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ABSTRACT

The need for regular information on crop area iistron in European landscapes makes
of MERIS a good candidate for temporal monitoring agricultural systems.
Nevertheless, MERIS 300 m spatial resolution migtilt be too coarse for a hard
classification approach because crop fields casrballer in size than a MERIS pixel.
Therefore, the potential for retrieving sub-pix@formation from temporal MERIS
datasets over crop areas using feedforward adificeural networks (FFNNs) was
evaluated in this study. Two kinds of network staues, the first one using single pixel
information and the second one using neighbor métion from a 3 by 3 pixel window,
were evaluated to estimate sub-pixel fractions dase five MERIS level 2 full
resolution images. The five MERIS level 2 datasetse distributed over the growing
season and covered the province of Noord-Hollan@he Netherlands. A thematically
and spatially aggregated version of the Dutch lasel database (LGN5), with the main
economically important agricultural land cover tgpr The Netherlands (grassland,
potatoes, sugar beet and cereals), was used teneéethe MERIS datasets. The LGN5
was also utilized for selection of training, valida and testing samples. Sub-pixel
estimations coming from the trained 3 by 3 windoMNIN were more precise than the
estimations coming from a trained single pixel FENNhe precision for potato area
estimates with a 3 by 3 window FFNN for differepasal scales ranged with coefficient
of correlation (R) values from 0.25 at 9 ha to 0&5ground areas over 81 ha. For
grassland, area estimates ranged with R values @t@Bat 9 ha to 0.95 at ground areas
over 81 ha. Further studies should include a defimiof the temporal profiles with more

temporal datasets and adoption of look-up tablesgr&mning the neural networks.

Keywords: Crop distribution; MERIS; non linear; neural netkofeedforward;

unmixing
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INTRODUCTION

1. INTRODUCTION

1.1. BACKGROUND

Updated information on agricultural landscapes éxessary for land use planning,
policymaking and monitoring food production. In Thetherlands, for example, the
policy of crop rotation on grassland systems amy mput — high output annual crops
like potatoes and sugar beet led to a reductiomutients leaching to ground water and
pesticides emissions to air (CCSE-SWCC 1997). thtach, monitoring crop distribution

is important in regions where taxation and subsidiepend on the area and crop type.
For example, starting July®'12006, the European Union will subsidize agricutur
regions that convert sugar beet crop areas interddnd use types in order to reduce

sugar production (European-Commission 2006).

Traditionally, estimates of cropland distributiomvie been generated by supervised
classification of multi-temporal satellite datasets for instance, National Oceanic and
Atmospheric Administration’s (NOAA) Advanced Veryigh Resolution Radiometer
(AVHRR), Envisat Medium Resolution Imaging Specteiar (MERIS) or Satellite Pour
I'Observation de la Terre (SPOT) High Resolutiorsiblie (HRV), among others. With
multi-temporal AVHRR data, Quarmbget al. (1992) and Atkinsonet al. (1997)
developed land cover maps over large areas of EButdpwever, this coarse scale might
be still inappropriate for monitoring purposes daghe scale at which most land cover
changes occur in Europe (Mucletral. 2000). The use of high spatial resolution datasets
like SPOT HRV or Landsat Thematic Mapper (TM) hasnerated well detailed
information on crop cover at regional level (Jew€lB9, Murakamet al. 2001, De Wit
and Clevers 2004). However, the large amount cd daer large areas and its restricted
availability due to cloud cover present limitatidos using high spatial resolution for this
approach (Brisco and Brown 1995, Sakangttal.2005).
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Medium resolution sensors such as Moderate Resnolutiaging Spectrometer (MODIS)
and MERIS can bridge the gap between high and eospatial resolution. The area
depicted by a MERIS pixel at 300 m is more thanftéth smaller than an AVHRR pixel
and 100 fold larger than a Landsat TM pixel. WitERIS data, Verstraett al. (1999)
and Cleverst al. (2006) have demonstrated the potential of MERiSp@ral and spatial
characteristics for monitoring heterogeneous lamoss at regional and continental
scales. Nevertheless, it is evident that for adjrical landscapes in Europe with field size
lower than 300 m, MERIS pixels are coarse and gregtortions of the image might be

dominated by mixed pixels comprising different ctgpes.

In order to overcome the mixed pixel problem, aetgrof physical, statistical and non-
parametric techniqgues may be used to derive suld-mkormation from mixed pixels.
For instance, physical linear mixing models (Foayd Cox 1994) assume a linear
combination of class signatures weighted by thesclaoportions to estimate sub-pixel
compositions. Statistical methods such as fuzzy dawma classification (Bezdedt al.
1984) assume a degree of membership associateghakass by the distance of a mixed
pixel to the class mean. Although these methode leen applied for extracting sub-
pixel information on land cover types, they areditoned to data distribution such as
Gaussian distribution (Paola and Schowengerdt 188%) selection of endmembers
(Atkinsonet al.1997).

These limitations have lead to more sophisticatethouds like artificial neutral networks
(Atkinson and Tatnall 1997) which do not assumeriarpknowledge of the data. This
non-parametric nature allows artificial neural netks to be more robust when datasets
are not normally distributed and include mixed fgxe the training stage (Foody 2004).
In addition, it is generally agreed that artificreéural networks produce classifications
with higher accuracies than those generated throtlggr methods (Atkinson and Tatnall
1997, Braswelkt al. 2003, Foody and Mathur 2004). However, its compmlegign and
slow training rate due to the trial and error psscased to determine parameters such as

number of training samples and number of layer sobave limited their use in
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classification approaches (Kavzoglu and Mather 20B8r this study an artificial neural

network approach was used to estimate crop arearfrolti-temporal MERIS datasets.

1.2. PROBLEM DEFINITION

Preliminary studies have demonstrated the poteotiaking MERIS full resolution (300
m) for hard classification of land cover types (Meseteet al. 1999, Clevergt al. 2006).
However, hard classification of agricultural cropgth MERIS data would be
inappropriate for agricultural landscapes domindigdnixed pixels comprising various
crop types. This study is therefore designed taveesub-pixel area information from
multi-temporal MERIS datasets on agricultural crofpsyood methodology for deriving
information on the area of agricultural crops frdERIS at sub-pixel level is not yet
available. Further sub-pixel accuracy improvemenftagricultural crops can be expected
by using multi-temporal MERIS datasets over thewgng season (Lobell and Asner
2004).

1.3. RESEARCH OBJECTIVES

The main objective of this thesis work was to estduthe possibility of using multi-
temporal MERIS datasets for extracting sub-pixedpcrarea information by using
feedforward artificial neural networks. The inptas the networks were multi-temporal
MERIS information at pixel level and spatial infation coming from neighboring
pixels with a 3 by 3 window. The study area wasph®v/ince of Noord-Holland, in The

Netherlands.

For this purpose the following specific objectivesre defined:

» To optimize data dimensionality from multi-spectasd multi-temporal MERIS

datasets for input into a feedforward neural nekwor
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» To evaluate the effect of neighbor information cognfrom MERIS datasets on
sub-pixel estimates of crop area.

* To investigate the performance of sub-pixel cragaagstimations of feedforward
artificial neural networks with different scale slb-pixel information and

landscape heterogeneity.

These three objectives led to the following redegueestions:

* What kind of method is the most appropriate to sstbe separability of crop

types from multi-temporal and multi-spectral MERI&asets at sub-pixel level?

» Can neighbor pixel information from MERIS datasetgprove sub-pixel crop
area estimates?

* Does the accuracy of sub-pixel crop area estimatasge with the spatial scale
of analysis and landscape heterogeneity?

1.4. STRUCTURE OF THIS REPORT

This report is structured in five chapters. Chajtee gives a short introduction to the
subject, provides the problem definition and poiotg the objectives and research
guestions that will be investigated in this repbrtchapter two brings a literature review
regarding crop discrimination from remote sensing aub-pixel extraction techniques
with emphasis in FFNN. Chapter three provides atessary information of the
experimental setup and explains the used technidaneshapter four, the results are
presented and discussed. Finally conclusions andnmmendations are presented in
chapter five.
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2. LITERATURE REVIEW

2.1. CROP DISCRIMINATION FROM REMOTE SENSING

Crop discrimination from remote sensing data ha&sl usainly optical sensors with bands
in the visible and near infrared (NIR) because nuisthe vegetation activity affects
reflectance in those bandwidths. Reflectance invikible part is low due to absorption
by the chlorophyll. In the NIR region the absorptis very low, and reflectance is
determined by the amount of transition between wall and air vacuoles in the leaf
tissue. As result, NIR reflectance is high, ande®s slope occurs in the curve at about
700 nm, the so called red-edge region (Clevers Jomjschaap 2001). This spectral
response changes with the phenological state afrthyes. At early stages the visible and
NIR would show a flat reflectance due to a baré signature. Once crops emerged and
augment in biomass, reflectance in the NIR woukhdy increase showing a clear
vegetation spectrum. Late in the season when chape reached maturity, the NIR
would decrease due to senescence and harvest.fdreethe use of multi-temporal
datasets throughout the growing season are recodeddnr crop classification, since a
single image contain a high level of spectral ceitfn between crops for their accurate
classification (Jewell 1989). The optimal acquisitidates for satellite imagery are
determined by the phenological characteristics agritultural practices of crops and by
environmental conditions. Nevertheless, the minimm@qguired datasets for achieving
good separability might include datasets takenaallyemedium and late stages of the
growing season (Murakarst al.2001, De Wit and Clevers 2004, Sakamettal.2005).

In addition to the temporal domain, it is often appiate to have fine spatial resolution.
Otherwise the spectral information at pixel levelgih come from mixed pixels

comprising different crop types (Murakaetial.2001). For some regions it is difficult to
get cloud free fine spatial resolution data of, ifmstance, Landsat TM or SPOT HVR
over the growing season and therefore coarse tesolsensors with higher temporal

resolution might increase those chances. To ovezdbm mixed pixel problem in coarse
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datasets various techniques may be used to derb#pizel information. The use of sub-
pixel analyses and their implementation in vege¢agnvironments are presented in

sections 2.3 and 2.4.

2.2. MULTI-TEMPORAL PROFILE

The use redundant multi-spectral and multi-tempiofakmation may lead to unexpected
problems if artificial neural networks are used peooduce thematic information.
Redundancy of information may cause an increaseatdfulation time and inter class

confusion caused by the use of unnecessary infmé@{avzoglu and Mather 2002).

In order to reduce the redundant information comnfirmgn multi-spectral sensors with
high correlated bands, as presented in MERIS (@deskal. 2006), it is possible to
calculate the principal components or to define st relevant bands, which are less
correlated. In the case of vegetated environmewtsngination of bands in the red and
NIR wavelength can also be used to reduce the rgphelitnensionality of the dataset. An

example of the latter is the use of vegetationcesli

Vegetation indices (VIs) have been formulated adicators sensitive to vegetative
properties like chlorophyll activity and canopyustiure (De Jongt al.2004). Thus, they
aim at enhancing the vegetation signal and minmgizicontributions from soil
background, sun elevation angle and atmosphere.ekample, the MERIS Global
Vegetation Index (MGVI) is an index designed fongpy characterization (Gobrat al.
2004). On the other hand, the MERIS Terrestrialo@iphyll Index (MTCI) is more
sensitive to chlorophyll content (Dash and Curr@04). Hence temporal profiles from
Vls or bands in the red and NIR can be used faedi®in of crop changes throughout the

growing season.

Classification accuracy of temporal profiles caffedifrom combinations of temporal
datasets. However, the use of a large temporaselais not always necessary to achieve

the best classification accuracy. For example, Kama et al. (2001) used separability
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analyses to evaluate the temporal combination foptamal classification of cropping
systems. They found that the accuracy provided whtlee temporal datasets would
achieve nearly equal accuracy that the one obtaiiidnine datasets. This reduction in
temporal information would considerable reduce ¢henputation time of the artificial
neural networks without affecting the classificatiaccuracy. Therefore, separability
analyses of the temporal profiles can help to redtie data load into the neural

networks.

2.3. SUB-PIXEL METHODS IN REMOTE SENSING

Several approaches may be used to extract infavmadt sub-pixel level. These

techniques can be grouped into two main approaaheefined by Foody (2004):

* Linear mixing models

» Soft classification models
»  Maximum likelihood
» Fuzzy C-Means

= Artificial neural networks

2.3.1. Linear mixing models
Linear mixing models simulate the reflectance gfixel as a linear combination of the
reflectances by endmembers (pure materials), waighty the areal fraction of each

endmember within the pixel:

Pzicipi +e 1)

i=1

wherepis the observed pixel reflectances, andp, are the fractional cover and

reflectance, respectively, of tith endmember, arads a residual representing the model
error. To solve for the fractions of eachrofendmembers requires at leasequations,

which are most commonly generated by repeating taqua for different wavelengths.
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However, the maximum amount of endmembers can rnavenore than the number of
bands, because having more endmembers than basulsts ren more unknowns than

equations (Lillesand and Kiefer 2000).

Although this simple approach has been widely usedleriving sub-pixel information
of proportions of different vegetated environmeffisody and Cox 1994, Gongt al.
1994, Van Kootwijket al. 1995, Lobell and Asner 2004), some authors areamed
about their use in vegetated environments (Bordl @erstl 1994, Foodgt al. 1997).
Their major concern is that endmemeber selectiomegetated environments may be
influenced by multiple scattering of leaves, s@tkground and by mixed endmembers.
This effect makes the assumption of linear mixingdeds inappropriate in environments
where non linear spectra mixing occurs. In addjtiendmembers chosen from coarse
datasets in vegetated environments may comprisas angth different phenological
stages, thus hindering separability between claddeswellet al. 2003). Due to these
limitations it has been suggested that a non-lin@ating approach may be more
appropriate for vegetated environments than limeaing models (Foody 2004, Lobell
and Asner 2004).

In addition, the spatial resolution of the sensaynimit even further the selection of
endmembers as the proportions of mixed pixels asge with a coarsening of the spatial
resolution of the sensor (Atkinson and Aplin 200Assuming that for the region of
Noord-Holland in the Netherlands, most of the agdtizal fields have an area of less
than 10 ha (Table 2), a MERIS scene with pixel #6800 m may comprise a high
percentage of mixed pixels reducing thus, the pddms of a proper selection of

endmember.

2.3.2. Soft classification models

Soft classification models offer a non linear agio to estimate land cover proportions
at pixel level. They derive land cover proportidram the membership a pixel spectra
information displays to each class. One concermsimg this technique, likewise the

linear mixing approach, is the requirement to haveell defined set of endmembers.
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Nevertheless, some of these models like artificealral networks have been refined and
may not require an exhaustive selection of endmesnbe even may allow the use of

mixed pixels for training (Benediktssah al. 1993, Benediktsson and Sveinsson 1997).

Maximum likelihood classification

This technique is based on the assumption thgpdkéion of the spectral signature of a
mixed pixel relative to the means of pure endmesnlgiéres an approximate maximum
likelihood estimate of the proportion classes undemally distributed input datasets
(Ichoku and Karnieli 1996). Thus, if two componeiat® denoted by X and Y, the
relationship for estimating the proportions of aig¢hem in a pixel is given by Marsdt
al. (1980):

d(m,x) —d(m, y)

2
d(x,y) @

P, =05+05

where P, = proportion of class Y in the mixed pixel{x, y) = Mahalanobis (M) distance
between the mean endmember class X and (¥, x) = M-distance between the mixed
pixel (m) and the endmember Xp, =0, if the estimate is negative; argl =1, if the

estimate is greater than 1. The M-distance mayahmilated from:

d(x y) = (x-y) = +(x-y) 3)

where d(x,y )is the M-distance of the mean endmembers X and t¥ wicovariance

matrix . T means transpose.

Although the maximum likelihood technique can besdugo resolve proportional
fractions, this technique is constrained to disorate between two components. In
addition, their use for sub-pixel information isirmge questioned as there is not a direct

link between the proportional coverage of a claskits probability (De Bruin 2000).
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Fuzzy C-Means (FCM)

The FCM is a model that has been used for the agtns of proportions of different

plant communities (Wang 1990, Foody 1992, Foody @oxl 1994). The FCM is a non-

hierarchical clustering algorithm that may be usedubdivide data into more than two
components. Pixels are associated with severadeddsefore being moved iteratively to

different classes aiming at minimizing the leastizse error,J, which is a weighted

measure of the square distance between pixelslassl @entroids.

3,0V =3 U)"(dy)? @)

k=1 i=1

WhereU is a fuzzyc-partition of the data containing n pixe{g,, x,,...,X,), V; is the
center of the cluster, d, is the distance betweer, and v, measured using an
appropriate weight matrix and is a user defined weighting component that liethivwi
the rangé<m< o, which determines the degree of fuzziness of amyais. When
m =1a conventional hard classification is obtained ol each pixel is associated with
just one class. For the derivation of sub-pixellessaaformation, it is important that
m > lassuring that multiple and partial class memberghigllowed in the output. The

grade of membership, to a class is calculated from (Bezdshal. 1984):

Uy =——5— (5)

Memberships close to unity indicate a high degrfesinilarity betweenx, and a class

whereas memberships close to zero indicate litidarity.

Although the FCM has been commonly used to dertivesxel information, its accuracy
relies on the specification of end-member speditiiison et al. 1997) and the careful

selection of the valum used in the analysis (Foody 1996).
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Artificial Neural Networks

Neural network models have been employed sincelabe decade in classification
approaches. Their rapid development in remote sgnsidue to their ability to perform
more accurately than the aforementioned techni¢Biesediktssoret al. 1993, Atkinson
and Tatnall 1997, Braswe#t al. 2003, Foody and Mathur 2004) and their ability to
incorporate different types of data, including nuixgixels (Benediktssort al. 1993,
Benediktsson and Sveinsson 1997).

A description of their structure and functionaigypresented in the following section.

2.4. ARTIFICIAL NEURAL NETWORKS (ANNSs)

An Artificial Neural Network (ANN) can be presented a data modelling tool that is
able to capture and represent complex input/outgdationships. They are the results of
research to model the brain like computing (Hayk®&®4). ANNs resemble the brain in

two aspects:

» Knowledge is acquired by the network through arlewy process;

* Inter node connection strengths known as synapg@hts are used to store

knowledge.

The basic element of an ANN is the processing nmdeerceptron (Figure 1). Each
processing node sums the value of its inputs. Thipassed through an activation

function to produce the node’s output value.

There are many different types of organizing thecpssing nodes and so different types
of neural networks (see for example, Demathal. (2005)). This section provides a
description to the most commonly used ANN in remstnsing, the multi-layer

perceptron, a feedforward artificial neural networ&del (FFNN).

11
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Hode cutput
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Figure 1. Internal structure of a perceptron.

The multi-layer perceptron model consists of saveeeceptrons organized into layers. A
generic design of this type of network is showifrigure 2.

Input layer Hidden layer Cutput layer

SEZE:I - ." . o (I:,

OS2
Ancillary N \ —_— E
Data 5
—— kS _

Figure 2. Generic three layer connected FFNN (Kgkezand Mather 2003).

The perceptrons are organized into layers. Thet fmger, which receives input
information, is called the input layer. The lasydn which produces the output
information, is called the output layer. Betweee thput and output layers can be one or
more hidden layers. All layers are fully intercootesl with the following layer but do
not interconnect with other nodes in the same layata is transmitted through
connection between perceptrons in different layEne input of each single perceptron is

weighted according to:

net => @0 (6)

12
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where net; indicates the sum of the weighted inputs of théenp, @, represents the

i
weights between nodeand nodej, and g, is the output from node. The output from

a given nodej is then computed from:

o, = f(net) (7)

The function f is usually a non-linear log sigmoid function thatapplied to the

weighted sum of inputs before the signal passethdéonext layer. The log sigmoid

function maps the interval—c,) onto (0,1) allowing the output of the signal to be

interpreted as posterior probabilities summing (@ishop 1995).

1
1+e "

f(net)=—— (®)

Training a neural network consists of generatinggtws between each node that is
accomplished by using known inputs and outputs @nedenting them to the network.
The weights are adjusted typically by the backpgapian algorithm, which modifies the
weights until a target minimal error between theown and calculated outputs is
achieved. The training of the backpropagation atgor is carried out in two stages.
Firstly, the network weights are randomly initigi; the input data is presented to the
network and propagated forward to estimate theututplue for each training. Secondly,
the error is then back propagated through the né&tvadtering the weights of the
connections according to the generalized delta(Rilenelhart and MacClelland 1986):

Aw;(n+1 =7(d;0) +abw; (n) 9)

where is the learning rate parametey, is an index of the rate of change of the error,

and a is the momentum parameter. This process of feefdirvgard signals and

13
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backpropagating the error is repeated iterativetyil the error of the network is

minimized or reaches a desirable magnitude.

The progress towards the minimum error has a oslsiiip with the number of input
parameters (Paola and Schowengerdt 1997). For dgaihp network is provided with
more information about the image like neighbor [Exeach iteration would have more
information about the image than a single pixetitien, making thus more progress per
iteration to the desired error magnitude than fbst information provided by a single
pixel. In various land cover applications neighbbdormation has increased the accuracy
while increasing the training time (Paola and Sologerdt 1997, Murthet al. 2003).
However, the effect of the neighbor informatiorkelvise a homogeneous filter, may
smooth the image, losing thus some detail of infdrom on single pixels (Paola and
Schowengerdt 1997).

2.4.1. Drawback of Feed-Forward Neural Networks (FNNSs)

Training a FFNN involves setting several parametieas would influence the capability
of the neural network to interpolate and extramldata that has not been presented
before (generalization). These parameters incltde: specification of the number of

nodes and architecture, size of the training settaining time, among others.

Atkinson and Tatnall (1997), Paola and Schoweng@ré®7) and Kavzoglu and Mather
(2002, 2003) have documented the effect of thosanpeters on the generalization of the
neural network. However, there is still no scieatifule to determine the appropriate

parameter values and therefore a trial and ermratesty is often used.

Recently, some guidelines have been proposed termdiete the range of those
parameters. For example, the optimal amount of ®aae structure of a neural network
should be not too small to identify the structuféhe data (underfitting) or should not be
too large to become overspecific for the data (fittieg) (Kavzoglu and Mather 2003).

Overfitting occurs when the network memorizes aadion and it has not learned to

generalize new situations. Thus, during the trgrime error achieved is very low but

14
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when new data are presented the error is large.ekample, Figure 3 (a) shows the
response of a neural network that has been owslfdtie to a large number of hidden

nodes.

The response of an ANN does not lay merely intitscture but also in the representation
of the training data for a particular problem andhie training process. Too few training
samples are insufficient to derive the characiessof the classes, while too many
training sets may cause the network to overfitdata and require more learning time.
Likewise, training time will affect the generalizat of the neural network. The longer a
neural network is trained for a specific data Hat, more it will prone to memorize the

training data and not be able to generalize (Kakzagd Mather 2003).

Function &pprox miation Functien Approx mation
T T T T T T T
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Figure 3. Response of neural networks that have Iened to approximate a sine
function. Input function “doted line”, training dat+” symbol, approximation “solid

line”. (a) overfitting, (b) good response (Demetal.2005).

All those issues slow down the process of trai@nmgeural network and makes the use of
the ANN more complicated than other methods. Intamd it is not exactly known how
ANNSs learn particular problems based on the parametlues and training sets and

therefore they are often called black box methods.
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2.4.2 FFNNs and crop classification

FFNNs have been used for crop classification atpsxél level with different parameters
in different environments and with various seng#tavzoglu and Mather 1999, 2002,
2003, Murthyet al. 2003). This makes it difficult to compare or tdetenine the effects

of different parameters on classification accumdsevertheless, all authors have agreed
on the superiority of FFNNs for crop classificatiapproaches. For example, Murtély

al. (2003) compared a FFNN with a maximum likelihoowthod for wheat crop
classification. They found that a FFNN was morecizein classifying wheat pixels than
the maximum likelihood method. Despite the poténtii FFNNs for classification
approaches, there is a concern about the time geglto determine the appropriate

parameter values towards operational application.

Recently, Kavzoglu and Mather (2003) conductedudysto gain some insights into the
behavior of FFNNs for crop classification purposés.this study a guideline that
facilitates the selection of appropriate parametdues for designing and training of
FFNNSs is proposed (this guideline is presentectatisn 3.3.5).

Based on the literature review, MERIS high tempawrad multi-spectral resolution data
offer an excellent opportunity to enhance the sHphty between crops. The
aforementioned studies confirm the potential of NBNfor discriminating sub-pixel
composites from coarse datasets. Therefore, ferdsearch we designed a methodology
to evaluate the potential of extracting sub-pixelpcinformation from temporal MERIS

datasets by using ANNSs of the type FFNN for a legfeneous landscape in Europe.
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3. MATERIALS AND METHODS

3.1 STUDY AREA

The study area includes a large part of the pravioé Noord-Holland in The
Netherlands (Figure 4). The selection for this anes based on the availability of a
training dataset with good accuracy (overall accyrd8%) and accessibility of MERIS

2004 images.
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Figure 4. Study area province of Noord-Holland

3.2 DATASETS

3.2.1. Ground cover information

For ground cover information, the latest versiortraf Dutch land use database (LGN5)
was used. It is a geographical database that tdescthe land use in The Netherlands
with a grid structure of 25 meters, with an apglma scale of 1:50.000. It uses the
stereographic projection of the Dutch national domate system Rijks Driehoek (RD).

The nomenclature of the LGN5 database consists9ofl&sses covering urban areas,
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water, forest, various agricultural and naturaldlaover types. LGN is produced from
multi-temporal classification of satellite imagewith ancillary data. Currently, the
version 5 is based on satellite data of the ye@BZ0r the provinces of the east of the
Netherlands and satellite data of 2004 for the impe®s of the western part of the country.
The overall classification accuracy for all prowscis 78% with values ranging from
46% till 93% (Hazeu 2005). The 39 classes of theNBGvere recoded into the nine
classes: potatoes, sugar beet, grassland, ceothds, crops, built up, forest, natural
vegetation and water. Potatoes, sugar beet andlgndsare economically important
agricultural land cover types in the Netherlandgre@ls are used in crop rotation
programs of potatoes and sugar beet. Built upeglad urban areas and green houses.
Other crops comprise areas with maize, spring amdnan flower bulbs and tree
nurseries. Forest contains deciduous and conifefiarests. Natural vegetation includes
sand dunes, shrubs, swamps and heathland. Waterscsalt and fresh water bodies.
Information on the frequency distribution of thenaiclasses is given in Table 1.
Information on the distribution of agricultural liils based on crop area is given in Table
2.

Table 1. Frequency distribution of cover typeghia province of Noord-Holland

Land cover % of total area
Potatoes 2.5
Sugar beet 1.4
Cereals 2.0
Grassland 22.3
Other crops 6.8
Built up 12.5
Forest 3.6
Natural vegetation 4.4
Water 445
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Table 2. Frequency distribution of agriculturalde based on crop area for the year 2002
in the province of Noord-Holland (from CBS (2004)).

Crop type % of fields with % of fields % of fields % of fields with
<10 ha between 10 and between 20 and > 30 ha
20 ha 30 ha
Potatoes 9.60 5.18 2.17 2.07
Sugar beet 12.29 4.44 0.72 0.39
Cereals 12.66 6.98 1.88 1.28
Grassland 17.00 7.87 1.26 14.19
Total 51.55 24.48 6.02 17.94

For this study, the LGN5 was aggregated to 300 meatell size displaying the largest
cover type fraction per pixel and keeping informaton cover composition in fractional
images per class. For example, Figure 5 showsatipatel from the aggregated LGNS is
displayed as built up because this class coversldhgest fraction of this pixel.
Nevertheless, information on fractional composgiger class (i.e. grassland) is stored in
its respective fractional image. This aggregatadlmtsse was used as a reference for the
co-registration of MERIS images and for the setecf training, testing and validation

datasets.

Land cover Fractions of land
covet petpivel

P Euitup 04

Grassland 0z

Potatoes 0
- Cereals 0z

Bugarheet o
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Mat. vegetation 0

Water il
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Figure 5. The Dutch land use database aggregatedlasses and 300 m pixel size with

fractional distribution for Noord-Holland.
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3.2.2 MERIS Data

MERIS is one of the payload components of the EemopSpace Agency’s (ESA)
environment research satellite Envisat, launchelllanch 2002. MERIS is a 68.5ield

of view push-broom imaging spectrometer that messsthie solar radiation reflected by
the Earth, at ground spatial resolution of 300 mll(Fesolution) and 1200 m (Reduced
resolution). MERIS is a 15 band programmable imggipectrometer, in the visible and

near infrared. MERIS allows a global coverage effarth in 3 days.

MERIS data is provided in three levels of procegsiavel 0, level 1 and level 2. Level 0
consists on the core information recorded in packgtthe instrument. This information
is not generally available to users and it sengedasis for level 1. Level 1 comprises
geo-coded top of atmosphere (TOA) data radiances Wv’um] and it is the base for

level 2. Level 2 provides reflectance values far different kinds of data products. Level

2 reflectances are different in nature dependinthersurface (MERIS-Envisat 2005):

» over clouds, they are TOA reflectances,
* over land, they are Top Of Aerosol (TOAr) refleatas corrected only for
Rayleigh diffusion but not corrected for the diffus by aerosols,

» over water, they are surface reflectances.

For our study we used the products over land of MERvel 2. MERIS level 2 land
surface products provide TOAr reflectance in 13dsaas band 11 (760 nm) and band 15
(900 nm) were excluded because they are stronfllyeimced by @ and water vapor in
the atmosphere, respectively. The Rayleigh coomectivas calculated taking into
consideration pixel optical thickness and geomeiny it was derived from a look up
table (Santeet al.2000).

MERIS level 2 has addressed the correction by atyand angular perturbations in
order to provide users with Top of Canopy (TOC)eehance in two bands one in the red,
band 8 (681 nm), and near infrared (NIR), band &B85(nm). Aerosol scattering

information was obtained in the blue region nanmeynd 2 (442 nm) where values are
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much sensitive to atmospheric scattering than longavelengths. A parametric
anisotropic function was implemented to simulate ttariations in the signal of the
aforementioned bands due to angular observationilamdination at TOAr. Then a

combination of the blue band with the red and NdRlone to calculate the rectified red
and rectified NIR bands that would have measuretthénred and NIR at the TOC. The

algorithm proposed to generate the rectified retiNiR is defined as:

2 2
I0,1Bl +IO,282 +|0,SBlBZ +IO,4Bl +IO,SBZ +IO,6

B,,B,) = 10
g( ' 2) I0,7Bl2 +|0,8822 +|O,QBlBZ +|0,1081+|01le +|012 ( )
prectified_red = g(pbandZ’pbandS) (11)
prectified_NIR = g(pbandz’pbandls) (12)

where p are reflectance values amg, are the coefficients for a polynomial provided in

Gobronet al. (2004).

In addition, MERIS level 2 land surface productlunies the MERIS Global Vegetation
Index (MGVI) (Gobronet al. 2004) and the MERIS Terrestrial Chlorophyll Index
(MTCI) (Dash and Curran 2004). The MGVI algorithengenerated from the rectified
red and rectified NIR bands and it uses like thetiied bands Equation 10 for its
calculation. The MGVI is given by:

MGVI =g (prectifiedfred 1 Preciified_ NIR) (13)

wherep are reflectance values for the rectified red andifred NIR bands described

above. The coefficients | are given in Gobroat al. (2004).

The MTCI is defined as:
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MTCI = Prandio ~ Prando (14)

pband9 - loband8

where p are reflectance values for different bands.

For this study the full resolution MERIS level Zleetance values, MGVI and MTCI for
the region of Noord-Holland from 2004 was used.c8mations of the spectral bands of
MERIS Level 2 are given in Table 3. Cloud free imadrom April £ August §' and
September IOwere available and visually assessment of images May 18" and July

14" showed less than 15% cloud cover. The imageshanersin Figure 6.

Table 3. The bands of the MERIS level 2.

Band Band center Bandwidth
[nm] [nm]
1 412.5 9.9
2 442 .4 10.0
3 489.7 10.0
4 509.7 10.0
5 559.6 10.0
6 619.6 10.0
7 664.6 10.0
8 680.9 7.5
9 708.4 10.0
10 753.5 7.5
12 778.5 15.0
13 864.8 20.0
14 884.8 10
Rectified 681
red
Rectified 865
NIR
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- ) A s | iy ey ) e
Figure 6. MERIS full resolution images of a) Aptil, b) May 18", c) July 14, d)
August & and e) September #®004. Bands 14, 8 and 3 are depicted in RGB.

3.2.3 Crop calendar

As crops show relative phenological differencesulghout the growing season, a crop
calendar depicting the growing season of the nmagbrtant crops for the Netherlands
was used for filtering the multi-temporal datag€&igure 7). In this calendar the length of
the growing season is determined by the phenolbgitaracteristics of the crops and

agricultural practices such as: planting, fertiliiziand harvesting

The available satellite scenes cover the plantimd) learvest dates for most of the crops.
For example, sugar beet and potatoes would pressuit spectrum in the scenes of April
1% and May 18 because they are sowed at the end of May. Thenrthight present a
vegetative spectrum for the scenes of Julf) 4dd August 8. In September, however,

potatoes are harvested and therefore sugar bedd Weep a vegetative spectrum for this
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date. Cereals would present a vegetative spectuthé scenes of April*and May 15
Their vegetative spectrum would increase betweesethdates due to an augment in
biomass. Nevertheless, for the scene of Jul{ aad August 8 they might show
depletion in the vegetative spectrum because dssamce and further harvesting.

S o F &
& F » § & & & &
F & 5 IS o = & S 4 ;
= & L o 3 & ) = R bal ‘f‘
Sl . A T g & =
Crasslaml * *
Maize * +
Consumption potaloes ! ! H ; - * —*
Soctd potatocs
Sugar beet ¥ +

Winter cereals
Spring cereuls
Spring flower bulbs *
Auturmn Mower bulbs

L 2N S

*
*»

a 1 Iy il @
Adquisition immagery dates

Figure 7. Crop calendar of The Netherlands. a) IABt b) May 18", c) July 14", d)
August 8" and e) September #®004 (modified from De Wit and Clever (2004).

3.3. METHODOLOGY

The methodology used in this research involvesetimain parts: preparation, processing
and analysis (Figure 8). Preparation includes éhection of the study area from MERIS
images and their co-registration with the resampléil5 dataset. Processing deals with
the selection of the most suitable spectral bamoism IMERIS and the definition of the
temporal profiles based on separability analysisoAhis section covers the preparation
of the training, validation and testing datasets thre selection of the parameter values of
the FFNNSs. In the analysis part, the FFNNs aredéchiwith the training and validation
dataset. The trained ANN with the best performaaangled out for its simulation with
the testing datasets. Statistical analyses weré tosdraw conclusions for the different

estimated fractions at different scales of analysis
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3.3.1. Preparation

In the preparation stage the LGN5 database wasnpied to 300 meters cell size
assigning the majority class as label but keepirigrmation on cover composition in
fractional images per class as showed in FigurEhts resampled database was used as

reference for geometric corrections of MERIS imaged selection of ground data.

In addition, the original LGN5 database 25 m celésvas used to analyze the landscape
properties for the province of Noord-Holland. Fdrist purpose we used the Patch
Analysis 3.0 software (Rempel 2003) to estimatedlass area, humber of patches per

class, mean patch size and standard deviationtcfigs of each cover type.

Before any analysis, the satellite images need sooneection procedures due to the
geometric and radiometric distortions during theuasition process. These corrections

can be divided in two categories: geometric anibradtric corrections.

Geometric corrections

Geometric corrections are necessary to reduceffinet ef geometric distortions and they
enable us to match the temporal datasets withetbeempled LGN5 database. All MERIS
level 2 images were geo-referenced with the BEAM! Software (Brockmann 2005)
using the latitude and longitude coordinates tmatpaovided by MERIS metadada for
nine tie points in the image. Then, the geogragnajection was reprojected into the
stereographic projection of the Dutch national domate system Rijks Driehoek (RD)
using ENVI. Visual differences existed between tesampled LGN5 and satellite
images, therefore we performed an image to imageggtration between each temporal
dataset and the resampled LGN5. For each imagemagd co-registration 10 ground
control points were recorded between the two imagesearest neighbor resampling

function was used because it preserves the infwmatf the image pixels most closely.
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Figure 8. Flowchart of the methodology
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Radiometric corrections
As we are using reflectance values from the MERi#®ell 2 products, radiometric

corrections were already performed for incomingatoin and sun elevation.

3.3.2. Processing
This stage comprises the analysis of the speatihit@mporal profiles, definition of the
structure and parameters of the FFNNs, which argcrieed separately in further

sections, and the selection of the training, vailteand testing data.

3.3.3. Analysis spectral and temporal profile

Individual spectral bands from MERIS level 2 werarelated to assess the degree of
redundancy of the different bands. The MGVI thambmes information from the
rectified red and rectified NIR were used to geteerzarious temporal profiles. Those
temporal profiles allowed us to measure the degfaeterclass separability based on the
spectral response derived from the phenologicé sththe crops. The temporal profiles
ranged from using one image to using all five insageer the crop cycle (Table 4). For
example, temporal profile 1 was chosen to evaltlageeffect of class separability of
sugarbeet and potatoes when only one image isabl@iln the middle of the growing
season. Temporal profile 2 evaluated the interdapsiribility of sugar beet and potatoes
when images were available at the onset, middle emdl of their growing season.
Temporal profile 3 allowed us to inspect the selpifitg of cereals from other classes.
Temporal profile 4 excluded the first scene, whibight be considered out of the
growing season and not redundant for crop sepéyabédtween potatoes and sugar beet.
Temporal profile 5 took into account all satellitatasets available for this study.

Table 4. Temporal profile set.

Temporal Image Exclude
profile combination images
number

1 C abde

2 bcd ae

3 abde c

4 bcde a

5 abcde

a) April I b) May 15", ¢) July 14, d) August 8 and e) September $@004.
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The separability was measured with the JeffriessMigtita (JM) distance (Swain and
King 1973). In similar studies, Murakarti al. (2001) and Kavzoglu and Mather (2002)
agreed on the superiority of this distance formef temporal scene combinations with
high separability. The JM distance has an uppeit liofi 1.414 indicating high

separability between classes. In this study a viduer than 1.3 for two classes was
considered as having low separability and we dekcttierefore to merge those classes.

The JM distance is represented by:

IM; = 2(1-expta)) (15)

and

C +C
2

1, |lc +cyi2
_n L —
2 (ele

azé(ui—ujf[ i] (U~ )+ (16)

wherei andj are the classes being comparggiand 4, are the mean vectors of classes

andj, C,andC, are the sample variance-covariance matrices fasclandj, |Ci| and

‘Cj‘ are the determinants & andC,, respectively, and T indicates the transposition,

3.3.4. FFENN structure

The simplest structure to be used in a neural mtwgoreading one multi-spectral pixel
into the network. Thus, one input node is used dprasent each band (Paola and
Schowengerdt 1995). However, a possible extensiom uise spatial texture information,
for example by using a 3 by 3 window for each basdnput. Although this structure
increases the input nodes by nine fold per nodenight enhance the classification
performance by smoothing single pixel errors. Oa dther hand, this structure might
cause a loss of information in heterogeneous lapsc In this study we decided to use
both structures to evaluate the effect of spatifdrmation from MERIS on the sub-pixel

accuracy (Paola and Schowengerdt 1997).
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3.3.5. FFNN parameters
As mentioned before setting the parameters of heetaorks is a difficult task and most
of the times these parameters are based on tdat@ar approaches. In order to ease this
process, we used the following guideline proposeldvzoglu and Mather (2003):
» Estimate the number of hidden layer nodes requiusthg the expression
N, /[r * (Ni + NO)]* formulated by Garson (1998).

» Define the number of output layer nodes by consigehe nature of the problem
and the availability of ground reference data.

 Randomly select a number of training samples. Sansptes should range
between30* N, * (N, +1) and 60* N, * (N, +1)* as proposed by Hush (1989).

» Set initial weights to a small range with a meatugeof 0. (e.g. [-0.15, 0.15] or
[-0.25, 0.25]).

« Employ a validation dataset to terminate the tragiprocess. The validation
dataset may include around 50-100 samples for etass.

» Use the output encoding scheme of [0 1 0] to regmesutput classes.

* Use a shuffling mechanism for the learning prodespresent the inputs to the
network in a randomly defined order.

*N; and N, are the number of input and output nodes, respsygtiv
N, is the number of training samples.

“r" is a constant that is related to tiése level of the data range from 5 for cleamdatl0 for
noisy data depending of the nteésel of the data.

Although these guidelines pose a base for desigaimtjusing ANN in remote sensing
image classification, they can be adjusted witreo#pproaches found in the literature
that might suit better this study. Hence the carsitions taken in this study for the
aforementioned recommendations and other paramaterdurther described in this

section.
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Number of input layer nodes

The number of input nodes corresponded to the teshpouage combination and spectral
bands or VIs per image for the pixel by pixel FFNfr the 3 by 3 window FFNN the
number of input nodes was nine fold the number ales used in the pixel by pixel

structure.

Number of output layer nodes

The number of output layer nodes was determinest &ftowing the number of classes
having good separability, as defined by the JMadis¢ with values larger than 1.3
(section 3.3.3). Nevertheless, the level of compjefor the ANN to distinguish the
desired classes depends on the number of inpub@pdt nodes. The complexity for the
ANN would increase if the number output nodes igdathan the number of input nodes
(Kavzoglu and Mather 2003). Therefore, it was appate to define ANN parameters
such as number of hidden layer nodes and trairangpges from methods including the

number of input nodes and output nodes for theimesion.

Number of hidden layers and hidden layer nodes

Estimating the number of hidden layers and hiddsmr nodes is an important task in
designing a neural network (Kavzoglu and Mather 30®& single hidden layer is
sufficient for classification of multispectral imaxy and it is the most common used in
literature (Paola and Schowengerdt 1995). Howewben the number of output nodes
gets near 20 more flexibility can be gained by eosd hidden layer in the network
(Kanellopouloset al. 1992). Hence based on the number of classes ke $itlglen layer

would be sufficient for this study.

The method recommended in the guideline to estithet@umber of hidden layer nodes,
formulated by Garson (1998) (Table 5), dependshernrtconstant that for this study we
assigned a value of 10 due to the large amountoifenexpected from classes with
similar spectral profiles like potatoes and sugaetb Thus, a large amount of training
samples is needed to obtain a considerably amdddem nodes to train the network.

Nevertheless, as the amount of training data i®ranwon problem to all supervised
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algorithms (Borel and Gerstl 1994, Atkinsat al. 1997, Foodyet al. 1997), we
evaluated also other methods which do not inclieriumber of training samples as
parameter but use the number of input and outpdesidor estimating the number of
hidden layer nodes.

Table 5. Approaches proposed to compute the optimumber of hidden layer nodes.

Heuristic Source
2N, or 3N, (Kanellopoulos and Wilkinson 1997)
(N, +N,)/2 (Ripley 1993)
N, /[r(N; +N, )] (Garson 1998)
1

2 -
2+N,* N, +E N, (NZ+N,)-3 (Paola 1994)

N, + N,

N, and N are the number of input and output nodes, respgti
N D is the number of training samples.

r = 10. Due to the amount of noise expefima classes with similar spectral profiles liketatoes

and sugar beet.

Number of training samples

The number of training samples has been acquabyterious authors as the parameter
of major influence at the training stage. This ecduse the neural network learns the
characteristics of the data from the sample vallies.few or too large training samples
may lead, respectively, to insufficient training arerfitting of the network. In order to
determine the appropriate number of training sample used two approaches, the first
one using the method presented in the guidelinggsaggested by Hush (1989) as:

N, =30* N, * (N, +1) (17)

and the second one using the method proposed bieM#1999), which takes into
consideration input and output data, is estimased a

N, =30* N, * N, (18)
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where N, is the number of training sampleN, is the number of input nodes amd,is

the number of output nodes in the network.

Training, validation and testing data

For training and simulation of the FFNNs the datasss divided into training, validation
and testing data. The networks were trained wighttining and validation dataset using
multi-temporal profiles coming fronpp and VIs in the input layer and the resampled
LGN5 data with the known land cover fractions agea dataset in the output layer. For
simulating the trained networks, the multi-tempguadfiles of the testing data were used
in the input layer and the resampled LGN5 data wesed to validate the estimated

fractions coming from the trained FFNNs.

The selection of the training, validation and tgtdataset was done with a function
developed in MATLAB 7.0. This function randomly sets a desired number of pixels
from each class from the multi-temporal profilesdatne resampled LGNS, while
excluding the pixels contaminated with clouds. Tilnenber of training samples per class
was equally distributed from the total training gdes estimated with Equations 17 and
18. The number of testing and validation sampleduded 50 samples per class as
suggested in the guideline proposed by KavzogluNatther (2003).

Initial weight ranges

Initialization of random weight values with a meaadue of zero in the range of [-0.15,
0.15] or [-0.25, 0.25] has produced similar errates and achieved higher values of
classification accuracy than larger ranges [-0.6] @Kavzoglu and Mather 2003).

Therefore a lower range of [-0.2, 0.2] was usedHa study.

Learning rate

The learning rate was not implemented in this stbégause we used as training
algorithm the resilient back propagation. This alfpon is commonly used and

recommended along with log sigmoid functions (Ddnettal. 2005). The resilient back
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propagation algorithm updates the weight valuesedbasn the derivative of the
performance function with respect to the weightueabnd not to a learning rate and
momentum as used by other approaches like the asthrstieepest decent algorithm. A
complete description of the resilient back propagaalgorithm is given by Demutét
al. (2005).

Output fractions

The output fractions in this study used one outmde per class with values ranging
between 0 and 1. The value 1 was assigned whenatie fully corresponded to the
selected class, whereas 0 to the nodes that corésp to other classes. Values in
between indicated the proportions for the diffedlant cover types. For example, if there

are five classes then a code of 0 1 0 0 O wastosexgbresent a pure node for the class 2.

Stopping criteria

The stopping criteria method called cross validatieas used in this study to prevent
overfitting while training the neural network. Thisethod uses two sets: a training set
and a validation set. The training set is utiliZzed computing the error gradient and

updating the network weights and biases. The uadidasubset is used to monitor the
error on the validation set during the traininggass. The validation set normally follows

the decreasing trend of the training error; howewdren there is an overfitting of the

training set, the validation error increases. Wlaenincrease of the validation error
iteratively occurs, the training is stopping and theights and biases at the minimum of
the validation error are returned. The cross vabdamethod is implemented in the

neural network toolbox of MATLAB 7.0.
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3.4. ANALYSIS

The selection of the most appropriate parameteregaior the number of input nodes and
the number of hidden layers was based on an weragpproach where the response to
each parameter was analyzed independently. Sineeparameter value was evaluated
each time, the rest of the parameters had to tel fixhen training the network. The
FFNNs were trained using the MATLAB Neural Netwddolbox. The performance for
each parameter was analyzed from the Mean Squaoe BASE) on the training. The
parameter values having the lowest MSE were chusérain the FFNNs. The trained
FFNNs were then simulated with the testing datemed their estimations were

thoroughly evaluated with statistical analysis.

3.4.1 Simulations

For the simulations we used the simulation funcfi@m the Neural Network toolbox
along with the trained FFNNs and the testing datddee relationship between network
response and known fractions per class was evdlugiag linear regressions (Equation
19) and calculating the coefficient of correlati@®) (Equation 21) between the network

response and the corresponding targets.
y=bx+c (19)

The slopeb and constant are given by:

b= F{ﬁ] c=m;-b*m, (20)

where the slopé, is R multiplied by the ratio of the standard d¢ins, witho, being
the standard deviation of the estimated fracticgrspixel ando, the standard deviation

of the known fractions per pixel for claas The constantcan be calculated using the

means of the estimated, and knownm, fractions.
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The coefficient of correlation R is represented by:

R= cova,a)

(21)
O-aa—é

Where coMa,d) is the covariance between known and estimaatues, o, and o, are

the standard deviations of known and estimatedegafor class.

3.4.2 Analysis of estimations at different scale alub-pixel information

To evaluate the impact of the estimated fractionsglitierent scales, we selected two
regions of 900 ha (10 by 10 MERIS pixels) and coexed spatial scales ranging from a
single MERIS pixel (9 ha) to the whole region. Fg® depicts the aggregation of the
sub-pixel information at different scales. the gpaicales used for the analysis and the
process of aggregation. At each scale, the totd af classa was calculated for the
estimated and known values. Thus, at a scale aftAéaregion was divided into 10 by 10
pixel square sub-regions and the total area of@agas computed for each sub-region.
Then, the estimated and known classreas were analyzed at each scale using the Root

Mean Square Error (RMSB (Equation 22), the normalized RMSE
(RMSE,,.......s) (Equation 23), Bias (Equation 24) and R (Equatiby 2

RMSE = (23 -a ) (22)
i=1
|:\)MSElormalized: RMS&

. (23)
Zai /n

Bias="%t—— (24)
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where, RMSE is the RMSE proportional to the spatial scal@round area) over which

classa area is computedRMSE, . ....q IS the RMSE normalized for the known class

area,nis the number of sub-regions aagdand & are the known and estimated areas of

classa in the i th sub-region, respectively. The RMSE informs ahlibet inaccuracy of

the prediction, the R informs about the predictiariance and the Bias defines the

systematic error of the estimations related tdkti@vn areas.
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Figure 9. Spatial scales of analysis and aggregaticub-pixel information.
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4. RESULTS AND DISCUSSION

4.1. LANDSCAPE PROPERTIES

Sub-pixel estimates of land cover proportions waldgend on landscape properties such
as patch size, patch variability and land covepprioons (Moody and Woodcock 1994,
Huanget al. 2002, Lobell and Asner 2004). This is becauseptireentage of correctly
classified pixels decreases with the degree ofrbgémeity within a pixel (Moodt al.
1996).

Table 6 presents the patch size, patch varialahty land cover proportions of each class
for the study area. All crop classes except gragdstammprised very little proportions of
the study area. Nevertheless their mean patch(siaz® ha) was as large as the spatial
resolution covered by a MERIS pixel (9 ha). Sugeetbpotatoes, cereals and forest had
smaller patches sizes than the mean area depigtdtelother classes. Nevertheless, all
land cover types had a greatly varying patch sidech describes the high heterogeneity
of the landscape. This great variation in the pateh of crops could have been expected
from the information given in Table 2, where croglds vary from small plots with less
than 10 ha to crop fields of more than 30 ha @rassland or potatoes). Nevertheless,
visual assessment of the spatial distributionsrasgjand, built up, natural vegetation and
water patches indicated that these patches are tedréo its same class than patches of
sugar beet, potatoes and cereals. Therefore, tineefoclasses are more likely to be
surrounded by its same class than by any othes etagn the landscape is aggregated to
300 m.
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Table 6. Patch metrics for the study area basdd3h 5 dataset.

Class Class area [ha] Number of Mean patch size  Standard
patches [ha] deviation of
patches [ha]
Built up 78771 14863 5.30 544.44
Grassland 135263 13967 9.68 85.77
Potatoes 14811 1409 10.51 14.00
Cereals 12612 1071 11.78 14.02
Other crops 41291 3313 12.46 42.29
Forest 21788 4976 4.38 40.29
Nat. veg. 26372 2754 9.58 137.59
Sugar beet 8468 906 9.35 8.44
Water 266806 2471 107.97 2914.21

4.2. IMAGE GEOMETRIC CORRECTIONS

Assuming that the resampled LGN5 with a 300 m psteé had a geometric inaccuracy
in the order of half a MERIS pixel (Clevees al. 2005). The shift of the image to image
co-registration using 10 ground control points rded between the resampled LGN5
and reprojected MERIS images appeared to be systefonall MERIS datasets. It was

in the order of half a pixel as shown in Table 7.

Table 7. RMSE [in pixels] of the georeferencingtte Dutch RD coordinate system.

Recording date RMSE X coord. RMSE Y coord. RMSHltot
01-04-2004 0.413 0.214 0.466
15-05-2004 0.365 0.270 0.454
17-07-2004 0.276 0.380 0.470
08-08-2004 0.308 0.352 0.468
10-09-2004 0.360 0.281 0.458
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4.3. SPECTRAL AND TEMPORAL PROFILES

In order to guarantee the collection of spectrghaiure over pure pixels, 10 pure pixels
per class that were surrounded or adjacent by podethe same class were selected from
the dataset. Figure 10 and Annex | present the rspantral signatures for each land
cover type. Although these signatures showed seardap, the land cover spectra were
as expected for all classes. Annual crop types sHaavflat reflectance signature at the
onset and end of the growing season. Instead, lgnaksslepicted a clear vegetation
spectrum with a high reflectance in the near irfda(NIR) for all the dates. Forest and
natural vegetation had similar spectral signatwer dime but the signature of forest for
April 01 (Figure 10) was lower in the NIR because leaf ldifg of deciduous forests
and understory forest species for 2004 occurrethatend of April. Instead, natural
vegetation areas comprised evergreen shrubs asdlgmnd species that presented visible
leaf surface at the end of March (Van Vliet 20@)ilt up areas showed a similar low
NIR spectrum over dates, which can be explainedhbyeffect of green areas such as
gardens and parks allocated within the built uasr&he spectra of water in the visible
and near infrared showed the lowest value andnitabearly be distinguished from other
spectra. Hence, this class can be expected todwoek classification accuracy with only

one image.

MERIS image 01 April 2004
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Figure 10. Spectral signatures for land cover tyjers/ed from MERIS level 2 image.
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The temporal visualization of the nine land cowgres was facilitated by plotting the

MGVI profiles over time (Figure 11). Cereals, poed and other crops depicted a
complete crop cycle. Their profile steady increadad to an aunment in biomass over
time in May — June, reaching peak greenness in-Julye and then a negative trend in
July — September due to senescence and harvest. Begf showed a similar pattern but
it was harvested in November. Grassland did noehagjor changes over time; only a
smooth depletion in August indicated a reductiobiomass possibly due to the mowing
cycle and grazing. Forest and natural vegetatiah $imilar trends over time. Their

profile increased due to aument in biomass betwigail and May reaching greenees
peak in May. Then their profile kept constant otmere. Built up and water showed a flat
profiles over time but water had the lowest proéilee to the low spectral values in the
red and NIR.

Temporal MERIS Global Vegetation Index (MGVI)

1.00

—=— Built u
—m— Cereals
0.80 4 Grassland _
—%— Othercrops
Potatoes

—e— Sugar beet
0.60 ll—@— Forest A— m

—aA— Natural vagetatio
—a— Water

MGVI

0.20 |

0.00 ‘ ‘ ‘
30 50 70 90 110 130 150 170 190 210 230 250 270

Julian day

Figure 11. Temporal MERIS Global Vegetation IngedGVI) spectra for image dates.

The spectral profiles for the different land cowgres also illustrated the high degree of
correlation for bands in the visible (400 — 700 ranjd NIR (750 — 900 nm) wavelength.
Therefore, a correlation matrix between the spkeb@ads was calculated and its results
are presented in Table 8. The visible spectra ®dntill 8) and the NIR (bands 10 till

14) were very correlated. The band 9, designedther red edge region, showed a
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moderate high correlation with the visible bandsvads interesting that the correlation of
the rectified red with band 8 and rectified NIR lwiband 13 was not 1. This can be
associated with the correction carried out to poedgpectral reflectances at TOC.
Nevertheless, the correlation for the rectified rud band 8 was lower than the
correlation for the rectified NIR and band 13. Trd#ference between the two
correlations can be expected because lower wauvblengre more sensitive to

atmospheric scattering than larger wavelengths (@o&t al. 2004).

Table 8. Correlation matrix for the MERIS imageAqfril 1%, 2004.

Band 1 2 3 4 5 6 7 8 9 10 12 13 14  RedRec. MGVI MTCI

Red NIR
[nm] 412 442 490 510 6560 620 665 681 705 754 7755 86890 681 865
2 0.99 1
3 0.98 0.99 1
4 0.98 0.99 1 1
5 093 095 0.96 0.98 1
6 096 096 098 0.99 0.98 1
7 096 095 098 0.98 0.95 1 1
8 096 095 0.98 098 095 0.99 1 1
9 070 0.73 076 079 0.89 083 0.79 0.79 1
10 030 030 031 0.27 010 0.29 035 0.39.20 1
12 032 032 032 029 012 031 036 0.3D.18 1 1
13 035 035 035 031 014 032 038 0.38.18 0.99 1 1

14 035 035 035 032 014 032 0.38 0.3818 099 0.99 1 1

Rec. 084 088 091 092 090 095 096 096 0.7030 032 033 033 1

Red

Rec. 028 029 0.28 025 0.08 026 032 0324 098 098 099 0.990.24 1

NIR

MGVI 0.70 068 0.68 0.67 055 069 0.72 073 01095 0.95 0.96 0.96 0.88 0.95 1

MTCI 059 059 060 060 044 066 068 0.67 02083 0.84 0.83 0.830.68 0.83 0.80 1

(0.30 = negative correlation

The MGVI and MTCI had a strong, positive correlatioetween them and with bands
located in the NIR while displayed a negative datren with the bands in the visible
region. Nevertheless, the MGVI showed a strongeretattion with NIR reflectances than
the MTCI.
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Despite the fact that this correlation matrix wafcalated over grassland areas for the
image of April £, the MTCI showed a weaker negative correlatiomet reflectances
than the MGVI. This unexpected response of the MThich was designed to be
chlorophyll sensitive (Dash and Curran 2004), ceanaliributable to the fact that the
bands 8, 9 and 10 used to calculate the MTCI didcoasider aerosol corrections and
biodirectional reflectance factor issues. Anotresison could have been the there were

not much photosynthetic activity over grasslanctiios image.

The principal component analysis for the MERIS imad April 1% showed that most of
the information (99.78%) was captured in the finsee components (Annex Il). The first
component had high positive loadings from the MGMITCI, and NIR bands. The
second component had high positive loadings from MR bands and the third
component included loadings from all bands in ti@ble region. Hence, most of the
information of a MERIS level 2 image could be corsed in two bands: one in the red
like the rectified red and other in the NIR likeetrectified NIR. In this study we found it
appropriate not to limit the information from termabMERIS images to the combination
of two bands but also to explore the combinatioM@VI and MTCI MERIS level 2

products.

4.4. CLASS SEPARABILITY FROM TEMPORAL PROFILES

The class separability was measured with the JMamkie (Equation 15) using
endmembers defined from 10 pixels per class knawoonsist of a single cover type.
The temporal profiles were designed with the MGWMhich combined information from
the rectified red and rectified NIR bands. The slagter was excluded from the
separability analysis calcualted with the JM distaibecause visual comparisons of its
spectra in the red and NIR regions showed very ggephrability over time. Table 9
shows that the separability between classes ineteas temporal datasets were added up.
A temporal profile coming from five dates was ominto achieve good separability
between crop types. Only the class forest and alauwegetation presented a distance

lower than 1.3, which indicated low separabilitythis study. Therefore these two classes

42



RESULTS AND DISCUSSION

were merged into a natural vegetation class. Birgiljht classes comprising built up,
grassland, potatoes, cereals, other crops, natagdtation, sugar beet and water were
used as target in the output nodes. The JM distaabees between classes for all

temporal profiles are given in Annex .

Although Murakamiet al. (2001) stated that good separabilities betweepscoould be
achieved with at least three images distributedutinout the growing season (i.e. May,
July and August), we found that for our study itswet the case. This can be expected
because the temporal and spectral patterns shamddrsbehavior between class types
except for water. Another explanation for this ebbk that the aforementioned authors
used a large set of temporal fine resolution dédafsem SPOT HVR allowing them to

extract a well defined set of endmembers.

Table 9. Classes with low separability (JM distarcl.3) per scene combination

Temporal profile 1 Temporal profile 2 Temporal prefd Temporal profile 4 Temporal profile 5
Cereals & Potatoes Potatoes & Sugar beet Forestt&veg. Forest & Nat. veg. Forest & Nat. veg.
Cereals & Sugar beet Built up & Other crops Pom®&ugar beet Potatoes & Sugar beet
Potatoes & Sugar beet Forest & Nat. veg. Ceredil&er crops Cereals & Potatoes
Built up & Other crops Cereals & Potatoes CereaRdiatoes Built up & Other crops
Nat. veg. & Potatoes Cereals & Forest Built up &@&tcrops
Cereals & Forest Forest & Other crops Other crofaofatoes
Cereal & Nat. veg. Forest & Grassland Nat. veg.cfafoes
Forest & Sugar beet Nat. veg. & Other crops

Nat. veg. & Sugar beet
Grassland & Potatoes
Cereals & Grasland
Forest & Potatoes
Grassland & Sugar beet
Grassland & Nat. veg.
Forest & Grassland

Nat. veg. Other crops
Built up & Nat. veg.
Forest & Nat. veg.
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4.5. SELECTION OF FFNN PARAMETERS

The majority of the parameters for the FFNNs weasell on results of previous sections
and literature review. These parameters are showiable 10. The number of input layer
nodes corresponded to the number of chosen bamdsage determined in section 4.3
and the number of temporal images giving the ldrgeparability of crops found in
section 4.4. Hence, 10 input layer nodes were asditp the pixel by pixel FFNN and 90
input layer nodes were allocated to the window 3FNN. The number of output layer
nodes makes reference to the eight land cover tgpésed with the JM distance in
section 4.4. We used a single hidden layer bedagsee enough flexibility for the eight
land cover classes to be distinguished in thiggassent (Kanellopoulost al.1992). The
amount of validation and testing samples were @iy based on the guideline proposed
by Kavzoglu and Mather (2003) with 50 samples pess A log sigmoid transfer
function was motivated for the hidden and outpyeta because it allows the outputs to
be interpreted as probabilities ranging from 0 tSihce these outputs approximate to
probabilities they sum to 1, representing eachwutpde the class composition within a
pixel (Bishop 1995). When using this function, strecommended to adopt a resilient
back propagation algorithm because this algoritipdates the weight values based on
the derivate of the sigmoid function and not witlearning rate or momentum. Besides,
this algorithm has proven to be fast and efficiemtmemory when used with a log
sigmoid function (Demutfet al. 2005). The weight initialization values rangednfire0.2

to 0.2 as recommended by Kavzoglu and Mather (2003 cross validation stopping

criteria would stop the training when one of thiofeing situations occurs:

* iterations exceed the limit of 5000
* Mean Square Error (MSE) achieved is lower than 0.01

 MSE error of the validation dataset increases &feconsecutive iterations.

However, Table 10 does not include all necessargrpeters to run the FFNNs. We still
need to evaluate the type of input data for trgriime networks, number of hidden layer

nodes and number of training samples. These paeasnéhough well documented in
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literature, are case specific and therefore thesevdéscriminated after evaluating MSE
coming from trained networks. The networks were tan times in order to avoid
inconsistency for the MSE values and their avenage used to define the performance

of the network. Each parameter is analyzed indegathdin the following subsections.

Table 10. Constant parameter values for trainiegiural network.

Parameter Value
Number of input layer nodes 10 for the pixel bygbikFNN
90 for the 3 by 3 window FFNN
Number of output nodes 8 nodes
Number of hidden layers 1 layer
Number of validation sample 50 per class
Number of testing sample 50 per class
Transfer function Log sigmoid
Training algorithm Resilient backpropagation
Initial weight ranges -0.2,0.2
Stop criteria Cross validation or early stopping
Iterations 5000
Goal 0.01 MSE
Number of consecutive failure 20

iterations

4.5.1. Input data

In order to compare the performance of the FFNN wegetation indices (VIs), using
the MTCI and MGVI, and reflectance value$, (with the rectified red and rectified NIR,
we iteratively trained the FFNNs 10 times with gh@ameters described in Table 10
along with the arbitrary parameters given in Taldle The number of hidden layer nodes
were estimated according to Ripley (1993) for bo#tworks because it includes as
parameters the number of input nodes and outpuéesh@ahd it does not rely on the
selection of constant values for its calculatiomi{leé 5). The training sample used for
both networks was estimated according to Mathe®gL9Equation 18) because it also
includes as parameters the number of input noddsoatput nodes. Nevertheless the
calculated amount of training samples for a 3 byir8low network was too large for this
study (refer to this issue in section 4.5.3). Tfees we used the same amount of training

samples calculated for the pixel by pixel netwdrkcure.
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Table 11. Parameters used for evaluating differgnit data

Pixel by pixel network 3 by 3 window network

9 hidden layer nodes 49 hidden layer nodes
2400 training samples 2400 training samples

Figure 12 depicts the average MSEs and standandtoies for trained networks with
VlIs andp values. The pixel by pixel network and the 3 by 3 windoetwork had lower
average MSEs when trained wjthvalues than VIs. Also their standard deviation was
slight smaller for the trained networks withvalues than VIs. A similar pattern was
obtained for the training iterations of the netwsotkained withp. Annex IV presents the
iteration values obtained for each FFNN. It seerted the sigmoid transfer function
behaved better with input datasets ranging betv@eand 1 in the case pfthan larger
than 1 from the MTCI. In general, the trained 33window FFNN reached lower MSE
than the pixel by pixel FFNN.

An alternative to use the MTCI as input dataseticdctave been its normalization to a
range between 0 and 1. In this study, this premsinog step was not done and we

continued training the networks withdue to its better performance.

Average MSE and standard deviation of network:
trained withVIs and p

Vis

O pixel by pixel

| W 3 by 3 window

Input datast

P +
\ \ \ \ \ \

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036
MSE

Figure 12. Average MSE and standard deviation respdor trained FFNN with VIs and
p.
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4.5.2. Number of hidden layer nodes

The number of hidden layer nodes was estimatedjubm heuristic proposed by Ripley
(1993), Paola (1994), Kanellopoulos and Wilkins&897) and Garson (1998) described
in Table 5. The number of hidden layer nodes faepby pixel FFNN were 9, 30, 30,
and 13, respectively. Estimates for the 3 by 3 wwmd~FNN were 49, 341, 180 and 2,

respectively.
Similar to the approach followed to determine tpprapriate input data, to determine the
number of hidden layer nodes we trained the netsvarith the parameters described in

Table 10 along with the parameters presented iheTkh

Table 12. Parameters used for evaluating diffeneitden layer nodes

Pixel by pixel network 3 by 3 window network
2400 training samples 2400 training samples
p input data p input data

Figure 13 illustrates the average MSEs and stardfartions for trained networks using

the hidden layer nodes estimated with the heusigtiesented in Table 5. For the pixel by
pixel FFNN there were no great differences of therage MSEs among the number of
hidden nodes nor the standard deviations. Howeter method suggested by Garson
(1998) with 13 hidden layer nodes and estimatel waiit r value of 10 performed slightly

better.

For the 3 by 3 window FFNN, the method suggestedshyson (1998) with 2 hidden
layer nodes gave a larger average MSE than othéroohe because the number of hidden
layer nodes was too small to discriminate betwdasses. This small number resulted
from the increase of input nodes in the denominatat the limited number of training
samples in the numerator. Instead, the methodsopeapby Ripley (1993), Paola (1994)
and Kanellopoulos and Wilkinson (1997) with 49, 34dd 180 hidden layer nodes,

respectively, had equal average MSEs and sintdadard deviations.
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Average MSE and s tandard deviation o f pixel by pixel Average MSE and s tandard deviation of 3 by 3 window
networ k networ k
o | | w
% 300 ad) — '% Ml(d) Gy
= | g 1
% % 1200a) =
- 13(e —— ' .
b | B 43k =
i} i B
£ 9(b] ! T 20e) [ p
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0.03 0031 0032 0.033 0054 0035 0.0z 0.025 003 0.035 004 0.045 005
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Figure 13. Average MSE and standard deviation mspdor trained FFNNs with
different numbers of hidden nodes. Number of hidtsmer nodes calculated from: a)
Kanellopoulos and Wilkinson (1997), b) Ripley (1998) Garson (1998) and d) Paola
(1994).

This indicated that estimating the exact numbehidfien layer nodes might require the
use of different methods to define the optimum lesufor a desired network response.
Nevertheless, the final selection of the numbeukhbe towards the lower bound as it
would be more efficient in saving memory, trainmwguld be iteratively faster and the
network would have less probabilities of memorizihg training data (Demutht al.
2005).

For this study we decided to select 13 hidden lapeles proposed by Garson (1998) for
the pixel by pixel network and 49 hidden layer rog@eoposed by Ripley (1993) for the

3 by 3 window network.

In general, the 3 by 3 window FFNN had lower aver®tSE and standard deviation than
the pixel by pixel FFNN, except for the 3 by 3 wind network trained with 2 hidden
layer nodes. The training iterations decreased artlincrease of the hidden layer nodes.

Annex V presents the iteration values for each FFNN

4.5.3. Number of training samples

The number of training samples was calculated usilegmethods proposed by Hush
(1989) in Equation 17, and Mather (1999) in Equati8. Estimates for the pixel by pixel
FFNN were 3300 for Equation 17 and 2400 for Equmati8.
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Estimations for the 3 by 3 window FFNN were 245700Equation 17 and 21600 for
Equation 18. These amounts of training samples wagpropriate because they require
a larger dataset than the one used in this studyedd, we used the number of training
samples calculated for the pixel by pixel netwoltkis important to stress that the
performance of a network with a large training sEmpay not differ much from that of a
much smaller set when the selection of the traindaga is randomly and equally
distributed per class (Paola and Schowengerdt 1®%;0glu and Mather 2003).

Similar to previous parameters, we trained the FENWth the parameters described in
Table 10 along with the most suitable parametaradan section 4.5.1 and section 4.5.2,

both summarized in Table 13.

Table 13. Parameters used for evaluating differaming samples.

Pixel by pixel network Window 3 by 3 network
13 hidden layer nodes 49 hidden layer nodes
p input data profile p input data profile

There were minor differences between the averag&EdM& trained networks with
different training datasets (Figure 14). The 3 wiBdow FFNN trained with a dataset of
3300 pixels had a lower average MSE than the 3 yn8ow FFNN trained with 2400
pixels. Nevertheless, standard deviations of th&eM®&ere larger for the dataset of 3300

pixels.

The pixel by pixel FFNNs had similar MSEs and stadddeviations for both datasets.
Hence the difference in the number of training skettan this study did not have major
influence for training the FFNNSs. Also similar asprevious sections, a 3 by 3 window

FFNN had lower average MSE than a pixel by pixdlRE
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Average MSE and standard deviation of networksz with two

training s ets
a1y |
Emation 17

Hush (1989) H- W3ty 3window

2400 Opixelby pixel
Emation 18 |_|_|

Mather (1995 | | | | |

0021 0023 002s 0027 0.02% 003l 0.033
MSE

Traiming sets

Figure 14. Average MSE and standard deviation mespdor trained FFNNs with two

training sets.

4.5.4. Optimum parameter values

After evaluating several parameters in previousiges the optimum parameter values
for training the pixel by pixel and window 3 by &IRNs for this study are displayed in
Table 14.

Table 14. Optimum setting of network structures

Parameters Pixel by pixel FFNN 3 by 3 window FFNN
Input data profile p p

Number of input layer nodes 10 90

Number of hidden layer nodes 13 49

Number of hidden layers 1 1

Number of output layer nodes 8 8

Number of training samples 2400 2400

Number of validation samples 400 400

Number of testing samples 400 400

Initial weight range [-0.2,0.2] [-0.2,0.2]

Stopping criteria Cross validation Cross validation
Iterations 5000 5000

Goal 0.001 MSE 0.001 MSE

Number of consecutive failure 20 20

iterations

Transfer function Log sigmoid Log sigmoid

Training algorithm Resilient backpropagation Resitibackpropagation
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4.6. SIMULATIONS

Although the performance of the trained networks loa evaluated to some extent by the
MSE of the training set, we decided to evaluaternt®vork response with data that has
not been presented before (testing data). Foptinsose, we used a trained network with
parameters provided in Table 14 and simulatedespanse with the prepared testing

data.

Figures 15 shows that the estimated fractionshferptixel by pixel network did not have

a perfect fit with the known fractions for all cavepes (slope equal to one). The
estimated fractions for built up, natural vegetatiavater and grassland classes had a
strong positive correlation with correlation coeiéint values (R) of 0.71, 0.70, 0.87 and
0.77, respectively. Potatoes and sugar beet estimfaiactions had a positive but
moderate correlation with R values of 0.57 and Q0.B&spectively. The estimated
fractions for cereals and other crops classes vestamated, with positive but low
correlation, with R values of 0.45 and 0.48, retipely. Nevertheless, the outliers had a
great impact for the moderate and low correlatialugs. The scatter plots showed that

the outliers had a great impact for the moderatel@an correlation values

For most classes the data points were clusteredrttsanthe lower left corner of the plot
(indicating the large amount of low fractions p&ass). There were overestimations for
very low fractions and underestimations for higlacfrons. This response can be
explained by the behavior of the log sigmoid tran$finction, as it tends to saturate with

high values and overemphasize with low fractions.

It was interesting that saturation for high valwess different for the land cover types.
For example, the saturation for the simulated foast for potatoes was 0.4, whereas for
grassland it reached 0.9. This can be explainethéyact that most of the fractions of
datasets used for training potatoes ranged from@@&, whereas for grassland they were
well distributed between 0 and 1. Information oa fraction distribution of the training

dataset is presented in Annex VII.
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Figure 16 displays the linear regressions betweemwk and estimated fractions for the 3
by 3 window FFNN. For all classes the points fokmirthe best linear fit. Also there was
a slight increase in their slope values. For examgassland had a slope value of 0.653,
compared to just 0.552 using a pixel by pixel FFNXe built up, natural vegetation,
water and grassland estimated fractions had agspositive correlation with R values of
0.70, 0.80, 0.95 and 0.81, respectively. The eséichdractions for other crops, sugar
beet, potatoes and cereal classes had a positivaedurierate correlation with R values of
0.51, 0.61, 0.60 and 0.60, respectively. In gen#rate was an improvement of the
correlation values for natural vegetation, wateheo crops, grassland, sugar beet and
cereals when compared to the R values using a pxeixel FFNN. This improvement
in the correlation values was due to the reductiberror estimations associated with
outliers. This reduction could be expected as thy 3 window FFNN was trained with

more information on the image.

In addition to the progress of estimated fractiasith neighbor information, there was a
reduction of the saturation of high estimated foat. For example, maximum estimated
values for water was 0.9 with a 3 by 3 window FFMNmpared to 0.8 with a pixel by
pixel FFNN.

The better performance for the simulated fractiocm®ing from a 3 by 3 window FFNNs
could have been foreseen during the selectioneohdétwork parameters (section 4.5). In
all those evaluations the trained 3 by 3 window NBNhad lower average MSEs than the

networks trained with a pixel by pixel FFNN.
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4.7. ANALYSIS OF ESTIMATES AT DIFFERENT SCALES

The information provided during simulations gavesose insight about the potential of
the FFNN to estimate sub-pixel fractions. Howevergvaluate in detail the sub-pixel
estimations and their spatial distribution at diéf@ scales we need to proceed with
another evaluation approach. For this purpose \exteel two regions of 900 ha (10 by
10 MERIS pixels) for potatoes, region I, and grasd| region Il, displayed in Figure 17.
Potatoes class was chosen because it had simtieln peze and patch variability with
sugar beet and cereals, whereas grassland hactargvarying patch size and its pixels
in the LGN5 were more tied to its same class shgwiore homogeneity than areas with
potatoes, sugar beet or cereals. For these twongg@ set of statistics comprising the
root mean square erro(RMSE, the normalized RMSERMSE,,.....s)» Bias and
coefficient of correlation (R) was calculated. Asstapproach contains different scales of
analysis, it is important to mention that we refiee estimated and known sub-pixel
values to the area covered by potatoes or grassiaed the scale (ground area) in
consideration as depicted in Figure 9.

Region

Lepend

- csta
B et up
[ | rassland
4 Fotatoss
- Cereal s
I cther crops
- [at. veg
- Water
7] sugar best
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Figure 17. Regions | and Il selected from the LGN 5
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4.7.1. Analysis for potato estimates

Figure 18 shows in detail the region | with itspestive sub-pixel fractions, known and

estimated values from a pixel by pixel FFNN andlgy3 window FFNN.
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Figure 18. Region | for potato estimates. (a) shtivesland use distribution (LGN 5)

(e

overlaid by a grid cell resembling MERIS pixels) {be fractions of sub-pixels covered
by potatoes represented in grey scale (known @as}i (c) estimated fractions with a
pixel by pixel FFNN structure. (d) estimated fraos with a 3 by 3 window FFNN

structure.
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Figure 18a shows that a large part of the MERI&Ipifor this region are dominated by
mixed pixels. Visual comparisons of the fractiomahge using the pixel by pixel FFNN
(Figure 18c) and 3 by 3 window FFNN (Figure 18d)hwknown potato fractions (Figure

18b) did not show any correspondence at pixel level

Statistical comparisons for both FFNN structurémvweed in Figure 19, confirmed the
above visual assessment. The R values for bothonletvwere around 0.25 at a ground
area of 9 ha (MERIS pixel size of 300m). Nevertbglen increase in area of analysis at
81 ha produced an increase in R values of 0.41pined by pixel FFNN and of 0.85 in a
window 3 by 3 FFNN. This increase in precision vedso showed in the calculated
RMSE and the RMSEmaizea Their values decreased from 26% error area of agtisito
around 7 % for the RMSE and from 120% error areastimates to around 5% for the
RMSE ormaiizea Similar results were obtained by Townshextdal. (2000), Huanget al.
(2002) and Lobell and Asner (2004). They associ#ttedow accuracies at sensor pixel
level to uncertainties coming from atmospheric &#g sensor response and landscape
heterogeneity.

As we aggregated the spatial area of analysiggtoand area of 18 ha (2 MERIS pixels)
over the horizontal axis (E-W) and vertical axisQIN the calculated R values from the
pixel by pixel FFNN showed some big differences.e Thggregated area over the
horizontal axis (E-W) had a R value of 0.53, witiie aggregated area over the vertical
axis (N-S) had a R value of 0.3. This differencé& could have been originated from
erroneous estimations during the simulations bexdis effect is smoothed out when
using a 3 by 3 window FFNN.

The information provided by the RM&fnaizea had great differences with the
information provided by the RMSE. For example atale of 9 ha the error of estimates
with the RMSE was 2.52 ha (28%) for the estimatethjp area while the correlation of
the estimated values was very low with R value®.8b for both networks. Instead the
error of estimates calculated with the RMSEaizeawas 10.8 ha (120%). This difference
in values was because the average known potatgareaib-region was 2.06 ha which is
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below the estimated error calculated with the RM8Ence the normalization of the
RMSE for information on area distribution can pd®imeasurements that are better
related to other accuracy methods used for suld-giggmations like coefficients of

correlation.

The bias error of the potato estimates was aroedaid positive that meant a low
systematic overprediction of the estimates. Thislwaexpected from the behavior of the

log sigmoid transfer function, as it tends to ongpbasize low estimates.

As region | included small areas covered with deasl estimations over grassland at 9
ha had a positive moderate correlation with a Revalf 0.50 for the pixel by pixel FFNN

and positive strong correlation with a R value af0for the 3 by 3 window FFNN.
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Figure 19. RMSE, RMSEmaiizea, R @and Bias for MERIS estimates of potato area at
different spatial scales. The legend N-S and E-Wesponds to the aggregation along
the vertical axis and horizontal axis, respectivatyanalysis scale of 18 ha.
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4.7.2. Analysis for grassland estimates

As low estimates of potato fractions could be e#ab the very little composition of this
class in the landscape and lack of training sampiés large fractions, we decided to
carry out a similar analysis with grassland thahpased 22.3% of the whole study area

and was trained with equally distributed fractioRggure 20 presents the region Il with

its respective sub-pixel fractions, known and eated values for grassland, from a pixel
by pixel FFNN and a 3 by 3 window FFNN.
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Figure 20. Region Il for grassland estimates. k@as the land use distribution (LGN 5)
overlaid by a grid cell resembling MERIS pixels) {be fractions of sub-pixels covered
by grassland represented in grey scale (knownidraslt (c) estimated fractions with a
pixel by pixel FFNN structure. (d) estimated fraos with a window 3 by 3 FFNN

structure.
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Region Il shows that large proportion of the MERIQels are dominated by the class
grassland. Visual comparisons of the fractionalgesaderived using the pixel by pixel
FFENN, Figure 20c, and 3 by 3 window FFNN, Figurel 2dth known grassland fractions
Figure 20b presented a pretty good spatial correfgrace between the known
proportions and its estimated values at pixel lexdo grassland patches were spatially

well distributed throughout the region.

The statistics showed in Figure 21 for both FFNN&tres confirmed the above visual
assessment. Estimated grassland fractions weréveoand strong correlated with R

values around 0.72 at 9 ha for both networks.

An increase in area of analysis of the estimatasthe pixel by pixel FFNN and 3 by 3
window FFENN, produced also an increase in the @aroms, with R values of 0.95 at 81
ha, compared to 0.72 at 9 ha. This increase ingoecwas also apparent by a decrease
in RMSE and RMSFEymaizea The RMSE were reduced from 28% at 9 ha to 14 @®ilat

ha for the pixel by pixel FFNN and from 25% at 9thall1% at 81 ha for the 3 by 3
window FFNN. The RMSkmaizeapercentages were reduced from 50% at 9 ha to 3% at
81 ha for the pixel by pixel FFNN and from 45% di®to 3% at 81 ha for the window 3
by 3 FFNN. In addition, uncertainties associatethwie direction of aggregation at a

scale of 18 ha were not significant.

The bias for grassland estimated values was arad#dwhich meant an underprediction
over high fractions. It was negative due to thedércty of the log sigmoid transfer

function to underestimate high fractions.

In general the window 3 by 3 FFNN structure was engrecise and accurate in
estimating sub-pixel area information for grasslaman the pixel by pixel FFNN at a

scale of 9 ha.

As region Il includes small areas covered with fu#a, we calculated its correlation

between estimates and known areas at a spatia oté@l ha. The pixel by pixel FFNN
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had a positive low correlation with a R value of).while the 3 by 3 window FFNN had
a positive low correlation with a R value of 0.9Despite that R values were low
correlated at 9 ha, they are larger to the coioglatmeasured in region |, for potatoes,
with R values of 0.25 at 9 ha. This general improgat in correlation values over more
homogeneous areas like in region Il might be ergldiby the fact that accuracy of
estimations significantly decreases over heterogemeareas (Moodyet al. 1996).
Nevertheless, the distribution of training samplsesd to train the networks might have
also significantly influenced the estimations oheterogeneous and more homogenous
regions. For example, grassland areas were postieag correlated with R values
around 0.75 for both regions.
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R of estimates for pixel by pixel FFNN
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Figure 21. RMSE, RMSEmaized, R @and Bias for MERIS estimates of grasland area at
different spatial scales. The legend N-S and E-Wesponds to the aggregation along

the vertical axis and horizontal axis, respectivedy an analysis scale of 18 ha.
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1. CONCLUSIONS

Results of this study show the potential of exirersub-pixel crop area estimates from
time series of MERIS level 2 datasets by usingx&lpby pixel Feedforward Atrtificial
Neural Network (FFNN) and a 3 by 3 window FFNN.

The approach used in this study to assess the adelsr of crop types from multi-
temporal and multi-spectral datasets followed aalieation of the spectral signatures of
crops per image and over time. Calculation of datien coefficients and principal
components for the MERIS level 2 bands and prodsiotsved that MERIS have a high
degree of redundant information in its spectraldsafor the visible and near infrared.
Vegetation indices (VIs) showed high correlationthwthe NIR bands. Most of the
information could thus be comprised in MERIS le2gdroducts rectified red and NIR or
a combination of the two using the MGVI. Separ&pibf temporal spectral signatures
measured with the JM distance revealed that fordgeeparability, distance values
between 1.3 and 1.4, the quantity of MERIS images wore important than their
position at the onset, middle and end of the grgwseason. The resulting spectral
signatures using all five MERIS datasets showedlggeparability between crops, only
the classes forest and natural vegetation, whidhah#M-value of 1.25, were merged into
a single class.

Based on the temporal profiles and output clagsedést parameter values for training
of FFNNs were obtained by using as input datasets, 13 hidden layer nodes for @ pix
by pixel FFNN as proposed by Garson (1998) and idéem layer nodes for a 3 by 3
window FFNN as proposed by Ripley (1993) and 24@fhing samples as proposed by
Hush (1989). Although the guideline proposed by Zalu and Mather (2003) facilitates
the process of design and use of neural netwonksrtts an operational application,
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parameters such as number of hidden layer nodeswantder of training samples need to

be adjusted to case-by-case.

Neighbor pixel information from MERIS datasets iioyped the sub-pixel crop estimates.
The sub-pixel estimations with a 3 by 3 window FEN®I instance, had coefficient of

correlation (R) values of 0.81 for grassland, Oi&lsugar beet, 0.60 for potatoes and
0.60 for cereals; compared to sub-pixel estimatisits R values of 0.77 for grassland,

0.55 for sugar beet, 0.57 for potatoes and 0.4%doeals using a pixel by pixel FFNN.

The improvement in the correlations can be expthlmga reduction of errors associated
with the outliers. Another interesting effect ofings neighbor information was the

reduction of the saturation effect for high estiesadue to the behavior of the log sigmoid
function. For example, maximum estimated value @ter was 0.9 with a 3 by 3

window FFNN, compared to 0.8 with a pixel by pik&INN.

Accuracy of sub-pixel crop area estimates changih the spatial scale of analysis,
which ranged from 9 ha to 900 ha. Analysis for pm&stimates at different spatial scales
yielded R values from 0.25 at 9 ha to 0.85 at apatiales over 81 ha using a 3 by 3
window FFNN. For grassland, there was an incre&sed R values of 0.72 at 9 ha to
0.95 at spatial scales over 81 ha using a 3 byn8aw FFNN. Such increase in precision
as function of the spatial scale produced a redador RMSE values. For example, the
RMSE,omaiizeaOVer grassland were reduced from 45% error aresstihates at 9 ha to
3% at 81 ha for the 3 by 3 window FFNN. Accuracy aobp area estimates over
heterogeneous regions as depeicted in region Ipdtatoes, was lower than in regions
with a more homogenous area as presented in réigiftor grassland. Nevertheless, this
low estimation can not only be related to hetereggrof the landscape but also to the
training samples used for describing potato andsgimad fractions. Besides, it was
important to quantify the systematic error comirmni the log sigmoid function that was

around 7% area of estimates for low estimated sadunel —7% for high estimated values.
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5.2. RECOMMENDATIONS

Future research drawing on and furthering the pitestedy may include:

Definition of temporal profiles with higher tempbr@solutions would provide a better
definition of the endmembers. In addition, defmitiof endmembers in terms of VI's
should be further explored with VI's ranging betwdkand 1 or otherwise normalization
into this range.

Although most of the ANN studies in remote sendike the transfer sigmoid function
as given, implementation of other transfer fundievith output values ranging between
0 and 1 could reduce the saturation effect for Hrglations and overestimation of low

fractions.

The training sample can be optimized by the usdook up tables combining the
different ranges of proportion per class of interéfisneeded training samples for pure
pixels might also be derived from a combinationcadp growth models and radiative
transfer models (Lobell and Asner 2004).

The effect on accuracy of sub-pixel area estimasasg other sources of ancillary data
like soil or topographic maps needs further exglora In addition, the evaluation of the
accuracy at sub-pixel level needs a standardizaticstatistical methods. In this study,
the implemented RMSEmaizedproves to be useful when evaluating accuracy astisn
at pixel level. It normalizes the RMSE with infortizen on class distribution, making the
measurements better related to other accuracy ohethsed for sub-pixel estimations
like the coefficient of correlation.
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ANNEX

ANNEX |: SPECTRAL SIGNATURES OF LAND COVER
TYPES
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Figure 22a. Spectral signatures for land coverdygerived from MERIS level 2 images
of April 1%and May 18, 2004.
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MERIS image 17 July 2004
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Figure 22b. Spectral signatures for land covergygerived from MERIS level 2 images
of July 17" and August 08, 2004.
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MERIS image 10 September 2004
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Figure 22c. Spectral signatures for land coversygerived from MERIS level 2 images
of September 1% 2004.
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ANNEX

ANNEX I|I: PRINCIPAL COMPONENT ANALYSIS FOR
THE MERIS IMAGE OF APRIL 1 ¥, 2004

Table 15. Principal component analysis for the MERhage of April ¥, 2004.

Principal Explained Cumulative
component variance (%) variance (%)
1 93.58 93.58

2 3.29 96.87

3 2.91 99.78

4 0.16 99.94

5 0.04 99.98

6 0.01 99.99

7 0.01 100.00

8 0.00 100.00

9 0.00 100.00

10 0.00 100.00

11 0.00 100.00

12 0.00 100.00

13 0.00 100.00

14 0.00 100.00

15 0.00 100.00

16 0.00 100.00

17 0.00 100.00
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ANNEX

ANNEX IlI: IM DISTANCE VALUES BETWEEN CLASES FOR TE MPORAL PROFILES

Table 16. JM Distances values between classes. §rg separability: 1.414 and Low separability:3<1.

Temporal profile 1

M

Temporal profile 2

M Tempdqgueofile 3

M

Temporal profile 4

M Temporal prefb

JM

Cereals & Potatoes
Cereals & Sugar beet
Potatoes & Sugar beet
Built up & Other crops
Nat Veg & Potatoes
Cereals & Forest
Cereals & Nat Veg
Forest & Sugarbeet

Nat Veg & Sugar beet
Grassland & Potatoes
Cereals & Grassland
Forest & Potatoes
Grassland & Sugar beet
Grassland & Nat Veg
Forest & Grassland

Nat Veg & Other crops
Built up & Nat Veg
Forest & Nat Veg

Built up & Potatoes
Other crops & Potatoes
Cereals & Other crops
Built up & Cereals
Forest & Other crops
Other crops & Sugar beet
Built up & Sugar beet
Built up & Forest
Grassland & Other crops
Built up & Grassland

0.429
0.469
0.699
0.778
0.781
0.956
0.984
1.078
1.093
1.113
1.131
1.139
1.146
1.206
1.237
1.247
1.261
1.287
1.339
1.346
1.363
1.363
1.389
1.391
1.403
1.412
1414
1.414

Potatoes & Sugar beet

Built up &Other crops
Forest & Nat Veg
Cereals & Potatoes
Cereals & Forest
Forest & Other crops
Forest & Grassland
Nat Veg &Other crops
Grassland & Nat Veg
Cereals & Sugar beet
Built up & Forest
Built up & Nat Veg
Forest & Potatoes
Cereals & Grassland
Cereals & Nat Veg
Nat Veg & Potatoes
Other crops & Potatoes
Nat Veg & Sugar beet
Forest & Sugar beet

Cereals & Other crops

Built up & Potatoes

Other crops & Sugar beet .412

Built up & Cereals
Built up & Sugartbee

Grassland & Potatoes

Grassland & Othegoro

Built up & Grassland

1.410

1.414
Grassland & Sugar beet 1.414

1.414

30.6%orest & Nat Veg
956. Potatoes & Sugar beet
0.988ereals & Other crops
96.0 Cereals & Potatoes
1.186 ItBpi& Other crops
1.221 thefcrops & Potatoes
1.261 t Mg & Potatoes
1.30@orest & Other crops
8.30Built up & Potatoes
091.3 Built up & Cereals
1.319 rassland & Nat Veg
1.323 rdsb& Grassland
21.3@Nat Veg & Other crops
1.36Borest & Potatoes
1.382 iltBp & Forest
8.38 Cereals & Forest
084 Cereals & Sugar beet
1.406 the®crops & Sugar beet
1.40Tereals & Nat Veg
Nat Veg & Sugar beet
1@.4 Built up & Nat Veg
Built up & Sugar beet
1.413Forest & Sugar beet
Cereals & Grassland
Grassland & Other crops
1.4145rassland & Sugar beet
Built up & Grassland
M4  Grassland & Potatoes

1.139
1.192
1.239
1.259
1.286
1.291
1.295
1.323
1.344
1.347
1.363
1.366
1.376
1.381
1.381
1.383
1.389
1.395
1.396
1.400
1.403
1.406
1.409
1.414
1.414
1.414
1414
1.414

Forest & Nat Veg
Potatoes & Sugdr be
Cereals & Potatoes
Built up & Other crops
Forest & Other crops
Forest & Grassland
Nat Veg & Other crops
Built up & Forest
Grassland & Nat Veg
Built up & Nat Veg
Cereals & Sugar beet
Forest & Potatoes
Nat Veg & Potatoes
Cereals & Forest
Other crops & Potatoes
Cereals & Other crops
Forest & Sugar beet
Built up & Potatoes
Cereals & Nat Veg
Grassland & Shgat
Cereals & Grassland
Built up & Cereals
Grassland & Potatoes
Nat Veg & Sugat b
Other cropsiga® beet
Built up & Sugar beet
Grassland &ebtrops
Built up & Grassland

1.077 €Bb’& Nat Veg
1.147 Built up &Other crops
81.22Potatoes & Sugar beet
1.262 Forest & Other crops
6.31 Cereals & Potatoes
41.32Nat Veg & Other crops
1.339Grassland & Nat Veg
1.370Cereals & Sugar beet
71.3 Forest & Grassland
1237 Built up & Forest
1.38Built up & Nat Veg
1.393 dFé&®otatoes
403. Nat Veg &Potatoes
1.407 ed&ek Forest
1.4080ther crops & Potatoes
21.41 Forest & Sugar beet

4141 Cereals & Other crops

414 Cereals & Nat Veg
1.414 iltBy &Potatoes

1.414 Cereals & Grassland

184 Nat Veg & Sugar beet
1.414 Other crops & Sugar beet
141.4 Built up & Cereals

1414 Grassland & Sugar beet
1414 Built up & Sugar beet
1.414 Grassland & Other crops
1414 Built up & Grassland
1.414 Grassland & Potatoes

1.254
1.349
1.351
1.367
1.369
1.389
1.395
1.397
1.398
1.403
1.409
1.410
1.411
1.413
1414
1414
1.414
1.414
1414
1.414
1.414
1414
1.414
1414
1.414
1.414
1.414
1.414
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ANNEX

ANNEX IV: MSEs OF TRAINED NETWORKS WITH Vs
AND p

Pixel by Pixel FFNN Matlab code trained wittand ViIs.

net_sample = newff(minmax(data), [9, 8], products:, 'trainrp’);
net_sample.trainParam.show = 50;
net_sample.trainParam.epochs = 5000;
net_sample.trainParam.goal = 0.01;
net_sample.trainParam.max_fail = 20;
net_sample.layers347.initFcn = 'initwb’;
net_sample.inputWeights{1,1}.initFcn = 'myinit’;
net_sample = init(net_sample);

net_trained = train(net_sampjle,data, t data, [], [], VV);
estimated_test = sim(net_traingddata);

input_profile =t_data - estimated_test;

perf_input_profile = mse(input_profile);

Table 17a. MSE values for pixel by pixel FFNNsried withp.

lterations MSE

468 0.033
339 0.033
347 0.033
558 0.033
426 0.034
416 0.033
292 0.033
392 0.033
339 0.033
631 0.033
Mean 421 0.033
S 106 0.000316

s = Standard deviation
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ANNEX

Pixel by Pixel FFNN Matlab code trained with Vis.

net_sample = newff(minmax(dataVl), [13, 8] ,{'log'si'logsig'}, 'trainrp’);
net_sample.trainParam.show = 50;
net_sample.trainParam.epochs = 5000;
net_sample.trainParam.goal = 0.01;
net_sample.trainParam.max_fail = 20;
net_sample.layers{1}.initFcn = initwb’;
net_sample.inputWeights{1,1}.initFcn = 'myinit’;
net_sample = init(net_sample);

net_trained = train(net_sample, dataVl, t_datal[][VV_IV);
estimated_test = sim(net_trained, dataVl);

input_profile =t_dataVI - estimated_test;

perf_input_profile = mse(input_profile);

Table 17b. MSE values for pixel by pixel FFNNsed with VIs.

lterations MSE

1203 0.033
257 0.034
395 0.034
621 0.034
841 0.033
763 0.034
785 0.034
734 0.034
705 0.033
1786 0.034
Mean 809 0.034
S 427 0.000483

s = Standard deviation

82



ANNEX

Window 3 by 3 FFNN Matlab code trained wijth

net_sample = newff(minmgx(data_n), [49, 8] ,{'logsig’, 'logsig'}, 'trainrp")
net_sample.trainParam.show = 50;

net_sample.trainParam.epochs = 5000;

net_sample.trainParam.goal = 0.01;

net_sample.trainParam.max_fail = 20;

net_sample.layers{1}.initFcn = initwb’;
net_sample.inputWeights{1,1}.initFcn = 'myinit’;

net_sample = init(net_sample);

net_trained = train(net_sampfe,data_n, t_data n, [], [], VV_neighbor);
estimated_test = sim(net_traingddata_n);

input_profile =t_data_n - estimated_test;

perf_input_profile = mse(input_profile);

Table 17c. MSE values for window 3 by 3 FFNNSs tealinvithp.

lterations MSE

178 0.025
150 0.027
237 0.024
163 0.026
174 0.026
300 0.024
182 0.025
134 0.026
224 0.024
167 0.025
Mean 191 0.025
S 49.34 0.00103

s = Standard deviation
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ANNEX

Window 3 by 3 FFNN Matlab code trained with VIs.

net_sample = newff(minmax(dataVl_n), [49, 8] ,{'tg, 'logsig’}, 'trainrp’);
net_sample.trainParam.show = 50;

net_sample.trainParam.epochs = 5000;

net_sample.trainParam.goal = 0.01;

net_sample.trainParam.max_fail = 20;

net_sample.layers{1}.initFcn = initwb’;
net_sample.inputWeights{1,1}.initFcn = 'myinit’;

net_sample = init(net_sample);

net_trained = train(net_sample, dataVI_n, t_dataV]], [], VV_IV_neighbor);
estimated_test = sim(net_trained, dataVI_n);

input_profile =t_dataVI_n - estimated_test;

perf_input_profile = mse(input_profile);

Table 17d. MSE values for window 3 by 3 FFNNSs teainvith VIs.

lterations MSE

213 0.028
255 0.026
175 0.028
212 0.026
178 0.026
242 0.028
210 0.028
235 0.026
293 0.025
238 0.025
Mean 225 0.027
S 35.48 0.0012

s = Standard deviation
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ANNEX

ANNEX V: MSEs OF TRAINED NETWORKS WITH
DIFERENT NUMBER OF HIDDEN LAYER NODES

Pixel by pixel FFNN Matlab code trained with 9,4:3d 30 hidden layer nodes.

net_sample = newff(minmax(data), [(9,13, and 30), 8] {'logsig’, 'logsigtainrp");
net_sample.trainParam.show = 50;
net_sample.trainParam.epochs = 5000;
net_sample.trainParam.goal = 0.01;
net_sample.trainParam.max_fail = 20;
net_sample.layers{1}.initFcn = "initwb’;
net_sample.inputWeights{1,1}.initFcn = 'myinit’;
net_sample = init(net_sample);

net_trained = train(net_sample, p_data, t_datfi, N,V);
estimated_test = sim(net_trained, p_data);
input_profile = t_data - estimated_test;

perf_input_profile = mse(input_profile);

Table 18a. MSE values for pixel by pixel FFNNs wthidden layer nodes.

lterations MSE

468 0.033
339 0.033
347 0.033
558 0.033
426 0.034
416 0.033
292 0.033
392 0.033
339 0.033
631 0.033
Mean 421 0.033
S 106 0.000316

s = Standard deviation
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ANNEX

Table 18b. MSE values for pixel by pixel FFNNs witB hidden layer nodes.

lterations MSE
208 0.032
345 0.032
579 0.032
329 0.033
373 0.032
347 0.032
374 0.032
352 0.032
345 0.032
345 0.032
Mean 360 0.032
S 90.24 0.00032

s = Standard deviation

Table 18c. MSE values for pixel by pixel FFNNs wa hidden layer nodes.

lterations MSE
417 0.033
356 0.033
265 0.032
177 0.033
295 0.033
206 0.032
208 0.033
242 0.032
160 0.033
393 0.032
Mean 272 0.033
S 90.81 0.00051

Window 3 by 3 FFNN Matlab code trained with 2, 480 and 341 hidden layer nodes.

net_sample = newff(minmagx(data_n), [(2, 49, 180 and 341) , 8] {logsiggsig’},

‘trainrp’);

net_sample.trainParam.show = 50;

net_sample.trainParam.epochs = 5000;

net_sample.trainParam.goal = 0.01;

net_sample.trainParam.max_fail = 20;
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ANNEX

net_sample.layers{1}.initFcn = "initwb’;
net_sample.inputWeights{1,1}.initFcn = 'myinit’;

net_sample = init(net_sample);

net_trained = train(net_sampfe,data_n, t_data_n, [], [], VV_neighbor);
estimated_test = sim(net_traingddata_n);

input_profile =t_data_n - estimated_test;

perf_input_profile = mse(input_profile);

Table 18d. MSE values for window 3 by 3 FFNNs vdthidden layer nodes.

Iterations MSE

2601 0.037
1347 0.034
740 0.044
429 0.040
306 0.041
363 0.044
311 0.044
427 0.043
333 0.040
377 0.044
Mean 723 0.041
S 733 0.003446

s = Standard deviation

Table 18e. MSE values for window 3 by 3 FFNNs wi¢hhidden layer nodes.

lterations MSE

178 0.025
150 0.027
237 0.024
163 0.026
174 0.026
300 0.024
182 0.025
134 0.026
224 0.024
167 0.025
Mean 191 0.025
S 49.34 0.00103
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ANNEX

Table 18f. MSE values for window 3 by 3 FFNNs wi0 hidden layer nodes.

lterations MSE

169 0.025
190 0.024
243 0.023
156 0.025
157 0.025
212 0.024
179 0.026
124 0.026
169 0.025
223 0.023
Mean 182 0.025
S 35.55 0.001075

s = Standard deviation

Table 18g. MSE values for window 3 by 3 FFNNs vd#i hidden layer nodes.

lterations MSE

214 0.024
160 0.025
204 0.025
179 0.025
179 0.025
260 0.024
258 0.023
133 0.025
188 0.025
223 0.024
Mean 182 0.025
S 40.58 0.000707
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ANNEX

ANNEX VI: MSEs OF TRAINED NETWORKS WITH 2400
AND 3300 TRAINING PIXELS

Pixel by pixel FFNN Matlab code trained with 240@&8300 training samples.

net_sample = newff(minmax(p_data2[2400 or 330QJ3, B] ,{'logsig’, 'logsig'},
‘trainrp");

net_sample.trainParam.show = 50;

net_sample.trainParam.epochs = 5000;

net_sample.trainParam.goal = 0.01;

net_sample.trainParam.max_fail = 20;

net_sample.layers{1}.initFcn = "initwb’;
net_sample.inputWeights{1,1}.initFcn = 'myinit’;

net_sample = init(net_sample);

net_trained = train(net_sample, p_data2, t daté@(2r 3300], [], [], VV);
estimated_test = sim(net_trained, p_data2);

input_profile = t_data2 - estimated_test;

perf_input_profile = mse(input_profile);

Table 19a. MSE values for pixel by pixel FFNNsread with 2400 training samples.

lterations MSE

208 0.032
345 0.032
579 0.032
329 0.033
373 0.032
347 0.032
374 0.032
352 0.032
345 0.032
345 0.032
Mean 360 0.032
S 90.25 0.000316

s = Standard deviation
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Table 19b. MSE values for pixel by pixel FFNNsmied with 3300 training samples.

[terations MSE

754 0.032
667 0.032
442 0.032
769 0.033
364 0.032
283 0.032
492 0.032
749 0.032
667 0.032
584 0.032
Mean 577 0.032
S 174 0.000316

s = Standard deviation

Window 3 by 3 FFNN Matlab code trained with 240@ &300 training samples.

net_sample = newff(minmax(p_data2_n [2400 or 33089, 8] {'logsig’, 'logsig'},
‘trainrp’);

net_sample.trainParam.show = 50;

net_sample.trainParam.epochs = 5000;

net_sample.trainParam.goal = 0.01;

net_sample.trainParam.max_fail = 20;

net_sample.layers{1}.initFcn = initwb’;
net_sample.inputWeights{1,1}.initFcn = 'myinit’;

net_sample = init(net_sample);

net_trained = train(net_sample, p_data2_n, t_dat§2400 or 3300], [], [I,
VV_neighbor);

estimated_test = sim(net_trained, p_data2_n);

input_profile =t_data2_n - estimated_test;

perf_input_profile = mse(input_profile);
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ANNEX

Table 19c. MSE values for window 3 by 3 FFNNSs tegirwith 2400 training samples.

lterations MSE

178 0.025
150 0.027
237 0.024
163 0.026
174 0.026
300 0.024
182 0.025
134 0.026
224 0.024
167 0.025
Mean 191 0.025
S 49.34 0.001033

s = Standard deviation

Table 19d. MSE values for window 3 by 3 FFNNs teainvith 3300 training samples.

lterations MSE

243 0.024
280 0.023
166 0.026
257 0.023
366 0.022
271 0.022
141 0.027
155 0.026
201 0.025
183 0.026
Mean 191 0.024
S 70.02 0.001838
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ANNEX

ANNEX VII: DISTRIBUTION OF TRAINED SAMPLES PER FRAC TION RANGE
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Figure 23. Distribution of training samples perfrans.
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