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Foreword

This MSc thesis is part of the PhD project “Spa#ioyporal modeling of treeline
dynamics” by ir. Maaike Bader of the ‘Laboratory @eo-Information Science
and Remote Sensing’. The topic allowed me to combiy interests in ecology
with geographical information science. It also a#ad to me rediscover the use
(and even entertainment value...) of statistical ysed. ..

I have really enjoyed working on this topic thetleesv months and gained much
experience during this research. Of course thexealwvays things that | would
have liked to do differently afterwards. But ovérdamust say that I'm quite
satisfied with the result.

| would like to express my gratitude to Maaike Bafte her enthusiasm on the
topic, helping me out during my work and her distois on earlier drafts of this
thesis. Special thanks to Arnold Bregt for his setopinion on the thesis and to
Sytze the Bruin, John Stuiver and Jacob van Etetheir help and comments.
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Abstract

The aims of this study were to provide insight lre frelationship between mountain
topography and forest distribution at alpine treedi; to use this description to obtain a
better insight in the processes and conditionsuémiting forest distribution at alpine
treelines; and the design of a consistent methadhadould be used to compare forest
distribution at alpine treelines between differardas.

A Landsat ETM+ image and an SRTM DEM of Sangay &v&tl Park, Ecuador, were
used to derive forest distribution at treeline aaderal topographical and environmental
indices. These variables were related to foredtrilligion by means of a logistic
regression approach. The model used for predistias cross-validated in the training
area, and applied in a different study area nearby.

Forest distribution was mainly explained by altgudopographic wetness (CTI),
eastness and erosion potential (STCI). Predictomiracy of the model ranged from
74.2 % to 84.0 % in the test and the training aféa. test area has more human impact,
which probably explains the over-estimation of &rdere.

The logistic regression approach is suitable fecmininating the relative importance of
the variables. The ecological meaning of some bbetais hard to assess, because they
affect several biophysical factors. The method tgexr during this research allows a
quick investigation of factors with potential infloce on alpine forest distribution, by
using inexpensive and easy to obtain Landsat ankll D&agery. It also allows for a
rapid comparison of forest distribution betweerfedtdnt areas and the localization of
potential disturbances.
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Introduction

Alpine treeline

Treelines form a sudden transition from a habitaictv sustains tree growth to a
habitat which contains environmental constraintdri®e growth. Throughout the
world, treelines occur at a great variety of enwimental gradients: e.g. thermal,
drought, waterlogging, nutritional and salt strgsadients (Korner, 1998). The
high altitude transition zone from montane foréstes) to low alpine vegetation
(grasses, shrubs, cushion plants) is defined asalfhiee treeline ecotone, or
‘alpine treeline’ for short.

The alpine treeline is an intensively studied l@ag® boundary. An important
reason for this is the potential sensitivity of #ipine treeline to climate change,
induced by processes such as global warming. Semgttaors have investigated
the relationship between shifting positions of iadpitreelines and changing
climate (Camarero & Gutiérrez, 2004; Daniels & \&hl2004; Dullingeet al,
2004; Hansemt al, 2001; Moeret al, 2004). Alpine treelines could be useful as
indicators of changing global climate, but then stmains much uncertainty
about the (interacting) factors influencing treewgth at high altitude (Kupfer &
Cairns, 1996). Moreover, most of these studiedgima regions have focused on
mid- and high-latitude mountain areas. Data froopital regions are generally
lacking (Hoch & Korner, 2005; Kérner, 1998).

It is often assumed that one of the main limitagidar tree growth at alpine
treelines is available warmth (Daniels & VeblenD20Kérner, 1998), but there
are also other factors used to explain variationgegeline position; for example
soil properties, moisture, snow cover, geomorphacesses, and, not to forget,
human influence (Allen & Walsh, 1996; Hoerseh al, 2002; Kdrner, 1998;
Stevens & Fox, 1991). Human influences such asrepbigenic burning and
cattle grazing have a serious impact on treelinesral the world. In some cases,
natural, climatic treelines are even substitutedabthropogenic treelines. It is
often difficult to discriminate between naturaleliees and treelines which are
limited in altitude due to human impact (Holtme&mBroll, 2005; Kjallgren &
Kullmann, 1998; Korner, 1998).

Insight is needed in the factors, influencing teséablishment at the uppermost
limits of forest growth, to better understand tlagises of alpine treeline and its
spatio-temporal behaviour. Since there is a ladleséarch performed in tropical
regions, this study focuses on providing insightha factors influencing forest
distribution at tropical alpine treelines.

Topography

Insight in the relation between forest distributetralpine treeline and mountain
topography will help to understand the processed eonditions that are
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important for treeline occurrence. Despite thedaagnount of research that has
been performed on the influence of topography ogetagion status and tree
establishment, there still remains a great deaihckrtainty about the influences
of topographic factors on the spatial distributioh forest at alpine treeline
position, especially in the tropics.

Topography is a factor that has been used by desetiaors to explain, predict
or model vegetation growth near the alpine treeloweder (Brown, 1994;
delBarrioet al, 1997; Dirnbocket al, 2003; Hoersclet al, 2002; Horsch, 2003;
Paulsen & Korner, 2001). In most cases, the autheexl a digital elevation
model (DEM) to derive topographic variables. Hobrsgt al. (2002) state an
important reason for using a DEM instead of usipgtial information that
directly influences tree establishmen#&s“spatial information on site factors is
commonly lacking in mountain areas, the use of #D0& a potential substitute
for use in vegetation analyses, as it highly cate$ with temperature, moisture,
geomorphological processes and disturbance fattors

First of all, this statement brings up the theofytapography being a factor
having a strong indirect influence on vegetatioowgh because of its influence
on parameters like temperature, available radiatpyacipitation, air and soil
temperature, soil moisture and nutrients, snow @mctation, wind etc. (Alleret
al., 1995; Bian & Walsh, 1993; Butlet al, 1994; Kjallgren & Kullmann, 1998;
Paulsen & Korner, 2001; Walsét al, 2003). A landscape with a spatially
heterogeneous topography will therefore result ighly variable habitat
conditions (Horsch, 2003).

Secondly, this statement brings forward the difficof obtaining environmental
data in remote, mountainous areas. Direct factoch @s climatic factors are
usually measured as point data. To obtain a spdisaiibution, this point data
has to be interpolated. The resolution of factoesivéd from point data is
therefore not very high. An alternative is to potdiegetation distribution by
means of indirect factors (i.e. topographic vaeablderived from a spatially
continuous DEM (Guisan & Zimmermann, 2000).

Authors that used DEM-derived topography to predictexplain vegetation
distribution at alpine treelines developed theirthmds mostly in temperate
regions. In these regions vegetation is subjese#&sonal differences and various
topography-related factors not encountered in talpiequatorial regions: e.g.
snow accumulation and variation in solar irradiatdue to north-south aspect
(Brown, 1994; delBarri@t al, 1997; Dirnbocket al, 2002; Hoersclet al, 2002;
Horsch, 2003; Korner, 1998; Paulsen & Korner, 2001¢ therefore expected to
find different topography-treeline relationships time tropics than have been
found in temperate regions.

Factors that probably influence vegetation at trabialpine treelines are for
example soil temperature, drought and radiant ngadit night (Ohsawa, 1990).
Little is known about the impact of topography bede factors. Tropical alpine

13
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treeline research could benefit greatly from a DB&$ed approach for
vegetation prediction since these regions genetadlye a shortage of high
resolution field measurements of environmentaldisct

Previous studies often used static, statistical efsodbased on factor (PCA)
analysis (e.g. Horsch, 2003), ordination techniquasch as canonical
correspondence analysis (e.g. Dirnb@&tlkal, 2003), discriminant analysis (e.g.
delBarrioet al, 1997) and logistic regression analysis (e.g.avienet al, 2004)
to investigate the importance of topographical aldgs on vegetation
distribution. The strength of these methods lieghia possibilities to explore
individual relationships between the explanatoryialdes (topography) and the
response variable (vegetation) (delBaetal, 1997). However, in case of factor
analysis (in which the set of explanatory variabteseduced to a substitute set
of factors by rotating and translating the coortersystem) it is often very hard
to interpret the ecological meaning of the fact@@arson, 1998; Guisan &
Zimmermann, 2000; Horsch, 2003). Canonical corredpoce analysis and
discriminant analysis usually involves assumptiofssich as multivariate
normality) which are often not met when using taaphical variables
(delBarrioet al, 1997; Garson, 1998; Press & Wilson, 1978).

Logistic regression has the advantage of havindficeants that are relatively
easy to interpret which supports the assessmeatabgical meaning (Garson,
1998). Furthermore, logistic regression avoids radtsn and linearity
assumptions, which makes it a suitable method dafidg with variables that are
not normally distributed or linearly related (Garsdl998; Press & Wilson,
1978).

1.3 Aims & research questions

This study aims at evaluating the potential useegfetation modeling at tropical
alpine treelines based on vegetation-topograplaiogiships at landscape level.
Hence, the objectives of this study are to:

1) Provide insight in the relationship between fordistribution at alpine
treelines and mountain topography.

2) Use this description to obtain a better insighttlee processes and
conditions influencing forest distribution at alpitreelines.

3) Design a consistent method which can be used topawmmforest
distribution at alpine treelines between differargas.

The above research objectives result in severatreten research questions
divided in ecological and methodological questions:

14




Johan Ruijten | May, 2006

Ecological research questions
a) What are the effects and relative importance ofogogphy and

topography-related environmental factors on thetiapdistribution of
forest at alpine treeline?

b) What part of forest distribution at alpine treelicen be explained by
topography and topography-related environmentabfa@

Methodological research questions
c) Which topographical and topography-related envirental variables can

be used in order to reach the first objective ama Will they be derived?

d) How can the relationship between these variablésfarest distribution
at alpine treeline be quantified?

e) How does the method perform in a different areahwat similar
environment and how does it perform in an area vathdifferent
environment; i.e. how do the changed conditionsedcffthe spatial
distribution of forest?

First, the statistical relationships between DEMndsl variables and forest
distribution are explored. We use a logistic regjies approach to build a model
to explore the relationships between the topogmaphariables and to predict
forest distribution at the alpine treeline in Ecoiad

Next, the model derived from the statistical relaships is used in a different
part of the study area where human impact is mutense, in order to predict
potential forest distribution.

The next chapter provides more detail about theeri@@tand methods used in
this research. After that, the results are presemée debate our findings in the
chapter discussion and finish this report withii@st important conclusions and
some recommendations for further research.

15
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Material & Methods

Study Area

The study area is located in the central Andes taduiregion, about 20 km
south-east of the city of Riobamba, Ecuador. jpast of Sangay National Park
which is located between the three provinces Tualgua, Chimborazo and
Morono Santiago. This national park comprises ayxprately 540.000 ha.
(Armstrong & Macey, 1979)

Within the perimeters of the park, three main geqehologic zones can be
found: volcanic high Andes, eastern foothills ardtivéal fans. The alpine
treeline is located in the high Andes zone, whishcharacterized by a very
heterogeneous landscape with steep valleys andpegks. The main rivers are
draining rapidly, and with high erosive power, e tast into the Amazon basin
(UNEP-WCMC, 2005).

The climate ranges from subtropical to temperatee €astern slopes receive
most rainfall (extremes of 5000 mm/year have beeonded) while the western
slopes receive not more than 600 mm/year. The snevdccurs at 4800 m.
(Armstrong & Macey, 1979; UNEP-WCMC, 2005).

Figure 1: Vegetation types in the treeline transition zone; on the left we can see montane cloud forest, on the
right tussock grasses
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In the transition zone from forest to non-forestuanber of vegetation types can
be distinguished. Areas located above treelinéudki are mainly dominated by
low growing species including grasses - suclCakmagrostis sp., Festuca sp.
and Stipa sp. -and various shrubs and cushion plants (see figlhrelliese
grassland areas are also called ‘paramos’. Thefoarel down to an altitude of
3700 meters (Armstrong & Macey, 1979).

Montane cloud forests are found approximately be8¥80 meters (figure 2).
Trees in the upper regions of this area are apmately 5 meters high and are
dominated by species such Bscallonia myrtilloidesand Gynoxys buxifolia
Trees in the lower regions reach heights of 12 reeta these regions there is a
greater variety of species, lil@enecio vaccinoides, Diplostephium, Brachyotum,
Hesperomeles, Buddlejand Miconia (Armstrong & Macey, 1979; UNEP-
WCMC, 2005).

Figure 2: high montane cloud forest in Sangay National Park. The transition from small trees to paramo
grasslands is clearly visible.

Inside Sangay National Park, two smaller areas whosen as study area. One
area is located North of Sangay volcano and isceqmately 25 x 25 kilometers
in dimension (north-west corner: 78°29' W, 1°46' Bj)is training ared was
used to develop the model and to obtain knowledigeitethe factors influencing
forest distribution inside the alpine treeline zon€he second area is
approximately 30 x 30 km in dimension and is lodateore to the south (north-

17
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west corner: 78°35' W, 2°4' S). Thisst area’'was used to apply the model and

to test its performance (see figure 3).

R _~ =Border 'Sangay National Park'

) =Landmark

&

1°30'S —|
‘Training
' ‘glarea
- ¥ |
Sangay B
g rm\/olcano
20

?l‘:?ﬂ“w 78°00'W
I

Figure 3: Map of Sangay National Park, Ecuador.

The map shows the location of the ‘training area’ and the ‘test area’ inside Sangay National Park. The ‘training
area’ is approximately 25 x 25 kilometers in dimension (north-west corner: 78°29' W, 1°46' S). The ‘test area’
is approximately 30 x 30 km in dimension (north-west corner: 78°35' W, 2°4' S).

The map is drawn upon the Landsat image displayed in false colours (red = band 4, green = band 3, blue =

band 2).
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Source Data

The source data consisted of an ortho-rectifieddsah ETM+ image (in
GeoTIFF format) and a Shuttle Radar Topography iElisgSRTM) Digital
Elevation Model (DEM) (in GeoTIFF format). The Lasad image was acquired
in September 2001 and has a spatial resolutiorB&f theters and a horizontal
accuracy of approximately 64 meters. The DEM waiobd in 2000 by the
USA Global Land Cover Facility. It has a spatiatalkeition of 90 meters and a
horizontal and vertical relative accuracy of apjpmately 15 respectively 6
meters. The data was already geo-referenced kguth@ier. In case of the DEM
the values were also rounded to integers, resuitiny meter intervals (GLCF,
2006; Rodrigueet al, 2005; USGS, 2003)

The Landsat image was used for identification efftrest area and extraction of
the alpine treeline position. The DEM was used ¢ov@& several topographic
variables and environmental indices. See figuren4page 21 for a general
overview of the data and processes used in thisares. The following text
explains this dataflow in more detail.

Preprocessing

Before the source data was suitable for use in tésearch, a number of
preprocessing techniques were applied.

First, the training area was chosen based on thhewiag criteria: it had to
contain a clear transition from forest area to farest area, and the amount of
pixels with missing values in the DEM and in thentaat image (due to cloud
cover) had to be as small as possible. In this, ¢hseresulting area was located
around 78°29' W, 1°46' S (north-west corner) and al@out 25 x 25 kilometers
in size. The separate Landsat bands (bands 1-%)amgre then stacked into a
composite image file. Together with the DEM, thegrevclipped to the selected
area.

The DEM image contained some missing values ovet énd negative values in
water bodies. These bad pixels are often foundaotar shadow of DEM'’s
created by using the interferometric radar techami@sLCF, 2006). To overcome
this problem a surface fitting technique, such k@ Delauney triangulation
method, can be applied. This method uses the valussrrounding pixels to fill
the ‘gap’ with triangles (Mooreet al, 1991). This method is available for
example in the software package ENVI from RSI. Thaction is called
‘Replacing bad values’, whereby the user defineglviialue or range of values
are considered ‘bad’ and are to be replaced byulediog new values using
Delauney triangulation.

Another problem with the DEM was that it contairieraces’, which showed
as diagonal lines of flat areas throughout the enagen for example calculating
slope angle. This is probably caused by the proakgso-referencing the source

19
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data to the WGS84 ellipsoid with elevation datanded to integer values
(Wood, 2003). There are a few methods to deal with problem. The best
option would be that the provider would scale thealues by 10 or 100 before
applying the interpolation procedure, thereby remgwvhe errors of rounding
values with a meter interval (Wood, 2003). Howewenen this option is out of
range because the available data have alreadyitteepolated, some alternative
methods are available. Two methods were investigatevhich the second one
was selected for this research.

The first method uses a mean filter which passes the raster image. It is a so
called ‘focal’ filter. For every pixel in the imagdhe mean value of its
surrounding pixels is calculated using a matrixk@mel) often with a size of 3 x
3 pixels. The resulting mean value is then assigoethe central pixel. This
method smoothes the image by reducing the varidigtween one pixel and its
neighboring pixels. To remove the bad lines in frasticular case, a matrix size
of 5 x 5 pixels is required. The function is avai&ain ESRI's ArcGIS spatial
analyst extension.

The second method transforms the raster image itmagpe build up of elevation
contour lines. Then, using the ‘Topo to raster’l tagailable in ArcGIS spatial
analyst, the contour data is converted back tosteramage. The interpolation
method used in this tool is developed by Hutchinsm is based on the
ANUDEM program developed in 1988, 1989 (Hutchinsb®§9). It interpolates
elevation values following an iterative approachtaling into account that the
resulting DEM must have a connected drainage streictn this particular case,
the contour lines were created with a 15 meter atlen interval. For the
conversion from contour to raster, the output selk is set to 90 meters, 50
interpolation iterations are used, and drainagereefment is put on.

Both methods presented above smooth the origin@sedl and thereby loose
some basic elevation data, but both methods effdgtremove the terraces. The
last method has the advantage that it creates eolbgital correct elevation
model by removing sink points from the input dathis is useful when using the
DEM to calculate environmental indices later onerdiore, the latter method
was selected to reduce the striping error in tigiral DEM.
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Figure 4: flowchart of methodology

This scheme presents a global overview of the data
and processes used in this research.
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Classification

When dealing with a Landsat image that suffers frmavy topographic shading
it is recommended to first apply a simple correttroethod such as a cosine
correction:

CorrectedRadiance = RawRadiance*(6d<os i)
In which 0 is solar zenith angle at the time of acquisitiord & is the local
incidence angle, which can be calculated by usiieg@EM and the equation
below:

Cos i = coP * cosO + sinf * cosO * cos (L — D)
In which  is the local slope angle in degreésis the solar azimuth angle at the
time of acquisition and. is the local aspect (Rianet al, 2003; Shepherd &
Dymond, 2003). In this case, the topographic shgadid not interfere with the
classification of forested areas and was therafotgerformed.
In order to extract the treeline from the Landsaage, the areas of forest and
non-forest had to be correctly identified. For tpisrpose, two methods were
investigated.
The first method is based on the calculation okgetation index, such as the
Normalized Difference Vegetation Index or NDVI.ist available in many GIS
software packages, in RSI Envi it is available undeansform > NDVI'. This
index uses band 4 (near infrared) and band 3 (redplculate the probability
that a pixel represents vegetation. The resultnisinmage with pixel values
ranging from O to 1 in which values closer to 1 arere likely to represent
vegetation. Next, by reclassifying values biggemntl certain threshold as forest,
a forest/non-forest image is created.
The second method is to perform a supervised €ilzsdn. The image was first
displayed as a false color composite (band 4 —ladd 3 — green, band 2 —
blue) and the original band values were lineantgtshed over a range from 0 to
255 for a clear visualization. Then, by selectinguamber of training sites in
areas that were known to be covered by forestspieetral signatures of these
locations were identified. These signatures cohkhtbe used to identify the
cover of the remaining part of the image. In th&tigular case a maximum
likelihood decision rule with a probability threstiaf 0.995 was chosen.
Both methods presented above gave similar re®dtsause of a lack of ground
truth data, the result of both methods can only amalyzed visually by
comparing it to forest cover in the original Landsaage, which is well
recognizable. In this research, the result of thgesvised classification method
yielded the most satisfactory result, based onvieaal comparison with the
Landsat image, and is therefore used in furthelyaas.
Finally, we assumed a mainly closed forest areaerdfore we removed
individual groups of forest pixels by using thee\g’-tool in IDL Envi with a
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group threshold of 4 pixels. Small gaps in the §oea are removed by using
the ‘clump’-tool in Envi with a group threshold ®fpixels.

Treeline zone

The following procedures were all carried out INRERrcGIS 9. First, to be
able to extract the treeline, the classified rasteage was converted to a
‘coverage’. In this way, the boundaries betweeredborand no forest were
represented as lines. For further analysis, thess Wwere converted back to a
raster image with the same cell size as the oligiaadsat image (28.5 meters).
During this process, a mask, which representedltheled areas in the Landsat
image and the outer boundaries of the study area, weed to remove these
undesired areas from the treeline image.

In the resulting image every boundary from foreston-forest is visible, even if
they do not represent the alpine/altitudinal trezliHowever, only the alpine
treeline should be used to calculate the averagdirie position and its standard
deviation. These were necessary to define theineeatansition zone within
which the treeline position was modeled. There@minimum alpine treeline
height is set. Forest boundaries below this heigirte excluded from the treeline
image.

The treeline transition zone (‘treeline zone’ fdwd) was defined as the area
within two standard deviations from the averagéuale of the alpine treeline.
To determine the average altitude, the treelingerasnage was used as an
extraction mask on the DEM. The result was a tneelmage in which every
pixel has an elevation value. The mean and stardiar@tion of these elevation
values can be read out of the metadata of the inmageut into a table by
calculation of the image statistics. The averagelime position was located at
3634 meters with a standard deviation of 185 mefEng transition zone was
located between 3264 and 4004 meters elevation.

From the DEM, the pixels which have a value betwibese limits are extracted.
This image is then used as an extraction areaefotlkst/non-forest image. The
result is an image representing forest distributiothe alpine treeline transition
zone.

Topographic variables

From the DEM, the following topographic variableeres calculated using
ESRI's ArcGIS 9 spatial analyst extension: slopgl@naspect, plan curvature
and profile curvature. These variables are caledlaising a 3x3 moving
window. Since aspect is expressed in degrees fraim 860, low values are
actually the same as high values. Therefore, twwerotaspect values are
calculated. By applying a cosine transformatiomaable is created stressing the
north-south contrast. A sine transformation produe@ image stressing the
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west-east contrast. Values range from 1 to -1, s/lemrrepresents northern,
respectively eastern aspects and -1 representbesoutrespectively western
aspects. The drawback of this method is that tive siee and cosine values
change with a variable amount i.e. the intervas @ot constant, which is an
assumption in a number of statistical analysesn@es) 2005). However, the
statistical method presented later in this resedods not make this assumption.
Finally, for further analysis, the topographic emstnages need the same spatial
resolution as the forest distribution image. Theref the topographic raster
images are resampled from a cell size of 90 meter28.5 meters using a
bilinear interpolation process. Bilinear interpadat uses a distance weighted
average of the values of the four nearest pixdlsceSthis resampling method
uses the relative position of its neighboring psxebilinear interpolation is
preferred for data which represents continuousased such as elevation, slope
etc. (ESRI, 2001).

Environmental indices

Since topographic variables are possibly too lichiten explaining the
distribution of forest at treeline position, we dsa number of indices for
environmental conditions which may have a diredtuence on vegetation
growth. The indices were derived from the DEM, whiestricts the number of
options. The chosen indices represent conditionishwéire known to influence
vegetation growth and/or establishment: solar taia wetness and erosion
potential.

PRR

The first index, the ‘Potential Relative Radiatiandex, (Pierceet al, 2005)
represents incoming radiation during the year. Higilues indicate high
potential incoming radiation. The calculation otindex accounts for daily and
annual changes in solar orientation as well asg@uhic shading effects. Since
aspect and slope fail to capture temporal changéscoming radiation as well
as the effect of topographic shading, this indeghhiprove to be a valuable
addition to the set of explanatory variables.

Calculation of PRR is as follows: first calculatdas elevation (complement of
solar zenith) and solar azimuth in degrees foryeteur from sunrise to sunset.
Calculate these values for the day of the monthcivinepresents the average
solar period of that month. To calculate the selavation and solar azimuth per
hour of the day for a particular geographic loaatithe ‘Solpos’ algorithm,
developed by the National Renewable Energy LaborafdREL), was used
(NREL, 2001).

When solar elevation and azimuth values had be&inaul, this data was then
used together with the DEM to calculate hourly stthdelief grids. This was
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done with the HILLSHADE function in Arcinfo. By tamg on the shadow
option in this algorithm, not only local shade lalso shadowing effects of
nearby hills were taken into account (ESRI, 2001).

Next, the hourly values were summed. This resulteddaily totals which
represented monthly averages. Then, these montldyages were summed
which resulted in a yearly map of potential incogradiation.

CTI

The second index, the Compound Topographic Indemneonly referred to as
Wetness Index, represents soil water content addcates zones of water
saturation. High values indicate converging, loveas: Low values indicate
diverging, steep or high areas (Schmidt & Pers2603; Yanget al, 2005). It is
a static wetness index and is most commonly catedlia two different forms:

1) CTly =In(As/ Ttang) or,
2) CTl=In(As/tang)

In which As is the upslope contributing area (cichenent area in area fhper
unit width orthogonal to flow direction) is the local slope angle and T is the
soil transmittance when it is completely saturgtédssleret al, 2000; Mooreet

al.,, 1991). Since T is not available for the studyaak€T] is calculated by using
the second form. This form assumes uniform soilpprtoes, which is a
limitation but earlier research showed strong datien of CTIl 2 with several
soil attributes such as surface soil water contemtizon depth, silt percentage,
organic matter content and phosphorus (Gesslat, 2000; Mooreet al, 1991;
Yanget al, 2005).

The algorithm o (Diniinity) as proposed by (Tarboton, 1997) is used to aequir
As which can be found in the program TauDEM (Terramalysis Using Digital
Elevation Models). TauDEM is available as an extangor ESRI's ArcMAP
software. The algorithm has the advantage that roportioning flow between
two downslope pixels, thereby overcoming the pruisieof parallel flow lines
(encountered with the basic D8 algorithm (SchmidP&rsson, 2003; Yanet
al., 2005)) and unrealistic dispersion (encountereati wiultiple flow algorithms
(Freeman, 1991; Quinat al, 1995)) (Tarboton, 1997). TauDEM was used to
calculate flow direction which, in turn, was used tlerive the upslope
contributing area. The remaining calculations wargomated using ESRI’s
ArcGIS modelbuilder.
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STCI

The last index, the Sediment Transport Capacitgxn®TCl), is a measure for
erosion potential. It is an index that is suitalgledetermining erosive power at
the scale of catchments and has proven successfptedict soil properties
which influence vegetation distribution (De Roo 989 Dirnbdcket al, 2002;
Moore et al, 1993). The calculation of STCI follows on the Ugsisal Soil Loss
equation (USLE) and is similar to the Stream Powwtex (SPI). It was
developed by (Mooret al, 1993). STCI is expressed as:

STCI = [AJ22.13f°/ [sin p/0.08961 2

In which Asis the upslope contributing area¥m) andg is the slope angle
(degrees) (Mooret al, 1993).

The choice for STCI instead of USLE and SPI is Hasethe consideration that
the expression contains the upslope contributieg #A). Therefore, the index
accounts for the convergence and divergence of. flawthis way, the index is
more suitable for a landscape with a complex togolgy as in case of this
research (Mooret al, 1991).

The calculation of Awas performed by using the same» @lgorithm as for
CTI. The remaining calculations are automated usiEB§RI's ArcGIS
modelbuilder.

Statistical Analysis

Development of the logistic regression model

For the study area we now had the following mapsuatdisposal: the dependant
variable forest/no-forest, and the independentaldes height, aspectNS (north-
south), aspectEW (east-west), slope angle, plaratune, profile curvature, CTI
(wetness), PRR (radiation) and STCI (erosion). dbjective was to explain the
variable forest/no-forest by means of the otheiabdes i.e. the occurrence of
forest is predicted by a set of explanatory vagabl

Since the variable forest/no-forest is a binomial dichotomous variable,
binomial logistic regression seems the most obvatatstical method to analyze
the dataset (Garson, 1998; Hosmer & Lemeshow, 19&88)jistic regression is
widely used in ecological researches dealing withiromial or multinomial
dependant variable explained by independent vasabf any type, also in the
field of vegetation prediction (Augustet al, 2001; Augustiret al, 1996; Calef
et al, 2005; Felicisimeet al, 2002; Hilbert & Ostendorf, 2001; Virtaneat al,
2004). Logistic regression does not require thepethdent variables to be in an
interval scale which is useful when including theesand cosine transformed
variables aspectNS and aspectEW into the anal@sissbn, 1998).
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In logistic regression, the probability of forestcarence can be expressed as a
function of the explanatory variables:

(constantc,ariablel+c,Nariable2+.. +c, Nariablen)

P(foreSt): 1+ e(constanfclmariabléhczElariable2+...+cnmariablm)

In which P is the probability on the occurrence fofest and g represent
coefficients related to the explanatory variabkesliCisimoet al, 2002; Hosmer
& Lemeshow, 1989).

The logistic model was developed in thé&aining area’ following a
checkerboard pattern (see figure 5 below). The aeghs inside the alpine
treeline zone were used for the development ofdbistic model (Hevelopment
ared). The green areascfoss-validation areg were used to cross-validate this
model. The model was also applied in a new areeoappately 30 kilometers to
the south of the development area. Ttest area’is located close to the border
of the national park. Therefore, this area is sohawdifferent compared to the
development area, especially in terms of land Bsets of the area are used by
people to feed their cattle. For validation purgoges area is therefore not very
appropriate. However, the results can be usedct&tdoareas where forest could
potentially occur but is absent due to human ieterice.

Border treeline zone

B Development area
Cross-validation area

Figure 5: checkerboard pattern representing the ‘development area’ and ‘cross-validation area’
The treeline zone was dived into two parts following a checkerboard pattern. The red zones were used for the logistic
regression analysis and development of the model. The green zones were used for cross-validation of the model.

(scale varies in this perspective, distance from north to south is approximately 25 km)
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To apply the logistic regression analysis, the da#es first transferred to the
statistical package SPSS. This was done by transigrthe raster images to
point features. In this way the value of every prexeives a point-id which is
useful for visualization of the predictions later. 8y extracting the tables of the
point features, the values of the variables coelddad into the SPSS software.
In SPSS the ‘binary logistic’ regression method whesen with the variables
entered into the model following a forward stepwedgorithm based on a
classical maximum likelihood ratio test (Stepwis¢LRhe inclusion of variables
is based on Rao’s score statistic, which is rel&teal likelihood ratio test of the
coefficient of an explanatory variable. Howevermpared to a likelihood ratio
test, the score statistic is computationally mwdidr because it is a non-iterative
method (Garson, 1998). For excluding variables ftbe model the algorithm
uses the change a variable causes in the -2 Lagihdod (i.e. goodness of fit of
the model). If a variable in the model causes gaiicant change in the —2LL it
is removed from the model. The model coefficients #eratively adapted to
make the likelihood of the observed data as lageassible. This stepwise
procedure allows non-significant variables to beleded from the model.
(Garson, 1998; SPSS, 2003; Wuensch, 2005).

Following this method we assume that the data p@reg independent from each
other. However, this is not true because thesetpaire spatially structured and
are likely to show spatial autocorrelation. Ecotagistudies have sometimes
included spatial autocorrelation into their modgl ineans of autocorrelative
models (e.g. Augustiet al, 1996; Brenning, 2005). However, including spatial
autocorrelation greatly complicates the applicatioh such a model for
predictions, so it should only be included whenlidgawith patchiness caused
by factors other than biophysical factors (Augustiral, 1996). In this study we
assume that all spatial pattern is caused by tepbiral factors, and not by
purely spatial processes. At the current scalewstigation it is not likely for a
forest pixel to be influenced by the vegetationeroof neighboring pixels. Most
neighbor influence will occur at the scale of indival trees e.g. local seed
dispersion, shelter. Measures to account for dpatitocorrelation are therefore
not included in our model. However, the spatial efefence of the data does
affect the statistical significance of the modelhieth can therefore not be
interpreted directly (Guisan & Zimmermann, 2000).

When the explanatory variables are known, the éguatan be used to estimate
the probability on the occurrence of forest in thess-validation areaand the
‘test area! Probability values (P) are distributed betweeand 1. A threshold
value can be used to define the state of the respaariabldorest/no-forestBy
default, probability values under 0.5 are clasdifis no-forest, and values above
0.5 are classified as forest.
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Importance of variables

There are a few possibilities to assess the impoetaof the variables in
explaining the variable forest/no-forest. Firstadf we used the change that a
variable causes in the -2LL when it is removed fritra final model. A high
change indicates high importance (Garson, 1998).

We compared this statistic with the outcome of \Wald statistic, which is the
square root of the ratio between the model coefficand its associated Standard
Error (S.E.) (Garson, 1998; Hosmer & Lemeshow, 1988ensch, 2005). Here
also, a high value indicates high importance.

If the Wald statistic contradicts the outcome of tBLL test, then the -2LL test
is chosen as assessment statistic, since the \Wadistis has been criticized for
being unstable and lacking sufficient statisticalvpr (Garson, 1998; Hosmer &
Lemeshow, 1989; Wuensch, 2005). We did assess #id g¥atistic since it is
useful to have an alternative statistic to supgi@rtoutcome of the -2LL test.

For an even better perspective on the outcome tbf the -2LL-method and the
Wald statistic we assessed the actual predictipatubties of the model in each
step. It is important to note, however, that tlas oot be used as an assessment
of the goodness of fit of the model, since it does use the actual predicted
probabilities but the cut-off values 0 and 1. There, the outcome of the
predictive capability test gives no insight in héav the predicted probabilities
are located from 0 or 1 (Garson, 1998).

All variables that had a significant change on-2ie. were included in ourfull
model, since in our case this produced a model with highest predictive
capability when using a stepwise algorithm. Howeterassess the importance
of the individual variables in explaining forest/fayest we had to beware of
correlation between these variables. Since we da#it variables that were in
one way or another derived from each other, theamsmulticollinearity is high.
Multicollinearity is defined as the intercorrelatidbetween the independent
variables (Garson, 1998; Hosmer & Lemeshow, 1988yh intercorrelation
makes it very difficult to assess the relative impoce of the correlated
variables. The non-correlated variables are nectgtl (Garson, 1998).

In order to find out if the independent variablesthe final model displayed
signs of multicollinearity, we evaluated the bieae Pearson correlations
between the independent variables in the final hodke used a correlation
value of 0.9 as threshold for indicating signs afitaollinearity (Garson, 1998).
However, the correlation matrix only displays signsf bivariate
multicollinearity, but our model contained morerihtavo independent variables.
Therefore we produced multicollinearity diagnoststatistics to assess
multivariate multicollinearity (Garson, 1998; Guis& Zimmermann, 2000).
These statistics produce the Tolerance factor hadviariance Inflation Factor
(VIF) which is 1/Tolerance. VIF is defined a$hé number of times the variance
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of the corresponding parameter estim@tevariable coefficient)s increased due
to multicollinearity as compared to as it would bg there were no
multicollinearity’ (SSTARS, 2005). In case of logistic regressioalues above
2.5 may indicate multicollinearity (SSTARS, 2005).

Independent variables showing signs of multicoliny were separately entered
in a new stepwise logistic regression analysiswghnl the correlated variables,
thereby creating stripped models that allow bedtsessment of the individual
importance of these variables in explaining forditribution in the alpine
treeline zone. To compare the goodness of fit betwmodels we used the
likelihood ratio test. Since -2LL follows a chi-saye distribution the outcome of
this test is a chi-square statistic (Garson, 1998).
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Results

Model Input

The figures below show the results of the preprsiogsmethods applied to
respectively the Landsat ETM+ image and the DEMe Tiesult of the
classification (figure 6 below) is a variable reggrting forest and no-forest in
the alpine treeline zone (3264 - 4004 meters). Tipere shows a largely
continuous forest area with a clear transition ffonest to non-forest. However,
it can be also seen that in various places tharagmis forest area is interrupted
by some small gaps or larger strips of non-foresa.a

P 4 ] 8

e | lorm ters

e .

Figure 6: classification result of Landsat ETM+ image.

The Landsat image is displayed as a false colour composite (red = band 4, green = band 3, blue = band 2).
The highlighted area with yellow boundaries indicates the alpine treeline zone. Inside this zone the red area
represents the classified forest area. The greenish area represents no-forest.

Figure 7 shows the various topographic and envienmial variables derived
from the DEM. For a better comprehension, theseablikes are presented in a 3
dimensional perspective. While some variables haveear unit of measure
(height in meters, slope in degrees), other vaemlsuch as Aspect, PRR, etc.,
are displayed in relative units.
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Elevation

[ 1564 m

Border treeline zone

AspectNS

1 (North)

I -1 (South)

Border treeline zone

Plan curvature

I 055

Border treeline zone

4.54

Border tresline zone

Figure 7

Topographic and environmental variables; from
top-left to lower-right corner: elevation, slope
angle, aspect (north-south), aspect (east-
west), plan curvature, profile curvature, CTI
(wetness), PRR (radiation), STCI (erosion)

The highlighted area indicates the treeline zone

Scale varies in this perspective; distance from
north to south is 25 kilometers

Slope angle

o0

Border treeline zone

AspectEW

1 (East)

I -1 (West)

Border treeline zone

Profile curvature

. 0.65

I 064

Border treeline zone

I 1.55

Border treeline zone

STCI

o

Border treeline zone
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When looking at the wetness index (CTI), a clearctture is emerging showing
low potential water accumulation on ridges and Ipgkential accumulation in
valley bottoms and gullies. When looking at thegptial radiation index (PRR),
we can see that the highest potential is locateddges and in valley bottoms
and gullies. Areas with high potential erosion ($T&e mainly located on the
steeper slopes and in areas with a high upslopeilooting area.

Logistic Regression Analysis

Full model

The variables described above were used as inputs stepwise logistic
regression analysis. The results of the final gtep full model), as well as a
summary of the variables entered in previous s@gsdisplayed in table 1. The
variables are ordered from high to low influencearding to the Wald statistic,
which will be described in more detail later oneTtbtal model chi-square is the
measure of the goodness-of-fit of the model. lised later on to compare the
stripped models with this full model. A higher dguare indicates a better fit.

Table 1: Variables in the ‘Full model'.

The table presents the results of the final step (step 8) of the stepwise logistic regression algorithm. The
variables are ordered from high to low influence according to the Wald statistic. Model Coefficient (B) shows
the predicted effect of the variables on the odds ratio forest/no-forest. Positive coefficients represent a
positive effect, and vice versa. S.E. shows the associated standard error. Exp(B) represents the odds ratio.
An Exp(B) >1 indicates increased odds of forest occurrence. Sig. shows the significance of the contribution of
the variables to the model. Total model Chi-Square is a measure of the goodness-of-fit of the model. Higher
Chi-Square indicates better fit.

Step Variable Model Coefficient (B) S.E. Wald Sig. Exp(B)
Step 8 Height -0.01311 0.00007 33185.48 0.00 0.98697
Full AspectEW -0.75409 0.01332 3207.19 0.00 0.47044
Model CTI -0.50856 0.00978 2701.91 0.00 0.60136
Slope 0.06243 0.00281 494.70 0.00 1.06442
AspectNS -0.24278 0.01311 343.06 0.00 0.78444
STCI 0.00701 0.00041 290.06 0.00 1.00703
PRR 3.19912 0.20847 235.49 0.00 24.51099
Plan curvature -0.95960 0.10560 82.57 0.00 0.38305
Constant 42.69393 0.56869 5636.22 0.00  3.48127E+18
Variable entered on step 1: Height Variable entered on step 5: STCI
Variable entered on step 2: CTI Variable entered on step 6: AspectNS
Variable entered on step 3: AspectEW Variable entered on step 7: PRR
Variable entered on step 4: Slope Variable entered on step 8: Plan
Variable excluded of model equation: Profile curvature
Total Model Chi-Square: 79698.95
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The column ‘Model Coefficient (B)' shows the pretdid effect of the variable
on the odds ratio of forest/no forest. Positivefiioents represent a positive
effect, while negative coefficients indicate a rtegaeffect.

Column ‘Exp(B)’ is the actual odds ratio; if Exp(B)>1, a higher value of the
variable corresponds to increased odds of forestiroence, if Exp(B) is <1 it
corresponds to decreased odds of forest occurr@aeson, 1998; Hosmer &
Lemeshow, 1989; SPSS, 2003; Wuensch, 2005). ExpfB}he variable
‘height’, for example, is <1 which implies a deeadn forest probability with
increasing height. For aspect (east-west) it is d@lls which indicates a decrease
in forest probability on eastern slopes; i.e. foseems to prefer western slopes.
Profile curvature is not included in the model hessof its low significance;
0.753 with an exclusion value of 0.05. See figuree®w for an overview of
possible curvatures. It is important to note thegt dbutcome of the curvatures
calculated with the algorithm implemented in ArcGd8viates from normal:
negative curvature normally indicates concave angasitive curvature convex
areas. Plan curvature used in this research appighis rule, but profile
curvature is reversed; negative profile curvaturdicgates convex areas and
positive profile curvature indicates concave ar@dgSRI, 2001; Mooreet al,
1991; Peschier, 1995).

Plan Curvature Profile Curvature

AL

Figure 8: Possible curvatures; from left to right: plane (a), convex (b) and concave (c) curvature. The arrows
indicate flow; convex plan curvature leads to diverging flow, concave plan curvature results in converging
flow. Profile curvature affects the deceleration (b) and acceleration (c) of flow (Peschier, 1995).

Predictive model performance

The coefficients (B) of the full model can be udedstate the full model as a
mathematical equation in which the probability ba bccurrence of forest is the
function of the significant topographic and envimental variables (Hosmer &

Lemeshow, 1989):
o(42.69393(-0.0131 Hieight)(-0.5085@C TI)+(~0.7540@spectEW)(0.0624Blope}-.

P(foreSt) = 1+ e(42.69393(—0.013111H1eight)+(—0.5085&T|)+(—0.7540%spectEW}(0.0624JBIope)+...

..#(0.0070I3TCI)+(-0.24278AspectNS)(3.1991IZPRR)+(-0.9596PlanCurv)

..+(0.0070ISTCI)+(-0.24278AspectNS)+(3.1991ZPRR)+(-0.95960PlanCurv)

Table 2 presents an overview of the performanddeinodel in predicting the
‘development aregder step of the logistic regression analysis. Ztxe2 cross-

tabulation table compares the observed responseedgforest/no forest) with
the predicted response classes. The underlined ensnam the diagonal show
the correct predictions (SPSS, 2003; Wuensch, 200 percentage in the row
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in which the observed forest distributionne-forest represents thspecificity
of the model. The row, in which the observed fordsstribution isforest
represents theensitivityof the model (Garson, 1998). Note that the pesgpd
correctly classified pixels in these rows are appnately the same in all steps,
with the sensitivity somewhat smaller than the gmi#ty. This means that the
logistic model has homoscedasticity (i.e. the var@of the variable forest/no-
forest is the same for all data) and the modelh8ijgunder-predicts the
occurrence of forest (Garson, 1998).

Table 2: Predictive capabilities of logistic model

This table shows the predictive accuracy of the logistic model per step in the stepwise logistic regression
analysis. The underlined numbers show the correct predictions. The percentage in the row with no-forest
observed represents the specificity of the model. The percentage in the row with forest observed represents
the sensitivity of the model. Step 8 shows the predictive capabilities of the full model.

Observed Predicted

Forest distribution Forest distribution Percentage Correct

No-Forest Forest
Step 1 (Height) No-Forest 52915 11461 82.2
Forest 12606 46795 78.8
Overall Percentage 80.6
Step 2 (CTI) No-Forest 54589 9787 84.8
Forest 11491 47910 80.7
Overall Percentage 82.8
Step 3 (AspectEW) No-Forest 54941 9435 85.3
Forest 11139 48262 81.2
Overall Percentage 83.4
Step 4 (Slope angle) No-Forest 54891 9485 85.3
Forest 10668 48733 82.0
Overall Percentage 83.7
Step 5 (STCI) No-Forest 55007 9369 85.4
Forest 10584 48817 82.2
Overall Percentage 83.9
Step 6 (AspectNS) No-Forest 55032 9344 855
Forest 10499 48902 82.3
Overall Percentage 84.0
Step 7 (PRR) No-Forest 55030 9346 85.5
Forest 10448 48953 82.4
Overall Percentage 84.0
Step 8 (Plan curvature) No-Forest 55019 9357 85.5
Forest 10429 48972 82.4
Overall Percentage 84.0

We can see a clear increase in the predictive défesbof the model in the first
steps. However, after step 6 the overall predictepability of the model
increases by less than 0.05 %. The effect of PRIRRlan curvature on the
occurrence of forest, even though significant adicagy to the -2LL-method and
Wald statistic, can therefore be disputed. At le&st predictive importance
these variables have almost no value.
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Table 3 below shows a summary of the predictioumy in theédevelopment
area’, ‘cross-validation area’and ‘test area’ In the ‘development areaand
‘cross-validation area'the specificity of the model was somewhat higlemt
the sensitivity; in thétest area; the specificity of the model is clearly much
lower than the sensitivity. So the outcome of thaal in the'test area’gives a
large over-prediction of forest.

Table 3: Summary of predictive accuracy

This table shows a summary of the predictive accuracy of the full model in the different areas. The predictive
accuracy in the ‘cross-validation area’ is comparable with the ‘development area’. The test area shows a
large over-prediction of forest; the sensitivity is much higher than the specificity (see table 2).

Observed Predicted
Area Forest distribution Forest distribution Percentage Correct
No-Forest Forest

Development area No-Forest 55019 9357 855
Forest 10429 48972 82.4

Overall Percentage 84.0

Cross-validation No-Forest 55970 11056 83.5
area Forest 9704 47602 83.1
Overall Percentage 83.3

Test area No-Forest 59562 40375 59.6
Forest 4290 75655 88.8

Overall Percentage 74.2

Figure 9a visualizes the predictions of the moddts own area (levelopment
ared) as well as in the cross-validation area Figure 8b compares the
prediction with the real forest distribution (th&assification). Green colours
indicate areas where forest is predicted whereagt forest wasot present.
Yellow colours indicate areas where no-forest sdpmted where in fact forest
waspresent.

In figure 9a, the areas indicated by the blue amermy circle clearly show the
importance of the inclusion of CTI into the mod&lthough the model correctly
predicts the absence of forest on the wet vallayobg the negative effect of
CTI on the occurrence of forest is in fact eveorggler than the model predicts;
the green colours in figure 9b indicate the langeiforest area on these valley
bottoms. The area inside the green circle also shbe effect of the variable
Aspect (east-west) on the prediction of forest. Tdfe strip of forest (eastern
aspect) is clearly smaller compared to the righp sif forest (western aspect).
The upper limit of the right strip is located ab@0tto 30 meters higher.

Figure 10a shows the model outcome in tiest'ared Figure 10b shows the
predictive performance of the model. Very strikiisgthe over-prediction of
forest, especially in the southern, northern andtere areas indicated by the
green circles. This could well be the result of Banmpact on the area.
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Figure 9: Logistic model in ‘development area’ and ‘cross-validation area’.
A) The predictions of the model in its own area (‘development area’; light blocks) as well as in the ‘cross-validation area’ (dark blocks). Red colours indicate forest. The highlighted area surrounded by

the yellow border indicates the treeline zone.
B) Comparison of the prediction of the model and the real forest distribution (the classification). Green colours indicate areas where forest is predicted where in fact forest was not present. Yellow

colours indicate areas where no-forest is predicted where in fact forest was present. Red colours indicate correctly predicted forest.

Overall classification accuracy in ‘development area’: 84.0 %; in ‘cross-validation area’: 83.3 %
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Figure 10: Logistic model in ‘test area’.

A) The predictions of the model in the test area. Red colours indicate forest. The highlighted area surrounded by the yellow border indicates the treeline zone.

B) Comparison of the prediction of the model and the real forest distribution (the classification). Green colours indicate areas where forest is predicted where in fact forest was not present. Yellow
colours indicate areas where no-forest is predicted where in fact forest was present. Red colours indicate correctly predicted forest.

Overall classification accuracy: 74.2%
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Importance of variables in ’full model’

Exp(B) expresses the potential effect that the albdes have on forest
distribution. However, the importance of these @fefor the model results
differs. Therefore, we had a look at the measurasduantify this importance.
Table 4 shows a summary of the change in -2LL f@re variable if it would
be removed from the full model. The variables ameced from high to low
change in -2LL. The change in —2LL decreases asvé#in@bles decrease in
importance. This statistic clearly shows the higipartance of the variables
height, aspect (east-west), and CTI (see tablebbluh).

According to this method, even the low change aff82f plan curvature is
significant i.e. adding plan curvature to the mosignificantly increases the
ability of the model to predict the occurrence arfeist (Wuensch, 2005).

Table 4: Change in -2 Log Likelihood

This table gives an indication of the relative importance of the variables in the ‘full model'. The variables are
ordered from high to low importance based on the change in -2LL. The variables height, aspectEW and CTI
show a clear impact on -2LL and are therefore displayed in bold.

Changein -2 Log Change in

Variable

Likelihood percentages
Step 8 Height 75950.79 90.58 1
Full model AspectEW 3401.21 4.06 1
CTI 3001.21 3.58 1
Slope 498.68 0.59 1
AspectNS 345.18 0.41 1
STCI 328.65 0.39 1
PRR 237.19 0.28 1
Plan curv 82.78 0.10 1

Sig. of Change

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Another statistic used as an indication of the irtgoece of the variables, is the
Wald statistic of the full model. The Wald statistan be found in table 1 on
page 3. The outcome is similar to the outcome @fBhL statistic.

Stripped models

Table 5 below shows a matrix with the bivariaterelation values of the
explanatory variables in the full model. The highe®srrelated value is
underlined. When taking a strict correlation crdar of 0.90, none of the
variables are of concern when considering multiceirity. However, the high
correlation of -0.89 between Slope and PRR showafsvile have to be cautious;
much of the unexplained variance which could bdarpd by PRR is already
explained by including slope angle into the model.
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Table 5: Bivariate correlation of explanatory variables

This matrix shows the bivariate correlation of the explanatory variables in the ‘full model’. Positive or negative
values close to 1 indicate high correlation and were used to detect signs of bivariate multicollinearity. The
highest correlation value (PRR vs. Slope) is underlined.

Aspect

Variables Height EW

Height
AspectEW
CTI

Slope
STCI
AspectNS
PRR

Plan Curv

Next to the signs of bivariate multicollinearity \aso had a look at the signs of
multivariate multicollinearity. Table 6 below showthe multicollinearity
diagnostic statistics. For these diagnostics weiegha VIF (Variance Inflation
Factor) threshold value of 2.5 for indicating medtiinearity. In this statistic we
see a very high inflation factor for slope anglel atso PRR and CTI are well
above the 2.5 criterion. For STCI we have to bdioas since its value is very
close to the value of 2.5.

Table 6: Multicollinearity diagnostics

This table shows the multicollinearity diagnostics of the explanatory variables in the ‘full model'. Tolerance
shows the proportion of variance not explained by the other variables; high values are favorable. VIF
(Variance Inflation Factor; = 1/Tolerance) is a measure of the times the variance of the variable coefficient is
increased due to multicollinearity; low values are favorable. VIF was used to detect signs of multivariate
multicollinearity. Explanatory variables in bold show signs of multicollinearity.

Variable Tolerance VIF
Slope 0.10 10.03
PRR 0.17 6.03

CTI 0.22 4.48

STCI 0.41 2.46

Plan Curv 0.54 1.85
Prof Curv 0.56 1.78
AspectNS 0.83 1.20
AspectEW 0.90 1.11
Height 0.91 1.10

Based on these assessments we decided to cregieedtrdown models
containing all the independent variables, but oohe of the four variables
showing signs of multivariate multicollinearity gnrables in bold). The stripped
models, with decreased multicollinearity, allow attbr insight in the
importance and effects of the individual variablsummary of the full model
and the stripped models is found in table 7 onrtbet page. The models are
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ordered from high to low goodness of fit. The vhlés are ordered from high to
low change in -2LL.

The chi-squares and predictive accuracies of afjp#d models are lower than
these of the ‘full model’. However, the strippeddets allow us a better insight
in the importance of the independent variables; stnpped models show no
signs of bivariate or multivariate multicollinearit

The stripped ‘slope-model’ represents a basic togugc model without any of
the more complex environmental indices includede Thportance of slope is
suddenly much higher compared to its importancehm full model. The
importance of PRR and STCI also increases drantigtioahe stripped models.
CTI, which already had quite an important rolehe full model, also increases
in importance and becomes the second most imponantble, leaving
AspectEW behind.

If we look at the Exp(B) of the variables in thegbed models we can see that
CTI, slope and STCI have the same effect on theroeace of forest as in the
full model, only with a slight increase in effeetowever, the effect of PRR in
the stripped model is reversed: high radiation mawses a decrease in forest
probability.

In the full model and in the stripped ‘CTl-modetoncave plan and profile
curvatures cause a higher probability of forestuommce. In the remaining
stripped models the effect is reversed: concave ghal profile curvatures cause
lower probability of forest occurrence.

Table 7: Stripped models

This table shows a summary of the ‘full model’ and of the stripped models which contain all variables but only
one of the four variables showing signs of multivariate multicollinearity (variables in bold). The models are
ordered from high to low goodness-of-fit (Chi-Square). The variables are ordered from high to low change in -
2LL. Exp(B) shows the coefficient related to the variable. Change in -2LL (and change in percentages)
indicates the relative importance of the variable in the model.

Changein -2 Log Change in Sig. of the

Variable

Likelihood percentages Change

Height 0.98697 75950.79 90.58 1 0.00
Full Model AspectEW 0.47044 3401.21 4.06 1 0.00
) CTI 0.60136 3001.21 3.58 1 0.00

Total Chi-
Square: Slope angle 1.06442 498.68 0.59 1 0.00

79698.95
AspectNS 0.78444 345.18 0.41 1 0.00

Overall

accuracy: STCI 1.00703 328.65 0.39 1 0.00
Bl PRR 24.51099 237.19 0.28 1 0.00
Plan 0.38305 82.78 0.10 1 0.00
CTI Height 0.98714 76238.58 83.83 1 0.00

Total Chi-
Square: CTI 0.50335 10522.35 11.57 1 0.00
77526.64 AspectEW 0.50105 3207.61 353 1 0.00
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Plan 0.06106 837.78 0.92 1 0.00
Overall
accuracy: AspectNS 0.88631 101.35 0.11 1 0.00
83.6
Prof 1.66804 35.72 0.04 1 2.28 E-09
Slope Height 0.98766 73975.32 83.06 1 0.00
. Slope 1.10086 9678.62 10.87 1 0.00
Total Chi-
Square: AspectEW 0.44146 4343.49 4.88 1 0.00
76682.92
Prof 0.11988 641.31 0.72 1 0.00
Overall
accuracy: Plan 3.44700 212.10 0.24 1 0.00
e AspectNS 0.84152 207.30 0.23 1 0.00
PRR Height 0.98840 70759.06 86.68 1 0.00
. PRR 0.00118 5717.82 7.00 1 0.00
Total Chi-
Square: AspectEW 0.44661 4254.13 5.21 1 0.00
72722.11
Prof 0.15388 528.35 0.65 1 0.00
Overall
accuracy: Plan 4.89414 370.46 0.45 1 0.00
g2 AspectNS 1.03008 6.42 0.01 1 0.01
sTCl Height 0.98919 66404.95 88.88 1 0.00
STCI 1.01715 3231.53 4.33 1 0.00
Total Chi-
Square: AspectEW 0.53423 2830.62 3.79 1 0.00
70235.83
Plan 51.25384 1985.04 2.66 1 0.00
Overall
accuracy: Prof 0.32185 196.19 0.26 1 0.00
82.2
AspectNS 0.90961 66.88 0.09 1 3.33 E-16

The above illustrates the impact of the wet, naegbareas (explained by CTI)
on the effect (Exp(B)) of the other independenialaes predicting forest/non-
forest. When the variable CTl is not included ia thodel, other variables try to
take over its negative effect on forest probabhility

The effect and importance of slope angle (highepeslangle = higher
forest probability) increases since the non-foagsts related to wetness
are mainly located on the lower slope angles.

The same goes for STCI (higher STCI = higher fopesbability).

The effect of PRR is reversed (higher PRR = lovegedt probability)
and its importance increases since the lightersapeaur mainly in the
valley bottoms, in gullies and on ridges.

The effect of plan and profile curvature is revdrgmore concavity =
lower forest probability) since the non-forest areslated to wetness are
mainly located in concave areas. Slope and PRR &apparently some
overlap with plan curvature; the importance of ptamvature in these
models is not very high. The importance of plarvature in the ‘STCI-
model’ increases considerably since STCI is notabbgpof explaining
all of the non-forest areas related to wetness:13§ Generally high on
steep slopes (low CTI, high forest cover), but etso be high in wet
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gullies with low forest cover — this low forest @vthen needs to be
accounted for by plan curvature.

Importance of variables for forest distributionalpine treeline

When taking the above theory into account we cakena summary of the
importance of the variables in explaining forestmoution in the alpine treeline
zone. Table 8 below shows the variables from haglow importance based on
the full model and based on the stripped modebm Bhd profile curvature are
not included in this list because of there gengtalv model importance.

Table 8: Importance of explanatory variables

This table shows a summary of the importance of the variables in explaining forest distribution at alpine
treeline. The old arrangement is based on the importance of the variables in the ‘full model'. The new
arrangement is an assessment of the importance of the variables after analyzing the stripped models.

Old arrangement New arrangement
(based on full model) (based on stripped models)
1. Height 1. Height
2 AspectEW 2. CTI
3 CTI 3. AspectEW
4. Slope 4. STCI
5 AspectNS
6 STCI
7 PRR

The new arrangement is based on the informatioth@fstripped models and
taking environmental effects into account. Firstatlf we can say that CTI is
better in explaining the non-forest areas related/étness compared to Slope,
PRR and STCI. Therefore we can regard AspectEWMeathird, most important
variable because it is explaining a different emwmental effect. This
corresponds to the outcome of visual analysis ddiodistribution at different
altitudes. At the lower altitudes (below average) @an see no clear preference
of forest for a certain aspect. But at higher adkits (above average) we can see
a clear preference of forest for western slopes figere 11).

Secondly, slope is highly related to CTI. The intpoce of CTI decreases
dramatically when introducing slope into the mod&l.model with all the
variables included except slope angle has onlygatst smaller goodness of fit
(see table 9). Its overall predictive accuracy resiat 84%. In other words,
slope tries to explain much of the areas alreaghfaxed by CTI, thereby not
introducing any new environmental information. itgportance to the model is
very limited. Therefore slope angle is not includethe new arrangement.
Thirdly, in the model with only slope excluded, ST a quite important
variable responsible for almost 2 % change in -Rlithout greatly decreasing
the importance of CTI; i.e. STCI introduces impattanew environmental
information.
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Finally, AspectNS has almost no change in -2LLhis imodel and PRR is not
significant enough to be included. Therefore, thesables are not included in
the new arrangement.

Nortl
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Figure 11: Aspect ecogram

The ecogram shows the relative forest
distribution in the ‘development area’
above the average treeline altitude
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Table 9: Stripped model (slope exclusion)
This table shows a summary of the stripped model containing all the variables except slope. The variables
are ordered from high to low change in -2LL. Exp(B) shows the coefficient related to the variable. Change in -
2LL (and change in percentages) indicates the relative importance of the variable in the model. Variables in
bold are taken up in the new arrangement of variable importance.

Changein -2 Log Change in Sig. of the

ol VG Likelihood percentages Change

Model with Height -0.01302 75313.28 1 0
Slope cTl -0.65702 9061.93 10.03 1 0
excluded
AspectEW -0.77011 3827.53 4.24 1 0
Total Chi-
Square: sTCl 0.01227 1771.11 1.96 1 0
79297.76
AspectNS -0.16004 173.44 0.19 1 0
Overall
] Prof 0.89710 104.27 0.12 1 0
84.0 Plan -1.01340 88.57 0.10 1 0
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Discussion

This chapter deals with interpreting the outcome tloé logistic model,
investigating model stability and understanding lihetations and advantages
of using a logistic modeling approach.

Model interpretation

Logistic regression analysis is a useful tool teeas the relative importance of
variables for vegetation distribution as long as #ffects of multicollinearity
are taken into account. Despite the possibilitdiscriminate the importance of
the variables under research, the underlying eambgnechanisms are still
hard to quantify. The four identified variables Imgyva pronounced effect on
forest distribution at alpine treeline (height, CBlspectEW and STCI) may
influence several edaphic, physical and climatatdes. We also have to keep in
mind that we deal with statistical relationshipsiethare not necessarily good
replacements for actual ecological manifestatiéiee(schet al, 2002).

The results of this study clearly showed the imgaoece of altitude (variable
height) as influencing factor, responsible for axmately 85% of explained
variance. Altitude is an indicator of several egital gradients which may
influence forest distribution at alpine treelineg.eemperature and precipitation
(Bian & Walsh, 1993; Dirnbdclet al, 2003). In the study area, temperature
gradient, influenced by altitude, will probably b#e most important
determinant for the spatial distribution of forest.

CTI turned out to be another important variabléuefcing forest distribution at
alpine treeline, responsible for approximately 1166 12% of explained
variance. The negative effect of CTI can be reldteéxcessive soil moisture
conditions and drainage areas with high erosivegoovnother possibility is
the effect of air, cooling down during the nighthégher altitudes, sliding down
the slopes and causing a blanket of stagnant dodhahe narrow valleys
(Paulsen & Korner, 2001; Wardle, 1985). Areas wuititiential susceptibility to
this effect coincide with areas having high CTld{oating areas with excessive
soil moisture).

AspectEW (east-west) was the third variable to slaopronounced effect on
forest distribution at alpine treeline, responsifide approximately 4.25% of
explained variance. The ecogram indicated thahjgiter altitude, forest has a
preference for western slopes, which suggestsfohest on western slopes can
reach higher elevations. Slope aspect is relatezseteral biophysical factors,
e.g. incoming solar radiation and humidity (Dirnkoet al, 2003; Kdorner,
1998). During the morning, when the sun is locatethe east, the study area is
often practically cloud free. In the afternoon, uds are rising up from the
Amazon basin into the study area, limiting the mawg solar radiation. The
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possibility exists that this cloud-provided shekerves as an ecological niche,
allowing tree establishment beyond the shelteredd, and thereby positively
influencing the advance of western treeline to argdititude. In contrast, harsh
sunlight on eastern slopes may limit tree estaiviestit at open spaces beyond
the treeline, preventing the advance of the eadtemline to higher altitudes
(Smith & Young, 1987).

STCI was the last variable to show a pronounceecefin forest distribution at
alpine treeline, responsible for approximately 2%cerplained variance. The
actual biophysical effect is hard to assess. Thmbi@ shows a positive effect
on alpine forest distribution, but it is rather avelcd to conclude that forest at
alpine treeline prefers areas of high potentiatier It is more likely that STCI
has as small correlation with a biophysical facterg. soil condition) that
positively influences forest establishment.

The remaining factors, slope, aspectNS (north-gpptiofile and plan curvature
did not show a distinct effect on forest distriloatiat the current scale. This
does not mean that these variables have no inffluaha@ll. It only implicates
that in our model, at the current scale of invedtan, the other variables are
better in explaining forest distribution at alptneeline.

Other studies attempting to explain vegetatiorritistion at comparable scales
by means of topographical variables, experiencadilagi difficulties in
discriminating causality effects. Comparison withahof this research is rather
limited since these studies focused mainly on naidd high latitude alpine
regions (Allen & Walsh, 1996; Baket al, 1995; Horsch, 2003; Virtaneat al,
2004; Walshet al, 2003). Allen & Walsh (1996), for example, investied
spatial pattern of alpine treeline in Glacier NatibPark, Montana. They found
strong significance with elevation and related #féect to a temperature
gradient. Other significant factors included slogegle and solar radiation
potential. These were related to snow avalanchedsjgiflows and the location
of permanent snowfields (Allen & Walsh, 1996). lar @quatorial study region
the effects of snow avalanches and permanent selolsfon forest distribution
are of no importance, which may explain why we didt find similar
relationships.

Brown (1994) constructed linear regression modets@lacier National Park,
Montana, to predict vegetation types by using togplgical and biophysical
disturbance variables. He also found elevationetdhe most predictive factor,
followed by solar radiation, snow accumulation aopographic soil moisture
potential. Bakeet al. (1995), who performed their research in Rocky Maim
National Park, Colorado, and Virtanehal. (2004), who investigated the artic
treeline in Northeast Russia, stated the negatifecteof topographic soil
moisture on vegetation distribution at treelineak®& et al. (1995) found the
effect of wetland interruptions especially impottamthe lower regions, while
the effect of lake interruptions increased at higbkevations. Virtaneret al.
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(2004) found the effect to be significant at a spadcale of 3 kilometers and
increasing in significance at higher resolutionsisTunderlines the importance
of incorporating topographic wetness in alpine Yatien modeling.

Recent research by Hoch & Korner (2005), who stlidielylepis species at
alpine treeline in the Oruro province, Bolivia, fmuaspect related limitations of
the species at southern slopes. Above 4400 metgtsde, Polylepis was
mainly located at the warmer and drier northerpet$ facing the equator. In
our study area, located approximately 2° southhef équator, a north-south
influence was not found which can be explainedhgyfact that their study area
is located at 18° south of the equator.

Finally, Horsch (2003) investigated 25 DEM deriveariables to model the
spatial distribution of forest in the central AlgShe found all topographical
variables (elevation, slope, aspect, radiationyature, etc.) to be significant in
explaining vegetation alliances. However, she did take into account the
effects of spatial autocorrelation. At the currenéle of analysis we expected
spatial similarity to be caused mainly by similapaographical position and
therefore did not include any terms in our modeiclwhaccounted for spatial
autocorrelation. However, when using DEM-derivedialales, data points are
located relatively close to each other, thus viotpatthe assumption of
independent variables. In this case, pseudo-régicaoccurs, affecting the
actual number of degrees of freedom (Heffeernl, 1996). This causes model
coefficients to increase in statistical significanghich is probably the reason
why Hoérsch found all topographical variables to dignificant in explaining
alpine vegetation alliances. When choosing not tzolporate spatial
autocorrelation it is essential to treat the sigaiice of model coefficients
carefully. While modeling alpine forest distributiat higher spatial resolutions
(e.g. scale of individual trees) it is recommended incorporate spatial
autocorrelation into the analysis, thereby takiffgats such as local dispersion
and sheltering into account; e.g. by means oftiteranethods (Augustiet al,
1996) or by taking a subsample of data points therecreasing distance and
decreasing correlation between points (Brennin@528rown, 1994).

Logistic regression analysis lacks the ability take firm statements about the
actual percent of variance explained by the topmlycal and topography
derived variables (Garson, 1998), but the prediciccuracies suggest that
topographical and topography derived variables amgable of explaining a
significant amount of alpine forest distributiorhi§ is promising for the use of
topographic variables in ecological modeling asubasstute for biophysical
factors directly influencing vegetation distributieespecially in areas with large
topographic variation. Moreover, previous reseaiohregions with high
heterogeneous geomorphology suggested that togugahactors were more
useful in predicting vegetation communities thaecégal attributes (Dirnb6ckt

a7




Relating Alpine Treeline to Mountain Topography

4.2

48

al., 2003). Furthermore, compared to direct influegdectors, topography and
topography related factors are relatively inexpemsand easy to obtain
(Dirnboécket al, 2003; Gottfriecet al, 1998).

However, topography and topography derived vargsldee not capable of
accounting for all biophysical factors influencifgrest distribution at alpine
treeline. The variable PRR for example is an indextifying potential relative
radiation. The calculation assumes clear sky andatmoospheric scattering
effects, which is often not the case, thereby Imgitthe value of this factor
(Pierceet al, 2005). Combined with the location of the studgaanear the
equator may be the reason why we did not find thasiable to have a
pronounced effect on alpine forest distributions®lthe effect of human
landuse has to be taken into account. Human lanchus@verrule the effects of
topography (Dirnbdclet al, 2003).

Model applicability and model stability

The full logistic model had an overall predictivecaracy of 83.3 % in the
‘cross-validation areaand 74.2 % in thetést area It is clear that, at the
current scale of investigation, topography hasgaicant influence on forest
distribution at alpine treeline. This influence nsinly limited to constraints
determined by altitude, CTI, aspect and STCI. Thera significant difference
in scale between the data of forest distributiod #me data of topographic
variables It is important to note that resampling DEM from 90 to 28.5
meters results in a certain degree of pseudo-résoluCombined with the
smoothing caused by artifact removal, the DEM i$ capable of indicating
micro-scale variation and small depression areashwtould be of importance
to determine forest distribution at alpine treel{Pernbocket al, 2003; Horsch,
2003). Other biophysical factors not explained dygyography may also have a
significant influence. The current scale of analyisi probably the limit to use
topographic and topography derived variables talipteforest distribution at
alpine treeline. At larger scales the predictiveveo of topography decreases
significantly (Guisan & Zimmermann, 2000). A DEMttvia spatial resolution
comparable to that of the Landsat image would rhbdave increased
predictive accuracy.

Model stability is indicated by several factors.aty and accuracy of the input
data is a first important factor which has to bieetainto account. After orth-
rectification, the Landsat ETM+ image has absohdgzontal accuracy of +/-
64 meters (GLCF, 2006). The SRTM DEM has horizoataolute and relative
accuracy of +/- 20 respectively 15 meters. Theic@riabsolute and relative
accuracy is +/- 16 respectively 6 meters (Rodrigetezl, 2005; USGS, 2003).
The DEM contained several gaps with missing vallreSRTM data these gaps
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can be found especially along rivers, in lakes iarareas with high slope angle
(particularly in the Himalaya and the Andes) (Jami al, 2004). Filling the
gaps by interpolating neighboring values createsigs elevational data. The
actual elevations in these regions are unknown hwhay be a cause of error.
(Falorniet al, 2005) found vertical accuracy of SRTM data infloed by high-
relief terrain. In these areas, elevation erroms @ amount of missing values
increased significantly. It has also been found 8RTM data suffers from a
systematic error related to aspect. Elevation afrtfr)eastern slopes is
overestimated compared to elevation of westerneslophis phenomenon has
been directly related to the incidence angle indhginal radar images caused
by the flight path direction of the space shutflaryiset al, 2004).

Local displacements influenced by the errors aedtabove may cause error in
overlap between the Landsat-derived forest digfiobuand the topographic
variables derived from the SRTM DEM. However, tleiables in our model
have shown to mainly exert their influence on aaldrepatial scale, possibly due
to the lack of micro-scale variation in the DEM. idr displacement of the
overlapping variables can therefore be acceptedieMe@r, the relationship
between AspectEW (east-west) and forest distributian not be explained by
the aspect-related DEM error. The outcome of oudehoesult indicates that
forest reaches higher altitudes at western slojpfeshe aspect-error had
significant impact, this relationship would be reses; i.e. forest would have a
preference for eastern slopes.

Finally, it must be noted that despite the fact floaest in the Landsat image
was well recognizable and the classification reshibwed large similarities
with forest in the original image, there will bens® classification error
involved, influencing predictive accuracy.

Other factors determining model stability are ttaistical method used to build
the model and the applicability of the model inesthreas.

Compared to other statistical methods (e.g. disnamt analysis) logistic
regression has been found to be a relatively romethod (Garson, 1998).
However, this approach assumes equilibrium betvedgine forest distribution
and biophysical factors influenced by topographlge Thodel is therefore not
suitable for application in rapidly changing envineents. On the other hand,
the model has been applied in an alpine environnmemthich vegetation has
been found to react slowly to changing environmeotamditions (Guisan &
Zimmermann, 2000). Therefore, static logistic medake well-suited for alpine
environments. But it is important to note that tpplication of the model is
limited to a rather small geographic extent becaofselifferences in direct
influencing factors (e.g. climate and resource igrad). Plant species are
forced to adapt to these differences by selectompdraphic positions with
favorable conditions. In other regions, the sanp@goaphic positions can cause
different effects on the direct influencing factoiGuisan & Zimmermann,
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2000). Furthermore, since one of the possible aegiptins of this method is to
indicate human impact, this method needs calibmadi@as where the effects of
human landuse are negligible.

The ‘cross-validation areaallowed a first investigation of the stability tfie
logistic model in a similar area. Thdevelopment aréaand ‘cross-validation
ared are practically not spatially dependent sincehackerboard pattern with
blocks of +/- 1 x 1 km was used to hold data baEkis supports good
comparison; thedevelopment aréaénas almost no spatial effect on trerdss-
validation area The predictive accuracies in theross-validation area
(84.0%) compared to thelevelopment aréd83.3%) suggest that the model is
quite robust. The lower accuracy of 74.2% in tlest are&is probably caused
by higher disturbance caused by human influenadtneg in an over-prediction
of forest. For external validation, this area isréfore not very suitable, but it
clearly shows the influence of changed conditioms this case: human
disturbance) on the spatial distribution of fordsbr further investigation of
model stability it is advised to locate an addiibrarea similar to the
‘development aréao externally validate the model. Constructing tmodel
with varying extents of the treeline zone (e.g., 1106, and 2.5 standard
deviations) may also contribute to further insight model stability since
varying extents can influence model performancethadelative importance of
the variables (Fagaet al, 2003; Virtaneret al, 2004).

Finally, the selection of the variables resultingni the stepwise logistic
regression procedure varied a lot. However, theakbas height, aspectEW and
CTI were always included in the model, showing anpuunced effect on forest
distribution. These variables can therefore be nosgh as robust variables in
explaining forest distribution in our study areaarMble STCI is regarded as
somewhat less robust since it showed a little nvarétion in importance, but
this was mainly caused by the effects of multiogérity. When these effects
had been removed, STCI also showed a pronouncedtefh alpine forest
distribution.
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Conclusions & Recommendations

The results of this study demonstrated the po#s#sil of using vegetation
modeling to understand the factors influencing goreistribution at tropical
alpine treelines. A Landsat ETM+ image was useddéoive the spatial
distribution of forest. An SRTM DEM was used toiglerseveral topographical
and topography-derived variables. These variabk®wsed as a substitute for
direct field measurements of direct influencingtées (e.g. climate and soil
conditions). The data were used to construct astmgregression model to
predict forest distribution at alpine treeline atodinvestigate the effect and
relative importance of these variables on the apdistribution of forest.

The results of this study provide further insightthe factors influencing the
spatial distribution of forest at alpine treelings.our study area, topographical
and topography-derived variables influencing foréstribution at landscape
level are: altitude (height), topographic wetne€g 1§, eastness (AspectEW)
and erosion potential (STCI). This knowledge carubed for modeling efforts
of tropical alpine vegetation in the future.

Quantification of the biophysical processes andddmns influenced by these
variables was limited, due to the absence of sumgofield measurements.
However, the predictive accuracy of the model ¢jeandicated the high
topographic impact on several biophysical factorBuencing alpine forest
distribution. Absence of a clear influence relatednorth-south aspect and
potential radiation supported the theory of toppbsaas a factor influencing a
different set of biophysical factors in the tropidsffects of topography in
temperate regions influence for example snow actation and incoming
radiation, but since these effects are absentopidal regions, the additional
effects of topography can be studied. Therefore, isults of this study
underline the potential of tropical regions to pdevfurther knowledge of the
factors influencing alpine treelines.

The method developed during this research allowskdavestigation of factors

with potential influence on alpine forest distrilaut by using inexpensive and
easy to obtain Landsat and DEM imagery. Furthermibre method supports
straightforward mapping of alpine forest distrilouti

At the current scale of investigation, using ondpdgraphy and topography-
derived variables is not sufficient enough to pdeva detailed prediction of the
actual treeline position. However, the model isatieely easy to construct,
compared to more advanced mechanistic models whgphire large numbers of
parameters that are often not available. This matleivs fast application in

remote areas were many of these parameters aiadattkhas the possibility to
quickly compare regional differences in forest misition and give a first
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indication of degraded areas caused by either humpact or natural disasters
(e.g. disease). More comprehensive methods (engbioation of environmental
monitoring and field measurements) can be appliedha located areas to
investigate the nature of this impact. Combinedhwaiutomatic vegetation
mapping, the method can also be valuable for ptghand conservation issues
(Dirnbocket al, 2003).

To further develop the applicability and usefulnesshe proposed method, we
would like to make several recommendations.

First of all, next to the application of the modelthe ‘cross-validation area
and the test are it is recommended to validate the model alsanradditional
area similar to thedevelopment aréai.e. an area without distinctive human
influence. This would greatly improve the validatiof the method, allowing
firmer conclusions and greater model applicabi®uisan & Zimmermann,
2000).

Secondly, the method is based on one spatial acal@ssumes equilibrium. To
fully understand the landscape under study, a rsadle, multi-temporal
approach is recommended to fully capture the caraf@d topographic
heterogeneity and temporal variability (Fagetnal, 2003; Levin, 1992; Wu,
2004). Ecological modeling could benefit greatlpnfr a multi-scale, multi-
temporal approach to investigate the effects obgogphy and topography-
derived variables on alpine vegetation. To reallyestigate causality effects the
method should be complemented by supportive fiedhsnrements. Improved
understanding of topographic causality effects geaatly improve predictive
accuracy and applicability of mechanistic vegetatimodels. Progress in this
understanding can be made especially in tropicglons, were the more
renowned effects of temperate regions (e.g. narthksradiation difference) are
absent. Improvements in remote sensing imageryceraimg both spatial and
temporal resolution, can support multi-scale, migithporal logistic modeling
approaches in remote environments in the neargutur

Finally, investigating the potential of automatiagsification techniques based
on pattern analysis and boundary detection (Fagtaml, 2003) as well as
advanced visualization techniques, such as 3 dimesismapping (Walstet
al., 2003), would open up new possibilities of intdigig these techniques into
our method. This would significantly improve theseaof our method and
simplify the evaluation of the model results makihgnore appropriate for
planning purposes.
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