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Abstract 
 
 
Nowadays many of the environmental policy coming from the European Union are based on 
the outcome of environmental models, whose primary input are data on land cover and land 
use. Particularly, an increasing desire to monitor dynamics of the urban land cover is being 
observed in the scientific community. This tendency can be attributed to the recognition of 
urbanization phenomena as one of the key pressures on biodiversity as delineated in the 
BIOPRESS initiative.  
 
This study attempts to evaluate the utility of medium spatial resolution satellite data for land 
cover mapping and monitoring in the spatial-temporal dimension. The chosen product is the 
daily Terra/MODerate resolution Imaging Spectroradiometer (MODIS) atmospherically 
corrected surface reflectance product at 250m resolution (MOD09GQK). Its potential was 
evaluated in the context of the Co-ordination of Information on the Environment 
(CORINE) land cover database-update effort and focuses on the classes defined in CORINE’s 
first Nomenclature Level, namely artificial surfaces (urban), agricultural areas, forested areas 
and water/wetlands. A case study was performed in the northern part of the Italian peninsula, 
in the so called Po` valley. Land cover changes affecting the urban class in this area were of 
particular interest for the present study.  
 
A series of semi-automatized procedures were developed for MODIS data pre-processing, 
1990 simulation, as well as training and execution of Maximum Likelihood classifications. 
Simulation was performed through linear regression analysis attempting to model the 
relationship between MODIS and Landsat data. The MODIS 2000 classification was 
performed for a single-date and for a multitemporal dataset, eventually results were 
compared. CORINE’s land cover maps were used as ‘ground truth’ for the validation of the 
MODIS classifications, a comparison between a pixel- and an object-wise assessment was 
carried out.  Eventually, a post-classification change detection method was applied to derive 
change signals occurring in the 1990-2000 time interval.  
 
The methodology adopted in this study showed to be successful in proving the potential of 
250m resolution MODIS data for land cover mapping and monitoring on the regional scale. 
Classification accuracies showed good agreement with CORINE land cover maps, ranging 
from kappa values of 0.59 to 0.88. The change detection results confirmed the suitability of 
this MODIS product as an alarm product identifying areas where significant land cover 
conversion has been taken place and should be investigated further by means of higher 
resolution data. Nevertheless, they also suggested the shortage of the same product for areal 
estimation of land cover changes. In general, the urban land cover class showed itself as a 
problematic class due to the small size and scattered distribution of its elements and to the 
absence of a clear “spectral urban signal". Classification results revealed how this class is 
underestimated as a consequence of the coarsening of the resolution leading to ambiguity in 
the change figures.  
 
 
Keywords: Land cover/use change; Urbanization; Land cover mapping and monitoring; 
Medium resolution satellite data; MODIS; CORINE; Post-classification change detection.  
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1. Introduction 

1.1. Background  
 

Nowadays many of the environmental policy coming from the European Union are 

based on the outcome of environmental models, whose primary input are data on land 

cover and land use (Mücher et al., 2000). Several have been the efforts made to 

exploit remotely sensed data for the purpose of land cover mapping of the European 

continent. Some of these efforts have focused on specific land cover classes such as 

forest cover, whereas few important activities have encompassed a wider purpose. 

Among the latter ones worth mentioning is the Co-ordination of Information on the 

Environment (CORINE) program started in 1985 from the European Union and now 

under supervision of the European Environmental Agency (EEA). This monitoring 

program is based on the collection and computer-assisted visual interpretation of high 

resolution satellite images e.g. Landsat Thematic Mapper (TM) and SPOT HRV data, 

at a scale of 1:100 000, with support of ancillary data. The resulting land cover 

database (CORINE DB) distinguished between 44 classes grouped in a hierarchical 

scheme at three levels. CORINE’s first version is dating 1990 whereas its update took 

place in 2000 (Boer et al., 2000; Mücher et al., 2000). A new update of CORINE land 

cover DB is being planned for next year based on satellite images of 2005 (Personal 

communication C.A. Mücher, 2006). Notwithstanding the accomplishment of the 

project which makes CORINE the most detailed database covering a large part of 

Europe (Mücher et al., 2000), many are the challenges still present. It shortly became 

clear how a monitoring system relying almost exclusively on high resolution images 

is not sustainable in the long run. The small scene size of these images, which 

consequently means a significant data volume if all of Europe has to be covered, 

makes updates a time consuming and expensive task which can not be repeated with 

the desired frequency (Boer et al., 2000).  Moreover, the dissimilar conditions and 

preparations of the different countries involved, lead to different product qualities and 

product termination dates complicating the integration. Last but not least, the 

delineation of some of CORINE’s classes has been strongly supported by ancillary 

data which introduce dependence and subjectivity with consequences for the updating 

(Mücher et al., 2000).  
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A number of studies exists which have alternatively proposed the exploitation of the 

rich temporal information contained in the sequence of freely available coarse 

resolution satellite data (Jonathan et al., 2005). The majority of those are based on 

data originating from the Advanced Very High Resolution Radiometer (AVHRR) 

onboard the US National Oceanic and Atmospheric Administration’s (NOAA) polar 

orbiting satellite series. In 1992 the International Geosphere-Biosphere Programme 

for Data and Information System (IGBP-DIS) engaged in a monitoring program 

aiming at producing a global land cover set at a spatial resolution of 1 Km based on 

monthly NDVI maximum value composites. The limiting factor in this study was the 

absence of a stratification of the radiance data, recommended when dealing with 

heterogeneous and fragmented land cover. Moreover, the coarse spatial resolution of 

the dataset resulted in the definition of complex classes whose definition is difficult to 

apply (Mücher et al., 2000). A further study exploiting AVHRR-NOAA 1.1 km 

resolution data is the Pan-European Land Cover Monitoring (PELCOM) program 

started in 1996 within the framework of the European Union. Differently from the 

previous approach in this study both multi-temporal NDVI profiles and multi-spectral 

AVHRR scenes have been input to the classification, thus exploiting the information 

content of both data characteristics. Unfortunately, the often small and fragmented 

changes typical of the European landscape combined with the limited geometric 

accuracy and low spatial resolution of NOAA-AVHRR images did not provide 

satisfying accuracies. Previous studies have shown how the classification accuracy 

does not reach the 70 % target, primary reasons being mixed pixel effects and the loss 

of small changes at sub-pixel level of AVHRR data (Boer et al., 2000; Mücher et al., 

2000).  

 
 

1.2. Problem Definition 
 
The gap between the unaffordable time and cost investments of high resolution 

Landsat and SPOT images and the insufficient spatial properties of low resolution 

NOAA/AVHRR images are urging the land monitoring community to reach for 

alternative solutions. As aforementioned coarse resolution approaches have 

traditionally relied on data from NOAA’s AVHRR sensor (1.1 Km) and it is only 

recently that data from NASA’s MODerate resolution Imaging Spectroradiometer 
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(MODIS) sensor is been adopted for land cover/use monitoring activities. MODIS 

data feature better spatial resolution (up to 250m) and enhanced standards of 

calibration, georeferencing and atmospheric correction, as well as detailed per-pixel 

data quality information (Jonathan et al., 2005).  

 

The solution investigated with the present study is the possibility to use medium 

resolution sensors for land cover monitoring and specifically for urban growth 

mapping. MODIS 250m reflectance data were selected to test this hypothesis. MODIS 

data preserve the advantages offered by coarse resolution data, namely high temporal 

frequency, extensive coverage, and extremely low costs for data acquisition (Jonathan 

et al., 2005), without at the same time having to lower excessively the spatial 

accuracy. Several authors have already successfully investigated the potential of 

MODIS data in the field of land cover mapping and change detection (Zhan et al., 

2000; Hansen et al., 2002; Herold et al., 2002a; Zhan et al., 2002; Price, 2003; 

Skinner and Luckman, 2004; Desta, 2005; Giri et al., 2005; Jonathan et al., 2005; 

Stefanov and Netzband, 2005)  however the specific applicability of these methods to 

the area and context characterizing this study is not known yet.  

 

The present study can be seen in the framework of CORINE land cover database-

update effort. Of interest is the possibility to use the developed methodology to aid 

CORINE’s future updates; additionally the terms and conditions of the integration of 

medium resolution solutions have to be investigated. What needs to be assessed 

before monitoring based on medium resolution solutions can become operational is 

the degree of information loss compared to monitoring with high resolution data. 

Having assessed this loss, the question remains if the so with resulting land cover 

product can fully substitute the higher resolution alternative or if rather an integration 

of both products is recommended. What is more, it has to be understood what would 

be the gain in information thanks to the higher temporal frequency with which 

medium resolution data are made available and eventually if this gain is relevant for 

land cover monitoring on the European scale.  For this specific study the question is if 

MODIS data are able to tell us everything that Landsat data can, or if instead critical 

information disappears which can only be won back with the help of the higher 

resolution images (Price, 2003).   
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Eventually, indications provided by this material should contribute to the 

development of a monitoring concept to identify future land cover changes within 

Europe as delineated in the BIOPRESS initiative. BIOPRESS is one of the thematic 

projects which are being carried out within the framework of the initial phase of the 

Global Monitoring for the Environment and Security (GMES) programme. The 

GMES initiative aims at achieving this 'European capacity for Global Monitoring for 

the Environment and Security' by 2008. BIOPRESS will produce information on 

historical (1950 - 1990 - 2000) land cover change in and around a large sample of 

Natura2000 sites and translate this information into pressures on biodiversity. The 

focus of the project is to develop a standardised product that will be extendable to 

Europe (http://www.creaf.uab.es/biopress/index2.htm). 

In this material, special emphasis is given to the results obtainable for the urban land 

cover class (“Artificial Surfaces” in CORINE’s Nomenclature). A number of reasons 

support this choice. First and foremost, urbanization falls within the six key pressures 

on biodiversity in European regions on which BIOPRESS will concentrate. The others 

being: abandonment, afforestation, deforestation, drainage, intensification (arable) 

(Hazeu and Mücher, 2005). Moreover, it has been demonstrated that urbanization is 

the phenomenon for which the link between land cover changes and the pressure on 

biodiversity is most straightforward (http://www.creaf.uab.es/biopress/index2.htm). 

Last but not least, it has to be reminded that CORINE land cover 2000 update 

identified the changes for this class as the most significant for Europe.  

 
 

1.3. Research Objectives 
 
General objective 

The scope of this study is to assess the utility of medium spatial resolution satellite 

data (MODIS/Terra Surface Reflectance Daily 250m Product) in the spatial-temporal 

dimension for land cover mapping and identification of change signals in the northern 

part of Italy. This potential has to be seen in the context of CORINE land cover 

database-update effort.  

 

 

http://www.creaf.uab.es/biopress/index2.htm
http://www.creaf.uab.es/biopress/index2.htm
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Specific objectives and research questions 

To fulfil the aforementioned general research objective this study should provide the 

answer to a number of specific questions. These questions helped defining the specific 

objectives of this study as presented in the following.  

 

First, given the methodological framework of this study which sees MODIS data 

missing for the year 1990, the question has to be answered if these can be reproduced 

starting from Landsat TM 1990 images. It follows that one objective is to develop a 

methodology to simulate MODIS data for the year 1990 and assess the accuracy of 

this simulation.  

 

Second, a sound approach for classification of the remote sensing datasets based on 

the Maximum Likelihood classification algorithm has to be developed. This will help 

answering the question of which accuracy can be reached by this classifier for the 

specific study area and for the different land cover classes. Specific attention will be 

paid to results for the urban land cover class.  

 

Third, the authors are interested in answering the question if improvement of 

classification accuracies becomes noticeable when exploiting the multitemporal 

dataset. This will be done by comparing classification results of MODIS single-date 

versus multitemporal datasets. 

 

Last but not least, our objective is to interpret and evaluate the results of the post-

classification automated change detection. The question is if this change detection 

approach has been feasible for this study and how accurate its results are compared to 

the change figures provided by CORINE. 

 
 

1.5. Research hypothesis 
 

The MODIS 250m daily reflectance product has potential to function as an alarm 

product signalizing land cover-use conversion occurring at the European scale.  
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1.6. Report Structure 
 

Chapter one describes first a general introduction to the topic followed by the 

specification of the research problem, research objectives and hypothesis. The 

findings of the literature review which helped broaden the understanding for the topic 

are presented in chapter two. Chapter three outlines the data and methodology 

adopted in this study of which an overview is given by the methodological conceptual 

model. The methodology is divided into pre-processing, simulation of MODIS data 

for the year 1990, classification of the remote sensing images for time one and time 

two and eventually post-classification change detection.  Results of the simulation, 

classification and change detection are presented and discussed in chapter four. 

Chapter five summarizes the main conclusions as derived from this study and 

provides recommendations for further research in the field of land cover monitoring 

and change detection.   
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2. Literature Review 

2.1. Land Cover Monitoring and Remote Sensing 

2.1.1 Land Cover/Use Change 
 
Land cover can be defined as the biophysical attributes of the earth’s surface, which 

can roughly be separated into natural features, such as water, vegetation, desert, ice, 

etc. and artificial physical features, including mine exposures and settlements. Land 

use is the human purpose or intent applied to these attributes. Land-cover and land-

use changes can be indicative of transformation from one cover or use type to another, 

in which case we speak of a conversion process or the preservation of the general 

cover or use type which however undergoes modifications in its structure, which we 

call a modification process. While long-term climatic changes due to astronomical 

phenomena and short-term variations resulting form phenological cycles can be 

considered naturally driven, other changes are introduced by human activity  (Baulies 

and Szejwach, 1997; Lambin et al., 2001). 

 

At no other time in history land cover and land use alteration has been as fast and 

wide-ranging as in the last 50 years (Reid et al., 2005). The magnitude and spatial 

reach of those changes is so significant that, when aggregated globally, they 

considerably influence key aspects of Earth System functioning. Biotic diversity 

worldwide, local and regional climate change as well as global temperature rise, soil 

degradation and the ability of biological systems to support human needs are all 

aspects influenced by changes in land use/cover (Lambin et al., 2001). 

 

While not denying the improvements in land cover characterizations made possible by 

better data derived by remotely sensing systems, many are still the challenges in land 

cover mapping and monitoring. The first challenge can be summarized in the attempt 

of integrating and synthesizing land cover information worldwide. Different 

definitions adopted around the world for specific land cover classes complicate this 

attempt. Focusing on the class forest for example it has been traced that more than 90 

definitions exist throughout the world (Lepers et al., 2005).  A further problem 

hindering a complete and consistent overview of land cover is the varying spatial 

resolution with which changes are recorded around the world or in the same areas 
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over time. Long time monitoring studies will always have to deal with the change in 

technology and in methods which although usually meaning an improvement also 

represents a type of unwanted discontinuity. Eventually, varying temporal and spatial 

coverage of data sets causes an unbalanced focus of attention towards some parts of 

the world which appear to be more interested by rapid modifications simply because 

they have been monitored more intensively. Many parts of the world are still not 

adequately represented in the available datasets, fostering the possibility that rapid 

change is occurring in locations that are currently not identified (Lepers et al., 2005). 

 

As emphasized by Lambin (2001), an additional problem is the frequently missing 

understanding of the causes behind an identified change which are reported to be  

frequently simplified or mistaken leading to the wrong policies being formulated. 

Taking deforestation as one of the most common and popular land cover alterations it 

has often been explained as triggered by the ‘push’ of population growth and poverty 

to invade and cut the forest. Not denying a responsibility of the latter phenomena, 

deforestation particularly in tropical areas is more probably linked to changing 

economic opportunities caused by social, political and infrastructural changes 

(Lambin et al., 2001).   

 

The European continent falls within the regions most comprehensively and 

consistently monitored for what regards land cover. Statistics have shown that in the 

last 10 years 2.9% of the total surface (approximately 85500 ha) has changed in land 

cover (Weber & Hazeu, 2004). However, large differences exist among and within 

countries for what regards the extent of land cover change and the dominant change 

trajectories. Remaining on the continent scale, an important land cover conversion 

trend is urban sprawl mainly at the expense of agriculture land; the centre of this 

phenomenon lies on the Atlantic and Mediterranean coasts. General farmland 

abandonment is another occurring phenomenon, as is, to a lesser extent, the creation 

of new agricultural land. The Mediterranean coastal zones are one such exception, 

where urban pressures near the coast results in intensification of agriculture towards 

the inland marginal zones. Last but not least, changes in forest land seem to be 

balanced, with felling activities and conversions roughly equalling the same amount 

of surface characterized by formation of young forest (Weber & Hazeu, 2004).  
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2.1.2. Instrument Properties Influencing Land Cover Mapping  
 

Satellite-based data have been determined to be a cost- and time-effective resource to 

document changes over large geographic regions. Nevertheless, still no optimal 

combination of data type and analytical method can be identified as being the most 

successful across broadly variable ecosystem conditions (Zhan et al., 2002; Lunetta et 

al., 2004; Rogan and Chen, 2004). Among the challenges when designing or choosing 

an instrument for land cover monitoring is the choice for the most suitable 

combination of spatial, radiometric/spectral and temporal characteristics. This 

combination will determine the size and the type of the recognizable land cover 

changes (Townshend and Justice, 1988). What limits this choice is the data volume 

which has to be kept at manageable proportions to make the data transfer from the 

satellite to the receiving station practicable. This means that the expert has to set 

preferences for what regards the dimensionality of the spatial, spectral and temporal 

data properties. What is more, the time and cost factor have also to be kept in mind 

(Rogan and Chen, 2004).  

 

The question if a higher spatial resolution leads automatically to a better 

representation of the land transformation is answered affirmatively by some authors 

(Townshend and Justice, 1988), while others are more cautious underlining the effects 

of shadow fraction and of the increase of local variance (Woodcock and Strahler, 

1987). Besides this, a higher spatial resolution usually means that the period 

separating two images depicting the same area will increase to match the repeating 

coverage of the sensor and can expand even more due to cloud cover problems. In 

change detection studies, the temporal frequency of coverage should optimally 

approximate the change-rate of the phenomenon or land cover class we want to 

monitor to avoid to incur in excessive omission errors. For example if focusing on 

vegetation for areas that undergo rapid regeneration, the spectral signatures of 

regenerated vegetation can be difficult to differentiate from previously existing 

vegetation, if analyzed over long time intervals (Lunetta et al., 2004). Moreover, the 

radiometric sensitivity of the instrument controls the size of radiance differences that 

are detectable and thus also the discernable changes (Townshend and Justice, 1988). It 

is therefore easily understandable that it would not be wise to point only on the spatial 
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properties of the data so with loosing key advantages offered by the temporal and 

spectral dimensions. 

  

It should be remembered that the concept of spatial resolution is strongly interlinked 

with the concept of measurement scale of the observation (Woodcock and Strahler, 

1987; Herold et al., 2002a) and thus for those applications where the operational 

scale, required to reach the study purpose, is easily determined so is also the desired 

spatial resolution of the remotely sensed datasets. For instance when interested in 

changes taking place at the urban scale, the highest spatial resolution is recommended, 

as this probably will be more determinant than the spectral or temporal properties of 

the data. On the other side, when working on the global scale, the expert will point on 

spectral and temporal analysis reducing the spatial resolution of the data.  This is not 

the case for application at an intermediate scale level for which a less obvious answer 

is provided and the choice becomes more ambiguous (Price, 2003). For studies 

dealing with the effect of spatial resolution on the ability to monitor the status of land 

cover and land cover change  we refer to the work of  (Townshend and Justice, 1988; 

Pax-Lenney and Woodcock, 1997a; Price, 2003), however the reader should be 

warned that no overall guidelines will be provided but rather case-specific indication.  

 

Following these considerations we conclude that the change product is a function of 

the actual transformations occurred on the earth surface and the properties of the 

remote sensing instrument used for monitoring and that the latter ones have to be 

chosen carefully.  

 

 

2.1.3. Mapping of Urban Land Cover 
 

As reported in the United Nations’ World Urbanization Prospects (2004 revision), 

approximately half of the world population lives in urban areas and this is anticipated 

to exceed 60% by 2030 (United Nations’ World Urbanization Prospects, 2004 In: 

Tatem et al., 2005). Consequently, a wrong even if for long time alleged assumption 

in the context of land transformations is the one that sees urbanization as unimportant 

in global land cover change. Given its relatively small percentage compared to other 
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land cover/use types, urban areas occupy less than 2% of the earth’s land surface, land 

change studies often fail to take it into account concentrating more on land cover 

classes such as agricultural or forested areas (Lambin et al., 2001). What has been 

disregarded however is that changes in urban areas as such, trigger many other land 

cover modifications which somehow are interlinked with it, thus encompassing a 

much wider area as the one effectively occupied by urban land cover. Only the 

awareness of the existence of a so called ‘rural-urban linkage’ will allow urban areas 

to be reconsidered as central pawn in land change assessment studies (Lambin et al., 

2001). 

 

Considering that the development of urban areas (expansion in area, increase in 

population, changes in economic and social structures) trigger large modifications of 

land surfaces and reach across geographic borders, an increase desire to monitor their 

dynamics is being observed in the scientific community (Herold et al., 2002a). To 

succeed in this attempt a clear identification of what is considered an urban area has 

to be developed. Currently urban areas are identified in different ways based on land 

area, population density and spatial arrangement, but more and more the use of 

image-processing methods based on spectral response is becoming a valid means for 

their delineation. Earlier applications of remote sensing data for urban land cover 

mapping have mainly been restricted on one hand to fine resolution data focusing on 

the local scale and on the other hand on coarse resolution data for global scale 

applications. For what concerns the first category, extensive use has been made of the 

Landsat series of sensors (Multispectral Scanner - MSS, Thematic Mapper - TM and 

Enhanced Thematic Mapper Plus - ETM+) which however limits these studies to 

small areas (Schneider et al., 2003; Stefanov and Netzband, 2005). For what concerns 

the second category of applications a number of important products can be mentioned. 

These include the Digital Chart of the World (DCW) urban layer which although 

valuable dates back to 1960; maps derived from the Defence Meteorological Satellite 

Program Operational Linescan System (DMSP-OLS); and eventually night time lights 

data which present the disadvantages of a coarse resolution (2.7 Km), poor 

registration and blooming effects corresponding to city boundaries (Schneider et al., 

2003). 
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Several authors (Ben-Dor et al., 2001; Herold et al., 2002a) have lamented the 

difficulty of mapping urban sites as these areas are characterized by small extents and 

fragmented shapes with an indistinct spectral pattern compared to other land cover 

categories. Few studies have focused on the issues of spectral properties of urban land 

cover types and their representation and mapping from remote sensing data and those 

that have, attributed to this class, highly complex and diverse spectral properties. 

Reason behind is the heterogeneity of the urban environment, typically consisting of 

built up structures (e.g. buildings, transportation nets), multiple diverse vegetation 

covers (e.g. parks, gardens, agricultural areas), bare soil zones and water bodies. 

Accordingly, an unambiguous  "spectral urban signal" is not obtainable (Herold et al., 

2002a; Herold et al., 2002b). Generally, it has been observed how spectral 

separability of urban land cover types is strongly dependent on spectral sensor 

characteristics (Herold et al., 2002a; Herold et al., 2002b; Ben-Dor et al., 2001).   

 

Speaking of the spatial properties, it is important to understand how monitoring of the 

urban class is a strongly scale-driven process which becomes especially challenging  

when coarsening the spatial resolution of the employed remote sensing instrument 

(Herold et al., 2002a). Meentemayer in his work of 1989 defined scale as the spatial 

and temporal dimension of an object or process and termed it crucial to geographic 

analysis (Herold et al., 2002b). Herold and Clarke distinguished four meanings of 

‘scale’ depending on the context in which it is been used, these are: cartographic 

scale, geographic scale, operational scale and measurement scale. As geographic 

scale, if we focus on urban area mapping, we understand the spatial extent of the 

study area. The image pixel size or more simply the image spatial resolution expresses 

the so called measurement scale. The combination of the spatial heterogeneity of the 

target land cover structures and the sensor spatial resolution determine eventually the 

level of geometric detail in land cover representation by remotely sensed data and 

consequently the scale at which the created classification product can be employed, 

also known as operational scale. For more detailed indications on the scale factor in 

relation to monitoring different phenomena at different spatial resolution we refer to 

the work of Woodcock and Strahler (1987).  

 

 



2. Literature Review 

 13 
 

2.2. Medium Resolution Satellites: MODIS   
 

From the early 1980s to the present monitoring of the terrestrial environment and 

especially of vegetation relied mostly on AVHRR of the NOAA series of platforms. 

Data from the Landsat series of sensors started in 1972, have been extensively used in 

land cover and land use studies (Townshend and Justice, 2002; Vermote et al., 2002). 

Building on these experiences and urged by the need of filling the gap existing 

between high and coarse resolution sensors in 1999 the first MODIS instrument was 

launched on board of NASA’s EOS Terra satellite, followed three years later by 

MODIS on the Aqua satellite (Justice et al., 2002; Townshend and Justice, 2002). The 

MODIS/Terra instrument compared to its predecessors shows substantial 

enhancements in spatial resolution, number of spectral channels, choice of 

bandwidths, radiometric calibration and quality of derived products (Townshend and 

Justice, 2002). Moreover, its orbital configuration and viewing geometry deliver daily 

complete global coverage apart from the equatorial region where the repeat frequency 

is approximately 1.2 days (Justice et al., 2002; Zhan et al., 2002). The first seven of 

its 36 spectral bands are designed primarily for remote sensing of the land surface, of 

which only band one (red, 620-670 nm) and band two (near infrared, 841-876 nm) 

have a spatial resolution of 250 m (Justice et al., 2002; Zhan et al., 2002). Bands 3 

through 7 are natively 500m resolution.  

 

Several advanced land products are being generated using these bands. Particularly, 

the red and near infrared bands, given their higher spatial resolution and their position 

in the electromagnetic spectrum (Zhan et al., 2002), are most interesting for change 

detection studies. These bands have been combined in a value-added product for 

monitoring of land conversions, known as the Vegetative Cover Conversion (VCC) 

product. A composite product derived from 250-meter resolution 16-day composites 

from the Terra/MODIS instrument constitutes the intermediate product for the VCC 

dataset. The intermediate 16-day composites are generated from daily, level 2G, 

surface reflectance data (MOD09), and are composited based on the quality of the 

daily observations as determined by the QA flags in that product. The MODIS VCC 

product is generated four times per years (quarterly) and is designed to be a global 

alarm product for land cover conversions. Where land cover conversion is defined as 

the cumulative effect of human and natural event over time, not including changes 
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related to seasonal or phenological changes in vegetation. Nonetheless, it should be 

noted that this product is not intended for areal quantification of land cover changes 

but rather functions as an alarm product able to reveal the need for further 

investigations by means of higher resolution data. A number of factors have been 

identified as possible source of errors in this product, among those the presence of 

clouds which were not flagged in the QA layer of the input data and inter-annual 

variability affecting vegetation are worth mentioning (User Guide for MOD44A 

VCC: http://glcf.umiacs.umd.edu/data/modis/vcc/). For an extensive assessment of 

the VCC product we refer to the work of Zhan et al. (2002) in which three land cover 

conversion cases, namely detection of burned areas, detection of flooding/flood retreat 

and detection of deforestation, were analyzed. The study revealed the suitability of 

MODIS’s VCC product to detect the occurrence of change in a specific zone  (Zhan et 

al., 2002). 

 

MODIS’s VCC product has not been used for the present study, one reason being its 

unavailability for the time frame under investigation (1990–2000). An additional 

reason is that composite data may have larger misregistration errors than the data used 

in this material. As emphasized by Zhan (2002) the misregistration error of individual 

images is likely to propagate into the composite image and result in lower geometrical 

accuracies thereof. In view of these considerations, this study has been performed on 

MODIS’s surface reflectance product, defined by Vermonte et al. (2002) as the 

reflectance that would be measured at the land surface if there were no atmosphere. 

This product is based on the MODIS L1B as the primary input and performs 

corrections for the effects of gaseous absorption, molecules and aerosol scattering, 

coupling between atmospheric and surface bi-directional reflectance function (BRDF) 

and adjacency effect (atmospheric point spread function) (Vermote et al., 2002). The 

MODIS products represent the first global terrestrial products that are available and 

have been systematically atmospherically corrected and bidirectionally corrected for a 

sustained period of time (Townshend and Justice, 2002). Artefacts caused by the 

atmosphere were already accounted for in products used by the oceanographic 

community whereas the terrestrial community has been slow to develop procedures. 

The reason behind this delay is probably due to the relative influence of the 

atmospheric signal which results to be much stronger over water bodies than it is over 

land (Townshend and Justice, 2002).  Despite the fact that the majority of the bands 

http://glcf.umiacs.umd.edu/data/modis/vcc/
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designed for the MODIS instrument were specifically meant to satisfy the needs of 

the land community, compromises were made in the design of some bands used by 

both the land and oceans research communities. Notwithstanding the trend towards 

smaller, single mission satellites, for the expected future operational imagers will 

remain multi-purpose thus calling for similar compromises (Justice et al., 2002). 

 

In general, the potential of MODIS data for land cover monitoring and change 

detection has been widely acknowledged in literature (Justice et al., 2002; Townshend 

and Justice, 2002; Vermote et al., 2002; Zhan et al., 2002; Skinner and Luckman, 

2004). Nevertheless, it has to be reminded that other moderate spatial resolution 

sensors (with resolutions between 250 m and 8 km) have become operational in recent 

years as well. Their limited success compared to MODIS could be attributed to the 

more complicated access to users because of charging policies, mission lifespan and 

acquisition strategies. These instruments include the Vegetation instrument on board 

the French SPOT mission, the POLDER instrument on board ADEOS 1, SeaWifs, the 

Advanced Along Track Scanning Radiometer and MERIS of the European Space 

Agency’s ENVISAT. The majority of these sensors were intended principally for 

oceanographic applications with the inclusion of bands useful for remote sensing over 

land (Townshend and Justice, 2002). For what concerns the MERIS instrument of the 

European Space Agency ENVISAT platform, with its 15 bands it acquires images in 

the VIS and NIR part of the electromagnetic spectrum at a full resolution of 300 m or 

a reduced resolution of 1.2 Km (Clevers et al., 2004). Although very meaningful for 

deriving land cover information, MERIS data products are for the time being intended 

primary for research activities and thus require temporal, spatial and quality 

verification pre-processing. On the other hand, MODIS surface reflectance data are 

highly processed products and in most of the cases do not require further pre-

processing prior to image classification (Skinner and Luckman, 2004). Preliminary 

studies conducted by Mücher (Personal comment, 2005) have shown that similar land 

cover classification accuracies are obtained when using MERIS and MODIS data. 

These results are confirmed by a study conducted by Clevers (2004) in which a 

Principal Component Analysis was performed on MERIS images. The Principal 

Component result revealed that 99% of all information is already contained in the first 

two Principal Components, where the first had high positive loadings for the bands in 

the near-infrared region and the second for bands in the visible region. Those regions 
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of the Electromagnetic Spectrum (ES) roughly correspond to those available from the 

MODIS sensor at a comparable spatial resolution. Moreover, by studying the 

correlation coefficients between MERIS’s spectral bands Clevers et al. observed that 

bands in the visible region of the ES are highly correlated the same as bands in the 

near-infrared part of the ES. This last observation further supports the fact that the 

higher amount of bands at full resolution of the MERIS instrument compared to those 

available at comparable resolution from the MODIS instrument are not value adding 

for the purpose of land cover monitoring.  

 

Eventually, we can conclude that the potential of monitoring the terrestrial 

environment at moderate spatial resolution has been acknowledged but not fully 

exploited and thus numerous research opportunities are still present in this field.  

 
 

2.3. Change Detection Techniques 
 
Singh (1989) defined the process of change detection as the recognition of differences 

in the state of an object or phenomenon by observing it at different moments in time 

(Singh, 1989 In: (Lu et al., 2004). Few years later Green (1994) recommended that 

the interpreter should not limit himself to observing but additionally try to control all 

variances caused by variables that are not of interest so as to be able to analyze only 

those changes resulting by differences in variables of interest (Green et al.,1994, In: 

Lu et al., 2004). Digital change detection is based on co-registered multi-temporal 

remote sensing images and relies on the premise that transformations in land cover or 

land use have as consequences variations in radiance values and that these variances 

prevail over radiance changes resulting from other factors such as differences in 

atmospheric conditions, differences in sun angle or differences in soil moisture  (Mas, 

1999).  

 
Several authors have summarized and reviewed the existing change detection 

techniques (Mas, 1999; Lu et al., 2004) of those the most known ones are grouped 

and briefly described in the following. The here with proposed categories are main 

simplifications and different authors differ in their choice.  
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Within the so called algebra category, algorithms require the user to specify a 

threshold value to determine the areas of change. Among these the most known is 

image differencing but other common techniques are image regression, image 

rationing, vegetation index differencing, change vector analysis (CVA) and 

background subtraction.  

 

An additional category requiring a threshold-definition is the transformation category 

which includes Principal Component Analysis (PCA), Tasseled cap, Gramm–Schmidt 

(GS), and Chi-square transformations. The easy implementations of algebra methods 

and the reduction in data redundancy of transformation procedures have made these 

techniques common in change detection studies. In more recent years however, these 

techniques have been replaced by more complex ones, preferred because providing a 

complete matrix of change information (Lu et al., 2004). To obtain a complete matrix 

of change information the classification category of techniques is the most suited. It 

includes post-classification comparison, spectral–temporal combined analysis, 

expectation–maximization algorithm (EM) change detection, unsupervised change 

detection, hybrid change detection, and ANN. These methods are based on classified 

images and thus depend on the accuracy of this process starting from the quality and 

quantity of training sample data (Lu et al., 2004). 

 

Many more change detection techniques exist, but their in depth review is outside the 

scope of this study. An important consideration is that none of the existing techniques 

can be considered as performing best for all applications. Many are the factors that 

influence change detection studies and this explains the fact that often different 

authors obtained different results when testing the same technique. Generally we can 

conclude that it is partly the aim of the study which determines which change 

detection technique is most appropriate. If the aim is a rapid qualitative change 

detection analysis, visual interpretation can result most suited. On the other hand if 

change/no-change information by means of digital change detection is what we want 

to achieve, single-band image differencing and PCA represent the best choice. 

Eventually for a detailed ‘from-to’ detection, post-classification comparison is the 

recommended method to adopt given that sufficient training sample data are available.  

Having defined the aim of the present study, the approach considered most suited is 

the post-classification change detection method. This method has been recommended 
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among others by Petit and Lambin (2001) as the most suited for change detection 

applications interesting a long time period for which data of different sensors have to 

be used. Multi-source data do not represent a problem as each data layer can be 

generalized to a common land cover scheme prior to comparison, minimizing in this 

way environmental, sensor and atmospheric differences. 

 

In a comparative study by Mas (1999) post-classification comparison was evaluated 

against the most known methods for change detection using Landsat MSS images. 

The technique was found performing best over algebra techniques (image differencing 

and vegetation index differencing) and transformation techniques (Principal 

Component Analysis). The lower accuracy obtained with the latter procedures was 

attributed to their inability to differentiate the variations of soil moisture and 

vegetation phenology from variations due to land cover changes. This problem is not 

encountered when performing independent classifications where classes with different 

signatures at different times of the year can still be assigned to the same land cover 

class (Mas, 1999). Last but not least, as mentioned earlier the post-classification 

approach has the strength of providing a complete matrix of change information. In 

the present study the interest lies not only on where and in which extent changes have 

occurred but also on which are the classes losing and gaining in importance over time. 
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3. Materials and Methods 

3.1. Study Area and Time Interval 
 
The test area we have chosen for this study is located in the northern part of the Italian 

peninsula; delimited by the Alpine mountain chains in the North and by the Apennine 

mountains in the South this area is also known as the Po valley, basin of the river Po 

which from the Alps eventually ends up in the Atlantic sea.  The basin encompasses 

the regions Piemonte, Val d’Aosta, Lombardia, Emilia Romagna, marginal areas of 

Liguria, Veneto and Trentino (see Figure 1). With a surface of 69979 km2, of which 

29372 km2 in low land, this area was in the past mainly covered by forest intermittent 

only by swamp areas. Today we can find cultivated land interrupted by extensive 

concrete patches located in correspondence of the urban centres.  The choice of this 

area as suitable for our study is not casual but driven by the delicate condition of this 

territory, territory which is considered the area that in Italy preserves the less signs of 

what once was the original landscape. Human activity has transformed this area in 

such a way that its balance can only be granted by a high contribution of energy and 

resources coming from outside the system. Natural calamities have often interested 

this land sending alarm signs of the incorrect use of the territory. Starting from the 

1980ies more attention has been paid to the development of this area with the 

formulation of policies at the national and European level aimed at its conservation 

(directive 92/43/CEE). These and future policies which will contribute to the 

responsible management of the Po’ valley are for the biggest part based on remote 

sensing land cover and land use monitoring activities similar to the present one 

(http://www.legambiente.com ).  

 

In view of the fact, that the prime interest of this study is the understanding of the 

changes affecting the Po valley in the 1990-2000 time interval, the developments of 

the urban class have been selected as being the most significant indicators thereof. As 

extensively described in section 2.1. the effect of the modifications interesting this 

class are being reflected on a much wider area as the one effectively occupied by 

urban land cover. Focusing especially on the class urban is therefore believed to 

provide a trust worth indication of the developments in the area and at the same time 

respecting the resources and timeframe available for the completation of this study.  

http://www.legambiente.com/
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The reason behind the choice of the ten year period spanning from 1990 to 2000 is 

twofold. Firstly, considering a shorter time interval would not provide us with 

sufficient change indications due to the slow transformations-rate of European land 

cover. Secondly, we are interested to compare the here obtained land cover product 

with CORINE change DB, whose first version dates 1990 and whose update followed 

10 years later.  

 

 
 
Figure 1 Location of the study area, north Italy  
 

3.2. Data 

3.2.1. Remote Sensing data 
 
MODIS 
In order to perform this work, daily Terra/MODIS atmospherically corrected surface 

reflectance data were acquired, containing red and near-infrared bands and 

corresponding metadata at 250m resolution (product ‘MODIS/TERRA SURFACE 

REFLECTANCE DAILY L2G GLOBAL 250M SIN GRID V004’ or abbreviated 

MOD09GQK). The properties of this product are summarized in Table 1 whereas 



3. Materials and Methods 

 21 
 

general MODIS specification can be consulted in Appendix 1. In order to select the 

best quality data (cloud free and free of instrument recording errors) images were first 

browsed by means of the ‘MODIS Land Global Browse Image’ web source 

(http://landqa2.nascom.nasa.gov/cgi-bin/browse/browse.cgi). Eventually, three 

images acquired respectively on April 22, June 20 and September 10 of the year 2000 

could be downloaded from the NASA Earth Observing System (EOS) Data Gateway 

(http://edcimswww.cr.usgs.gov/pub/imswelcome/ ). Subsequent to downloading the 

image quality could once more be assessed by reading the metadata contained in the 

quality flag band.  

 

The resolution of the two MODIS bands corresponding to the visible red and the near 

infrared (NIR) is 250x250m and their centre in the electromagnetic spectrum is 645 

nm and 858 nm respectively. We are also provided with three bands of additional 

information on band quality, orbit and coverage, and number of observations 

(http://www.yale.edu/ceo ). Reflectance products typically provide an estimated “at 

surface” spectral reflectance, equivalent to a ground-level measurement with no 

atmospheric scattering or absorption. The correction algorithm accounts for 

atmospheric gases, aerosols, and thin cirrus clouds. Version four (V004) products are 

validated, meaning that product uncertainties are well defined over a range of 

representative conditions and thus are ready for use in scientific research. 

 

Table 1 Terra/MODIS surface reflectance product characteristics 
 

 

Product type MOD09GQK 

Product level 2G 

Collection V004 

Data type 16 bit signed integer 

Actual data range -100 to +16000 

Fill value -28,672 

Units reflectance 

Grid 4800x4800 row/column

Projection type Sinusoidal 

Image area Tile h18v04 

File format HDF-EOS 

http://landqa2.nascom.nasa.gov/cgi-bin/browse/browse.cgi
http://edcimswww.cr.usgs.gov/pub/imswelcome/
http://www.yale.edu/ceo
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Landsat 
Landsat products utilized in this study are TM and ETM Top Of Atmosphere (TOA) 

data, which were downloaded free of charge from the Global Land Cover Facility 

(GLCF) at the University of Maryland (http://glcfapp.umiacs.umd.edu/index.shtml ). 

Five scenes are required to cover the whole study area; these are acquired in the 

summer months of the year 1990 (+/- two years) for what concerns the TM scenes and 

2000 for ETM scene (see Table 2). Images taken in late spring or summer (from June 

till September) are preferred because cloud cover is believed to be less and because 

most arable land is already covered by vegetation allowing distinguishing it from 

urban areas.  

 

Table 2 Landsat TM and ETM+ scene specific acquisition dates 
Calendar date (dd/mm/yyyy) Scene 

TM ETM+ 
192_029 07/08/1991 
193_028 16/08/1992 
193_029 12/09/1990 
194_028 31/08/1989 
194_029 04/07/1991 

20/06/2000 

 

 

The selected images for this study are GeoCover products. GeoCover data is Landsat 

data which has been orthorectified and processed to a higher quality standard. The 

process of orthorectification removes erroneous image displacements caused by the 

interaction between terrain relief or local elevation changes and sensor orientation 

variations. Datasets are Level 1 Geometrically Corrected (L1G) products, this means 

they are free from distortions related to the sensor (e.g., jitter, view angle effect), 

satellite (e.g., altitude deviations from nominal), and Earth (e.g., rotation, curvature). 

For the effects derived form the presence of the atmosphere however no correction 

has been made (TOA data).  GeoCover data currently represent the most accurate 

commercially available base maps with worldwide coverage (Tucker et al., 2004).  

 

For this study work was carried out with only two of the seven Landsat bands, 

precisely band 3 (red band) and four (near infrared band), available at 30 m spatial 

http://glcfapp.umiacs.umd.edu/index.shtml
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resolution. Each Landsat band is saved as a single file in the GeoTIFF format and data 

is provided in rescaled 8-bit unsigned integer (DN) values.  

 
 

3.2.2. Land cover datasets 
 
CORINE 
CORINE land cover vector datasets interesting the Italian peninsula have been 

obtained accessing the European Environment Agency (EEA) home page 

(http://dataservice.eea.eu.int/dataservice/). The following three geo-referenced 

databases are acquired for the present study: 

o CLC 1990 DB, 

o CLC 2000 DB and 

o CLC 1990-2000 change DB, 

 
respectively representing the first version of the database, its update and the change 

database. These datasets differ for what regards the materials and methods behind 

their creation. The original methodology was based on the image-interpretation on 

1:100,000 image printouts in which a transparent film was overlapped over the 

images and digitized at the end of the image interpretation process (Perdigao and 

Annoni, 1997). A method, relying on the hardcopy inventory from image printouts 

with no or only limited use of image processing and GIS software, proved to be the 

most feasible approach at the time corresponding to the start of the program (mid 

eighties).  Nonetheless, such an approach, requiring two intermediate hardcopy 

products (satellite images and transparencies) prior to obtaining digital results, made 

the occurrence of errors likely especially during the digitalization process.  By the 

time of the update of CORINE Land Cover Data Base (CLC DB) in the year 2000, 

technical developments had made it possible to introduce computer technologies 

throughout the process of building the inventory (softcopy). The display of the data on 

computer screens contributed to make the process more efficient in view of time and 

cost factors and increased the achievable accuracy (Bossard et al., 2000). It is 

understandable then that the two CORINE products hold different geometrical 

accuracies, with the updated version representing the enhanced product.   

In both phases, the aid of ancillary data has been crucial to the interpretation, these 

have comprised any documentary, cartographic or photographic information 

http://dataservice.eea.eu.int/dataservice/
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concerning land cover which does not come directly from the satellite database 

(Perdigao and Annoni, 1997). Some general figures about the program are 

summarized in Table 3. 

 

Table 3 The CORINE land cover project in figures (source: CORINE land cover Technical 
Guide, Bossard et al., 2000)  
 

Area covered  2.3 millions km 2 

 12 countries 

 from 62° N (The Faeroes) to 28° S (Canary Islands) 

 from 14' W (Canary Islands) to 29° E (Kastellorizon)

  

Working scale 1/100000 

 1 500 standard map sheets 

 using 10 different projection systems 

  

Area smallest mapping unit 25 hectares 

 more than 700000 basic unit (polygons) 

 vector data-base around of 1 gigabyte 

  

Land cover nomenclature  three levels 

 first level: five headings 

 second level: 15 headings 

 third level: 44 headings 

 

 

3.3. Methodological Conceptual Model 
 
The methodology developed for this study follows the scheme depicted in Figure 2 

where input data are Landsat’s and MODIS satellite images and CORINE land cover 

thematic maps. Five main steps can be distinguished in the work flow, namely pre-

processing, simulation of the missing dataset, classification, validation of the 

classification and change detection. 
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Figure 2 Flow chart of working scheme  
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3.4. Preprocessing 
 
For the pre-processing of the remote sensing datasets the commercial software 

package IDL-ENVI version 4.2 has been used, whereas the preparation of the land 

cover vector datasets has been accomplished in ArcGIS version 9. With the pre-

processing the aim was to make data spatially and spectrally comparable as required 

by the final change detection stage.  

 

3.4.1. MODIS 
 
As a first step of the data preparation the three MODIS images have been reprojected 

to Albers Conical Equal Area WGS1997 coordinate system. Reprojection is necessary 

because the MODIS Level 3 product is generated as grided output in the Sinusoidal 

projection which is unique to MODIS land products and is not accommodated by 

most of the conventional “off the shelf” software used for image processing and 

spatial data analysis. The MODIS Reprojection Tool (MRT) version 3.2a running on 

Linux platform has been used for this purpose. During this step, the original MODIS 

data format, namely HDF-EOS format, was converted to the standard ENVI image 

format. Eventually, datasets were transformed to a valid reflectance data range by 

dividing the cell values by 10,000. These data were then stored with a float data type 

of 4 byte real (Justice et al., 2002). 

 

Although, the original downloaded scenes encompass mountainous areas (Alps and 

Apennines), for the actual classification and change detection process our interest lies 

mostly in the flat plane (Pianura Padana) as it is there that most urban centres are 

situated. In view of this, the study area will be successively restricted to areas with 

low relief and thus topographic normalization was considered not necessary for this 

study.  

 

3.4.2. Landsat 
 
For what concerns Landsat data the pre-processing has been some what more time 

consuming because it involved also the radiometric aspect of the data. The two main 

steps have been the radiometric calibration and the reprojecting to different coordinate 
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system. As aforementioned Landsat data are GeoCover products and this means that 

images have been orthorectified prior to distribution 

 (http://glcfapp.umiacs.umd.edu/index.shtml ). 

 

Radiometric calibration 

For what concerns Landsat’s initial product status it has to be mentioned that when 

processing L0 products to L1 products, the pixel values from the raw unprocessed 

image data are converted to absolute radiance using 32-bit floating-point calculations. 

Before output to the distribution media the absolute radiance values are eventually 

rescaled to 8-bit values representing calibrated digital numbers. 

 

In the present study, digital numbers have been converted in physical units of 

apparent reflectance whose values can be compared from image to image. This is 

required because the area of study is larger than a single scene (precisely 5 scenes) 

and because different scenes taken over a period of years are being compared for 

change monitoring (Edwards, 1999).  For this study only the first two steps of 

radiometric correction, namely the conversion from DN values to spectral radiance 

and from the latter one to apparent reflectance, have been carried out. The third step, 

known as atmospheric correction, has been omitted because not retained necessary for 

this specific application; justifications supporting this belief have been found after 

reviewing the work of different authors and are summarized in the following. As 

underlined by Song et al. (2001), whether an atmospheric correction is mandatory or 

not is determined by the information desired and by the analytical methods used for 

its extraction. A typical example of a remote sensing application for which the 

removal of the atmospheric effect is not needed is image classification when a 

maximum likelihood classifier is employed interesting a single date image. Assuming 

that the training data and the image to be classified are on the same relative scale 

(corrected or uncorrected) the influence of a correction will not be striking for 

classification accuracies. Likewise, when applying postclassification change 

detection, as is the case for this study, atmospheric correction is not necessary due to 

the fact that we are comparing maps which have been obtained by independent 

classifications (Song et al., 2001). That is why for this study, classifications have been 

performed independently for each individual scene with the mosaicking interesting 

solely the thematic outputs.  

http://glcfapp.umiacs.umd.edu/index.shtml
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Besides the fact that the removal of the atmospheric effect is not essential for the 

present work, it is also considered not very feasible in the given framework. No 

overpass-concurrent atmospheric data (e.g. aerosol content, atmospheric visibility) 

was available that could be used as inputs into radiative transfer models (RTM), such 

as 6S (Edwards, 1999). Also, with only two broad spectral bands available in the 

VIS/NIR, the empirical estimation of the necessary atmospheric optical properties for 

an RTM correction was not possible (Clark and Pellikka, 2004). Ideally, a method that 

uses in situ or ground-truth information is the most accurate in terms of correcting for 

atmospheric haze effects (Chavez, 1988). In the present study, we are working with 

remotely sensed data that have already been collected and therefore only methods that 

require exclusively information contained in the digital image data were considered. 

Among those, the most commonly employed is the Dark-Object Subtraction method. 

In this technique the minimum DN value in the histogram from the entire scene is 

attributes to the effect of the atmosphere and is subtracted from all the pixels (Chavez, 

1988; Song et al., 2001). However, if the dark objects, which usually are represented 

by water bodies, are not uniformly distributed across the scene, the assumption at the 

base of this technique of a constant haze value throughout the entire image can not be 

made. For the present study, not all our Landsat scenes encompass water bodies 

which could function as dark objects, and for the ones that do, dark objects are mostly 

confined to one extremity of the image thus not representing the overall atmospheric 

conditions present over the area (see images in Appendix 3).   

 

Based on these considerations, for this study atmospheric correction of Landsat scenes 

was retained more harmful than beneficial and thus was left out from the process.  

 

The calibration of Landsat scenes has been performed by means of Interactive Data 

Language (IDL) scripting. This method was preferred over ENVI’s automatic 

calibration due to the possibility to view the algorithms and input parameters behind 

the process (see IDL script in Appendix 5). All algorithms as reported in the 

following have been obtained by consulting the Landsat 7 Science Data Users 

Handbook 

(http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.ht

ml).  

 

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html
http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html
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The conversion of the Landsat’s TM and ETM datasets from DN values to at-sensor 

spectral radiance implies the knowledge of the original rescaling factors which are 

band specific satellite parameters that can be obtained from the image header or 

metadata file. Equation (1) was employed to obtain spectral radiance at the sensor’s 

aperture. A more extended version of this equation is represented by equation (2).  
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The second step in Landsat’s radiometric calibration is the conversion from radiance 

to planetary (also known as at-sensor, apparent or exoatmospheric) reflectance. This 

allows us to remove the effect of time differences among image acquisition (this is 

done by including in the algorithm the cosine of the solar zenith angle) and moreover 

it accounts for differences in exoatmospheric solar irradiance. Equation (3) has been 

used to compute the combined surface and atmospheric reflectance of the earth (see 

Appendix 2 for details).  
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Reprojecting to different coordinate system   

The Landsat TM and ETM images used in the present study are GeoCover products 

and thus georeferenced products. A simple transformation function will allow re-

projecting the images from the current UTM (Universal Transverse Mercator) map 

projection (WGS84 datum) to the desired projection. The Albers Conical Equal Area 

projection (WGS72 datum) has been chosen for the present study. Eventually the red 

and near infrared bands will be combined for each individual scene into a 

multispectral image.  

 



3. Materials and Methods 

 30 
 

3.4.3. CORINE 
 
The pre-processing of the thematic datasets has been performed in ArcGIS version 9. 

The first step consisted in verifying that CLC1990 and CLC2000 vector datasets were 

geometrically matching which unfortunately lead to the conclusion that the two 

datasets are systematically shifted from one another. This can be explained if we 

consider that CLC datasets are first saved in the country-specific projection and 

successively converted to a common European projection system; this process can 

easily have introduced inconsistency between our datasets. Moreover, as reported in 

section 3.2.2., the two products are generally characterized by slightly different 

geometrical accuracy. To overcome this problem CLC 1990 dataset was derived 

based on the remaining two available datasets: the CLC 2000 and the CLC 1990-2000 

change datasets. The latter one includes only those polygons that have been updated 

and precisely it reports the land cover label attributed before and after the 

transformation. By performing a union operation, a datasets containing the 

information contained in both attribute tables was obtained. Successively, a new 

attribute (field) containing for each polygon the land cover class it belonged to during 

CLC 1990 creation was added. The next step is to recode the legends of CORINE 

datasets to a more general land cover classification scheme so as to define a set of 

meaningful classes effectively discernible with MODIS reflectance information. This 

procedure was performed with the aid of indications obtained from the unsupervised 

classification of the MODIS 2000 multitemporal dataset (see section 3.6.1.). The 

results obtained confirmed that working with only two bands restricts the number of 

classes that can be meaningfully distinguished. In view of this we decided to merge 

classes to match level 1 of CLC 44 class nomenclature (an overview of the complete 

class nomenclature can be consulted in Appendix 6). Additionally, class 4 and 5 of 

CLC level 1 nomenclature were merged because their distinction is not considered 

relevant for this study. Eventually, the four classes defined for MODIS classification 

are: 

1. Artificial surfaces, 
2. Agricultural areas, 
3. Forest and semi natural areas, and 
4. Water bodies and Wetlands. 

Eventually, the vector land-cover polygons for both dates were rasterized to a 250 m 

grid, to match the resolution of the MODIS data (see Figure 3). 
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(A) 

 

 
(B) 

 
Legend CORINE land cover level 1 

 
 
Figure 3 CORINE land cover classification images after recoding to 4 thematic classes (level 
1 CLC Nomenclature). (A) 1990, and (B) 2000. 
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3.4.4. Datasets Co-registration 
 
An accurate geometrical co-registration of images is the most critical image 

preprocessing requirement for monitoring land cover changes. The success of change 

detection studies is highly dependant on the precision of relative alignment between 

images that compose a multi-temporal data set (Stow, 1999). The variations among 

images that the registration process is aiming to get rid of are those due to the 

differences in image acquisition, not including those due to atmospheric conditions 

which can not be modelled by registration and in fact affect mostly intensity values 

and only for a minor part spatial characteristics (Stow, 1999). Image registration in 

brief consists in finding an adequate transformation so that the points in one image 

can be related to their corresponding points in the other. 

 

For this study we decided to adopt an automatic image registration procedure as those 

offered by IDL-ENVI software package. This procedure uses so called Ground 

Control Points (GCPs). Ground control points are a set of selected pixels (or regions) 

that can be located accurately on both the image and the map; these are usually easily 

recognizable features such as intersection of roads, rivers or coastlines. Eventually the 

control points can be used to identify the transforms between the input image and the 

reference image or map (Chalermwat, 1999). The present study made it desirable to 

adopt the Image-to-Map registration option instead of the Image-to-Image one. When 

registering an image to a map coordinate system, the pixels can be referred in terms of 

map coordinates (latitudes and longitudes or easting and northing) this is often 

referred to as geocoding. The map coordinates were entered by means of CORINE 

land cover vector datasets.  Reasons behind the choice of this approach were of 

different nature. Firstly, the problem in choosing the higher resolution satellite image 

as a reference, and thus adopting Image-to-Image registration, is that the warped 

image is automatically resembled to the base image spatial resolution which is not 

desired for this study.  Secondly, given the framework of this study which is 

CORINE’s update it is advisable to take the latter as reference for all our datasets. 

Landsat TM 1990 images were registered against CLC 1990 dataset, whereas CLC 

2000 was used for Landsat ETM+ and MODIS image registration. It has to be 

reminded at this point that no difference in geometrical accuracy exists between the in 

this study employed CORINE dataset. This is due to the fact that, as reported in 
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section 3.4.3., CLC1990 dataset has been derived from the CLC2000 and the change 

database.  

 

Ground Control Points (GCPs) identifiable on both the CLC reference datasets and 

the remote sensing scenes were precisely located with the help of a cursor. From the 

reference datasets the categories artificial surfaces and wetlands&water were found 

most suitable for point identification. A total ranging from 8 to 11 GCPs were 

identified for each individual Landsat scene, whereas a total of 18 points were 

selected for the MODIS image. Eventually the residual registration error (RMS) was 

computed and the points adjusted in order to maintain the acceptable error (Table 4). 

  

Table 4 Registration settings for Landsat TM, MODIS and ETM scenes 
 
Base dataset Warp 

images 

Warping 

method 

Resampling 

method 

Scenes 

ID 
GCPs 

RMSE

192_29 8 1.491 

193_28 10 1.695 

193_29 11 1.607 

194_28 8 1.588 

CLC1990 

(derived) 

Landsat 

TM 

Polynomial 

1st degree 
Nearest neighbour 

194_29 9 1.503 

CLC2000 MODIS 
Polynomial 

1st degree 
Nearest neighbour  18 1.382 

192_29 10 1.396 

193_28 9 1.618 

193_29 9 0.863 

194_28 9 1.695 

CLC2000 
Landsat 

ETM+ 
Polynomial 

1st degree 
Nearest neighbour 

194_29 8 1.813 

 

One drawback in using control points in automatic registration is that it is not the 

easiest task to identify effective GCPs especially when working on relatively coarse 

images as is the case in this study. It has been demonstrated that the registration error 

decreases as the number of GCPs is increased (Chalermwat, 1999), on the other hand 

we also observed that the capacity to find satisfactory GCPs and with it the quality of 

GCPs accuracy decreases as their number increases.  
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In literature no undisputed opinion regarding the size of the tolerable registration error 

is found. Chalermwat (1999) defined an error of ± 1 pixel as acceptable in the co-

registration of images for change detection application. For the present study, 

although acceptable accuracies are reached, a certain degree of bias resulting from the 

registration process is expected to influence the final change detection product. It 

should be reminded that an error of only one pixel in a Landsat image corresponds to 

a misplacement of about 80 meters distance on Earth (Tian 1986, In: (Chalermwat, 

1999). 

  

To validate the accuracy of the registration CLC vector dataset were overlaid on the 

satellite images and a visual consistency check was carried out. In general it could be 

noticed that the datasets matched; some inaccuracies were detected in correspondence 

of line features, such as rivers, but those could be related to the fact that for the line 

elements the minimum width as specified by CORINE is 100 meters. Where this 

width was not reached, approximation might have been taken place during CORINE 

digitalization.    

 
 

3.5. Simulation MODIS 1990 
 
One of the challenges of the present study, which aims at performing change detection 

from 1990 to 2000 based on MODIS data, is the lack of time one data. Although 

MODIS’s spectral channels interval were originally selected because they closely 

match the spectral band widths of Landsat’s data facilitating intercomparison (Price, 

2003), a direct 1:1 relation can not be established. For what concerns the visible red 

part of the EM spectrum, the MODIS sensor acquires the signal of slightly shorter 

wavelengths (0.62-0.67µm) compared to the Landsat instruments (0.63-0.69 µm). The 

near infrared part of the spectrum covered by the Landsat sensors (0.76-0.90 µm) is 

much wider and encompasses the part covered by the MODIS instrument (0.84-0.88 

µm). What is more the data generated by the two instruments differ in their spatial 

resolution, with Landsat recording at 30m and MODIS at 250m for band 1 and 2. 

Following these consideration it becomes clear how Landsat TM for the year 1990 

can not be taken as substitute date one images for our change detection without any 

transformation taking place.  
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As in the majority of pioneer studies which precede their concrete applicability, some 

kind of simulation has to be carried out to be able to replace the yet missing 

component. In this study the missing component is represented by the MODIS data 

for the year 1990 and simulation has been performed by means of an empirical 

approach. Several mathematical approaches for data simulation are known to exist in 

literature but their complexity has been found not suitable for the timeframe in which 

this study has to be carried out. 

 

Simple averaging of the fine resolution data to match the spatial resolution of the 

coarse resolution data will not produce data sets with comparable spatial information 

(Pax-Lenney and Woodcock, 1997a). This objective instead was achieved for this 

study by empirically modelling the association existing between Landsat and MODIS 

data for the year 2000 and successively exploiting the so with obtained prediction 

equation to derive MODIS 1990 from Landsat TM 1990 datasets. For deriving the 

empirical relation, the ETM scene whose acquisition date corresponds exactly to 

MODIS acquisition (20th June 2000) was used.  

 

Resampling of the Landsat images from 30x30m to 10x10m pixel size using nearest 

neighbour was performed allowing preserving as much as possible the original 

reflectance of the image. Successively, Landsat 10m resolution data were upscaled to 

250m by means of pixel aggregate which averages all of the pixel values that 

contribute to the output pixel. This method has been found most suitable when aiming 

at simulating different scale levels and has been confirmed in literature (Alexandridis 

and Chemin, 2002). Special attention was given to the origin of the resampling which 

was chosen to match exactly the origin of the corresponding MODIS pixel. This was 

achieved by resizing the Landsat image by means of map coordinates at 10m spatial 

resolution prior to the upscaling to 250m so as to attain maximum precision in the 

subsetting.  

 

As a second step, MODIS 2000 and Landsat ETM 2000 data have been graphically 

screened to determine how their relationship can best be described; from the band 

specific scatter plots the data appeared to be related linearly (see Appendix 7). An 

ordinary linear regression analysis by means of SPSS statistical software was carried 
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out to explore the relationship; the independent or explanatory variable was 

represented by the ETM 2000 and the dependent variable by MODIS 2000 dataset. 

The goodness of the fit was assessed by means of the Pearson’s correlation coefficient 

(R) which indicates both strength and direction of the linear relationship. The least 

square method was used in the attempt of finding the function that best approximates 

the data (a “best fit”) by minimizing the difference of the original MODIS data versus 

the predicted ones, known as residuals. Assuming the model we fit to the data is 

correct, the residuals approximate the random errors. Therefore, if the residuals 

appear to behave randomly, it suggests that the model fits the data well. Whereas, if 

the residuals display a systematic pattern, it is a clear sign that the model fits the data 

poorly. For this method to be applicable we assumed errors in each measurement to 

be randomly distributed.  

 

The model including an intercept has been compared with the no-intercept model by 

means of Pearson’s coefficient (R), eventually linear regression through the origin 

was found to be the best fit for our data.   The band-specific regression (least squares) 

equation of the line which best fits our data is of the type y = αx + ε, where α is the 

unstandardize coefficient or slope and ε is the unpredictable component or error. 

Including observations of the explanatory variable (ETM) in the equation yields 

estimated values of the dependent variable (MODIS). To validate the reliability of our 

prediction the difference between the original MODIS and the predicted one, also 

known as residuals, was investigated.  

 

The fact that the predicted values do not exactly match the original ones could have 

many explanations some of which are nor traceable neither explainable. One possible 

source that instead can indeed be verified is misregistration between our datasets. The 

fact that images have similar mean values strengthen the conviction that different 

spatial distribution of features has influenced the association between the images. 

Two independent approaches to verify this assumption were developed. In the first, 

images were upscaled to 500m spatial resolution by aggregation through averaging 

(Alexandridis & Chemin, 2002), in the second only big homogeneous features were 

considered to derive the correlation. Both approaches resulted in an improvement of 

the correlation strength between images and thus confirmed the influence of 

misregistration in lowering the association. This can easily be understood considering 
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that the particular study area is characterized by fragmented land cover, meaning that 

a mismatch of the order of one 250x250m pixel can already signify another land cover 

type. 

 

For our model to be valid certain assumptions were made. First and foremost, we 

assumed that the subset area for which the transfer functions have been derived is 

representative of the whole study area. This assumption was made after visual 

investigation of the land cover distribution for the whole study area. Moreover, what 

can be considered the overriding assumption for the here developed simulation 

strategy, is the possibility to interchange Landsat TM and ETM data from a spectral 

point of view. This would mean that even though the regression model has been 

calibrated with ETM data its validity is further granted when using TM data. For 

further detail on ETM-TM comparison we advise to refer to ‘Landsat-7 ETM+ as an 

observatory for land cover initial radiometric and geometric comparison with 

Landsat-5 Thematic Mapper’ by Masek et al. (2001).  

 
 

3.6. Classification  
 

In this section an overview of the methodology adopted for classification of our 

remotely sensed datasets is outlined. In general, two broad approaches can be 

distinguished in literature, namely spectral and contextual image classification. While 

the first category is based on the spectral response pattern associated with each 

individual pixel, the second one has as main study unit homogeneous regions also 

known as segments or objects.  

 

An extensive review of the most significant scientific literature since the completion 

of this research revealed how object-oriented approaches have won in popularity in 

recent years but have merely interested high resolution data, most commonly data 

from the Landsat and SPOT family of sensors or in many cases also very high 

resolution solutions data such as IKONOS or Quickbird (Walter and Fritsch, 2000; 

Walter, 2004; Blaschke, 2005; Blaschke et al., 2005; Moeller and Blaschke, 2005). In 

view of what just mentioned and of indications obtained from preliminary results, a 

pixel-based approach has been chosen for the present study.  
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Among the pixel based approaches, the Maximum Likelihood classification algorithm 

was found to be the most successfully applied in several studies (Cho, 2000; Kral, 

2003; Jonathan et al., 2005). In a study by Dwivedi et al. (2004) the most common 

classifiers of remote sensing data for land-use/land-cover mapping are evaluated, the 

MLC was found superior to all other methods except for artificial neural network 

techniques.  

 

 

3.6.1. Unsupervised Classification MODIS 2000 
 

The author decided to purposefully start the series of classification procedures with 

the unsupervised approach. This approach clusters pixels in a data set based on 

statistics only, without any user-defined training classes (RSI-ENVI, 2006). In this 

way a first impression of the land cover classes which can be discerned by an 

automatic classifier based on our dataset is obtained. These indications turned useful 

when working with the supervised approach in which a feasible number of classes, for 

which to collect training samples, have to be defined in advance. As mentioned in 

section 3.4.3., the results obtained with the unsupervised approach were as well 

employed for CLC class recoding.  

 

This step has been carried out in ENVI using K-means unsupervised classification, a 

method which calculates initial class means evenly distributed in the data space then 

iteratively clusters the pixels into the nearest class using a minimum distance 

technique. Each iteration recalculates class means and reclassifies pixels with respect 

to the new means (RSI-ENVI, 2006). The parameters specified were the number of 

classes, set to four, the change threshold which was kept at the default value of five 

and eventually the maximum number of iterations, set to three. A mask encompassing 

clouds, snow and data-errors was applied to the multitemporal MODIS 2000 image 

prior to classification.  
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3.6.2. Supervised Classification MODIS 2000: Single Date versus 
 Multitemporal Approach 
 
The potential of the MODIS instrument for land cover monitoring on the European 

scale lies in its red and NIR bands which are characterized by 250m resolution. The 

low spectral dimensionality of our data restricted to four the number of classes 

considered in this study. To test whether a higher temporal resolution could 

eventually compensate for the small number of bands used, three MODIS scenes for 

different seasons where combined in a multitemporal dataset. The images were 

respectively from mid April, June and September of the year 2000.  

 
The training stage 

The same classification strategy was used to classify the multitemporal dataset and the 

single date image represented by the June acquisition. The number of considered 

classes was set to four corresponding to CORINE’s higher nomenclature level with 

the exception of the class Wetlands and the class Water bodies which for the present 

study were merged in a single class as their distinction was not considered relevant. 

CORINE land cover vector datasets have been used as ancillary information in the 

classification process; it should here be remembered that we are mainly interested in 

developing an updating approach for CLC maps therefore the aid of the previous 

thematic datasets is most wanted.  By overlaying CLC2000 vector dataset, recoded to 

the four-class nomenclature, over the MODIS image, training samples were defined. 

High importance has been given to the selection of representative training samples as 

this step has been indicated by some researcher (Dwivedi et al., 2004) as more 

relevant than the type of algorithm eventually applied for classification. For the 

digitizing of the training fields individual polygons for specific classes were used. 

Hereby only the core areas of certain land-cover classes (without transition pixels) 

were used for creating spectral signatures, moreover areas within big and 

homogeneous polygons were preferred over small ones. This allowed lowering the 

effect of registration inaccuracies that exists between datasets. The number of samples 

has been taken proportionally to the class percentage as determined by CLC 

classification, with a higher number for the forest and agricultural class and a lower 

number for the less represented classes water and artificial surfaces.  
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Some indications of the spectral separability of our land-use/land-cover categories are 

provided by means of the calculation of the transformed divergence (TD) for our 

training samples. As reported in the ENVI User Guide (RSI-ENVI, 2006) TD values 

range from 0 to 2.0 and indicate how well the selected class pairs are statistically 

separated. Values greater than 1.9 indicate that the class pairs have good separability. 

For class pairs with lower separability values, it is recommended to attempt to 

improve the separability. A close look at the TD values in Table 5 reveals that the in 

this material used band combination, i.e. red and near infrared, does not represent the 

ideal set for achieving the desired classification accuracy when using a single-date 

image. Especially, for class pairs ‘Agriculture-Forest’ and ‘Urban-Agriculture’, for 

the single date dataset, a significant amount of spectral mixing is apparent. Although 

TD values generally improve when working with the multitemporal dataset, the only 

class pair for which a good separability is apparent (TD value= 2.000) is the 

‘Agriculture-Water’ pair. It has also to be reminded that training samples generally 

represent the pure class spectral footprint and thus TD values based on the whole 

image are expected to be lower than the one reported in Table 5.  

 

Table 5 Class Training Sample separability (Transformed Divergence) 

 

SEPARABILITY CLASS PAIRS 
SINGLE DATE MULTI- 

TEMPORAL 

Agriculture vs.  Forest 1.214 1.921 

Urban vs.  Agriculture 1.748 1.975 

Urban vs. Water 1.998 1.999 

Urban vs. Forest 1.999 1.999 

Forest vs. Water 1.999 1.999 

Agriculture  vs. Water 1.999 2.000 

 

The classification stage 

In view of the fact that the spectra of the defined land cover classes are close to one 

another in the measurement space and have high variance, a probability classifier is 
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preferred over a distance classifier. The Gaussian Maximum Likelihood classification 

algorithm (ML)  has been chosen for this study as it quantitatively evaluates both the 

variance and covariance of the category spectral response patterns when classifying 

an unknown pixel (Lillesand et al., 2004). What is more, following a literature review 

of comparable materials it turned out to be the favoured choice by several authors 

(Cho, 2000; Kral, 2003; Jonathan et al., 2005). The basic ML algorithm is a purely 

statistical approach based on Bayes’ theorem which assumes that the variables are 

continuous and follow a Gaussian or normal distribution (Jonathan et al., 2005).  

 
 

3.6.3. Supervised Classification simulated MODIS 1990  
 
Following simulation of the ‘1990 MODIS dataset’ we end up with 5 individual 

pseudo-MODIS scenes that need to be classified independently. Independent sets of 

training samples have to be collected for each scene considering that we are dealing 

with data not corrected for the atmospheric effect. Images where acquired in slightly 

different dates (it should be remembered that those were originally Landsat TM 

scenes) and therefore atmospherical conditions might not be exactly comparable.  

 

As done for the MODIS 2000 dataset, four classes are distinguished and a maximum 

likelihood classification algorithm is applied. The so with obtained five thematic maps 

are eventually mosaicked into a unique dataset covering the full extent of the study 

area and their accuracy is evaluated against CLC 1990 dataset.  

 
 

3.7. Accuracy Assessment 
 
The following section provides the methodology adopted for the validation of the 

classification results. For the classification obtained from the MODIS 2000 

multitemporal dataset, two validation approaches are compared: a pixel- and an 

object-based approach. The latter one aims at resembling more closely the 

methodological framework of the reference dataset, represented by CORINE’s land 

cover map. 
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The accuracy of spatial data has been termed by the United States Geological Survey 

(USGS) as: “The closeness of results of observations, computations, or estimates to 

the true values or the values accepted as being true”. This definition implies already 

that what is called ‘true’ is sometimes dependent on the expert decision and therefore 

assumes a subjective dimension (Banko, 1998). Given the extent of the study area and 

the time at disposal for this research, field data, representing the most valid source of 

validation, could not be collected. Instead CORINE’s land cover maps obtained from 

high resolution Landsat data are used as ‘ground truth’ reference. It follows that, we 

are confident in making the necessary assumption that these data can be considered 

accurate for the purposes of this project.  

 

 

3.7.1. Pixel based validation 
 

A pixel-wise accuracy assessment has been carried out for the time 1 and time 2 

classification results. For the 1990 classification, CLC1990 map has been taken as 

reference dataset, whereas for the 2000 classifications the CLC2000 thematic 

information is used as ‘ground truth’ to evaluate the performance of the algorithm. 

Confusion matrices, known also as contingency or error matrices, and from it derived 

indices were used as base for validation. The confusion matrix has been identified in 

literature as the core of classification accuracy assessment (Congalton, 1991; Foody, 

2001; Lillesand et al., 2004). As a simple cross-tabulation of the mapped class label 

against that observed in the ground or reference data, the confusion matrix provides 

not only class specific accuracies estimates but as well characterizes errors (Foody, 

2001).  

 

In the following a brief overview is given of the from the confusion matrix reported 

indices used in this study. The most commonly reported accuracy measures as found 

in literature is the percentage of cases correctly allocated known as ‘overall accuracy’. 

This is computed by dividing the total correct (i.e. the sum of the major diagonal) by 

the total number of pixels in the error matrix (Congalton, 1991; Foody, 2001). A 

major problem of this measure is that some cases may have been allocated purely by 

chance. To accommodate for the effect of chance agreement, a KAPPA analysis is 
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done whose result is know as KHAT statistics (K) and is obtained as depicted in 

equation (5). Developed by Cohen (1960) the Kappa coefficient verifies whether the 

results presented in the error matrix are significantly better than a random result. 

Kappa increases to one, as chance agreement decreases and becomes negative, as less 

than chance agreement occurs. A  Kappa of zero occurs, when the agreement between 

classified data and verification data equals chance agreement. Contrarily to the overall 

accuracy measure which incorporates only diagonal elements of the error matrix, the 

kappa coefficient has the advantage to indirectly integrate the off-diagonal elements 

as a product of the row and column marginals (Congalton, 1991; Foody, 2001). 
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where: 

r: number of rows and columns in error matrix, 
N: total number of observations, 
Xii: observation in row i and column i, 
Xi+: marginal total of row i, and 
X+i: marginal total of column i. 
 

An additional weakness of the overall accuracy as only expression of the fidelity of a 

classification towards its reference target is its non-site-specific nature. As pointed out 

by Congalton (1991) in his extensive review of classification accuracy assessment, if 

all errors would happen to balance out themselves, a non-site-specific accuracy 

assessment will yield very positive but misleading results. Often very big accuracy 

differences exist within and among classes which can only be assessed by means of 

class specific indices. Intra- and interclass accuracies can be expressed from two 

standpoints giving rise to two measures known as producer’s and user’s accuracy. 

User’s accuracy and producer’s accuracy are the flip side of commission and omission 

errors, respectively. User accuracy is a percentage measure indicating the probability 

that a pixel included in a class actually represents that category on the ground. This 

measure is generated by dividing the number of correctly identified points (diagonal 

value) by the total number of points classified in that row. The more errors of 
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commission exist, the lower the user's accuracy as outlined in equation (6) (Banko, 

1998). 

 

User’s accuracy (%) = 100% − error of commission (%)            (6) 
 

On the other hand, the producer’s accuracy is a percentage measure of the omission 

error (see equation 7) it follows that the more errors of omission exist, the lower the 

producer's accuracy (Banko, 1998). 

 
Producer’s accuracy (%) = 100% − error of omission (%)      (7) 
 

It indicates how accurate the class is compared to the reference data or how well the 

area was classified. This statistic is calculated by dividing the number of correctly 

identified points (diagonal value) by the total number of reference points in that 

column (Langley et al., 2001). 

 

 

3.7.2. Object based validation 
 
For the MODIS 2000 multitemporal dataset an attempt has been made to simulate an 

object-oriented classification result starting from our pixel-based classification output. 

The thought behind this endeavour is that the employed validation strategy does not 

reflect the real disagreement between the two maps as long as one remains pixel- and 

the other object-based. To link the pixel-based land cover information obtained from 

the MODIS classification to CORINE’s polygons a zonal statistics operation was 

performed in ArcGIS software. This operation allows assigning each of CORINE’s 

polygons to the land cover class to which most of the classified MODIS pixels, falling 

within the polygon, belong to, by means of a majority rule. Eventually, MODIS 

polygon-wise classification has been validated by means of an accuracy matrix using 

as ‘ground truth’ dataset the CLC2000 map (see section 3.7.1. for details).  
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3.8. Change Detection 
 
One objective of this study has been to compare spatial representations of two points 

in time, namely the years 1990 and 2000. This has been achieved by controlling as 

much as possible variance resulting from factors of no-interest (instrument 

differences, geometrical mismatch, etc.) and at the same time measuring the variance 

caused by land cover modifications in the study area. To do so an algorithm which 

simply compares two classification maps based on class pairs specified by the analyst 

has been employed. For each Initial State class, the algorithm identifies the classes 

into which those pixels changed in the Final State image. Changes are summarized in 

a change detection report consisting of three statistics tables (see Table 12 and Table 

13 in section 4.3.), expressed as ‘Pixel Count’, ‘Percentage’ and ‘Area (square Km)’ 

respectively, listing the Initial State classes in the columns and the Final State classes 

in the rows. For each Initial State class (i.e., each column), the table indicates how 

these pixels were classified in the Final State image (RSI-ENVI, 2006).  

 

A number of figures can be extracted from the change report of which the most 

significant are explained in the following. The Class Total row indicates the total 

number of pixels in each Final State Class, and the Class Total column indicates the 

total number of pixels in each Initial State Class. The Class Changes row indicates the 

total number of Initial State pixels that changed classes and is obtained by subtracting 

the number of pixel for a particular class which did not change from the Initial to the 

Final State from the Class Total column for that particular class. The Image 

Difference row is the difference in the total number of equivalently classed pixels in 

the two images, computed by subtracting the Initial State Class Totals from the Final 

State Class Totals. An Image Difference that is positive indicates that the class size 

increased (RSI-ENVI, 2006). 

 

In addition, a special type of mask image (classification masks) that provides a spatial 

context for the tabular report is produced. The class masks are ENVI Classification 

images with class colours matching the Final State image, making it easy to identify 

not only where changes occurred but also the class into which the pixels changed 

(RSI-ENVI, 2006). 
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The choice of performing a map-to-map instead of an image-to-image comparison 

was made based on the ‘from-to’ information that can be obtained by the first and not 

by the latter technique (Lu et al., 2004). Nevertheless, map-to-map comparison, also 

know as post-classification change detection, holds the disadvantage to be strongly 

influenced by the assumptions behind the individual classifications. Differences 

caused by discordant classification strategies and accuracies will be added to the 

actual land cover differences and introduce bias in the change recognition (Cho, 

2000). Additionally, misregistration, as anticipated in section 3.4.4., can certainly be 

claimed as an ‘all times present’ source of error for change detections studies (Brown, 

1992; Stow, 1999; Chalermwat, 1999). 

 
For the present study change detection has been performed twice to differentiate 

between the single-date and the multitemporal datasets. The main reason behind this 

division lies in the time-dictated impossibility to simulate a multitemporal dataset for 

the year 1990. Moreover, the authors were interested in investigating the aid of the 

multitemporal approach to land cover mapping and monitoring. In view of what just 

mentioned, the first change detection was performed between the classification image 

based on the simulated single date MODIS 1990 data (time 1) and the classification 

obtained from the original MODIS 2000 single date data (time 2).  On the other hand, 

in as second step change detection was performed between the CLC1990 dataset (time 

1) and the classification image derived from the multitemporal MODIS 2000 data 

(time 2). For the latter case, we are well aware that maps which have been obtained on 

base of images taken by different instrument with different recording features are 

being compared. The so with obtained two change datasets were eventually compared 

among each other and with CLC change dataset for validation.  

 
.  
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4. Results and Discussion 

4.1. Simulation MODIS 1990 
 
In this section the relationship between ETM 2000 and MODIS 2000 reflectance data 

is discussed on the basis of the results of the least squares regression analysis. Table 6 

shows the models and coefficients. The comparison of the best fit of the models is 

determined based on Pearson’s correlation coefficient (R ).  

 

Table 6 Regression models for MODIS 1990 simulation 
 
Model Band Regression equation R R Square RMSE 

red y=0.972x+0.001+ε * 0.632 0.399 0.032b≠0    (1)

NIR y=1.339x+0.027+ε 0.886 0.784 0.055

red y=0.98x+ε   0.941 0.885 0.032b=0  (2)

NIR y=1.441x+ε 0.988 0.976 0.055

  * ε: unpredictable component (error) 
(1) Intercept model 
(2) No-intercept model 
 

As anticipated in section 3.5., least square regression through the origin has been 

chosen as giving the best correlation results for this study. This choice was made 

based on the indication provided by Pearson’s correlation coefficient for which the 

regression models with out intercept revealed higher correlation for both bands. 

Particularly for the red band, high improvement of the Pearson correlation was 

obtained (from 0.632 with intercept model to 0.941 with no-intercept model, Table 6).  

This choice can moreover be justified by assuming that both Landsat and MODIS 

data present zero reflectance value for very dark objects, such as water bodies; this 

assumption was also verified in the datasets in empirical way. In general, we can 

conclude that a Pearson’s coefficient of 0.941 for the red and of 0.988 for the NIR 

band indicates the presence of a high correlation (> 0.9) between Landsat ETM+ and 

MODIS data acquired on the same date and encompassing the same study area.  

 

For what concerns the R square values, of 0.885 and 0.976 for the red and the NIR 

band respectively, we can conclude that a high proportion of the variability in the 
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dependent variable about the origin can be explained by the regression. It has 

although to be pointed out that those values can not be compared to R Square for 

models which include an intercept. The graphical representation of the Root Mean 

Square error of residuals shows a nearly random distribution of residuals. However, 

what is of concern is the order of magnitude of the standard error of the regression, 

0.032 and 0.055 for the red and NIR band respectively (Herold et al., 2002a). 

 

Several factors are known which could be liable for biasing the correlation between 

images acquired by different sensors. Particularly, for what concerns Landsat ETM+ 

and MODIS data some of those factors can be excluded whereas others have to be 

acknowledged.  For instance differences in sun angle and view angle which are due to 

differences in time overpass can not be at the origin of de-correlation. The time lap 

between the Landsat ETM+ and the MODIS overpass is only of approximately 15-25 

minutes (Alexandridis and Chemin, 2002) for images acquired the same day, too short 

for a change in climatic conditions been able to influence the land cover signal. On 

the other hand, the different processing that images could have been undergoing prior 

distribution certainly has lead to differences affecting the correlation. Last but not 

least, mis-registration represent a factor which certainly has influenced negatively the 

correlation, especially if considering that images have not been registered against each 

other but to a third dataset (CORINE 2000) and this could have generated an even 

larger mismatch (in case the errors are opposite in direction).  

 

Eventually, these findings and considerations provide us with an indication of the 

degree of accuracy we are working with when performing MODIS’s 1990 simulation 

using the so derived transfer equations. It should be recognized that further 

discrepancies might exists between the products of those two instruments. 

Regrettably, those are considered of unpredictable nature and can not be accounted 

for in this study, consequently will represent the uncertainty of our model. 
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4.2. Classification  

4.2.1. Unsupervised classification MODIS 2000 
 
From a first visual analysis of the classification image resulting from the K-Means 

classification algorithm, it becomes clear how all four CORINE Level one 

Nomenclature classes have been recognized by the automated classifier. Nevertheless, 

even when employing the multitemporal dataset, some confusion among classes is 

apparent as revealed by Figure 4. Particularly, the classes ‘Agricultural Areas’ and 

‘Forest and semi-natural Areas’ show a significant overlap based on the dataset used 

for classification. Confusion between these two classes is quite common in land cover 

mapping studies and in this case is shown by an exaggerated prevalence of the forest 

over the agricultural land cover. The occurrence of forested area especially in the Po` 

valley, mainly characterized by agricultural fields interrupted by urban 

conglomerates, is an indication for the need of a training stage to improve the 

performance of the classifier. Results for the urban class show an overrepresentation; 

for this class as well as for the previous ones, a training stage is expected to be 

determinant in reducing the bias of the findings. Last but not least, the water class is 

mainly affected by the loss of the Po` river which is wrongly classified as urban. For 

this confusion the authors are not confident that a supervised approach will improve 

the result significantly, this is due to the conviction that it is the insufficient spatial 

resolution more than the spectral properties to mislead the outcome.  

 

The conclusions drawn from the visual analysis are confirmed by the confusion 

matrix presented in Table 7. The overall accuracy of the classification is quite low, 

with only around 50% of the total pixels being classified correctly and a kappa value 

of 0.355. Class specific accuracies reflect the abovementioned observations.  
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Classification Legend 
 

 
 
Figure 4 Classification image MODIS 2000 multitemporal dataset using K-Means 
unsupervised approach 
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Table 7 Confusion matrix MODIS 2000 multitemporal dataset using K-Means unsupervised approach versus CLC2000 ‘ground truth’ 
 
Overall Accuracy= (627947/1247395)= 50.3407% 
Kappa Coefficient= 0.3557 

Ground Truth (Pixels) 
Class     UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST 4WATER Total
Unclassified 192720 0 0 0 0 192720 
1Artificial 5 41726 73316 34556 7254 156857 
2Agriculture 1 5697 174569 16932 322 197521 
3Forest 12 32523 444903 197943 1916 677297 
4Water 616 408 551 436 20989 23000 
Total 193354 80354 693339 249867 30481 1247395 
       

Ground Truth (Percent)  
Class     UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST 4WATER Total
Unclassified 99.67 0 0 0 0 15.45 
1Artificial 0 51.93 10.57 13.83 23.8 12.57 
2Agriculture 0 7.09 25.18 6.78 1.06 15.83 
3Forest 0.01 40.47 64.17 79.22 6.29 54.3 
4Water 0.32 0.51 0.08 0.17 68.86 1.84 
Total 100 100 100 100 100 100 
       
Class      Commission Omission Commission Omission  
 (Percent)    (Percent) (Pixels) (Pixels)   
Unclassified 0 0.33 0/192720 634/193354   
1Artificial 73.4 48.07 115131/156857 38628/80354   
2Agriculture 11.62 74.82 22952/197521 518770/693339   
3Forest 70.77 20.78 479354/677297 51924/249867   
4Water 8.74 31.14 2011/23000 9492/30481   
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Class Prod. Acc. User Acc. Prod. Acc. User Acc.   
      (Percent) (Percent) (Pixels) (Pixels)  
Unclassified 99.67 100 192720/193354 192720/192720   
1Artificial 51.93 26.6 41726/80354 41726/156857   
2Agriculture 25.18 88.38 174569/693339 174569/197521   
3Forest 79.22 29.23 197943/249867 197943/677297   
4Water 68.86 91.26 20989/30481 20989/23000   
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4.2.2. Supervised Classification MODIS 2000 
 
In this chapter the results of the maximum likelihood classification for the MODIS 

single-date image and the multitemporal dataset for the year 2000 are presented. 

Classification images can be viewed in Figure 5 and Figure 6 respectively. Given the 

fact that the same training sample set was used for the two approaches, results are 

directly comparable by means of confusions matrices (see Table 8 and Table 9) with 

no need for normalization (Congalton, 1991) and thus are here discussed 

concurrently. Additionally, for the MODIS multitemporal dataset the pixel-level 

classification result has been resampled to CORINE’s object-level. In view of this, in 

the following two sections are distinguished: the first reporting the validation for the 

original pixel-wise classification, while the second for the polygon-wise aggregated 

result.  

 

4.2.2.1. Validation of pixel-wise results  
 

A close look at the confusion matrices (Table 8 and Table 9) reveals an overall 

agreement between the obtained classifications and the CLC2000 thematic dataset, 

with an about 10% positive difference of the multitemporal approach over the single-

date case. The in literature (Foody, 2001) commonly recommended 85% target was 

nearly reached by the classification of the multitemporal dataset which resulted in 

84.44% overall accuracy versus the 74.11% obtained with the single-date dataset. 

When off-diagonal elements of the confusion matrix are included in the calculation of 

the kappa coefficient, accuracy reaches 0.593 and 0.741 for the single-date and 

multitemporal approach respectively.   

 

Concentrating now on inter-class accuracies, the confusion matrices reveal how 

classes which are less represented on the terrain, namely urban areas and water 

(including wetlands), are the one that are mostly affected  by error. Especially, it can 

be seen that for these classes the omission error is significantly higher than the 

commission error. For the urban class the omission error equals 70.68% (for the 

single-date image) and 74.60% (for the multitemporal approach), whereas the 

commission error reaches 52.44% (for the single-date image) and 34.21% (for the 
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multitemporal approach). The same information is inherent in the low producer’s 

accuracy characterizing these classes, which even worsen for the multitemporal 

approach, sinking to 25.40% for the urban class and 59.05% for the water class. These 

results lie in accordance with the findings of Turner et al. (1989) in which it appeared 

that rare classes disappear as resolution becomes coarser (Pax-Lenney and Woodcock, 

1997a). In agreement with what observed by Pax-Lenney and Woodcock (1997a) we 

observed how for our study area, large classes grow larger with increasing cell sizes 

(agriculture) whereas small classes diminish (urban, water). Additionally, it can be 

assumed that the rate of loss is influenced by the spatial patterns of the landscape at 

the fine resolution, with dispersed classes (urban, water) disappearing more rapidly 

than clumped classes (forest, agriculture). 

 

The latter findings support the conviction that the spatial factor is within the factors at 

the origin of the discrepancy observed between MODIS 2000 classification images 

and CLC2000 datasets. It follows that the disagreement found following a 

straightforward comparison of these two dataset, is to be linked to the different scales 

at which these two land cover products should be interpreted more than to errors. The 

scale factor, is particularly affecting less represented classes such as urban and water 

classes, whose small and scattered objects are been suppressed in mixed-pixel as the 

cell resolution increases. An example is provided by the unilateral confusion which 

results in more than half of the urban pixels being wrongly classified as agriculture 

pixel (65.45% for the single-date image and 71.45% for the multitemporal dataset).  

The visual analysis confirms that the small urban centres scattered across the wide 

agricultural plane of the Po valley are lost to the agricultural class whose objects are 

of far larger dimension. The same can be observed for the water and wetlands 

category which experiences a substantial loss due to the insufficient size of its 

elements, as an example the Po river is not detected by the classifier. These 

observations are in accordance with the conclusions drawn by Gallego (2001) when 

comparing CLC database with a land cover product obtained from higher resolution 

images. Gallego emphasized the fact that pixel-wise disagreement can be very 

misleading as both maps can be perfectly consistent with each other, and have a high 

% of disagreement by pixel because they represent the same reality at different scale.  

It follows that area estimation of land cover classes by simply adding the area of the 

polygons labelled as belonging to that class does not have any meaning if not related 
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with the scale of the land cover map it refers to. A drop  of the urban class from 6.4% 

to 2.5% (area decreases from 502212.5 ha to 195056.25 ha)  and of the water class 

from 2.4% down to 1.5% is observed when comparing class occurrence as obtained 

from CORINE and as obtained from the MODIS classification. The dominant land 

cover classes, namely forest and agriculture, on the other hand experience either 

almost no change in occurrence or a slight increase (agriculture). 

 

The second main aspect believed to be at the origin of the discordance between our 

classification and the reference data is the spectral factor. As earlier revealed by the 

training sample separability figures in section 3.6.2., a certain overlap between the 

agriculture and forest class and between the agriculture and the urban class is present. 

The confusion between these class pairs is believed to be in part due to the low 

spectral dimensionality of the finest spatial resolution MODIS product.  In an attempt 

to lower inter-class confusion, the high temporal resolution of the MODIS product is 

exploited when working with the multitemporal dataset. However, it has to be 

underlined how at times contradictory findings have been reported by authors 

concerning the aid of temporal profiles for class identification. Temporal data series 

have been found improving the identification of especially agricultural classes 

characterized by seasonal response by some authors (Pax-Lenney and Woodcock, 

1997b) whereas no aid to their identification has been recognized by others (Langley 

et al., 2001). For the present study, the separability between agricultural and forest 

areas improved as a result of multitemporal data series and most important the 

omission error of the class agriculture decreased from 26.92% to 9.1%. In general it 

can be observed that the commission error decreases for all classes causing an overall 

rise of the user’s accuracy, whereas the producer’s accuracy improved only for classes 

whose response is affected by seasonality.  As revealed by Jonathan et al. (2005) non-

seasonal classes such as urban and water categories benefit less from a multitemporal 

approach. Moreover, it has to be reminded that for this study images corresponding to 

only three dates (April, June and September) have been combined while other studies 

(Pax-Lenney and Woodcock, 1997b; Jonathan et al., 2005) have investigated the 

potential of extended time series. Extended time series allow certainly identifying a 

greater amount of class specific features as has been the case for this study. Having 

acknowledged this, it is not surprisingly how some classes are still confused with the 

multitemporal dataset. Particularly for the urban class it can be hypothesized  that 
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urban areas characterized by lack of vegetation cover and thus low reflectance in the 

NIR part of the EM Spectrum have been at times confused with agricultural fields left 

‘resting’ (i.e. unused in order to recover) and thus resembling the spectrum of bare 

soil (Jonathan et al., 2005). 
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Figure 5 Classification image MODIS 2000 single-date (June) dataset using Maximum 
Likelihood classification algorithm 
 

 

 
Figure 6 Classification image MODIS 2000 multitemporal dataset using Maximum 
Likelihood classification algorithm 
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Table 8 Confusion matrix MODIS 2000 single-date (June) using Maximum Likelihood classification algorithm versus CLC2000 ‘ground truth’ 
 
Overall Accuracy = (924414/1247395) = 74.1076% 
Kappa Coefficient = 0.5933   

Ground Truth (Pixels) 
Class      UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST 4WATER Total

Unclassified 194272 0 0 0 0 194272 
1Artificial 1 23470 18648 3202 4032 49353 
2Agriculture 11 52382 506338 65769 2850 627350 
3Forest 3 3812 167200 179839 2865 353719 
4Water 619 373 705 509 20495 22701 
Total 194906 80037 692891 249319 30242 1247395 

  
Ground Truth (Percent)  

Class     UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST 4WATER Total
Unclassified 99.67 0 0 0 0 15.57 
1Artificial 0 29.32 2.69 1.28 13.33 3.96 
2Agriculture 0.01 65.45 73.08 26.38 9.42 50.29 
3Forest 0 4.76 24.13 72.13 9.47 28.36 
4Water 0.32 0.47 0.1 0.2 67.77 1.82 
Total 100 100 100 100 100 100 
       
      

      
 

Class Commission Omission Commission Omission  
      (Percent) (Percent) (Pixels) (Pixels)  

Unclassified 0 0.33 0/194272 634/194906   
1Artificial 52.44 70.68 25883/49353 56567/80037   
2Agriculture 19.29 26.92 121012/627350 186553/692891   
3Forest 49.16 27.87 173880/353719 69480/249319   
4Water 9.72 32.23 2206/22701 9747/30242   
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Class Prod. Acc. User Acc. Prod. Acc. User Acc.   
      (Percent) (Percent) (Pixels) (Pixels)  

Unclassified 99.67 100 194272/194906 194272/194272   
1Artificial 29.32 47.56 23470/80037 23470/49353   
2Agriculture 73.08 80.71 506338/692891 506338/627350   
3Forest 72.13 50.84 179839/249319 179839/353719   
4Water 67.77 90.28 20495/30242 20495/22701   
 
 
Table 9 Confusion matrix MODIS 2000 multitemporal using Maximum Likelihood classification algorithm versus CLC2000 ‘ground truth’ 
 
Overall Accuracy = (1053280/1247395) = 84.44% 
Kappa Coefficient = 0.7402 

Ground Truth (Pixels) 
Class      UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST 4WATER Total

Unclassified 194272 0 0 0 0 194272 
1Artificial 351 20327 6204 1426 2590 30898 
2Agriculture 17 57190 629863 56802 6195 750067 
3Forest 5 2346 56677 190960 3599 253587 
4Water 261 174 147 131 17858 18571 
Total 194906 80037 692891 249319 30242 1247395 
       

Ground Truth (Percent) 
Class      UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST 4WATER Total

Unclassified 99.67 0 0 0 0 15.57 
1Artificial 0.18 25.4 0.9 0.57 8.56 2.48 
2Agriculture 0.01 71.45 90.9 22.78 20.48 60.13 
3Forest 0 2.93 8.18 76.59 11.9 20.33 
4Water 0.13 0.22 0.02 0.05 59.05 1.49 
Total 100 100 100 100 100 100 
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Class Commission Omission Commission Omission  

      (Percent) (Percent) (Pixels) (Pixels)  
Unclassified 0 0.33 0/194272 634/194906   
1Artificial 34.21 74.6 10571/30898 59710/80037   
2Agriculture 16.03 9.1 120204/750067 63028/692891   
3Forest 24.7 23.41 62627/253587 58359/249319   
4Water 3.84 40.95 713/18571 12384/30242   
       
       

Class Prod. Acc. User Acc. Prod. Acc. User Acc.   
      (Percent) (Percent) (Pixels) (Pixels)  

Unclassified 99.67 100 194272/194906 194272/194272   
1Artificial 25.4 65.79 20327/80037 20327/30898   
2Agriculture 90.9 83.97 629863/692891 629863/750067   
3Forest 76.59 75.3 190960/249319 190960/253587   
4Water 59.05 96.16 17858/30242 17858/18571   
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4.2.2.2. Validation of object-wise result  
 

As predictable, the land cover classification for which the unit of analysis has been 

‘upgraded’ from the pixel to CORINE’s object level showed generally higher 

accuracies compared to the original pixel-based result. A close look to the confusion 

matrix in Table 10 reveals an overall accuracies of 87.88%, about 4 percentage points 

higher than for the original pixel based classification.  A kappa coefficient of 0.796 

confirms a high degree of agreement between this classification and the reference 

dataset including the off-diagonal values in the calculation. When looking at the class 

specific figures it is observable how very high accuracies are obtained from the user 

as well as from the producer stand point for the two vegetation classes and for the 

water class. Accuracies for these classes range from 73 to 97 percentage points. On 

the other hand figures for the urban class reflect once more its exceptionality; for this 

class the confusion matrix reveals a very high user accuracy (97.32%), resulting in 

almost no commission error and a very low producer accuracy (18.37%) underlying 

the significance of the omission error. These outcomes can be explained if we 

consider that the urban class is among all land cover categories the one characterized 

by smaller and typically scattered objects. In view of this, when applying the majority 

rule based on CORINE’s polygons, urban pixels are more likely to be lost prompting 

an underestimation of urban areas in the study region (see Figure 7). In summary, 

when comparing the pixel- with the object-wise result, for the latter one an overall 

decrease of the salt-and-pepper effects and the creation of more homogeneous land 

cover segments are observable. This development is considered positive as the salt-

and-pepper effect is generally to be attributed to noise rather than to real land cover 

distribution patterns. Nevertheless, not all classes seam to benefit equally from the 

thematic aggregation. For land cover categories such as agriculture, forest and water 

an improvement in the agreement with CORINE’s map is observed. Regrettably, the 

divergence becomes larger in the case of the urban class; the percentage of pixels 

being correctly identified descending from 25.40 to 18.37 when going from the pixel-

level to the object-level classification.  
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Classification Legend 

 
 
Figure 7 Classification image MODIS 2000 multitemporal dataset resampled to CORINE’s 
polygon level by means of zonal majority rule 
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Table 10 Confusion matrix ‘object-based’ MODIS 2000 multitemporal classification versus CLC2000 ‘ground truth’  
 

Overall Accuracy = (1096269/1247395)= 87.8847% 
Kappa Coefficient = 0.796 

Ground Truth (Pixels) 
Class     UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST 4WATER Total
Unclassified 203690 0 0 0 0 203690 
1Artificial 0 14672 135 108 161 15076 
2Agriculture 0 64388 654814 40552 7291 767045 
3Forest 0 703 36616 201049 668 239036 
4Water 0 123 182 199 22044 22548 
Total 203690 79886 691747 241908 30164 1247395 
 

Ground Truth (Percent) 
Class     UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST 4WATER Total
Unclassified 100 0 0 0 0 16.33 
1Artificial 0 18.37 0.02 0.04 0.53 1.21 
2Agriculture 0 80.6 94.66 16.76 24.17 61.49 
3Forest 0 0.88 5.29 83.11 2.21 19.16 
4Water 0 0.15 0.03 0.08 73.08 1.81 
Total 100 100 100 100 100 100 
       
      

      
 

Class Commission Omission Commission Omission  
     (Percent) (Percent) (Pixels) (Pixels)  
Unclassified 0 0 0/203690 0/203690   
1Artificial 2.68 81.63 404/15076 65214/79886   
2Agriculture 14.63 5.34 112231/767045 36933/691747   
3Forest 15.89 16.89 37987/239036 40859/241908   
4Water 2.24 26.92 504/22548 8120/30164   
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Class Prod. Acc. User Acc. Prod. Acc. User Acc.   
      (Percent) (Percent) (Pixels) (Pixels)  
Unclassified 100 100 203690/203690 203690/203690   
1Artificial 18.37 97.32 14672/79886 14672/15076   
2Agriculture 94.66 85.37 654814/691747 654814/767045   
3Forest 83.11 84.11 201049/241908 201049/239036   
4Water 73.08 97.76 22044/30164 22044/22548   
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4.2.3. Supervised Classification MODIS 1990  
 
A visual analysis of the MODIS 1990 simulated classification of Figure 8 reveals that 

scenes have been classified independently from one another, evident from the border 

lines recognizable when passing from one scene to the other. This unavoidable detail 

can certainly be identified as the main weaknesses of this thematic product. 

Nevertheless looking at Table 11, the accuracy assessment based on the CLC1990 

dataset identifies this as being the best classification product in the present material, 

with a 95.39% overall accuracy and a kappa coefficient equal to 0.868.  The negative 

note which once again characterizes also this classification results is the accuracy 

reached for the urban class, which from the producer point of view is of 45.58% 

whereas from the user point of view of 41.49%. Commission and omission errors for 

this class are of the same magnitude underlying the fact that a bit more than half of 

the pixels are mis-classified (wrongly committed 58.51%, wrongly omitted 54.42%). 

Generally, the considerations drawn in section 4.2.2., for the MODIS 2000 

classification, do apply to the 1990 classification as well and thus will not be repeated 

at this stage.  

 

What has to be emphasized here is the fact that an overall better performance of the 

classification algorithm is observed for the 1990 classification. The fact that the 

classified area for 1990 is of slightly smaller extent (due to Landsat scene coverage) is 

not believed to be at the origin of this difference. Instead, the question resurfaces on 

how accurate the MODIS 1990 simulation has been, giving rise to the hypothesis that 

the resulting product still closely resembles a Landsat dataset. Considering the fact 

that, although the same classification strategy has been adopted, the 1990 

classification gave far better results compared to the 2000 classification (K1990= 0.868, 

K2000= 0.593) this does not seams a very remote possibility. What is hypothesized is 

that the chosen simulation technique missed to model some aspects which 

differentiate Landsat and MODIS recording and that those aspects are at the origin of 

the different classifier performance.  Moreover, the different pre-processing data have 

been undergoing prior to distribution is believed to have introduced additional 

discrepancies. However, no explanation for this difference is evident, and there 

remains a need for further investigation. 
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Classification Legend 

 
Figure 8 Classification image MODIS 1990 simulated dataset using Maximum Likelihood 
classification algorithm  
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Table 11 Confusion matrix MODIS 1990 simulated using Maximum Likelihood classification algorithm versus CLC1990 ‘ground truth’ 
 
Overall Accuracy = (4491721/4708704)= 95.3919% 
Kappa Coefficient = 0.8684 

Ground Truth (Pixels) 
Class     UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURAL 3FOREST 4WATER Total
Unclassified 3730790 0 0 0 0 3730790 
1Artificial 0 29871 34890 4160 3073 71994 
2Agriculture 0 33459 555003 88596 5931 682989 
3Forest 0 1866 42583 161088 1139 206676 
4Water 0 345 493 448 14969 16255 
Total 3730790 65541 632969 254292 25112 4708704 
       
       

Ground Truth (Percent) 
Class     UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURAL 3FOREST 4WATER Total
Unclassified 100 0 0 0 0 79.23 
1Artificial 0 45.58 5.51 1.64 12.24 1.53 
2Agriculture 0 51.05 87.68 34.84 23.62 14.5 
3Forest 0 2.85 6.73 63.35 4.54 4.39 
4Water 0 0.53 0.08 0.18 59.61 0.35 
Total 100 100 100 100 100 100 
       
      

      
 

Class Commission Omission Commission Omission  
      (Percent) (Percent) (Pixels) (Pixels)  
Unclassified 0 0 0/3730790 0/3730790   
1Artificial 58.51 54.42 42123/71994 35670/65541   
2Agriculture 18.74 12.32 127986/682989 77966/632969   
3Forest 22.06 36.65 45588/206676 93204/254292   
4Water 7.91 40.39 1286/16255 10143/25112   
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Class Prod. Acc. User Acc. Prod. Acc. User Acc.   
      (Percent) (Percent) (Pixels) (Pixels)  
Unclassified 100 100 3730790/3730790 3730790/3730790   
1Artificial 45.58 41.49 29871/65541 29871/71994   
2Agriculture 87.68 81.26 555003/632969 555003/682989   
3Forest 63.35 77.94 161088/254292 161088/206676   
4Water 59.61 92.09 14969/25112 14969/16255   
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4.3. Change Detection 
 

In this chapter the results of the change detection will be discussed based on the 

change reports which can be found in Table 12 and Table 13. The two change 

detection procedures respectively based on the simulated MODIS 1990 image and the 

CORINE 1990 database as time one data are discussed separately for clarity reasons, 

although we will see that they reflect similar conclusions. It should be remembered 

that for the proposed study a post-classification change detection techniques has been 

chosen, therefore any outcome at this stage has to be seen in the wake of the 

considerations drawn from the classification results.  

 

4.3.1. Time one image: simulated MODIS 1990 classification 
 
In the following we discuss the change detection as performed from the simulated 

MODIS 1990 classification image to the June MODIS 2000 classification image. 

Taking a closer look at the change report figures in Table 12, we can see how from the 

pixels initially labelled as urban only 31.13% maintained their class label in the Final 

State image, whereas 59.45% apparently changed into agriculture. This result 

underlines a decrease of the urban land cover in the study area which is quantified by 

an Image Difference value of -36.52% obtained via equation (6) (RSI-ENVI, 2006).  

 

( ) 100∗
−

TEInitialSTA
TEInitialSTAFinalSTATE  ( ) 516.36100

71294
7129445260

−=∗
−

=    (6) 

 

The hereby proposed scenario of a recession of the urban class in the study area can 

certainly be termed erroneous based on prior knowledge about the site and on 

recognized development trends for the urban class in general. Having acknowledged 

this, it becomes interesting for this study and for further research to understand the 

causes behind such an output.  

 

Justifications can be found by linking the abovementioned change figures with the 

classification results. The confusion matrix presented in Table 11 for the 1990 

classification sees about 45.58% of pixel correctly labelled as urban. On the other 
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hand, when looking at the 2000 classification matrix for the single-date image (Table 

8) only 29.32% of the urban pixels have been recognized by the classifier. 

Consequently, the already high omission error observed for the urban class in the 

1990 classification (54.42%) increases even more in the 2000 classification rising up 

to 70.68%.  It follows that, when performing change detection the result can not show 

anything else than a loss in urban area. The ‘Class Changes’ value of 68.87% for the 

urban class once more confirms the responsibility of the classification procedures in 

misleading the change detection outcome.  

 

Table 12 Change Report for unitemporal approach (time one image: simulated MODIS 1990 
classification; time two image: original MODIS 2000 classification)  
 

Pixel Counts 
  1Artificial 2Agriculture 3Forest 4Water Row Total Class Total
Unclassified 0 0 0 0 0 322504
1Artificial 22192 20263 1019 1786 45260 45260
2Agriculture 42383 476338 40580 648 559949 559949
3Forest 5742 163824 135172 696 305434 305434
4Water 977 666 146 12459 14248 14248
Class Total 71294 661091 176917 15589 0 0
Class Changes 49102 184753 41745 3130 0 0
Image Difference -26034 -101142 128517 -1341 0 0
       
Percentages 
  1Artificial 2Agriculture 3Forest 4Water Row Total Class Total
Unclassified 0 0 0 0 0 100
1Artificial 31.127 3.065 0.576 11.457 100 100
2Agriculture 59.448 72.053 22.937 4.157 100 100
3Forest 8.054 24.781 76.404 4.465 100 100
4Water 1.37 0.101 0.083 79.922 100 100
Class Total 100 100 100 100 0 0
Class Changes 68.873 27.947 23.596 20.078 0 0
Image Difference -36.516 -15.299 72.643 -8.602 0 0
       
Area (Square Km) 
  1Artificial 2Agriculture 3Forest 4Water Row Total Class Total
Unclassified 0 0 0 0 0 20156.5
1Artificial 1387 1266.44 63.69 111.63 2828.75 2828.75
2Agriculture 2648.94 29771.13 2536.25 40.5 34996.81 34996.81
3Forest 358.88 10239 8448.25 43.5 19089.63 19089.63
4Water 61.06 41.63 9.13 778.69 890.5 890.5
Class Total 4455.88 41318.19 11057.31 974.31 0 0
Class Changes 3068.88 11547.06 2609.06 195.63 0 0
Image Difference -1627.13 -6321.38 8032.31 -83.81 0 0
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In the attempt to interpret the just reported results a number of considerations come 

into mind. A decrease in the area of urban land cover successfully recognized by the 

classifier, was expected as a result of coarsening the resolution (Pax-Lenney and 

Woodcock, 1997a) and consequently as well a decrease of the change detectable for 

this class could be anticipated. The loss of information resulting from a ‘coarsening’ 

of the spatial resolution would not represent a source of concern if interesting equally 

the 1990 as well as the 2000 MODIS classification. Regrettably, from what reported 

by the classification accuracy matrixes in Table 11 and Table 8 and by the change 

report of Table 12 it appears instead to be more pronounced in the time two 

classification triggering therefore a decrease of the urban class when performing 

change detection. As emphasized is section 4.2.3. the underlining explanation is 

believed to be found in the simulation process of the MODIS data for  the year 1990.  

 

4.3.2. Time one image: CLC1990 dataset 
 

4.3.2.1. Pixel-wise approach  
 

In the following chapter we discuss the change detection as performed from CLC1990 

dataset to the classification image obtained from the MODIS 2000 multitemporal 

dataset. The change report in Table 13 shows how only 26.69% of the urban pixel 

preserved their class label whereas 70.18% supposedly changed to agriculture. These 

results, which apparently worsen compared to the previous case, can again be inferred 

from the classification outcome of the MODIS 2000 multitemporal dataset (see Table 

9)  for which only 25.40% of the urban pixel have been correctly identified, making a 

loss of urban pixels predictable when taking as Initial State classification image the 

CLC1990 dataset.  

 

Table 13 Change Report for multitemporal approach (date one image: CLC1990 
classification; date two image: MODIS 2000 multitemporal classification)  
 

Pixel Counts 

 1ARTIFICIAL 
SURFACES 

2AGRICULTURAL 
AREAS 3FOREST 4WATER BODIES 

 & WETLANDS 
Row 
Total 

Class 
Total 

Unclassified 0 0 0 0 0 193428
1Artificial 20199 6465 1418 2771 30853 30853
2Agriculture 53124 624231 64545 8603 750503 750503
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3Forest 2200 50208 197525 4131 254064 254064
4Water 165 120 82 18180 18547 18547
Class Total 75688 681024 263570 33685 0 0
Class 
Changes 55489 56793 66045 15505 0 0

Image 
Difference -44835 69479 -9506 -15138 0 0

       
Percentages 

 1ARTIFICIAL 
SURFACES 

2AGRICULTURAL 
AREAS 3FOREST 4WATER BODIES 

& WETLANDS 
Row 
Total 

Class 
Total 

Unclassified 0 0 0 0 0 100
1Artificial 26.687 0.949 0.538 8.226 100 100
2Agriculture 70.188 91.661 24.489 25.54 100 100
3Forest 2.907 7.372 74.942 12.264 100 100
4Water 0.218 0.018 0.031 53.971 100 100
Class Total 100 100 100 100 0 0
Class 
Changes 73.313 8.339 25.058 46.029 0 0

Image 
Difference -59.237 10.202 -3.607 -44.94 0 0

 
Area (Square Km) 

 1ARTIFICIAL 
SURFACES 

2AGRICULTURAL 
AREAS 3FOREST 4WATER BODIES 

& WETLANDS 
Row 
Total 

Class 
Total 

Unclassified 0 0 0 0 0 12089.25
1Artificial 1262.44 404.06 88.63 173.19 1928.31 1928.31
2Agriculture 3320.25 39014.44 4034.06 537.69 46906.44 46906.44
3Forest 137.5 3138 12345.31 258.19 15879 15879
4Water 10.31 7.5 5.13 1136.25 1159.19 1159.19
Class Total 4730.5 42564 16473.13 2105.31 0 0
Class 
Changes 3468.06 3549.56 4127.81 969.06 0 0

Image 
Difference -2802.19 4342.44 -594.13 -946.13 0 0

 

Several reasons make it not advisable to directly analyze change in land-cover data 

based on heterogeneous sources on a pixel-by-pixel basis (Bergen et al., 2005);  for 

the present study in particular six reasons are believed to be determinant. First, the 

underlying spatial scales of the two datasets were different. The data representing land 

cover in 1990 were based on CORINE 1990 database, this means data were vector-

digitized based on 30m pixel images (Landsat) at 1:100.000 scale and successively 

aggregated to 250m; on the other hand the MODIS data representing the land cover in 

2000 are based on 250m pixels. Additionally, CORINE’s dataset has initially been 

stored in vector format and only in a second step converted to raster format with the 

typical bias introduced by this process; while MODIS based classification have not 

undergone any intermediate format conversion. Third, the spectral characteristics of 
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the two datasets were different. CORINE 1990 dataset was interpreted based on 

information from the visible (0.45-0.69 µm) and infrared (0.76-0.90, 1.55-1.74, 2.08-

2.35 µm) part of the EM spectrum, whereas the MODIS finest spatial resolution 

product comprises the red band (0.62-0.67 µm) and the near infrared band (0.84-0.88 

µm). Third, the original data behind the CORINE and the MODIS classifications have 

probably undergone different preprocessing (topographic normalization, atmospheric 

correction, etc.) which has lead to a slightly different information content being 

elaborated. Fourth, the signal as contained by any given MODIS pixel may actually 

include some ‘‘bleeding’’ or contamination from adjacent pixels (Bergen et al., 2005), 

effect that varies significantly with the changing of the pixel size. Moreover, as 

emphasized in section 3.4.4., spatial mis-registration is expected to occur between the 

two datasets. Last but not least, the two thematic datasets have been obtained by 

means of a different methodological approach: while CORINE’s land cover maps 

have been created by visual interpretation on the object level, MODIS classification is 

obtained by means of an automatized pixel-based classification approach.  

 

For what concerns the last point, an attempt has been made to narrow the discrepancy 

between the two datasets by resampling the pixel-based MODIS 2000 classification to 

CORINE’s polygons level. Results of this approach are presented in the following 

section. 

 
 

4.3.2.2. Object-wise approach  
 
The change detection results, obtained using as time 2 image the MODIS 2000 

multitemporal classification resampled to CORINE’s object level, are summarized in 

Table 14.  

 
Table 14 Change Report for multitemporal approach (date one image: CLC1990 
classification; date two image: ‘object-based’ MODIS 2000 multitemporal classification) 
 
Pixel Counts 
 1Artificial 2Agriculture 3Forest 4Water Row Total Class Total
Unclassified 0 0 0 0 0 179455
1Artificial 14651 422 109 164 15346 15346
2Agriculture 60275 654916 46059 9996 771246 771280
3Forest 673 27818 227779 934 257204 257260
4Water 112 41 61 23702 23916 24054
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Class Total 75711 683197 274008 34796 0 0
Class Changes 61060 28281 46229 11094 0 0
Image Difference -60365 88083 -16748 -10742 0 0
       
Percentages 
 1Artificial 2Agriculture 3Forest 4Water Row Total Class Total
Unclassified 0 0 0 0 0 100
1Artificial 19.351 0.062 0.04 0.471 100 100
2Agriculture 79.612 95.86 16.809 28.727 99.996 100
3Forest 0.889 4.072 83.129 2.684 99.978 100
4Water 0.148 0.006 0.022 68.117 99.426 100
Class Total 100 100 100 100 0 0
Class Changes 80.649 4.14 16.871 31.883 0 0
Image Difference -79.731 12.893 -6.112 -30.871 0 0
       
Area (Square Km) 
 1Artificial 2Agriculture 3Forest 4Water Row Total Class Total
Unclassified 0 0 0 0 0 11215.94
1Artificial 915.69 26.38 6.81 10.25 959.13 959.13
2Agriculture 3767.19 40932.25 2878.69 624.75 48202.88 48205
3Forest 42.06 1738.63 14236.19 58.38 16075.25 16078.75
4Water 7 2.56 3.81 1481.38 1494.75 1503.38
Class Total 4731.94 42699.81 17125.5 2174.75 0 0
Class Changes 3816.25 1767.56 2889.31 693.38 0 0
Image Difference -3772.81 5505.19 -1046.75 -671.38 0 0
 
 
As expected, the visual analysis confirmed that the pixel-wise evaluation is much less 
favourable and better indications of the detectable changes were obtained by 
performing a polygon-wise analysis (Figure 10 
Figure 10). This is understandable if we consider that, when aggregating to the object 

level by means of a majority rule, those pixels which mainly represent noise in the 

signal will be suppressed in the classification. Thus, only real changes and not 

recording errors or disturbances, are likely to be represented by the change dataset.  

 

A number of visual examples representing a comparison of results between both 

approaches are presented in the following. The choice of the urban clusters presented 

is random and only attempted to have a uniformly distributed sample of the major 

cities located in the study area (Figure 9). 
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Figure 9 Urban centres, for which a comparison between the pixel- and the object-level 
change identification, has been performed.  
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Figure 10 Sample of urban centres located within the study area. Satellite image: MODIS 2000 dataset 
displayed in red-NIR-NIR layer combination. Left hand side: pixel-level results; Right hand side: 
object-level results.  
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5. Conclusions and Recommendations 

5.1. Conclusions 
 

The present material provides an approach for land cover mapping and monitoring on 

the European scale exploiting medium resolution 250m MODIS data. The study 

further aimed at assessing if such an approach could aid CORINE land cover database 

update on the first nomenclature level. Particular relevance is there by given to the 

results obtained for the urban land cover class (“Artificial Surfaces” in CORINE 

Nomenclature). This is in consideration of the fact that dynamics occurring at the 

urban scale represent one of the key pressures on biodiversity on which the 

BIOPRESS initiative concentrates.  From the results presented in previous sections of 

this material, a number of conclusions have been reached which will be reported in 

the following.  

 

Results revealed the crucial role of spatial resolution, in general for land cover 

mapping and change detection, and specifically for the urban class. From the 

classification process, it appeared that the spatial resolution is more critical than the 

spectral or temporal properties of the data for monitoring of urban land cover. This 

can be explained with the lack of a clear ‘spectral urban signal’ as already underlined 

by other authors (Herold et al., 2002a; Herold et al., 2002b) and due to the absence of 

a seasonal dependency for this class which leads to no-improvement being detected 

when exploiting a multitemporal dataset. Moreover, it was observed how the 

coarsening of the resolution generally disfavours especially less represented and 

fragmented classes leading to their underestimation in the final land cover map as 

previously observed by Pax-Lenney and Woodcock (1997a).  

 

The fact that some transformations will remain undetected when representing 

Europe’s fragmented land cover by means of medium resolution data, compared to 

representation obtainable from the higher resolution solutions, is beyond question. 

However, it has to be understood that this does not speak against the use of coarser 

spatial resolutions; it only suggests the necessary assumptions to be made when 

interpreting the results. First and foremost, the scale at which those data should be 

used and interpreted has to change. As a result of coarsening spatial resolution, the 
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operational scale of the resulting thematic map has to adapt to grant consistency with 

land cover maps derived from higher resolution solutions. Accordingly, also the size 

and degree of recognizable change will shift to the corresponding scale level. What is 

more, it is important to note that the so resulting product is not meant to be an areal 

estimate for land cover change. In other words the change product can not be used as 

such to quantify the exact amount of change that has occurred in that area it can only 

be employed to signalize occurrence of land cover transformations.  

 

For the present study the above considerations suggests that the validation against the 

CORINE datasets should be taken as an indication of disagreement with another land 

cover map more than as absolute inaccuracies. The risk of drawing wrong conclusions 

when taking as absolute reference another land cover map originated from different 

data and classification strategies is suggested by a comparable study conducted by 

Gallego (2001) in which land cover maps based on higher resolution solutions were 

compared against CLC datasets.  

 

Having understood this, the disagreement between MODIS based classification results 

and CLC thematic database is believed merely to underpin the different scale factor 

and the different methodological approach. We have to remember that CORINE’s 

classification has the object and not the single pixel as unit of analysis, thus reflects 

the result of an object-oriented approach. When aggregating MODIS pixel-based 

classification results to CORINE’s object level, an improvement of accuracy is 

observable for all classes besides for urban. Once more the urban class is 

underestimated due to the size and the scattered organization of its elements which are 

being suppressed by other classes. Given the fact that a post-classification approach is 

been adopted, those factors retained responsible for having mislead the comparability 

of the classification outcome with CLC map, can equally be held responsible for 

biasing the change analysis.  

 

The answer to the question if medium resolution data hold potential for aiding 

CORINE’s updating process as derived from the present material is twofold. On the 

one hand, the difficulty of data integration coming from different sources and 

characterized by different methodological approaches has to be recognized. This 

material confirmed the inappropriateness of directly analyzing changes in land-cover 
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data based on heterogeneous sources. On the other hand, MODIS data can very well 

aid in land cover monitoring without claiming to be able to substitute higher 

resolution data. The classification results obtained in this study are showing the 

suitability of MODIS’ finest spatial resolution product for mapping CORINE’s level 1 

Nomenclature classes, with higher accuracies reached for the agricultural and forest 

categories.  Moreover, the obtained change indication could function as a quick and 

inexpensive means to identify time and locations where significant land cover 

modification have occurred. MODIS change indication could then serve as an alarm 

product reflecting the need for a new mapping endeavour based on high resolution 

data.   

 

Eventually, it can be concluded that the chosen study area can be considered 

representative for land cover in Europe and therefore similar outcomes are expected in 

other applications. The exploitation of medium resolution data (particularly MODIS 

250m product) for land cover mapping and monitoring on locations characterized by 

more homogeneous land cover patterns, such as for instance north American 

landscapes, is expected to be even more successful.  

 

5.2. Recommendations 
 

Based on the indications obtained from the present material we recommend the 

following to be considered for further research.  

 

This study confirmed that for monitoring at a large scale (regional or global) based on 

medium to coarse resolution satellite data, land cover changes are normally smaller 

than or equivalent to the pixel scale and thus misregistration plays a crucial role in 

their detection and over-/under- estimation. In view of this, methods should be 

developed and implemented that aim at reducing registration inaccuracies between 

time one and time two images. A number of authors have already engaged in such an 

attempt and we refer to their work for further details (Brown, 1992; Stow, 1999; 

Chalermwat, 1999). 
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As extensively emphasized in section 5.1., the main source of bias affecting the 

change detection processes is believed to rely in the lack of a suitable time one image. 

The lack of MODIS data for the year 1990 has forced us to reach to simulation in one 

case and to substitution by means of CORINE’s land cover 1990 dataset in the other. 

Regrettably, none of the two options showed itself good enough to replace properly 

the missing component and thus did not provide with an adequate time one image to 

use in the change detection process. The time constrain characterizing this study 

hindered a more sophisticated and thus accurate simulation of the MODIS data for the 

year 1990; however the pursuing thereof is recommended for further research. First 

and foremost, to improve the simulation process it is suggested to acquire the original 

Landsat and MODIS images. Datasets which have been undergoing less possible 

processing prior to distribution are expected to show a better correlation than has been 

found in this study.  

 

To compensate partly for the low spectral dimensionality of the 250m MODIS 

product (only 2 bands) it is recommended to exploit the high temporal frequency with 

which these data are made available. The fact that for the present study classification 

results did not improve significantly for the multitemporal approach compared to the 

single-date one could be related to the fact that only three images, respectively from 

spring, summer and autumn, were used. The usage of a temporal profile 

corresponding to an entire MODIS acquisition year should be investigated to improve 

class discernability.   

 

Last but not least, the introduction in 2002 of a new end-user value-added product of 

the MODIS series of products, namely the Vegetative Cover Conversion (VCC) 

product, will stimulate research in land cover monitoring by means of medium 

resolution data.  Nevertheless, further testing is believed to be needed before this 

product can become fully operational. 

 

Eventually, it is believed that the hereby gained understanding of the methodological 

and validation requirements for mapping urban areas from medium resolution data 

will provide a foundation for urban and urban growth mapping in the future. The 

potential of the MODIS instrument and its suitability for the specific task has here by 

been partly explored but much work can still be done in this regard. 
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Appendix 
 
Appendix 1. MODIS Specifications 
 
Orbit: 705 km, 10:30 a.m. descending node (Terra) or 1:30 p.m. ascending node (Aqua), sun-

synchronous, near-polar, circular 
Scan Rate: 20.3 rpm, cross track 
Swath 
Dimensions: 

2330 km (cross track) by 10 km (along track at nadir) 

Telescope: 17.78 cm diam. off-axis, afocal (collimated), with intermediate field stop 
Size: 1.0 x 1.6 x 1.0 m 
Weight: 228.7 kg 
Power: 162.5 W (single orbit average) 
Data Rate: 10.6 Mbps (peak daytime); 6.1 Mbps (orbital average) 
Quantization: 12 bits 
Spatial 
Resolution: 

250 m (bands 1-2) 
500 m (bands 3-7) 
1000 m (bands 8-36) 

Design Life: 6 years 

 
Primary Use Band Bandwidth1 Spectral 

Radiance2
Required 
SNR3  

1 620 - 670 21.8 128 Land/Cloud/Aerosols 
Boundaries 2 841 - 876 24.7 201 

3 459 - 479 35.3 243 

4 545 - 565 29.0 228 

5 1230 - 1250 5.4 74 

6 1628 - 1652 7.3 275 

Land/Cloud/Aerosols 
Properties 

7 2105 - 2155 1.0 110 

8 405 - 420 44.9 880 

9 438 - 448 41.9 838 

10 483 - 493 32.1 802 

11 526 - 536 27.9 754 

12 546 - 556 21.0 750 

13 662 - 672 9.5 910 

14 673 - 683 8.7 1087 

15 743 - 753 10.2 586 

Ocean Color/ 
Phytoplankton/ 
Biogeochemistry 

16 862 - 877 6.2 516 

17 890 - 920 10.0 167 

18 931 - 941 3.6 57 

Atmospheric 
Water Vapor 

19 915 - 965 15.0 250 

Primary Use Band Bandwidth1 Spectral 
Radiance2

Required 
NE[delta]T(K)4

20 3.660 - 3.840 0.45(300K) 0.05 

21 3.929 - 3.989 2.38(335K) 2.00 

22 3.929 - 3.989 0.67(300K) 0.07 

Surface/Cloud 
Temperature 

23 4.020 - 4.080 0.79(300K) 0.07 

24 4.433 - 4.498 0.17(250K) 0.25 Atmospheric 
Temperature 25 4.482 - 4.549 0.59(275K) 0.25 
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26 1.360 - 1.390 6.00 150(SNR) 

27 6.535 - 6.895 1.16(240K) 0.25 

Cirrus Clouds 
Water Vapor 

28 7.175 - 7.475 2.18(250K) 0.25 

Cloud Properties 29 8.400 - 8.700 9.58(300K) 0.05 

Ozone 30 9.580 - 9.880 3.69(250K) 0.25 

31 10.780 - 11.280 9.55(300K) 0.05 Surface/Cloud 
Temperature 32 11.770 - 12.270 8.94(300K) 0.05 

33 13.185 - 13.485 4.52(260K) 0.25 

34 13.485 - 13.785 3.76(250K) 0.25 

35 13.785 - 14.085 3.11(240K) 0.25 

Cloud Top 
Altitude 

36 14.085 - 14.385 2.08(220K) 0.35 

1 Bands 1 to 19 are in nm; Bands 20 to 36 are in µm 
2 Spectral Radiance values are (W/m2 -µm-sr) 
3 SNR = Signal-to-noise ratio 
4 NE(delta)T = Noise-equivalent temperature difference  

Note: Performance goal is 30-40% better than required  

 
 
 
Appendix 2. Equation for the conversion of radiance to apparent reflectance and 
explanation of its input parameters (Landsat 7 Science Data Users Handbook: 
(http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.ht
ml) 
 
 
APPARENT REFLECTANCE: 

s
P ESUN

dL
θ

π
ρ

λ

λ

cos

2

∗
∗∗

=           

 

EARTH-SUN DISTANCE IN ASTRONOMICAL UNITS: 

)))4(9856.0cos(016729.01( −∗−= DOYd         
 
Scene Calendar date (dd/mm/yyyy) Julian date 

(DOY) 
TM 192_029 07/08/1991 219 
TM 193_028 16/08/1992 229 
TM 193_029 12/09/1990 255 
TM 194_028 31/08/1989 243 
TM 194_029 04/07/1991 185 
 

Scene Calendar date (dd/mm/yyyy) Julian date 
ETM 192_029 20/06/2000 172 
ETM 193_028 13/09/1999 172 
ETM 193_029 01/08/2001 213 
ETM 194_028 21/06/2001 172 
ETM 194_029 22/09/2000 266 

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html
http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html
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MEAN SOLAR EXOATMOSPHERIC IRRADIANCE: 

 
Sensor Band ESUN (W/m^2*µm) 

3 1554 TM 4 1036 
3 1551 ETM+ 4 1044 

 
SOLAR ZENITH ANGLE: 

Θ = π * (90.0 - sun elevation) / 180.0     
 
 
Appendix 3. Landsat TM scenes after preprocessing (from left upper row to right 
lower row: 194_028, 193_028, 194_029, 193_029, 192_029) 
 

 
 

 
 
 
 
 
 
 
 
 
 

Pixel Size 30 meters 
Projection Albers Conical Equal Area
Datum WGS 72 
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Appendix 4. MODIS 2000 June image after preprocessing 
 

 
 
   

 
 
 

 
 
 

Pixel Size 250 meters 
Projection Albers Conical Equal Area
Datum WGS 72 
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Appendix 5. IDL Script used for Landsat’s radiometric calibration (created by Allard           
  de Wit in 2000 and adjusted for the purpose of this study)  
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Appendix 6. CORINE Land Cover Nomenclature 
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Appendix 7. Scatterplot ETM+ (X) plotted against MODIS 2000 (Y).  
  (A) Red band, (B) Near Infrared band 
 

 
 

(A) 
 

 
 

(B) 
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