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Abstract

Nowadays many of the environmental policy coming from the European Union are based on
the outcome of environmental models, whose primary input are data on land cover and land
use. Particularly, an increasing desire to monitor dynamics of the urban land cover is being
observed in the scientific community. This tendency can be attributed to the recognition of
urbanization phenomena as one of the key pressures on biodiversity as delineated in the
BIOPRESS initiative.

This study attempts to evaluate the utility of medium spatial resolution satellite data for land
cover mapping and monitoring in the spatial-temporal dimension. The chosen product is the
daily Terra/MODerate resolution Imaging Spectroradiometer (MODIS) atmospherically
corrected surface reflectance product at 250m resolution (MODO09GQK). Its potential was
evaluated in the context of the Co-ordination of Information on the Environment
(CORINE) land cover database-update effort and focuses on the classes defined in CORINE’s
first Nomenclature Level, namely artificial surfaces (urban), agricultural areas, forested areas
and water/wetlands. A case study was performed in the northern part of the Italian peninsula,
in the so called Po" valley. Land cover changes affecting the urban class in this area were of
particular interest for the present study.

A series of semi-automatized procedures were developed for MODIS data pre-processing,
1990 simulation, as well as training and execution of Maximum Likelihood classifications.
Simulation was performed through linear regression analysis attempting to model the
relationship between MODIS and Landsat data. The MODIS 2000 classification was
performed for a single-date and for a multitemporal dataset, eventually results were
compared. CORINE’s land cover maps were used as ‘ground truth’ for the validation of the
MODIS classifications, a comparison between a pixel- and an object-wise assessment was
carried out. Eventually, a post-classification change detection method was applied to derive
change signals occurring in the 1990-2000 time interval.

The methodology adopted in this study showed to be successful in proving the potential of
250m resolution MODIS data for land cover mapping and monitoring on the regional scale.
Classification accuracies showed good agreement with CORINE land cover maps, ranging
from kappa values of 0.59 to 0.88. The change detection results confirmed the suitability of
this MODIS product as an alarm product identifying areas where significant land cover
conversion has been taken place and should be investigated further by means of higher
resolution data. Nevertheless, they also suggested the shortage of the same product for areal
estimation of land cover changes. In general, the urban land cover class showed itself as a
problematic class due to the small size and scattered distribution of its elements and to the
absence of a clear “spectral urban signal". Classification results revealed how this class is
underestimated as a consequence of the coarsening of the resolution leading to ambiguity in
the change figures.

Keywords: Land cover/use change; Urbanization; Land cover mapping and monitoring;
Medium resolution satellite data; MODIS; CORINE; Post-classification change detection.
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1. Introduction

1.1. Background

Nowadays many of the environmental policy coming from the European Union are
based on the outcome of environmental models, whose primary input are data on land
cover and land use (Miicher et al., 2000). Several have been the efforts made to
exploit remotely sensed data for the purpose of land cover mapping of the European
continent. Some of these efforts have focused on specific land cover classes such as
forest cover, whereas few important activities have encompassed a wider purpose.
Among the latter ones worth mentioning is the Co-ordination of Information on the
Environment (CORINE) program started in 1985 from the European Union and now
under supervision of the European Environmental Agency (EEA). This monitoring
program is based on the collection and computer-assisted visual interpretation of high
resolution satellite images e.g. Landsat Thematic Mapper (TM) and SPOT HRV data,
at a scale of 1:100 000, with support of ancillary data. The resulting land cover
database (CORINE DB) distinguished between 44 classes grouped in a hierarchical
scheme at three levels. CORINE’s first version is dating 1990 whereas its update took
place in 2000 (Boer et al., 2000; Miicher et al., 2000). A new update of CORINE land
cover DB is being planned for next year based on satellite images of 2005 (Personal
communication C.A. Miicher, 2006). Notwithstanding the accomplishment of the
project which makes CORINE the most detailed database covering a large part of
Europe (Miicher et al., 2000), many are the challenges still present. It shortly became
clear how a monitoring system relying almost exclusively on high resolution images
is not sustainable in the long run. The small scene size of these images, which
consequently means a significant data volume if all of Europe has to be covered,
makes updates a time consuming and expensive task which can not be repeated with
the desired frequency (Boer et al., 2000). Moreover, the dissimilar conditions and
preparations of the different countries involved, lead to different product qualities and
product termination dates complicating the integration. Last but not least, the
delineation of some of CORINE’s classes has been strongly supported by ancillary
data which introduce dependence and subjectivity with consequences for the updating

(Miicher et al., 2000).




1. Introduction

A number of studies exists which have alternatively proposed the exploitation of the
rich temporal information contained in the sequence of freely available coarse
resolution satellite data (Jonathan et al., 2005). The majority of those are based on
data originating from the Advanced Very High Resolution Radiometer (AVHRR)
onboard the US National Oceanic and Atmospheric Administration’s (NOAA) polar
orbiting satellite series. In 1992 the International Geosphere-Biosphere Programme
for Data and Information System (IGBP-DIS) engaged in a monitoring program
aiming at producing a global land cover set at a spatial resolution of 1 Km based on
monthly NDVI maximum value composites. The limiting factor in this study was the
absence of a stratification of the radiance data, recommended when dealing with
heterogeneous and fragmented land cover. Moreover, the coarse spatial resolution of
the dataset resulted in the definition of complex classes whose definition is difficult to
apply (Miicher et al., 2000). A further study exploiting AVHRR-NOAA 1.1 km
resolution data is the Pan-European Land Cover Monitoring (PELCOM) program
started in 1996 within the framework of the European Union. Differently from the
previous approach in this study both multi-temporal NDVI profiles and multi-spectral
AVHRR scenes have been input to the classification, thus exploiting the information
content of both data characteristics. Unfortunately, the often small and fragmented
changes typical of the European landscape combined with the limited geometric
accuracy and low spatial resolution of NOAA-AVHRR images did not provide
satisfying accuracies. Previous studies have shown how the classification accuracy
does not reach the 70 % target, primary reasons being mixed pixel effects and the loss
of small changes at sub-pixel level of AVHRR data (Boer et al., 2000; Miicher et al.,
2000).

1.2. Problem Definition

The gap between the unaffordable time and cost investments of high resolution
Landsat and SPOT images and the insufficient spatial properties of low resolution
NOAA/AVHRR images are urging the land monitoring community to reach for
alternative solutions. As aforementioned coarse resolution approaches have
traditionally relied on data from NOAA’s AVHRR sensor (1.1 Km) and it is only
recently that data from NASA’s MODerate resolution Imaging Spectroradiometer
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(MODIS) sensor is been adopted for land cover/use monitoring activities. MODIS
data feature better spatial resolution (up to 250m) and enhanced standards of
calibration, georeferencing and atmospheric correction, as well as detailed per-pixel

data quality information (Jonathan et al., 2005).

The solution investigated with the present study is the possibility to use medium
resolution sensors for land cover monitoring and specifically for urban growth
mapping. MODIS 250m reflectance data were selected to test this hypothesis. MODIS
data preserve the advantages offered by coarse resolution data, namely high temporal
frequency, extensive coverage, and extremely low costs for data acquisition (Jonathan
et al., 2005), without at the same time having to lower excessively the spatial
accuracy. Several authors have already successfully investigated the potential of
MODIS data in the field of land cover mapping and change detection (Zhan et al.,
2000; Hansen et al., 2002; Herold et al., 2002a; Zhan et al., 2002; Price, 2003;
Skinner and Luckman, 2004; Desta, 2005; Giri et al., 2005; Jonathan et al., 2005;
Stefanov and Netzband, 2005) however the specific applicability of these methods to

the area and context characterizing this study is not known yet.

The present study can be seen in the framework of CORINE land cover database-
update effort. Of interest is the possibility to use the developed methodology to aid
CORINE’s future updates; additionally the terms and conditions of the integration of
medium resolution solutions have to be investigated. What needs to be assessed
before monitoring based on medium resolution solutions can become operational is
the degree of information loss compared to monitoring with high resolution data.
Having assessed this loss, the question remains if the so with resulting land cover
product can fully substitute the higher resolution alternative or if rather an integration
of both products is recommended. What is more, it has to be understood what would
be the gain in information thanks to the higher temporal frequency with which
medium resolution data are made available and eventually if this gain is relevant for
land cover monitoring on the European scale. For this specific study the question is if
MODIS data are able to tell us everything that Landsat data can, or if instead critical
information disappears which can only be won back with the help of the higher

resolution images (Price, 2003).
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Eventually, indications provided by this material should contribute to the
development of a monitoring concept to identify future land cover changes within
Europe as delineated in the BIOPRESS initiative. BIOPRESS is one of the thematic
projects which are being carried out within the framework of the initial phase of the
Global Monitoring for the Environment and Security (GMES) programme. The
GMES initiative aims at achieving this 'European capacity for Global Monitoring for
the Environment and Security' by 2008. BIOPRESS will produce information on
historical (1950 - 1990 - 2000) land cover change in and around a large sample of
Natura2000 sites and translate this information into pressures on biodiversity. The
focus of the project is to develop a standardised product that will be extendable to

Europe (http://www.creaf.uab.es/biopress/index2.htm).

In this material, special emphasis is given to the results obtainable for the urban land
cover class (“Artificial Surfaces” in CORINE’s Nomenclature). A number of reasons
support this choice. First and foremost, urbanization falls within the six key pressures
on biodiversity in European regions on which BIOPRESS will concentrate. The others
being: abandonment, afforestation, deforestation, drainage, intensification (arable)
(Hazeu and Miicher, 2005). Moreover, it has been demonstrated that urbanization is
the phenomenon for which the link between land cover changes and the pressure on

biodiversity is most straightforward (http://www.creaf.uab.es/biopress/index2.htm).

Last but not least, it has to be reminded that CORINE land cover 2000 update

identified the changes for this class as the most significant for Europe.

1.3. Research Objectives

General objective

The scope of this study is to assess the utility of medium spatial resolution satellite
data (MODIS/Terra Surface Reflectance Daily 250m Product) in the spatial-temporal
dimension for land cover mapping and identification of change signals in the northern
part of Italy. This potential has to be seen in the context of CORINE land cover
database-update effort.



http://www.creaf.uab.es/biopress/index2.htm
http://www.creaf.uab.es/biopress/index2.htm
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Specific objectives and research questions
To fulfil the aforementioned general research objective this study should provide the
answer to a number of specific questions. These questions helped defining the specific

objectives of this study as presented in the following.

First, given the methodological framework of this study which sees MODIS data
missing for the year 1990, the question has to be answered if these can be reproduced
starting from Landsat TM 1990 images. It follows that one objective is to develop a
methodology to simulate MODIS data for the year 1990 and assess the accuracy of

this simulation.

Second, a sound approach for classification of the remote sensing datasets based on
the Maximum Likelihood classification algorithm has to be developed. This will help
answering the question of which accuracy can be reached by this classifier for the
specific study area and for the different land cover classes. Specific attention will be

paid to results for the urban land cover class.

Third, the authors are interested in answering the question if improvement of
classification accuracies becomes noticeable when exploiting the multitemporal
dataset. This will be done by comparing classification results of MODIS single-date

versus multitemporal datasets.

Last but not least, our objective is to interpret and evaluate the results of the post-
classification automated change detection. The question is if this change detection
approach has been feasible for this study and how accurate its results are compared to

the change figures provided by CORINE.

1.5. Research hypothesis

The MODIS 250m daily reflectance product has potential to function as an alarm

product signalizing land cover-use conversion occurring at the European scale.
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1.6. Report Structure

Chapter one describes first a general introduction to the topic followed by the
specification of the research problem, research objectives and hypothesis. The
findings of the literature review which helped broaden the understanding for the topic
are presented in chapter two. Chapter three outlines the data and methodology
adopted in this study of which an overview is given by the methodological conceptual
model. The methodology is divided into pre-processing, simulation of MODIS data
for the year 1990, classification of the remote sensing images for time one and time
two and eventually post-classification change detection. Results of the simulation,
classification and change detection are presented and discussed in chapter four.
Chapter five summarizes the main conclusions as derived from this study and
provides recommendations for further research in the field of land cover monitoring

and change detection.
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2.1. Land Cover Monitoring and Remote Sensing

2.1.1 Land Cover/Use Change

Land cover can be defined as the biophysical attributes of the earth’s surface, which
can roughly be separated into natural features, such as water, vegetation, desert, ice,
etc. and artificial physical features, including mine exposures and settlements. Land
use is the human purpose or intent applied to these attributes. Land-cover and land-
use changes can be indicative of transformation from one cover or use type to another,
in which case we speak of a conversion process or the preservation of the general
cover or use type which however undergoes modifications in its structure, which we
call a modification process. While long-term climatic changes due to astronomical
phenomena and short-term variations resulting form phenological cycles can be
considered naturally driven, other changes are introduced by human activity (Baulies

and Szejwach, 1997; Lambin et al., 2001).

At no other time in history land cover and land use alteration has been as fast and
wide-ranging as in the last 50 years (Reid et al., 2005). The magnitude and spatial
reach of those changes is so significant that, when aggregated globally, they
considerably influence key aspects of Earth System functioning. Biotic diversity
worldwide, local and regional climate change as well as global temperature rise, soil
degradation and the ability of biological systems to support human needs are all

aspects influenced by changes in land use/cover (Lambin et al., 2001).

While not denying the improvements in land cover characterizations made possible by
better data derived by remotely sensing systems, many are still the challenges in land
cover mapping and monitoring. The first challenge can be summarized in the attempt
of integrating and synthesizing land cover information worldwide. Different
definitions adopted around the world for specific land cover classes complicate this
attempt. Focusing on the class forest for example it has been traced that more than 90
definitions exist throughout the world (Lepers et al., 2005). A further problem
hindering a complete and consistent overview of land cover is the varying spatial

resolution with which changes are recorded around the world or in the same areas
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over time. Long time monitoring studies will always have to deal with the change in
technology and in methods which although usually meaning an improvement also
represents a type of unwanted discontinuity. Eventually, varying temporal and spatial
coverage of data sets causes an unbalanced focus of attention towards some parts of
the world which appear to be more interested by rapid modifications simply because
they have been monitored more intensively. Many parts of the world are still not
adequately represented in the available datasets, fostering the possibility that rapid

change is occurring in locations that are currently not identified (Lepers et al., 2005).

As emphasized by Lambin (2001), an additional problem is the frequently missing
understanding of the causes behind an identified change which are reported to be
frequently simplified or mistaken leading to the wrong policies being formulated.
Taking deforestation as one of the most common and popular land cover alterations it
has often been explained as triggered by the ‘push’ of population growth and poverty
to invade and cut the forest. Not denying a responsibility of the latter phenomena,
deforestation particularly in tropical areas is more probably linked to changing
economic opportunities caused by social, political and infrastructural changes

(Lambin et al., 2001).

The European continent falls within the regions most comprehensively and
consistently monitored for what regards land cover. Statistics have shown that in the
last 10 years 2.9% of the total surface (approximately 85500 ha) has changed in land
cover (Weber & Hazeu, 2004). However, large differences exist among and within
countries for what regards the extent of land cover change and the dominant change
trajectories. Remaining on the continent scale, an important land cover conversion
trend is urban sprawl mainly at the expense of agriculture land; the centre of this
phenomenon lies on the Atlantic and Mediterranean coasts. General farmland
abandonment is another occurring phenomenon, as is, to a lesser extent, the creation
of new agricultural land. The Mediterranean coastal zones are one such exception,
where urban pressures near the coast results in intensification of agriculture towards
the inland marginal zones. Last but not least, changes in forest land seem to be
balanced, with felling activities and conversions roughly equalling the same amount

of surface characterized by formation of young forest (Weber & Hazeu, 2004).
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2.1.2. Instrument Properties Influencing Land Cover Mapping

Satellite-based data have been determined to be a cost- and time-effective resource to
document changes over large geographic regions. Nevertheless, still no optimal
combination of data type and analytical method can be identified as being the most
successful across broadly variable ecosystem conditions (Zhan et al., 2002; Lunetta et
al., 2004; Rogan and Chen, 2004). Among the challenges when designing or choosing
an instrument for land cover monitoring is the choice for the most suitable
combination of spatial, radiometric/spectral and temporal characteristics. This
combination will determine the size and the type of the recognizable land cover
changes (Townshend and Justice, 1988). What limits this choice is the data volume
which has to be kept at manageable proportions to make the data transfer from the
satellite to the receiving station practicable. This means that the expert has to set
preferences for what regards the dimensionality of the spatial, spectral and temporal
data properties. What is more, the time and cost factor have also to be kept in mind

(Rogan and Chen, 2004).

The question if a higher spatial resolution leads automatically to a better
representation of the land transformation is answered affirmatively by some authors
(Townshend and Justice, 1988), while others are more cautious underlining the effects
of shadow fraction and of the increase of local variance (Woodcock and Strahler,
1987). Besides this, a higher spatial resolution usually means that the period
separating two images depicting the same area will increase to match the repeating
coverage of the sensor and can expand even more due to cloud cover problems. In
change detection studies, the temporal frequency of coverage should optimally
approximate the change-rate of the phenomenon or land cover class we want to
monitor to avoid to incur in excessive omission errors. For example if focusing on
vegetation for areas that undergo rapid regeneration, the spectral signatures of
regenerated vegetation can be difficult to differentiate from previously existing
vegetation, if analyzed over long time intervals (Lunetta et al., 2004). Moreover, the
radiometric sensitivity of the instrument controls the size of radiance differences that
are detectable and thus also the discernable changes (Townshend and Justice, 1988). It

is therefore easily understandable that it would not be wise to point only on the spatial
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properties of the data so with loosing key advantages offered by the temporal and

spectral dimensions.

It should be remembered that the concept of spatial resolution is strongly interlinked
with the concept of measurement scale of the observation (Woodcock and Strahler,
1987; Herold et al., 2002a) and thus for those applications where the operational
scale, required to reach the study purpose, is easily determined so is also the desired
spatial resolution of the remotely sensed datasets. For instance when interested in
changes taking place at the urban scale, the highest spatial resolution is recommended,
as this probably will be more determinant than the spectral or temporal properties of
the data. On the other side, when working on the global scale, the expert will point on
spectral and temporal analysis reducing the spatial resolution of the data. This is not
the case for application at an intermediate scale level for which a less obvious answer
is provided and the choice becomes more ambiguous (Price, 2003). For studies
dealing with the effect of spatial resolution on the ability to monitor the status of land
cover and land cover change we refer to the work of (Townshend and Justice, 1988;
Pax-Lenney and Woodcock, 1997a; Price, 2003), however the reader should be

warned that no overall guidelines will be provided but rather case-specific indication.

Following these considerations we conclude that the change product is a function of
the actual transformations occurred on the earth surface and the properties of the
remote sensing instrument used for monitoring and that the latter ones have to be

chosen carefully.

2.1.3. Mapping of Urban Land Cover

As reported in the United Nations’ World Urbanization Prospects (2004 revision),
approximately half of the world population lives in urban areas and this is anticipated
to exceed 60% by 2030 (United Nations’ World Urbanization Prospects, 2004 In:
Tatem et al., 2005). Consequently, a wrong even if for long time alleged assumption
in the context of land transformations is the one that sees urbanization as unimportant

in global land cover change. Given its relatively small percentage compared to other
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land cover/use types, urban areas occupy less than 2% of the earth’s land surface, land
change studies often fail to take it into account concentrating more on land cover
classes such as agricultural or forested areas (Lambin et al., 2001). What has been
disregarded however is that changes in urban areas as such, trigger many other land
cover modifications which somehow are interlinked with it, thus encompassing a
much wider area as the one effectively occupied by urban land cover. Only the
awareness of the existence of a so called ‘rural-urban linkage’ will allow urban areas
to be reconsidered as central pawn in land change assessment studies (Lambin et al.,

2001).

Considering that the development of urban areas (expansion in area, increase in
population, changes in economic and social structures) trigger large modifications of
land surfaces and reach across geographic borders, an increase desire to monitor their
dynamics is being observed in the scientific community (Herold et al., 2002a). To
succeed in this attempt a clear identification of what is considered an urban area has
to be developed. Currently urban areas are identified in different ways based on land
area, population density and spatial arrangement, but more and more the use of
image-processing methods based on spectral response is becoming a valid means for
their delineation. Earlier applications of remote sensing data for urban land cover
mapping have mainly been restricted on one hand to fine resolution data focusing on
the local scale and on the other hand on coarse resolution data for global scale
applications. For what concerns the first category, extensive use has been made of the
Landsat series of sensors (Multispectral Scanner - MSS, Thematic Mapper - TM and
Enhanced Thematic Mapper Plus - ETM+) which however limits these studies to
small areas (Schneider et al., 2003; Stefanov and Netzband, 2005). For what concerns
the second category of applications a number of important products can be mentioned.
These include the Digital Chart of the World (DCW) urban layer which although
valuable dates back to 1960; maps derived from the Defence Meteorological Satellite
Program Operational Linescan System (DMSP-OLS); and eventually night time lights
data which present the disadvantages of a coarse resolution (2.7 Km), poor
registration and blooming effects corresponding to city boundaries (Schneider et al.,

2003).
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Several authors (Ben-Dor et al., 2001; Herold et al., 2002a) have lamented the
difficulty of mapping urban sites as these areas are characterized by small extents and
fragmented shapes with an indistinct spectral pattern compared to other land cover
categories. Few studies have focused on the issues of spectral properties of urban land
cover types and their representation and mapping from remote sensing data and those
that have, attributed to this class, highly complex and diverse spectral properties.
Reason behind is the heterogeneity of the urban environment, typically consisting of
built up structures (e.g. buildings, transportation nets), multiple diverse vegetation
covers (e.g. parks, gardens, agricultural areas), bare soil zones and water bodies.
Accordingly, an unambiguous "spectral urban signal" is not obtainable (Herold et al.,
2002a; Herold et al., 2002b). Generally, it has been observed how spectral
separability of urban land cover types is strongly dependent on spectral sensor

characteristics (Herold et al., 2002a; Herold et al., 2002b; Ben-Dor et al., 2001).

Speaking of the spatial properties, it is important to understand how monitoring of the
urban class is a strongly scale-driven process which becomes especially challenging
when coarsening the spatial resolution of the employed remote sensing instrument
(Herold et al., 2002a). Meentemayer in his work of 1989 defined scale as the spatial
and temporal dimension of an object or process and termed it crucial to geographic
analysis (Herold et al., 2002b). Herold and Clarke distinguished four meanings of
‘scale’ depending on the context in which it is been used, these are: cartographic
scale, geographic scale, operational scale and measurement scale. As geographic
scale, if we focus on urban area mapping, we understand the spatial extent of the
study area. The image pixel size or more simply the image spatial resolution expresses
the so called measurement scale. The combination of the spatial heterogeneity of the
target land cover structures and the sensor spatial resolution determine eventually the
level of geometric detail in land cover representation by remotely sensed data and
consequently the scale at which the created classification product can be employed,
also known as operational scale. For more detailed indications on the scale factor in
relation to monitoring different phenomena at different spatial resolution we refer to

the work of Woodcock and Strahler (1987).
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2.2. Medium Resolution Satellites: MODIS

From the early 1980s to the present monitoring of the terrestrial environment and
especially of vegetation relied mostly on AVHRR of the NOAA series of platforms.
Data from the Landsat series of sensors started in 1972, have been extensively used in
land cover and land use studies (Townshend and Justice, 2002; Vermote et al., 2002).
Building on these experiences and urged by the need of filling the gap existing
between high and coarse resolution sensors in 1999 the first MODIS instrument was
launched on board of NASA’s EOS Terra satellite, followed three years later by
MODIS on the Aqua satellite (Justice et al., 2002; Townshend and Justice, 2002). The
MODIS/Terra instrument compared to its predecessors shows substantial
enhancements in spatial resolution, number of spectral channels, choice of
bandwidths, radiometric calibration and quality of derived products (Townshend and
Justice, 2002). Moreover, its orbital configuration and viewing geometry deliver daily
complete global coverage apart from the equatorial region where the repeat frequency
is approximately 1.2 days (Justice et al., 2002; Zhan et al., 2002). The first seven of
its 36 spectral bands are designed primarily for remote sensing of the land surface, of
which only band one (red, 620-670 nm) and band two (near infrared, 841-876 nm)
have a spatial resolution of 250 m (Justice et al., 2002; Zhan et al., 2002). Bands 3

through 7 are natively 500m resolution.

Several advanced land products are being generated using these bands. Particularly,
the red and near infrared bands, given their higher spatial resolution and their position
in the electromagnetic spectrum (Zhan et al., 2002), are most interesting for change
detection studies. These bands have been combined in a value-added product for
monitoring of land conversions, known as the Vegetative Cover Conversion (VCC)
product. A composite product derived from 250-meter resolution 16-day composites
from the Terra/MODIS instrument constitutes the intermediate product for the VCC
dataset. The intermediate 16-day composites are generated from daily, level 2G,
surface reflectance data (MODO09), and are composited based on the quality of the
daily observations as determined by the QA flags in that product. The MODIS VCC
product is generated four times per years (quarterly) and is designed to be a global
alarm product for land cover conversions. Where land cover conversion is defined as

the cumulative effect of human and natural event over time, not including changes
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related to seasonal or phenological changes in vegetation. Nonetheless, it should be
noted that this product is not intended for areal quantification of land cover changes
but rather functions as an alarm product able to reveal the need for further
investigations by means of higher resolution data. A number of factors have been
identified as possible source of errors in this product, among those the presence of
clouds which were not flagged in the QA layer of the input data and inter-annual
variability affecting vegetation are worth mentioning (User Guide for MOD44A

VCC: http://glcf.umiacs.umd.edu/data/modis/vce/). For an extensive assessment of

the VCC product we refer to the work of Zhan et al. (2002) in which three land cover
conversion cases, namely detection of burned areas, detection of flooding/flood retreat
and detection of deforestation, were analyzed. The study revealed the suitability of
MODIS’s VCC product to detect the occurrence of change in a specific zone (Zhan et
al., 2002).

MODIS’s VCC product has not been used for the present study, one reason being its
unavailability for the time frame under investigation (1990-2000). An additional
reason is that composite data may have larger misregistration errors than the data used
in this material. As emphasized by Zhan (2002) the misregistration error of individual
images is likely to propagate into the composite image and result in lower geometrical
accuracies thereof. In view of these considerations, this study has been performed on
MODIS’s surface reflectance product, defined by Vermonte et al. (2002) as the
reflectance that would be measured at the land surface if there were no atmosphere.
This product is based on the MODIS LI1B as the primary input and performs
corrections for the effects of gaseous absorption, molecules and aerosol scattering,
coupling between atmospheric and surface bi-directional reflectance function (BRDF)
and adjacency effect (atmospheric point spread function) (Vermote et al., 2002). The
MODIS products represent the first global terrestrial products that are available and
have been systematically atmospherically corrected and bidirectionally corrected for a
sustained period of time (Townshend and Justice, 2002). Artefacts caused by the
atmosphere were already accounted for in products used by the oceanographic
community whereas the terrestrial community has been slow to develop procedures.
The reason behind this delay is probably due to the relative influence of the
atmospheric signal which results to be much stronger over water bodies than it is over

land (Townshend and Justice, 2002). Despite the fact that the majority of the bands
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designed for the MODIS instrument were specifically meant to satisfy the needs of
the land community, compromises were made in the design of some bands used by
both the land and oceans research communities. Notwithstanding the trend towards
smaller, single mission satellites, for the expected future operational imagers will

remain multi-purpose thus calling for similar compromises (Justice et al., 2002).

In general, the potential of MODIS data for land cover monitoring and change
detection has been widely acknowledged in literature (Justice et al., 2002; Townshend
and Justice, 2002; Vermote et al., 2002; Zhan et al., 2002; Skinner and Luckman,
2004). Nevertheless, it has to be reminded that other moderate spatial resolution
sensors (with resolutions between 250 m and 8 km) have become operational in recent
years as well. Their limited success compared to MODIS could be attributed to the
more complicated access to users because of charging policies, mission lifespan and
acquisition strategies. These instruments include the Vegetation instrument on board
the French SPOT mission, the POLDER instrument on board ADEOS 1, SeaWifs, the
Advanced Along Track Scanning Radiometer and MERIS of the European Space
Agency’s ENVISAT. The majority of these sensors were intended principally for
oceanographic applications with the inclusion of bands useful for remote sensing over
land (Townshend and Justice, 2002). For what concerns the MERIS instrument of the
European Space Agency ENVISAT platform, with its 15 bands it acquires images in
the VIS and NIR part of the electromagnetic spectrum at a full resolution of 300 m or
a reduced resolution of 1.2 Km (Clevers et al., 2004). Although very meaningful for
deriving land cover information, MERIS data products are for the time being intended
primary for research activities and thus require temporal, spatial and quality
verification pre-processing. On the other hand, MODIS surface reflectance data are
highly processed products and in most of the cases do not require further pre-
processing prior to image classification (Skinner and Luckman, 2004). Preliminary
studies conducted by Miicher (Personal comment, 2005) have shown that similar land
cover classification accuracies are obtained when using MERIS and MODIS data.
These results are confirmed by a study conducted by Clevers (2004) in which a
Principal Component Analysis was performed on MERIS images. The Principal
Component result revealed that 99% of all information is already contained in the first
two Principal Components, where the first had high positive loadings for the bands in

the near-infrared region and the second for bands in the visible region. Those regions
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of the Electromagnetic Spectrum (ES) roughly correspond to those available from the
MODIS sensor at a comparable spatial resolution. Moreover, by studying the
correlation coefficients between MERIS’s spectral bands Clevers et al. observed that
bands in the visible region of the ES are highly correlated the same as bands in the
near-infrared part of the ES. This last observation further supports the fact that the
higher amount of bands at full resolution of the MERIS instrument compared to those
available at comparable resolution from the MODIS instrument are not value adding

for the purpose of land cover monitoring.

Eventually, we can conclude that the potential of monitoring the terrestrial
environment at moderate spatial resolution has been acknowledged but not fully

exploited and thus numerous research opportunities are still present in this field.

2.3. Change Detection Techniques

Singh (1989) defined the process of change detection as the recognition of differences
in the state of an object or phenomenon by observing it at different moments in time
(Singh, 1989 In: (Lu et al., 2004). Few years later Green (1994) recommended that
the interpreter should not limit himself to observing but additionally try to control all
variances caused by variables that are not of interest so as to be able to analyze only
those changes resulting by differences in variables of interest (Green et al.,1994, In:
Lu et al., 2004). Digital change detection is based on co-registered multi-temporal
remote sensing images and relies on the premise that transformations in land cover or
land use have as consequences variations in radiance values and that these variances
prevail over radiance changes resulting from other factors such as differences in
atmospheric conditions, differences in sun angle or differences in soil moisture (Mas,

1999).

Several authors have summarized and reviewed the existing change detection
techniques (Mas, 1999; Lu et al., 2004) of those the most known ones are grouped
and briefly described in the following. The here with proposed categories are main

simplifications and different authors differ in their choice.
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Within the so called algebra category, algorithms require the user to specify a
threshold value to determine the areas of change. Among these the most known is
image differencing but other common techniques are image regression, image
rationing, vegetation index differencing, change vector analysis (CVA) and

background subtraction.

An additional category requiring a threshold-definition is the transformation category
which includes Principal Component Analysis (PCA), Tasseled cap, Gramm—Schmidt
(GS), and Chi-square transformations. The easy implementations of algebra methods
and the reduction in data redundancy of transformation procedures have made these
techniques common in change detection studies. In more recent years however, these
techniques have been replaced by more complex ones, preferred because providing a
complete matrix of change information (Lu et al., 2004). To obtain a complete matrix
of change information the classification category of techniques is the most suited. It
includes post-classification comparison, spectral-temporal combined analysis,
expectation—maximization algorithm (EM) change detection, unsupervised change
detection, hybrid change detection, and ANN. These methods are based on classified
images and thus depend on the accuracy of this process starting from the quality and

quantity of training sample data (Lu et al., 2004).

Many more change detection techniques exist, but their in depth review is outside the
scope of this study. An important consideration is that none of the existing techniques
can be considered as performing best for all applications. Many are the factors that
influence change detection studies and this explains the fact that often different
authors obtained different results when testing the same technique. Generally we can
conclude that it is partly the aim of the study which determines which change
detection technique is most appropriate. If the aim is a rapid qualitative change
detection analysis, visual interpretation can result most suited. On the other hand if
change/no-change information by means of digital change detection is what we want
to achieve, single-band image differencing and PCA represent the best choice.
Eventually for a detailed ‘from-to’ detection, post-classification comparison is the
recommended method to adopt given that sufficient training sample data are available.
Having defined the aim of the present study, the approach considered most suited is

the post-classification change detection method. This method has been recommended
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among others by Petit and Lambin (2001) as the most suited for change detection
applications interesting a long time period for which data of different sensors have to
be used. Multi-source data do not represent a problem as each data layer can be
generalized to a common land cover scheme prior to comparison, minimizing in this

way environmental, sensor and atmospheric differences.

In a comparative study by Mas (1999) post-classification comparison was evaluated
against the most known methods for change detection using Landsat MSS images.
The technique was found performing best over algebra techniques (image differencing
and vegetation index differencing) and transformation techniques (Principal
Component Analysis). The lower accuracy obtained with the latter procedures was
attributed to their inability to differentiate the variations of soil moisture and
vegetation phenology from variations due to land cover changes. This problem is not
encountered when performing independent classifications where classes with different
signatures at different times of the year can still be assigned to the same land cover
class (Mas, 1999). Last but not least, as mentioned earlier the post-classification
approach has the strength of providing a complete matrix of change information. In
the present study the interest lies not only on where and in which extent changes have

occurred but also on which are the classes losing and gaining in importance over time.
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3.1. Study Area and Time Interval

The test area we have chosen for this study is located in the northern part of the Italian
peninsula; delimited by the Alpine mountain chains in the North and by the Apennine
mountains in the South this area is also known as the Po valley, basin of the river Po
which from the Alps eventually ends up in the Atlantic sea. The basin encompasses
the regions Piemonte, Val d’Aosta, Lombardia, Emilia Romagna, marginal areas of
Liguria, Veneto and Trentino (see Figure 1). With a surface of 69979 km? of which
29372 km? in low land, this area was in the past mainly covered by forest intermittent
only by swamp areas. Today we can find cultivated land interrupted by extensive
concrete patches located in correspondence of the urban centres. The choice of this
area as suitable for our study is not casual but driven by the delicate condition of this
territory, territory which is considered the area that in Italy preserves the less signs of
what once was the original landscape. Human activity has transformed this area in
such a way that its balance can only be granted by a high contribution of energy and
resources coming from outside the system. Natural calamities have often interested
this land sending alarm signs of the incorrect use of the territory. Starting from the
1980ies more attention has been paid to the development of this area with the
formulation of policies at the national and European level aimed at its conservation
(directive 92/43/CEE). These and future policies which will contribute to the
responsible management of the Po’ valley are for the biggest part based on remote
sensing land cover and land use monitoring activities similar to the present one

(http://www.legambiente.com ).

In view of the fact, that the prime interest of this study is the understanding of the
changes affecting the Po valley in the 1990-2000 time interval, the developments of
the urban class have been selected as being the most significant indicators thereof. As
extensively described in section 2.1. the effect of the modifications interesting this
class are being reflected on a much wider area as the one effectively occupied by
urban land cover. Focusing especially on the class urban is therefore believed to
provide a trust worth indication of the developments in the area and at the same time

respecting the resources and timeframe available for the completation of this study.
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The reason behind the choice of the ten year period spanning from 1990 to 2000 is
twofold. Firstly, considering a shorter time interval would not provide us with
sufficient change indications due to the slow transformations-rate of European land
cover. Secondly, we are interested to compare the here obtained land cover product

with CORINE change DB, whose first version dates 1990 and whose update followed

10 years later.
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Figure 1 Location of the study area, north Italy

3.2. Data

3.2.1. Remote Sensing data

MODIS
In order to perform this work, daily Terra/MODIS atmospherically corrected surface

reflectance data were acquired, containing red and near-infrared bands and
corresponding metadata at 250m resolution (product ‘MODIS/TERRA SURFACE
REFLECTANCE DAILY L2G GLOBAL 250M SIN GRID V004’ or abbreviated
MODO09GQK). The properties of this product are summarized in Table 1 whereas
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general MODIS specification can be consulted in Appendix 1. In order to select the
best quality data (cloud free and free of instrument recording errors) images were first
browsed by means of the ‘MODIS Land Global Browse Image’ web source

(http://landga2.nascom.nasa.gov/cgi-bin/browse/browse.cgi). Eventually, three

images acquired respectively on April 22, June 20 and September 10 of the year 2000
could be downloaded from the NASA Earth Observing System (EOS) Data Gateway

(http://edcimswww.cr.usgs.gov/pub/imswelcome/ ). Subsequent to downloading the

image quality could once more be assessed by reading the metadata contained in the

quality flag band.

The resolution of the two MODIS bands corresponding to the visible red and the near
infrared (NIR) is 250x250m and their centre in the electromagnetic spectrum is 645
nm and 858 nm respectively. We are also provided with three bands of additional
information on band quality, orbit and coverage, and number of observations

(http://www.yale.edu/ceo ). Reflectance products typically provide an estimated “at

surface” spectral reflectance, equivalent to a ground-level measurement with no
atmospheric scattering or absorption. The correction algorithm accounts for
atmospheric gases, aerosols, and thin cirrus clouds. Version four (V004) products are
validated, meaning that product uncertainties are well defined over a range of

representative conditions and thus are ready for use in scientific research.

Table 1 Terra/MODIS surface reflectance product characteristics

Product type MODO09GQK
Product level 2G

Collection V004

Data type 16 bit signed integer
Actual data range | -100 to +16000

Fill value -28,672

Units reflectance

Grid 4800x4800 row/column
Projection type Sinusoidal

Image area Tile h18v04

File format HDF-EOS
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Landsat
Landsat products utilized in this study are TM and ETM Top Of Atmosphere (TOA)

data, which were downloaded free of charge from the Global Land Cover Facility

(GLCF) at the University of Maryland (http://glcfapp.umiacs.umd.edu/index.shtml ).

Five scenes are required to cover the whole study area; these are acquired in the
summer months of the year 1990 (+/- two years) for what concerns the TM scenes and
2000 for ETM scene (see Table 2). Images taken in late spring or summer (from June
till September) are preferred because cloud cover is believed to be less and because
most arable land is already covered by vegetation allowing distinguishing it from

urban areas.

Table 2 Landsat TM and ETM+ scene specific acquisition dates

Scene Calendar date (dd/mm/yyyy)

™ ETM+
192 029 07/08/1991 20/06/2000
193 028 16/08/1992
193 029 12/09/1990
194 028 31/08/1989
194 029 04/07/1991

The selected images for this study are GeoCover products. GeoCover data is Landsat
data which has been orthorectified and processed to a higher quality standard. The
process of orthorectification removes erroneous image displacements caused by the
interaction between terrain relief or local elevation changes and sensor orientation
variations. Datasets are Level 1 Geometrically Corrected (L1G) products, this means
they are free from distortions related to the sensor (e.g., jitter, view angle effect),
satellite (e.g., altitude deviations from nominal), and Earth (e.g., rotation, curvature).
For the effects derived form the presence of the atmosphere however no correction
has been made (TOA data). GeoCover data currently represent the most accurate

commercially available base maps with worldwide coverage (Tucker et al., 2004).

For this study work was carried out with only two of the seven Landsat bands,

precisely band 3 (red band) and four (near infrared band), available at 30 m spatial
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resolution. Each Landsat band is saved as a single file in the GeoTIFF format and data

is provided in rescaled 8-bit unsigned integer (DN) values.

3.2.2. Land cover datasets

CORINE
CORINE land cover vector datasets interesting the Italian peninsula have been

obtained accessing the FEuropean Environment Agency (EEA) home page

(http://dataservice.cea.eu.int/dataservice/). The following three geo-referenced

databases are acquired for the present study:
o] CLC 1990 DB,

0] CLC 2000 DB and

o CLC 1990-2000 change DB,

respectively representing the first version of the database, its update and the change
database. These datasets differ for what regards the materials and methods behind
their creation. The original methodology was based on the image-interpretation on
1:100,000 image printouts in which a transparent film was overlapped over the
images and digitized at the end of the image interpretation process (Perdigao and
Annoni, 1997). A method, relying on the hardcopy inventory from image printouts
with no or only limited use of image processing and GIS software, proved to be the
most feasible approach at the time corresponding to the start of the program (mid
eighties). Nonetheless, such an approach, requiring two intermediate hardcopy
products (satellite images and transparencies) prior to obtaining digital results, made
the occurrence of errors likely especially during the digitalization process. By the
time of the update of CORINE Land Cover Data Base (CLC DB) in the year 2000,
technical developments had made it possible to introduce computer technologies
throughout the process of building the inventory (softcopy). The display of the data on
computer screens contributed to make the process more efficient in view of time and
cost factors and increased the achievable accuracy (Bossard et al., 2000). It is
understandable then that the two CORINE products hold different geometrical
accuracies, with the updated version representing the enhanced product.

In both phases, the aid of ancillary data has been crucial to the interpretation, these

have comprised any documentary, cartographic or photographic information
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concerning land cover which does not come directly from the satellite database

(Perdigao and Annoni, 1997). Some general figures about the program are

summarized in Table 3.

Table 3 The CORINE land cover project in figures (source: CORINE land cover Technical

Guide, Bossard et al., 2000)

Area covered

2.3 millions km 2

12 countries

from 62° N (The Faeroes) to 28° S (Canary Islands)
from 14' W (Canary Islands) to 29° E (Kastellorizon)

Working scale

1/100000
1 500 standard map sheets

using 10 different projection systems

Area smallest mapping unit

25 hectares
more than 700000 basic unit (polygons)

vector data-base around of 1 gigabyte

Land cover nomenclature

three levels
first level: five headings
second level: 15 headings

third level: 44 headings

3.3. Methodological Conceptual Model

The methodology developed for this study follows the scheme depicted in Figure 2

where input data are Landsat’s and MODIS satellite images and CORINE land cover

thematic maps. Five main steps can be distinguished in the work flow, namely pre-

processing, simulation of the missing dataset, classification, validation of the

classification and change detection.
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Figure 2 Flow chart of working scheme
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3.4. Preprocessing

For the pre-processing of the remote sensing datasets the commercial software
package IDL-ENVI version 4.2 has been used, whereas the preparation of the land
cover vector datasets has been accomplished in ArcGIS version 9. With the pre-
processing the aim was to make data spatially and spectrally comparable as required

by the final change detection stage.

3.4.1. MODIS

As a first step of the data preparation the three MODIS images have been reprojected
to Albers Conical Equal Area WGS1997 coordinate system. Reprojection is necessary
because the MODIS Level 3 product is generated as grided output in the Sinusoidal
projection which is unique to MODIS land products and is not accommodated by
most of the conventional “off the shelf” software used for image processing and
spatial data analysis. The MODIS Reprojection Tool (MRT) version 3.2a running on
Linux platform has been used for this purpose. During this step, the original MODIS
data format, namely HDF-EOS format, was converted to the standard ENVI image
format. Eventually, datasets were transformed to a valid reflectance data range by
dividing the cell values by 10,000. These data were then stored with a float data type
of 4 byte real (Justice et al., 2002).

Although, the original downloaded scenes encompass mountainous areas (Alps and
Apennines), for the actual classification and change detection process our interest lies
mostly in the flat plane (Pianura Padana) as it is there that most urban centres are
situated. In view of this, the study area will be successively restricted to areas with
low relief and thus topographic normalization was considered not necessary for this

study.

3.4.2. Landsat

For what concerns Landsat data the pre-processing has been some what more time
consuming because it involved also the radiometric aspect of the data. The two main

steps have been the radiometric calibration and the reprojecting to different coordinate
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system. As aforementioned Landsat data are GeoCover products and this means that
images have been orthorectified prior to distribution

(http://glctapp.umiacs.umd.edu/index.shtml ).

Radiometric calibration

For what concerns Landsat’s initial product status it has to be mentioned that when
processing LO products to L1 products, the pixel values from the raw unprocessed
image data are converted to absolute radiance using 32-bit floating-point calculations.
Before output to the distribution media the absolute radiance values are eventually

rescaled to 8-bit values representing calibrated digital numbers.

In the present study, digital numbers have been converted in physical units of
apparent reflectance whose values can be compared from image to image. This is
required because the area of study is larger than a single scene (precisely 5 scenes)
and because different scenes taken over a period of years are being compared for
change monitoring (Edwards, 1999). For this study only the first two steps of
radiometric correction, namely the conversion from DN values to spectral radiance
and from the latter one to apparent reflectance, have been carried out. The third step,
known as atmospheric correction, has been omitted because not retained necessary for
this specific application; justifications supporting this belief have been found after
reviewing the work of different authors and are summarized in the following. As
underlined by Song et al. (2001), whether an atmospheric correction is mandatory or
not is determined by the information desired and by the analytical methods used for
its extraction. A typical example of a remote sensing application for which the
removal of the atmospheric effect is not needed is image classification when a
maximum likelihood classifier is employed interesting a single date image. Assuming
that the training data and the image to be classified are on the same relative scale
(corrected or uncorrected) the influence of a correction will not be striking for
classification accuracies. Likewise, when applying postclassification change
detection, as is the case for this study, atmospheric correction is not necessary due to
the fact that we are comparing maps which have been obtained by independent
classifications (Song et al., 2001). That is why for this study, classifications have been
performed independently for each individual scene with the mosaicking interesting

solely the thematic outputs.
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Besides the fact that the removal of the atmospheric effect is not essential for the
present work, it is also considered not very feasible in the given framework. No
overpass-concurrent atmospheric data (e.g. aerosol content, atmospheric visibility)
was available that could be used as inputs into radiative transfer models (RTM), such
as 6S (Edwards, 1999). Also, with only two broad spectral bands available in the
VIS/NIR, the empirical estimation of the necessary atmospheric optical properties for
an RTM correction was not possible (Clark and Pellikka, 2004). Ideally, a method that
uses in situ or ground-truth information is the most accurate in terms of correcting for
atmospheric haze effects (Chavez, 1988). In the present study, we are working with
remotely sensed data that have already been collected and therefore only methods that
require exclusively information contained in the digital image data were considered.
Among those, the most commonly employed is the Dark-Object Subtraction method.
In this technique the minimum DN value in the histogram from the entire scene is
attributes to the effect of the atmosphere and is subtracted from all the pixels (Chavez,
1988; Song et al., 2001). However, if the dark objects, which usually are represented
by water bodies, are not uniformly distributed across the scene, the assumption at the
base of this technique of a constant haze value throughout the entire image can not be
made. For the present study, not all our Landsat scenes encompass water bodies
which could function as dark objects, and for the ones that do, dark objects are mostly
confined to one extremity of the image thus not representing the overall atmospheric

conditions present over the area (see images in Appendix 3).

Based on these considerations, for this study atmospheric correction of Landsat scenes

was retained more harmful than beneficial and thus was left out from the process.

The calibration of Landsat scenes has been performed by means of Interactive Data
Language (IDL) scripting. This method was preferred over ENVI’s automatic
calibration due to the possibility to view the algorithms and input parameters behind
the process (see IDL script in Appendix 5). All algorithms as reported in the
following have been obtained by consulting the Landsat 7 Science Data Users
Handbook

(http://Itpwww.gsfc.nasa.gov/IAS/handbook/handbook htmls/chapterl1/chapterl1.ht
ml).
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The conversion of the Landsat’s TM and ETM datasets from DN values to at-sensor
spectral radiance implies the knowledge of the original rescaling factors which are
band specific satellite parameters that can be obtained from the image header or
metadata file. Equation (1) was employed to obtain spectral radiance at the sensor’s

aperture. A more extended version of this equation is represented by equation (2).

L, = GAIN *QCAL + OFFSET (1)

(ﬂ) + Lmax (ﬂ) _Lmin (ﬂ‘)

Ll:Lmin
QCAL

QCAL 2)

max

The second step in Landsat’s radiometric calibration is the conversion from radiance
to planetary (also known as at-sensor, apparent or exoatmospheric) reflectance. This
allows us to remove the effect of time differences among image acquisition (this is
done by including in the algorithm the cosine of the solar zenith angle) and moreover
it accounts for differences in exoatmospheric solar irradiance. Equation (3) has been

used to compute the combined surface and atmospheric reflectance of the earth (see

Appendix 2 for details).
_ mxlxd? 3)
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Reprojecting to different coordinate system

The Landsat TM and ETM images used in the present study are GeoCover products
and thus georeferenced products. A simple transformation function will allow re-
projecting the images from the current UTM (Universal Transverse Mercator) map
projection (WGS84 datum) to the desired projection. The Albers Conical Equal Area
projection (WGS72 datum) has been chosen for the present study. Eventually the red
and near infrared bands will be combined for each individual scene into a

multispectral image.
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3.4.3. CORINE

The pre-processing of the thematic datasets has been performed in ArcGIS version 9.
The first step consisted in verifying that CLC1990 and CLC2000 vector datasets were
geometrically matching which unfortunately lead to the conclusion that the two
datasets are systematically shifted from one another. This can be explained if we
consider that CLC datasets are first saved in the country-specific projection and
successively converted to a common European projection system; this process can
easily have introduced inconsistency between our datasets. Moreover, as reported in
section 3.2.2., the two products are generally characterized by slightly different
geometrical accuracy. To overcome this problem CLC 1990 dataset was derived
based on the remaining two available datasets: the CLC 2000 and the CLC 1990-2000
change datasets. The latter one includes only those polygons that have been updated
and precisely it reports the land cover label attributed before and after the
transformation. By performing a union operation, a datasets containing the
information contained in both attribute tables was obtained. Successively, a new
attribute (field) containing for each polygon the land cover class it belonged to during
CLC 1990 creation was added. The next step is to recode the legends of CORINE
datasets to a more general land cover classification scheme so as to define a set of
meaningful classes effectively discernible with MODIS reflectance information. This
procedure was performed with the aid of indications obtained from the unsupervised
classification of the MODIS 2000 multitemporal dataset (see section 3.6.1.). The
results obtained confirmed that working with only two bands restricts the number of
classes that can be meaningfully distinguished. In view of this we decided to merge
classes to match level 1 of CLC 44 class nomenclature (an overview of the complete
class nomenclature can be consulted in Appendix 6). Additionally, class 4 and 5 of
CLC level 1 nomenclature were merged because their distinction is not considered
relevant for this study. Eventually, the four classes defined for MODIS classification
are:

Artificial surfaces,

Agricultural areas,

Forest and semi natural areas, and
4. Water bodies and Wetlands.

w =

Eventually, the vector land-cover polygons for both dates were rasterized to a 250 m

grid, to match the resolution of the MODIS data (see Figure 3).
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Unclassified

1. Artificial Surfaces

2. Agricultural Areas a 3

| e— | | e | Ikm

3. Forest and seminatural Areas

4. Wetlands & 5. Water bodies

Figure 3 CORINE land cover classification images after recoding to 4 thematic classes (level
1 CLC Nomenclature). (A) 1990, and (B) 2000.
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3.4.4. Datasets Co-registration

An accurate geometrical co-registration of images is the most critical image
preprocessing requirement for monitoring land cover changes. The success of change
detection studies is highly dependant on the precision of relative alignment between
images that compose a multi-temporal data set (Stow, 1999). The variations among
images that the registration process is aiming to get rid of are those due to the
differences in image acquisition, not including those due to atmospheric conditions
which can not be modelled by registration and in fact affect mostly intensity values
and only for a minor part spatial characteristics (Stow, 1999). Image registration in
brief consists in finding an adequate transformation so that the points in one image

can be related to their corresponding points in the other.

For this study we decided to adopt an automatic image registration procedure as those
offered by IDL-ENVI software package. This procedure uses so called Ground
Control Points (GCPs). Ground control points are a set of selected pixels (or regions)
that can be located accurately on both the image and the map; these are usually easily
recognizable features such as intersection of roads, rivers or coastlines. Eventually the
control points can be used to identify the transforms between the input image and the
reference image or map (Chalermwat, 1999). The present study made it desirable to
adopt the Image-to-Map registration option instead of the Image-to-Image one. When
registering an image to a map coordinate system, the pixels can be referred in terms of
map coordinates (latitudes and longitudes or easting and northing) this is often
referred to as geocoding. The map coordinates were entered by means of CORINE
land cover vector datasets. Reasons behind the choice of this approach were of
different nature. Firstly, the problem in choosing the higher resolution satellite image
as a reference, and thus adopting Image-to-Image registration, is that the warped
image is automatically resembled to the base image spatial resolution which is not
desired for this study. Secondly, given the framework of this study which is
CORINE’s update it is advisable to take the latter as reference for all our datasets.
Landsat TM 1990 images were registered against CLC 1990 dataset, whereas CLC
2000 was used for Landsat ETM+ and MODIS image registration. It has to be
reminded at this point that no difference in geometrical accuracy exists between the in

this study employed CORINE dataset. This is due to the fact that, as reported in
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section 3.4.3., CLC1990 dataset has been derived from the CLC2000 and the change

database.

Ground Control Points (GCPs) identifiable on both the CLC reference datasets and
the remote sensing scenes were precisely located with the help of a cursor. From the
reference datasets the categories artificial surfaces and wetlands&water were found
most suitable for point identification. A total ranging from 8 to 11 GCPs were
identified for each individual Landsat scene, whereas a total of 18 points were
selected for the MODIS image. Eventually the residual registration error (RMS) was

computed and the points adjusted in order to maintain the acceptable error (Table 4).

Table 4 Registration settings for Landsat TM, MODIS and ETM scenes

Base dataset | Warp Warping Resampling Scenes Gep RMSE
S
images method method ID
192 29 8 1.491
193 28 10 1.695
CLC1990 Landsat Polynomial
Nearest neighbour | 193 29 11 1.607
(derived) ™ 1* degree -
194 28 8 1.588
194 29 9 1.503
Polynomial
CLC2000 MODIS Nearest neighbour 18 1.382
1* degree
192 29 10 1.396
193 28 9 1.618
Landsat Polynomial
CLC2000 ] Nearest neighbour 193 29 9 0.863
ETM+ 1 degree -
194 28 9 1.695
194 29 8 1.813

One drawback in using control points in automatic registration is that it is not the
easiest task to identify effective GCPs especially when working on relatively coarse
images as is the case in this study. It has been demonstrated that the registration error
decreases as the number of GCPs is increased (Chalermwat, 1999), on the other hand
we also observed that the capacity to find satisfactory GCPs and with it the quality of

GCPs accuracy decreases as their number increases.
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In literature no undisputed opinion regarding the size of the tolerable registration error
is found. Chalermwat (1999) defined an error of + 1 pixel as acceptable in the co-
registration of images for change detection application. For the present study,
although acceptable accuracies are reached, a certain degree of bias resulting from the
registration process is expected to influence the final change detection product. It
should be reminded that an error of only one pixel in a Landsat image corresponds to
a misplacement of about 80 meters distance on Earth (Tian 1986, In: (Chalermwat,

1999).

To validate the accuracy of the registration CLC vector dataset were overlaid on the
satellite images and a visual consistency check was carried out. In general it could be
noticed that the datasets matched; some inaccuracies were detected in correspondence
of line features, such as rivers, but those could be related to the fact that for the line
elements the minimum width as specified by CORINE is 100 meters. Where this
width was not reached, approximation might have been taken place during CORINE

digitalization.

3.5. Simulation MODIS 1990

One of the challenges of the present study, which aims at performing change detection
from 1990 to 2000 based on MODIS data, is the lack of time one data. Although
MODIS’s spectral channels interval were originally selected because they closely
match the spectral band widths of Landsat’s data facilitating intercomparison (Price,
2003), a direct 1:1 relation can not be established. For what concerns the visible red
part of the EM spectrum, the MODIS sensor acquires the signal of slightly shorter
wavelengths (0.62-0.67um) compared to the Landsat instruments (0.63-0.69 um). The
near infrared part of the spectrum covered by the Landsat sensors (0.76-0.90 um) is
much wider and encompasses the part covered by the MODIS instrument (0.84-0.88
um). What is more the data generated by the two instruments differ in their spatial
resolution, with Landsat recording at 30m and MODIS at 250m for band 1 and 2.
Following these consideration it becomes clear how Landsat TM for the year 1990
can not be taken as substitute date one images for our change detection without any

transformation taking place.
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As in the majority of pioneer studies which precede their concrete applicability, some
kind of simulation has to be carried out to be able to replace the yet missing
component. In this study the missing component is represented by the MODIS data
for the year 1990 and simulation has been performed by means of an empirical
approach. Several mathematical approaches for data simulation are known to exist in
literature but their complexity has been found not suitable for the timeframe in which

this study has to be carried out.

Simple averaging of the fine resolution data to match the spatial resolution of the
coarse resolution data will not produce data sets with comparable spatial information
(Pax-Lenney and Woodcock, 1997a). This objective instead was achieved for this
study by empirically modelling the association existing between Landsat and MODIS
data for the year 2000 and successively exploiting the so with obtained prediction
equation to derive MODIS 1990 from Landsat TM 1990 datasets. For deriving the
empirical relation, the ETM scene whose acquisition date corresponds exactly to

MODIS acquisition (20™ June 2000) was used.

Resampling of the Landsat images from 30x30m to 10x10m pixel size using nearest
neighbour was performed allowing preserving as much as possible the original
reflectance of the image. Successively, Landsat 10m resolution data were upscaled to
250m by means of pixel aggregate which averages all of the pixel values that
contribute to the output pixel. This method has been found most suitable when aiming
at simulating different scale levels and has been confirmed in literature (Alexandridis
and Chemin, 2002). Special attention was given to the origin of the resampling which
was chosen to match exactly the origin of the corresponding MODIS pixel. This was
achieved by resizing the Landsat image by means of map coordinates at 10m spatial
resolution prior to the upscaling to 250m so as to attain maximum precision in the

subsetting.

As a second step, MODIS 2000 and Landsat ETM 2000 data have been graphically
screened to determine how their relationship can best be described; from the band
specific scatter plots the data appeared to be related linearly (see Appendix 7). An

ordinary linear regression analysis by means of SPSS statistical software was carried
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out to explore the relationship; the independent or explanatory variable was
represented by the ETM 2000 and the dependent variable by MODIS 2000 dataset.
The goodness of the fit was assessed by means of the Pearson’s correlation coefficient
(R) which indicates both strength and direction of the linear relationship. The least
square method was used in the attempt of finding the function that best approximates
the data (a “best fit”’) by minimizing the difference of the original MODIS data versus
the predicted ones, known as residuals. Assuming the model we fit to the data is
correct, the residuals approximate the random errors. Therefore, if the residuals
appear to behave randomly, it suggests that the model fits the data well. Whereas, if
the residuals display a systematic pattern, it is a clear sign that the model fits the data
poorly. For this method to be applicable we assumed errors in each measurement to

be randomly distributed.

The model including an intercept has been compared with the no-intercept model by
means of Pearson’s coefficient (R), eventually linear regression through the origin
was found to be the best fit for our data. The band-specific regression (least squares)
equation of the line which best fits our data is of the type y = ax + €, where a is the
unstandardize coefficient or slope and ¢ is the unpredictable component or error.
Including observations of the explanatory variable (ETM) in the equation yields
estimated values of the dependent variable (MODIS). To validate the reliability of our
prediction the difference between the original MODIS and the predicted one, also

known as residuals, was investigated.

The fact that the predicted values do not exactly match the original ones could have
many explanations some of which are nor traceable neither explainable. One possible
source that instead can indeed be verified is misregistration between our datasets. The
fact that images have similar mean values strengthen the conviction that different
spatial distribution of features has influenced the association between the images.
Two independent approaches to verify this assumption were developed. In the first,
images were upscaled to 500m spatial resolution by aggregation through averaging
(Alexandridis & Chemin, 2002), in the second only big homogeneous features were
considered to derive the correlation. Both approaches resulted in an improvement of
the correlation strength between images and thus confirmed the influence of

misregistration in lowering the association. This can easily be understood considering
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that the particular study area is characterized by fragmented land cover, meaning that

a mismatch of the order of one 250x250m pixel can already signify another land cover

type.

For our model to be valid certain assumptions were made. First and foremost, we
assumed that the subset area for which the transfer functions have been derived is
representative of the whole study area. This assumption was made after visual
investigation of the land cover distribution for the whole study area. Moreover, what
can be considered the overriding assumption for the here developed simulation
strategy, is the possibility to interchange Landsat TM and ETM data from a spectral
point of view. This would mean that even though the regression model has been
calibrated with ETM data its validity is further granted when using TM data. For
further detail on ETM-TM comparison we advise to refer to ‘Landsat-7 ETM+ as an
observatory for land cover initial radiometric and geometric comparison with
Landsat-5 Thematic Mapper’ by Masek et al. (2001).

3.6. Classification

In this section an overview of the methodology adopted for classification of our
remotely sensed datasets is outlined. In general, two broad approaches can be
distinguished in literature, namely spectral and contextual image classification. While
the first category is based on the spectral response pattern associated with each
individual pixel, the second one has as main study unit homogeneous regions also

known as segments or objects.

An extensive review of the most significant scientific literature since the completion
of this research revealed how object-oriented approaches have won in popularity in
recent years but have merely interested high resolution data, most commonly data
from the Landsat and SPOT family of sensors or in many cases also very high
resolution solutions data such as IKONOS or Quickbird (Walter and Fritsch, 2000;
Walter, 2004; Blaschke, 2005; Blaschke et al., 2005; Moeller and Blaschke, 2005). In
view of what just mentioned and of indications obtained from preliminary results, a

pixel-based approach has been chosen for the present study.
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Among the pixel based approaches, the Maximum Likelihood classification algorithm
was found to be the most successfully applied in several studies (Cho, 2000; Kral,
2003; Jonathan et al., 2005). In a study by Dwivedi et al. (2004) the most common
classifiers of remote sensing data for land-use/land-cover mapping are evaluated, the
MLC was found superior to all other methods except for artificial neural network

techniques.

3.6.1. Unsupervised Classification MODIS 2000

The author decided to purposefully start the series of classification procedures with
the unsupervised approach. This approach clusters pixels in a data set based on
statistics only, without any user-defined training classes (RSI-ENVI, 2006). In this
way a first impression of the land cover classes which can be discerned by an
automatic classifier based on our dataset is obtained. These indications turned useful
when working with the supervised approach in which a feasible number of classes, for
which to collect training samples, have to be defined in advance. As mentioned in
section 3.4.3., the results obtained with the unsupervised approach were as well

employed for CLC class recoding.

This step has been carried out in ENVI using K-means unsupervised classification, a
method which calculates initial class means evenly distributed in the data space then
iteratively clusters the pixels into the nearest class using a minimum distance
technique. Each iteration recalculates class means and reclassifies pixels with respect
to the new means (RSI-ENVI, 2006). The parameters specified were the number of
classes, set to four, the change threshold which was kept at the default value of five
and eventually the maximum number of iterations, set to three. A mask encompassing
clouds, snow and data-errors was applied to the multitemporal MODIS 2000 image

prior to classification.
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3.6.2. Supervised Classification MODIS 2000: Single Date versus
Multitemporal Approach

The potential of the MODIS instrument for land cover monitoring on the European
scale lies in its red and NIR bands which are characterized by 250m resolution. The
low spectral dimensionality of our data restricted to four the number of classes
considered in this study. To test whether a higher temporal resolution could
eventually compensate for the small number of bands used, three MODIS scenes for
different seasons where combined in a multitemporal dataset. The images were

respectively from mid April, June and September of the year 2000.

The training stage

The same classification strategy was used to classify the multitemporal dataset and the
single date image represented by the June acquisition. The number of considered
classes was set to four corresponding to CORINE’s higher nomenclature level with
the exception of the class Wetlands and the class Water bodies which for the present
study were merged in a single class as their distinction was not considered relevant.
CORINE land cover vector datasets have been used as ancillary information in the
classification process; it should here be remembered that we are mainly interested in
developing an updating approach for CLC maps therefore the aid of the previous
thematic datasets is most wanted. By overlaying CLC2000 vector dataset, recoded to
the four-class nomenclature, over the MODIS image, training samples were defined.
High importance has been given to the selection of representative training samples as
this step has been indicated by some researcher (Dwivedi et al., 2004) as more
relevant than the type of algorithm eventually applied for classification. For the
digitizing of the training fields individual polygons for specific classes were used.
Hereby only the core areas of certain land-cover classes (without transition pixels)
were used for creating spectral signatures, moreover areas within big and
homogeneous polygons were preferred over small ones. This allowed lowering the
effect of registration inaccuracies that exists between datasets. The number of samples
has been taken proportionally to the class percentage as determined by CLC
classification, with a higher number for the forest and agricultural class and a lower

number for the less represented classes water and artificial surfaces.
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Some indications of the spectral separability of our land-use/land-cover categories are
provided by means of the calculation of the transformed divergence (TD) for our
training samples. As reported in the ENVI User Guide (RSI-ENVI, 2006) TD values
range from 0 to 2.0 and indicate how well the selected class pairs are statistically
separated. Values greater than 1.9 indicate that the class pairs have good separability.
For class pairs with lower separability values, it is recommended to attempt to
improve the separability. A close look at the TD values in Table 5 reveals that the in
this material used band combination, i.e. red and near infrared, does not represent the
ideal set for achieving the desired classification accuracy when using a single-date
image. Especially, for class pairs ‘Agriculture-Forest’ and ‘Urban-Agriculture’, for
the single date dataset, a significant amount of spectral mixing is apparent. Although
TD values generally improve when working with the multitemporal dataset, the only
class pair for which a good separability is apparent (TD value= 2.000) is the
‘Agriculture-Water’ pair. It has also to be reminded that training samples generally
represent the pure class spectral footprint and thus TD values based on the whole

image are expected to be lower than the one reported in Table 5.

Table 5 Class Training Sample separability (Transformed Divergence)

CLASS PAIRS SEPARABILITY
SINGLE DATE MULTI-
TEMPORAL
Agriculture vs. Forest 1.214 1.921
Urban vs. Agriculture 1.748 1.975
Urban vs. Water 1.998 1.999
Urban vs. Forest 1.999 1.999
Forest vs. Water 1.999 1.999
Agriculture vs. Water 1.999 2.000

The classification stage
In view of the fact that the spectra of the defined land cover classes are close to one

another in the measurement space and have high variance, a probability classifier is
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preferred over a distance classifier. The Gaussian Maximum Likelihood classification
algorithm (ML) has been chosen for this study as it quantitatively evaluates both the
variance and covariance of the category spectral response patterns when classifying
an unknown pixel (Lillesand et al., 2004). What is more, following a literature review
of comparable materials it turned out to be the favoured choice by several authors
(Cho, 2000; Kral, 2003; Jonathan et al., 2005). The basic ML algorithm is a purely
statistical approach based on Bayes’ theorem which assumes that the variables are

continuous and follow a Gaussian or normal distribution (Jonathan et al., 2005).

3.6.3. Supervised Classification simulated MODIS 1990

Following simulation of the ‘1990 MODIS dataset’ we end up with 5 individual
pseudo-MODIS scenes that need to be classified independently. Independent sets of
training samples have to be collected for each scene considering that we are dealing
with data not corrected for the atmospheric effect. Images where acquired in slightly
different dates (it should be remembered that those were originally Landsat TM

scenes) and therefore atmospherical conditions might not be exactly comparable.

As done for the MODIS 2000 dataset, four classes are distinguished and a maximum
likelihood classification algorithm is applied. The so with obtained five thematic maps
are eventually mosaicked into a unique dataset covering the full extent of the study

area and their accuracy is evaluated against CLC 1990 dataset.

3.7. Accuracy Assessment

The following section provides the methodology adopted for the validation of the
classification results. For the classification obtained from the MODIS 2000
multitemporal dataset, two validation approaches are compared: a pixel- and an
object-based approach. The Ilatter one aims at resembling more closely the
methodological framework of the reference dataset, represented by CORINE’s land

cover map.

41



3. Materials and Methods

The accuracy of spatial data has been termed by the United States Geological Survey

(USGS) as: “The closeness of results of observations, computations, or estimates to
the true values or the values accepted as being true”. This definition implies already
that what is called ‘true’ is sometimes dependent on the expert decision and therefore
assumes a subjective dimension (Banko, 1998). Given the extent of the study area and
the time at disposal for this research, field data, representing the most valid source of
validation, could not be collected. Instead CORINE’s land cover maps obtained from
high resolution Landsat data are used as ‘ground truth’ reference. It follows that, we
are confident in making the necessary assumption that these data can be considered

accurate for the purposes of this project.

3.7.1. Pixel based validation

A pixel-wise accuracy assessment has been carried out for the time 1 and time 2
classification results. For the 1990 classification, CLC1990 map has been taken as
reference dataset, whereas for the 2000 classifications the CLC2000 thematic
information is used as ‘ground truth’ to evaluate the performance of the algorithm.
Confusion matrices, known also as contingency or error matrices, and from it derived
indices were used as base for validation. The confusion matrix has been identified in
literature as the core of classification accuracy assessment (Congalton, 1991; Foody,
2001; Lillesand et al., 2004). As a simple cross-tabulation of the mapped class label
against that observed in the ground or reference data, the confusion matrix provides
not only class specific accuracies estimates but as well characterizes errors (Foody,

2001).

In the following a brief overview is given of the from the confusion matrix reported
indices used in this study. The most commonly reported accuracy measures as found
in literature is the percentage of cases correctly allocated known as ‘overall accuracy’.
This is computed by dividing the total correct (i.e. the sum of the major diagonal) by
the total number of pixels in the error matrix (Congalton, 1991; Foody, 2001). A
major problem of this measure is that some cases may have been allocated purely by

chance. To accommodate for the effect of chance agreement, a KAPPA analysis is
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done whose result is know as KHAT statistics (K) and is obtained as depicted in
equation (5). Developed by Cohen (1960) the Kappa coefficient verifies whether the
results presented in the error matrix are significantly better than a random result.
Kappa increases to one, as chance agreement decreases and becomes negative, as less
than chance agreement occurs. A Kappa of zero occurs, when the agreement between
classified data and verification data equals chance agreement. Contrarily to the overall
accuracy measure which incorporates only diagonal elements of the error matrix, the
kappa coefficient has the advantage to indirectly integrate the off-diagonal elements

as a product of the row and column marginals (Congalton, 1991; Foody, 2001).

c _ i=1 i=1
K= - )
N? - Z X i+ *X +i
i=1
where:
r: number of rows and columns in error matrix,
N: total number of observations,

Xii:  observation in row i1 and column i,
Xi+:  marginal total of row i, and
X4i:  marginal total of column 1.

An additional weakness of the overall accuracy as only expression of the fidelity of a
classification towards its reference target is its non-site-specific nature. As pointed out
by Congalton (1991) in his extensive review of classification accuracy assessment, if
all errors would happen to balance out themselves, a non-site-specific accuracy
assessment will yield very positive but misleading results. Often very big accuracy
differences exist within and among classes which can only be assessed by means of
class specific indices. Intra- and interclass accuracies can be expressed from two
standpoints giving rise to two measures known as producer’s and user’s accuracy.
User’s accuracy and producer’s accuracy are the flip side of commission and omission
errors, respectively. User accuracy is a percentage measure indicating the probability
that a pixel included in a class actually represents that category on the ground. This
measure is generated by dividing the number of correctly identified points (diagonal

value) by the total number of points classified in that row. The more errors of
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commission exist, the lower the user's accuracy as outlined in equation (6) (Banko,

1998).

Userss accuracy (%) = 100% - error of commission (%) (6)

On the other hand, the producer’s accuracy is a percentage measure of the omission
error (see equation 7) it follows that the more errors of omission exist, the lower the

producer's accuracy (Banko, 1998).
Producers accuracy (%) = 100% - error of omission (%) (7)

It indicates how accurate the class is compared to the reference data or how well the
area was classified. This statistic is calculated by dividing the number of correctly
identified points (diagonal value) by the total number of reference points in that

column (Langley et al., 2001).

3.7.2. Object based validation

For the MODIS 2000 multitemporal dataset an attempt has been made to simulate an
object-oriented classification result starting from our pixel-based classification output.
The thought behind this endeavour is that the employed validation strategy does not
reflect the real disagreement between the two maps as long as one remains pixel- and
the other object-based. To link the pixel-based land cover information obtained from
the MODIS classification to CORINE’s polygons a zonal statistics operation was
performed in ArcGIS software. This operation allows assigning each of CORINE’s
polygons to the land cover class to which most of the classified MODIS pixels, falling
within the polygon, belong to, by means of a majority rule. Eventually, MODIS
polygon-wise classification has been validated by means of an accuracy matrix using

as ‘ground truth’ dataset the CLC2000 map (see section 3.7.1. for details).
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3.8. Change Detection

One objective of this study has been to compare spatial representations of two points
in time, namely the years 1990 and 2000. This has been achieved by controlling as
much as possible variance resulting from factors of no-interest (instrument
differences, geometrical mismatch, etc.) and at the same time measuring the variance
caused by land cover modifications in the study area. To do so an algorithm which
simply compares two classification maps based on class pairs specified by the analyst
has been employed. For each Initial State class, the algorithm identifies the classes
into which those pixels changed in the Final State image. Changes are summarized in
a change detection report consisting of three statistics tables (see Table 12 and Table
13 in section 4.3.), expressed as ‘Pixel Count’, ‘Percentage’ and ‘Area (square Km)’
respectively, listing the Initial State classes in the columns and the Final State classes
in the rows. For each Initial State class (i.e., each column), the table indicates how

these pixels were classified in the Final State image (RSI-ENVI, 2006).

A number of figures can be extracted from the change report of which the most
significant are explained in the following. The Class Total row indicates the total
number of pixels in each Final State Class, and the Class Total column indicates the
total number of pixels in each Initial State Class. The Class Changes row indicates the
total number of Initial State pixels that changed classes and is obtained by subtracting
the number of pixel for a particular class which did not change from the Initial to the
Final State from the Class Total column for that particular class. The Image
Difference row is the difference in the total number of equivalently classed pixels in
the two images, computed by subtracting the Initial State Class Totals from the Final
State Class Totals. An Image Difference that is positive indicates that the class size

increased (RSI-ENVI, 2006).

In addition, a special type of mask image (classification masks) that provides a spatial
context for the tabular report is produced. The class masks are ENVI Classification
images with class colours matching the Final State image, making it easy to identify
not only where changes occurred but also the class into which the pixels changed

(RSI-ENVI, 2006).
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The choice of performing a map-to-map instead of an image-to-image comparison
was made based on the ‘from-to’ information that can be obtained by the first and not
by the latter technique (Lu et al., 2004). Nevertheless, map-to-map comparison, also
know as post-classification change detection, holds the disadvantage to be strongly
influenced by the assumptions behind the individual classifications. Differences
caused by discordant classification strategies and accuracies will be added to the
actual land cover differences and introduce bias in the change recognition (Cho,
2000). Additionally, misregistration, as anticipated in section 3.4.4., can certainly be
claimed as an ‘all times present’ source of error for change detections studies (Brown,

1992; Stow, 1999; Chalermwat, 1999).

For the present study change detection has been performed twice to differentiate
between the single-date and the multitemporal datasets. The main reason behind this
division lies in the time-dictated impossibility to simulate a multitemporal dataset for
the year 1990. Moreover, the authors were interested in investigating the aid of the
multitemporal approach to land cover mapping and monitoring. In view of what just
mentioned, the first change detection was performed between the classification image
based on the simulated single date MODIS 1990 data (time 1) and the classification
obtained from the original MODIS 2000 single date data (time 2). On the other hand,
in as second step change detection was performed between the CLC1990 dataset (time
1) and the classification image derived from the multitemporal MODIS 2000 data
(time 2). For the latter case, we are well aware that maps which have been obtained on
base of images taken by different instrument with different recording features are
being compared. The so with obtained two change datasets were eventually compared

among each other and with CLC change dataset for validation.

46



4. Results and Discussion

4. Results and Discussion

4.1. Simulation MODIS 1990

In this section the relationship between ETM 2000 and MODIS 2000 reflectance data
is discussed on the basis of the results of the least squares regression analysis. Table 6
shows the models and coefficients. The comparison of the best fit of the models is

determined based on Pearson’s correlation coefficient (R ).

Table 6 Regression models for MODIS 1990 simulation

Model Band Regression equation R R Square RMSE

b#0 () red y=0.972x+0.001+¢ * 0.632 0.399 0.032
NIR  y=1.339x+0.027+¢ 0.886 0.784 0.055

b=0 () red y=0.98x+¢ 0.941 0.885 0.032
NIR y=1.441x+¢ 0.988 0.976 0.055

* g2 unpredictable component (error)
(1) Intercept model
(2) No-intercept model

As anticipated in section 3.5., least square regression through the origin has been
chosen as giving the best correlation results for this study. This choice was made
based on the indication provided by Pearson’s correlation coefficient for which the
regression models with out intercept revealed higher correlation for both bands.
Particularly for the red band, high improvement of the Pearson correlation was
obtained (from 0.632 with intercept model to 0.941 with no-intercept model, Table 6).
This choice can moreover be justified by assuming that both Landsat and MODIS
data present zero reflectance value for very dark objects, such as water bodies; this
assumption was also verified in the datasets in empirical way. In general, we can
conclude that a Pearson’s coefficient of 0.941 for the red and of 0.988 for the NIR
band indicates the presence of a high correlation (> 0.9) between Landsat ETM+ and

MODIS data acquired on the same date and encompassing the same study area.

For what concerns the R square values, of 0.885 and 0.976 for the red and the NIR

band respectively, we can conclude that a high proportion of the variability in the
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dependent variable about the origin can be explained by the regression. It has
although to be pointed out that those values can not be compared to R Square for
models which include an intercept. The graphical representation of the Root Mean
Square error of residuals shows a nearly random distribution of residuals. However,
what is of concern is the order of magnitude of the standard error of the regression,

0.032 and 0.055 for the red and NIR band respectively (Herold et al., 2002a).

Several factors are known which could be liable for biasing the correlation between
images acquired by different sensors. Particularly, for what concerns Landsat ETM+
and MODIS data some of those factors can be excluded whereas others have to be
acknowledged. For instance differences in sun angle and view angle which are due to
differences in time overpass can not be at the origin of de-correlation. The time lap
between the Landsat ETM+ and the MODIS overpass is only of approximately 15-25
minutes (Alexandridis and Chemin, 2002) for images acquired the same day, too short
for a change in climatic conditions been able to influence the land cover signal. On
the other hand, the different processing that images could have been undergoing prior
distribution certainly has lead to differences affecting the correlation. Last but not
least, mis-registration represent a factor which certainly has influenced negatively the
correlation, especially if considering that images have not been registered against each
other but to a third dataset (CORINE 2000) and this could have generated an even

larger mismatch (in case the errors are opposite in direction).

Eventually, these findings and considerations provide us with an indication of the
degree of accuracy we are working with when performing MODIS’s 1990 simulation
using the so derived transfer equations. It should be recognized that further
discrepancies might exists between the products of those two instruments.
Regrettably, those are considered of unpredictable nature and can not be accounted

for in this study, consequently will represent the uncertainty of our model.
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4.2. Classification

4.2.1. Unsupervised classification MODIS 2000

From a first visual analysis of the classification image resulting from the K-Means
classification algorithm, it becomes clear how all four CORINE Level one
Nomenclature classes have been recognized by the automated classifier. Nevertheless,
even when employing the multitemporal dataset, some confusion among classes is
apparent as revealed by Figure 4. Particularly, the classes ‘Agricultural Areas’ and
‘Forest and semi-natural Areas’ show a significant overlap based on the dataset used
for classification. Confusion between these two classes is quite common in land cover
mapping studies and in this case is shown by an exaggerated prevalence of the forest
over the agricultural land cover. The occurrence of forested area especially in the Po
valley, mainly characterized by agricultural fields interrupted by urban
conglomerates, is an indication for the need of a training stage to improve the
performance of the classifier. Results for the urban class show an overrepresentation;
for this class as well as for the previous ones, a training stage is expected to be
determinant in reducing the bias of the findings. Last but not least, the water class is
mainly affected by the loss of the Po" river which is wrongly classified as urban. For
this confusion the authors are not confident that a supervised approach will improve
the result significantly, this is due to the conviction that it is the insufficient spatial

resolution more than the spectral properties to mislead the outcome.

The conclusions drawn from the visual analysis are confirmed by the confusion
matrix presented in Table 7. The overall accuracy of the classification is quite low,
with only around 50% of the total pixels being classified correctly and a kappa value

of 0.355. Class specific accuracies reflect the abovementioned observations.
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Classification Legend

Unclassified
1. Artificial Surfaces

2. Agricultural Areas
3. Forest and seminatural Areas

4. Wetlands & 5. Water bodies

Figure 4 Classification image MODIS 2000 multitemporal dataset using K-Means
unsupervised approach
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Table 7 Confusion matrix MODIS 2000 multitemporal dataset using K-Means unsupervised approach versus CLC2000 ‘ground truth’

Overall Accuracy= (627947/1247395)= 50.3407%

Kappa Coefficient= 0.3557

Ground Truth (Pixels)

Class UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST AWATER Total
Unclassified 192720 0 0 0 0 192720
1Artificial 5 41726 73316 34556 7254 156857
2Agriculture 1 5697 174569 16932 322 197521
3Forest 12 32523 444903 197943 1916 677297
AWater 616 408 551 436 20989 23000
Total 193354 80354 693339 249867 30481 1247395
Ground Truth (Percent)

Class UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST AWATER Total
Unclassified 99.67 0 0 0 0 15.45
1Artificial 0 51.93 10.57 13.83 23.8 12.57
2Agriculture 0 7.09 25.18 6.78 1.06 15.83
3Forest 0.01 40.47 64.17 79.22 6.29 54.3
AWater 0.32 0.51 0.08 0.17 68.86 1.84
Total 100 100 100 100 100 100
Class Commission Omission Commission Omission

(Percent) (Percent) (Pixels) (Pixels)
Unclassified 0 0.33 0/192720 634/193354
1Artificial 73.4 48.07 115131/156857 38628/80354
2Agriculture 11.62 74.82 22952/197521 518770/693339
3Forest 70.77 20.78 479354/677297 51924/249867
A\Water 8.74 31.14 2011/23000 9492/30481
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Class Prod. Acc. User Acc. Prod. Acc. User Acc.
(Percent) (Percent) (Pixels) (Pixels)
Unclassified 99.67 100 192720/193354 192720/192720
1Artificial 51.93 26.6 41726/80354 41726/156857
2Agriculture 25.18 88.38 174569/693339 174569/197521
3Forest 79.22 29.23 197943/249867 197943/677297
4Water 68.86 91.26 20989/30481 20989/23000

52

4. Results and Discussion




4. Results and Discussion

4.2.2. Supervised Classification MODIS 2000

In this chapter the results of the maximum likelihood classification for the MODIS
single-date image and the multitemporal dataset for the year 2000 are presented.
Classification images can be viewed in Figure 5 and Figure 6 respectively. Given the
fact that the same training sample set was used for the two approaches, results are
directly comparable by means of confusions matrices (see Table 8 and Table 9) with
no need for normalization (Congalton, 1991) and thus are here discussed
concurrently. Additionally, for the MODIS multitemporal dataset the pixel-level
classification result has been resampled to CORINE’s object-level. In view of this, in
the following two sections are distinguished: the first reporting the validation for the
original pixel-wise classification, while the second for the polygon-wise aggregated

result.

4.2.2.1. Validation of pixel-wise results

A close look at the confusion matrices (Table 8 and Table 9) reveals an overall
agreement between the obtained classifications and the CLC2000 thematic dataset,
with an about 10% positive difference of the multitemporal approach over the single-
date case. The in literature (Foody, 2001) commonly recommended 85% target was
nearly reached by the classification of the multitemporal dataset which resulted in
84.44% overall accuracy versus the 74.11% obtained with the single-date dataset.
When off-diagonal elements of the confusion matrix are included in the calculation of
the kappa coefficient, accuracy reaches 0.593 and 0.741 for the single-date and

multitemporal approach respectively.

Concentrating now on inter-class accuracies, the confusion matrices reveal how
classes which are less represented on the terrain, namely urban areas and water
(including wetlands), are the one that are mostly affected by error. Especially, it can
be seen that for these classes the omission error is significantly higher than the
commission error. For the urban class the omission error equals 70.68% (for the
single-date image) and 74.60% (for the multitemporal approach), whereas the

commission error reaches 52.44% (for the single-date image) and 34.21% (for the
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multitemporal approach). The same information is inherent in the low producer’s
accuracy characterizing these classes, which even worsen for the multitemporal
approach, sinking to 25.40% for the urban class and 59.05% for the water class. These
results lie in accordance with the findings of Turner et al. (1989) in which it appeared
that rare classes disappear as resolution becomes coarser (Pax-Lenney and Woodcock,
1997a). In agreement with what observed by Pax-Lenney and Woodcock (1997a) we
observed how for our study area, large classes grow larger with increasing cell sizes
(agriculture) whereas small classes diminish (urban, water). Additionally, it can be
assumed that the rate of loss is influenced by the spatial patterns of the landscape at
the fine resolution, with dispersed classes (urban, water) disappearing more rapidly

than clumped classes (forest, agriculture).

The latter findings support the conviction that the spatial factor is within the factors at
the origin of the discrepancy observed between MODIS 2000 classification images
and CLC2000 datasets. It follows that the disagreement found following a
straightforward comparison of these two dataset, is to be linked to the different scales
at which these two land cover products should be interpreted more than to errors. The
scale factor, is particularly affecting less represented classes such as urban and water
classes, whose small and scattered objects are been suppressed in mixed-pixel as the
cell resolution increases. An example is provided by the unilateral confusion which
results in more than half of the urban pixels being wrongly classified as agriculture
pixel (65.45% for the single-date image and 71.45% for the multitemporal dataset).
The visual analysis confirms that the small urban centres scattered across the wide
agricultural plane of the Po valley are lost to the agricultural class whose objects are
of far larger dimension. The same can be observed for the water and wetlands
category which experiences a substantial loss due to the insufficient size of its
elements, as an example the Po river is not detected by the classifier. These
observations are in accordance with the conclusions drawn by Gallego (2001) when
comparing CLC database with a land cover product obtained from higher resolution
images. Gallego emphasized the fact that pixel-wise disagreement can be very
misleading as both maps can be perfectly consistent with each other, and have a high
% of disagreement by pixel because they represent the same reality at different scale.
It follows that area estimation of land cover classes by simply adding the area of the

polygons labelled as belonging to that class does not have any meaning if not related
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with the scale of the land cover map it refers to. A drop of the urban class from 6.4%
to 2.5% (area decreases from 502212.5 ha to 195056.25 ha) and of the water class
from 2.4% down to 1.5% is observed when comparing class occurrence as obtained
from CORINE and as obtained from the MODIS classification. The dominant land
cover classes, namely forest and agriculture, on the other hand experience either

almost no change in occurrence or a slight increase (agriculture).

The second main aspect believed to be at the origin of the discordance between our
classification and the reference data is the spectral factor. As earlier revealed by the
training sample separability figures in section 3.6.2., a certain overlap between the
agriculture and forest class and between the agriculture and the urban class is present.
The confusion between these class pairs is believed to be in part due to the low
spectral dimensionality of the finest spatial resolution MODIS product. In an attempt
to lower inter-class confusion, the high temporal resolution of the MODIS product is
exploited when working with the multitemporal dataset. However, it has to be
underlined how at times contradictory findings have been reported by authors
concerning the aid of temporal profiles for class identification. Temporal data series
have been found improving the identification of especially agricultural classes
characterized by seasonal response by some authors (Pax-Lenney and Woodcock,
1997b) whereas no aid to their identification has been recognized by others (Langley
et al., 2001). For the present study, the separability between agricultural and forest
areas improved as a result of multitemporal data series and most important the
omission error of the class agriculture decreased from 26.92% to 9.1%. In general it
can be observed that the commission error decreases for all classes causing an overall
rise of the user’s accuracy, whereas the producer’s accuracy improved only for classes
whose response is affected by seasonality. As revealed by Jonathan et al. (2005) non-
seasonal classes such as urban and water categories benefit less from a multitemporal
approach. Moreover, it has to be reminded that for this study images corresponding to
only three dates (April, June and September) have been combined while other studies
(Pax-Lenney and Woodcock, 1997b; Jonathan et al., 2005) have investigated the
potential of extended time series. Extended time series allow certainly identifying a
greater amount of class specific features as has been the case for this study. Having
acknowledged this, it is not surprisingly how some classes are still confused with the

multitemporal dataset. Particularly for the urban class it can be hypothesized that
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urban areas characterized by lack of vegetation cover and thus low reflectance in the
NIR part of the EM Spectrum have been at times confused with agricultural fields left
‘resting’ (i.e. unused in order to recover) and thus resembling the spectrum of bare

soil (Jonathan et al., 2005).
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n

Figure 5 Classification image MODIS 2000 single-date (June) dataset using Maximum
Likelihood classification algorithm

Figure 6 Classification image MODIS 2000 multitemporal dataset using Maximum
Likelihood classification algorithm
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Table 8 Confusion matrix MODIS 2000 single-date (June) using Maximum Likelihood classification algorithm versus CLC2000 ‘ground truth’

Overall Accuracy = (924414/1247395) = 74.1076%

Kappa Coefficient = 0.5933

Ground Truth (Pixels)

Class UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST AWATER Total
Unclassified 194272 0 0 0 0 194272
1Artificial 1 23470 18648 3202 4032 49353
2Agriculture 11 52382 506338 65769 2850 627350
3Forest 3 3812 167200 179839 2865 353719
AWater 619 373 705 509 20495 22701
Total 194906 80037 692891 249319 30242 1247395

Ground Truth (Percent)

Class UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST AWATER Total
Unclassified 99.67 0 0 0 0 15.57
1Artificial 0 29.32 2.69 1.28 13.33 3.96
2Agriculture 0.01 65.45 73.08 26.38 9.42 50.29
3Forest 0 4.76 24.13 72.13 9.47 28.36
AWater 0.32 0.47 0.1 0.2 67.77 1.82
Total 100 100 100 100 100 100

Class Commission Omission Commission Omission

(Percent) (Percent) (Pixels) (Pixels)
Unclassified 0 0.33 0/194272 634/194906
1Artificial 52.44 70.68 25883/49353 56567/80037
2Agriculture 19.29 26.92 121012/627350 186553/692891
3Forest 49.16 27.87 173880/353719 69480/249319
AWater 9.72 32.23 2206/22701 9747/30242

58




4. Results and Discussion

Class Prod. Acc. User Acc. Prod. Acc. User Acc.
(Percent) (Percent) (Pixels) (Pixels)
Unclassified 99.67 100 194272/194906 194272/194272
1Artificial 29.32 47.56 23470/80037 23470/49353
2Agriculture 73.08 80.71 506338/692891 506338/627350
3Forest 72.13 50.84 179839/249319 179839/353719
4Water 67.77 90.28 20495/30242 20495/22701

Table 9 Confusion matrix MODIS 2000 multitemporal using Maximum Likelihood classification algorithm versus CLC2000 ‘ground truth’

Overall Accuracy = (1053280/1247395) = 84.44%

Kappa Coefficient = 0.7402

Ground Truth (Pixels)

Class UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST AWATER Total
Unclassified 194272 0 0 0 0 194272
1Artificial 351 20327 6204 1426 2590 30898
2Agriculture 17 57190 629863 56802 6195 750067
3Forest 5 2346 56677 190960 3599 253587
AWater 261 174 147 131 17858 18571
Total 194906 80037 692891 249319 30242 1247395

Ground Truth (Percent)

Class UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST AWATER Total
Unclassified 99.67 0 0 0 0 15.57
1Artificial 0.18 254 0.9 0.57 8.56 2.48
2Agriculture 0.01 71.45 90.9 22.78 20.48 60.13
3Forest 0 2.93 8.18 76.59 11.9 20.33
AWater 0.13 0.22 0.02 0.05 59.05 1.49
Total 100 100 100 100 100 100
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Class Commission Omission Commission Omission
(Percent) (Percent) (Pixels) (Pixels)
Unclassified 0 0.33 0/194272 634/194906
1Artificial 34.21 74.6 10571/30898 59710/80037
2Agriculture 16.03 9.1 120204/750067 63028/692891
3Forest 24.7 23.41 62627/253587 58359/249319
4Water 3.84 40.95 713/18571 12384/30242
Class Prod. Acc. User Acc. Prod. Acc. User Acc.
(Percent) (Percent) (Pixels) (Pixels)
Unclassified 99.67 100 194272/194906 194272/194272
1Artificial 254 65.79 20327/80037 20327/30898
2Agriculture 90.9 83.97 629863/692891 629863/750067
3Forest 76.59 75.3 190960/249319 190960/253587
4Water 59.05 96.16 17858/30242 17858/18571
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4.2.2.2. Validation of object-wise result

As predictable, the land cover classification for which the unit of analysis has been
‘upgraded’ from the pixel to CORINE’s object level showed generally higher
accuracies compared to the original pixel-based result. A close look to the confusion
matrix in Table 10 reveals an overall accuracies of 87.88%, about 4 percentage points
higher than for the original pixel based classification. A kappa coefficient of 0.796
confirms a high degree of agreement between this classification and the reference
dataset including the off-diagonal values in the calculation. When looking at the class
specific figures it is observable how very high accuracies are obtained from the user
as well as from the producer stand point for the two vegetation classes and for the
water class. Accuracies for these classes range from 73 to 97 percentage points. On
the other hand figures for the urban class reflect once more its exceptionality; for this
class the confusion matrix reveals a very high user accuracy (97.32%), resulting in
almost no commission error and a very low producer accuracy (18.37%) underlying
the significance of the omission error. These outcomes can be explained if we
consider that the urban class is among all land cover categories the one characterized
by smaller and typically scattered objects. In view of this, when applying the majority
rule based on CORINE’s polygons, urban pixels are more likely to be lost prompting
an underestimation of urban areas in the study region (see Figure 7). In summary,
when comparing the pixel- with the object-wise result, for the latter one an overall
decrease of the salt-and-pepper effects and the creation of more homogeneous land
cover segments are observable. This development is considered positive as the salt-
and-pepper effect is generally to be attributed to noise rather than to real land cover
distribution patterns. Nevertheless, not all classes seam to benefit equally from the
thematic aggregation. For land cover categories such as agriculture, forest and water
an improvement in the agreement with CORINE’s map is observed. Regrettably, the
divergence becomes larger in the case of the urban class; the percentage of pixels
being correctly identified descending from 25.40 to 18.37 when going from the pixel-

level to the object-level classification.
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Classification Legend

Unclassified
1. Artificial Surfaces

2. Agricultural Areas

3. Forest and seminatural Areas

4. Wetlands & 5. Water bodies

Figure 7 Classification image MODIS 2000 multitemporal dataset resampled to CORINE’s
polygon level by means of zonal majority rule
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Table 10 Confusion matrix ‘object-based’ MODIS 2000 multitemporal classification versus CLC2000 ‘ground truth’

Overall Accuracy = (1096269/1247395)= 87.8847%

Kappa Coefficient = 0.796

Ground Truth (Pixels)

Class UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST AWATER Total
Unclassified 203690 0 0 0 0 203690
1Artificial 0 14672 135 108 161 15076
2Agriculture 0 64388 654814 40552 7291 767045
3Forest 0 703 36616 201049 668 239036
4Water 0 123 182 199 22044 22548
Total 203690 79886 691747 241908 30164 1247395
Ground Truth (Percent)

Class UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURE 3FOREST AWATER Total
Unclassified 100 0 0 0 0 16.33
1Artificial 0 18.37 0.02 0.04 0.53 1.21
2Agriculture 0 80.6 94.66 16.76 24.17 61.49
3Forest 0 0.88 5.29 83.11 2.21 19.16
4Water 0 0.15 0.03 0.08 73.08 1.81
Total 100 100 100 100 100 100
Class Commission Omission Commission Omission

(Percent) (Percent) (Pixels) (Pixels)
Unclassified 0 0 0/203690 0/203690
1Artificial 2.68 81.63 404/15076 65214/79886
2Agriculture 14.63 5.34 112231/767045 36933/691747
3Forest 15.89 16.89 37987/239036 40859/241908
4Water 2.24 26.92 504/22548 8120/30164
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Class Prod. Acc. User Acc. Prod. Acc. User Acc.
(Percent) (Percent) (Pixels) (Pixels)
Unclassified 100 100 203690/203690 203690/203690
1Artificial 18.37 97.32 14672/79886 14672/15076
2Agriculture 94.66 85.37 654814/691747 654814/767045
3Forest 83.11 84.11 201049/241908 201049/239036
AWater 73.08 97.76 22044/30164 22044/22548
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4.2.3. Supervised Classification MODIS 1990

A visual analysis of the MODIS 1990 simulated classification of Figure 8 reveals that
scenes have been classified independently from one another, evident from the border
lines recognizable when passing from one scene to the other. This unavoidable detail
can certainly be identified as the main weaknesses of this thematic product.
Nevertheless looking at Table 11, the accuracy assessment based on the CLC1990
dataset identifies this as being the best classification product in the present material,
with a 95.39% overall accuracy and a kappa coefficient equal to 0.868. The negative
note which once again characterizes also this classification results is the accuracy
reached for the urban class, which from the producer point of view is of 45.58%
whereas from the user point of view of 41.49%. Commission and omission errors for
this class are of the same magnitude underlying the fact that a bit more than half of
the pixels are mis-classified (wrongly committed 58.51%, wrongly omitted 54.42%).
Generally, the considerations drawn in section 4.2.2., for the MODIS 2000
classification, do apply to the 1990 classification as well and thus will not be repeated

at this stage.

What has to be emphasized here is the fact that an overall better performance of the
classification algorithm is observed for the 1990 classification. The fact that the
classified area for 1990 is of slightly smaller extent (due to Landsat scene coverage) is
not believed to be at the origin of this difference. Instead, the question resurfaces on
how accurate the MODIS 1990 simulation has been, giving rise to the hypothesis that
the resulting product still closely resembles a Landsat dataset. Considering the fact
that, although the same classification strategy has been adopted, the 1990
classification gave far better results compared to the 2000 classification (K;999= 0.868,
K2000= 0.593) this does not seams a very remote possibility. What is hypothesized is
that the chosen simulation technique missed to model some aspects which
differentiate Landsat and MODIS recording and that those aspects are at the origin of
the different classifier performance. Moreover, the different pre-processing data have
been undergoing prior to distribution is believed to have introduced additional
discrepancies. However, no explanation for this difference is evident, and there

remains a need for further investigation.
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Classification Legend
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Figure 8 Classification image MODIS 1990 simulated dataset using Maximum Likelihood
classification algorithm
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Table 11 Confusion matrix MODIS 1990 simulated using Maximum Likelihood classification algorithm versus CLC1990 ‘ground truth’

Overall Accuracy = (4491721/4708704)= 95.3919%

Kappa Coefficient = 0.8684

Ground Truth (Pixels)

Class UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURAL 3FOREST AWATER Total
Unclassified 3730790 0 0 0 0 3730790
1Artificial 0 29871 34890 4160 3073 71994
2Agriculture 0 33459 555003 88596 5931 682989
3Forest 0 1866 42583 161088 1139 206676
4Water 0 345 493 448 14969 16255
Total 3730790 65541 632969 254292 25112 4708704
Ground Truth (Percent)

Class UNCLASSIFIED 1ARTIFICIAL 2AGRICULTURAL 3FOREST AWATER Total
Unclassified 100 0 0 0 0 79.23
1Artificial 0 45.58 5.51 1.64 12.24 1.53
2Agriculture 0 51.05 87.68 34.84 23.62 14.5
3Forest 0 2.85 6.73 63.35 4.54 4.39
4Water 0 0.53 0.08 0.18 59.61 0.35
Total 100 100 100 100 100 100
Class Commission Omission Commission Omission

(Percent) (Percent) (Pixels) (Pixels)
Unclassified 0 0 0/3730790 0/3730790
1Artificial 58.51 54.42 42123/71994 35670/65541
2Agriculture 18.74 12.32 127986/682989 77966/632969
3Forest 22.06 36.65 45588/206676 93204/254292
4Water 7.91 40.39 1286/16255 10143/25112
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Class Prod. Acc. User Acc. Prod. Acc. User Acc.
(Percent) (Percent) (Pixels) (Pixels)
Unclassified 100 100 3730790/3730790 3730790/3730790
1Artificial 45,58 41.49 29871/65541 29871/71994
2Agriculture 87.68 81.26 555003/632969 555003/682989
3Forest 63.35 77.94 161088/254292 161088/206676
AWater 59.61 92.09 14969/25112 14969/16255
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4.3. Change Detection

In this chapter the results of the change detection will be discussed based on the
change reports which can be found in Table 12 and Table 13. The two change
detection procedures respectively based on the simulated MODIS 1990 image and the
CORINE 1990 database as time one data are discussed separately for clarity reasons,
although we will see that they reflect similar conclusions. It should be remembered
that for the proposed study a post-classification change detection techniques has been
chosen, therefore any outcome at this stage has to be seen in the wake of the

considerations drawn from the classification results.

4.3.1. Time one image: simulated MODIS 1990 classification

In the following we discuss the change detection as performed from the simulated
MODIS 1990 classification image to the June MODIS 2000 classification image.
Taking a closer look at the change report figures in Table 12, we can see how from the
pixels initially labelled as urban only 31.13% maintained their class label in the Final
State image, whereas 59.45% apparently changed into agriculture. This result
underlines a decrease of the urban land cover in the study area which is quantified by

an Image Difference value of -36.52% obtained via equation (6) (RSI-ENVI, 2006).

(FinalSTATE — InitialSTATE) _ 100 - (45260 —71294)
Initial STATE 71294

¥100 = —36.516 (6)

The hereby proposed scenario of a recession of the urban class in the study area can
certainly be termed erroneous based on prior knowledge about the site and on
recognized development trends for the urban class in general. Having acknowledged
this, it becomes interesting for this study and for further research to understand the

causes behind such an output.

Justifications can be found by linking the abovementioned change figures with the
classification results. The confusion matrix presented in Table 11 for the 1990

classification sees about 45.58% of pixel correctly labelled as urban. On the other
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hand, when looking at the 2000 classification matrix for the single-date image (Table

8) only 29.32% of the urban pixels have been recognized by the classifier.

Consequently, the already high omission error observed for the urban class in the

1990 classification (54.42%) increases even more in the 2000 classification rising up

to 70.68%. It follows that, when performing change detection the result can not show

anything else than a loss in urban area. The ‘Class Changes’ value of 68.87% for the

urban class once more confirms the responsibility of the classification procedures in

misleading the change detection outcome.

Table 12 Change Report for unitemporal approach (time one image: simulated MODIS 1990
classification; time two image: original MODIS 2000 classification)

Pixel Counts

1Artificial | 2Agriculture | 3Forest | 4Water | Row Total | Class Total
Unclassified 0 0 0 0 0 322504
1Artificial 22192 20263 1019 1786 45260 45260
2Agriculture 42383 476338 40580 648 559949 559949
3Forest 5742 163824 135172 696 305434 305434
4Water 977 666 146 | 12459 14248 14248
Class Total 71294 661091 176917 | 15589 0 0
Class Changes 49102 184753 41745 3130 0 0
Image Difference -26034 -101142 128517 -1341 0 0
Percentages

1Artificial | 2Agriculture | 3Forest | 4Water | Row Total | Class Total
Unclassified 0 0 0 0 0 100
1Artificial 31.127 3.065 0.576 | 11.457 100 100
2Agriculture 59.448 72.053 22.937 4.157 100 100
3Forest 8.054 24.781 76.404 4.465 100 100
4Water 1.37 0.101 0.083 | 79.922 100 100
Class Total 100 100 100 100 0 0
Class Changes 68.873 27.947 23.596 | 20.078 0 0
Image Difference -36.516 -15.299 72.643 | -8.602 0 0
Area (Square Km)

1Artificial | 2Agriculture | 3Forest | 4Water | Row Total | Class Total
Unclassified 0 0 0 0 0 20156.5
1Artificial 1387 1266.44 63.69 | 111.63 2828.75 2828.75
2Agriculture 2648.94 2977113 | 2536.25 40.5 | 34996.81 34996.81
3Forest 358.88 10239 | 8448.25 43.5 | 19089.63 19089.63
4Water 61.06 41.63 9.13 | 778.69 890.5 890.5
Class Total 4455.88 41318.19 | 11057.31 | 974.31 0 0
Class Changes 3068.88 11547.06 | 2609.06 | 195.63 0 0
Image Difference | -1627.13 -6321.38 | 8032.31 | -83.81 0 0
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In the attempt to interpret the just reported results a number of considerations come
into mind. A decrease in the area of urban land cover successfully recognized by the
classifier, was expected as a result of coarsening the resolution (Pax-Lenney and
Woodcock, 1997a) and consequently as well a decrease of the change detectable for
this class could be anticipated. The loss of information resulting from a ‘coarsening’
of the spatial resolution would not represent a source of concern if interesting equally
the 1990 as well as the 2000 MODIS classification. Regrettably, from what reported
by the classification accuracy matrixes in Table 11 and Table 8 and by the change
report of Table 12 it appears instead to be more pronounced in the time two
classification triggering therefore a decrease of the urban class when performing
change detection. As emphasized is section 4.2.3. the underlining explanation is

believed to be found in the simulation process of the MODIS data for the year 1990.

4.3.2. Time one image: CLC1990 dataset

4.3.2.1. Pixel-wise approach

In the following chapter we discuss the change detection as performed from CLC1990
dataset to the classification image obtained from the MODIS 2000 multitemporal
dataset. The change report in Table 13 shows how only 26.69% of the urban pixel
preserved their class label whereas 70.18% supposedly changed to agriculture. These
results, which apparently worsen compared to the previous case, can again be inferred
from the classification outcome of the MODIS 2000 multitemporal dataset (see Table
9) for which only 25.40% of the urban pixel have been correctly identified, making a
loss of urban pixels predictable when taking as Initial State classification image the

CLC1990 dataset.

Table 13 Change Report for multitemporal approach (date one image: CLC1990
classification; date two image: MODIS 2000 multitemporal classification)

Pixel Counts

1ARTIFICIAL | 2AGRICULTURAL | ,oop-or | 4WATER BODIES Row Class

SURFACES AREAS & WETLANDS Total Total
Unclassified 0 0 0 0 0 193428
1Artificial 20199 6465 1418 2771 30853 30853
2Agriculture 53124 624231 64545 8603 750503 750503
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3Forest 2200 50208 | 197525 4131 | 254064 254064
4Water 165 120 82 18180 18547 18547
Class Total 75688 681024 | 263570 33685 0 0
Class 55489 56793 66045 15505 0 0
Changes
Image -44835 69479 -9506 -15138 0 0
Difference
Percentages
1ARTIFICIAL 2AGRICULTURAL 3FOREST AWATER BODIES Row Class
SURFACES AREAS & WETLANDS Total Total
Unclassified 0 0 0 0 0 100
1Artificial 26.687 0.949 0.538 8.226 100 100
2Agriculture 70.188 91.661 | 24.489 25.54 100 100
3Forest 2.907 7.372 | 74.942 12.264 100 100
AWater 0.218 0.018 0.031 53.971 100 100
Class Total 100 100 100 100 0 0
Class 73.313 8.339 | 25.058 46.029 0 0
Changes
Image -59.237 10.202 | -3.607 -44.94 0 0
Difference
Area (Square Km)
1ARTIFICIAL 2AGRICULTURAL 3FOREST 4WATER BODIES Row Class
SURFACES AREAS & WETLANDS Total Total
Unclassified 0 0 0 0 0| 12089.25
1Artificial 1262.44 404.06 88.63 17319 | 192831 | 1928.31
2Agriculture 3320.25 39014.44 | 4034.06 537.69 | 46906.44 | 46906.44
3Forest 137.5 3138 | 12345.31 258.19 15879 15879
AWater 10.31 75 5.13 113625 | 1159.19 | 1159.19
Class Total 4730.5 42564 | 16473.13 2105.31 0 0
Class
Changes 3468.06 3549.56 | 4127.81 969.06 0 0
Image -2802.19 4342.44 -594.13 -946.13 0 0
Difference

Several reasons make it not advisable to directly analyze change in land-cover data

based on heterogeneous sources on a pixel-by-pixel basis (Bergen et al., 2005); for

the present study in particular six reasons are believed to be determinant. First, the

underlying spatial scales of the two datasets were different. The data representing land

cover in 1990 were based on CORINE 1990 database, this means data were vector-

digitized based on 30m pixel images (Landsat) at 1:100.000 scale and successively

aggregated to 250m; on the other hand the MODIS data representing the land cover in
2000 are based on 250m pixels. Additionally, CORINE’s dataset has initially been

stored in vector format and only in a second step converted to raster format with the

typical bias introduced by this process; while MODIS based classification have not

undergone any intermediate format conversion. Third, the spectral characteristics of
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the two datasets were different. CORINE 1990 dataset was interpreted based on
information from the visible (0.45-0.69 um) and infrared (0.76-0.90, 1.55-1.74, 2.08-
2.35 um) part of the EM spectrum, whereas the MODIS finest spatial resolution
product comprises the red band (0.62-0.67 um) and the near infrared band (0.84-0.88
um). Third, the original data behind the CORINE and the MODIS classifications have
probably undergone different preprocessing (topographic normalization, atmospheric
correction, etc.) which has lead to a slightly different information content being
elaborated. Fourth, the signal as contained by any given MODIS pixel may actually
include some ‘‘bleeding’’ or contamination from adjacent pixels (Bergen et al., 2005),
effect that varies significantly with the changing of the pixel size. Moreover, as
emphasized in section 3.4.4., spatial mis-registration is expected to occur between the
two datasets. Last but not least, the two thematic datasets have been obtained by
means of a different methodological approach: while CORINE’s land cover maps
have been created by visual interpretation on the object level, MODIS classification is

obtained by means of an automatized pixel-based classification approach.

For what concerns the last point, an attempt has been made to narrow the discrepancy
between the two datasets by resampling the pixel-based MODIS 2000 classification to
CORINE’s polygons level. Results of this approach are presented in the following

section.

4.3.2.2. Object-wise approach

The change detection results, obtained using as time 2 image the MODIS 2000
multitemporal classification resampled to CORINE’s object level, are summarized in

Table 14.

Table 14 Change Report for multitemporal approach (date one image: CLC1990
classification; date two image: ‘object-based” MODIS 2000 multitemporal classification)

Pixel Counts

1Artificial | 2Agriculture | 3Forest | 4Water | Row Total | Class Total
Unclassified 0 0 0 0 0 179455
1Artificial 14651 422 109 164 15346 15346
2Agriculture 60275 654916 46059 9996 771246 771280
3Forest 673 27818 227779 934 257204 257260
4Water 112 41 61 23702 23916 24054
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Class Total 75711 683197 274008 34796 0 0
Class Changes 61060 28281 46229 11094 0 0
Image Difference -60365 88083 -16748 | -10742 0 0
Percentages

1Artificial | 2Agriculture | 3Forest | 4Water | Row Total | Class Total
Unclassified 0 0 0 0 0 100
1Artificial 19.351 0.062 0.04 0.471 100 100
2Agriculture 79.612 95.86 16.809 | 28.727 99.996 100
3Forest 0.889 4.072 83.129 2.684 99.978 100
4Water 0.148 0.006 0.022 | 68.117 99.426 100
Class Total 100 100 100 100 0 0
Class Changes 80.649 4.14 16.871 | 31.883 0 0
Image Difference -79.731 12.893 -6.112 | -30.871 0 0
Area (Square Km)

1Artificial | 2Agriculture | 3Forest | 4Water | Row Total | Class Total
Unclassified 0 0 0 0 0 11215.94
1Artificial 915.69 26.38 6.81 10.25 959.13 959.13
2Agriculture 3767.19 40932.25 | 2878.69 | 624.75 | 48202.88 48205
3Forest 42.06 1738.63 | 14236.19 58.38 | 16075.25 16078.75
4Water 7 2.56 3.81 | 1481.38 1494.75 1503.38
Class Total 4731.94 42699.81 | 17125.5 | 2174.75 0 0
Class Changes 3816.25 1767.56 | 2889.31 | 693.38 0 0
Image Difference | -3772.81 5505.19 | -1046.75 | -671.38 0 0

As expected, the visual analysis confirmed that the pixel-wise evaluation is much less
favourable and better indications of the detectable changes were obtained by
performing a polygon-wise analysis (Figure 10
Figure 10). This is understandable if we consider that, when aggregating to the object

level by means of a majority rule, those pixels which mainly represent noise in the

signal will be suppressed in the classification. Thus, only real changes and not

recording errors or disturbances, are likely to be represented by the change dataset.

A number of visual examples representing a comparison of results between both

approaches are presented in the following. The choice of the urban clusters presented

is random and only attempted to have a uniformly distributed sample of the major

cities located in the study area (Figure 9).
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Figure 9 Urban centres, for which a comparison between the pixel- and the object-level
change identification, has been performed.

PADOVA
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TORINO

MILANO

Figure 10 Sample of urban centres located within the study area. Satellite image: MODIS 2000 dataset
displayed in red-NIR-NIR layer combination. Left hand side: pixel-level results; Right hand side:
object-level results.
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5. Conclusions and Recommendations

5.1. Conclusions

The present material provides an approach for land cover mapping and monitoring on
the European scale exploiting medium resolution 250m MODIS data. The study
further aimed at assessing if such an approach could aid CORINE land cover database
update on the first nomenclature level. Particular relevance is there by given to the
results obtained for the urban land cover class (“Artificial Surfaces” in CORINE
Nomenclature). This is in consideration of the fact that dynamics occurring at the
urban scale represent one of the key pressures on biodiversity on which the
BIOPRESS initiative concentrates. From the results presented in previous sections of
this material, a number of conclusions have been reached which will be reported in

the following.

Results revealed the crucial role of spatial resolution, in general for land cover
mapping and change detection, and specifically for the urban class. From the
classification process, it appeared that the spatial resolution is more critical than the
spectral or temporal properties of the data for monitoring of urban land cover. This
can be explained with the lack of a clear ‘spectral urban signal’ as already underlined
by other authors (Herold et al., 2002a; Herold et al., 2002b) and due to the absence of
a seasonal dependency for this class which leads to no-improvement being detected
when exploiting a multitemporal dataset. Moreover, it was observed how the
coarsening of the resolution generally disfavours especially less represented and
fragmented classes leading to their underestimation in the final land cover map as

previously observed by Pax-Lenney and Woodcock (1997a).

The fact that some transformations will remain undetected when representing
Europe’s fragmented land cover by means of medium resolution data, compared to
representation obtainable from the higher resolution solutions, is beyond question.
However, it has to be understood that this does not speak against the use of coarser
spatial resolutions; it only suggests the necessary assumptions to be made when
interpreting the results. First and foremost, the scale at which those data should be

used and interpreted has to change. As a result of coarsening spatial resolution, the
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operational scale of the resulting thematic map has to adapt to grant consistency with
land cover maps derived from higher resolution solutions. Accordingly, also the size
and degree of recognizable change will shift to the corresponding scale level. What is
more, it is important to note that the so resulting product is not meant to be an areal
estimate for land cover change. In other words the change product can not be used as
such to quantify the exact amount of change that has occurred in that area it can only

be employed to signalize occurrence of land cover transformations.

For the present study the above considerations suggests that the validation against the
CORINE datasets should be taken as an indication of disagreement with another land
cover map more than as absolute inaccuracies. The risk of drawing wrong conclusions
when taking as absolute reference another land cover map originated from different
data and classification strategies is suggested by a comparable study conducted by
Gallego (2001) in which land cover maps based on higher resolution solutions were

compared against CLC datasets.

Having understood this, the disagreement between MODIS based classification results
and CLC thematic database is believed merely to underpin the different scale factor
and the different methodological approach. We have to remember that CORINE’s
classification has the object and not the single pixel as unit of analysis, thus reflects
the result of an object-oriented approach. When aggregating MODIS pixel-based
classification results to CORINE’s object level, an improvement of accuracy is
observable for all classes besides for urban. Once more the urban class is
underestimated due to the size and the scattered organization of its elements which are
being suppressed by other classes. Given the fact that a post-classification approach is
been adopted, those factors retained responsible for having mislead the comparability
of the classification outcome with CLC map, can equally be held responsible for

biasing the change analysis.

The answer to the question if medium resolution data hold potential for aiding
CORINE’s updating process as derived from the present material is twofold. On the
one hand, the difficulty of data integration coming from different sources and
characterized by different methodological approaches has to be recognized. This

material confirmed the inappropriateness of directly analyzing changes in land-cover
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data based on heterogeneous sources. On the other hand, MODIS data can very well
aid in land cover monitoring without claiming to be able to substitute higher
resolution data. The classification results obtained in this study are showing the
suitability of MODIS’ finest spatial resolution product for mapping CORINE’s level 1
Nomenclature classes, with higher accuracies reached for the agricultural and forest
categories. Moreover, the obtained change indication could function as a quick and
inexpensive means to identify time and locations where significant land cover
modification have occurred. MODIS change indication could then serve as an alarm
product reflecting the need for a new mapping endeavour based on high resolution

data.

Eventually, it can be concluded that the chosen study area can be considered
representative for land cover in Europe and therefore similar outcomes are expected in
other applications. The exploitation of medium resolution data (particularly MODIS
250m product) for land cover mapping and monitoring on locations characterized by
more homogeneous land cover patterns, such as for instance north American

landscapes, is expected to be even more successful.

5.2. Recommendations

Based on the indications obtained from the present material we recommend the

following to be considered for further research.

This study confirmed that for monitoring at a large scale (regional or global) based on
medium to coarse resolution satellite data, land cover changes are normally smaller
than or equivalent to the pixel scale and thus misregistration plays a crucial role in
their detection and over-/under- estimation. In view of this, methods should be
developed and implemented that aim at reducing registration inaccuracies between
time one and time two images. A number of authors have already engaged in such an
attempt and we refer to their work for further details (Brown, 1992; Stow, 1999;
Chalermwat, 1999).
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As extensively emphasized in section 5.1., the main source of bias affecting the
change detection processes is believed to rely in the lack of a suitable time one image.
The lack of MODIS data for the year 1990 has forced us to reach to simulation in one
case and to substitution by means of CORINE’s land cover 1990 dataset in the other.
Regrettably, none of the two options showed itself good enough to replace properly
the missing component and thus did not provide with an adequate time one image to
use in the change detection process. The time constrain characterizing this study
hindered a more sophisticated and thus accurate simulation of the MODIS data for the
year 1990; however the pursuing thereof is recommended for further research. First
and foremost, to improve the simulation process it is suggested to acquire the original
Landsat and MODIS images. Datasets which have been undergoing less possible
processing prior to distribution are expected to show a better correlation than has been

found in this study.

To compensate partly for the low spectral dimensionality of the 250m MODIS
product (only 2 bands) it is recommended to exploit the high temporal frequency with
which these data are made available. The fact that for the present study classification
results did not improve significantly for the multitemporal approach compared to the
single-date one could be related to the fact that only three images, respectively from
spring, summer and autumn, were used. The usage of a temporal profile
corresponding to an entire MODIS acquisition year should be investigated to improve

class discernability.

Last but not least, the introduction in 2002 of a new end-user value-added product of
the MODIS series of products, namely the Vegetative Cover Conversion (VCC)
product, will stimulate research in land cover monitoring by means of medium
resolution data. Nevertheless, further testing is believed to be needed before this

product can become fully operational.

Eventually, it is believed that the hereby gained understanding of the methodological
and validation requirements for mapping urban areas from medium resolution data
will provide a foundation for urban and urban growth mapping in the future. The
potential of the MODIS instrument and its suitability for the specific task has here by

been partly explored but much work can still be done in this regard.
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Appendix 1. MODIS Specifications

Orbit: 705 km, 10:30 a.m. descending node (Terra) or 1:30 p.m. ascending node (Aqua), sun-
synchronous, near-polar, circular
Scan Rate: 20.3 rpm, cross track
Swath 2330 km (cross track) by 10 km (along track at nadir)
Dimensions:
Telescope: 17.78 cm diam. off-axis, afocal (collimated), with intermediate field stop
Size: 1.0x1.6x1.0m
Weight: 228.7 kg
Power: 162.5 W (single orbit average)
Data Rate: 10.6 Mbps (peak daytime); 6.1 Mbps (orbital average)
Quantization: 12 bits
Spatial 250 m (bands 1-2)
Resolution: 500 m (bands 3-7)
1000 m (bands 8-36)
Design Life: 6 years
Primary Use Band Bandwidth® Spectral Required
Radiance? SNR?
Land/Cloud/Aerosols 1 620 - 670 21.8 128
Boundaries 2 841- 876 24.7 201
Land/Cloud/Aerosols 3 459 - 479 35.3 243
Properties 4 545 - 565 29.0 228
5 1230 - 1250 54 74
6 1628 - 1652 7.3 275
7 2105 - 2155 1.0 110
Ocean Color/ 8 405 - 420 44.9 880
gihg;gg'c"’;]”e"r;‘i’;‘t/ry 9 438 - 448 41.9 838
10 483 -493 321 802
11 526 - 536 27.9 754
12 546 - 556 21.0 750
13 662 - 672 9.5 910
14 673 - 683 8.7 1087
15 743 - 753 10.2 586
16 862 - 877 6.2 516
Atmospheric 17 890 - 920 10.0 167
Water Vapor 18 931 - 941 3.6 57
19 915 - 965 15.0 250
Primary Use Band Bandwidth® Spectral Required
Radiance? NE[delta] T(K)*
Surface/Cloud 20 3.660 - 3.840 0.45(300K) 0.05
Temperature 21 3.929 - 3.989 2.38(335K) 2.00
22 3.929 - 3.989 0.67(300K) 0.07
23 4.020 - 4.080 0.79(300K) 0.07
Atmospheric 24 4.433 - 4.498 0.17(250K) 0.25
Temperature 25 4.482 - 4,549 0.59(275K) 0.25

88




Appendix

Cirrus Clouds 26 1.360 - 1.390 6.00 150(SNR)
Water Vapor 27 6.535 - 6.895 1.16(240K) 0.25
28 7.175-7.475 2.18(250K) 0.25
Cloud Properties 29 8.400 - 8.700 9.58(300K) 0.05
Ozone 30 9.580 - 9.880 3.69(250K) 0.25
Surface/Cloud 31 10.780 - 11.280 9.55(300K) 0.05
Temperature 32 11.770 - 12.270 8.94(300K) 0.05
Cloud Top 33 13.185 - 13.485 4.52(260K) 0.25
Altitude 34 13.485 - 13.785 3.76(250K) 0.25
35 13.785 - 14.085 3.11(240K) 0.25
36 14.085 - 14.385 2.08(220K) 0.35

"Bands 1 to 19 are in nm; Bands 20 to 36 are in um

2 Spectral Radiance values are (W/m? -pm-sr)

% SNR = Signal-to-noise ratio

* NE(delta)T = Noise-equivalent temperature difference

Note: Performance goal is 30-40% better than required

Appendix 2. Equation for the conversion of radiance to apparent reflectance and
explanation of its input parameters (Landsat 7 Science Data Users Handbook:
(http://Itpwww.gsfc.nasa.gov/IAS/handbook/handbook htmls/chapterl1/chapterl1.ht
ml)

APPARENT REFLECTANCE:
L, *d?
p =
" ESUN ,*cosd,

EARTH-SUN DISTANCE IN ASTRONOMICAL UNITS:
d = (1-0.016729 * cos(0.9856(DOY — 4)))

Scene Calendar date (dd/mm/yyyy) Ju(lgg;d{a)lte
™™ 192 029 07/08/1991 219
TM 193 028 16/08/1992 229
T™ 193 029 12/09/1990 255
T™M 194 028 31/08/1989 243
T™™ 194 029 04/07/1991 185
Scene Calendar date (dd/mm/yyyy) Julian date
ETM 192 029 20/06/2000 172
ETM 193 028 13/09/1999 172
ETM 193 029 01/08/2001 213
ETM 194 028 21/06/2001 172
ETM 194 029 22/09/2000 266
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Appendix

MEAN SOLAR EXOATMOSPHERIC IRRADIANCE:

Sensor Band ESUN (W/m”2*um)
™ ; 036

: s
SOLAR ZENITH ANGLE:

®=x*(90.0 - sun elevation) / 180.0

Appendix 3. Landsat TM scenes after preprocessing (from left upper row to right
lower row: 194 028, 193 028, 194 029, 193 029, 192 029)

[y
Pixel Size 30 meters [
Projection Albers Conical Equal Area d____‘L__ 0 4404
Datum  WGS 72 “1.-" [ FH Im
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Appendix 4. MODIS 2000 June image after preprocessing

Pixel Size 250 meters N
Projection Albers Conical Equal Area / a 25000
Datum  WGS 72 = L P Im
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Appendix 5. IDL Script used for Landsat’s radiometric calibration (created by Allard
de Wit in 2000 and adjusted for the purpose of this study)

FRO cgi_envi_ processzor DH to_ref

;Select input file (NDVI or something else)
envi_s=select. title='Select Input Filename'K {id=infid, pos=inpo=, dims=dins

IF (infid =g -1} THEW RETUEN

JCuery input file for information {lines. columns. band=s. etc)
envi_file_guery. infid, dats_type=data_type., =start=zstart.$
vatart=y=ztart. interleave=interleawve. nb=nb. nl=nl. ns=ns

map_info= (fid=infid)}
proj_info= (fid=infid)}
cutfilel= (filter='= img'., title='Select Output File!')}

IF (outfilel eq '') THEN RETURN
OFENW, unitl, outfilel, ~GET_LUN

;Open input files and initiali=e tiling
interleave=1
tile idl = (infid., inpos. num_tiles=num_tiles. interleave=interleave)

;Initiali=se reporting

retr=[ 'Proces=ing: ', 'Output to : '4+outfilel]

envi_report_init, rstr, title="Processing", base=ba=e. ~interrupt

envi_report_inc, base, num_tiles

pi=3.141592654

LMAX=157.400

LMIN=-5.100

gain={LMAX-IMIN ) 255

bia==LHINH

ESTUN=1044 :TH =olar exocatmospheric spectral irradiance band specific (from paper)
Do¥=256;Day 0Of the Year following the Julian calendar scene specific (=== Excel file)
=u=44 67 : Sun elewation angle from header file =s=cene specific (see Excel file)
d=(1-0.016729%®C0S(0.9856*(D0¥-4))) : Earth—-=s=un distance in astronomical unit=s (from paper)
theta=pi*({90-=u)-180 ; Solar zenith angle in degrees

;Hain processing loop

FOR i=0L, num_tiles—1 DO BEGIN
envi_report_stat base., 1. num_tiles
data = (tile 1dl. 1)
rad= gain*data + bias
result =({pi*rad=d"2)-ESUN*COS({ theta)
WRITED,. unitl. result

ENDFOR

envl_report_init, base=ba=ze, ~finish

envi_tile done, tile_idl

CLOSE, unitl

FREE IUH., unitl

data_tvyvpe = SIZE(result., ~TYPE)

envi_=setup _head, frname=outfilel. n==n=. nl=nl. nb=nb. 3
data_type=data_tvpe, offset=0, interleave=interleave. &
¥ztart=Estart+dimn=[1]. w=start=v=start+dim=[3]. 5
descrip='Inage converted to radiance'. ~write., ~opsn. %
map_info=map_info

ENRD
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Appendix 6. CORINE Land Cover Nomenclature

Level 1

Level 2

Level 2

1. Ardificial surfaces

1.1, Urban fabric
1.2, Industrial, commercial
and transport units
1.3. Mines. dumps and constructlon

sites

1.4, Artlflcial non-agriculiural
vegetated areas

1.1.1. Continuous ueban fabrie
1.1.2. Discontinuous urban Fabric
1.2.1. Industrial o1 commercial units
1.2.2. Road and rall nebworks and assoctared land
1.2.3. 5ea ports

124, Adrport

1.3.1. Mineral extracton site

1.3.2. Dump

1.3.3, Constructlon site

1.4.1. Green urban areas

1.4.2 Sport and leisure facilities

2. Agricultural areas

2.1 Arahle land

2 2. Permanent crops

2.3, Pastures
2 4. Heterogeneous agricultural areas

2.1.1. Mon freigated arable land

2.1.2. Permanently rigated land

2.1.3. Rire flelds

2.2 1 ¥Vineyards

2.2.2. Fruit trees and berries plantatlons

2.2.3. Olives groves

2.3.1. Pastures

2.4.1. Annual crops assoclated with permanent crops

242 Camplex cultivation patterns

2.4.3, Land principally cccupled v agriculture. with
significant areas of natural vegetatlon

2.4.4. Agro-forestries areas

3. Forest and seml
natural areas

i

—

. Forests

3.2 Scrub andfor ierbaceots
vegetation assoclatlons

33, Open spaces with Urtle
or no vegetaclon

3.1.1. Broad leaved-forest

3.1.2. Coniferous forest

3.1.3. Mixed forest

3.2.1. Matural grassland

3.2.2 Moors and hearhlands

3.2.3. Sclerophylous vegetation
3.2.4. Transitional woodland-scrub
3.3.1. Beaches, dunes.sand

3.3.2. Bare racks

3.3.3. Sparsely vegetated areas
3.3.4 Burnt areas

3.3.5. Glacier and permanent snov-flelds

4 Wetlands

41, Inland wetlands

—

42 Coastal werlands

4.1.1. Inland marshes
4.1.2. Peat bogs
4.2 .1 Salt marshes
4.2.2 Salines

4.2.3. Intertidal flats

5. Water bodies

5.1. Continental waters

—

5.2, Marlne waters

5.1.1. Stream courses
5.1.2. Water bodies
5.2.1. Coastal lagoons
3.2.2 Estuarles

3.2.3 Sea and ocean
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Appendix 7. Scatterplot ETM+ (X) plotted against MODIS 2000 (Y).
(A) Red band, (B) Near Infrared band
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