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Foreword 
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Abstract 
 
The aims of this study were to provide insight in the relationship between mountain 
topography and forest distribution at alpine treelines; to use this description to obtain a 
better insight in the processes and conditions influencing forest distribution at alpine 
treelines; and the design of a consistent method which could be used to compare forest 
distribution at alpine treelines between different areas. 
A Landsat ETM+ image and an SRTM DEM of Sangay National Park, Ecuador, were 
used to derive forest distribution at treeline and several topographical and environmental 
indices. These variables were related to forest distribution by means of a logistic 
regression approach. The model used for prediction was cross-validated in the training 
area, and applied in a different study area nearby. 
Forest distribution was mainly explained by altitude, topographic wetness (CTI), 
eastness and erosion potential (STCI). Predictive accuracy of the model ranged from 
74.2 % to 84.0 % in the test and the training area. The test area has more human impact, 
which probably explains the over-estimation of forest there.  
The logistic regression approach is suitable for discriminating the relative importance of 
the variables. The ecological meaning of some variables is hard to assess, because they 
affect several biophysical factors. The method developed during this research allows a 
quick investigation of factors with potential influence on alpine forest distribution, by 
using inexpensive and easy to obtain Landsat and DEM imagery. It also allows for a 
rapid comparison of forest distribution between different areas and the localization of 
potential disturbances. 
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1 Introduction 

1.1 Alpine treeline 

Treelines form a sudden transition from a habitat which sustains tree growth to a 
habitat which contains environmental constraints for tree growth. Throughout the 
world, treelines occur at a great variety of environmental gradients: e.g. thermal, 
drought, waterlogging, nutritional and salt stress gradients (Körner, 1998). The 
high altitude transition zone from montane forest (trees) to low alpine vegetation 
(grasses, shrubs, cushion plants) is defined as the alpine treeline ecotone, or 
‘alpine treeline’ for short. 
The alpine treeline is an intensively studied landscape boundary. An important 
reason for this is the potential sensitivity of the alpine treeline to climate change, 
induced by processes such as global warming. Several authors have investigated 
the relationship between shifting positions of alpine treelines and changing 
climate (Camarero & Gutiérrez, 2004; Daniels & Veblen, 2004; Dullinger et al., 
2004; Hansen et al., 2001; Moen et al., 2004). Alpine treelines could be useful as 
indicators of changing global climate, but there still remains much uncertainty 
about the (interacting) factors influencing tree growth at high altitude (Kupfer & 
Cairns, 1996). Moreover, most of these studies in alpine regions have focused on 
mid- and high-latitude mountain areas. Data from tropical regions are generally 
lacking (Hoch & Korner, 2005; Körner, 1998).  
It is often assumed that one of the main limitations for tree growth at alpine 
treelines is available warmth (Daniels & Veblen, 2004; Körner, 1998), but there 
are also other factors used to explain variations in treeline position; for example 
soil properties, moisture, snow cover, geomorphic processes, and, not to forget, 
human influence (Allen & Walsh, 1996; Hoersch et al., 2002; Körner, 1998; 
Stevens & Fox, 1991). Human influences such as anthropogenic burning and 
cattle grazing have a serious impact on treelines around the world. In some cases, 
natural, climatic treelines are even substituted by anthropogenic treelines. It is 
often difficult to discriminate between natural treelines and treelines which are 
limited in altitude due to human impact (Holtmeier & Broll, 2005; Kjällgren & 
Kullmann, 1998; Körner, 1998). 
Insight is needed in the factors, influencing tree establishment at the uppermost 
limits of forest growth, to better understand the causes of alpine treeline and its 
spatio-temporal behaviour. Since there is a lack of research performed in tropical 
regions, this study focuses on providing insight in the factors influencing forest 
distribution at tropical alpine treelines. 

1.2 Topography 

Insight in the relation between forest distribution at alpine treeline and mountain 
topography will help to understand the processes and conditions that are 
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important for treeline occurrence. Despite the large amount of research that has 
been performed on the influence of topography on vegetation status and tree 
establishment, there still remains a great deal of uncertainty about the influences 
of topographic factors on the spatial distribution of forest at alpine treeline 
position, especially in the tropics. 

Topography is a factor that has been used by several authors to explain, predict 
or model vegetation growth near the alpine treeline border (Brown, 1994; 
delBarrio et al., 1997; Dirnböck et al., 2003; Hoersch et al., 2002; Horsch, 2003; 
Paulsen & Korner, 2001). In most cases, the authors used a digital elevation 
model (DEM) to derive topographic variables. Hoersch et al. (2002) state an 
important reason for using a DEM instead of using spatial information that 
directly influences tree establishment: “as spatial information on site factors is 

commonly lacking in mountain areas, the use of a DEM is a potential substitute 

for use in vegetation analyses, as it highly correlates with temperature, moisture, 
geomorphological processes and disturbance factors”. 
First of all, this statement brings up the theory of topography being a factor 
having a strong indirect influence on vegetation growth because of its influence 
on parameters like temperature, available radiation, precipitation, air and soil 
temperature, soil moisture and nutrients, snow accumulation, wind etc. (Allen et 

al., 1995; Bian & Walsh, 1993; Butler et al., 1994; Kjällgren & Kullmann, 1998; 
Paulsen & Korner, 2001; Walsh et al., 2003). A landscape with a spatially 
heterogeneous topography will therefore result in highly variable habitat 
conditions (Horsch, 2003). 
Secondly, this statement brings forward the difficulty of obtaining environmental 
data in remote, mountainous areas. Direct factors such as climatic factors are 
usually measured as point data. To obtain a spatial distribution, this point data 
has to be interpolated. The resolution of factors derived from point data is 
therefore not very high. An alternative is to predict vegetation distribution by 
means of indirect factors (i.e. topographic variables) derived from a spatially 
continuous DEM (Guisan & Zimmermann, 2000). 
Authors that used DEM-derived topography to predict or explain vegetation 
distribution at alpine treelines developed their methods mostly in temperate 
regions. In these regions vegetation is subject to seasonal differences and various 
topography-related factors not encountered in tropical, equatorial regions: e.g. 
snow accumulation and variation in solar irradiation due to north-south aspect 
(Brown, 1994; delBarrio et al., 1997; Dirnböck et al., 2002; Hoersch et al., 2002; 
Horsch, 2003; Körner, 1998; Paulsen & Korner, 2001). We therefore expected to 
find different topography-treeline relationships in the tropics than have been 
found in temperate regions.  
Factors that probably influence vegetation at tropical alpine treelines are for 
example soil temperature, drought and radiant cooling at night (Ohsawa, 1990). 
Little is known about the impact of topography on these factors. Tropical alpine 
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treeline research could benefit greatly from a DEM-based approach for 
vegetation prediction since these regions generally have a shortage of high 
resolution field measurements of environmental factors. 
Previous studies often used static, statistical models based on factor (PCA) 
analysis (e.g. Horsch, 2003), ordination techniques such as canonical 
correspondence analysis (e.g. Dirnböck et al., 2003), discriminant analysis (e.g. 
delBarrio et al., 1997) and logistic regression analysis (e.g. Virtanen et al., 2004) 
to investigate the importance of topographical variables on vegetation 
distribution. The strength of these methods lies in the possibilities to explore 
individual relationships between the explanatory variables (topography) and the 
response variable (vegetation) (delBarrio et al., 1997). However, in case of factor 
analysis (in which the set of explanatory variables is reduced to a substitute set 
of factors by rotating and translating the coordinate system) it is often very hard 
to interpret the ecological meaning of the factors (Garson, 1998; Guisan & 
Zimmermann, 2000; Horsch, 2003). Canonical correspondence analysis and 
discriminant analysis usually involves assumptions (such as multivariate 
normality) which are often not met when using topographical variables 
(delBarrio et al., 1997; Garson, 1998; Press & Wilson, 1978). 
Logistic regression has the advantage of having coefficients that are relatively 
easy to interpret which supports the assessment of ecological meaning (Garson, 
1998). Furthermore, logistic regression avoids normality and linearity 
assumptions, which makes it a suitable method for dealing with variables that are 
not normally distributed or linearly related (Garson, 1998; Press & Wilson, 
1978). 

1.3 Aims & research questions 

This study aims at evaluating the potential use of vegetation modeling at tropical 
alpine treelines based on vegetation-topography relationships at landscape level.  
Hence, the objectives of this study are to: 
 

1) Provide insight in the relationship between forest distribution at alpine 
treelines and mountain topography.  

2) Use this description to obtain a better insight in the processes and 
conditions influencing forest distribution at alpine treelines. 

3) Design a consistent method which can be used to compare forest 
distribution at alpine treelines between different areas. 

 
The above research objectives result in several concrete research questions 
divided in ecological and methodological questions: 
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Ecological research questions 
a) What are the effects and relative importance of topography and 

topography-related environmental factors on the spatial distribution of 
forest at alpine treeline? 

b) What part of forest distribution at alpine treeline can be explained by 
topography and topography-related environmental factors? 

 
Methodological research questions 

c) Which topographical and topography-related environmental variables can 
be used in order to reach the first objective and how will they be derived? 

d) How can the relationship between these variables and forest distribution 
at alpine treeline be quantified? 

e) How does the method perform in a different area with a similar 
environment and how does it perform in an area with a different 
environment; i.e. how do the changed conditions affect the spatial 
distribution of forest? 

 
First, the statistical relationships between DEM-derived variables and forest 
distribution are explored. We use a logistic regression approach to build a model 
to explore the relationships between the topographic variables and to predict 
forest distribution at the alpine treeline in Ecuador.  
Next, the model derived from the statistical relationships is used in a different 
part of the study area where human impact is more intense, in order to predict 
potential forest distribution. 
 
The next chapter provides more detail about the material and methods used in 
this research. After that, the results are presented. We debate our findings in the 
chapter discussion and finish this report with the most important conclusions and 
some recommendations for further research. 
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2 Material & Methods 

2.1 Study Area 

The study area is located in the central Andes mountain region, about 20 km 
south-east of the city of Riobamba, Ecuador. It is part of Sangay National Park 
which is located between the three provinces Tungurahua, Chimborazo and 
Morono Santiago. This national park comprises approximately 540.000 ha. 
(Armstrong & Macey, 1979) 
Within the perimeters of the park, three main geomorphologic zones can be 
found: volcanic high Andes, eastern foothills and alluvial fans. The alpine 
treeline is located in the high Andes zone, which is characterized by a very 
heterogeneous landscape with steep valleys and high peaks. The main rivers are 
draining rapidly, and with high erosive power, to the east into the Amazon basin 
(UNEP-WCMC, 2005). 
The climate ranges from subtropical to temperate. The eastern slopes receive 
most rainfall (extremes of 5000 mm/year have been recorded) while the western 
slopes receive not more than 600 mm/year. The snowline occurs at 4800 m. 
(Armstrong & Macey, 1979; UNEP-WCMC, 2005). 

Figure 1: Vegetation types in the treeline transition zone; on the left we can see montane cloud forest, on the 
right tussock grasses 
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In the transition zone from forest to non-forest a number of vegetation types can 
be distinguished. Areas located above treeline altitude are mainly dominated by 
low growing species including grasses - such as Calamagrostis sp., Festuca sp. 

and Stipa sp. - and various shrubs and cushion plants (see figure 1). These 
grassland areas are also called ‘páramos’. They are found down to an altitude of 
3700 meters (Armstrong & Macey, 1979).  
Montane cloud forests are found approximately below 3750 meters (figure 2). 
Trees in the upper regions of this area are approximately 5 meters high and are 
dominated by species such as Escallonia myrtilloides and Gynoxys buxifolia. 
Trees in the lower regions reach heights of 12 meters. In these regions there is a 
greater variety of species, like Senecio vaccinoides, Diplostephium, Brachyotum, 

Hesperomeles, Buddleja, and Miconia (Armstrong & Macey, 1979; UNEP-
WCMC, 2005). 
 

Figure 2: high montane cloud forest in Sangay National Park. The transition from small trees to paramo 
grasslands is clearly visible.  

 
Inside Sangay National Park, two smaller areas were chosen as study area. One 
area is located North of Sangay volcano and is approximately 25 x 25 kilometers 
in dimension (north-west corner: 78º29' W, 1º46' S). This ‘training area’ was 
used to develop the model and to obtain knowledge about the factors influencing 
forest distribution inside the alpine treeline zone. The second area is 
approximately 30 x 30 km in dimension and is located more to the south (north-
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west corner: 78º35' W, 2º4' S). This ‘test area’ was used to apply the model and 
to test its performance (see figure 3).  

 
Figure 3: Map of Sangay National Park, Ecuador. 
The map shows the location of the ‘training area’ and the ‘test area’ inside Sangay National Park. The ‘training 
area’ is approximately 25 x 25 kilometers in dimension (north-west corner: 78º29' W, 1º46' S). The ‘test area’ 
is approximately 30 x 30 km in dimension (north-west corner: 78º35' W, 2º4' S). 
The map is drawn upon the Landsat image displayed in false colours (red = band 4, green = band 3, blue = 
band 2). 
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2.2 Source Data 

The source data consisted of an ortho-rectified Landsat ETM+ image (in 
GeoTIFF format) and a Shuttle Radar Topography Mission (SRTM) Digital 
Elevation Model (DEM) (in GeoTIFF format). The Landsat image was acquired 
in September 2001 and has a spatial resolution of 28.5 meters and a horizontal 
accuracy of approximately 64 meters. The DEM was obtained in 2000 by the 
USA Global Land Cover Facility. It has a spatial resolution of 90 meters and a 
horizontal and vertical relative accuracy of approximately 15 respectively 6 
meters. The data was already geo-referenced by the supplier. In case of the DEM 
the values were also rounded to integers, resulting in 1 meter intervals (GLCF, 
2006; Rodriguez et al., 2005; USGS, 2003) 
The Landsat image was used for identification of the forest area and extraction of 
the alpine treeline position. The DEM was used to derive several topographic 
variables and environmental indices. See figure 4 on page 21 for a general 
overview of the data and processes used in this research. The following text 
explains this dataflow in more detail. 

2.3 Preprocessing 

Before the source data was suitable for use in this research, a number of 
preprocessing techniques were applied. 
First, the training area was chosen based on the following criteria: it had to 
contain a clear transition from forest area to non-forest area, and the amount of 
pixels with missing values in the DEM and in the Landsat image (due to cloud 
cover) had to be as small as possible. In this case, the resulting area was located 
around 78º29' W, 1º46' S (north-west corner) and was about 25 x 25 kilometers 
in size. The separate Landsat bands (bands 1-5 and 7) were then stacked into a 
composite image file. Together with the DEM, they were clipped to the selected 
area. 
The DEM image contained some missing values over land and negative values in 
water bodies. These bad pixels are often found in radar shadow of DEM’s 
created by using the interferometric radar technique (GLCF, 2006). To overcome 
this problem a surface fitting technique, such as the Delauney triangulation 
method, can be applied. This method uses the values of surrounding pixels to fill 
the ‘gap’ with triangles (Moore et al., 1991). This method is available for 
example in the software package ENVI from RSI. The function is called 
‘Replacing bad values’, whereby the user defines which value or range of values 
are considered ‘bad’ and are to be replaced by calculating new values using 
Delauney triangulation. 
Another problem with the DEM was that it contained ‘terraces’, which showed 
as diagonal lines of flat areas throughout the image when for example calculating 
slope angle. This is probably caused by the process of geo-referencing the source 
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data to the WGS84 ellipsoid with elevation data rounded to integer values 
(Wood, 2003). There are a few methods to deal with this problem. The best 
option would be that the provider would scale the z values by 10 or 100 before 
applying the interpolation procedure, thereby removing the errors of rounding 
values with a meter interval (Wood, 2003). However, when this option is out of 
range because the available data have already been interpolated, some alternative 
methods are available. Two methods were investigated of which the second one 
was selected for this research.  
The first method uses a mean filter which passes over the raster image. It is a so 
called ‘focal’ filter. For every pixel in the image, the mean value of its 
surrounding pixels is calculated using a matrix (or kernel) often with a size of 3 x 
3 pixels. The resulting mean value is then assigned to the central pixel. This 
method smoothes the image by reducing the variation between one pixel and its 
neighboring pixels. To remove the bad lines in this particular case, a matrix size 
of 5 x 5 pixels is required. The function is available in ESRI’s ArcGIS spatial 
analyst extension. 
The second method transforms the raster image to an image build up of elevation 
contour lines. Then, using the ‘Topo to raster’ tool available in ArcGIS spatial 
analyst, the contour data is converted back to a raster image. The interpolation 
method used in this tool is developed by Hutchinson and is based on the 
ANUDEM program developed in 1988, 1989 (Hutchinson, 1989). It interpolates 
elevation values following an iterative approach by taking into account that the 
resulting DEM must have a connected drainage structure. In this particular case, 
the contour lines were created with a 15 meter elevation interval. For the 
conversion from contour to raster, the output cell size is set to 90 meters, 50 
interpolation iterations are used, and drainage enforcement is put on. 
Both methods presented above smooth the original dataset and thereby loose 
some basic elevation data, but both methods effectively remove the terraces. The 
last method has the advantage that it creates a hydrological correct elevation 
model by removing sink points from the input data. This is useful when using the 
DEM to calculate environmental indices later on. Therefore, the latter method 
was selected to reduce the striping error in the original DEM. 
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Figure 4: flowchart of methodology 
 
This scheme presents a global overview of the data 
and processes used in this research. 
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2.4 Classification 

When dealing with a Landsat image that suffers from heavy topographic shading 
it is recommended to first apply a simple correction method such as a cosine 
correction: 

CorrectedRadiance = RawRadiance*(cos θ / cos i) 
In which θ is solar zenith angle at the time of acquisition and i is the local 
incidence angle, which can be calculated by using the DEM and the equation 
below: 
 Cos i = cos β * cos θ + sin β * cos θ * cos (λ – Ф) 
In which β is the local slope angle in degrees, Ф is the solar azimuth angle at the 
time of acquisition and λ is the local aspect (Riano et al., 2003; Shepherd & 
Dymond, 2003). In this case, the topographic shading did not interfere with the 
classification of forested areas and was therefore not performed. 
In order to extract the treeline from the Landsat image, the areas of forest and 
non-forest had to be correctly identified. For this purpose, two methods were 
investigated. 
The first method is based on the calculation of a vegetation index, such as the 
Normalized Difference Vegetation Index or NDVI. It is available in many GIS 
software packages, in RSI Envi it is available under ‘Transform > NDVI’. This 
index uses band 4 (near infrared) and band 3 (red) to calculate the probability 
that a pixel represents vegetation. The result is an image with pixel values 
ranging from 0 to 1 in which values closer to 1 are more likely to represent 
vegetation. Next, by reclassifying values bigger than a certain threshold as forest, 
a forest/non-forest image is created. 
The second method is to perform a supervised classification. The image was first 
displayed as a false color composite (band 4 – red, band 3 – green, band 2 – 
blue) and the original band values were linearly stretched over a range from 0 to 
255 for a clear visualization. Then, by selecting a number of training sites in 
areas that were known to be covered by forest, the spectral signatures of these 
locations were identified. These signatures could then be used to identify the 
cover of the remaining part of the image. In this particular case a maximum 
likelihood decision rule with a probability threshold of 0.995 was chosen. 
Both methods presented above gave similar results. Because of a lack of ground 
truth data, the result of both methods can only be analyzed visually by 
comparing it to forest cover in the original Landsat image, which is well 
recognizable. In this research, the result of the supervised classification method 
yielded the most satisfactory result, based on the visual comparison with the 
Landsat image, and is therefore used in further analyses. 
Finally, we assumed a mainly closed forest area. Therefore we removed 
individual groups of forest pixels by using the ‘sieve’-tool in IDL Envi with a 
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group threshold of 4 pixels. Small gaps in the forest area are removed by using 
the ‘clump’-tool in Envi with a group threshold of 2 pixels. 

2.5 Treeline zone 

The following procedures were all carried out in ESRI ArcGIS 9. First, to be 
able to extract the treeline, the classified raster image was converted to a 
‘coverage’. In this way, the boundaries between forest and no forest were 
represented as lines. For further analysis, these lines were converted back to a 
raster image with the same cell size as the original Landsat image (28.5 meters). 
During this process, a mask, which represented the clouded areas in the Landsat 
image and the outer boundaries of the study area, was used to remove these 
undesired areas from the treeline image. 
In the resulting image every boundary from forest to non-forest is visible, even if 
they do not represent the alpine/altitudinal treeline. However, only the alpine 
treeline should be used to calculate the average treeline position and its standard 
deviation. These were necessary to define the treeline transition zone within 
which the treeline position was modeled. Therefore a minimum alpine treeline 
height is set. Forest boundaries below this height were excluded from the treeline 
image. 
The treeline transition zone (‘treeline zone’ for short) was defined as the area 
within two standard deviations from the average altitude of the alpine treeline. 
To determine the average altitude, the treeline raster image was used as an 
extraction mask on the DEM. The result was a treeline image in which every 
pixel has an elevation value. The mean and standard deviation of these elevation 
values can be read out of the metadata of the image or put into a table by 
calculation of the image statistics. The average treeline position was located at 
3634 meters with a standard deviation of 185 meters. The transition zone was 
located between 3264 and 4004 meters elevation. 
From the DEM, the pixels which have a value between these limits are extracted. 
This image is then used as an extraction area on the forest/non-forest image. The 
result is an image representing forest distribution in the alpine treeline transition 
zone. 

2.6 Topographic variables 

From the DEM, the following topographic variables were calculated using 
ESRI’s ArcGIS 9 spatial analyst extension: slope angle, aspect, plan curvature 
and profile curvature. These variables are calculated using a 3x3 moving 
window. Since aspect is expressed in degrees from 0 to 360, low values are 
actually the same as high values. Therefore, two other aspect values are 
calculated. By applying a cosine transformation a variable is created stressing the 
north-south contrast. A sine transformation produces an image stressing the 
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west-east contrast. Values range from 1 to -1, where 1 represents northern, 
respectively eastern aspects and -1 represents southern, respectively western 
aspects. The drawback of this method is that the new sine and cosine values 
change with a variable amount i.e. the intervals are not constant, which is an 
assumption in a number of statistical analyses (Jenness, 2005). However, the 
statistical method presented later in this research does not make this assumption. 
Finally, for further analysis, the topographic raster images need the same spatial 
resolution as the forest distribution image. Therefore, the topographic raster 
images are resampled from a cell size of 90 meters to 28.5 meters using a 
bilinear interpolation process. Bilinear interpolation uses a distance weighted 
average of the values of the four nearest pixels. Since this resampling method 
uses the relative position of its neighboring pixels, bilinear interpolation is 
preferred for data which represents continuous surfaces such as elevation, slope 
etc. (ESRI, 2001). 

2.7 Environmental indices 

Since topographic variables are possibly too limited in explaining the 
distribution of forest at treeline position, we used a number of indices for 
environmental conditions which may have a direct influence on vegetation 
growth. The indices were derived from the DEM, which restricts the number of 
options. The chosen indices represent conditions which are known to influence 
vegetation growth and/or establishment: solar radiation, wetness and erosion 
potential. 
 

2.7.1 PRR 
The first index, the ‘Potential Relative Radiation’ index, (Pierce et al., 2005) 
represents incoming radiation during the year. High values indicate high 
potential incoming radiation. The calculation of this index accounts for daily and 
annual changes in solar orientation as well as topographic shading effects. Since 
aspect and slope fail to capture temporal changes in incoming radiation as well 
as the effect of topographic shading, this index might prove to be a valuable 
addition to the set of explanatory variables. 
Calculation of PRR is as follows: first calculate solar elevation (complement of 
solar zenith) and solar azimuth in degrees for every hour from sunrise to sunset. 
Calculate these values for the day of the month which represents the average 
solar period of that month. To calculate the solar elevation and solar azimuth per 
hour of the day for a particular geographic location, the ‘Solpos’ algorithm, 
developed by the National Renewable Energy Laboratory (NREL), was used 
(NREL, 2001). 
When solar elevation and azimuth values had been obtained, this data was then 
used together with the DEM to calculate hourly shaded relief grids. This was 
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done with the HILLSHADE function in ArcInfo. By turning on the shadow 
option in this algorithm, not only local shade but also shadowing effects of 
nearby hills were taken into account (ESRI, 2001). 
Next, the hourly values were summed. This resulted in daily totals which 
represented monthly averages. Then, these monthly averages were summed 
which resulted in a yearly map of potential incoming radiation. 
 

2.7.2 CTI 
The second index, the Compound Topographic Index, commonly referred to as 
Wetness Index, represents soil water content and indicates zones of water 
saturation. High values indicate converging, low areas. Low values indicate 
diverging, steep or high areas (Schmidt & Persson, 2003; Yang et al., 2005). It is 
a static wetness index and is most commonly calculated in two different forms: 
 

1) CTIT  = ln( As / T tan β )     or, 
2) CTI = ln( As / tan β ) 

 
In which As is the upslope contributing area (or catchment area in area (m2) per 
unit width orthogonal to flow direction), β is the local slope angle and T is the 
soil transmittance when it is completely saturated (Gessler et al., 2000; Moore et 

al., 1991). Since T is not available for the study area, CTI is calculated by using 
the second form. This form assumes uniform soil properties, which is a 
limitation but earlier research showed strong correlation of CTI 2 with several 
soil attributes such as surface soil water content, horizon depth, silt percentage, 
organic matter content and phosphorus (Gessler et al., 2000; Moore et al., 1991; 
Yang et al., 2005). 
The algorithm D∞ (Dinfinity) as proposed by (Tarboton, 1997) is used to acquire 
As which can be found in the program TauDEM (Terrain Analysis Using Digital 
Elevation Models). TauDEM is available as an extension for ESRI’s ArcMAP 
software. The algorithm has the advantage that it is proportioning flow between 
two downslope pixels, thereby overcoming the problems of parallel flow lines 
(encountered with the basic D8 algorithm (Schmidt & Persson, 2003; Yang et 

al., 2005)) and unrealistic dispersion (encountered with multiple flow algorithms 
(Freeman, 1991; Quinn et al., 1995)) (Tarboton, 1997). TauDEM was used to 
calculate flow direction which, in turn, was used to derive the upslope 
contributing area. The remaining calculations were automated using ESRI’s 
ArcGIS modelbuilder. 
 



Relating Alpine Treeline to Mountain Topography 

 26 

2.7.3 STCI 
The last index, the Sediment Transport Capacity Index (STCI), is a measure for 
erosion potential. It is an index that is suitable for determining erosive power at 
the scale of catchments and has proven successful to predict soil properties 
which influence vegetation distribution (De Roo, 1998; Dirnböck et al., 2002; 
Moore et al., 1993). The calculation of STCI follows on the Universal Soil Loss 
equation (USLE) and is similar to the Stream Power Index (SPI). It was 
developed by (Moore et al., 1993). STCI is expressed as: 
 
STCI = [As/22.13]0.6 / [sin β/0.0896]1.3 

 

In which As is the upslope contributing area (m2/m) and β is the slope angle 
(degrees) (Moore et al., 1993). 
The choice for STCI instead of USLE and SPI is based on the consideration that 
the expression contains the upslope contributing area (As). Therefore, the index 
accounts for the convergence and divergence of flow. In this way, the index is 
more suitable for a landscape with a complex topography as in case of this 
research (Moore et al., 1991). 
The calculation of As was performed by using the same D∞ algorithm as for 
CTI. The remaining calculations are automated using ESRI’s ArcGIS 
modelbuilder. 

2.8 Statistical Analysis 

2.8.1 Development of the logistic regression model 
For the study area we now had the following maps at our disposal: the dependant 
variable forest/no-forest, and the independent variables height, aspectNS (north-
south), aspectEW (east-west), slope angle, plan curvature, profile curvature, CTI 
(wetness), PRR (radiation) and STCI (erosion). The objective was to explain the 
variable forest/no-forest by means of the other variables i.e. the occurrence of 
forest is predicted by a set of explanatory variables.  
Since the variable forest/no-forest is a binomial or dichotomous variable, 
binomial logistic regression seems the most obvious statistical method to analyze 
the dataset (Garson, 1998; Hosmer & Lemeshow, 1989). Logistic regression is 
widely used in ecological researches dealing with a binomial or multinomial 
dependant variable explained by independent variables of any type, also in the 
field of vegetation prediction (Augustin et al., 2001; Augustin et al., 1996; Calef 
et al., 2005; Felicisimo et al., 2002; Hilbert & Ostendorf, 2001; Virtanen et al., 
2004). Logistic regression does not require the independent variables to be in an 
interval scale which is useful when including the sine and cosine transformed 
variables aspectNS and aspectEW into the analysis (Garson, 1998).  
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In logistic regression, the probability of forest occurence can be expressed as a 
function of the explanatory variables: 
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In which P is the probability on the occurrence of forest and cn represent 
coefficients related to the explanatory variables (Felicisimo et al., 2002; Hosmer 
& Lemeshow, 1989). 
The logistic model was developed in the ‘training area’ following a 
checkerboard pattern (see figure 5 below). The red areas inside the alpine 
treeline zone were used for the development of the logistic model (‘development 

area’). The green areas (‘cross-validation area’) were used to cross-validate this 
model. The model was also applied in a new area approximately 30 kilometers to 
the south of the development area. This ‘test area’ is located close to the border 
of the national park. Therefore, this area is somewhat different compared to the 
development area, especially in terms of land use. Parts of the area are used by 
people to feed their cattle. For validation purposes this area is therefore not very 
appropriate. However, the results can be used to locate areas where forest could 
potentially occur but is absent due to human interference. 

 

Figure 5: checkerboard pattern representing the ‘development area’ and ‘cross-validation area’ 
The treeline zone was dived into two parts following a checkerboard pattern. The red zones were used for the logistic 
regression analysis and development of the model. The green zones were used for cross-validation of the model. 
 
(scale varies in this perspective, distance from north to south is approximately 25 km) 
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To apply the logistic regression analysis, the data was first transferred to the 
statistical package SPSS. This was done by transforming the raster images to 
point features. In this way the value of every pixel receives a point-id which is 
useful for visualization of the predictions later on. By extracting the tables of the 
point features, the values of the variables could be read into the SPSS software. 
In SPSS the ‘binary logistic’ regression method was chosen with the variables 
entered into the model following a forward stepwise algorithm based on a 
classical maximum likelihood ratio test (StepwiseLR). The inclusion of variables 
is based on Rao’s score statistic, which is related to a likelihood ratio test of the 
coefficient of an explanatory variable. However, compared to a likelihood ratio 
test, the score statistic is computationally much faster because it is a non-iterative 
method (Garson, 1998). For excluding variables from the model the algorithm 
uses the change a variable causes in the -2 Log Likelihood (i.e. goodness of fit of 
the model). If a variable in the model causes no significant change in the –2LL it 
is removed from the model. The model coefficients are iteratively adapted to 
make the likelihood of the observed data as large as possible. This stepwise 
procedure allows non-significant variables to be excluded from the model. 
(Garson, 1998; SPSS, 2003; Wuensch, 2005).  
Following this method we assume that the data points are independent from each 
other. However, this is not true because these points are spatially structured and 
are likely to show spatial autocorrelation. Ecological studies have sometimes 
included spatial autocorrelation into their model by means of autocorrelative 
models (e.g. Augustin et al., 1996; Brenning, 2005). However, including spatial 
autocorrelation greatly complicates the application of such a model for 
predictions, so it should only be included when dealing with patchiness caused 
by factors other than biophysical factors (Augustin et al., 1996). In this study we 
assume that all spatial pattern is caused by topographical factors, and not by 
purely spatial processes. At the current scale of investigation it is not likely for a 
forest pixel to be influenced by the vegetation cover of neighboring pixels. Most 
neighbor influence will occur at the scale of individual trees e.g. local seed 
dispersion, shelter. Measures to account for spatial autocorrelation are therefore 
not included in our model. However, the spatial dependence of the data does 
affect the statistical significance of the model, which can therefore not be 
interpreted directly (Guisan & Zimmermann, 2000).  
When the explanatory variables are known, the equation can be used to estimate 
the probability on the occurrence of forest in the ‘cross-validation area’ and the 
‘ test area’. Probability values (P) are distributed between 0 and 1. A threshold 
value can be used to define the state of the response variable forest/no-forest. By 
default, probability values under 0.5 are classified as no-forest, and values above 
0.5 are classified as forest. 
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2.8.2 Importance of variables 
There are a few possibilities to assess the importance of the variables in 
explaining the variable forest/no-forest. First of all, we used the change that a 
variable causes in the -2LL when it is removed from the final model. A high 
change indicates high importance (Garson, 1998).  
We compared this statistic with the outcome of the Wald statistic, which is the 
square root of the ratio between the model coefficient and its associated Standard 
Error (S.E.) (Garson, 1998; Hosmer & Lemeshow, 1989; Wuensch, 2005). Here 
also, a high value indicates high importance. 
If the Wald statistic contradicts the outcome of the -2LL test, then the -2LL test 
is chosen as assessment statistic, since the Wald statistic has been criticized for 
being unstable and lacking sufficient statistical power (Garson, 1998; Hosmer & 
Lemeshow, 1989; Wuensch, 2005). We did assess the Wald statistic since it is 
useful to have an alternative statistic to support the outcome of the -2LL test. 
For an even better perspective on the outcome of both the -2LL-method and the 
Wald statistic we assessed the actual predictive capabilities of the model in each 
step. It is important to note, however, that this can not be used as an assessment 
of the goodness of fit of the model, since it does not use the actual predicted 
probabilities but the cut-off values 0 and 1. Therefore, the outcome of the 
predictive capability test gives no insight in how far the predicted probabilities 
are located from 0 or 1 (Garson, 1998). 
 
All variables that had a significant change on the -2LL were included in our ‘full 

model’, since in our case this produced a model with the highest predictive 
capability when using a stepwise algorithm. However, to assess the importance 
of the individual variables in explaining forest/no-forest we had to beware of 
correlation between these variables. Since we dealt with variables that were in 
one way or another derived from each other, the risk on multicollinearity is high. 
Multicollinearity is defined as the intercorrelation between the independent 
variables (Garson, 1998; Hosmer & Lemeshow, 1989). High intercorrelation 
makes it very difficult to assess the relative importance of the correlated 
variables. The non-correlated variables are not affected (Garson, 1998).  
In order to find out if the independent variables in the final model displayed 
signs of multicollinearity, we evaluated the bivariate Pearson correlations 
between the independent variables in the final model. We used a correlation 
value of 0.9 as threshold for indicating signs of multicollinearity (Garson, 1998). 
However, the correlation matrix only displays signs of bivariate 
multicollinearity, but our model contained more than two independent variables. 
Therefore we produced multicollinearity diagnostic statistics to assess 
multivariate multicollinearity (Garson, 1998; Guisan & Zimmermann, 2000). 
These statistics produce the Tolerance factor and the Variance Inflation Factor 
(VIF) which is 1/Tolerance. VIF is defined as “the number of times the variance 



Relating Alpine Treeline to Mountain Topography 

 30 

of the corresponding parameter estimate (= variable coefficient) is increased due 

to multicollinearity as compared to as it would be if there were no 
multicollinearity” (SSTARS, 2005). In case of logistic regression, values above 
2.5 may indicate multicollinearity (SSTARS, 2005). 
Independent variables showing signs of multicollinearity were separately entered 
in a new stepwise logistic regression analysis excluding the correlated variables, 
thereby creating stripped models that allow better assessment of the individual 
importance of these variables in explaining forest distribution in the alpine 
treeline zone. To compare the goodness of fit between models we used the 
likelihood ratio test. Since -2LL follows a chi-square distribution the outcome of 
this test is a chi-square statistic (Garson, 1998).  
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3 Results 

3.1 Model Input 

The figures below show the results of the preprocessing methods applied to 
respectively the Landsat ETM+ image and the DEM. The result of the 
classification (figure 6 below) is a variable representing forest and no-forest in 
the alpine treeline zone (3264 - 4004 meters). The figure shows a largely 
continuous forest area with a clear transition from forest to non-forest. However, 
it can be also seen that in various places the continuous forest area is interrupted 
by some small gaps or larger strips of non-forest area.  

 
Figure 6: classification result of Landsat ETM+ image. 
The Landsat image is displayed as a false colour composite (red = band 4, green = band 3, blue = band 2). 
The highlighted area with yellow boundaries indicates the alpine treeline zone. Inside this zone the red area 
represents the classified forest area. The greenish area represents no-forest. 

 
Figure 7 shows the various topographic and environmental variables derived 
from the DEM. For a better comprehension, these variables are presented in a 3 
dimensional perspective. While some variables have a clear unit of measure 
(height in meters, slope in degrees), other variables such as Aspect, PRR, etc., 
are displayed in relative units. 
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Figure 7 
 

Topographic and environmental variables; from 
top-left to lower-right corner: elevation, slope 
angle, aspect (north-south), aspect (east-
west), plan curvature, profile curvature, CTI 
(wetness), PRR (radiation), STCI (erosion) 
The highlighted area indicates the treeline zone 
 
Scale varies in this perspective; distance from 
north to south is 25 kilometers 
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When looking at the wetness index (CTI), a clear structure is emerging showing 
low potential water accumulation on ridges and high potential accumulation in 
valley bottoms and gullies. When looking at the potential radiation index (PRR), 
we can see that the highest potential is located on ridges and in valley bottoms 
and gullies. Areas with high potential erosion (STCI) are mainly located on the 
steeper slopes and in areas with a high upslope contributing area. 

3.2 Logistic Regression Analysis 

3.2.1 Full model 
The variables described above were used as inputs in a stepwise logistic 
regression analysis. The results of the final step (the full model), as well as a 
summary of the variables entered in previous steps, are displayed in table 1. The 
variables are ordered from high to low influence according to the Wald statistic, 
which will be described in more detail later on. The total model chi-square is the 
measure of the goodness-of-fit of the model. It is used later on to compare the 
stripped models with this full model. A higher chi-square indicates a better fit. 
 
Table 1: Variables in the ‘Full model’. 
The table presents the results of the final step (step 8) of the stepwise logistic regression algorithm. The 
variables are ordered from high to low influence according to the Wald statistic. Model Coefficient (B) shows 
the predicted effect of the variables on the odds ratio forest/no-forest. Positive coefficients represent a 
positive effect, and vice versa. S.E. shows the associated standard error. Exp(B) represents the odds ratio. 
An Exp(B) >1 indicates increased odds of forest occurrence. Sig. shows the significance of the contribution of 
the variables to the model. Total model Chi-Square is a measure of the goodness-of-fit of the model. Higher 
Chi-Square indicates better fit. 

Step Variable Model Coefficient (B) S.E. Wald Sig. Exp(B) 

Step 8 Height -0.01311 0.00007 33185.48 0.00 0.98697 

AspectEW -0.75409 0.01332 3207.19 0.00 0.47044 Full 
Model CTI -0.50856 0.00978 2701.91 0.00 0.60136 

 Slope 0.06243 0.00281 494.70 0.00 1.06442 

 AspectNS -0.24278 0.01311 343.06 0.00 0.78444 

 STCI 0.00701 0.00041 290.06 0.00 1.00703 

 PRR 3.19912 0.20847 235.49 0.00 24.51099 

 Plan curvature -0.95960 0.10560 82.57 0.00 0.38305 

 Constant 42.69393 0.56869 5636.22 0.00 3.48127E+18 

 

Variable entered on step 1: Height  
Variable entered on step 2: CTI 
Variable entered on step 3: AspectEW 
Variable entered on step 4: Slope 
 
Variable excluded of model equation: Profile curvature 

Variable entered on step 5: STCI 
Variable entered on step 6: AspectNS 
Variable entered on step 7: PRR 
Variable entered on step 8: Plan 
 
 

  Total Model Chi-Square:  79698.95 
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The column ‘Model Coefficient (B)’ shows the predicted effect of the variable 
on the odds ratio of forest/no forest. Positive coefficients represent a positive 
effect, while negative coefficients indicate a negative effect.  
Column ‘Exp(B)’ is the actual odds ratio; if Exp(B) is >1, a higher value of the 
variable corresponds to increased odds of forest occurrence, if Exp(B) is <1 it 
corresponds to decreased odds of forest occurrence (Garson, 1998; Hosmer & 
Lemeshow, 1989; SPSS, 2003; Wuensch, 2005). Exp(B) of the variable 
‘height’, for example, is <1 which implies a decrease in forest probability with 
increasing height. For aspect (east-west) it is also <1, which indicates a decrease 
in forest probability on eastern slopes; i.e. forest seems to prefer western slopes. 
Profile curvature is not included in the model because of its low significance; 
0.753 with an exclusion value of 0.05. See figure 8 below for an overview of 
possible curvatures. It is important to note that the outcome of the curvatures 
calculated with the algorithm implemented in ArcGIS deviates from normal: 
negative curvature normally indicates concave areas, positive curvature convex 
areas. Plan curvature used in this research applies to this rule, but profile 
curvature is reversed; negative profile curvature indicates convex areas and 
positive profile curvature indicates concave areas (ESRI, 2001; Moore et al., 
1991; Peschier, 1995). 

 
Figure 8: Possible curvatures; from left to right: plane (a), convex (b) and concave (c) curvature. The arrows 
indicate flow; convex plan curvature leads to diverging flow, concave plan curvature results in converging 
flow. Profile curvature affects the deceleration (b) and acceleration (c) of flow (Peschier, 1995). 

3.2.2 Predictive model performance 
The coefficients (B) of the full model can be used to state the full model as a 
mathematical equation in which the probability on the occurrence of forest is the 
function of the significant topographic and environmental variables (Hosmer & 
Lemeshow, 1989): 
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Table 2 presents an overview of the performance of the model in predicting the 
‘development area’ per step of the logistic regression analysis. The 2 x 2 cross-
tabulation table compares the observed response classes (forest/no forest) with 
the predicted response classes. The underlined numbers on the diagonal show 
the correct predictions (SPSS, 2003; Wuensch, 2005). The percentage in the row 

Plan Curvature Profile Curvature 
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in which the observed forest distribution is no-forest, represents the specificity 
of the model. The row, in which the observed forest distribution is forest, 
represents the sensitivity of the model (Garson, 1998). Note that the percentages 
correctly classified pixels in these rows are approximately the same in all steps, 
with the sensitivity somewhat smaller than the specificity. This means that the 
logistic model has homoscedasticity (i.e. the variance of the variable forest/no-
forest is the same for all data) and the model slightly under-predicts the 
occurrence of forest (Garson, 1998). 

 
Table 2: Predictive capabilities of logistic model 
This table shows the predictive accuracy of the logistic model per step in the stepwise logistic regression 
analysis. The underlined numbers show the correct predictions. The percentage in the row with no-forest 
observed represents the specificity of the model. The percentage in the row with forest observed represents 
the sensitivity of the model. Step 8 shows the predictive capabilities of the full model. 

 Observed Predicted  

Step Forest distribution Forest distribution Percentage Correct 

  No-Forest Forest  

Step 1 (Height) No-Forest 52915 11461 82.2 
 Forest 12606 46795 78.8 
  Overall Percentage 80.6 

Step 2 (CTI) No-Forest 54589 9787 84.8 
 Forest 11491 47910 80.7 
  Overall Percentage 82.8 

Step 3 (AspectEW) No-Forest 54941 9435 85.3 
 Forest 11139 48262 81.2 
  Overall Percentage 83.4 

Step 4 (Slope angle) No-Forest 54891 9485 85.3 
 Forest 10668 48733 82.0 
  Overall Percentage 83.7 

Step 5 (STCI) No-Forest 55007 9369 85.4 
 Forest 10584 48817 82.2 
  Overall Percentage 83.9 

Step 6 (AspectNS) No-Forest 55032 9344 85.5 
 Forest 10499 48902 82.3 
  Overall Percentage 84.0 

Step 7 (PRR) No-Forest 55030 9346 85.5 
 Forest 10448 48953 82.4 
  Overall Percentage 84.0 

Step 8 (Plan curvature) No-Forest 55019 9357 85.5 
 Forest 10429 48972 82.4 
  Overall Percentage 84.0 

 
We can see a clear increase in the predictive capabilities of the model in the first 
steps. However, after step 6 the overall predictive capability of the model 
increases by less than 0.05 %. The effect of PRR and Plan curvature on the 
occurrence of forest, even though significant according to the -2LL-method and 
Wald statistic, can therefore be disputed. At least, for predictive importance 
these variables have almost no value. 
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Table 3 below shows a summary of the prediction accuracy in the ‘development 

area’, ‘cross-validation area’ and ‘test area’. In the ‘development area’ and 
‘cross-validation area’ the specificity of the model was somewhat higher than 
the sensitivity; in the ‘test area’, the specificity of the model is clearly much 
lower than the sensitivity. So the outcome of the model in the ‘test area’ gives a 
large over-prediction of forest. 
 
Table 3: Summary of predictive accuracy 
This table shows a summary of the predictive accuracy of the full model in the different areas. The predictive 
accuracy in the ‘cross-validation area’ is comparable with the ‘development area’. The test area shows a 
large over-prediction of forest; the sensitivity is much higher than the specificity (see table 2). 

 Observed Predicted  

Area Forest distribution Forest distribution Percentage Correct 

  No-Forest Forest  

Development area No-Forest 55019 9357 85.5 
 Forest 10429 48972 82.4 
  Overall Percentage 84.0 

No-Forest 55970 11056 83.5 Cross-validation 
area Forest 9704 47602 83.1 

  Overall Percentage 83.3 

Test area No-Forest 59562 40375 59.6 

 Forest 4290 75655 88.8 

  Overall Percentage 74.2 

 
Figure 9a visualizes the predictions of the model in its own area (‘development 

area’) as well as in the ‘cross-validation area’. Figure 8b compares the 
prediction with the real forest distribution (the classification). Green colours 
indicate areas where forest is predicted where in fact forest was not present. 
Yellow colours indicate areas where no-forest is predicted where in fact forest 
was present. 
In figure 9a, the areas indicated by the blue and green circle clearly show the 
importance of the inclusion of CTI into the model. Although the model correctly 
predicts the absence of forest on the wet valley bottom, the negative effect of 
CTI on the occurrence of forest is in fact even stronger than the model predicts; 
the green colours in figure 9b indicate the larger no-forest area on these valley 
bottoms. The area inside the green circle also shows the effect of the variable 
Aspect (east-west) on the prediction of forest. The left strip of forest (eastern 
aspect) is clearly smaller compared to the right strip of forest (western aspect). 
The upper limit of the right strip is located about 20 to 30 meters higher. 
Figure 10a shows the model outcome in the ‘test area’. Figure 10b shows the 
predictive performance of the model. Very striking is the over-prediction of 
forest, especially in the southern, northern and western areas indicated by the 
green circles. This could well be the result of human impact on the area.  
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Figure 9: Logistic model in ‘development area’ and ‘cross-validation area’.  
A) The predictions of the model in its own area (‘development area’; light blocks) as well as in the ‘cross-validation area’ (dark blocks). Red colours indicate forest. The highlighted area surrounded by 
the yellow border indicates the treeline zone.  
B) Comparison of the prediction of the model and the real forest distribution (the classification). Green colours indicate areas where forest is predicted where in fact forest was not present. Yellow 
colours indicate areas where no-forest is predicted where in fact forest was present. Red colours indicate correctly predicted forest. 
 
Overall classification accuracy in ‘development area’: 84.0 %; in ‘cross-validation area’: 83.3 % 

AAA   BBB   
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Figure 10: Logistic model in ‘test area’.  
A) The predictions of the model in the test area. Red colours indicate forest. The highlighted area surrounded by the yellow border indicates the treeline zone.  
B) Comparison of the prediction of the model and the real forest distribution (the classification). Green colours indicate areas where forest is predicted where in fact forest was not present. Yellow 
colours indicate areas where no-forest is predicted where in fact forest was present. Red colours indicate correctly predicted forest. 
 
Overall classification accuracy: 74.2% 

     BBB               AAA   
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3.2.3 Importance of variables in ’full model’ 
Exp(B) expresses the potential effect that the variables have on forest 
distribution. However, the importance of these effects for the model results 
differs. Therefore, we had a look at the measures that quantify this importance. 
Table 4 shows a summary of the change in -2LL for every variable if it would 
be removed from the full model. The variables are ordered from high to low 
change in -2LL. The change in –2LL decreases as the variables decrease in 
importance. This statistic clearly shows the high importance of the variables 
height, aspect (east-west), and CTI (see table 4 in bold).  
According to this method, even the low change of 82.78 of plan curvature is 
significant i.e. adding plan curvature to the model significantly increases the 
ability of the model to predict the occurrence of forest (Wuensch, 2005). 

 
Table 4: Change in -2 Log Likelihood 
This table gives an indication of the relative importance of the variables in the ‘full model’. The variables are 
ordered from high to low importance based on the change in -2LL. The variables height, aspectEW and CTI 
show a clear impact on -2LL and are therefore displayed in bold. 

Step Variable Change in -2 Log 
Likelihood 

Change in 
percentages df Sig. of Change 

Step 8 Height 75950.79 90.58 1 0.00 

Full model AspectEW 3401.21 4.06 1 0.00 

 CTI 3001.21 3.58 1 0.00 

 Slope 498.68 0.59 1 0.00 

 AspectNS 345.18 0.41 1 0.00 

 STCI 328.65 0.39 1 0.00 

 PRR 237.19 0.28 1 0.00 

 Plan curv 82.78 0.10 1 0.00 

 
Another statistic used as an indication of the importance of the variables, is the 
Wald statistic of the full model. The Wald statistic can be found in table 1 on 
page 3. The outcome is similar to the outcome of the -2LL statistic. 

3.2.4 Stripped models 
Table 5 below shows a matrix with the bivariate correlation values of the 
explanatory variables in the full model. The highest correlated value is 
underlined. When taking a strict correlation criterion of 0.90, none of the 
variables are of concern when considering multicollinearity. However, the high 
correlation of -0.89 between Slope and PRR shows that we have to be cautious; 
much of the unexplained variance which could be explained by PRR is already 
explained by including slope angle into the model. 
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Table 5: Bivariate correlation of explanatory variables 
This matrix shows the bivariate correlation of the explanatory variables in the ‘full model’. Positive or negative 
values close to 1 indicate high correlation and were used to detect signs of bivariate multicollinearity. The 
highest correlation value (PRR vs. Slope) is underlined. 

Variables Height Aspect 
EW CTI Slope STCI Aspect 

NS PRR Plan 
Curv 

Height 1 -0.06 -0.24 0.10 -0.07 -0.06 -0.08 0.06 

AspectEW -0.06 1 -0.09 0.20 0.14 -0.04 -0.28 0.01 

CTI -0.24 -0.09 1 -0.57 0.08 -0.06 0.46 -0.57 

Slope 0.10 0.20 -0.57 1 0.53 0.10 -0.89 0.07 

STCI -0.07 0.14 0.08 0.53 1 0.07 -0.48 -0.36 

AspectNS -0.06 -0.04 -0.06 0.10 0.07 1 0.09 0.00 

PRR -0.08 -0.28 0.46 -0.89 -0.48 0.09 1 -0.05 

Plan Curv 0.06 0.01 -0.57 0.07 -0.36 0.00 -0.05 1 

 
Next to the signs of bivariate multicollinearity we also had a look at the signs of 
multivariate multicollinearity. Table 6 below shows the multicollinearity 
diagnostic statistics. For these diagnostics we applied a VIF (Variance Inflation 
Factor) threshold value of 2.5 for indicating multicollinearity. In this statistic we 
see a very high inflation factor for slope angle and also PRR and CTI are well 
above the 2.5 criterion. For STCI we have to be cautious since its value is very 
close to the value of 2.5. 
 
Table 6: Multicollinearity diagnostics 
This table shows the multicollinearity diagnostics of the explanatory variables in the ‘full model’. Tolerance 
shows the proportion of variance not explained by the other variables; high values are favorable. VIF 
(Variance Inflation Factor; = 1/Tolerance) is a measure of the times the variance of the variable coefficient is 
increased due to multicollinearity; low values are favorable. VIF was used to detect signs of multivariate 
multicollinearity. Explanatory variables in bold show signs of multicollinearity. 

Variable Tolerance VIF 

 Slope 0.10 10.03 

PRR 0.17 6.03 

CTI 0.22 4.48 

STCI 0.41 2.46 

Plan Curv 0.54 1.85 

Prof Curv 0.56 1.78 

AspectNS 0.83 1.20 

AspectEW 0.90 1.11 

Height 0.91 1.10 

 
Based on these assessments we decided to create stripped down models 
containing all the independent variables, but only one of the four variables 
showing signs of multivariate multicollinearity  (variables in bold). The stripped 
models, with decreased multicollinearity, allow a better insight in the 
importance and effects of the individual variables. A summary of the full model 
and the stripped models is found in table 7 on the next page. The models are 
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ordered from high to low goodness of fit. The variables are ordered from high to 
low change in -2LL. 
The chi-squares and predictive accuracies of all stripped models are lower than 
these of the ‘full model’. However, the stripped models allow us a better insight 
in the importance of the independent variables; the stripped models show no 
signs of bivariate or multivariate multicollinearity. 
The stripped ‘slope-model’ represents a basic topographic model without any of 
the more complex environmental indices included. The importance of slope is 
suddenly much higher compared to its importance in the full model. The 
importance of PRR and STCI also increases dramatically in the stripped models. 
CTI, which already had quite an important role in the full model, also increases 
in importance and becomes the second most important variable, leaving 
AspectEW behind. 
If we look at the Exp(B) of the variables in the stripped models we can see that 
CTI, slope and STCI have the same effect on the occurrence of forest as in the 
full model, only with a slight increase in effect. However, the effect of PRR in 
the stripped model is reversed: high radiation now causes a decrease in forest 
probability.  
In the full model and in the stripped ‘CTI-model’, concave plan and profile 
curvatures cause a higher probability of forest occurrence. In the remaining 
stripped models the effect is reversed: concave plan and profile curvatures cause 
lower probability of forest occurrence. 
 
 
 
Table 7: Stripped models 
This table shows a summary of the ‘full model’ and of the stripped models which contain all variables but only 
one of the four variables showing signs of multivariate multicollinearity (variables in bold). The models are 
ordered from high to low goodness-of-fit (Chi-Square). The variables are ordered from high to low change in -
2LL. Exp(B) shows the coefficient related to the variable. Change in -2LL (and change in percentages) 
indicates the relative importance of the variable in the model.  

Model  Variable Exp(B) Change in -2 Log 
Likelihood 

Change in 
percentages df Sig. of the 

Change 

Height 0.98697 75950.79 90.58 1 0.00 

AspectEW 0.47044 3401.21 4.06 1 0.00 

CTI 0.60136 3001.21 3.58 1 0.00 

Slope angle 1.06442 498.68 0.59 1 0.00 

AspectNS 0.78444 345.18 0.41 1 0.00 

STCI 1.00703 328.65 0.39 1 0.00 

PRR 24.51099 237.19 0.28 1 0.00 

Full Model 
 
Total Chi-
Square: 
79698.95 
 
Overall 
accuracy:  
84.0 

Plan  0.38305 82.78 0.10 1 0.00 

Height 0.98714 76238.58 83.83 1 0.00 

CTI 0.50335 10522.35 11.57 1 0.00 

 

CTI 
 

Total Chi-
Square: 
77526.64 AspectEW 0.50105 3207.61 3.53 1 0.00 
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Plan 0.06106 837.78 0.92 1 0.00 

AspectNS 0.88631 101.35 0.11 1 0.00 

 
Overall 
accuracy:  
83.6 

Prof 1.66804 35.72 0.04 1 2.28 E-09 

Height 0.98766 73975.32 83.06 1 0.00 

Slope 1.10086 9678.62 10.87 1 0.00 

AspectEW 0.44146 4343.49 4.88 1 0.00 

Prof 0.11988 641.31 0.72 1 0.00 

Plan 3.44700 212.10 0.24 1 0.00 

Slope 
 
Total Chi-
Square: 
76682.92 
 
Overall 
accuracy:  
83.5 

AspectNS 0.84152 207.30 0.23 1 0.00 

Height 0.98840 70759.06 86.68 1 0.00 

PRR 0.00118 5717.82 7.00 1 0.00 

AspectEW 0.44661 4254.13 5.21 1 0.00 

Prof 0.15388 528.35 0.65 1 0.00 

Plan 4.89414 370.46 0.45 1 0.00 

PRR 
 
Total Chi-
Square: 
72722.11 
 
Overall 
accuracy:  
82.7 

AspectNS 1.03008 6.42 0.01 1 0.01 

Height 0.98919 66404.95 88.88 1 0.00 

STCI 1.01715 3231.53 4.33 1 0.00 

AspectEW 0.53423 2830.62 3.79 1 0.00 

Plan 51.25384 1985.04 2.66 1 0.00 

Prof 0.32185 196.19 0.26 1 0.00 

STCI 
 
Total Chi-
Square: 
70235.83 
 
Overall 
accuracy:  
82.2 

AspectNS 0.90961 66.88 0.09 1 3.33 E-16 

 
The above illustrates the impact of the wet, non-forest areas (explained by CTI) 
on the effect (Exp(B)) of the other independent variables predicting forest/non-
forest. When the variable CTI is not included in the model, other variables try to 
take over its negative effect on forest probability:  

• The effect and importance of slope angle (higher slope angle = higher 
forest probability) increases since the non-forest areas related to wetness 
are mainly located on the lower slope angles.  

• The same goes for STCI (higher STCI = higher forest probability).  

• The effect of PRR is reversed (higher PRR = lower forest probability) 
and its importance increases since the lighter areas occur mainly in the 
valley bottoms, in gullies and on ridges. 

• The effect of plan and profile curvature is reversed (more concavity = 
lower forest probability) since the non-forest areas related to wetness are 
mainly located in concave areas. Slope and PRR have apparently some 
overlap with plan curvature; the importance of plan curvature in these 
models is not very high. The importance of plan curvature in the ‘STCI-
model’ increases considerably since STCI is not capable of explaining 
all of the non-forest areas related to wetness: STCI is generally high on 
steep slopes (low CTI, high forest cover), but can also be high in wet 
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gullies with low forest cover – this low forest cover then needs to be 
accounted for by plan curvature. 

3.2.5 Importance of variables for forest distribution at alpine treeline 
When taking the above theory into account we can make a summary of the 
importance of the variables in explaining forest distribution in the alpine treeline 
zone. Table 8 below shows the variables from high to low importance based on 
the full model and based on the stripped models. Plan and profile curvature are 
not included in this list because of there generally low model importance.  
 
Table 8: Importance of explanatory variables 
This table shows a summary of the importance of the variables in explaining forest distribution at alpine 
treeline. The old arrangement is based on the importance of the variables in the ‘full model’. The new 
arrangement is an assessment of the importance of the variables after analyzing the stripped models. 

Old arrangement  
(based on full model) 

New arrangement 
(based on stripped models) 

1. Height 1. Height 

2. AspectEW 2. CTI 

3. CTI 3. AspectEW 

4. Slope 4. STCI 

5. AspectNS   

6. STCI   

7. PRR   

 
The new arrangement is based on the information of the stripped models and 
taking environmental effects into account. First of all, we can say that CTI is 
better in explaining the non-forest areas related to wetness compared to Slope, 
PRR and STCI. Therefore we can regard AspectEW as the third, most important 
variable because it is explaining a different environmental effect. This 
corresponds to the outcome of visual analysis of forest distribution at different 
altitudes. At the lower altitudes (below average) we can see no clear preference 
of forest for a certain aspect. But at higher altitudes (above average) we can see 
a clear preference of forest for western slopes (see figure 11). 
Secondly, slope is highly related to CTI. The importance of CTI decreases 
dramatically when introducing slope into the model. A model with all the 
variables included except slope angle has only a slightly smaller goodness of fit 
(see table 9). Its overall predictive accuracy remains at 84%. In other words, 
slope tries to explain much of the areas already explained by CTI, thereby not 
introducing any new environmental information. Its importance to the model is 
very limited. Therefore slope angle is not included in the new arrangement. 
Thirdly, in the model with only slope excluded, STCI is a quite important 
variable responsible for almost 2 % change in -2LL without greatly decreasing 
the importance of CTI; i.e. STCI introduces important new environmental 
information.  
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Finally, AspectNS has almost no change in -2LL in this model and PRR is not 
significant enough to be included. Therefore, these variables are not included in 
the new arrangement. 
 

 
 
 
Table 9: Stripped model (slope exclusion) 
This table shows a summary of the stripped model containing all the variables except slope. The variables 
are ordered from high to low change in -2LL. Exp(B) shows the coefficient related to the variable. Change in -
2LL (and change in percentages) indicates the relative importance of the variable in the model. Variables in 
bold are taken up in the new arrangement of variable importance. 

Model  Variable Exp(B) Change in -2 Log 
Likelihood 

Change in 
percentages df Sig. of the 

Change 

Height -0.01302 75313.28 83.37 1 0 

CTI -0.65702 9061.93 10.03 1 0 

AspectEW -0.77011 3827.53 4.24 1 0 

STCI 0.01227 1771.11 1.96 1 0 

AspectNS -0.16004 173.44 0.19 1 0 

Prof 0.89710 104.27 0.12 1 0 

Model with 
Slope 
excluded 
 
Total Chi-
Square: 
79297.76 
 
Overall 
accuracy:  
84.0 Plan -1.01340 88.57 0.10 1 0 

Figure 11: Aspect ecogram 
 
The ecogram shows the relative forest 
distribution in the ‘development area’ 
above the average treeline altitude 
(3634 meters) along a circular aspect 
gradient (in degrees). The radial axis 
represents the amount of forest (in %) 
found on a certain aspect. The graph 
clearly illustrates that at high altitudes, 
forest is mainly located on western 
slopes. 
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4 Discussion 

 
This chapter deals with interpreting the outcome of the logistic model, 
investigating model stability and understanding the limitations and advantages 
of using a logistic modeling approach. 

4.1 Model interpretation 

Logistic regression analysis is a useful tool to assess the relative importance of 
variables for vegetation distribution as long as the effects of multicollinearity 
are taken into account. Despite the possibility to discriminate the importance of 
the variables under research, the underlying ecological mechanisms are still 
hard to quantify. The four identified variables having a pronounced effect on 
forest distribution at alpine treeline (height, CTI, aspectEW and STCI) may 
influence several edaphic, physical and climatic factors. We also have to keep in 
mind that we deal with statistical relationships which are not necessarily good 
replacements for actual ecological manifestations (Hoersch et al., 2002). 
The results of this study clearly showed the importance of altitude (variable 
height) as influencing factor, responsible for approximately 85% of explained 
variance. Altitude is an indicator of several ecological gradients which may 
influence forest distribution at alpine treeline; e.g. temperature and precipitation 
(Bian & Walsh, 1993; Dirnböck et al., 2003). In the study area, temperature 
gradient, influenced by altitude, will probably be the most important 
determinant for the spatial distribution of forest. 
CTI turned out to be another important variable influencing forest distribution at 
alpine treeline, responsible for approximately 11% to 12% of explained 
variance. The negative effect of CTI can be related to excessive soil moisture 
conditions and drainage areas with high erosive power. Another possibility is 
the effect of air, cooling down during the night at higher altitudes, sliding down 
the slopes and causing a blanket of stagnant cool air in the narrow valleys 
(Paulsen & Korner, 2001; Wardle, 1985). Areas with potential susceptibility to 
this effect coincide with areas having high CTI (indicating areas with excessive 
soil moisture).  
AspectEW (east-west) was the third variable to show a pronounced effect on 
forest distribution at alpine treeline, responsible for approximately 4.25% of 
explained variance. The ecogram indicated that, at higher altitude, forest has a 
preference for western slopes, which suggests that forest on western slopes can 
reach higher elevations. Slope aspect is related to several biophysical factors, 
e.g. incoming solar radiation and humidity (Dirnböck et al., 2003; Körner, 
1998). During the morning, when the sun is located in the east, the study area is 
often practically cloud free. In the afternoon, clouds are rising up from the 
Amazon basin into the study area, limiting the incoming solar radiation. The 
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possibility exists that this cloud-provided shelter serves as an ecological niche, 
allowing tree establishment beyond the shelter of trees, and thereby positively 
influencing the advance of western treeline to higher altitude. In contrast, harsh 
sunlight on eastern slopes may limit tree establishment at open spaces beyond 
the treeline, preventing the advance of the eastern treeline to higher altitudes 
(Smith & Young, 1987). 
STCI was the last variable to show a pronounced effect on forest distribution at 
alpine treeline, responsible for approximately 2% of explained variance. The 
actual biophysical effect is hard to assess. The variable shows a positive effect 
on alpine forest distribution, but it is rather awkward to conclude that forest at 
alpine treeline prefers areas of high potential erosion. It is more likely that STCI 
has as small correlation with a biophysical factor (e.g. soil condition) that 
positively influences forest establishment. 
The remaining factors, slope, aspectNS (north-south), profile and plan curvature 
did not show a distinct effect on forest distribution at the current scale. This 
does not mean that these variables have no influence at all. It only implicates 
that in our model, at the current scale of investigation, the other variables are 
better in explaining forest distribution at alpine treeline. 
Other studies attempting to explain vegetation distribution at comparable scales 
by means of topographical variables, experienced similar difficulties in 
discriminating causality effects. Comparison with most of this research is rather 
limited since these studies focused mainly on mid- and high latitude alpine 
regions (Allen & Walsh, 1996; Baker et al., 1995; Horsch, 2003; Virtanen et al., 
2004; Walsh et al., 2003). Allen & Walsh (1996), for example, investigated 
spatial pattern of alpine treeline in Glacier National Park, Montana. They found 
strong significance with elevation and related the effect to a temperature 
gradient. Other significant factors included slope angle and solar radiation 
potential. These were related to snow avalanches, debris flows and the location 
of permanent snowfields (Allen & Walsh, 1996). In our equatorial study region 
the effects of snow avalanches and permanent snowfields on forest distribution 
are of no importance, which may explain why we did not find similar 
relationships.  
Brown (1994) constructed linear regression models for Glacier National Park, 
Montana, to predict vegetation types by using topographical and biophysical 
disturbance variables. He also found elevation to be the most predictive factor, 
followed by solar radiation, snow accumulation and topographic soil moisture 
potential. Baker et al. (1995), who performed their research in Rocky Mountain 
National Park, Colorado, and Virtanen et al. (2004), who investigated the artic 
treeline in Northeast Russia, stated the negative effect of topographic soil 
moisture on vegetation distribution at treelines. Baker et al. (1995) found the 
effect of wetland interruptions especially important in the lower regions, while 
the effect of lake interruptions increased at higher elevations. Virtanen et al. 
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(2004) found the effect to be significant at a spatial scale of 3 kilometers and 
increasing in significance at higher resolutions. This underlines the importance 
of incorporating topographic wetness in alpine vegetation modeling.  
Recent research by Hoch & Korner (2005), who studied Polylepis species at 
alpine treeline in the Oruro province, Bolivia, found aspect related limitations of 
the species at southern slopes. Above 4400 meters altitude, Polylepis was 
mainly located at the warmer and drier northern slopes, facing the equator. In 
our study area, located approximately 2º south of the equator, a north-south 
influence was not found which can be explained by the fact that their study area 
is located at 18º south of the equator. 
Finally, Hörsch (2003) investigated 25 DEM derived variables to model the 
spatial distribution of forest in the central Alps. She found all topographical 
variables (elevation, slope, aspect, radiation, curvature, etc.) to be significant in 
explaining vegetation alliances. However, she did not take into account the 
effects of spatial autocorrelation. At the current scale of analysis we expected 
spatial similarity to be caused mainly by similar topographical position and 
therefore did not include any terms in our model which accounted for spatial 
autocorrelation. However, when using DEM-derived variables, data points are 
located relatively close to each other, thus violating the assumption of 
independent variables. In this case, pseudo-replication occurs, affecting the 
actual number of degrees of freedom (Heffner et al., 1996). This causes model 
coefficients to increase in statistical significance which is probably the reason 
why Hörsch found all topographical variables to be significant in explaining 
alpine vegetation alliances. When choosing not to incorporate spatial 
autocorrelation it is essential to treat the significance of model coefficients 
carefully. While modeling alpine forest distribution at higher spatial resolutions 
(e.g. scale of individual trees) it is recommended to incorporate spatial 
autocorrelation into the analysis, thereby taking effects such as local dispersion 
and sheltering into account; e.g. by means of iterative methods (Augustin et al., 
1996) or by taking a subsample of data points thereby increasing distance and 
decreasing correlation between points (Brenning, 2005; Brown, 1994). 
 
Logistic regression analysis lacks the ability to make firm statements about the 
actual percent of variance explained by the topographical and topography 
derived variables (Garson, 1998), but the predictive accuracies suggest that 
topographical and topography derived variables are capable of explaining a 
significant amount of alpine forest distribution. This is promising for the use of 
topographic variables in ecological modeling as a substitute for biophysical 
factors directly influencing vegetation distribution, especially in areas with large 
topographic variation. Moreover, previous research in regions with high 
heterogeneous geomorphology suggested that topographical factors were more 
useful in predicting vegetation communities than spectral attributes (Dirnböck et 
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al., 2003). Furthermore, compared to direct influencing factors, topography and 
topography related factors are relatively inexpensive and easy to obtain 
(Dirnböck et al., 2003; Gottfried et al., 1998).  
However, topography and topography derived variables are not capable of 
accounting for all biophysical factors influencing forest distribution at alpine 
treeline. The variable PRR for example is an index identifying potential relative 
radiation. The calculation assumes clear sky and no atmospheric scattering 
effects, which is often not the case, thereby limiting the value of this factor 
(Pierce et al., 2005). Combined with the location of the study area near the 
equator may be the reason why we did not find this variable to have a 
pronounced effect on alpine forest distribution. Also the effect of human 
landuse has to be taken into account. Human landuse can overrule the effects of 
topography (Dirnböck et al., 2003). 

4.2 Model applicability and model stability 

The full logistic model had an overall predictive accuracy of 83.3 % in the 
‘cross-validation area’ and 74.2 % in the ‘test area’. It is clear that, at the 
current scale of investigation, topography has a significant influence on forest 
distribution at alpine treeline. This influence is mainly limited to constraints 
determined by altitude, CTI, aspect and STCI. There is a significant difference 
in scale between the data of forest distribution and the data of topographic 
variables It is important to note that resampling the DEM from 90 to 28.5 
meters results in a certain degree of pseudo-resolution. Combined with the 
smoothing caused by artifact removal, the DEM is not capable of indicating 
micro-scale variation and small depression areas which could be of importance 
to determine forest distribution at alpine treeline (Dirnböck et al., 2003; Horsch, 
2003). Other biophysical factors not explained by topography may also have a 
significant influence. The current scale of analysis is probably the limit to use 
topographic and topography derived variables to predict forest distribution at 
alpine treeline. At larger scales the predictive power of topography decreases 
significantly (Guisan & Zimmermann, 2000). A DEM with a spatial resolution 
comparable to that of the Landsat image would probably have increased 
predictive accuracy.  
 
Model stability is indicated by several factors. Quality and accuracy of the input 
data is a first important factor which has to be taken into account. After orth-
rectification, the Landsat ETM+ image has absolute horizontal accuracy of +/- 
64 meters (GLCF, 2006). The SRTM DEM has horizontal absolute and relative 
accuracy of +/- 20 respectively 15 meters. The vertical absolute and relative 
accuracy is +/- 16 respectively 6 meters (Rodriguez et al., 2005; USGS, 2003). 
The DEM contained several gaps with missing values. In SRTM data these gaps 
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can be found especially along rivers, in lakes and in areas with high slope angle 
(particularly in the Himalaya and the Andes) (Jarvis et al., 2004). Filling the 
gaps by interpolating neighboring values creates pseudo elevational data.  The 
actual elevations in these regions are unknown which may be a cause of error. 
(Falorni et al., 2005) found vertical accuracy of SRTM data influenced by high-
relief terrain. In these areas, elevation errors and the amount of missing values 
increased significantly. It has also been found that SRTM data suffers from a 
systematic error related to aspect. Elevation of (north-)eastern slopes is 
overestimated compared to elevation of western slopes. This phenomenon has 
been directly related to the incidence angle in the original radar images caused 
by the flight path direction of the space shuttle (Jarvis et al., 2004).  
Local displacements influenced by the errors as stated above may cause error in 
overlap between the Landsat-derived forest distribution and the topographic 
variables derived from the SRTM DEM. However, the variables in our model 
have shown to mainly exert their influence on a broad spatial scale, possibly due 
to the lack of micro-scale variation in the DEM. Minor displacement of the 
overlapping variables can therefore be accepted. Moreover, the relationship 
between AspectEW (east-west) and forest distribution can not be explained by 
the aspect-related DEM error. The outcome of our model result indicates that 
forest reaches higher altitudes at western slopes. If the aspect-error had 
significant impact, this relationship would be reversed; i.e. forest would have a 
preference for eastern slopes. 
Finally, it must be noted that despite the fact that forest in the Landsat image 
was well recognizable and the classification result showed large similarities 
with forest in the original image, there will be some classification error 
involved, influencing predictive accuracy. 
Other factors determining model stability are the statistical method used to build 
the model and the applicability of the model in other areas.  
Compared to other statistical methods (e.g. discriminant analysis) logistic 
regression has been found to be a relatively robust method (Garson, 1998). 
However, this approach assumes equilibrium between alpine forest distribution 
and biophysical factors influenced by topography. The model is therefore not 
suitable for application in rapidly changing environments. On the other hand, 
the model has been applied in an alpine environment in which vegetation has 
been found to react slowly to changing environmental conditions (Guisan & 
Zimmermann, 2000). Therefore, static logistic models are well-suited for alpine 
environments. But it is important to note that the application of the model is 
limited to a rather small geographic extent because of differences in direct 
influencing factors (e.g. climate and resource gradients). Plant species are 
forced to adapt to these differences by selecting topographic positions with 
favorable conditions. In other regions, the same topographic positions can cause 
different effects on the direct influencing factors (Guisan & Zimmermann, 
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2000). Furthermore, since one of the possible applications of this method is to 
indicate human impact, this method needs calibration areas where the effects of 
human landuse are negligible. 
The ‘cross-validation area’ allowed a first investigation of the stability of the 
logistic model in a similar area. The ‘development area’ and ‘cross-validation 

area’ are practically not spatially dependent since a checkerboard pattern with 
blocks of +/- 1 x 1 km was used to hold data back. This supports good 
comparison; the ‘development area’ has almost no spatial effect on the ‘cross-

validation area’. The predictive accuracies in the ‘cross-validation area’ 
(84.0%) compared to the ‘development area’ (83.3%) suggest that the model is 
quite robust. The lower accuracy of 74.2% in the ‘test area’ is probably caused 
by higher disturbance caused by human influence resulting in an over-prediction 
of forest. For external validation, this area is therefore not very suitable, but it 
clearly shows the influence of changed conditions (in this case: human 
disturbance) on the spatial distribution of forest. For further investigation of 
model stability it is advised to locate an additional area similar to the 
‘development area’ to externally validate the model. Constructing the model 
with varying extents of the treeline zone (e.g. 1.0, 1.5, and 2.5 standard 
deviations) may also contribute to further insight in model stability since 
varying extents can influence model performance and the relative importance of 
the variables (Fagan et al., 2003; Virtanen et al., 2004).  
Finally, the selection of the variables resulting from the stepwise logistic 
regression procedure varied a lot. However, the variables height, aspectEW and 
CTI were always included in the model, showing a pronounced effect on forest 
distribution. These variables can therefore be regarded as robust variables in 
explaining forest distribution in our study area. Variable STCI is regarded as 
somewhat less robust since it showed a little more variation in importance, but 
this was mainly caused by the effects of multicollinearity. When these effects 
had been removed, STCI also showed a pronounced effect on alpine forest 
distribution. 
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5 Conclusions & Recommendations 

 
The results of this study demonstrated the possibilities of using vegetation 
modeling to understand the factors influencing forest distribution at tropical 
alpine treelines. A Landsat ETM+ image was used to derive the spatial 
distribution of forest. An SRTM DEM was used to derive several topographical 
and topography-derived variables. These variables were used as a substitute for 
direct field measurements of direct influencing factors (e.g. climate and soil 
conditions). The data were used to construct a logistic regression model to 
predict forest distribution at alpine treeline and to investigate the effect and 
relative importance of these variables on the spatial distribution of forest. 
The results of this study provide further insight in the factors influencing the 
spatial distribution of forest at alpine treelines. In our study area, topographical 
and topography-derived variables influencing forest distribution at landscape 
level are: altitude (height), topographic wetness (CTI), eastness (AspectEW) 
and erosion potential (STCI). This knowledge can be used for modeling efforts 
of tropical alpine vegetation in the future. 
Quantification of the biophysical processes and conditions influenced by these 
variables was limited, due to the absence of supportive field measurements. 
However, the predictive accuracy of the model clearly indicated the high 
topographic impact on several biophysical factors influencing alpine forest 
distribution. Absence of a clear influence related to north-south aspect and 
potential radiation supported the theory of topography as a factor influencing a 
different set of biophysical factors in the tropics. Effects of topography in 
temperate regions influence for example snow accumulation and incoming 
radiation, but since these effects are absent in tropical regions, the additional 
effects of topography can be studied. Therefore, the results of this study 
underline the potential of tropical regions to provide further knowledge of the 
factors influencing alpine treelines.  
 
The method developed during this research allows quick investigation of factors 
with potential influence on alpine forest distribution by using inexpensive and 
easy to obtain Landsat and DEM imagery. Furthermore, the method supports 
straightforward mapping of alpine forest distribution.  
At the current scale of investigation, using only topography and topography-
derived variables is not sufficient enough to provide a detailed prediction of the 
actual treeline position. However, the model is relatively easy to construct, 
compared to more advanced mechanistic models which require large numbers of 
parameters that are often not available. This model allows fast application in 
remote areas were many of these parameters are lacking. It has the possibility to 
quickly compare regional differences in forest distribution and give a first 
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indication of degraded areas caused by either human impact or natural disasters 
(e.g. disease). More comprehensive methods (e.g. combination of environmental 
monitoring and field measurements) can be applied at the located areas to 
investigate the nature of this impact. Combined with automatic vegetation 
mapping, the method can also be valuable for planning and conservation issues 
(Dirnböck et al., 2003). 
 
To further develop the applicability and usefulness of the proposed method, we 
would like to make several recommendations. 
First of all, next to the application of the model in the ‘cross-validation area’ 
and the ‘test area’, it is recommended to validate the model also in an additional 
area similar to the ‘development area’; i.e. an area without distinctive human 
influence. This would greatly improve the validation of the method, allowing 
firmer conclusions and greater model applicability (Guisan & Zimmermann, 
2000). 
Secondly, the method is based on one spatial scale and assumes equilibrium. To 
fully understand the landscape under study, a multi-scale, multi-temporal 
approach is recommended to fully capture the complicated topographic 
heterogeneity and temporal variability (Fagan et al., 2003; Levin, 1992; Wu, 
2004). Ecological modeling could benefit greatly from a multi-scale, multi-
temporal approach to investigate the effects of topography and topography-
derived variables on alpine vegetation. To really investigate causality effects the 
method should be complemented by supportive field measurements. Improved 
understanding of topographic causality effects can greatly improve predictive 
accuracy and applicability of mechanistic vegetation models. Progress in this 
understanding can be made especially in tropical regions, were the more 
renowned effects of temperate regions (e.g. north-south radiation difference) are 
absent. Improvements in remote sensing imagery, concerning both spatial and 
temporal resolution, can support multi-scale, multi-temporal logistic modeling 
approaches in remote environments in the near future. 
Finally, investigating the potential of automatic classification techniques based 
on pattern analysis and boundary detection (Fagan et al., 2003) as well as 
advanced visualization techniques, such as 3 dimensional mapping (Walsh et 

al., 2003), would open up new possibilities of integrating these techniques into 
our method. This would significantly improve the ease of our method and 
simplify the evaluation of the model results making it more appropriate for 
planning purposes. 
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