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Abstract 

 
Forests cover more than one third of the world’s land surface and play an important role in 

capturing solar energy into biomass and regulating climate. Active remote sensing sensors 

called light detection and ranging (LiDAR) describe forest structural attributes by measuring 

interceptions of emitted laser pulses with the canopy, while passive, spectral sensors provide for 

the estimation of leaf and canopy chemical properties. This study investigates the potential of 

integrating these datasets, which is typically achieved through radiative transfer modelling 

(RTM). The spatial distribution of crown constituents in the 3D space in combination with 

radiometric vegetation characteristics influences the radiation interception, emission and 

scattering by canopy elements. In this study, the Monte Carlo Ray Tracing (MCRT) RTM model 

librat is used with the purpose of simulating radiometric properties of a 3D-modeled forest 

based on spectral libraries that characterize bark, soil and leaf spectral signatures. Our findings 

confirm that TLS is a valid technique that provides an independent and reliable estimation of 

forest attributes compared to other techniques (ALS underestimates tree heights of 0.65 m 

compared to TLS and field-measured tree height is user biased). Preliminary reflectance 

simulations through RTM show that spectral information can be simulated from a virtual forest 

model, which should stimulate the interest of further research. The estimation of reflectance 

proprieties from 3D vegetation models combined with radiometric properties is promising and 

offers prospects for fusion of data from both optical and LiDAR sensors. 

 

1. Introduction 
 

Forested ecosystems cover almost one third of the world’s land area (FAO 2001). Changes in 

forest degradation, deforestation and regrowth, impact overall forest biomass and its biophysical 

characteristics (Dobson et al. 1995). Aboveground biomass is often used as an indicator of the 

total amount of carbon sequestrated by forests (Waring and Running 2007), and as a result 

accurate and timely monitoring of forest resources is critical (Kauppi 2003) to understand the 

role of carbon cycle on global warming (Booth et al. 2012). 

Remote Sensing (RS) allows the investigation of forest areas with different approaches. Optical 

“passive” sensors are mounted on airborne and spaceborne platforms and investigate how 

vegetation interacts with solar radiation through absorption, transmission and reflection. By 

analysing the spectral response of vegetation, different land cover classes can be defined (e.g. 

agriculture, forest, wetland, etc.). However, vegetation spectral signatures provide limited 

information about forest biomass proprieties, which can be estimated by analysing forest 

mailto:simone.vaccari@ed.ac.uk
mailto:kim.calders@wur.nl
mailto:martin.herold@wur.nl
mailto:harm.bartholomeus@wur.nl
mailto:mvanleeu@interchange.ubc.ca


SilviLaser 2013, October 9-11, 2013 –Beijing, China 

 2 

structure and its geometric arrangement in the three-dimensional (3D) space. The importance of 

3D information for carbon biomass estimation is therefore crucial (Hall et al. 2011).  

Time of flight LiDAR is an active RS technique that consists of transmitting pulses towards the 

object investigated, which pulses are partially reflected back to the sensor according to the 

object’s physical and biochemical proprieties (Gong et al. 2010). By analysing the travel time 

between each pulse transmission and reception, and assuming the speed of light, the distance of 

each point from the scanner can be obtained, deriving its location in the 3D space. LiDAR 

systems can be mounted on spaceborne platforms (e.g. ICESat), on airplanes (Airborne Laser 

Scanning, ALS) or can be used on the ground (Terrestrial Laser Scanning, TLS). With 

spaceborne and ALS systems, objects are viewed from above. In the case of TLS systems, the 

below-canopy position of the scanner favours the acquisition of 3D information of the vertical 

forest structure. Examples of 3D forest attributes that can be investigated from TLS data 

analysis include diameter at breast height (DBH), stem location and tree height (Tansey et al. 

2009), foliage profiles (Lovell et al. 2003), canopy gap fraction (GF, Danson et al. 2007) and 

Leaf Area Index (LAI, Martens et al. 1993). The drawback of TLS data is the extent of the area 

being scanned, which is limited by the below-canopy position of the scanner. To benefit from 

the high level of detail from TLS data and the larger extent from ALS, the challenge is to 

combine the advantages of both techniques.  

Passive and active sensors can be integrated through Radiative Transfer Modelling (RTM). 

RTM pursues to model the reflectance of target areas based on a set of vegetation parameters 

(LAI, chlorophyll, etc.) or the explicit 3D scene structure. In this study, the 3D RTM model 

librat is investigated, which uses the geometric forest arrangement retrieved from active sensors 

to simulate passive (Lewis 1999 and Disney et al. 2011). Reflectance values derived through 

RTM can potentially be used to better understand the reflectance values retrieved from satellite 

data. 

This study is structured as follows: tree structural parameters are first estimated from different 

techniques and then a comparison is performed to assess TLS accuracy. Secondly, a 3D model 

of the study area is produced using ellipsoidal crowns. This 3D forest model is then used to 

simulate forest reflectance proprieties through RTM. Finally, preliminary results of simulated 

reflectance values are compared against satellite-retrieved reflectance values.  

 

2. Method 
 

2.1 Study area and data specifications 

 

The area selected for this study is located near the Loobos forest flux tower site (De Hoge 

Veluwe National Park, the Netherlands). The dominant forest species is Scots Pine (Pinus 

sylvestris) with sparse understory. This research was based on the analysis of a 25m × 25m plot 

which centre coordinate was x = 179376.5m, y = 464318.5m in the Dutch National coordinate 

system RD-New (Rijksdriehoeksmeting). 

Terrestrial LiDAR data was collected in September 2011 with an RIEGL VZ-400 terrestrial 

laser scanner, with a zenith and azimuth resolution of 1.05mrad and beam divergence of 0.3 

mrad. Data was acquired within the zenith range 30° - 130° and full azimuth. Nine scans were 

acquired at nine respective locations, which were chosen according to a 25m × 25m regular 

square sampling pattern. The nine scan locations were then co-registered to each other using 

reflective reference targets set up in the field, and a 25m × 25m area located in the centre of the 

plot was selected. TLS data was saved into the national RD-New coordinate systems. 

Two airborne LiDAR datasets were also acquired at the site: the Actueel Hoogtebestand 

Nederland (Actual Height model of the Netherlands, AHN), which has a point density of 9 

pts./m
2
, and the LiDAR dataset provided by the Natural Environment Research Council (NERC), 

characterized by a point density of 10 pts./m
2
. Both datasets were acquired in 2010 and 

re-projected into RD-New coordinate system in order to match the TLS dataset. 

Hemispherical photographs were acquired using a Nikon Coolpix 8700 camera, fitted with an 
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FC-E9 Fisheye lens with 180° field of view. Like the TLS sampling-scheme, nine photos were 

taken at their respective scan location. 

Optical imagery was acquired in September 2011 from the Landsat Thematic Mapper 5 satellite, 

which was downloaded from the online Landsat application (http://glovis.usgs.gov/). 

 

2.2 Forest 3D parameters retrieval 

 

The 3D forest model was based on specific attributes that characterized the forest spatial 

arrangement. These include tree location, DBH, tree height, crown basal height, crown width 

and LAI. 

The location of the trees within the study area was retrieved with two different approaches. In 

the first approach a 0.5 m resolution Canopy Model (CM), determined by subtracting the Digital 

Elevation Model (DEM) from the top of the canopy (TOC) surface, was investigated 

(Stereńczak and Zásada 2011). The location of the tree tops and their correspondent heights 

were extracted by investigating the CM local maxima using a neighbourhood filter of 1.5 m. In 

the second approach, from TLS data only, the location of the trees was obtained through the 

DBH analysis, which consists of estimating the stem diameter measure at the specific height of 

1.3 m. To identify tree stems, a cross-section, 6 cm thick, of the TLS dataset was applied at 1.3 

m height (1.27 m - 1.33 m, Tansey et al. 2009). For each tree, the stem circumference was 

iteratively determined through a circle fitting algorithm (Tansey et al. 2009): its centre and 

diameter represent tree location and DBH, respectively. The spatial distance between each 

location retrieved from CMs and the respective location obtained from DBH analysis was 

subsequently computed to compare the performance of the two approaches. 

The Crown Basal Height (CBH) parameter refers to the height at which the crown starts, 

therefore the foliage profile of each tree (the foliage density distribution as a function of height) 

was analysed from the TLS. The Crown Width (CW) parameter refers to the projected (x, y) 

extent of the crown on the ground. To obtain CW values for individual trees, the morphology of 

the CM raster retrieved from TLS data was analysed. The CW values were retrieved by centring 

a circle in each tree location and iteratively increasing its radius until the percentage of ground 

cells was greater than a specified threshold, which condition indicated the crown extent. 

LAI values were extracted from HP data over the zenith range 0° – 60°. Based on literature, it 

was assumed that the zenith angle that is least affected by multiple scattering of radiation for 

LAI estimation is 57.5° (Wilson 1963). The foliage within the canopy was assumed to be 

randomly distributed (unitary clumping index, Leblanc and Chen 2001). LAI values were 

computed for each of the nine hemispherical photos, and averaged to obtain the global LAI. 

The retrieved parameters described the 3D structure of each tree located in the study forest. Tree 

crowns were modelled as ellipsoids and tree stems as cylinders, which dimensions were 

mathematically derived from the retrieved parameters. Tree crowns were populated by leaves 

determined by the parameter Disk Size Leaf, with a radius of 0.01 m. (Calders et al. 2013). 

Finally, each individual tree was translated in the 3D space according to its specific tree 

location.  

 

2.3 Optical imagery 

 

The Landsat imagery was re-projected into local RD-New coordinate system to align the 

satellite image with the LiDAR datasets. To correct the image from the atmospheric influence, 

radiometric correction was subsequently applied with the ATCOR software, which is a 

semi-empirical correction method that reduces the atmospheric effect by using specific 

illumination parameters (e.g. acquisition day, solar zenith angle, ground elevation, aerosol 

particles and visibility) (Richter 2003). The band-specific reflectance values of the study-area 

pixel and its surrounding eight pixels were subsequently averaged and used for validation.  

 

2.4 Radiative Transfer Modelling 

http://glovis.usgs.gov/
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The foliage arrangement within canopies and the 3D geometry of a forest area influences the 

radiation interception, emission and scattering by canopy elements. Lewis (1999) presents a RT 

model called librat. The Monte Carlo Ray Tracing (MCRT) algorithm is the basis of the librat 

model, which models the reflectance by following the interactions of the radiation propagating 

through the constructed 3D scene by testing its scattering proprieties (Disney et al. 2000, 2011). 

The model librat simulates radiance values based on a 3D structural input and spectral libraries 

that characterize the scene elements. 

To simulate the canopy reflectance, four main elements were involved (Disney et al. 2000). 

First, the 3D characteristic structure of the forest was reproduced according to the biophysical 

forest attributes. Secondly, the computational parameters of the MCRT simulation were 

specified. The third phase consisted of investigating the illumination conditions and the last 

phase analysed the specifications and characteristics of the simulated-sensor image.  

In this study, only a single RTM simulation was undertaken based on solar- and sensor-specific 

angles (azimuth and zenith). This simulation provides an initial demonstration of the potential 

integration of active and passive RS systems with RTM. Future research into more detailed 

simulations, under different scenarios, are ongoing and will be described in later papers. 

 

3. Result 
 

3.1 3D parameter analysis 

 

Tree locations extracted from CM analysis were compared with locations extracted from DBH 

analysis, which was used as reference. Twenty-four trees were estimated from both approaches. 

Four of them were only detected from DBH analysis and four other trees were retrieved from 

CM analysis only. When comparing the distances between respective tree locations, the largest 

highest difference occurred between the TLS CM-retrieved locations, which differed from the 

DBH-retrieved locations with an average distance of 2.09 m and standard deviation of 0.82 m.  

The TLS-retrieved DBH estimates were compared with the field-measured DBH values (R
2
 = 

0.95), indicating the TLS is a reliable technique to derive DBH.  

When tree heights derived from CM of the three LiDAR dataset were compared with each other, 

an R
2
 > 0.96 was found in all cases, denoting a good agreement in height estimation from the 

LiDAR techniques. However, both ALS datasets were observed to underestimate tree heights 

with 0.65 m on average when compared to the TLS dataset. Comparing the CM-retrieved tree 

heights with the field-measured tree heights showed a mean absolute residual of 1.70 m for both 

ALS datasets and a mean absolute residual of 1.83 m for the TLS data set. 

The analysis of individual tree crown dimensions included the crown basal height (CBH) and 

the crown width (CW). Foliage profiles were investigated to compute CBH values, which were 

compared with field-measured CBH values, showing a mean absolute residual of 1.88 m. The 

CW parameter was retrieved by analysing the TLS-derived CM, with the assumption that the 

projection of the tree crowns on the ground had a circular shape and a mean absolute residual of 

1.54 m was found compared with field measurements. 

An overall LAI value of 1.42 was obtained by averaging the nine LAI values derived from the 

hemispherical photos. Individual tree LAI values were then computed by distributing the LAI to 

individual trees based on the crown volume distribution. The final 3D forest model produced by 

retrieving 3D structural parameters is shown in Figure 1. 
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Figure 1: Snapshots of the created 3D virtual forest (in blue) together with the TLS pointcloud data (in 

green). The 3D scene is displayed at isometric view ((a) and (c)), from the top (b) and with profile-view 

(d). 

 

3.2 Reflectance retrieval: Optical imagery and radiative transfer modelling comparison 

 

The spectral profiles retrieved from the Landsat image and simulated through RTM are 

displayed in Table 1. The satellite-retrieved reflectance reflects the common vegetative spectral 

signatures, with low reflectance in the visible region (0.4μm– 0.7μm) due to the chlorophyll 

absorption features and high reflectance in the near infrared (0.7μm – 1.3μm) due to high 

reflective proprieties of vegetation leaves structure. Reflectance then decreases in the longer 

shortwave infrared wavelengths (1650nm and 2220nm) due to water absorption. The 

preliminary results for reflectance simulation are overall comparable to the satellite-derived 

reflectance, except for the NIR band where is observed a much higher value compared to the 

simulated one. The correlation between the two spectral signatures reported an R
2
 of 53.42%. 

 
Table 1: Reflectance values retrieved from Landsat and through RTM, ranging between 0 and 100. 

 
Wavelength [nm] 

 
Blue Green Red NIR MIR 1 MIR 2 

  490 560 660 830 1650 2220 

Landsat 0,55 2,77 2,58 20,55 8,65 4,26 

RTM 
simulation 

1,07 1,65 1,43 5,95 6,74 4,81 

 

 

4. Discussion 

 
4.1. 3D parameters retrieval 

 

Tree location determination was carried out with two approaches: from each tree tip through 

CM analysis and from each tree base through DBH analysis. The latter approach provided better 

estimation of tree location as trees within the forest were observed to have a leaning structure 

therefore the location of their tree tops projected on the ground was misplaced (2.09 m on 
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average). Additionally, trees identification from CM analysis was somewhat biased by the CM 

parameters settings used to create the CM raster, therefore tree location retrieved from DBH 

analysis was considered as the best estimation. Regarding the DBH measurements, TLS-derived 

estimates were observed to be highly correlated with field measurements (R
2
 = 0.95). 

Comparing tree heights estimated from TLS and ALS data, it was observed that ALS technique 

tends to underestimate tree heights of about 0.65 m compared to TLS estimates, which is similar 

to results found by Jung et al., (2011), Faridhouseini et al. (2011) and in contradiction with 

Hilker et al. (2012) and Chasmer et al. (2006). The high beam resolution of the TLS scanner 

allows the laser pulse to penetrate deeper through the canopy, eventually reaching the top of the 

trees, whereas it may be missed by small-footprint ALS (Figure 2). 

 

 
Figure 2: ALS underestimates tree heights compared to TLS. 

 
Tree height and crown dimensions (CBH and CW) manually measured in-situ were 

characterized by uncertainty and user-bias. This is most likely the reason for the larger mean 

absolute residuals between TLS-retrieved and field-measured tree height (1.83 m), CBH (1.88 

m) and CW (1.54 m).  

The LAI value of the study area was derived from HP analysis and specific mathematical 

operations were subsequently used to compute tree-specific LAI values. Alternatively, LAI 

estimates could also be empirically retrieved from TLS data through the canopy GF analysis 

(Weiss et al. 2004). Relationships between TLS-derived and HP-derived GF values could 

additionally be used to decrease bias introduced by TLS systems (Vaccari et al. 2013). The LAI 

parameter obtained from TLS data can consequently be better estimated. 

Methods presented in this study, provide for a high level of automation in modelling 3D forest 

models from TLS data. While the techniques are highly reproducible, the reconstruction results 

are highly dependent on assumptions and specific input parameters chosen around structural 

attributes such as leaf angle inclination distribution and foliage clumping. This should stimulate 

and address future research to further investigate the influence of each forest parameter on the 

obtained 3D model. 

 

4.2. Reflectance comparison 

 

The reflectance profile simulated through 3D RTM resembled vegetation spectral properties, 

with low reflectance in the visible part of the spectrum and higher values in the infrared region. 

However, a much higher value was expected in the NIR region due to high reflective proprieties 

of vegetation leaves structure. The reasons of this outcome are likely to be associated to the 

RTM parameters used and the 3D model created, and further research should test alternatives 

for improving results. Specifically, the 3D model created did not consider forest understory and 

therefore lacked of vegetative information associated with bushes and shrubs. In this 
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preliminary simulation results, a by pure bare soil, which has a low spectral response in the 

NIR, was used. Furthermore, by increasing the disk size leaf parameter, the vegetation 

reflectance is expected to increase. An additional forest propriety that could increase forest 

reflectance is the foliage clumping which, if modelled, increases the forest LAI and therefore its 

reflectance (Leblanc and Chen 2001). 

 

5. Conclusion 
  

In this study the potential of TLS in forestry was analysed to estimate individual tree structural 

attributes. These include includes tree location, tree heights, diameters at breast height, crown 

basal height, crown width and leaf area index. Results confirm that TLS has advantages 

compared to ALS data and field measurements for making a 3D forest model. RTM was 

subsequently used in order to simulate reflective proprieties of the study forest. Preliminary 

results show that spectral information can be simulated reasonably from a 3D forest model. 

Potential improvements are expected with increasing the 3D model complexity, including the 

topography and forest understory. The estimation of reflectance proprieties from 3D information 

combined with spectral signatures, rather than common techniques based on optical 2D data, is 

therefore achievable and offers promising prospective for fusion of data from both optical and 

LiDAR sensors. 
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