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ABSTRACT 

 

 

The need for regular information on crop area distribution in European landscapes makes 

of MERIS a good candidate for temporal monitoring of agricultural systems. 

Nevertheless, MERIS 300 m spatial resolution might still be too coarse for a hard 

classification approach because crop fields can be smaller in size than a MERIS pixel. 

Therefore, the potential for retrieving sub-pixel information from temporal MERIS 

datasets over crop areas using feedforward artificial neural networks (FFNNs) was 

evaluated in this study. Two kinds of network structures, the first one using single pixel 

information and the second one using neighbor information from a 3 by 3 pixel window, 

were evaluated to estimate sub-pixel fractions based on five MERIS level 2 full 

resolution images. The five MERIS level 2 datasets were distributed over the growing 

season and covered the province of Noord-Holland in The Netherlands. A thematically 

and spatially aggregated version of the Dutch land use database (LGN5), with the main 

economically important agricultural land cover types for The Netherlands (grassland, 

potatoes, sugar beet and cereals), was used to reference the MERIS datasets. The LGN5 

was also utilized for selection of training, validation and testing samples. Sub-pixel 

estimations coming from the trained 3 by 3 window FFNN were more precise than the 

estimations coming from a trained single pixel FFNN. The precision for potato area 

estimates with a 3 by 3 window FFNN for different spatial scales ranged with coefficient 

of correlation (R) values from 0.25 at 9 ha to 0.85 at ground areas over 81 ha. For 

grassland, area estimates ranged with R values from 0.75 at 9 ha to 0.95 at ground areas 

over 81 ha. Further studies should include a definition of the temporal profiles with more 

temporal datasets and adoption of look-up tables for training the neural networks.    

 

 

Keywords: Crop distribution; MERIS; non linear; neural network; feedforward; 

unmixing 
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1. INTRODUCTION  

 

 

1.1. BACKGROUND 

 

Updated information on agricultural landscapes is necessary for land use planning, 

policymaking and monitoring food production. In The Netherlands, for example, the 

policy of crop rotation on grassland systems and high input – high output annual crops 

like potatoes and sugar beet led to a reduction of nutrients leaching to ground water and 

pesticides emissions to air (CCSE-SWCC 1997). In addition, monitoring crop distribution 

is important in regions where taxation and subsidies depend on the area and crop type. 

For example, starting July 1st 2006, the European Union will subsidize agricultural 

regions that convert sugar beet crop areas into other land use types in order to reduce 

sugar production (European-Commission 2006).  

 

Traditionally, estimates of cropland distribution have been generated by supervised 

classification of multi-temporal satellite datasets of, for instance, National Oceanic and 

Atmospheric Administration’s (NOAA) Advanced Very High Resolution Radiometer 

(AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) or Satellite Pour 

l’Observation de la Terre (SPOT) High Resolution Visible (HRV), among others. With 

multi-temporal AVHRR data, Quarmby et al. (1992) and Atkinson et al. (1997) 

developed land cover maps over large areas of Europe. However, this coarse scale might 

be still inappropriate for monitoring purposes due to the scale at which most land cover 

changes occur in Europe (Mücher et al. 2000). The use of high spatial resolution datasets 

like SPOT HRV or Landsat Thematic Mapper (TM) has generated well detailed 

information on crop cover at regional level (Jewell 1989, Murakami et al. 2001, De Wit 

and Clevers 2004). However, the large amount of data over large areas and its restricted 

availability due to cloud cover present limitations for using high spatial resolution for this 

approach (Brisco and Brown 1995, Sakamoto et al. 2005).  
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Medium resolution sensors such as Moderate Resolution Imaging Spectrometer (MODIS) 

and MERIS can bridge the gap between high and coarse spatial resolution. The area 

depicted by a MERIS pixel at 300 m is more than ten fold smaller than an AVHRR pixel 

and 100 fold larger than a Landsat TM pixel. With MERIS data, Verstraete et al. (1999) 

and Clevers et al. (2006) have demonstrated the potential of MERIS temporal and spatial 

characteristics for monitoring heterogeneous landscapes at regional and continental 

scales. Nevertheless, it is evident that for agricultural landscapes in Europe with field size 

lower than 300 m, MERIS pixels are coarse and great proportions of the image might be 

dominated by mixed pixels comprising different crop types. 

 

In order to overcome the mixed pixel problem, a variety of physical, statistical and non-

parametric techniques may be used to derive sub-pixel information from mixed pixels. 

For instance, physical linear mixing models (Foody and Cox 1994) assume a linear 

combination of class signatures weighted by the class proportions to estimate sub-pixel 

compositions. Statistical methods such as fuzzy C-means classification (Bezdek et al. 

1984) assume a degree of membership associated to each class by the distance of a mixed 

pixel to the class mean. Although these methods have been applied for extracting sub-

pixel information on land cover types, they are conditioned to data distribution such as 

Gaussian distribution (Paola and Schowengerdt 1995) and selection of endmembers 

(Atkinson et al. 1997).  

 

These limitations have lead to more sophisticated methods like artificial neutral networks 

(Atkinson and Tatnall 1997) which do not assume a priori knowledge of the data. This 

non-parametric nature allows artificial neural networks to be more robust when datasets 

are not normally distributed and include mixed pixels in the training stage (Foody 2004). 

In addition, it is generally agreed that artificial neural networks produce classifications 

with higher accuracies than those generated through other methods (Atkinson and Tatnall 

1997, Braswell et al. 2003, Foody and Mathur 2004). However, its complex design and 

slow training rate due to the trial and error process used to determine parameters such as 

number of training samples and number of layer nodes have limited their use in 
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classification approaches (Kavzoglu and Mather 2003). For this study an artificial neural 

network approach was used to estimate crop area from multi-temporal MERIS datasets. 

 

1.2. PROBLEM DEFINITION 

 

Preliminary studies have demonstrated the potential of using MERIS full resolution (300 

m) for hard classification of land cover types (Verstraete et al. 1999, Clevers et al. 2006). 

However, hard classification of agricultural crops with MERIS data would be 

inappropriate for agricultural landscapes dominated by mixed pixels comprising various 

crop types. This study is therefore designed to derive sub-pixel area information from 

multi-temporal MERIS datasets on agricultural crops. A good methodology for deriving 

information on the area of agricultural crops from MERIS at sub-pixel level is not yet 

available. Further sub-pixel accuracy improvements of agricultural crops can be expected 

by using multi-temporal MERIS datasets over the growing season (Lobell and Asner 

2004). 

 

1.3. RESEARCH OBJECTIVES 

     

The main objective of this thesis work was to evaluate the possibility of using multi-

temporal MERIS datasets for extracting sub-pixel crop area information by using 

feedforward artificial neural networks. The inputs for the networks were multi-temporal 

MERIS information at pixel level and spatial information coming from neighboring 

pixels with a 3 by 3 window. The study area was the province of Noord-Holland, in The 

Netherlands.  

 

For this purpose the following specific objectives were defined: 

 

• To optimize data dimensionality from multi-spectral and multi-temporal MERIS 

datasets for input into a feedforward neural network. 
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• To evaluate the effect of neighbor information coming from MERIS datasets on 

sub-pixel estimates of crop area. 

 

• To investigate the performance of sub-pixel crop area estimations of feedforward 

artificial neural networks with different scale of sub-pixel information and 

landscape heterogeneity. 

 

These three objectives led to the following research questions: 

 

• What kind of method is the most appropriate to assess the separability of crop 

types from multi-temporal and multi-spectral MERIS datasets at sub-pixel level?  

 

• Can neighbor pixel information from MERIS datasets improve sub-pixel crop 

area estimates?  

 

• Does the accuracy of sub-pixel crop area estimates change with the spatial scale 

of analysis and landscape heterogeneity?  

 

1.4. STRUCTURE OF THIS REPORT 

 

This report is structured in five chapters. Chapter one gives a short introduction to the 

subject, provides the problem definition and points out the objectives and research 

questions that will be investigated in this report. In chapter two brings a literature review 

regarding crop discrimination from remote sensing and sub-pixel extraction techniques 

with emphasis in FFNN. Chapter three provides all necessary information of the 

experimental setup and explains the used techniques. In chapter four, the results are 

presented and discussed. Finally conclusions and recommendations are presented in 

chapter five.  
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2. LITERATURE REVIEW  

 

 

2.1. CROP DISCRIMINATION FROM REMOTE SENSING  

 

Crop discrimination from remote sensing data has used mainly optical sensors with bands 

in the visible and near infrared (NIR) because most of the vegetation activity affects 

reflectance in those bandwidths. Reflectance in the visible part is low due to absorption 

by the chlorophyll. In the NIR region the absorption is very low, and reflectance is 

determined by the amount of transition between cell wall and air vacuoles in the leaf 

tissue. As result, NIR reflectance is high, and a steep slope occurs in the curve at about 

700 nm, the so called red-edge region (Clevers and Jongschaap 2001). This spectral 

response changes with the phenological state of the crops. At early stages the visible and 

NIR would show a flat reflectance due to a bare soil signature. Once crops emerged and 

augment in biomass, reflectance in the NIR would steady increase showing a clear 

vegetation spectrum. Late in the season when crops have reached maturity, the NIR 

would decrease due to senescence and harvest. Therefore the use of multi-temporal 

datasets throughout the growing season are recommended for crop classification, since a 

single image contain a high level of spectral confusion between crops for their accurate 

classification (Jewell 1989). The optimal acquisition dates for satellite imagery are 

determined by the phenological characteristics and agricultural practices of crops and by 

environmental conditions. Nevertheless, the minimum required datasets for achieving 

good separability might include datasets taken at early, medium and late stages of the 

growing season (Murakami et al. 2001, De Wit and Clevers 2004, Sakamoto et al. 2005).  

 

In addition to the temporal domain, it is often appropriate to have fine spatial resolution. 

Otherwise the spectral information at pixel level might come from mixed pixels 

comprising different crop types (Murakami et al. 2001). For some regions it is difficult to 

get cloud free fine spatial resolution data of, for instance, Landsat TM or SPOT HVR 

over the growing season and therefore coarse resolution sensors with higher temporal 

resolution might increase those chances. To overcome the mixed pixel problem in coarse 
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datasets various techniques may be used to derive sub-pixel information. The use of sub-

pixel analyses and their implementation in vegetative environments are presented in 

sections 2.3 and 2.4.    

 

2.2. MULTI-TEMPORAL PROFILE 

 

The use redundant multi-spectral and multi-temporal information may lead to unexpected 

problems if artificial neural networks are used to produce thematic information. 

Redundancy of information may cause an increase of calculation time and inter class 

confusion caused by the use of unnecessary information (Kavzoglu and Mather 2002). 

 

In order to reduce the redundant information coming from multi-spectral sensors with 

high correlated bands, as presented in MERIS (Clevers et al. 2006), it is possible to 

calculate the principal components or to define the most relevant bands, which are less 

correlated. In the case of vegetated environments a combination of bands in the red and 

NIR wavelength can also be used to reduce the spectral dimensionality of the dataset. An 

example of the latter is the use of vegetation indices. 

 

Vegetation indices (VIs) have been formulated as indicators sensitive to vegetative 

properties like chlorophyll activity and canopy structure (De Jong et al. 2004). Thus, they 

aim at enhancing the vegetation signal and minimizing contributions from soil 

background, sun elevation angle and atmosphere. For example, the MERIS Global 

Vegetation Index (MGVI) is an index designed for canopy characterization (Gobron et al. 

2004). On the other hand, the MERIS Terrestrial Chlorophyll Index (MTCI) is more 

sensitive to chlorophyll content (Dash and Curran 2004). Hence temporal profiles from 

VIs or bands in the red and NIR can be used for detection of crop changes throughout the 

growing season. 

 

Classification accuracy of temporal profiles can differ from combinations of temporal 

datasets. However, the use of a large temporal dataset is not always necessary to achieve 

the best classification accuracy. For example, Murakami et al. (2001) used separability 



LITERATURE REVIEW 

 7

analyses to evaluate the temporal combination for a optimal classification of cropping 

systems. They found that the accuracy provided with three temporal datasets would 

achieve nearly equal accuracy that the one obtained with nine datasets. This reduction in 

temporal information would considerable reduce the computation time of the artificial 

neural networks without affecting the classification accuracy. Therefore, separability 

analyses of the temporal profiles can help to reduce the data load into the neural 

networks. 

 

2.3. SUB-PIXEL METHODS IN REMOTE SENSING 

 

Several approaches may be used to extract information at sub-pixel level. These 

techniques can be grouped into two main approaches as defined by Foody (2004): 

 

• Linear mixing models 

• Soft classification models 

� Maximum likelihood 

� Fuzzy C-Means  

� Artificial neural networks 

 

2.3.1. Linear mixing models 

Linear mixing models simulate the reflectance of a pixel as a linear combination of the 

reflectances by endmembers (pure materials), weighted by the areal fraction of each 

endmember within the pixel:  

 

∑
=

+=
m

i
ii εpCp

1
          (1) 

 

wherep is the observed pixel reflectance, iC and ip are the fractional cover and 

reflectance, respectively, of the ith endmember, andε is a residual representing the model 

error. To solve for the fractions of each of m endmembers requires at least m equations, 

which are most commonly generated by repeating Equation 1 for different wavelengths. 
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However, the maximum amount of endmembers can never be more than the number of 

bands, because having more endmembers than bands results in more unknowns than 

equations (Lillesand and Kiefer 2000). 

 

Although this simple approach has been widely used for deriving sub-pixel information 

of proportions of different vegetated environments (Foody and Cox 1994, Gong et al. 

1994, Van Kootwijk et al. 1995, Lobell and Asner 2004), some authors are concerned 

about their use in vegetated environments (Borel and Gerstl 1994, Foody et al. 1997). 

Their major concern is that endmemeber selection in vegetated environments may be 

influenced by multiple scattering of leaves, soil background and by mixed endmembers. 

This effect makes the assumption of linear mixing models inappropriate in environments 

where non linear spectra mixing occurs. In addition, endmembers chosen from coarse 

datasets in vegetated environments may comprise areas with different phenological 

stages, thus hindering separability between classes (Braswell et al. 2003). Due to these 

limitations it has been suggested that a non-linear mixing approach may be more 

appropriate for vegetated environments than linear mixing models (Foody 2004, Lobell 

and Asner 2004).   

 

In addition, the spatial resolution of the sensor may limit even further the selection of 

endmembers as the proportions of mixed pixels increases with a coarsening of the spatial 

resolution of the sensor (Atkinson and Aplin 2004). Assuming that for the region of 

Noord-Holland in the Netherlands, most of the agricultural fields have an area of less 

than 10 ha (Table 2), a MERIS scene with pixel size of 300 m may comprise a high 

percentage of mixed pixels reducing thus, the possibilities of a proper selection of 

endmember. 

 

2.3.2. Soft classification models 

Soft classification models offer a non linear approach to estimate land cover proportions 

at pixel level. They derive land cover proportions from the membership a pixel spectra 

information displays to each class. One concern in using this technique, likewise the 

linear mixing approach, is the requirement to have a well defined set of endmembers. 
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Nevertheless, some of these models like artificial neural networks have been refined and 

may not require an exhaustive selection of endmembers or even may allow the use of 

mixed pixels for training (Benediktsson et al. 1993, Benediktsson and Sveinsson 1997). 

 

Maximum likelihood classification 

This technique is based on the assumption that the position of the spectral signature of a 

mixed pixel relative to the means of pure endmembers gives an approximate maximum 

likelihood estimate of the proportion classes under normally distributed input datasets 

(Ichoku and Karnieli 1996). Thus, if two components are denoted by X and Y, the 

relationship for estimating the proportions of one of them in a pixel is given by Marsh et 

al. (1980): 

 

),(

),(),(
5.05.0

yxd

ymdxmd
Py

−+=        (2) 

 

where yP = proportion of class Y  in the mixed pixel; ),( yxd = Mahalanobis (M) distance 

between the mean endmember class X and Y; ),( xmd  = M-distance between the mixed 

pixel )(m and the endmember X; 0=yP , if the estimate is negative; and 1=yP , if the 

estimate is greater than 1. The M-distance may be calculated from: 

 

( ) ( )yxyxyxd T −+Σ−= −1),(        (3) 

 

where ),( yxd is the M-distance of the mean endmembers X and Y with a covariance 

matrix Σ . T means transpose.  

Although the maximum likelihood technique can be used to resolve proportional 

fractions, this technique is constrained to discriminate between two components. In 

addition, their use for sub-pixel information is being questioned as there is not a direct 

link between the proportional coverage of a class and its probability (De Bruin 2000). 
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Fuzzy C-Means (FCM) 

The FCM is a model that has been used for the estimations of proportions of different 

plant communities (Wang 1990, Foody 1992, Foody and Cox 1994). The FCM is a non-

hierarchical clustering algorithm that may be used to subdivide data into more than two 

components. Pixels are associated with several classes before being moved iteratively to 

different classes aiming at minimizing the least square error, mJ  which is a weighted 

measure of the square distance between pixels and class centroids. 

 

2

1 1

)()(),( ik

n

k

c

i

m
ikm duvUJ ∑∑

= =

=         (4) 

 

Where U  is a fuzzy c -partition of the data containing n pixels ),,...,,( 21 nxxx  iv  is the 

center of the cluster i , ikd  is the distance between kx  and iv  measured using an 

appropriate weight matrix and m is a user defined weighting component that lies within 

the range ∞≤≤ m1 , which determines the degree of fuzziness of an analysis. When 

1=m a conventional hard classification is obtained in which each pixel is associated with 

just one class. For the derivation of sub-pixel scale information, it is important that 

1>m assuring that multiple and partial class membership is allowed in the output. The 

grade of membership iku  to a class is calculated from (Bezdek et al. 1984): 
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         (5) 

 

Memberships close to unity indicate a high degree of similarity between kx  and a class i 

whereas memberships close to zero indicate little similarity.  

 

Although the FCM has been commonly used to derive sub-pixel information, its accuracy 

relies on the specification of end-member spectra (Atkinson et al. 1997) and the careful 

selection of the value m used in the analysis (Foody 1996). 
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Artificial Neural Networks  

Neural network models have been employed since the last decade in classification 

approaches. Their rapid development in remote sensing is due to their ability to perform 

more accurately than the aforementioned techniques (Benediktsson et al. 1993, Atkinson 

and Tatnall 1997, Braswell et al. 2003, Foody and Mathur 2004) and their ability to 

incorporate different types of data, including mixed pixels (Benediktsson et al. 1993, 

Benediktsson and Sveinsson 1997).  

 

A description of their structure and functionality is presented in the following section. 

  

2.4. ARTIFICIAL NEURAL NETWORKS (ANNs) 

 

An Artificial Neural Network (ANN) can be presented as a data modelling tool that is 

able to capture and represent complex input/output relationships. They are the results of 

research to model the brain like computing (Haykin 1994). ANNs resemble the brain in 

two aspects: 

 

• Knowledge is acquired by the network through a learning process; 

• Inter node connection strengths known as synaptic weights are used to store 

knowledge. 

 

The basic element of an ANN is the processing node or perceptron (Figure 1). Each 

processing node sums the value of its inputs. This is passed through an activation 

function to produce the node’s output value.  

 

There are many different types of organizing the processing nodes and so different types 

of neural networks (see for example, Demuth et al. (2005)). This section provides a 

description to the most commonly used ANN in remote sensing, the multi-layer 

perceptron, a feedforward artificial neural network model (FFNN). 
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Figure 1. Internal structure of a perceptron. 

 

The multi-layer perceptron model consists of several perceptrons organized into layers. A 

generic design of this type of network is shown in Figure 2.  

 

 

 

 

 

 

 

 

 

Figure 2. Generic three layer connected FFNN (Kavzoglu and Mather 2003). 

 

The perceptrons are organized into layers. The first layer, which receives input 

information, is called the input layer. The last layer, which produces the output 

information, is called the output layer. Between the input and output layers can be one or 

more hidden layers. All layers are fully interconnected with the following layer but do 

not interconnect with other nodes in the same layer. Data is transmitted through 

connection between perceptrons in different layers. The input of each single perceptron is 

weighted according to: 

 

iijjnet οϖ∑=          (6) 
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where  jnet  indicates the sum of the weighted inputs of the node j , ijϖ  represents the 

weights between node i  and node j , and iο  is the output from node i . The output from 

a given node j  is then computed from: 

 

)( jj netf=ο           (7) 

 

The function f  is usually a non-linear log sigmoid function that is applied to the 

weighted sum of inputs before the signal passes to the next layer. The log sigmoid 

function maps the interval ),( ∞−∞  onto (0,1) allowing the output of the signal to be 

interpreted as posterior probabilities summing to 1 (Bishop 1995).  

 

( )
jnetj

e
netf −+

=
1

1
          (8) 

 

Training a neural network consists of generating weights between each node that is 

accomplished by using known inputs and outputs and presenting them to the network. 

The weights are adjusted typically by the backpropagation algorithm, which modifies the 

weights until a target minimal error between the known and calculated outputs is 

achieved. The training of the backpropagation algorithm is carried out in two stages. 

Firstly, the network weights are randomly initialized, the input data is presented to the 

network and propagated forward to estimate the output value for each training. Secondly, 

the error is then back propagated through the network altering the weights of the 

connections according to the generalized delta rule (Rumelhart and MacClelland 1986): 

 

)()()1( nn jiijij ϖαοδηϖ ∆+=+∆        (9) 

 

where η  is the learning rate parameter, jδ  is an index of the rate of change of the error, 

and α  is the momentum parameter. This process of feeding-forward signals and 
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backpropagating the error is repeated iteratively until the error of the network is 

minimized or reaches a desirable magnitude.  

 

The progress towards the minimum error has a relationship with the number of input 

parameters (Paola and Schowengerdt 1997). For example, if a network is provided with 

more information about the image like neighbor pixels, each iteration would have more 

information about the image than a single pixel iteration, making thus more progress per 

iteration to the desired error magnitude than just the information provided by a single 

pixel. In various land cover applications neighbor information has increased the accuracy 

while increasing the training time (Paola and Schowengerdt 1997, Murthy et al. 2003). 

However, the effect of the neighbor information, likewise a homogeneous filter, may 

smooth the image, losing thus some detail of information on single pixels (Paola and 

Schowengerdt 1997).   

 

2.4.1. Drawback of Feed-Forward Neural Networks (FFNNs) 

Training a FFNN involves setting several parameters that would influence the capability 

of the neural network to interpolate and extrapolate data that has not been presented 

before (generalization). These parameters include: the specification of the number of 

nodes and architecture, size of the training set and training time, among others.  

 

Atkinson and Tatnall (1997), Paola and Schowengerdt (1997) and Kavzoglu and Mather  

(2002, 2003) have documented the effect of those parameters on the generalization of the 

neural network. However, there is still no scientific rule to determine the appropriate 

parameter values and therefore a trial and error strategy is often used.  

 

Recently, some guidelines have been proposed to determine the range of those 

parameters. For example, the optimal amount of nodes and structure of a neural network 

should be not too small to identify the structure of the data (underfitting) or should not be 

too large to become overspecific for the data (overfitting) (Kavzoglu and Mather 2003).   

Overfitting occurs when the network memorizes a situation and it has not learned to 

generalize new situations. Thus, during the training the error achieved is very low but 
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when new data are presented the error is large. For example, Figure 3 (a) shows the 

response of a neural network that has been overfitted due to a large number of hidden 

nodes. 

 

The response of an ANN does not lay merely in its structure but also in the representation 

of the training data for a particular problem and in the training process. Too few training 

samples are insufficient to derive the characteristics of the classes, while too many 

training sets may cause the network to overfit the data and require more learning time. 

Likewise, training time will affect the generalization of the neural network. The longer a 

neural network is trained for a specific data set, the more it will prone to memorize the 

training data and not be able to generalize (Kavzoglu and Mather 2003).  

 

Figure 3. Response of neural networks that have been trained to approximate a sine 

function. Input function “doted line”, training data “+” symbol, approximation “solid 

line”. (a) overfitting, (b) good response (Demuth et al. 2005). 

 

All those issues slow down the process of training a neural network and makes the use of 

the ANN more complicated than other methods. In addition, it is not exactly known how 

ANNs learn particular problems based on the parameter values and training sets and 

therefore they are often called black box methods. 
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2.4.2 FFNNs and crop classification 

FFNNs have been used for crop classification at sub-pixel level with different parameters 

in different environments and with various sensors (Kavzoglu and Mather 1999, 2002, 

2003, Murthy et al. 2003). This makes it difficult to compare or to determine the effects 

of different parameters on classification accuracies. Nevertheless, all authors have agreed 

on the superiority of FFNNs for crop classification approaches. For example, Murthy et 

al.  (2003) compared a FFNN with a maximum likelihood method for wheat crop 

classification. They found that a FFNN was more precise in classifying wheat pixels than 

the maximum likelihood method. Despite the potential of FFNNs for classification 

approaches, there is a concern about the time employed to determine the appropriate 

parameter values towards operational application.  

Recently, Kavzoglu and Mather (2003) conducted a study to gain some insights into the 

behavior of FFNNs for crop classification purposes. In this study a guideline that 

facilitates the selection of appropriate parameter values for designing and training of 

FFNNs is proposed (this guideline is presented in section 3.3.5).  

 

Based on the literature review, MERIS high temporal and multi-spectral resolution data 

offer an excellent opportunity to enhance the separability between crops. The 

aforementioned studies confirm the potential of FFNNs for discriminating sub-pixel 

composites from coarse datasets. Therefore, for this research we designed a methodology 

to evaluate the potential of extracting sub-pixel crop information from temporal MERIS 

datasets by using ANNs of the type FFNN for a heterogeneous landscape in Europe.  
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3. MATERIALS AND METHODS 

 

 

3.1 STUDY AREA 

 

 The study area includes a large part of the province of Noord-Holland in The 

Netherlands (Figure 4). The selection for this area was based on the availability of a 

training dataset with good accuracy (overall accuracy 78%) and accessibility of MERIS 

2004 images. 

Figure 4. Study area province of Noord-Holland 

  

3.2 DATASETS 

 

3.2.1. Ground cover information 

 

For ground cover information, the latest version of the Dutch land use database (LGN5) 

was used. It is a geographical database that describes the land use in The Netherlands 

with a grid structure of 25 meters, with an application scale of 1:50.000. It uses the 

stereographic projection of the Dutch national coordinate system Rijks Driehoek (RD). 

The nomenclature of the LGN5 database consists of 39 classes covering urban areas, 
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water, forest, various agricultural and natural land cover types. LGN is produced from 

multi-temporal classification of satellite imagery with ancillary data. Currently, the 

version 5 is based on satellite data of the year 2003 for the provinces of the east of the 

Netherlands and satellite data of 2004 for the provinces of the western part of the country. 

The overall classification accuracy for all provinces is 78% with values ranging from 

46% till 93% (Hazeu 2005). The 39 classes of the LGN5 were recoded into the nine 

classes: potatoes, sugar beet, grassland, cereals, other crops, built up, forest, natural 

vegetation and water. Potatoes, sugar beet and grassland are economically important 

agricultural land cover types in the Netherlands. Cereals are used in crop rotation 

programs of potatoes and sugar beet. Built up relates to urban areas and green houses. 

Other crops comprise areas with maize, spring and autumn flower bulbs and tree 

nurseries. Forest contains deciduous and coniferous forests. Natural vegetation includes 

sand dunes, shrubs, swamps and heathland. Water covers salt and fresh water bodies. 

Information on the frequency distribution of the nine classes is given in Table 1. 

Information on the distribution of agricultural fields based on crop area is given in Table 

2.  

 

Table 1. Frequency distribution of cover types  in the province of Noord-Holland   

Land cover % of total area 
Potatoes 2.5 

Sugar beet 1.4 
Cereals 2.0 

Grassland 22.3 
Other crops 6.8 

Built up 12.5 
Forest 3.6 

Natural vegetation 4.4 
Water 44.5 
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Table 2. Frequency distribution of agricultural fields based on crop area for the year 2002 

in the province of Noord-Holland (from CBS (2004)). 

Crop type % of fields with 
< 10 ha 

% of fields 
between 10 and 

20 ha 

% of fields 
between 20 and 

30 ha 

% of fields with 
> 30 ha 

Potatoes 9.60 5.18 2.17 2.07 
Sugar beet 12.29 4.44 0.72 0.39 
Cereals 12.66 6.98 1.88 1.28 
Grassland 17.00 7.87 1.26 14.19 
Total 51.55 24.48 6.02 17.94 
 

For this study, the LGN5 was aggregated to 300 meters cell size displaying the largest 

cover type fraction per pixel and keeping information on cover composition in fractional 

images per class. For example, Figure 5 shows that a pixel from the aggregated LGN5 is 

displayed as built up because this class covers the largest fraction of this pixel. 

Nevertheless, information on fractional compositions per class (i.e. grassland) is stored in 

its respective fractional image. This aggregated database was used as a reference for the 

co-registration of MERIS images and for the selection of training, testing and validation 

datasets.   

 

 

 

 

 

 

 

 

 

 

Figure 5. The Dutch land use database aggregated to 9 classes and 300 m pixel size with 

fractional distribution for Noord-Holland. 
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3.2.2 MERIS Data 

MERIS is one of the payload components of the European Space Agency’s (ESA) 

environment research satellite Envisat, launched in March 2002. MERIS is a 68.5o field 

of view push-broom imaging spectrometer that measures the solar radiation reflected by 

the Earth, at ground spatial resolution of 300 m (Full resolution) and 1200 m (Reduced 

resolution). MERIS is a 15 band programmable imaging spectrometer, in the visible and 

near infrared. MERIS allows a global coverage of the Earth in 3 days.  

 

MERIS data is provided in three levels of processing: level 0, level 1 and level 2. Level 0 

consists on the core information recorded in packets by the instrument. This information 

is not generally available to users and it serves as basis for level 1. Level 1 comprises 

geo-coded top of atmosphere (TOA) data radiances [Wsr-1m-2µm-1] and it is the base for 

level 2. Level 2 provides reflectance values for the different kinds of data products. Level 

2 reflectances are different in nature depending on the surface (MERIS-Envisat 2005): 

 

• over clouds, they are TOA reflectances, 

• over land, they are  Top Of Aerosol (TOAr) reflectances corrected only for 

Rayleigh diffusion but not corrected for the diffusion by aerosols, 

• over water, they are surface reflectances. 

 

For our study we used the products over land of MERIS level 2. MERIS level 2 land 

surface products provide TOAr reflectance in 13 bands as band 11 (760 nm) and band 15 

(900 nm) were excluded because they are strongly influenced by O2 and water vapor in 

the atmosphere, respectively. The Rayleigh correction was calculated taking into 

consideration pixel optical thickness and geometry and it was derived from a look up 

table (Santer et al. 2000).  

 

MERIS level 2 has addressed the correction by aerosols and angular perturbations in 

order to provide users with Top of Canopy (TOC) reflectance in two bands one in the red, 

band 8 (681 nm), and near infrared (NIR), band 13 (865 nm). Aerosol scattering 

information was obtained in the blue region namely band 2 (442 nm) where values are 
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much sensitive to atmospheric scattering than longer wavelengths. A parametric 

anisotropic function was implemented to simulate the variations in the signal of the 

aforementioned bands due to angular observation and illumination at TOAr. Then a 

combination of the blue band with the red and NIR is done to calculate the rectified red 

and rectified NIR bands that would have measured in the red and NIR at the TOC. The 

algorithm proposed to generate the rectified red and NIR is defined as: 
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),( 82_ bandbandredrectified g ρρρ =         (11) 

 

),( 132_ bandbandNIRrectified g ρρρ =        (12)  

 

where ρ are reflectance values and nl ,0 are the coefficients for a polynomial provided in 

Gobron et al. (2004).   

    

In addition, MERIS level 2 land surface product includes the MERIS Global Vegetation 

Index (MGVI) (Gobron et al. 2004) and the MERIS Terrestrial Chlorophyll Index 

(MTCI) (Dash and Curran 2004). The MGVI algorithm is generated from the rectified 

red and rectified NIR bands and it uses like the rectified bands Equation 10 for its 

calculation. The MGVI is given by: 

 

),( __ NIRrectifiedredrectifiedgMGVI ρρ=         (13)  

 

whereρ are reflectance values for the rectified red and rectified NIR bands described 

above. The coefficients nl ,0  are given in Gobron et al. (2004). 

 

The MTCI is defined as: 
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where ρ are reflectance values for different bands. 

  

For this study the full resolution MERIS level 2 reflectance values, MGVI and MTCI for 

the region of Noord-Holland from 2004 was used. Specifications of the spectral bands of 

MERIS Level 2 are given in Table 3. Cloud free images from April 1st, August 8th and 

September 10th were available and visually assessment of images from May 15th and July 

14th showed less than 15% cloud cover. The images are shown in Figure 6.  

 

Table 3. The bands of the MERIS level 2. 

Band Band center 
[nm] 

Bandwidth 
[nm] 

1 412.5 9.9 
2 442.4 10.0 
3 489.7 10.0 
4 509.7 10.0 
5 559.6 10.0 
6 619.6 10.0 
7 664.6 10.0 
8 680.9 7.5 
9 708.4 10.0 
10 753.5 7.5 
12 778.5 15.0 
13 864.8 20.0 
14 884.8 10 

Rectified 
red 

681  

Rectified 
NIR 

865  
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Figure 6. MERIS full resolution images of a) April 1st, b) May 15th , c) July 14th , d) 

August 8th and e) September 10th 2004. Bands 14, 8 and 3 are depicted in RGB. 

 

3.2.3 Crop calendar 

As crops show relative phenological differences throughout the growing season, a crop 

calendar depicting the growing season of the most important crops for the Netherlands 

was used for filtering the multi-temporal datasets (Figure 7). In this calendar the length of 

the growing season is determined by the phenological characteristics of the crops and 

agricultural practices such as: planting, fertilizing and harvesting   

 

The available satellite scenes cover the planting and harvest dates for most of the crops. 

For example, sugar beet and potatoes would present a soil spectrum in the scenes of April 

1st and May 15th because they are sowed at the end of May. Then they might present a 

vegetative spectrum for the scenes of July 14th and August 8th. In September, however, 

potatoes are harvested and therefore sugar beet would keep a vegetative spectrum for this 
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date. Cereals would present a vegetative spectrum for the scenes of April 1stand May 15th. 

Their vegetative spectrum would increase between those dates due to an augment in 

biomass. Nevertheless, for the scene of July 14th and August 8th they might show 

depletion in the vegetative spectrum because of senescence and further harvesting. 

 

 

 

 

 

 

 

 

 

Figure 7. Crop calendar of The Netherlands. a) April 1st, b) May 15th , c) July 14th , d) 

August 8th and e) September 10th 2004 (modified from De Wit and Clever (2004). 

 

3.3. METHODOLOGY 

 

The methodology used in this research involves three main parts: preparation, processing 

and analysis (Figure 8). Preparation includes the selection of the study area from MERIS 

images and their co-registration with the resampled LGN5 dataset. Processing deals with 

the selection of the most suitable spectral bands from MERIS and the definition of the 

temporal profiles based on separability analysis. Also this section covers the preparation 

of the training, validation and testing datasets and the selection of the parameter values of 

the FFNNs. In the analysis part, the FFNNs are trained with the training and validation 

dataset. The trained ANN with the best performance is singled out for its simulation with 

the testing datasets. Statistical analyses were used to draw conclusions for the different 

estimated fractions at different scales of analysis. 
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3.3.1. Preparation 

In the preparation stage the LGN5 database was resampled to 300 meters cell size 

assigning the majority class as label but keeping information on cover composition in 

fractional images per class as showed in Figure 5. This resampled database was used as 

reference for geometric corrections of MERIS images and selection of ground data. 

 

In addition, the original LGN5 database 25 m cell size was used to analyze the landscape 

properties for the province of Noord-Holland. For this purpose we used the Patch 

Analysis 3.0 software (Rempel 2003) to estimate the class area, number of patches per 

class, mean patch size and standard deviation of patches of each cover type. 

 

Before any analysis, the satellite images need some correction procedures due to the 

geometric and radiometric distortions during the acquisition process. These corrections 

can be divided in two categories: geometric and radiometric corrections. 

 

Geometric corrections 

Geometric corrections are necessary to reduce the effect of geometric distortions and they 

enable us to match the temporal datasets with the resampled LGN5 database. All MERIS 

level 2 images were geo-referenced with the BEAM 3.4 software (Brockmann 2005)  

using the latitude and longitude coordinates that are provided by MERIS metadada for 

nine tie points in the image. Then, the geographic projection was reprojected into the 

stereographic projection of the Dutch national coordinate system Rijks Driehoek (RD) 

using ENVI. Visual differences existed between the resampled LGN5 and satellite 

images, therefore we performed an image to image co-registration between each temporal 

dataset and the resampled LGN5. For each image to image co-registration 10 ground 

control points were recorded between the two images. A nearest neighbor resampling 

function was used because it preserves the information of the image pixels most closely.   
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Figure 8. Flowchart of the methodology 
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Radiometric corrections 

As we are using reflectance values from the MERIS level 2 products, radiometric 

corrections were already performed for incoming radiation and sun elevation.  

 

3.3.2. Processing  

This stage comprises the analysis of the spectral and temporal profiles, definition of the 

structure and parameters of the FFNNs, which are described separately in further 

sections, and the selection of the training, validation and testing data. 

 

3.3.3. Analysis spectral and temporal profile  

Individual spectral bands from MERIS level 2 were correlated to assess the degree of 

redundancy of the different bands. The MGVI that combines information from the 

rectified red and rectified NIR were used to generate various temporal profiles. Those 

temporal profiles allowed us to measure the degree of interclass separability based on the 

spectral response derived from the phenological state of the crops. The temporal profiles 

ranged from using one image to using all five images over the crop cycle (Table 4). For 

example, temporal profile 1 was chosen to evaluate the effect of class separability of 

sugarbeet and potatoes when only one image is available in the middle of the growing 

season. Temporal profile 2 evaluated the interclass separibility of sugar beet and potatoes 

when images were available at the onset, middle and end of their growing season. 

Temporal profile 3 allowed us to inspect the separability of cereals from other classes. 

Temporal profile 4 excluded the first scene, which might be considered out of the 

growing season and not redundant for crop separability between potatoes and sugar beet. 

Temporal profile 5 took into account all satellite datasets available for this study. 

Table 4. Temporal profile set. 

Temporal 
profile 
number 

Image 
combination 

Exclude 
images 

1 c a b d e 
2 b c d a e 
3 a b d e c 
4 b c d e a 
5 a b c d e  
a) April 1st, b) May 15th, c) July 14th, d) August 8th and e) September 10th 2004. 
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The separability was measured with the Jeffries-Matsushita (JM) distance (Swain and 

King 1973). In similar studies, Murakami et al. (2001) and Kavzoglu and Mather (2002) 

agreed on the superiority of this distance for defining temporal scene combinations with 

high separability. The JM distance has an upper limit of 1.414 indicating high 

separability between classes. In this study a value lower than 1.3 for two classes was 

considered as having low separability and we decided therefore to merge those classes. 

The  JM distance is represented by: 

 

))exp(1(2 α−−=ijJM         (15) 
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where i and j are the classes being compared, iµ and jµ  are the mean vectors of classes i 

and j, iC and jC are the sample variance-covariance matrices for class i and j , iC  and 

jC  are the determinants of iC  and jC , respectively, and T indicates the transposition, 

 

3.3.4. FFNN structure 

The simplest structure to be used in a neural network is reading one multi-spectral pixel 

into the network. Thus, one input node is used to represent each band (Paola and 

Schowengerdt 1995). However, a possible extension is to use spatial texture information, 

for example by using a 3 by 3 window for each band as input. Although this structure 

increases the input nodes by nine fold per node, it might enhance the classification 

performance by smoothing single pixel errors. On the other hand, this structure might 

cause a loss of information in heterogeneous landscapes. In this study we decided to use 

both structures to evaluate the effect of spatial information from MERIS on the sub-pixel 

accuracy (Paola and Schowengerdt 1997). 
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3.3.5. FFNN parameters 

As mentioned before setting the parameters of neural networks is a difficult task and most 

of the times these parameters are based on trial and error approaches. In order to ease this 

process, we used the following guideline proposed by Kavzoglu and Mather (2003):   

• Estimate the number of hidden layer nodes required using the expression 

( )[ ]oip NNrN +*/ ♣ formulated by Garson (1998). 

• Define the number of output layer nodes by considering the nature of the problem 

and the availability of ground reference data. 

• Randomly select a number of training samples. Sample sizes should range 

between ( )1**30 +ii NN  and ( )1**60 +ii NN ♣ as proposed by Hush (1989). 

• Set initial weights to a small range with a mean value of 0. (e.g. [-0.15 , 0.15] or 

[-0.25, 0.25]). 

• Employ a validation dataset to terminate the training process. The validation 

dataset may include around 50-100 samples for each class. 

• Use the output encoding scheme of [0 1 0] to represent output classes. 

• Use a shuffling mechanism for the learning process to present the inputs to the 

network in a randomly defined order. 

 

 ♣ iN  and oN are the number of input and output nodes, respectively.  

          pN  is the number of training samples. 

           “r” is a constant that is related to the noise level of the data range from 5 for clean data to 10 for 

                 noisy data depending of the noise level of the data. 

 

Although these guidelines pose a base for designing and using ANN in remote sensing 

image classification, they can be adjusted with other approaches found in the literature 

that might suit better this study. Hence the considerations taken in this study for the 

aforementioned recommendations and other parameters are further described in this 

section. 
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Number of input layer nodes 

The number of input nodes corresponded to the temporal image combination and spectral 

bands or VIs per image for the pixel by pixel FFNN. For the 3 by 3 window FFNN the 

number of input nodes was nine fold the number of nodes used in the pixel by pixel 

structure.   

 

Number of output layer nodes 

The number of output layer nodes was determined after knowing the number of classes 

having good separability, as defined by the JM distance with values larger than 1.3 

(section 3.3.3). Nevertheless, the level of complexity for the ANN to distinguish the 

desired classes depends on the number of input and output nodes. The complexity for the 

ANN would increase if the number output nodes is larger than the number of input nodes 

(Kavzoglu and Mather 2003). Therefore, it was appropriate to define ANN parameters 

such as number of hidden layer nodes and training samples from methods including the 

number of input nodes and output nodes for their estimation.  

 

Number of hidden layers and hidden layer nodes 

Estimating the number of hidden layers and hidden layer nodes is an important task in 

designing a neural network (Kavzoglu and Mather 2003). A single hidden layer is 

sufficient for classification of multispectral imagery and it is the most common used in 

literature (Paola and Schowengerdt 1995). However, when the number of output nodes 

gets near 20 more flexibility can be gained by a second hidden layer in the network 

(Kanellopoulos et al. 1992). Hence based on the number of classes a single hidden layer 

would be sufficient for this study. 

 

The method recommended in the guideline to estimate the number of hidden layer nodes, 

formulated by Garson (1998) (Table 5), depends on the r constant that for this study we 

assigned a value of 10 due to the large amount of noise expected from classes with 

similar spectral profiles like potatoes and sugar beet. Thus, a large amount of training 

samples is needed to obtain a considerably amount hidden nodes to train the network. 

Nevertheless, as the amount of training data is a common problem to all supervised 
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algorithms (Borel and Gerstl 1994, Atkinson et al. 1997, Foody et al. 1997), we 

evaluated also other methods which do not include the number of training samples as 

parameter but use the number of input and output nodes for estimating the number of 

hidden layer nodes. 

 

Table 5. Approaches proposed to compute the optimum number of hidden layer nodes. 

Heuristic Source 

iN2  or iN3  (Kanellopoulos and Wilkinson 1997) 

( ) 2/oi NN +  (Ripley 1993) 

( )]/[ oip NNrN +  (Garson 1998) 

oi

iioio

NN

NNNNN

+

−+++ 3)(
2

1
*2 2

 

 
(Paola 1994) 

iN  and oN are the number of input and output  nodes, respectively.  

       pN  is the number of training samples. 

        r = 10. Due to the amount of noise expected from classes with similar spectral profiles like potatoes 

              and sugar beet. 

 

 Number of training samples 

The number of training samples has been acquainted by various authors as the parameter 

of major influence at the training stage. This is because the neural network learns the 

characteristics of the data from the sample values. Too few or too large training samples 

may lead, respectively, to insufficient training or overfitting of the network. In order to 

determine the appropriate number of training samples we used two approaches, the first 

one using the method presented in the guideline that is suggested by Hush (1989) as:  

 

( )1**30 += iip NNN         (17) 

 

and the second one using the method proposed by Mather (1999), which takes into 

consideration input and output data, is estimated as: 

 

oip NNN **30=          (18) 
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where pN  is the number of training samples, iN is the number of input nodes and oN is 

the number of output nodes in the network.  

 

Training, validation and testing data 

For training and simulation of the FFNNs the dataset was divided into training, validation 

and testing data. The networks were trained with the training and validation dataset using 

multi-temporal profiles coming from ρ and VIs in the input layer and the resampled 

LGN5 data with the known land cover fractions as target dataset in the output layer. For 

simulating the trained networks, the multi-temporal profiles of the testing data were used 

in the input layer and the resampled LGN5 data were used to validate the estimated 

fractions coming from the trained FFNNs.   

 

The selection of the training, validation and testing dataset was done with a function 

developed in MATLAB 7.0. This function randomly selects a desired number of pixels 

from each class from the multi-temporal profiles and the resampled LGN5, while 

excluding the pixels contaminated with clouds. The number of training samples per class 

was equally distributed from the total training samples estimated with Equations 17 and 

18. The number of testing and validation samples included 50 samples per class as 

suggested in the guideline proposed by Kavzoglu and Mather (2003). 

 

Initial weight ranges 

Initialization of random weight values with a mean value of zero in the range of [-0.15, 

0.15] or [-0.25, 0.25] has produced similar error rates and achieved higher values of 

classification accuracy than larger ranges [-0.6, 0.6] (Kavzoglu and Mather 2003). 

Therefore a lower range of [-0.2, 0.2] was used for this study. 

 

Learning rate 

The learning rate was not implemented in this study because we used as training 

algorithm the resilient back propagation. This algorithm is commonly used and 

recommended along with log sigmoid functions (Demuth et al. 2005). The resilient back 
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propagation algorithm updates the weight values based on the derivative of the 

performance function with respect to the weight value and not to a learning rate and 

momentum as used by other approaches like the standard steepest decent algorithm. A 

complete description of the resilient back propagation algorithm is given by Demuth et 

al. (2005). 

 

Output fractions  

The output fractions in this study used one output node per class with values ranging 

between 0 and 1. The value 1 was assigned when the node fully corresponded to the 

selected class, whereas 0 to the nodes that corresponded to other classes. Values in 

between indicated the proportions for the different land cover types. For example, if there 

are five classes then a code of 0 1 0 0 0 was used to represent a pure node for the class 2. 

 

Stopping criteria 

The stopping criteria method called cross validation was used in this study to prevent 

overfitting while training the neural network. This method uses two sets: a training set 

and a validation set. The training set is utilized for computing the error gradient and 

updating the network weights and biases. The validation subset is used to monitor the 

error on the validation set during the training process. The validation set normally follows 

the decreasing trend of the training error; however, when there is an overfitting of the 

training set, the validation error increases. When an increase of the validation error 

iteratively occurs, the training is stopping and the weights and biases at the minimum of 

the validation error are returned. The cross validation method is implemented in the 

neural network toolbox of MATLAB 7.0. 
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3.4. ANALYSIS 

 

The selection of the most appropriate parameter values for the number of input nodes and 

the number of hidden layers was based on an iterative approach where the response to 

each parameter was analyzed independently. Since one parameter value was evaluated 

each time, the rest of the parameters had to be fixed when training the network. The 

FFNNs were trained using the MATLAB Neural Network toolbox. The performance for 

each parameter was analyzed from the Mean Square Error (MSE) on the training. The 

parameter values having the lowest MSE were chosen to train the FFNNs. The trained 

FFNNs were then simulated with the testing dataset and their estimations were 

thoroughly evaluated with statistical analysis. 

 

3.4.1 Simulations 

For the simulations we used the simulation function from the Neural Network toolbox 

along with the trained FFNNs and the testing dataset. The relationship between network 

response and known fractions per class was evaluated using linear regressions (Equation 

19) and calculating the coefficient of correlation (R) (Equation 21) between the network 

response and the corresponding targets. 

 

cbxy +=           (19) 

 

The slope, b  and constant care given by: 









=

a

aRb
σ
σ )

  aa mbmc *ˆ −=       (20) 

 

where the slope b , is R multiplied by the ratio of the standard deviations, with a
)σ  being 

the standard deviation of the estimated fractions per pixel and aσ the standard deviation 

of the known fractions per pixel for class a. The constant ccan be calculated using the 

means of the estimated amˆ and known am fractions.  
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The coefficient of correlation R is represented by: 

( )
aa

aa
R

ˆ

ˆ,cov

σσ
=           (21) 

 

Where ( )aa ˆ,cov  is the covariance between known and estimated values, aσ and âσ are 

the standard deviations of known and estimated values for class a. 

 

3.4.2 Analysis of estimations at different scale of sub-pixel information 

To evaluate the impact of the estimated fractions at different scales, we selected two 

regions of 900 ha (10 by 10 MERIS pixels) and considered spatial scales ranging from a 

single MERIS pixel (9 ha) to the whole region. Figure 9 depicts the aggregation of the 

sub-pixel information at different scales. the spatial scales used for the analysis and the 

process of aggregation. At each scale, the total area of class a was calculated for the 

estimated and known values. Thus, at a scale of 9 ha the region was divided into 10 by 10 

pixel square sub-regions and the total area of class a was computed for each sub-region. 

Then, the estimated and known class a areas were analyzed at each scale using the Root 

Mean Square Error )(RMSE (Equation 22), the normalized RMSE 

)( normalizedRMSE (Equation 23), Bias (Equation 24) and R (Equation 21). 
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where, sRMSE is the RMSE proportional to the spatial scale s (ground area) over which 

class a area is computed, normalizedRMSE  is the sRMSE normalized for the known class a 

area, n is the number of sub-regions and ia and iâ  are the known and estimated areas of 

class a in the i th sub-region, respectively. The RMSE informs about the inaccuracy of 

the prediction, the R informs about the prediction variance and the Bias defines the 

systematic error of the estimations related to the known areas.  

 

Figure 9. Spatial scales of analysis and aggregation of sub-pixel information. 
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4. RESULTS AND DISCUSSION 

 

 

4.1. LANDSCAPE PROPERTIES 

 
Sub-pixel estimates of land cover proportions would depend on landscape properties such 

as patch size, patch variability and land cover proportions (Moody and Woodcock 1994, 

Huang et al. 2002, Lobell and Asner 2004). This is because the percentage of correctly 

classified pixels decreases with the degree of heterogeneity within a pixel (Moody et al. 

1996).  

 

Table 6 presents the patch size, patch variability and land cover proportions of each class 

for the study area. All crop classes except grassland comprised very little proportions of 

the study area. Nevertheless their mean patch size (~ 10 ha) was as large as the spatial 

resolution covered by a MERIS pixel (9 ha). Sugar beet, potatoes, cereals and forest had 

smaller patches sizes than the mean area depicted by the other classes. Nevertheless, all 

land cover types had a greatly varying patch size, which describes the high heterogeneity 

of the landscape. This great variation in the patch size of crops could have been expected 

from the information given in Table 2, where crop fields vary from small plots with less 

than 10 ha to crop fields of more than 30 ha (i.e. grassland or potatoes). Nevertheless, 

visual assessment of the spatial distributions of grassland, built up, natural vegetation and 

water patches indicated that these patches are more tied to its same class than patches of 

sugar beet, potatoes and cereals. Therefore, the former classes are more likely to be 

surrounded by its same class than by any other class when the landscape is aggregated to 

300 m.  
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Table 6. Patch metrics for the study area based on LGN 5 dataset. 

Class Class area [ha] Number of 
patches 

Mean patch size 
[ha] 

Standard 
deviation of 
patches [ha] 

Built up 78771 14863 5.30 544.44 
Grassland 135263 13967 9.68 85.77 
Potatoes 14811 1409 10.51 14.00 
Cereals 12612 1071 11.78 14.02 
Other crops 41291 3313 12.46 42.29 
Forest 21788 4976 4.38 40.29 
Nat. veg. 26372 2754 9.58 137.59 
Sugar beet 8468 906 9.35 8.44 
Water 266806 2471 107.97 2914.21 

 

 

4.2. IMAGE GEOMETRIC CORRECTIONS 

 

Assuming that the resampled LGN5 with a 300 m pixel size had a geometric inaccuracy 

in the order of half a MERIS pixel (Clevers et al. 2005). The shift of the image to image 

co-registration using 10 ground control points recorded between the resampled LGN5 

and reprojected MERIS images appeared to be systematic for all MERIS datasets. It was 

in the order of half a pixel as shown in Table 7.  

 

Table 7. RMSE [in pixels] of the georeferencing to the Dutch RD coordinate system. 

Recording date RMSE X coord. RMSE Y coord. RMSE total 
01-04-2004 0.413 0.214 0.466 
15-05-2004 0.365 0.270 0.454 
17-07-2004 0.276 0.380 0.470 
08-08-2004 0.308 0.352 0.468 
10-09-2004 0.360 0.281 0.458 
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4.3. SPECTRAL AND TEMPORAL PROFILES 

 

In order to guarantee the collection of spectral signature over pure pixels, 10 pure pixels 

per class that were surrounded or adjacent by pixels of the same class were selected from 

the dataset. Figure 10 and Annex I present the mean spectral signatures for each land 

cover type. Although these signatures showed severe overlap, the land cover spectra were 

as expected for all classes. Annual crop types showed a flat reflectance signature at the 

onset and end of the growing season. Instead, grassland depicted a clear vegetation 

spectrum with a high reflectance in the near infrared (NIR) for all the dates. Forest and 

natural vegetation had similar spectral signature over time but the signature of forest for 

April 01st (Figure 10) was lower in the NIR because leaf unfolding of deciduous forests 

and understory forest species for 2004 occurred at the end of April. Instead, natural 

vegetation areas comprised evergreen shrubs and grassland species that presented visible 

leaf surface at the end of March (Van Vliet 2005). Built up areas showed a similar low 

NIR spectrum over dates, which can be explained by the effect of green areas such as 

gardens and parks allocated within the built up areas. The spectra of water in the visible 

and near infrared showed the lowest value and it can clearly be distinguished from other 

spectra. Hence, this class can be expected to have good classification accuracy with only 

one image.  

 

Figure 10. Spectral signatures for land cover types derived from MERIS level 2 image. 
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The temporal visualization of the nine land cover types was facilitated by plotting the 

MGVI profiles over time (Figure 11). Cereals, potatoes and other crops depicted a 

complete crop cycle. Their profile steady increased due to an aunment in biomass over 

time in May – June, reaching peak greenness in June-July, and then a negative trend in 

July – September due to senescence and harvest. Sugar beet showed a similar pattern but 

it was harvested in November. Grassland did not have major changes over time; only a 

smooth depletion in August indicated a reduction in biomass possibly due to the mowing 

cycle and grazing. Forest and natural vegetation had similar trends over time. Their 

profile increased due to aument in biomass between April and May reaching greenees 

peak in May. Then their profile kept constant over time. Built up and water showed a flat 

profiles over time but water had the lowest profile due to the low spectral values in the 

red and NIR.  

 

 Figure 11. Temporal MERIS Global Vegetation Index (MGVI) spectra for image dates. 

 

The spectral profiles for the different land cover types also illustrated the high degree of 

correlation for bands in the visible (400 – 700 nm) and NIR (750 – 900 nm) wavelength. 

Therefore, a correlation matrix between the spectral bands was calculated and its results 

are presented in Table 8. The visible spectra (bands 1 till 8) and the NIR (bands 10 till 

14) were very correlated. The band 9, designed for the red edge region, showed a 
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moderate high correlation with the visible bands. It was interesting that the correlation of 

the rectified red with band 8 and rectified NIR with band 13 was not 1. This can be 

associated with the correction carried out to produce spectral reflectances at TOC. 

Nevertheless, the correlation for the rectified red and band 8 was lower than the 

correlation for the rectified NIR and band 13. This difference between the two 

correlations can be expected because lower wavelengths are more sensitive to 

atmospheric scattering than larger wavelengths (Gobron et al. 2004). 

 

Table 8. Correlation matrix for the MERIS image of April 1st, 2004. 

Band 1 2 3 4 5 6 7 8 9 10 12 13 14 Rec. 

Red 

Rec. 

NIR 

MGVI MTCI 

[nm] 412 442 490 510 560 620 665 681 705 754 775 865 890 681 865   

2 0.99 1                

3 0.98 0.99 1               

4 0.98 0.99 1 1              

5 0.93 0.95 0.96 0.98 1             

6 0.96 0.96 0.98 0.99 0.98 1            

7 0.96 0.95 0.98 0.98 0.95 1 1           

8 0.96 0.95 0.98 0.98 0.95 0.99 1 1          

9 0.70 0.73 0.76 0.79 0.89 0.83 0.79 0.79 1         

10 0.30 0.30 0.31 0.27 0.10 0.29 0.35 0.35 0.20 1        

12 0.32 0.32 0.32 0.29 0.12 0.31 0.36 0.37 0.18 1 1       

13 0.35 0.35 0.35 0.31 0.14 0.32 0.38 0.38 0.18 0.99 1 1      

14 0.35 0.35 0.35 0.32 0.14 0.32 0.38 0.38 0.18 0.99 0.99 1 1     

Rec. 

Red 

0.84 0.88 0.91 0.92 0.90 0.95 0.96 0.96 0.79 0.30 0.32 0.33 0.33 1    

Rec. 

NIR 

0.28 0.29 0.28 0.25 0.08 0.26 0.32 0.32 0.24 0.98 0.98 0.99 0.99 0.24 1   

MGVI 0.70 0.68 0.68 0.67 0.55 0.69 0.72 0.73 0.10 0.95 0.95 0.96 0.96 0.88 0.95 1  

MTCI 0.59 0.59 0.60 0.60 0.44 0.66 0.68 0.67 0.21 0.83 0.84 0.83 0.83 0.68 0.83 0.80 1 

(0.30) = negative correlation 

 

The MGVI and MTCI had a strong, positive correlation between them and with bands 

located in the NIR while displayed a negative correlation with the bands in the visible 

region. Nevertheless, the MGVI showed a stronger correlation with NIR reflectances than 

the MTCI.  
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Despite the fact that this correlation matrix was calculated over grassland areas for the 

image of April 1st, the MTCI showed a weaker negative correlation to red reflectances 

than the MGVI. This unexpected response of the MTCI, which was designed to be 

chlorophyll sensitive (Dash and Curran 2004), can be attributable to the fact that the 

bands 8, 9 and 10 used to calculate the MTCI did not consider aerosol corrections and 

biodirectional reflectance factor issues. Another reason could have been the there were 

not much photosynthetic activity over grassland for this image. 

 

The principal component analysis for the MERIS image of April 1st showed that most of 

the information (99.78%) was captured in the first three components (Annex II). The first 

component had high positive loadings from the MGVI, MTCI, and NIR bands. The 

second component had high positive loadings from the NIR bands and the third 

component included loadings from all bands in the visible region. Hence, most of the 

information of a MERIS level 2 image could be comprised in two bands: one in the red 

like the rectified red and other in the NIR like the rectified NIR. In this study we found it 

appropriate not to limit the information from temporal MERIS images to the combination 

of two bands but also to explore the combination of MGVI and MTCI MERIS level 2 

products.  

  

4.4. CLASS SEPARABILITY FROM TEMPORAL PROFILES 

 

The class separability was measured with the JM distance (Equation 15) using 

endmembers defined from 10 pixels per class known to consist of a single cover type. 

The temporal profiles were designed with the MGVI, which combined information from 

the rectified red and rectified NIR bands. The class water was excluded from the 

separability analysis calcualted with the JM distance because visual comparisons of its 

spectra in the red and NIR regions showed very good separability over time. Table 9 

shows that the separability between classes increased as temporal datasets were added up. 

A temporal profile coming from five dates was optimal to achieve good separability 

between crop types. Only the class forest and natural vegetation presented a distance 

lower than 1.3, which indicated low separability in this study. Therefore these two classes 
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were merged into a natural vegetation class. Finally eight classes comprising built up, 

grassland, potatoes, cereals, other crops, natural vegetation, sugar beet and water were 

used as target in the output nodes. The JM distance values between classes for all 

temporal profiles are given in Annex III. 

 

Although Murakami et al. (2001) stated that good separabilities between crops could be 

achieved with at least three images distributed throughout the growing season (i.e. May, 

July and August), we found that for our study it was not the case. This can be expected 

because the temporal and spectral patterns showed similar behavior between class types 

except for water. Another explanation for this could be that the aforementioned authors 

used a large set of temporal fine resolution datasets from SPOT HVR allowing them to 

extract a well defined set of endmembers. 

 

 Table 9. Classes with low separability (JM distance < 1.3) per scene combination 

Temporal profile 1 Temporal profile 2 Temporal profile 3 Temporal profile 4 Temporal profile 5 

Cereals & Potatoes Potatoes & Sugar beet Forest & Nat. veg. Forest & Nat. veg. Forest & Nat. veg. 

Cereals & Sugar beet Built up & Other crops Potatoes & Sugar beet Potatoes & Sugar beet  

Potatoes & Sugar beet Forest & Nat. veg. Cereals & Other crops Cereals & Potatoes  

Built up & Other crops Cereals & Potatoes Cereals & Potatoes Built up & Other  crops  

Nat. veg. & Potatoes Cereals & Forest Built up & Other crops   

Cereals & Forest Forest & Other crops Other crops & Potatoes   

Cereal & Nat. veg. Forest & Grassland Nat. veg. & Potatoes   

Forest & Sugar beet Nat. veg. & Other crops    

Nat. veg. & Sugar beet     

Grassland & Potatoes     

Cereals & Grasland     

Forest & Potatoes     

Grassland & Sugar beet     

Grassland & Nat. veg.     

Forest & Grassland     

Nat. veg. Other crops     

Built up & Nat. veg.     

Forest & Nat. veg.     
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4.5. SELECTION OF FFNN PARAMETERS 

 

The majority of the parameters for the FFNNs were based on results of previous sections 

and literature review. These parameters are shown in Table 10. The number of input layer 

nodes corresponded to the number of chosen bands per image determined in section 4.3 

and the number of temporal images giving the largest separability of crops found in 

section 4.4. Hence, 10 input layer nodes were assigned to the pixel by pixel FFNN and 90 

input layer nodes were allocated to the window 3 by 3 FFNN. The number of output layer 

nodes makes reference to the eight land cover types defined with the JM distance in 

section 4.4. We used a single hidden layer because it gave enough flexibility for the eight 

land cover classes to be distinguished in this assignment (Kanellopoulos et al. 1992). The 

amount of validation and testing samples were arbitrarily based on the guideline proposed 

by Kavzoglu and Mather (2003) with 50 samples per class. A log sigmoid transfer 

function was motivated for the hidden and output layers because it allows the outputs to 

be interpreted as probabilities ranging from 0 to 1. Since these outputs approximate to 

probabilities they sum to 1, representing each output node the class composition within a 

pixel (Bishop 1995). When using this function, it is recommended to adopt a resilient 

back propagation algorithm because this algorithm updates the weight values based on 

the derivate of the sigmoid function and not with a learning rate or momentum. Besides, 

this algorithm has proven to be fast and efficient in memory when used with a log 

sigmoid function (Demuth et al. 2005). The weight initialization values ranged from -0.2 

to 0.2 as recommended by Kavzoglu and Mather (2003). The cross validation stopping 

criteria would stop the training when one of the following situations occurs: 

 

• iterations exceed the limit of 5000 

• Mean Square Error (MSE) achieved is lower than 0.01 

• MSE error of the validation dataset increases after 20 consecutive iterations. 

 

However, Table 10 does not include all necessary parameters to run the FFNNs.  We still 

need to evaluate the type of input data for training the networks, number of hidden layer 

nodes and number of training samples. These parameters, though well documented in 
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literature, are case specific and therefore they were discriminated after evaluating MSE 

coming from trained networks. The networks were run ten times in order to avoid 

inconsistency for the MSE values and their average was used to define the performance 

of the network. Each parameter is analyzed independently in the following subsections.   

 

Table 10. Constant parameter values for training the neural network.  

Parameter Value 
Number of input layer nodes 10 for the pixel by pixel FFNN 

90 for the 3 by 3 window FFNN 
Number of output nodes 8 nodes 
Number of hidden layers 1 layer 
Number of validation sample 50 per class 
Number of testing sample 50 per class 
Transfer function Log sigmoid 
Training algorithm Resilient backpropagation 
Initial weight ranges -0.2, 0.2 
Stop criteria Cross validation or early stopping 
Iterations 5000 
Goal 0.01 MSE 
Number of consecutive failure 
iterations 

20 

 

4.5.1. Input data 

In order to compare the performance of the FFNN with vegetation indices (VIs), using 

the MTCI and MGVI, and reflectance values (ρ), with the rectified red and rectified NIR, 

we iteratively trained the FFNNs 10 times with the parameters described in Table 10 

along with the arbitrary parameters given in Table 11. The number of hidden layer nodes 

were estimated according to Ripley (1993) for  both networks because it includes as 

parameters the number of input nodes and output nodes and it does not rely on the 

selection of constant values for its calculation (Table 5). The training sample used for 

both networks was estimated according to Mather (1999) (Equation 18) because it also 

includes as parameters the number of input nodes and output nodes. Nevertheless the 

calculated amount of training samples for a 3 by 3 window network was too large for this 

study (refer to this issue in section 4.5.3). Therefore, we used the same amount of training 

samples calculated for the pixel by pixel network structure. 
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Average MSE and standard deviation of networks 
trained withVIs and ρ 

0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034 0.036

ρ

VIs

In
pu

t 
da

ta
se

ts

MSE

3 by 3 window

pixel by pixel

Table 11. Parameters used for evaluating different input data   

Pixel by pixel network  3 by 3 window network 
9 hidden layer nodes 49 hidden layer nodes 
2400 training samples 2400 training samples 
 

Figure 12 depicts the average MSEs and standard deviations for trained networks with 

VIs and ρ values. The pixel by pixel network and the 3 by 3 window network had lower 

average MSEs when trained with ρ values than VIs. Also their standard deviation was 

slight smaller for the trained networks with ρ values than VIs. A similar pattern was 

obtained for the training iterations of the networks trained with ρ. Annex IV presents the 

iteration values obtained for each FFNN. It seemed that the sigmoid transfer function 

behaved better with input datasets ranging between 0 and 1 in the case of ρ than larger 

than 1 from the MTCI. In general, the trained 3 by 3 window FFNN reached lower MSE 

than the pixel by pixel FFNN.  

 

An alternative to use the MTCI as input dataset could have been its normalization to a 

range between 0 and 1. In this study, this preprocessing step was not done and we 

continued training the networks with ρ due to its better performance.  

 

 

 

 

 

 

 

 

 

 

Figure 12. Average MSE and standard deviation response for trained FFNN with VIs and 

ρ. 
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4.5.2. Number of hidden layer nodes 

The number of hidden layer nodes was estimated using the heuristic proposed by Ripley 

(1993), Paola (1994), Kanellopoulos and Wilkinson (1997) and Garson (1998) described 

in Table 5. The number of hidden layer nodes for pixel by pixel FFNN were 9, 30, 30, 

and 13, respectively. Estimates for the 3 by 3 window FFNN were 49, 341, 180 and 2, 

respectively.  

 

Similar to the approach followed to determine the appropriate input data, to determine the 

number of hidden layer nodes we trained the networks with the parameters described in 

Table 10 along with the parameters presented in Table 12.   

 

Table 12. Parameters used for evaluating different hidden layer nodes   

Pixel by pixel network 3 by 3 window network 
2400 training samples 2400 training samples 

ρ input data  ρ input data 
 

Figure 13 illustrates the average MSEs and standard deviations for trained networks using 

the hidden layer nodes estimated with the heuristics presented in Table 5. For the pixel by 

pixel FFNN there were no great differences of the average MSEs among the number of 

hidden nodes nor the standard deviations. However, the method suggested by Garson 

(1998) with 13 hidden layer nodes and estimated with an r value of 10 performed slightly 

better. 

 

For the 3 by 3 window FFNN, the method suggested by Garson (1998) with 2 hidden 

layer nodes gave a larger average MSE than other methods because the number of hidden 

layer nodes was too small to discriminate between classes. This small number resulted 

from the increase of input nodes in the denominator and the limited number of training 

samples in the numerator. Instead, the methods proposed by Ripley (1993), Paola (1994) 

and Kanellopoulos and Wilkinson (1997) with 49, 341 and 180 hidden layer nodes, 

respectively,  had equal average MSEs and similar standard deviations.  
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Figure 13. Average MSE and standard deviation response for trained FFNNs with 

different numbers of hidden nodes. Number of hidden layer nodes calculated from: a) 

Kanellopoulos and Wilkinson (1997), b) Ripley (1993), c) Garson (1998) and d) Paola 

(1994). 

 

This indicated that estimating the exact number of hidden layer nodes might require the 

use of different methods to define the optimum bounds for a desired network response. 

Nevertheless, the final selection of the number should be towards the lower bound as it 

would be more efficient in saving memory, training would be iteratively faster and the 

network would have less probabilities of memorizing the training data (Demuth et al. 

2005). 

 

For this study we decided to select 13 hidden layer nodes proposed by Garson (1998) for 

the pixel by pixel network and 49 hidden layer nodes proposed by Ripley (1993) for the  

3 by 3 window network. 

 

In general, the 3 by 3 window FFNN had lower average MSE and standard deviation than 

the pixel by pixel FFNN, except for the 3 by 3 window network trained with 2 hidden 

layer nodes. The training iterations decreased with an increase of the hidden layer nodes. 

Annex V presents the iteration values for each FFNN. 

 

4.5.3. Number of training samples 

The number of training samples was calculated using the methods proposed by Hush 

(1989) in Equation 17, and Mather (1999) in Equation 18. Estimates for the pixel by pixel 

FFNN were 3300 for Equation 17 and 2400 for Equation 18.   
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Estimations for the 3 by 3 window FFNN were 245700 for Equation 17 and 21600 for 

Equation 18. These amounts of training samples were inappropriate because they require 

a larger dataset than the one used in this study. Instead, we used the number of training 

samples calculated for the pixel by pixel network. It is important to stress that the 

performance of a network with a large training sample may not differ much from that of a 

much smaller set when the selection of the training data is randomly and equally 

distributed per class (Paola and Schowengerdt 1995, Kavzoglu and Mather 2003).  

 

Similar to previous parameters, we trained the FFNNs with the parameters described in 

Table 10 along with the most suitable parameters found in section 4.5.1 and section 4.5.2, 

both summarized in Table 13. 

 

Table 13. Parameters used for evaluating different training samples. 

Pixel by pixel network Window 3 by 3 network 
13 hidden layer nodes 49 hidden layer nodes 
ρ input data profile ρ input data profile 
 

There were minor differences between the average MSEs of trained networks with 

different training datasets (Figure 14). The 3 by 3 window FFNN trained with a dataset of 

3300 pixels had a lower average MSE than the 3 by 3 window FFNN trained with 2400 

pixels. Nevertheless, standard deviations of the MSEs were larger for the dataset of 3300 

pixels.  

 

The pixel by pixel FFNNs had similar MSEs and standard deviations for both datasets. 

Hence the difference in the number of training dataset in this study did not have major 

influence for training the FFNNs. Also similar as in previous sections, a 3 by 3 window 

FFNN had lower average MSE than a pixel by pixel FFNN.  
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Figure 14. Average MSE and standard deviation response for trained FFNNs with two 

training sets. 

 
4.5.4. Optimum parameter values 

After evaluating several parameters in previous sections the optimum parameter values 

for training the pixel by pixel and window 3 by 3 FFNNs for this study are displayed in 

Table 14. 

 
Table 14. Optimum setting of network structures 

Parameters Pixel by pixel FFNN 3 by 3 window FFNN 

Input data profile ρ  ρ 

Number of input layer nodes 10 90 

Number of hidden layer nodes 13 49 

Number of hidden layers  1 1 

Number of output layer nodes 8 8 

Number of training samples 2400 2400 

Number of validation samples 400 400 

Number of testing samples 400 400 

Initial weight range [-0.2, 0.2] [-0.2, 0.2] 

Stopping criteria Cross validation Cross validation 

Iterations 5000 5000 

Goal 0.001 MSE 0.001 MSE 

Number of consecutive failure 

iterations 

20 20 

Transfer function Log sigmoid Log sigmoid 

Training algorithm Resilient backpropagation Resilient backpropagation 
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4.6. SIMULATIONS 

 
Although the performance of the trained networks can be evaluated to some extent by the 

MSE of the training set, we decided to evaluate the network response with data that has 

not been presented before (testing data). For this purpose, we used a trained network with 

parameters provided in Table 14 and simulated its response with the prepared testing 

data. 

 

Figures 15 shows that the estimated fractions for the pixel by pixel network did not have 

a perfect fit with the known fractions for all cover types (slope equal to one). The 

estimated fractions for built up, natural vegetation, water and grassland classes had a 

strong positive correlation with correlation coefficient values (R) of 0.71, 0.70, 0.87 and 

0.77, respectively. Potatoes and sugar beet estimated fractions had a positive but 

moderate correlation with R values of 0.57 and 0.55, respectively. The estimated 

fractions for cereals and other crops classes were estimated, with positive but low 

correlation, with R values of 0.45 and 0.48, respectively. Nevertheless, the outliers had a 

great impact for the moderate and low correlation values. The scatter plots showed that 

the outliers had a great impact for the moderate and low correlation values 

 

For most classes the data points were clustered towards the lower left corner of the plot 

(indicating the large amount of low fractions per class). There were overestimations for 

very low fractions and underestimations for high fractions. This response can be 

explained by the behavior of the log sigmoid transfer function, as it tends to saturate with 

high values and overemphasize with low fractions.  

 

It was interesting that saturation for high values was different for the land cover types. 

For example, the saturation for the simulated fractions for potatoes was 0.4, whereas for 

grassland it reached 0.9. This can be explained by the fact that most of the fractions of 

datasets used for training potatoes ranged from 0 to 0.6, whereas for grassland they were 

well distributed between 0 and 1. Information on the fraction distribution of the training 

dataset is presented in Annex VII. 
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Figure 15 a. Linear regressions between estimated fractions from a pixel by pixel FFNN 

and known fractions. 
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Figure 15 b. Linear regressions between estimated fractions form a 3 by 3 window FFNN 

and known fractions. 
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Figure 16 displays the linear regressions between known and estimated fractions for the 3 

by 3 window FFNN. For all classes the points followed the best linear fit. Also there was 

a slight increase in their slope values. For example, grassland had a slope value of 0.653, 

compared to just 0.552 using a pixel by pixel FFNN. The built up, natural vegetation, 

water and grassland estimated fractions had a strong positive correlation with R values of 

0.70, 0.80, 0.95 and 0.81, respectively. The estimated fractions for other crops, sugar 

beet, potatoes and cereal classes had a positive but moderate correlation with R values of 

0.51, 0.61, 0.60 and 0.60, respectively. In general there was an improvement of the 

correlation values for natural vegetation, water, other crops, grassland, sugar beet and 

cereals when compared to the R values using a pixel by pixel FFNN. This improvement 

in the correlation values was due to the reduction of error estimations associated with 

outliers. This reduction could be expected as the 3 by 3 window FFNN was trained with 

more information on the image. 

 

In addition to the progress of estimated fractions with neighbor information, there was a 

reduction of the saturation of high estimated fractions. For example, maximum estimated 

values for water was 0.9 with a 3 by 3 window FFNN, compared to 0.8 with a pixel by 

pixel FFNN. 

 

The better performance for the simulated fractions coming from a 3 by 3 window FFNNs 

could have been foreseen during the selection of the network parameters (section 4.5). In 

all those evaluations the trained 3 by 3 window FFNNs had lower average MSEs than the 

networks trained with a pixel by pixel FFNN.      
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Figure 16 a. Linear regressions between estimated fractions from a pixel by pixel FFNN 

and known fractions. 
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Figure 16 b. Linear regressions between estimated fractions from a 3 by 3 window FFNN 

and known fractions. 
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4.7. ANALYSIS OF ESTIMATES AT DIFFERENT SCALES 

 

The information provided during simulations gave us some insight about the potential of 

the FFNN to estimate sub-pixel fractions. However, to evaluate in detail the sub-pixel 

estimations and their spatial distribution at different scales we need to proceed with 

another evaluation approach. For this purpose we selected two regions of 900 ha (10 by 

10 MERIS pixels) for potatoes, region I, and grassland, region II, displayed in Figure 17. 

Potatoes class was chosen because it had similar patch size and patch variability with 

sugar beet and cereals, whereas grassland had a greater varying patch size and its pixels 

in the LGN5 were more tied to its same class showing more homogeneity than areas with 

potatoes, sugar beet or cereals. For these two regions a set of statistics comprising the 

root mean square error )(RMSE , the normalized RMSE )( normalizedRMSE , Bias and 

coefficient of correlation (R) was calculated. As this approach contains different scales of 

analysis, it is important to mention that we refer the estimated and known sub-pixel 

values to the area covered by potatoes or grassland over the scale (ground area) in 

consideration as depicted in Figure 9. 

Figure 17. Regions I and II selected from the LGN 5. 
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4.7.1. Analysis for potato estimates  

 

Figure 18 shows in detail the region I with its respective sub-pixel fractions, known and 

estimated values from a pixel by pixel FFNN and a 3 by 3 window FFNN. 

 

 

 

Figure 18. Region I for potato estimates. (a) shows the land use distribution (LGN 5) 

overlaid by a grid cell resembling MERIS pixels. (b) the fractions of sub-pixels covered 

by potatoes represented in grey scale (known fractions). (c) estimated  fractions with a 

pixel by pixel FFNN structure. (d) estimated fractions with a 3 by 3 window FFNN 

structure. 
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Figure 18a shows that a large part of the MERIS pixels for this region are dominated by 

mixed pixels. Visual comparisons of the fractional image using the pixel by pixel FFNN 

(Figure 18c) and 3 by 3 window FFNN (Figure 18d) with known potato fractions (Figure 

18b) did not show any correspondence at pixel level. 

 

Statistical comparisons for both FFNN structures, showed in Figure 19, confirmed the 

above visual assessment. The R values for both networks were around 0.25 at a ground 

area of 9 ha (MERIS pixel size of 300m). Nevertheless, an increase in area of analysis at 

81 ha produced an increase in R values of 0.41 in a pixel by pixel FFNN and of 0.85 in a 

window 3 by 3 FFNN. This increase in precision was also showed in the calculated 

RMSE and the RMSEnormalized. Their values decreased from 26% error area of estimates to 

around 7 % for the RMSE and from 120% error area of estimates to around 5% for the 

RMSEnormalized. Similar results were obtained by Townshend et al. (2000), Huang et al. 

(2002) and Lobell and Asner (2004). They associated the low accuracies at sensor pixel 

level to uncertainties coming from atmospheric effects, sensor response and landscape 

heterogeneity. 

 

As we aggregated the spatial area of analysis to a ground area of 18 ha (2 MERIS pixels) 

over the horizontal axis (E-W) and vertical axis (N-S), the calculated R values from the 

pixel by pixel FFNN showed some big differences. The aggregated area over the 

horizontal axis (E-W) had a R value of 0.53, while the aggregated area over the vertical 

axis (N-S) had a R value of 0.3. This difference of 0.2 could have been originated from 

erroneous estimations during the simulations because this effect is smoothed out when 

using a 3 by 3 window FFNN. 

 

The information provided by the RMSEnormalized had great differences with the 

information provided by the RMSE. For example at a scale of 9 ha the error of estimates 

with the RMSE was 2.52 ha (28%) for the estimated potato area while the correlation of 

the estimated values was very low with R values of 0.25 for both networks. Instead the 

error of estimates calculated with the RMSEnormalized was 10.8 ha (120%). This difference 

in values was because the average known potato area per sub-region was 2.06 ha which is 
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below the estimated error calculated with the RMSE. Hence the normalization of the 

RMSE for information on area distribution can provide measurements that are better 

related to other accuracy methods used for sub-pixel estimations like coefficients of 

correlation. 

 

The bias error of the potato estimates was around 7% and positive that meant a low 

systematic overprediction of the estimates. This can be expected from the behavior of the 

log sigmoid transfer function, as it tends to overemphasize low estimates. 

 

As region I included small areas covered with grassland, estimations over grassland at 9 

ha had a positive moderate correlation with a R value of 0.50 for the pixel by pixel FFNN 

and positive strong correlation with a R value of 0.75 for the 3 by 3 window FFNN. 
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Figure 19. RMSE, RMSEnormalized, R and Bias for MERIS estimates of potato area at 

different spatial scales. The legend N-S and E-W corresponds to the aggregation along 

the vertical axis and horizontal axis, respectively, at analysis scale of 18 ha.   
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4.7.2. Analysis for grassland estimates 

As low estimates of potato fractions could be related to the very little composition of this 

class in the landscape and lack of training samples with large fractions, we decided to 

carry out a similar analysis with grassland that comprised 22.3% of the whole study area 

and was trained with equally distributed fractions. Figure 20 presents the region II with 

its respective sub-pixel fractions, known and estimated values for grassland, from a pixel 

by pixel FFNN and a 3 by 3 window FFNN. 

 

Figure 20. Region II for grassland estimates. (a) shows the land use distribution (LGN 5) 

overlaid by a grid cell resembling MERIS pixels. (b) the fractions of sub-pixels covered 

by grassland represented in grey scale (known fractions). (c) estimated  fractions with a 

pixel by pixel FFNN structure. (d) estimated fractions with a window 3 by 3 FFNN 

structure. 
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Region II shows that large proportion of the MERIS pixels are dominated by the class 

grassland. Visual comparisons of the fractional images derived using the pixel by pixel 

FFNN, Figure 20c, and 3 by 3 window FFNN, Figure 20d with known grassland fractions 

Figure 20b presented a pretty good spatial correspondence between the known 

proportions and its estimated values at pixel level. Also grassland patches were spatially 

well distributed throughout the region.  

 

The statistics showed in Figure 21 for both FFNN structures confirmed the above visual 

assessment. Estimated grassland fractions were positive and strong correlated with R 

values around 0.72 at 9 ha for both networks.  

 

An increase in area of analysis of the estimates, for the pixel by pixel FFNN and 3 by 3 

window FFNN, produced also an increase in the correlations, with R values of 0.95 at 81 

ha, compared to 0.72 at 9 ha. This increase in precision was also apparent by a decrease 

in RMSE and RMSEnormalized. The RMSE were reduced from 28% at 9 ha to 14 % at 81 

ha for the pixel by pixel FFNN and from 25% at 9 ha to 11% at 81 ha for the 3 by 3 

window FFNN. The RMSEnormalized percentages were reduced from 50% at 9 ha to 3% at 

81 ha for the pixel by pixel FFNN and from 45% at 9 ha to 3% at 81 ha for the window 3 

by 3 FFNN. In addition, uncertainties associated with the direction of aggregation at a 

scale of 18 ha were not significant. 

 

The bias for grassland estimated values was around -7%, which meant an underprediction 

over high fractions. It was negative due to the tendency of the log sigmoid transfer 

function to underestimate high fractions.  

 

In general the window 3 by 3 FFNN structure was more precise and accurate in 

estimating sub-pixel area information for grassland than the pixel by pixel FFNN at a 

scale of 9 ha. 

 

As region II includes small areas covered with potatoes, we calculated its correlation 

between estimates and known areas at a spatial scale of 9 ha. The pixel by pixel FFNN 
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had a positive low correlation with a R value of 0.48, while the 3 by 3 window FFNN had 

a positive low correlation with a R value of 0.50. Despite that R values were low 

correlated at 9 ha, they are larger to the correlations measured in region I, for potatoes, 

with R values of 0.25 at 9 ha. This general improvement in correlation values over more 

homogeneous areas like in region II might be explained by the fact that accuracy of 

estimations significantly decreases over heterogeneous areas (Moody et al. 1996). 

Nevertheless, the distribution of training samples used to train the networks might have 

also significantly influenced the estimations over heterogeneous and more homogenous 

regions. For example, grassland areas were positive strong correlated with R values 

around 0.75 for both regions.   
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Figure 21. RMSE, RMSEnormalized, R and Bias for MERIS estimates of grasland area at 

different spatial scales. The legend N-S and E-W corresponds to the aggregation along 

the vertical axis and horizontal axis, respectively, at an analysis scale of 18 ha. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

 
 
5.1. CONCLUSIONS 

 

Results of this study show the potential of extracting sub-pixel crop area estimates from 

time series of MERIS level 2 datasets by using a pixel by pixel Feedforward Artificial 

Neural Network (FFNN) and a 3 by 3 window FFNN.  

 

The approach used in this study to assess the separability of crop types from multi-

temporal and multi-spectral datasets followed an evaluation of the spectral signatures of 

crops per image and over time. Calculation of correlation coefficients and principal 

components for the MERIS level 2 bands and products showed that MERIS have a high 

degree of redundant information in its spectral bands for the visible and near infrared. 

Vegetation indices (VIs) showed high correlation with the NIR bands. Most of the 

information could thus be comprised in MERIS level 2 products rectified red and NIR or 

a combination of the two using the MGVI. Separability of temporal spectral signatures 

measured with the JM distance revealed that for good separability, distance values 

between 1.3 and 1.4, the quantity of MERIS images was more important than their 

position at the onset, middle and end of the growing season. The resulting spectral 

signatures using all five MERIS datasets showed good separability between crops, only 

the classes forest and natural vegetation, which had a JM-value of 1.25, were merged into 

a single class.  

 

Based on the temporal profiles and output classes the best parameter values for training 

of FFNNs were obtained by using ρ  as input datasets, 13 hidden layer nodes for a pixel 

by pixel FFNN as proposed by Garson (1998) and 49 hidden layer nodes for a 3 by 3 

window FFNN as proposed by Ripley (1993) and 2400 training samples as proposed by 

Hush (1989). Although the guideline proposed by Kavzoglu and Mather (2003) facilitates 

the process of design and use of neural networks towards an operational application, 
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parameters such as number of hidden layer nodes and number of training samples need to 

be adjusted to case-by-case. 

 

Neighbor pixel information from MERIS datasets improved the sub-pixel crop estimates. 

The sub-pixel estimations with a 3 by 3 window FFNN, for instance, had coefficient of 

correlation (R) values of 0.81 for grassland, 0.61 for sugar beet, 0.60 for potatoes and 

0.60 for cereals; compared to sub-pixel estimations with R values of 0.77 for grassland, 

0.55 for sugar beet, 0.57 for potatoes and 0.45 for cereals using a pixel by pixel FFNN. 

The improvement in the correlations can be explained by a reduction of errors associated 

with the outliers. Another interesting effect of using neighbor information was the 

reduction of the saturation effect for high estimates due to the behavior of the log sigmoid 

function. For example, maximum estimated value for water was 0.9 with a 3 by 3 

window FFNN, compared to 0.8 with a pixel by pixel FFNN. 

 

Accuracy of sub-pixel crop area estimates changed with the spatial scale of analysis, 

which ranged from 9 ha to 900 ha. Analysis for potato estimates at different spatial scales 

yielded R values from 0.25 at 9 ha to 0.85 at spatial scales over 81 ha using a 3 by 3 

window FFNN. For grassland, there was an increased from R values of 0.72 at 9 ha to 

0.95 at spatial scales over 81 ha using a 3 by 3 window FFNN. Such increase in precision 

as function of the spatial scale produced a reduction for RMSE values. For example, the 

RMSEnormalized over grassland were reduced from 45% error area of estimates at 9 ha to 

3% at 81 ha for the 3 by 3 window FFNN. Accuracy of crop area estimates over 

heterogeneous regions as depeicted in region I, for potatoes, was lower than in regions 

with a more homogenous area as presented in region II, for grassland. Nevertheless, this 

low estimation can not only be related to heterogeneity of the landscape but also to the 

training samples used for describing potato and grassland fractions. Besides, it was 

important to quantify the systematic error coming from the log sigmoid function that was 

around 7% area of estimates for low estimated values and –7% for high estimated values.  
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5.2. RECOMMENDATIONS 

 

Future research drawing on and furthering the present study may include: 

 

Definition of temporal profiles with higher temporal resolutions would provide a better 

definition of the endmembers. In addition, definition of endmembers in terms of VI’s 

should be further explored with VI’s ranging between 0 and 1 or otherwise normalization 

into this range. 

 

Although most of the ANN studies in remote sensing take the transfer sigmoid function 

as given, implementation of other transfer functions with output values ranging between 

0 and 1 could reduce the saturation effect for high fractions and overestimation of low 

fractions. 

 

The training sample can be optimized by the use of look up tables combining the 

different ranges of proportion per class of interest. If needed training samples for pure 

pixels might also be derived from a combination of crop growth models and radiative 

transfer models (Lobell and Asner 2004).  

 

The effect on accuracy of sub-pixel area estimates using other sources of ancillary data 

like soil or topographic maps needs further exploration. In addition, the evaluation of the 

accuracy at sub-pixel level needs a standardization of statistical methods. In this study, 

the implemented RMSEnormalized proves to be useful when evaluating accuracy estimates 

at pixel level. It normalizes the RMSE with information on class distribution, making the 

measurements better related to other accuracy methods used for sub-pixel estimations 

like the coefficient of correlation. 
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ANNEX I:  SPECTRAL SIGNATURES OF LAND COVER 

TYPES 

 
 

 
 

Figure 22a. Spectral signatures for land cover types derived from MERIS level 2 images 

of  April 1st and May 15th, 2004. 
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MERIS image 08 August 2004
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Figure 22b. Spectral signatures for land cover types derived from MERIS level 2 images 

of  July 17th and August 08th, 2004. 
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Figure 22c. Spectral signatures for land cover types derived from MERIS level 2 images 

of  September 10th, 2004. 
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ANNEX II: PRINCIPAL COMPONENT ANALYSIS FOR 

THE MERIS  IMAGE OF APRIL 1 st, 2004 

 

Table 15. Principal component analysis for the MERIS image of April 1st, 2004. 

Principal 
component 

Explained 
variance (%) 

Cumulative 
variance (%) 

1 93.58 93.58 
2 3.29 96.87 
3 2.91 99.78 
4 0.16 99.94 
5 0.04 99.98 
6 0.01 99.99 
7 0.01 100.00 
8 0.00 100.00 
9 0.00 100.00 
10 0.00 100.00 
11 0.00 100.00 
12 0.00 100.00 
13 0.00 100.00 
14 0.00 100.00 
15 0.00 100.00 
16 0.00 100.00 
17 0.00 100.00 
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ANNEX III: JM DISTANCE VALUES BETWEEN CLASES FOR TE MPORAL PROFILES 

Table 16. JM Distances values between classes. Very good separability: 1.414 and Low separability: <1.3. 

Temporal profile 1 JM Temporal profile 2 JM Temporal profile 3 JM Temporal profile 4 JM Temporal profile 5 JM 

Cereals & Potatoes 0.429 Potatoes & Sugar beet 0.653 Forest & Nat Veg 1.139 Forest & Nat Veg 1.077 Forest & Nat Veg 1.254 

Cereals & Sugar beet 0.469 Built up &Other crops 0.956 Potatoes & Sugar beet 1.192 Potatoes & Sugar beet 1.147 Built up &Other crops 1.349 

Potatoes & Sugar beet 0.699 Forest & Nat Veg 0.988 Cereals & Other crops 1.239 Cereals & Potatoes 1.228 Potatoes & Sugar beet 1.351 

Built up & Other crops 0.778 Cereals & Potatoes 1.096 Cereals & Potatoes 1.259 Built up & Other crops 1.262 Forest & Other crops 1.367 

Nat Veg & Potatoes 0.781 Cereals & Forest 1.186 Built up & Other crops 1.286 Forest & Other crops 1.316 Cereals & Potatoes 1.369 

Cereals & Forest 0.956 Forest & Other crops 1.221 Other crops & Potatoes 1.291 Forest & Grassland 1.324 Nat Veg & Other crops 1.389 

Cereals & Nat Veg 0.984 Forest & Grassland 1.261 Nat Veg & Potatoes 1.295 Nat Veg & Other crops 1.339 Grassland & Nat Veg 1.395 

Forest & Sugarbeet 1.078 Nat Veg &Other crops 1.300 Forest & Other crops 1.323 Built up & Forest 1.370 Cereals & Sugar beet 1.397 

Nat Veg & Sugar beet 1.093 Grassland & Nat Veg 1.308 Built up & Potatoes 1.344 Grassland & Nat Veg 1.371 Forest & Grassland 1.398 

Grassland & Potatoes 1.113 Cereals & Sugar beet 1.309 Built up & Cereals 1.347 Built up & Nat Veg 1.372 Built up & Forest 1.403 

Cereals & Grassland 1.131 Built up & Forest 1.319 Grassland & Nat Veg 1.363 Cereals & Sugar beet 1.380 Built up & Nat Veg 1.409 

Forest & Potatoes 1.139 Built up & Nat Veg 1.323 Forest & Grassland 1.366 Forest & Potatoes 1.393 Forest & Potatoes 1.410 

Grassland & Sugar beet 1.146 Forest & Potatoes 1.362 Nat Veg & Other crops 1.376 Nat Veg & Potatoes 1.403 Nat Veg &Potatoes 1.411 

Grassland & Nat Veg 1.206 Cereals & Grassland 1.369 Forest & Potatoes 1.381 Cereals & Forest 1.407 Cereals & Forest 1.413 

Forest & Grassland 1.237 Cereals & Nat Veg 1.382 Built up & Forest 1.381 Other crops & Potatoes 1.408 Other crops & Potatoes 1.414 

Nat Veg & Other crops 1.247 Nat Veg & Potatoes 1.388 Cereals & Forest 1.383 Cereals & Other crops 1.412 Forest & Sugar beet 1.414 

Built up & Nat Veg 1.261 Other crops & Potatoes 1.404 Cereals & Sugar beet 1.389 Forest & Sugar beet 1.414 Cereals & Other crops 1.414 

Forest & Nat Veg 1.287 Nat Veg & Sugar beet 1.406 Other crops & Sugar beet 1.395 Built up & Potatoes 1.414 Cereals & Nat Veg 1.414 

Built up & Potatoes 1.339 Forest & Sugar beet 1.407 Cereals & Nat Veg 1.396 Cereals & Nat Veg 1.414 Built up &Potatoes 1.414 

Other crops & Potatoes 1.346 Cereals & Other crops 1.410 Nat Veg & Sugar beet 1.400 Grassland & Sugar beet 1.414 Cereals & Grassland 1.414 

Cereals & Other crops 1.363 Built up & Potatoes 1.410 Built up & Nat Veg 1.403 Cereals & Grassland 1.414 Nat Veg & Sugar beet 1.414 

Built up & Cereals 1.363 Other crops & Sugar beet 1.412 Built up & Sugar beet 1.406 Built up & Cereals 1.414 Other crops & Sugar beet 1.414 

Forest & Other crops 1.389 Built up & Cereals 1.413 Forest & Sugar beet 1.409 Grassland & Potatoes 1.414 Built up & Cereals 1.414 

Other crops & Sugar beet 1.391 Built up & Sugar beet 1.414 Cereals & Grassland 1.414 Nat Veg & Sugar beet 1.414 Grassland & Sugar beet 1.414 

Built up & Sugar beet 1.403 Grassland & Sugar beet 1.414 Grassland & Other crops 1.414 Other crops & Sugar beet 1.414 Built up & Sugar beet 1.414 

Built up & Forest 1.412 Grassland & Potatoes 1.414 Grassland & Sugar beet 1.414 Built up & Sugar beet 1.414 Grassland & Other crops 1.414 

Grassland & Other crops 1.414 Grassland & Other crops 1.414 Built up & Grassland 1.414 Grassland & Other crops 1.414 Built up & Grassland 1.414 

Built up & Grassland 1.414 Built up & Grassland 1.414 Grassland & Potatoes 1.414 Built up & Grassland 1.414 Grassland & Potatoes 1.414 
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ANNEX IV: MSEs OF TRAINED NETWORKS WITH VIs 

AND ρ 

 
 
Pixel by Pixel FFNN Matlab code trained with ρ and VIs. 

  

net_sample = newff(minmax(ρ_data), [9, 8] , products:, 'trainrp'); 

net_sample.trainParam.show = 50; 

net_sample.trainParam.epochs = 5000; 

net_sample.trainParam.goal = 0.01; 

net_sample.trainParam.max_fail = 20; 

net_sample.layers347.initFcn = 'initwb'; 

net_sample.inputWeights{1,1}.initFcn = 'myinit'; 

net_sample = init(net_sample); 

net_trained = train(net_sample, ρ_data, t_data, [], [], VV); 

estimated_test = sim(net_trained, ρ_data); 

input_profile = t_data - estimated_test; 

perf_input_profile = mse(input_profile); 

 

 

Table 17a. MSE values for pixel by pixel FFNNs trained with ρ. 

 Iterations MSE 
 468 0.033 
 339 0.033 
 347 0.033 
 558 0.033 
 426 0.034 
 416 0.033 
 292 0.033 
 392 0.033 
 339 0.033 
 631 0.033 
Mean 421 0.033 
s 106 0.000316 
s = Standard deviation 
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Pixel by Pixel FFNN Matlab code trained with VIs. 

 

net_sample = newff(minmax(dataVI), [13, 8] ,{'logsig', 'logsig'}, 'trainrp'); 

net_sample.trainParam.show = 50; 

net_sample.trainParam.epochs = 5000; 

net_sample.trainParam.goal = 0.01; 

net_sample.trainParam.max_fail = 20; 

net_sample.layers{1}.initFcn = 'initwb'; 

net_sample.inputWeights{1,1}.initFcn = 'myinit'; 

net_sample = init(net_sample); 

net_trained = train(net_sample, dataVI, t_dataVI, [], [], VV_IV); 

estimated_test = sim(net_trained, dataVI); 

input_profile = t_dataVI - estimated_test; 

perf_input_profile = mse(input_profile); 

 

 

Table 17b. MSE values for pixel by pixel FFNNs trained with VIs. 

 Iterations MSE 
 1203 0.033 
 257 0.034 
 395 0.034 
 621 0.034 
 841 0.033 
 763 0.034 
 785 0.034 
 734 0.034 
 705 0.033 
 1786 0.034 
Mean 809 0.034 
s 427 0.000483 
s = Standard deviation 
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Window 3 by 3 FFNN Matlab code trained with ρ. 

 

net_sample = newff(minmax(ρ_data_n), [49, 8] ,{'logsig', 'logsig'}, 'trainrp'); 

net_sample.trainParam.show = 50; 

net_sample.trainParam.epochs = 5000; 

net_sample.trainParam.goal = 0.01; 

net_sample.trainParam.max_fail = 20; 

net_sample.layers{1}.initFcn = 'initwb'; 

net_sample.inputWeights{1,1}.initFcn = 'myinit'; 

net_sample = init(net_sample); 

net_trained = train(net_sample, ρ_data_n, t_data_n, [], [], VV_neighbor); 

estimated_test = sim(net_trained, ρ_data_n); 

input_profile = t_data_n - estimated_test; 

perf_input_profile = mse(input_profile); 

 

Table 17c. MSE values for window 3 by 3 FFNNs trained with ρ. 

 Iterations MSE 
 178 0.025 
 150 0.027 
 237 0.024 
 163 0.026 
 174 0.026 
 300 0.024 
 182 0.025 
 134 0.026 
 224 0.024 
 167 0.025 
Mean 191 0.025 
s 49.34 0.00103 
s = Standard deviation 
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Window 3 by 3 FFNN Matlab code trained with VIs. 

 

net_sample = newff(minmax(dataVI_n), [49, 8] ,{'logsig', 'logsig'}, 'trainrp'); 

net_sample.trainParam.show = 50; 

net_sample.trainParam.epochs = 5000; 

net_sample.trainParam.goal = 0.01; 

net_sample.trainParam.max_fail = 20; 

net_sample.layers{1}.initFcn = 'initwb'; 

net_sample.inputWeights{1,1}.initFcn = 'myinit'; 

net_sample = init(net_sample); 

net_trained = train(net_sample, dataVI_n, t_dataVI_n, [], [], VV_IV_neighbor); 

estimated_test = sim(net_trained, dataVI_n); 

input_profile = t_dataVI_n - estimated_test; 

perf_input_profile = mse(input_profile); 

 

Table 17d. MSE values for window 3 by 3 FFNNs trained with VIs. 

 Iterations MSE 
 213 0.028 
 255 0.026 
 175 0.028 
 212 0.026 
 178 0.026 
 242 0.028 
 210 0.028 
 235 0.026 
 293 0.025 
 238 0.025 
Mean 225 0.027 
s 35.48 0.0012 
s = Standard deviation 
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ANNEX V: MSEs OF TRAINED NETWORKS WITH 

DIFERENT NUMBER OF HIDDEN LAYER NODES 

 
Pixel by pixel FFNN Matlab code trained with 9, 13 and 30 hidden layer nodes. 
 
net_sample = newff(minmax(ρ_data), [(9,13, and 30), 8] ,{'logsig', 'logsig'}, 'trainrp'); 

net_sample.trainParam.show = 50; 

net_sample.trainParam.epochs = 5000; 

net_sample.trainParam.goal = 0.01; 

net_sample.trainParam.max_fail = 20; 

net_sample.layers{1}.initFcn = 'initwb'; 

net_sample.inputWeights{1,1}.initFcn = 'myinit'; 

net_sample = init(net_sample); 

net_trained = train(net_sample, p_data, t_data, [], [], VV); 

estimated_test = sim(net_trained, p_data); 

input_profile = t_data - estimated_test; 

perf_input_profile = mse(input_profile); 

 
 
Table 18a. MSE values for pixel by pixel FFNNs with 9 hidden layer nodes. 

 Iterations MSE 
 468 0.033 
 339 0.033 
 347 0.033 
 558 0.033 
 426 0.034 
 416 0.033 
 292 0.033 
 392 0.033 
 339 0.033 
 631 0.033 
Mean 421 0.033 
s 106 0.000316 
s = Standard deviation 
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Table 18b. MSE values for pixel by pixel FFNNs with 13 hidden layer nodes. 

 Iterations MSE 
 208 0.032 
 345 0.032 
 579 0.032 
 329 0.033 
 373 0.032 
 347 0.032 
 374 0.032 
 352 0.032 
 345 0.032 
 345 0.032 
Mean 360 0.032 
s 90.24 0.00032 
s = Standard deviation 
 

Table 18c. MSE values for pixel by pixel FFNNs with 30 hidden layer nodes. 

 Iterations MSE 
 417 0.033 
 356 0.033 
 265 0.032 
 177 0.033 
 295 0.033 
 206 0.032 
 208 0.033 
 242 0.032 
 160 0.033 
 393 0.032 
Mean 272 0.033 
s 90.81 0.00051 
 
 
Window 3 by 3 FFNN Matlab code trained with 2, 49, 180 and 341 hidden layer nodes. 

 

net_sample = newff(minmax(ρ_data_n), [(2, 49, 180 and 341) , 8] ,{'logsig', 'logsig'}, 

'trainrp'); 

net_sample.trainParam.show = 50; 

net_sample.trainParam.epochs = 5000; 

net_sample.trainParam.goal = 0.01; 

net_sample.trainParam.max_fail = 20; 
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net_sample.layers{1}.initFcn = 'initwb'; 

net_sample.inputWeights{1,1}.initFcn = 'myinit'; 

net_sample = init(net_sample); 

net_trained = train(net_sample, ρ_data_n, t_data_n, [], [], VV_neighbor); 

estimated_test = sim(net_trained, ρ_data_n); 

input_profile = t_data_n - estimated_test; 

perf_input_profile = mse(input_profile); 

 

 

Table 18d. MSE values for window 3 by 3 FFNNs with 2 hidden layer nodes. 

 Iterations MSE 
 2601 0.037 
 1347 0.034 
 740 0.044 
 429 0.040 
 306 0.041 
 363 0.044 
 311 0.044 
 427 0.043 
 333 0.040 
 377 0.044 
Mean 723 0.041 
s 733 0.003446 
s = Standard deviation 

 

Table 18e. MSE values for window 3 by 3 FFNNs with 49 hidden layer nodes. 

 Iterations MSE 
 178 0.025 
 150 0.027 
 237 0.024 
 163 0.026 
 174 0.026 
 300 0.024 
 182 0.025 
 134 0.026 
 224 0.024 
 167 0.025 
Mean 191 0.025 
s 49.34 0.00103 
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Table 18f. MSE values for window 3 by 3 FFNNs with 180 hidden layer nodes. 

 Iterations MSE 
 169 0.025 
 190 0.024 
 243 0.023 
 156 0.025 
 157 0.025 
 212 0.024 
 179 0.026 
 124 0.026 
 169 0.025 
 223 0.023 
Mean 182 0.025 
s 35.55 0.001075 
s = Standard deviation 

 

Table 18g. MSE values for window 3 by 3 FFNNs with 341 hidden layer nodes. 

 Iterations MSE 
 214 0.024 
 160 0.025 
 204 0.025 
 179 0.025 
 179 0.025 
 260 0.024 
 258 0.023 
 133 0.025 
 188 0.025 
 223 0.024 
Mean 182 0.025 
s 40.58 0.000707 
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ANNEX VI: MSEs OF TRAINED NETWORKS WITH 2400 

AND 3300 TRAINING PIXELS 

 

Pixel by pixel FFNN Matlab code trained with 2400 and 3300 training samples. 

 

net_sample = newff(minmax(p_data2[2400 or 3300]), [13, 8] ,{'logsig', 'logsig'}, 

'trainrp'); 

net_sample.trainParam.show = 50; 

net_sample.trainParam.epochs = 5000; 

net_sample.trainParam.goal = 0.01; 

net_sample.trainParam.max_fail = 20; 

net_sample.layers{1}.initFcn = 'initwb'; 

net_sample.inputWeights{1,1}.initFcn = 'myinit'; 

net_sample = init(net_sample); 

net_trained = train(net_sample, p_data2, t_data2 [2400 or 3300] , [], [], VV); 

estimated_test = sim(net_trained, p_data2); 

input_profile = t_data2 - estimated_test; 

perf_input_profile = mse(input_profile); 

 

Table 19a. MSE values for pixel by pixel FFNNs trained with 2400 training samples. 

 Iterations MSE 
 208 0.032 
 345 0.032 
 579 0.032 
 329 0.033 
 373 0.032 
 347 0.032 
 374 0.032 
 352 0.032 
 345 0.032 
 345 0.032 
Mean 360 0.032 
s 90.25 0.000316 
s = Standard deviation 
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Table 19b. MSE values for pixel by pixel FFNNs trained with 3300 training samples. 

 Iterations MSE 
 754 0.032 
 667 0.032 
 442 0.032 
 769 0.033 
 364 0.032 
 283 0.032 
 492 0.032 
 749 0.032 
 667 0.032 
 584 0.032 
Mean 577 0.032 
s 174 0.000316 
s = Standard deviation 

 

Window 3 by 3 FFNN Matlab code trained with 2400 and 3300 training samples. 

 

net_sample = newff(minmax(p_data2_n [2400 or 3300]), [49, 8] ,{'logsig', 'logsig'}, 

'trainrp'); 

net_sample.trainParam.show = 50; 

net_sample.trainParam.epochs = 5000; 

net_sample.trainParam.goal = 0.01; 

net_sample.trainParam.max_fail = 20; 

net_sample.layers{1}.initFcn = 'initwb'; 

net_sample.inputWeights{1,1}.initFcn = 'myinit'; 

net_sample = init(net_sample); 

net_trained = train(net_sample, p_data2_n, t_data2_n [2400 or 3300], [], [], 

VV_neighbor); 

estimated_test = sim(net_trained, p_data2_n); 

input_profile = t_data2_n - estimated_test; 

perf_input_profile = mse(input_profile); 
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Table 19c. MSE values for window 3 by 3 FFNNs trained with 2400 training samples. 

 Iterations MSE 
 178 0.025 
 150 0.027 
 237 0.024 
 163 0.026 
 174 0.026 
 300 0.024 
 182 0.025 
 134 0.026 
 224 0.024 
 167 0.025 
Mean 191 0.025 
s 49.34 0.001033 
s = Standard deviation 

 

Table 19d. MSE values for window 3 by 3 FFNNs trained with 3300 training samples. 

 Iterations MSE 
 243 0.024 
 280 0.023 
 166 0.026 
 257 0.023 
 366 0.022 
 271 0.022 
 141 0.027 
 155 0.026 
 201 0.025 
 183 0.026 
Mean 191 0.024 
s 70.02 0.001838 
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ANNEX VII: DISTRIBUTION OF TRAINED SAMPLES PER FRAC TION RANGE 

 

 

 

Figure 23. Distribution of training samples per fractions. 
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