones of each field (Figure 11 c). The spatial distribution of ECa-H1 seems actually 

in opposite direction to that of ECa-V1. The noticeable zonal distinction between the two fields 

probably might be due to soil fertility status differences though this situation is not reflected in the 

other ECa measurements. The pattern distribution of ECa-H1 and NDRG seems opposite especially 

for field one as both of them are poorly correlated (Table 4).  

Soil Property Model fit Nugget  Sill  Range 

NDRG Spherical 0.0002 0.0018 211.5 

ECa-V1 Exponential 0.43 2.36 50.23 

ECa-H1 Spherical 0.61 2.78 526 
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Kriged map of ECa-V1 (Figure 11, b) showed a higher value in the western and north part of field one. 

Eastern and central parts of field one corresponds dominantly to lower values. On the other hand two 

broadly less distinct zones can be observed (north and south) for field two. The northern part of field 

two shows higher values while the southern part of the field shows to lower values.  

  

a)                                                                         b) 

 

 

Figure 11. Interpolated maps using kriging 

of, a) NDRG b) ECa-V1 c) ECa-H1 soil 

variables for scenario I.  

 

 

 

 

c) 

 

 

4.3.2. Scenario II 

Field one: In similar fashion to section 4.3.1, spatial structures of NDRG, ECa-H1 and ECa-V1 

semivariograms were examined. Spherical or exponential models were also fitted to these parameters 

depending on appropriateness fit which best fits to data curve (Banerjee et al., 2004; Liu et al., 2006; 

ZHU and Lin, 2010). The experimental and fitted semivariograms models of these soil variables are 

presented (Appendix 4). Semivariograms of NDRG and ECa-V1 showed good spatial structure and 

reasonable model. Both ECa-V1 and NDRG were modelled using exponential and spherical models 

respectively. Parameters of models fitted to the computed semivariograms are presented (Table 14). 
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The spatial pattern of NDRG for field one in the current scenario showed a similar pattern to scenario 

I. For the ECa-V1 relatively high measurement values in the northern parts of the field is observed. 

The central eastern part of the field is dominantly of low ECa-V1 values though irregularity or 

patchiness of the pattern dominates.  

Three major zones can be seen evidently identified from the ECa-H1 kriged map. The eastern part of 

the field corresponds to high ECa-H1 values in contrast to NDRG. The western part showed lower 

ECa-H1 values. Another class which corresponds to intermediate values can also be evidently 

identified in the central part of the field. The correlation coefficient between ECa-H1 and ECa-V1was 

also found very low (-0.042) Table 6 a. 

Table 14. Parameters of models fitted to semivariograms of the NDRG, ECa-V1, and ECa-H1 soil 

variables of scenario II and field one.  

 

  

 

 

 

 

 

a)                                                                                b) 

 

Soil Property Model fit Nugget  Sill  Range 

NDRG Spherical 0.0007 0.002 256 

ECa-V1 Exponential 0.37 2.04 30.69 

ECa-H1 Spherical 0.98 16.25 5324 
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          c) 

Figure 12. Interpolated maps using kriging of, a) ECa-V1 b) NDRG c) ECa-H1 soil variables for scenario 

II field one.  

Field two: For RmB, ECa-V1 and Elevation soil variables, semivariograms were also computed. 

Spherical and Exponential models were also fitted accordingly in similar manner to above sections 

section 4.3.1. Parameters of models fitted to the computed semivariograms are presented in Table 15. 

The experimental and fitted semivariograms models of soil variables are presented (Appendix 5). 

Ordinary kriging was then applied to produce kriged maps (Figure 13) of the soil variables. 

The RmB map indicated larger values in the central and eastern parts of the field. Lower value is also 

indicated in the northern and western parts of the field. As from the ECa-V1 kriged map, lower values 

are indicated dominantly southern part of the field and larger values dominates the northern part in 

contrary to RmB. There seems the distribution of RmB is in opposite direction to ECa-V1 distribution.  

Table 15. Parameters of models fitted to semivariograms of the ECa-V1, RmB and elevation soil variables 

of scenario II field two.  

 

 

 

 

 

Soil Property Model fit Nugget  Sill  Range 

ECa-V1 Spherical 0.47 2.12 118.74 

RmB Exponential 8.7 13.54 64 

Elevation Spherical  0 3 2500 
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Figure 13. Interpolated maps using kriging of, a) RmB b) ECa-V1 c) elevation soil variables of scenario II 

field two. 

4.3.3. Scenario III 

In the current scenario nation’s available geo-data elevation and colour aerial photography data 

sources were used. NDRG index and elevation were selected key variables by explaining most of the 

soil variations. These parameters used for the fitted semivariogram model for structural analysis are 

presented in Table 16. And the experimental semivariogram of soil parameters are presented 

(Appendix 6). Both parameters were also interpolated with ordinary kriging so that a continuous map 

of each variable was produced in a similar procedure as described for scenario I and II.  

 Table 16. Parameters of models fitted to semivariograms of the NDRG and elevation  

 

 

 

 
The spatial distribution of the NDRG in this scenario is same to scenario I and II. The spatial 
distribution of elevation map regularly increase from west to east and from north west to south east 
for field two and field two respectively ( 
Figure 14). Of course NDRG and elevation are poorly (-0.03) correlated.  

 

 
 

 

 

variable Model fit Nugget  Sill  Range 

NDRG Spherical 0.866 6.86 1150 

Elevation  Spherical  0.99 6.22 6220.8 
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Figure 14.  Interpolated maps using kriging of, elevation (right) and NDRG (left) soil variables of scenario 

III. 

4.4. Management zone delineation  

 

4.4.1. Scenario I 

K-mean unsupervised clustering method partitioned measurements in to k groups such that the sum of 

squares from points to the assigned cluster centre is minimized. K-mean clustering was used to define 

naturally occurring clusters in the soil variables. Clustering of kriged maps used to define potential 

management zone.  

 

The number of clusters within a field is basically a function of: 1) natural variability within the field, 

2) size of the field and 3) practical use of the management zones It was stated that no advantage can be 

gained by dividing a field in to more than four or five classes though size of the field needs to be 

considered (Fraisse et al., 2001; Fridgen et al., 2000). They also indicated the variation of optimum 

number of zones depending on weather and type of crop to be planted. As the number of classes 

increase less pronounced, possibly less interpretable and patchy classes were formed. Therefore 

different class centres numbers were tried for this purpose. Finally three clusters were selected for 

further applications. 

 

Finally three clusters were decided to define the potential management zones. NDRG, ECa-V1 and 

ECa-H most variations explaining soil parameters were used as input to the k-mean classification 

algorithm. The defined potential management classes are presented in Figure 15.  

 

 Generally, a spatial distribution pattern similarity seems to exist between NDRG and ECa-V1 kriged 

maps and the defined potential management class. But the similarity of pattern is stronger with 

NDRG. However, no such similarity in pattern was observed between ECa-H1 and potential 

management classes. From area coverage prospective, class 1 and class 2 covers about comparable 

size while class 3 covers smaller part of the field.  

 

Zone 1, occupied the northern and western borders parts of field one. This class corresponds to 

relatively high value of NGRG and ECa-V1. However the zone corresponds to lower value of ECa-

H1. Small islands of zones were also observed in field two (Figure 15). For this particular zone, high 
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value of ECa-V.5 was also observed though the parameter was not incorporated in the clustering. 

Relatively lower pH value covers this area. Relatively higher average yield was recorded for this zone 

though, it is not straight forward to specify spatial patterns between the management zone and yield 

map.  

 

Zone 2, occupied the central area between zone 1 and zone 3 in field one. Eastern and central western 

parts of field two are also occupied by this zone. This zone coincides with relatively medium value of 

NDRG and ECa-V1 for field one. The higher ECa-V1 value of the field two also coincides with this 

zone. An average medium yield was recorded for the zone.  

 

Zone 3, is located in the central part of field one bordered by zone two. It also is located in the western 

and central south and north parts of field two. This zone corresponds to lower NDRG and mixed (low 

and medium) ECa-V1 values. The zone also corresponds to mixed (medium and higher) values of Eca-

H1values. In summary there is no straight spatial autocorrelation among soil variables, yield and 

potential management zones.  

 

 

Figure 15. Potential management zones using NDRG, ECa-V5 and ECa-H1 soil variables for field 1 and 2 

under scenario I.  

4.4.2. Scenario II 

Field one: similar to scenario I, three clusters were used to define the potential management zones. 

NDRG, ECa-V1 and ECa-H1most explaining soil variables were used as input to the k-mean 

classification. Defined potential management classes are presented in Figure 16. Defined management 

zones for the current scenario are apparently in different spatial patterns distribution than zones 

produced in scenario I. 

In contrast to scenario I, the defined management zones pattern matches with spatial distribution of 

ECa-H1. The pattern similarity to some extent extends to NDRG as well. The ECa-V1 soil variable 

looks poorly coincided in pattern with defined management zones besides the dominance of patchy 

pattern. 
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Zone 1, occupied the northern border parts of field and it covers very small portion and of course the 

zone corresponds to low average potato yield. This class corresponds to high value of ECa-V1 and 

relatively medium value of ECa-H1 and NDRG. Again the visual spatial pattern similarity between 

yield map and soil variables is very low. 

 

Zone 2, occupied the eastern part of the field with few isolated islands. This zone coincides with 

dominantly higher ECa-H1 values and lower NDRG values. The zone also coincides with lower 

values of ECa-V1. Zone 3, is located in the western part of the field and is a zone with relatively 

higher average production. This zone corresponds to lower value of ECa-H1. Zone 3 also coincides 

with relatively higher NDRG and ECa-V1 though patchiness is the barrier in this case.  

 

Field two: Three clusters were also used to define the potential management zones for field two. 

RmB, ECa-V1 and elevation were used as input to the k-mean classification in this case. Defined 

potential management classes are presented in Figure 17.  

 

 

 

Figure 16. Potential managements zones using ECa-H1, ECa-V1 and NDRG soil variables for field 1 

under scenarion II.  

The defined management zones pattern seems likely similar to the pattern distribution of kriged RmB 

soil variable map (Figure 13). The spatial distribution of ECa-V1 map also matches to some extent to 

the patterns of defined the management zones. Elevation does not match to any spatial patterns of the 

defined zones.  

Zone 1, occupies the northern border parts of field. This area covers relatively small portion of the 

field in area coverage prospective and it corresponds to low RmB and higher ECa-V1 values. Zone 2 
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occupies dominantly the western and central parts of the field. This zone corresponds to relative 

medium RmB values and mixed low and medium ECa-V1 values. 

 

Zone 3, is located in the eastern and western central parts of the field. This zone corresponds to higher 

RmB values and mixed high and low ECa-V1 values. This zone has high average yield record. In 

summary the spatial distribution pattern of defined management zone resembles to the spatial 

distribution of kriged RmB.  

 

 

Figure 17. Potential management zones using RmB, ECa-V1 and elevation for field 2 under scenario II.  

4.4.3. Scenario III 

For this scenario state available elevation and optical soil index were used. The defined management 

zones showed a regular pattern following the elevation pattern (Figure 18). Elevation does not 

coincide with any management zones patterns in scenario I and II. However, the created zones in the 

current scenario followed a similar pattern as the elevation.  

 

 

Figure 18. Potential management zones using Elevation and NDRG for field 1 and 2 under scenario III.  
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4.5. Crop productivity and management zone validation  

4.5.1. Potato yield map verse management zones visual comparison  
 

Visual comparison of the defined management zones with one season potato yield distribution patterns 

might be helpful to assess the goodness or appropriateness of the defined management zones on broad 

prospective. Ordinary kriging was used to interpolate the yield data in ArcGIS commercial software. 

Spherical semivariogram model was also used. The kriged map then was classified in to four class 

intervals. The average yield of the combined adjacent fields was found 62.80 ton/ ha. For visualization 

purpose separated yield maps for each field was created.  

 

 
 

Figure 19. Kriged maps of potato yield for field 1. The lines indicate fertilizer treatments level.  

The classified potato yield map of field one and field two are presented in Figure 19 and Figure 20. 

Poorly distinct pattern similarity between yield maps and management zones (Figure 16 and Figure 

17) could be observed in both field one and field two under scenario II. Poor visual similarity patterns 

between potato yield maps of combined fields and management zones defined for scenario I and 

scenario III also observed. However, visual comparison between the yield maps and the management 

zones is not straightforward again. It is not clear to observe any regular structural patterns showing the 

relationship between defined management zones and kriged yield map. At this point in time, it was 

found difficult to configure the patterns. Even the yield map itself is full of patchiness except some 

patterns similarity to some of the soil variables like ECa-V1 for field one and RmB for field two. For 

instance eastern and central parts of the field one is dominated by higher and the western and eastern 

parts of field two also corresponds to higher values.  

 

For evident understanding of the patterns among yield map and management zones, georeferenced 

potato yield measurements were assigned to the defined management zones for each scenario (Fraisse 

et al., 2001; Van Meirvenne et al., 2013). Mean, standard deviation and standard error descriptive 

statistics of potato yield measurements for each class under each scenario is presented in section 4.5.2.  



                                                           Chapter 4. Result                 

35 | P a g e  

 

4.5.2. Management zones validations using Potato yield  
 

To assess the validity of the method to delineate management zones using sensing based soil variables, 

the georeferenced potato yield was assigned to the management zones accordingly. After assigning the 

yield to one of management zones, the attribute data were exported for further analysis of variance. 

Then statistical analysis to check the statistical mean difference between and among management 

zones was performed per scenario and the results are presented per scenario.  

In addition to potato yield data 22 organic matters samples were also used for validation purpose. The 

samples points of organic matter were partly located in field one. As far as the samples were 

 

Figure 20. Kriged maps of potato yield for field 2. 

located in field one, the validation was done under scenario II of field one and presented under section 

4.5.3. 

4.5.2.1. Scenario I 

Growing season normalized potato yield (ton per hectare) maps are shown in (Figure 19 and Figure 

20). As shown from the figures especially for field two there exist strip lines referring to low yield 

located west-east wards of field two which probably corresponds to the driving or harvesting paths. 

Similar situations happened north-south wards of field one.  

The 53,826 number of points were grouped to three classes according to the management zones. The 

descriptive statistics of the yield data is presented in Table 17. For the current scenario 62.8 ton/ ha
 

average yield was recorded in the field. Class 3 produced lower average (57.7 ton/ha) potato yield and 

class 1 produced higher average (64.17 ton/ha) potato yield. Class 2 lies in between with 62.58 ton /ha 

which is almost very close to the total average mean of the field. The standard deviation around means 

was also calculated. Higher deviation for class 3 was observed due to the lower number of 

observations. 
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Table 17. Descriptive statistics of the potato yield (ton/ha) management zones for scenario I. 

 Management  

 class 

N  Mean  Std. Deviation 

 

Std. Error 

 

1 25417 64.17 19.179 0.120 

2 22566 62.58 16.473 0.110 

3 5843 57.70 20.707 0.271 

 Total   

53826 

 

62.80 

 

18.377 

 

0.079 

 
A one-way analysis of variance was conducted to evaluate, if there is significant difference level of 

yield (ton/ ha) mean variance among and between the management classes. Descriptive statistics of 

potato yield assigned for each management zone (Table 17). 

The assumption of homogeneity of means variance was tested. The ANOVA was found significant 

with F (2, 53823) = 301.294, p = 0.000 (Table 18). The p value in this case is by far smaller than 0.05. 

The values (2, 53823) refers to degree of freedom between classes and degree of within classes 

respectively. Thus there is evidence that there is significant difference of mean variance among the 

three classes of the potato yield though the mean difference is lower. 

Table 18. ANOVA output for comparison of yield variation between management zones for scenario I.  

 Sum of 

squares 

Degree of 

freedom  

Mean square 

 

F-

statistics  

 

Significance 

level  

Between groups  201262.786 2 100631.393 301.294 0.000 

Within groups  17976719.767 53823 333.997   

Total  18177982.554 53825    

 
ANOVA gives the overall mean variance difference. Post Hoc comparison to evaluate the pairwise 

difference among group means for all scenarios were conducted using of Tukey HSD test since equal 

variance was tenable. Tests for scenario I and scenario II (both field 1 and field 2) revealed a 

significant pairwise difference between means scores among the three classes of potato yield for each 

scenario. There is significant pairwise difference among the means scores of the three potato yield 

combination classes with p < 0.05. However, Post Hoc comparison test were not conducted for 

scenario three since there was no significant mean variance difference among the three classes potato 

yield.  

4.5.2.2. Scenario II 

Field one: the mean, standard error and standard deviation distribution of potato yield for 

management classes of field one are presented in Table 19. Class 3 showed higher (66.0 ton/ha) 

average yield per hectare while class1showed lower mean averages (61.1 ton/ha) for field one. 

A one-way analysis of variance was conducted to evaluate if there is significant mean difference level 

of potato yield (ton/ha) among the management classes of field.  
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Table 19. Descriptive statistics of the potato yield (ton/ha) management zones for field 1 under scenario II.  

 Management  

 class 

N  Mean  Std. Deviation 

 

Std. Error 

 

1 2697 61.1 22.9 0.44 

2 14582 63.0 17.8 0.14 

3 9818 66.0 16.6 0.16 

 Total   

29832 

 

63.9 

 

18.1 

 

0.10 

 
In similar way, the assumption of homogeneity of means variance was tested. The ANOVA was found 

significant F (2, 29829) = 172.5, p = 0.000 (Table 20). The p value in this case is again by far smaller 

than 0.05. Thus there is evidence that there is significant difference of mean variance among the three 

classes of the potato yield though the mean difference is lower. 

Table 20. ANOVA output for comparison of yield variation between management zones for field 1 under 

scenario II. 

 

 

 

 

 

Field Two:  

Descriptive statistics of the three management yield classes are presented in Table 21.  

One-way analysis of variance was conducted to evaluate, if there is significant difference level of yield 

(ton/ha) mean variance potato yield among the management classes of field two.  

Table 21. Descriptive statistics of the potato yield (ton/ha) management zones for field 2 under scenario II. 

 Management  

 class 

N  Mean  Std. Deviation 

 

Std. Error 

 

1 15638 62.0494 17.43419 0.13942 

2 10048 64.0557 20.67451 0.20625 

3 4146 57.7953 14.85864 0.23076 

 Total   

29832 

 

62.1339 

 

18.38007 

 

0.10642 

  
In similar manner, the assumption of homogeneity of means variance was tested. The ANOVA was 

found significant F (2, 29829) = 172.5, p = 0.000 (Table 22). The p value in this case is by far smaller 

than 0.05. Thus there is significant evidence that there is significant difference of mean variance 

among the three classes of the potato yield.  

 

 

 

 Sum of 

squares 

Degree 

of 

freedom  

Mean 

square 

 

F-

statistics  

 

Significance 

level  

Between groups  76187.5 2 38093.7 117.4 0.000 

Within groups  8791390.3 27094 324.4   

Total  8867577.9 27096    
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Table 22. ANOVA output for comparison of yield variation between management zones for field 2 under 

scenario II. 

 

 

 

 

 

4.5.2.3. Scenario III 

Descriptive statistics of the three management classes are presented in Table 23. It was observed that 

the average mean of the three management classes is very close to the overall mean variance. In 

addition the standard deviation of the classes is comparable.  

Table 23.Descriptive statistics of the potato yield (ton/ha) management zones for scenario III.  

 Management  

 class 

N  Mean  Std. Deviation 

 

Std. Error 

 

1 23694 62.96 17.78 0.115 

2 10747 62.97 17.61 0.169 

3 19397 62.51 19.47 0.139 

 Total   

53838 

 

62.804 

 

18.3770 

 

0.079 

 
A one-way analysis of variance was conducted to evaluate, if there is significant difference level of 

yield (ton/ha) mean variance potato yield among the management classes.  

In similar manner, the assumption of homogeneity of means variance was tested. The ANOVA was 

found not significant F (2, 53835) = 3.84, p = 0.521 (Table 24). The p value in this case is greater than 

0.05. Thus there is no significant evidence of significant difference of mean variance among the three 

classes and homogeneity of the management classes is accepted. 

Table 24. ANOVA output for comparison of yield variation between management zones for scenario III 

 
 

 

 

 

4.5.3. Management zone validation using organic matter 
 

Half of the organic matter sample points were located in zone 2 and the remaining half in zone 3 of the 

field one (Appendix 9). Analysis of ANOVA then was conducted to examine if significant mean 

variance of organic matter exist between the two zones.  

 

 Sum of 

squares 

Degree 

of 

freedom  

Mean 

square 

 

F-

statistics  

 

Significance 

level  

Between 

groups  

115264.4 2 57632.2 172.5 0.000 

Within groups  9962452.8 29829 333.9   

Total  10077717.2 29831    

 Sum of 

squares 

Degree 

of 

freedom  

Mean 

square 

 

F-

statistics  

 

Significance 

level  

Between 

groups  

2594.7 2 1297.36 3.84 0.521 

Within groups  18179008.7 53835 337.68   

Total  18181603.4 53837    
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Table 25 . Descriptive statistics of Organic matter management zones for field 1under scenario II.  

Management  

 class 

N  Mean  Std. Deviation 

 

Std. Error 

 

2 11 3.19 0.54 0.16 

3 11 3.75 0.34 0.10 

 Total   

22 

 

3.47 

 

0.53 

 

0.11 

 
Similarly to potato yield, one-way analysis of variance was conducted to evaluate if there is significant 

difference level of organic matter mean variance between the two classes.  

The assumption of homogeneity of means variance was tested. The ANOVA was found significant F 

(1, 20) = 8.328, p = 0.009 (Table 26). Thus there is evidence that there is significant difference of 

mean variance among the two classes of organic matter.  

Table 26. ANOVA output for comparison of organic matter variation between management zones for field  

1under scenario II. 

 

 

 

 

 Sum of 

squares 

Degree of 

freedom  

Mean 

square 

 

F-statistics  

 

Significance 

level  

Between groups  1.747 1 1.747 8.328 0.009 

Within groups  4.196 20 0.21   

Total  5.944 21    
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Chapter 5. Discussion  
 

This section explores discussions on data sources, methods, and own findings versus finding of 

previous studies from literature. In addition a quality assessment of the potential management zones in 

the context of precision agriculture prospective is made. 

 

 RQ1: Which sensing based soil variables describes most variations of soils within fields ?  

EMI measurements, pH value, colour aerial photograph and elevation sensing based data sources were 

evaluated in this study. Potato yield from one growing season was used for validation on the 

delineated management zones. The management zones produced for this study probably might change 

by using data source from multiple growing seasons due to climatic factors which in return could 

influence soil properties like soil moisture content and others related properties. Regarding this 

(Vitharana et al., 2008) found that crop production in the valley floor is likely to be more variable 

between years than the management classes. Moreover, (Kaspar et al., 2003) added corn yield is 

negatively correlated with elevation when precipitation is less than the normal growing season and 

yield is positively correlated with elevation for above normal precipitation season.  

 

PCA was performed on the soil variables for each scenario to identify soil variables explaining most 

variation. Key soil variables were then selected for each scenario accordingly and are presented in 

Table 27. Significance level of the ANOVA F-test results, p values and percent of total cumulative 

variance explained are also presented in the same table. Each of identified soil variables explaining 

most variations for each scenario, percent of total cumulative variance explained, F-test results of each 

scenario and the P values of ANOVA for each scenario are summarized in Table 27.  

 

Beside selection of variables, assessing the relationship of the selected variables to the yield is an 

important issue. A correlation matrix was performed to evaluate the relationship between potato yield 

and selected soil variables. ECa-H1 was found significantly influencing crop production of the 

growing season of the year at 0.05 level of significance. Other selected soil variables were not found 

significantly influencing yield productivity for the specific growing season of the year.  

 

According to (Van Meirvenne et al., 2013), ECa-H.5, elevation and pH value were selected as key soil 

parameters on sandy loam soil type. The soil pH in their study was obtained from soil samples and 

analysed in soil laboratory. However, pH value was not selected as the key variables in any of the 

scenario in the current study. The variance of pH value was even higher for the current study ranging 

from 6.26 to 8.77 while it ranges from 4.6 to 5.6 for the previous study. Though the larger the 

variance, it might not contribute for explaining the variation that exist within the soil in the current 

fields. In addition the low correlation value between pH and yield. Moreover, an earlier study of 

(Fraisse et al., 1999) identified soil EC, elevation, and slope as most useful attributes for the 

delineation of management zones. Two years later, the same authors acknowledged elevation and bulk 

electrical conductivity as more important attributes than slope and compound topographic index to 

define management zone for crop yield.  

 

When both field one and field two were combined for PCA in scenario I: NDRG, ECa-H1 and ECa-

V1 were identified as key soil variables. However, when the two fields are treated separately under 

scenario II, different soil variables were selected (Table 27). This selection difference might be due to 
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spatial scale or spatial coverage concept. So spatial scale might be another determining factor which it 

might influences the delineation and spatial continuity of management zones. 

 

Table 27. Selected soil variables in order of contribution with respective percent of total cumulative 

variance explained in each scenario. Significance F-test and p-values of ANOVA test are also summarized.  

Scenario  Selected key soil 

variables  

% total cumulative 

variance explained  

 

Significance F-test  p value 

ANOVA 

I NDRG 

ECa-H1 

ECa-V1 

70 Significant  0.000 

II - field 1 

 

 

NDRG 

ECa-V1 

ECa-H1 

72.87 Significant  0.000 

II - field 2 R-B 

ECa-V1 

Elevation 

69.35 Significant  0.000 

III NDRG 

Elevation 

 

87.1 

Not significant   

0.521 

 

Beside the selection of different soil variables, the change of patterns of the defined management 

zones can easily be recognized during the change of spatial scale in scenario I and scenario II (Figure 

15, Figure 16, Figure 17). On the other hand elevation and NDRG were identified for scenario III. 

These two variables defined management zones which basically does n’t not reflect spatial continuity 

and coherence. Patterns of the defined management zones roughly match with elevation in this respect.  

 

To sum up, ten sensing based soil variables were used for this study. The explanatory contribution 

potential of soil variables might change with spatial scale change as observed in scenario I and 

scenario II. This might be due to the spatial variations that changes with spatial coverage of fields 

which actually is the case in most situations. Beside the expected change which comes due change of 

input data sources, use of same data sources might end up with different key soil variables to 

explaining most of the soil variations.  

 
RQ2: How to define management classes in precision agricultural farm using soil variables? 

The number of management zones in a field depends on a number of factors. Level of variability in the 

field, variables type (stable or dynamic soil variables), weather and crop type are some of them 

(Patabendige et al., 2003). Moreover, Li et al. (2007) added the number of management zones depends 

on measurement sensitivity and intra-field variability. For this current study, three management zones 

were considered most convenient for each scenario based on separability and overlap of the 

management classes plots. Better separation and less overlap among the management classes were 

found when three classes are used. Spatial structure of defined compact management zones for 

scenario I and II to some extent resembles to the spatial distribution patterns of ECa’s soil variables. 

However, the spatial continuity of defined management zone for scenario III does not match with any 

of the kriged soil property maps except elevation.  

 

The spatial patterns and distribution of the defined management zones were found different for the 

each scenario. The defined management zones for scenario I and III are dissimilar in their spatial 

coherences which might be triggered by the use of different dataset (Figure 15 and Figure 18). Defined 

management zones for scenario I and II seems not spatially coherent. This spatial pattern dissimilarity 
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might be mainly due to the spatial scale taken in to account as same dataset was used. The change in 

spatial scale for scenario I and II resulted in selection of different soil variables though the same 

dataset were used for PCA. Even though the influence of spatial scale on PCA seems not explored 

Demšar et al. (2013) reviewed how PCA can be used to investigate multiple scales of spatial 

autocorrelation. Management zones complexity might also increase with increasing geographical 

scale. Related to this Novembre and Stephens (2008) described PCA applied to spatial data decays 

with geographical distance. The spatial scale in this regard refers to the spatial area coverage. 

Therefore, k-mean clustering based on sensing based soil variables could benefit agriculture system 

analysis by increasing crop productivity and of course improve environmental quality. Profitability 

could be maximized through implementation of potential homogenous management zones making 

sure that the variations within-zones are explored. It is believed that management zones for site-

specific management zones should be simple, functional and economical feasible (Fleming et al., 

2000; Koch et al., 2004; Taylor et al., 2007). In summary farmers or growers should notice that 

different management classes could be defined depending on the data source used, spatial scale and of 

course purpose of the zone delineation.  

 

RQ3: How to evaluate the potential performance of the method used to define management 

classes? 

Spatial analysis of variance showed that means of the defined management zones for scenario III were 

not significantly different (Table 24) which might be confirmation to the dissimilarity of the defined 

management zones pattern to majority of soil properties maps. So state available geo-data of elevation 

and colour aerial photographs data sources resulted in poorly defined and poorly differentiated 

management zones in which no significant potato yield variation among management zones was found 

for the specific growing season. This might lead to the question which data source to use to define 

management zones particularly in the study field. But the mean variance of defined management zones 

in the other two scenarios (I and II) were found significant both within group means and among group 

means. Moreover, partly geo-located organic matter samples on field one under scenario II confirmed 

distinctness of the two zones (Table 26). A significant mean difference of organic matter was found 

between the two zones.  

Moreover, it is also important to take in to account the total cumulative percentages of soil variations 

explained by the key identified soil variables. For scenario I and II (Table 7) about 70% of the data 

variation is explained where as 87 % of variation was explained for scenario III (Table 11). The lower 

percent of variation explained in scenario I and II might contribute for the uncertainty of defined 

management zone as far as some unexplained variation left in the data. So the goodness of the 

management zones might also be affected by the percent of the variations explained though no 

reference was found in my search for it.  

Applicability of the method for management zone delineation 

The statistical analysis of the this study showed that the defined management zones had different mean 

yield and organic matter for scenario I and II signifying that the approach implemented might be 

applicable for the study field. The procedure might be effective in identifying feasible management 

zones in precision farming operations. Besides the applicability of the approach, in the current 

advancement of precision farming, spatially detailed ECa with EM38-MK2 (McBratney et al., 2000; 

Moral et al., 2010; Van Meirvenne et al., 2013), elevation with airborne laser scanning (LiDAR) 

(Vlaanderen 2003) and colour aerial photograph with Unmanned Aerial Vehicles (Bartholomeus et al. 

2011) sensing based soil variables can be recorded for use in the approach.  
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Furthermore, thinking of management zone delineation, identifying potential sources of variation or 

potential yield limiting factors is most important. Then the source of variations might be stable over 

time (e.g. elevation) or dynamic change from year to year due to weather conditions and other factors 

(e.g. ECa, soil moisture). In line with this (Fridgen et al., 2000) described the appropriate number of 

zones to use when dividing a field may vary between years and is often dependent on the weather and 

the crop type to be planted. The authors also added year to year variation of appropriate number of 

management zones was attributed to weather and crop type. The number of management zones can be 

decreased if water stress tolerant crops are planted as described by Fraisse et al. (2001). Beside the 

weather conditions and crop type, soil type and paedogenesis underlying process which may trigger a 

variation in soil properties in a time frame needs to be considered.  

 

The importance of data sources used, as indicated in section 4.5.1 there exist pattern similarity 

between created management zones and ECa’s measurements. In addition, management zones defined 

using contribution of ECa measurement as key parameters (scenario I and II) performed well in terms 

of crop production. This is due to the fact that proximally sensed ECa is a vital integrator of the bulk 

soil property (Corwin and Lesch, 2005; Saey et al., 2009). Vitharana et al. (2006) added 

electromagnetically sensed ECa is a promising and cost-effective source of ancillary information for 

detailed mapping of the heterogeneous subsoil.  

 

Regarding the operational application of the defined management zones for precision agriculture, the 

method might be effective in identifying operable management zones at field level using sensing based 

data sources: apparent electrical conductivity, elevation and optical soil indices. However, weather 

changes and crop type should be considered while implementing the method. The method should also 

be validated by fully covered spatial ground truthing data before implementation to check the 

goodness consistency of the method.    
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Chapter 6. Conclusion 
 

Recent advancements in precision farming technologies help to define potential management zone 

which can be used for variable rate input application. In the current study ECa measurements, 

topographic elevation and optical soil index parameters contributed to explain soil and yield variation 

for the considered scenarios while pH had only limited power to explain soil variations. 

Different key soil variables were selected although same data source were used for PCA technique. 

Analysis at field level (scenario II) and cluster of fields together (scenario I) were performed and 

different key soil variables were identified accordingly. At this time field level analysis would be 

advised as it exploits the variations that exist in the fields.  

Geostatistical interpolation techniques were used to investigate the spatial coherence and distribution 

of selected soil key variables and subsequently ordinary kriginged soil property maps were clustered 

using k-mean clustering algorithm. Three management zones were defined per scenario based on 

separability and overlap. Management zones showed spatial patterns similarity to the key soil 

variables identified in scenario I and II. The boundary of these defined management zones depends on 

temporal weather variations and crop specific plantation. 

The spatial analysis of variance and goodness of created management zones were validated through a 

comparison with field measured potato yield. The combination of ECa measurements and optical soil 

index parameters for scenario I and II produced significantly distinct management zones. However, 

topographic elevation and optical soil index parameters for scenario III created not separable 

management zones. It can be concluded that the combination of topographic elevation and soil index 

parameters was not capable of producing good performing implementable distinct management zones 

in this current study.  

To the end defined management zones should be easy for real operation and practical implementation 

for the farm manager or grower. After all the application of such an approach should be 

environmentally sustainable and improve productivity.  

. 
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Chapter 7. Recommendations 

 
Based on the results of the study, some recommendations are suggested for delineation of management 

zones as indicated below: 

 Growers or farmers should delineate management zones at field level as it exploits site 

specific or local variations.  

 During delineation of management zones mapping or spatial scale for variable input rate 

application needs due attention.  

 Availability of technological advancements should be considered while delineating 

management zones.  

 Once management zones are delineated, stability or dynamicity of the zones with weather or 

crop change should be considered as management zones are site and crop-specific. So 

updating management zones and use of less temporally varying soil properties might be more 

feasible.   

 The process of potential management zone delineation should be simple, practicable and of 

course exploit the within field variation as much as possible.  
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Appendixes  

Scree plots PCA:  

PCA scree plots of the three scenarios are presented here below. Two scree plots for scenario II for 

each field one and field two are presented in Appendix 2. Scree plots of scenario I and III are also 

presented in Appendix 1. 

  

 

Appendix 1.PCA scree plots of scenario I (left) and III (right) 

 

 

Appendix 2.PCA scree plot of scenario II, field one (left) and field two (right) 
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Semi-variograms and fitted curves parameters:  

Semi-variograms and their fitted curves of the selected soil parameters for each of the three 

scenarios are presented in Appendix 3, Appendix 4, Appendix 5 and Appendix 6.  

Scenario I: NDRG, ECa-V1 and ECa-H1 soil property are used the selected key soil properties for 

scenario I and their respected semi-variograms and fitted curves parameters are presented.  

  

 

 

 

 

 

 

 

 

 

 

 

Appendix 3. Semivariograms of soil variables and their fitted curves and parameters for scenario I. 

 

 

NDRG 

Spherical model 

Nugget=0.00020 
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ECa.V1 
Exponential 
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Range =58.92 
 

ECa H1 

Spherical model 
Nugget=0.617 

Sill=0.2.7 

Range=526 
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Scenario II 

Field one: For field one under scenario II, NDRG, ECa-V1 and ECa-H1 soil variables were selected. 

Respective Semi-variograms and fitted curves parameters are presented in Appendix 4.  

 

 

 

 

Appendix 4. Semivariograms of soil variables and their fitted curves and parameters for scenario II. 
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Scenario II  

 Field two: For field two under scenario II, ECa-V1, RmB, and elevation key soil parameters were 

selected. Semivariograms of ECa-V1and RmB variables and their fitted curves and parameters are 

presented in Appendix 5.  

 

Appendix 5. Semivariograms of soil variables and their fitted curves and parameters for scenario II. 

 

Scenario III: NDRG and elevation soil variables were selected for this scenario. Semi-

variograms of these variables and their fitted curves and parameters are presented in Appendix 6. 

 

 

Appendix 6. Semivariograms of soil variables and their fitted curves and parameters for scenario III. 
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Yield maps:  

Normalized potato yield distribution map. This map simply illustrates normalized potato yield is 

classified in to four categories. The created map is presented for each field in Appendix 7.  

 

 

 

 

Appendix 7. Normalized potato yield distribution map field one (top) and field two (bottom) 
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Interpolated soil property maps:  

In contrast to other studies the pH value was not selected as key parameter. The kriged soil pH maps 

presented in Appendix 8 (a) to show its spatial distribution. The kriged map of ECa-V5 is also 

presented in Appendix 8 (b).  

 

a) 

 

b) 

Appendix 8. Interpolated maps of pH value (a) and ECa-V.5 (b) using kriging. 
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The map below demonstrates the spatial locations of soil organic matter samples. the organic matter 

samples are located on zone2 and zone 3 of management zones field one defined under scenario II. It 

can be observed that the samples are partly distributed on the southern part of the field.  

  

 

Appendix 9. Organic matter measurement location displayed over management zones for field 1. 


