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Chapter 1

Introduction

This thesis is about the role of bioinformatics in the process of genome anno-

tation.

Genome annotation is the process of assigning biological interpretation to a

DNA sequence. A DNA sequence, as a string of nucleotides, has limited use

in application and research. Various analyses are required to assign biological

interpretation to a DNA sequence. The goal of genome annotation is to

describe the function of every single nucleotide, in any cell or cell compartment,

during the reproduction and the life span of an organism.

The need for bioinformatics in genome annotation became evident upon the

completion of the first genomes [49, 156]. Bioinformatics is the multidis-

ciplinary approach that combines, amongst others, molecular biology, infor-

mation technology, mathematics and statistics in the automated analysis of

bio-molecular data. The term ‘bioinformatics’ appeared in scientific literature

somewhere in the 1980’s. It has its roots in fields as theoretical and com-

putational biology. Nowadays over 300 genomes have been sequenced [62].

The annotation of a single genome is an intensive task, from both a computa-

tional as a biological perspective, confirming the importance of bioinformatics

in genome annotation.

A genome is not annotated by bioinformaticians alone, but in close cooperation

with biologists. Biologists deliver the raw data and biological context for the

annotation of a sequence. Often this results in new hypotheses that lead
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to more experiments by both biologists and bioinformaticians and ultimately

contribute to the advancement of biological understanding.

The next six chapters describe the different aspects of the application of bioin-

formatics in genome annotation that were investigated. Chapter 2 presents

an overview of the role of bioinformatics in genome annotation. The chapter

focuses on computational annotation of both protein-coding and non-protein-

coding DNA. Chapter 3 describes the development of an automated system

for high-throughput genome annotation. It deals with the information sci-

ence behind genome annotation: how to organize the data flow and execution

of analyses. Different analyses, such as gene finding and similarity search-

ing are organized in a reliable package for automated annotation. Chapter

4 focuses on the second subject from information science: the visualization

of annotation data. Visualization of such data helps the biologist in using

the data for research purposes. The chapter describes the development of a

software package for the interactive visualization of heterologous annotation

data. Chapter 5 describes the prediction of the full microRNA potential of

the genome of Arabidopsis thaliana. MicroRNAs are small RNA genes [38]

that were only recently recognized as a gene regulatory mechanism. In an

approach that does not depend on conservation of miRNA candidates over

multiple species, well over a thousand candidates are predicted. Many of the

microRNAs of Arabidopsis nowadays validated in laboratory experiments are

not in the predicted set. This indicates that the actual number of Arabidopsis

microRNAs, as predicted in this chapter, may be considerably higher than ex-

pected so far. Chapter 6 of this thesis presents the prediction of allergenicity

of proteins on level of amino acids. Allergenicity of proteins for human (or

animal) consumption is a major issue in the evaluation of genetically modified

(GM) food. Chapter 6 describes the development of a website that uses the

guidelines from FAO/WHO [45, 46] to evaluate the potential allergenicity of a

sequence entered by a user. The discussion in the final chapter 7 places all re-

search work in the context of current genome annotation and future prospects

of that field of bioinformatics.



Chapter 2

Bioinformatics for genome

annotation

Mark Fiers, Jan Peter Nap, Roeland van Ham

2.1 Introduction

The past 10 years has been the decade of genome sequencing. Since 1995,

in which the first complete genome sequence from a free-living organism, the

bacterium Haemophilus influenzae [49], was published, nearly 300 prokaryotic

and 40 eukaryotic genome sequences have been finished and about 1500 more

are currently in progress [62]. Among the completed genomes from eukaryotes

are those of human and various important model organisms, including mouse,

rat, Drosophila melanogaster (fruit fly), Caenorhabditis elegans (a nematode),

Saccharomyces cerevisiae (baker’s yeast), Arabidopsis thaliana (thale cress)

and rice (Figure 2.1).

The success of modern genome sequencing is based on several advancements

in sequencing technology and strategies made in the nineties. Of great im-

portance was the introduction of the shotgun sequencing strategy in whole

genome sequencing of large genomes. The strategy was already proposed and

applied successfully to the sequencing of the genome of phage Lambda by
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Figure 2.1: A small set of genomes of which the complete DNA sequence is either finished
or underway (marked with an *) and the size of that genome [62, 198]

Sanger and co-workers in 1982 [157]. It involves the random and redundant

sequencing of large numbers of genome fragments and piecing these together

afterwards in a computational process called genome assembly. New algo-

rithms and powerful computers, permitting the assembly of large amounts of

sequence data, proved the use of whole-genome shotgun sequencing feasi-

ble for megabase-sized genomes in the Haemophilus genome project, leading

to its application in the sequencing of the human genome [195]. A break-

through in sequencing technology came with the introduction of automated

capillary sequencing equipment in 1998, which tremendously increased se-

quencing throughput [94]. Thanks to this equipment and the competition

between public and private initiatives, the first draft sequences of the human

genome were completed considerably ahead of schedule [94, 195].

The biochemical basis of current sequencing technology still relies on the chain-

termination method that was developed by Sanger and co-workers as early as

in 1975 [158]. In combination with today’s sequencing equipment, this method

appears to have reached its maximal throughput of two to three megabases per

day per machine [86]. It remains a relatively laborious and costly technology.

The interest in the scientific community to sequence many more genomes from

a great diversity of organisms is calling for innovations that should bring the

“$1000 genome” within reach of small research laboratories. Among the more

promising new technologies are the single-molecule array approach developed

by Solexa [13] and massively parallel pyrosequencing method developed by

454 Life Sciences [109]. It is expected that these new technologies will soon



Bioinformatics for genome annotation 11

outperform current capillary DNA sequencers [109] in terms of performance

and costs and will bring about a new flood of genome data, at least an order

of magnitude larger than produced in the past decade.

Technological advancements in the past 10 years with an impact on bioin-

formatics for genome annotation are not confined to DNA sequencing alone.

Major breakthroughs have also occurred in the development of technologies

with which other cellular components can be measured on a large scale. Col-

lectively, these new technologies are known as “omics-technologies”. Similar

to the way the term “genomics” is used to denote the study of whole genome

sequences, the terms transcriptomics, proteomics and metabolomics describe

the genome-wide analyses of RNA transcripts, proteins and metabolites, re-

spectively. Transcriptomics refers to the comprehensive genome-wide analysis

of gene expression at the mRNA level with the help of micro-array [161],

SAGE [194] or MPSS [116] technologies. In proteomics, gene expression is

analyzed at the level of proteins, employing, among others, chromatography,

large-scale 2D gel electrophoresis and mass spectrometry [2]. Metabolomics

is the most recent development in omics technologies that aims at identifying

all metabolites in all cells [72].

A mere ten years ago, research was predominantly hypothesis-driven and genes,

transcripts, proteins, and metabolites were studied on a one-by-one basis. To-

day, methodology has shifted to exploratory investigation of larger biological

systems. A researcher will now typically analyze a large or even complete set of

cellular components in a single experiment. This way, high-throughput omics

technologies have made their way into almost every area of research in the

life sciences and have had a profound impact on its scientific methodology.

Laboratories all over the world have acquired the means to rapidly gener-

ate enormous amounts of biomolecular data. The need to efficiently handle

and analyze these has called for new computational solutions in the form of

databases, user-friendly software and powerful hardware. The development or

implementation of such resources is the subject of bioinformatics, the multidis-

ciplinary approach that combines molecular biology, information technology,

mathematics and statistics.

Although bioinformatics has grown spectacularly concomitantly with omics re-

search (Figure 2.2), it is not an entirely new scientific discipline. It is rooted
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Figure 2.2: Increase in the number of PubMed records in the past two decennia, containing
the keywords “bioinformatics” or “genomics”.

in the late sixties with the work on molecular sequences by Margaret Dayhoff,

Saul Needleman, Christian Wunsch, Walter Fitch and others. It took further

shape in the early eighties when computational tools were developed to man-

age and analyze a growing body of biomolecular sequence data. Among its

early achievements are, for instance, the establishment of the first molecular

sequence database in 1982, the EMBL Nucleotide Sequence Data Library, and

the development of tools for the alignment and database comparison of DNA

and protein sequences, including the Smith-Waterman algorithm [170] and

the FASTA package [130]. Bioinformatics now facilitates many stages of the

high-throughput approach to biological research, from experimental design to

the final steps of analysis and web-enabled integration of results with informa-

tion available from public databases. Without bioinformatics, the practice of

modern, large-scale biology research would be unthinkable.

Genome sequence data are being produced at an increasing pace, but a DNA

sequence in itself, as a string of nucleotides, has a relatively limited use for
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application and further research. Bioinformatics delivers the computational

methodology and tools necessary to interpret and assign biological significance

to a DNA sequence. The branch of bioinformatics committed to assigning

biological meaning to a genome sequence is called “genome annotation”. The

ultimate goal of genome annotation is to describe for each and every nucleotide

its role during the life span and reproduction of an organism. The remainder

of this chapter is devoted to genome annotation.

Genome annotation falls into two distinct stages. The first stage is referred to

as structural annotation and involves the correct identification and localization

of distinct sequence elements such as genes, regulatory elements, transposons,

repetitive elements and more. The second stage, termed functional annota-

tion, attempts to predict the biological function for each of those elements

and the biological process in which it takes part. In the next two sections we

will describe the details of structural and functional genome annotation, fol-

lowed by a description of key computational aspects of current high throughput

genome analysis. It is important to keep in mind that most methods discussed

below are fully computational and therefore provide predictions of gene loca-

tion and structure. In the end, such predictions will have to be validated in

the laboratory.

2.2 Structural genome annotation

A genome can be divided into two parts: one comprising the protein and RNA-

encoding genes and the other, non-coding DNA. The definition of a “gene”

is a somewhat contentious issue [129, 171]. The term is often used to refer

to those segments of DNA that are involved in the production of proteins, ex-

cluding other transcribed segments that encode functional or structural RNA

molecules. We here use the term “gene” for both types of DNA segments, the

boundaries of which are defined by the extent of the primary transcript. Con-

sistent with this definition, we use the term “non-coding DNA” as synonymous

with “non-transcribed DNA”. The amount of DNA thought to “non-coding”

currently shrinks as ongoing research discovers more and more of the DNA to

be transcribed [129]. The identification of the protein/RNA-coding comple-
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ment of a genome remains the first and foremost task in genome annotation

and will therefore receive most attention in the following sections.

Non-coding DNA generally makes up the largest fraction of eukaryotic

genomes. For example, in Arabidopsis, which is considered to have a rela-

tively compact genome, about 70% of the DNA is non-coding (derived from

[71]). This fraction is much larger in many other eukaryotes, as an indication,

of the human genome less than 2% is believed to be protein encoding [26].

The non-coding part of a genome has long been referred to as “junk-DNA”,

reflecting a notion that it would be devoid of any biological function. This view

of the non-coding part of the genome is changing with ongoing research. For

example, mapping the complete transcriptome of a cell with “whole genome

arrays” revealed much more transcribed regions than assumed so far [207].

Part of these regions may be yet unidentified protein coding genes. Other

areas may reflect novel processes, as for example, endogenous silencing as a

gene regulatory mechanism by transcription of the opposite strand [139].

2.2.1 Prediction of protein-encoding genes

Computational identification of a protein-coding gene as defined above in a

novel sequence is far from trivial. Methods to identify genes in a newly se-

quenced genome can be divided into three classes: (I) ab initio or de novo

methods, which predict genes solely on the basis of local sequence characteris-

tics; (II) similarity-based methods, which utilize sequence similarity to known

genes, and; (III) comparative methods, which employ sequence comparison

between multiple related genomes to identify conserved genes.

Ab initio prediction

Ab initio approaches to gene prediction are based on pattern recognition meth-

ods to distinguish a gene from its surrounding sequence. Pattern recognition

is a generic name for a family of computational methods that recognize de-

fined features within a sequence (or text). The simplest application of pattern

recognition in gene prediction is to find an exact match in a string of nu-

cleotides to a given pattern (also called “word”), for example, a start (ATG)
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or stop codon (TAA, TGA and TAG) of a gene. Basic gene predictors, the so-

called open reading frame (ORF) finders, combine exact word matching with

the requirement that the reading frame between a start and a stop codon or

between two stop codons contains an exact multiple of three nucleotides. Such

ORF finders look for possible ORFs in all six reading frames and report any

ORF longer than a predefined length present within a sequence. An example

is the application getorf from the EMBOSS package [148].

ORF finding performs reasonably well in localizing the uninterrupted genes

in viral and prokaryotic genomes, but it is usually inadequate for the iden-

tification of genes in eukaryotic genomes. A number of factors complicate

eukaryotic gene prediction. First, the complex structure of eukaryotic genes,

these genes are often interrupted by transcribed, yet untranslated sequences,

the introns. Introns may contain stopcodons or disrupt the reading frame of

preceding exons. Secondly, the boundaries between introns and exons, the so-

called splice sites junctions, have only weakly conserved signature sequences

in comparison to the strictly conserved start and stop codons (Figure 2.3).

Thirdly, exons may be very small (¡100 nucleotides) and at the same time

be buried in much longer introns. Gene finding is further complicated by the

low gene density in eukaryotic genomes. Consequently, the structural features

of eukaryotic genes are difficult to recognize and have a low signal-to-noise

ratio. To overcome these difficulties, ab initio gene prediction methods for

eukaryotic genomes depend on probabilistic models for the detection of struc-

tural and nucleotide compositional features. Often, these methods are based

on pinpointing the boundaries of probability that a given feature (also called

“signal”) is present. The detection of individual features is done with the help

of several methods, called sensors, which all employ pattern matching tech-

nologies and include the prediction of transcription and translation start and

stop sites, intron splice sites and protein coding capacity. Most ab initio gene

predictors apply a combination of sensors that each predict a single structural

feature of the gene. The gene predictor algorithm evaluates all possible com-

binations of features that might form a complete gene model and selects the

statistically most significant combinations. Figure 2.4 depicts an example of

several sequence features used in eukaryotic gene prediction.
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Figure 2.3: Part of a multiple alignment of five DNA regions encoding a gene. The grey
boxes indicate gene features used in de novo gene prediction. An asterisk under the alignment
indicates the perfect alignment on that position. The left box indicates the perfect alignment
of the translation start ATG. The right box indicates a donor splice site. Training of a WMM
model for the prediction of splice sites based on the right grey box will (approximately) result
in the DNA logo depicted in Figure 2.5A.

Figure 2.4: Several sequence features used in eukaryotic gene prediction. The features are
shown as they are present on the DNA strand (top bar), pre-mRNA, mRNA and the protein
(bottom bar).

Popular methods for pattern matching are so-called weight matrix models

(WMMs; Figure 2.5A) [176] and Hidden Markov Models (HMMs; Figure 2.5B)

[41]. Both methods are able to handle ambiguous nucleotides. For example,

the TATA box, involved in the start of translation, is described by the pattern

T-A-T-A-[AT]-A-[AT] with ambiguous nucleotides at position 5 and 7. More

complex patterns, for instance a pattern that describes variation in indels

(insertions and deletions) within a sequence, cannot be described by WMMs

and are commonly handled by HMMs. A HMM is a probabilistic model for

an ordered series of variables. The state of the variables and all possible

transitions between them are unknown and are estimated from observations

(Figure 2.5B; [41]). An example of HMMs used in sequence analysis are

so-called profile HMMs [40]. These are built from an alignment of a set of

sequences and capture all the variation in matches, substitutions and indels
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Figure 2.5: A. DNA logo of a Arabidopsis splice donor site modelled after Korf [88]. The
logo represents the chance of a specific nucleotide occurring at a specific position around
the donor site, with the intron starting at nucleotide four. The size of a letter indicates the
likelihood that this nucleotide occurs at that position. For example, a G will always occur at
position four (according to this model), but at position 1 any nucleotide can be expected. B.
An example of a small HMM model (adapted from Eddy [40]) which models a pattern (either
nucleotides or amino acids) with a length of three. The nodes are called states, the arrows
state transitions. A potential matching sequence is evaluated by the optimal path through
the model. For the Insert and Match nodes probabilities are defined (during the training
stage) that a certain nucleotide or amino acid appears at this position. As an example, a
four letter pattern might take the following path through the model: Start - Match 1 - Insert
1 - Match 2 - Match 3 - End. Multiple inserts at a position are possible through the loop
back state transition of the insert states.

present in that multiple alignment as well as all possible transitions between

these in the form of a probabilistic model of the sequence. This model can

then be used to search a novel genome sequence for the presence of a specific

sequence pattern, or profile. For an in-depth description of the use of HMMs

in genome annotation we refer to [39, 41, 176]. A widely used implementation

of HMMs in DNA analysis is HMMer [41, 76].

One of the best known ab initio gene prediction tools is GENSCAN [28]. It

uses several pattern recognition methods (among which WMMs) to model in-

dividual sequence features, that are combined into a complete gene prediction
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using a HMM of gene structure. Other implementations of ab initio gene

predictors are Glimmer [155], Fgenesh [154], Grail [205] and GeneMark [17].

In addition to gene finding tools that predict complete gene models, standalone

sensors are implemented in tools that predict a single gene feature. Such tools

are useful to consider alternative gene structures. Examples of standalone

sensors include NetPlantGene that predicts splice sites [74], NetStart predicts

translation start sites [131], or Promoter 2.0 predicting transcription start sites

[87].

Both gene predictors and standalone sensors need to be trained. Therefore,

the quality of their output depends on the quality and size of the dataset

with which they are trained. If insufficient data is available to create an

appropriate training set, the prediction program can be trained iteratively.

Each iteration is fed with the results from an earlier prediction, usually in a

supervised manner in which the initial training is performed by an expert using

a dataset from a closely related organism. A recent study, however, indicates

that an unsupervised approach that starts with a simplistic gene model may

perform as good as the supervised approach [104]. If substantiated, this holds

promise for gene prediction and annotation of newly sequenced genomes, for

which it is often difficult to compile appropriate training sets.

The performance of most current gene predictors is reasonable, given the com-

plexity of their task. For example, the widely used GlimmerHMM trained with

800 full length Arabidopsis cDNAs predicts 70% of all exons correctly and just

over 30% of all genes are predicted correctly as complete gene models [108].

This shows that other methods to improve the quality of gene predictions are

necessary.

Alignment-based methods

A different approach for gene prediction is to use experimental evidence from

transcription to localize genes. It involves for example the comparison of

expressed sequence tags (ESTs) or full-length cDNA sequences to the genomic

sequence of the same species. Regions where very high quality or perfect local

alignments are obtained, represent hypothetical gene locations and can be

used to predict complete gene models. (Figure 2.6). As with ab initio gene
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Figure 2.6: The alignment of an EST against the genome. In light grey a gene on the DNA
is drawn with its distinct elements. In dark grey the alignment of a gene is depicted, due
to the quality of the single read EST sequence, the alignment is usually not perfect but will
show some mismatches. If correctly aligned intron/exon boundaries can be identified.

prediction, the quality of the prediction depends largely on the quality of the

input data. First, EST sequences must always be treated with caution, as

these are single read sequences that often contain a relatively high number of

sequencing errors. Secondly, a gene can be a member of a gene family, which

implies that an EST or cDNA sequence will align to multiple locations in a

genome sequence. Identifying the correct origin of the transcript sequence may

be problematic, as it can be difficult (or impossible) to distinguish sequence

variation among gene family members from sequencing errors. Thirdly, EST

data may only be available from a closely related organism. In this case, it

is necessary to be able to distinguish evolutionary differences from sequencing

errors.

A common approach to cDNA or EST alignment against genomic sequences

is to use a similarity search program such as FastA [130] of BLAST [4]. Both,

however, do not consider gene models and may return and connect all genomic

regions similar to the input EST, even if these are unlikely to be part of a single

gene model, for example, if two parts of a hit are separated by a distance too

large to be an intron. These problems are partly circumvented by WU-BLAST

[204] and MSPCrunch [172], which are better fitted for this task. These tools

have the ability (amongst others) to separate alignments based on the distance

between two parts of a hit.

The prediction of a gene by transcript alignment to the genome is improved

if gene models are used in the alignment algorithm. Such an algorithm can

accommodate gaps in the alignment to coincide with introns and keep the

predicted gene in frame. Tools that implement this approach include Grail

[206], Procrustes [56], GeneWise [18, 19] and Exonerate [169]. Some tools

are able to use protein sequences to align to the genome, as for example

GenomeScan [208].
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Comparative methods

Coding regions are usually under stronger evolutionary constraint and thus

better conserved among different species than their adjacent non-coding se-

quences. This is exploited in gene prediction by demarcating coding from non-

coding sequences in multiple alignments of genomic segments on the basis of

sequence conservation. This approach belongs to a class of sequence analysis

methods called “phylogenetic footprinting” which seek to identify conserved

sequence elements in multiple alignments across evolutionarily distant species

[97]. Tools that implement these approaches specifically for the purpose of

gene finding include, amongst others, ROSETTA [11], SLAM [3] and TWIN-

SCAN [89].

Discussion

The choice for a particular approach or tools for gene prediction on a new

genome sequence will depend strongly on what data are available, in addi-

tion to the genome sequence itself. Ab initio methods are always employed

in structural annotation, but the accuracy of their prediction depends on the

availability of suitable gene models or on the (re-)trainability of gene predic-

tors and sensors. Alignment-based methods also depend on the availability of

expressed sequence data. But even when these are available, such datasets will

never be complete because EST data sets usually miss out on lowly expressed

and short genes. Comparative genomics methods require the availability of

genomic sequences from closely related species. As the body of genome se-

quence data continue to grow, it is expected that comparative approaches

such as phylogenetic footprinting and shadowing [97] will gain importance

and power in structural gene prediction. When additional data from any of

the above types is unavailable, however, novel methods such as a self- training

algorithm as described by Lomsadze et al. [104] provide a resort for automated

gene prediction.

All methods discussed above are statistical approaches that attempt to return

reliable predictions for each structural feature of a gene. There are, however,

exceptional gene structures which remain difficult to predict with automated
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procedures, such as for example, very short genes, genes with complex struc-

tural features, or genes subject to alternative splicing. Alternative splicing is a

post-transcriptional regulatory mechanism that gives rise to multiple mRNAs

and proteins through the variable processing of pre-mRNA transcripts (for a

review see [113]). Alternative splicing has largely remained unaddressed in

computational methods of gene prediction, while it is known as an impor-

tant mechanism by which organisms expand the functional diversity of their

transcriptome and proteome.

In general, the different methods described above will complement each other

and a powerful approach to gene finding is therefore to combine the results

from different predictions. ExonHunter [25] and EUgene [51], two recently

developed systems for gene prediction, take integration of different sources

of information to an advanced level. In particular Eugene is very attractive

because it is an extensible plug-in system in which the signal predictions from

a diverse array of tools are combined in a probabilistic gene model. The

advantage of such a system is that novel sensors can be easily integrated.

2.2.2 Prediction of RNA-encoding genes

RNA-encoding genes are genes that are transcribed, but, unlike protein-

encoding genes, remain untranslated. The transcripts they produce are func-

tional and perform structural, catalytic or regulatory roles, primarily in trans-

lation and mostly in conjunction with proteins in ribonucleoprotein (RNP)

complexes. In comparison to protein-encoding genes, RNA genes make up

only a small fraction of the coding part of a genome. Some classes can nev-

ertheless have a considerable number of members within a genome, such as

the 274 tRNA genes in Saccharomyces cerevisiae [105]. Recent discoveries

have greatly expanded our knowledge of the diversity of RNA genes beyond

that of transfer RNA (tRNA) and ribosomal RNA (rRNA) genes [183]. Due to

their divergent structural characteristics, prediction methods are mostly ded-

icated to one specific class of RNA genes. Excellent tools are available for

the prediction of tRNA genes [105], while rRNA genes are easily identified by

homology searches [159]. Methods for other, more recently discovered classes

have become the subject of intensive research. Because RNA gene function
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partly depends on the secondary structure of their transcripts, structure pre-

diction is an important aspect of such methods. Tools for RNA secondary

structure prediction are RNAfold [164] and mFold [112]. A comprehensive

description of RNA gene classes and methods for their prediction is beyond

the scope of this chapter. Recent reviews are given in [27, 183] and a compre-

hensive catalogue of RNA genes is provided by [67]). However, one specific

class of RNA genes, the microRNAs, is the subject of study of chapter 5 of

this thesis and will therefore be discussed briefly hereafter. MicroRNA genes

(miRNAs) are an exciting new class of small RNA-encoding genes that play a

regulatory role in gene expression. The first miRNA was discovered in 1993 in

the nematode Caenorhabditis elegans [96]. A genetically identified locus in its

genome appeared to be expressed, producing a small, untranslated transcript

with antisense complementarity to the mRNA of an unrelated protein-encoding

gene. After this initial discovery, miRNAs received little attention until inter-

est rekindled in 2001 when a number of reports suggested the presence of

numerous miRNA genes in the human genome on the basis of direct cloning

and sequencing of expressed RNAs. Since then, a large number of scientific

papers have been published on the subject (Figure 2.7)

miRNAs encode small RNA molecules, 21 to 25 nucleotides in length, which

are digested out of a precursor molecule (pre-miRNA). The precursor molecule

usually contains a long palindromic sequence that causes it to fold into a

hairpin-like structure [84]. The mature miRNA binds to a complementary

sequence in a mRNA transcript and in this way affects its translation. There

are two possible mechanisms through which this can happen, repression of

translation or transcript degradation [193]. See [38] for a recent review on

miRNAs.

The computational prediction and annotation of miRNA genes is in its infancy,

primarily because their structural diversity is largely unknown.

2.2.3 Prediction of cis-regulatory elements

In recent years, the functional significance of the non-coding part of a genome

has become an important issue in functional genomics studies and is therefore

becoming an integral part of structural genome annotation. Cis-regulatory
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Figure 2.7: The number of records with the term “miRNA” or “microRNA” occurring in
Pubmed over the years 2000-2005 illustrate the growing interest in miRNAs over the last
years.

elements are DNA sequences that form (part of) the promoter of a gene

and are involved in the regulation of expression. An important class of such

elements is the transcription factor binding sites (TFBSs), sequence elements

that lie in relatively close proximity of the transcription start site and that

are the recognition sites for binding by transcription factor proteins. Cis-

regulatory elements are usually very short, degenerated sequences, that span

often less than 10 nucleotides [202]. If a cis-regulatory element was previously

described, it can be identified in a new genome sequence by searching with

a model of those elements (see section 2.3.3). Novel cis-regulatory elements,

that is, elements that have not previously been described, can be discovered by

pattern recognition methods (see section 2.2.1). It aims at the identification

of overrepresented sequence motifs in sets of promoters that are thought to

be regulated by the same transcription factor. Hypothetical co-regulation can

be inferred from, for example, expression or orthology data. Many different

approaches have been proposed to identify such motifs and to determine what

is “over-representation” in terms of statistics and significance, such as by

Gibbs sampling [95]. The classical pattern search approach can be enhanced
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Figure 2.8: The use of phylogenetic footprinting in the discovery of cis-acting regulatory
elements. The first step in phylogenetic footprinting is to identify the level of conservation
in two related sequences from species A and B, depicted as a graph at the bottom of the
image. In the second step, candidate elements are selected from the areas that are highly
conserved.

by phylogenetic footprinting [69], in particular phylogenetic shadowing [21], in

which sets of promoters from closely related species are compared by multiple

alignment. Highly invariant sequences that appear in such alignments are most

likely to be evolutionary conserved because of functional constrains and may

thus represent regulatory elements (Figure 2.8). However, because of their

short length, cis- regulatory sequence are likely to occur by chance in any long

sequence and their occurrence should therefore be interpreted with caution.

Several tools are available for the discovery of novel TFBSs [95, 192], such as

MEME [9]. Phylogenetic footprinting is, amongst others, implemented in a

tool called Phylofoot [97].

2.2.4 Prediction of other elements

Repetitive elements

A large amount of the non-coding part of a genome is taken up by repetitive

elements. They are particularly abundant in the centromeric and telomeric

regions of most eukaryotic genomes. The function of those elements is un-

known. Repeats come in many varieties and sizes, ranging from short di-, tri-

or tetra-nucleotides repeats (micro-satellites) to complex retro-transposons en-

coding proteins necessary for their own transposition. The occurrence of large

numbers of similar repeats in a genome is known to complicate the assembly

of such a genome. Two methods are commonly used in structural genome

annotation for the identification of repetitive elements. The straightforward
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repeat-finding search on the genome works best for finding simple tandem re-

peats. It is implemented in tools such as tandem repeat finder [14] and vmatch

[196]. With a database of known repetitive elements, for example the TIGR

plant repeat database [190], alignment-based approaches are used to discover

instances of the known elements. This method is more suited for finding com-

plex, interspersed repeated elements such as transposable elements. A widely

used tool that incorporates both methods is Repeatmasker [146].

Genetic markers

Approaches to identify a genomic region with a potential gene of interest

in the absence of genomic sequences are marker based methods. A genetic

marker is a genomic locus that can be used to track a neighboring allele

in a population. By assessing many separate markers for inheritance with a

phenotypic trait, it is possible to link the trait to a genomic locus. There are

many different marker methods available, such as AFLPs [197], SNPs (single

nucleotide polymorphisms) and micro-satellites. Today, marker analysis is a

valuable tool in the identification of the genomic location of both qualitative

and notably also quantitative traits.

Analysis of the frequency by which markers inherit together allows to create

a genetic map. Such a map displays the location of each marker along the

genome with a position in centimorgan (cM), which is a measure of recombi-

nation frequency. A genetic map can be integrated with a genome sequence

by in silico marker analysis [135]. The combination of a genetic map and a

genome sequence allows a researcher to much easier study the genomic loci

associated with a trait. When a trait is linked to a marker, a direct sequenc-

ing strategy can be applied to identify candidate genes associated with the

trait-of-interest. Such a combined map will also give insight into variation of

recombination frequencies along a genome and hence the sequence variability.

Sequence variation

Genome sequences that have been determined for an organism are usually

derived from a single individual. Such sequences do not reveal the natu-

ral variation that exists between individuals or populations. Likewise, there
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are over 260.000 plant species known [197] of which only a few have been

sequenced, revealing only a small part of the complete scale of sequence varia-

tion. The sequence of more species can be invaluable in better understanding

the phylogeny and evolution on a molecular scale.

Sequence variation can be assessed by sequencing more genomes of either

new species or multiple individuals of a single species. Variation can mani-

fest itself as single nucleotide polymorphisms (SNPs) or inserted, deleted and

inverted sequence regions. Complete sequencing of novel genomes gives the

best insight into all variation between two or more genomes. This is (still) very

expensive, a second best approach is to focus on SNPs. A large-scale project

demonstrating this approach, dedicated to the study of variation in genomes,

is the human hapmap project [5]. Over five million SNPs (single nucleotide

polymorphisms) in 270 individuals have been mapped in the hapmap project

and have revealed the occurrence of a varying nucleotide (SNP) in each, on

average, 279 nucleotides [5].

2.3 Functional genome annotation

Once the genes and other structural sequence elements in a genome have been

identified, the next stage in annotation is to predict the molecular function

and biological role of those elements. Similar to structural annotation, the

focus in functional annotation is on the function of genes and their products,

the proteins. Chapter 5 touches on the functional annotation of a different

genomic element, miRNAs.

Evidence for function can be derived from different sources of information and

computational inferences on the function of a gene are made by analyzing

association within genomic datasets. Using the principle of “guilt by asso-

ciation”, evidence from different sources will provide clues as to whether a

particular gene is involved in a particular biological process and be assigned

a function. A gene can be associated with other genes of known function by

its co-expression during specific biochemical, cellular, physiological or develop-

mental processes. Alternatively, a gene can be linked with other genes through

a shared genomic neighborhood (especially in prokaryots) or because it shares

known regulatory signals. The gene product may be associated with protein
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structures of known function, with known protein complexes, or with particu-

lar sub-cellular localizations. A gene can be related in terms of its nucleotide

sequence to other genes within its own genome or within the genome of other

species. In this section we will describe the most important computational

methods used in such functional annotation.

The most rigorous approach to functional genome annotation is to deter-

mine protein function through experimentation. With the exponential increase

of gene sequences available in public databases, however, experimental ap-

proaches are lagging far behind the identification of genes with as yet unknown

functions. For example, in Arabidopsis, which is by far the best studied plant

species, well over 40% of its plant specific genes are of unknown function

[70]. Computational functional annotation therefore is a challenging task for

bioinformatics.

2.3.1 Homology-based prediction of function

Evolutionary associations among genes form the basis of most classical func-

tion assignments. The method is commonly referred to as homology-based

function prediction. It involves the use of database searches to identify genes

that are similar to a query sequence and which have a known, preferably exper-

imentally determined function. Sequences similar to each other are so mostly

due to common descent and are inferred to be “homologous”. Homology-

based function prediction relies on the assumption that homologous proteins

in different species are most likely to perform similar functions and that ex-

perimentally gained knowledge obtained in one species can be transferred to

its homologue in another species.

Although homology-based prediction is very powerful and widely used in func-

tional annotation, it is also fraught with a number of difficulties. Obviously,

any new sequence may be short of clear homologues in the sequence databases

or it may be homologous to other genes of unknown function. A more fun-

damental problem is that homologous genes do not necessarily perform the

same function. Genes may be related to each other by common descent or by

gene duplication events. The terms orthology and paralogy are used to distin-

guish between these different relationships. Orthologous genes diverged from
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Figure 2.9: A schematic representation of the evolution of the globin gene. The early globin
gene at the top underwent a gene duplication at a certain moment that lead to an alpha
and beta chain. Further evolution lead to a copy of these two genes in mouse and human.
All copies of both chains are orthologs as they share a common ancestor. Two genes in
two different species which that a common ancestor are orthologs, as the globin beta chain
genes in mouse and human. Two genes with a common ancestor gene in a single species are
named paralogs.

each other before speciation and are similar and related to each other due to

their descent from the same gene in a shared ancestral species (Figure 2.9).

Paralogous genes, on the other hand, are the result of duplication events that

occurred after speciation. Both orthologous and paralogous genes are consid-

ered homologous. The likelihood, however, that homologous proteins perform

similar functions is higher if they are orthologs rather than paralogs of each

other [187]. This is reflected in the functional redundancy that arises when

copies of a gene are produced in a gene duplication event; one of the two copies

may be less (or not) constrained by selection and can diverge by mutation. In

the course of evolution this is likely to result in a different function.

Also correct assignment of orthology relationships between genes is difficult

[182], particularly in case of genes from large gene families that have disparate

rates of molecular evolution among family members. A widely used tool for

homology searches in databases is BLAST [4]. BLAST is based on a search

and alignment algorithm and is used to compare a nucleotide or protein se-

quence against a nucleotide or protein database. Similarity scores between

the query sequence and database hits reflect their local pairwise alignments.
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The method is suitable for initial identification of possible functions for a new

sequence, but BLAST results must be interpreted with great caution. Due to

the widespread use of BLAST, many of the genes in public databases are an-

notated using homology-based function prediction. Mis-annotations and other

errors are easily propagated. Careful selection of databases and relying only on

resources of highest quality and accuracy, such as the manually curated Swis-

sProt database [20] are required to prevent such error propagation as much as

possible.

Another drawback of homology-based function prediction, particularly when

tools such as BLAST are used, is that the presence of structural domain and

motifs that make up a protein are not properly analyzed. BLAST may report

most significant database hits for a query sequence that are based solely on

the presence of one common, conserved protein domain. Yet, other domains

in the sequences may be different and be as indicative of a function. For ex-

ample, similarity between proteins based on a localization motif gives different

information than similarity of a domain containing the catalytic center. Ap-

proaches for analyzing protein domains and extracting functional information

from such domains are described in the next paragraph.

2.3.2 Protein domains

Proteins are complex three-dimensional structures built up from sequence el-

ements that fold into distinct sub-structures, called domains. Domains, in

turn, can be composed of one or more motifs. Motifs are smaller substruc-

tures that generally have highly specific molecular functions, subordinate to

the more general function of the protein in which they occur. For example,

many enzymes contain an “ATPase binding domain”, that is responsible for the

hydrolysis of ATP. The energy that is released in ATP hydrolysis can be used

in another domain of the protein to catalyze specific chemical reactions. An

important factor in protein evolution is domain shuffling, a recombination pro-

cess that involves the exchange of functional modules between genes [32]. As

a consequence of domain shuffling, many protein motifs and domains appear

not to be confined to one gene but to occur in different combinations among

gene families and thus to have led to the evolution of chimeric proteins. It is

obvious that such proteins further complicate homology assignment between
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Figure 2.10: A zinc finger protein motif derived from the PFAM database. The motif is
modelled as an HMM and represented in the form of a DNA logo [165]. The size of a letter
represents the likelihood of the corresponding amino acid occurring at that position.

proteins discussed in the previous section. A more sophisticated approach in

assessing the function of a predicted protein is therefore to analyze its struc-

tural composition in terms of the presence of protein motifs and domains with

known functions. Protein motifs and domains can be discovered and extracted

as profiles from multiple alignments of proteins with known similar functions

using HMMs (explained in section 2.2.1). The compilation of such profiles has

been a major activity of bioinformatics in the past years and has led to the

development of a number of secondary protein sequence databases, such as

PFAM, PRINTS or SMART [141]. An example of an HMM profile as available

from the PFAM database is that of the well known “zinc-finger domain”, the

profile of which is depicted in Figure 2.10. Protein localization signals can be

predicted by for example the SignalP [12] and TargetP [42] web-servers.

New protein sequences are analyzed with respect to their functional domain

composition by searching various domain databases. A very useful application

for this analysis is InterProScan [141], a tool designed to take full advantage

of InterPro, the resource of protein families, domains and functional sites

that integrates ten of the major protein signature databases [7, 141]. Protein

profile searches and the analysis of domain composition can yield very specific

information on protein function. It is therefore becoming the most important

and powerful approach in genome-scale functional annotation.
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2.3.3 Cis-regulatory elements

An entirely different type of evidence for gene function is derived from data

on the regulation of gene expression. One of the best studied regulatory

mechanisms is that involving transcription factors; proteins that co-operate

with the RNA polymerase in multi-protein complexes at the start of tran-

scription. An important class of cis-regulatory elements are the transcription

factor binding sites (TFBSs; see section 2.2.3), short, conserved sequence

motifs in close proximity of the transcription start site that act as recognition

sites for transcription factors. Identification of such elements can give insight

in the function of a protein. For example, the presence of the TFBS “evening

element” (AAAATATCT) [117] in an Arabidopsis promoter region indicates

regulation of the gene by the circadian clock. A useful resource on known

TFBSs is the Transfac database [191, 201]. Transfac stores recognition sites

as weight matrix models which can be used to search the promoter region of

a new sequence. The major pitfall in attempts to use TFBSs in gene func-

tion prediction is the extremely short size of these elements, sometimes only

a few nucleotides long, as a result of which they frequently arise purely by

chance. If a binding site is biologically relevant, however, it is likely to be

better conserved during evolution than its surrounding sequence. This type of

evidence is exploited in the phylogenetic footprinting approaches outlined in

section 2.2.3.

2.3.4 Gene Ontology

The previous sections have described data sources and methods that help to

infer the function of a gene. For a small set of genes, the results of all these

analyses are interpretable for human beings, but as the number of genes grows,

interpretation becomes more and more difficult. Each gene can have many

different pieces of evidence associated with it. Some of the evidence might (or

is likely to) be erroneous. Apart from errors in the data, a researcher will have

to search through data and interpret the results. Such a laborious exercise

in annotation can be improved with the help of a standardized description of

data. A framework for the description of annotation data is provided by the

Gene Ontology (GO). The GO paper [8] describes an ontology as follows:
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Figure 2.11: A part of the Gene Ontology ontology tree representing the molecular function
branch leading to an RNA-directed RNA polymerase.

“An ontology comprises a set of well-defined terms with well-

defined relationships. The structure itself reflects the current rep-

resentation of biological knowledge as well as serving as a guide

for organizing new data.”

The gene ontology is used to map biological knowledge to genes. The GO is

subdivided into three classifications, i.e. (1) biological process, (2) molecular

function, and, (3) cellular component. The ontology is structured like a tree

with increasingly specific terms occurring towards the smaller branches. A gene

obtains GO-term assignments on the basis of underlying biological evidence

as outlined in the previous sections. If a gene is active in multiple biological

processes, it can be assigned multiple terms. As an example, the molecular

function annotation of an RNA-dependent RNA polymerase in GO is given in

Figure 2.11.

In addition to the functional annotation, the gene ontology also uses a code to

indicate the type of evidence with which GO terms have been assigned. If the

assignment is based on experimental evidence a gene will be marked with the

code “IDA”, meaning “inferred from direct assay”. If it concerns homology-

based assignment the code “IEA” is used, which stands for “inferred from

electronic annotation”. This provides the researcher using genome annotation

data a rough indication of the reliability of the assignment.

2.3.5 Expression and protein interaction data

Transcriptomics and proteomics generate a wealth of genome-wide expression

data. It is possible to mine these data for possible clues to gene function.

Straightforward evidence can be derived from the observation in what tissues
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and under what circumstances a gene is expressed. Such evidence, however,

tends to be global and does not provide detailed and accurate information on

gene function and biological processes. More indirect evidence can be inferred

from co-expression analysis. For example, if a gene of interest is always ex-

pressed together with a set of genes of known function, it is possibly active in

the same process. This type of evidence can provide very detailed information

on gene function, but is dependent on the availability of reliable annotation

of other (co-expressed) genes A prime example of a project in which large

scale -omics data have been used for the prediction of gene function is the

construction of a genome-wide protein complex map in yeast, identifying all

proteins forming a complex [55]. The authors followed the “guilt by asso-

ciation” principle in function assignment, which suggests that if two genes

physically form part of the same protein complex they are most likely active

in the same cellular process.

2.3.6 Discussion

Various methods are available for functional annotation. Again, none of the

methods described stands out or stands alone to render another method su-

perfluous. Each of the methods described adds different information to the

annotation that will allow an expert to make a better assessment of the func-

tion. Caution should be taken in the interpretation of a functional assignment.

Transfer of function based on sequence homology is error prone, even when

the annotation of the known homologous sequence is correct. A very high level

of similarity would seem to be necessary to reliably transfer function [151].

2.4 Computational genome annotation

Complete and in-depth annotation of a genome requires the application of

many different software tools. The number of separate computational execu-

tions that needs to be performed can be extremely high, generating complex

data flows and requiring large amounts of CPU-time as well as data storage

capacity. Data must always be in a form that can intelligibly be presented to
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Figure 2.12: Schematic representation of a small annotation project in the form of a pipeline.
The input sequences (1) are analyzed by two gene prediction tools (2&3) and an analysis
of the repetitive regions (4). The predicted proteins are subsequently compared against a
protein database by BLASTP (5).

and used by researchers. In this section, the various computational aspects of

high- throughput genome annotation are discussed.

2.4.1 Workflow management

A simple genome annotation project will consist of several gene predictors,

a tool to consolidate gene predictions, a repeat-finding tool, and a BLAST

analysis on predicted genes (Figure 2.12). This set of tools and the order in

which they should be executed is called a “pipeline”. Execution of the pipeline

will involve a large number of separate jobs in which the output of one job

serves as input for a subsequent job. The results of all analyses need to be

stored in a database and made available to an end user.

On the scale of a complete genome analysis, it will quickly become impossible

to perform all analyses manually. Computational pipelines require the use of

specialized software that schedules and keeps track of jobs as well as of the

creation and storage of data and results. Several systems are available for this

kind of pipeline or workflow management in a genome annotation environment
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[124, 138, 167]. Chapter three of this thesis describes the development of a

novel, generic workflow management system.

Any pipeline system that is able to handle complex, elaborate and configurable

pipelines requires extensive computing. There are several possibilities for the

scaling of computing capacity. One is to use a single multiprocessor system

but these tend to be expensive and difficult to scale. A second, more scal-

able, solution is to use a cluster of distributed small to midrange systems. In

1993, the Beowulf project [16] was the first to implement such a cluster using

commodity hardware and brought such systems into the reach of many. Many

different systems have since been developed. These can be divided roughly

into two types; clusters that operate as a single multiprocessor computer and

clusters in which separate computers (nodes) are directed by a central control

unit.

Clusters of the first type simulate a multiprocessor computer by using a mid-

dle layer that handles communication between the nodes. This type of cluster

is particularly designed to handle large, computationally demanding jobs but

requires specially adapted software. Two well known examples are PVM [127]

and MPI [114]. HMMer [76] and BLAST [120] are examples of bioinformatics

applications that are able to work on PVM or MPI clusters, respectively. In

the second type of clusters, parallel computing is achieved through distribution

of separate jobs by the central control unit (or “master”) over independent

nodes (or “slaves”) that execute the job and return the results back to the

master. This type of clusters does not require specialy adapted software and

are well-suited for the execution of large numbers of jobs that require rela-

tively little computing power. Common job management software for cluster

computing includes Sun Grid Engine (SGE) [184], openPBS [125] and Condor

[33]. The latter is aimed at heterologous, non-dedicated, hardware and is able

to run on, for example, idle office desktops. A complete Linux distribution

that includes different job management is Rocks [150]. If computational fa-

cilities are distributed over different physical locations, it is commonly named

a “grid”. Implementation of a grid can provide a level of throughput which is

not achievable for a single cluster of super-computer. A common used toolkit

for developing grids is Globus [61] but Condor and SGE also contain grid-like

features.
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The choice for a system depends strongly on the requirements of an applica-

tion. As most genome annotation pipelines need to execute large numbers of

separate applications the second type is in most cases better suited. Especially

as several of the mentioned solutions are able to run a “sub-cluster” of the

first type. For example, SGE can reserve a group of nodes to execute a PVM

job.

2.4.2 Data management and data exchange

A second aspect in automated execution of genome annotation pipelines is

concerned with data management: exchange and storage. The various bioin-

formatics tools available use a wide variety of data input and output formats.

This hampers communication between separate analyses. One tool may de-

liver an output that can not be used as input for the next tool without a

translation. A notorious example is the output of a BLAST analysis [4] which

is a human readable text document that has undergone many changes. Small

changes which are easy to understand for a human usually breaks software

attempting to automate a task. It is extremely difficult to design a single,

generic data format, due to the inherent diversity of biomolecular data types

(reviewed in Stein [179]). However, a number of solutions have been proposed

for the standardization of genome annotation data, including the General Fea-

ture Format (GFF) [57] and XML based BioMOBY [199, 200]. GFF is widely

used in the bioinformatics community, although it is limited in scope and dif-

ficult to extend. BioMOBY provides a more flexible solution for the exchange

of biomolecular data. BioMOBY distinguishes itself by not attempting to de-

scribe data, but describes how to describe data, BioMOBY is a meta-format.

This makes the exchange of data formats much easier and as a direct result,

the exchange of data itself. Before data can be exchanged however, a decision

on the BioMOBY must still be made.

Similar problems apply to data storage. Raw output from can be stored as

such but this renders the data inaccessible for subsequent inspection and in-

tegration. The database underlying the Generic Genome Browser [180] stores

GFF data and is thus limited to what GFF can describe. Again, the use of a

meta-format such as BioMOBY can help in storing data and making it more

accessible.
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Figure 2.13: A screenshot of a part of the popular generic genome browser. The image
represents a DNA sequence of little more than 90 kb and shows Genscan, GlimmerHMM and
BLASTX annotations.

2.4.3 Visualization

The final step of an annotation program is to present the results of all analyses

and biological interpretations in an intelligible and easily accessible form to the

biologist. This is a not a trivial task as the amount of data generated is often

enormous. Several strategies can be taken to help explore and understand

genome annotation data, the best among which is through visualization (“a

picture is worth a thousand words”). Among the widely used tools available

for the visualization and exploration of an annotated genome are the Generic

Genome Browser (Gbrowse) [180] and Ensembl [78]. Figure 2.13 gives an

example of a Gbrowse screenshot. Most visualization tools have been devel-

oped as web interfaces to underlying annotation databases. Therefore, they

generally perform poorly with respect to interactivity. For example, step-less

zooming and panning, two powerful visualization techniques for user interac-

tion, are difficult to implement in web interfaces. In Chapter four we describe

the development of a novel tool (DNAvis) for the visualization of genome an-

notation data, which implements several modern visualization concepts and

technologies.

2.5 Future of genome annotation

Annotation of genome sequences is a complex process for which there is no

true end point. Biological data volumes will continue to rise and without au-



38 Chapter 2

tomatic annotation, it will be impossible to translate these data in biological

knowledge. On one hand, annotation depends on the interpretation and pre-

sumed understanding of biological systems and processes. On the other hand,

it aims to contribute to that understanding. The biological interpretation of

genomes will therefore be subject to continuous revision as new discoveries are

made and new interpretations are necessary.

Future annotation should also be prepared to deal with an increasing dimen-

sionality of data and acknowledge and use the natural variation within an

organism, between organisms of the same species and between organisms

of different species. Variation between genomes is present in many forms,

including single-nucleotide polymorphisms, insertion-deletion polymorphisms,

variable numbers of repeats as well as various structural variations. Genome

structures may be much more dynamic than currently shown in genome data,

which is usually a snapshot from a single individual. Heterogeneity within

a single organism, for example between tissues or different environments is

largely due to epigenetic variation. The presence of such a code “on top

of” the DNA code (the epi-code) [65] is an issue that future genome anno-

tation should incorporate. To deal with variation and dynamics in genomes

and genome annotation is a future challenge for both biological and computer

science and scientists.

We are likely to witness a dramatic growth of the quantity, quality and avail-

ability of genome data and models related to any biological phenomenon over

the coming years. The value of these data and models depends largely on the

quality of the annotation provided. This applies to experimental data gener-

ated in the laboratory, to data analysis and processing, as well as to manual

or automatic annotations. The more annotation is going to be automated,

the more vulnerable it will become to error generation and error propagation.

Quality will therefore be a major issue for future annotation, requiring stan-

dards for the indication of quality and reliability, and easy exchange of data,

tools and annotations between platforms, humans and machines. Annotation

pipelines (Chapter 3) will continue to be developed and will evolve, integrating

data sources, data types and annotation types. More attention should be given

to increase the utility of annotation data for the non-specialists. When all this

is organized and funded properly, genome annotation will allow to create a
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unique knowledge base for future biological research, the whole of which is

likely to be far greater than the sum of its parts.
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High throughput analysis in

bioinformatics with the

Cyrille2 pipeline software

Mark Fiers,Ate van der Burgt,Erwin Datema,Joost de Groot and Roeland van Ham

Abstract

High throughput sequencing must be matched by high throughput annotation. Given

the large number of annotation tools available, a multitude of interdependent analyses

are required for an in-depth annotation of even a single BAC sequence. Special

annotation pipeline software is required to make such annotation processes feasible in

an automated fashion. In terms of functionality, such software should meet the key

requirements of enabling high throughput data analysis while providing an easy-to-

use, configurable and extensible workflow management system. In the public domain,

there is currently no tool available that truly meets all these requirements.

Therefore we have developed a generic pipeline system called Cyrille2. The soft-

ware consists of three, functionally distinct parts that can be executed independently

so as to ensure modularity and extensibility. These parts include: 1) the Graphical

User Interface (GUI ), a web-based interface to the pipeline management system for

the pipeline operator and administrator, 2) the Scheduler, the functional core of the

pipeline management system that schedules jobs for execution and 3) the Executor
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that searches for jobs prepared by the scheduler and executes those on a dedicated

computational cluster. Cyrille2 enables easy employment of high throughput, exten-

sible pipelines.

3.1 Introduction

Large-scale computational analysis of biomolecular data often requires many

different, sequential operations on the data and integration of the results of a

diverse array of tools. Such a chain of computational operations is often called

a “pipeline”. A pipeline can be viewed as a program that describes the exact

order in which analyses are to be performed on an input dataset and what the

relationships between in- and output datasets are. In a formal representation

of a pipeline, an operation performed by a computational tool on input data

is represented by a “node”. The connection between nodes are represented

by streams, defining the data-flow in-between operations. An example of a

simple bioinformatics pipeline that could be part of a basic genome annotation

is depicted in Figure 3.1.

Figure 3.1: An example of a simple annotation pipeline. The pipeline describes execution of
a gene predictor (3) and two BLAST analyses (4&5) [4] on an a set of input DNA sequences
(1). The BLAST analysis of node 4 compares the incoming sequences against the NCBI
NT database. Node 5 uses a BLAST database created by node 2 from the same set of
sequences.

Even for a small bioinformatics project, for example, the phylogenetic analysis

of a small number of related genes, it is cumbersome to run all the necessary
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analyses manually. For larger projects, this quickly becomes impossible. For

example, annotation of a single DNA sequence such as a Bacterial Artificial

Chromosome (BAC), which is often used in sequencing projects and about 100

kilo-bases long, may require thousands of interdependent analyses including

gene prediction, homology searches, protein domain analyses and repeat dis-

covery. This problem can be resolved by the use of specific “pipeline software”

that runs all required analyses and manages all data.

Adequate pipeline software must be able to integrate a wide variety of bioin-

formatics tools and be able to transport, transform and store the data in

between the nodes. The practice of modern day genomic research and data

production also requires it to be able to handle very large amounts of data,

to execute pipeline analyses over extended periods of time, and to recover

data from computer calamities, specifically in a high-throughput production

environment.

With having primarily the development of a computational environment for

large-scale genome annotation in mind, we have defined the following criteria

to be important in the design of pipeline software:

Ease of use In a production environment, it is important to have a pipeline

system in place that is easy to use by non-expert end-users. This can

be achieved through a well-designed graphical user interface (GUI ) that

allows easy and intuitive programming, adaptation, monitoring and ad-

ministration of a pipeline.

High throughput For annotation of a complete eukaryotic genome sequence,

a pipeline system should be capable of handling large datasets and com-

plex pipeline structures. The system must be able to schedule and exe-

cute very large numbers of analyses and be able to distribute jobs over

(multiple) computational clusters, possibly taking days of processing

time on a Linux cluster. An important requirement for high-throughput

analysis is data persistence and data tracking. This allows easy resump-

tion after a system failure or recalculation of parts of the pipeline.

Flexible New or upgraded bioinformatics tools appear frequently. For pipeline

execution to remain up-to-date, it is essential that implementation of
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new tools or upgrading existing tools in the pipeline software should

be straightforward. The system should be flexible and modular to al-

low complex rearrangements of data required by some tools. Use of

an open communication standard is important to allow the system to

communicate with third party annotation service providers.

Updating In ongoing projects it is often undesirable to postpone annotation

until all sequences are finished. Initial annotations are therefore repeated

on a regular basis, for example, when genome assemblies are updated or

new reference data (i.e. BLAST databases) become available. There-

fore, the pipeline software should be able to reschedule and execute the

affected parts of an annotation with a minimum of redundant effort.

3.1.1 Cyrille2

This chapter describes the development of a new pipeline software system,

Cyrille2, which fully complies with the aforementioned criteria. Cyrille2 is the

successor of Cyrille1, which is an in-house set of static scripts used for genome

annotation. There are a number of pipeline software systems publicly available,

including Ensembl [138], Pegasys [167], GPIPE [54], Taverna [124], Wildfire

[186] and MOWserv [123]. Systems which are not publicly available (as the

NCBI pipeline) will not be discussed in this chapter. An obvious question

is why we would want to develop yet another system? The answer is that

none of the available systems sufficiently complies with requirements outlined

above and at the same time can be distributed and implemented easily and

robustly at new sites. We implemented Cyrille2 to provide this distinct set of

features, which no other tool, to our opinion, combines. The most important

one is that it is a system that is truly tailored for high-throughput and large-

scale bioinformatics analysis, a feature that no other publicly available system

really implements, with the exception of the Ensembl pipeline. The Ensembl

system, however, appears not to be developed to be deployed at other sites

and appears much less flexible and harder to extend than the Cyrille2 system.
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Table 3.1: Summary of the most important pipeline terminology
Pipeline A pipeline is the definition of a series of computational analyses that are to

be performed on a set of data. A pipeline can be described as a set of nodes
representing the individual analyses.

Node A node defines a single analysis in the context of a pipeline. A node is asso-
ciated with a tool and is responsible for the execution of one to many jobs.
A node also specifies how the data from a preceding node is shuttled into the
current node.

Tool A single, pipeline embedded application, for example BLAST [4].

Tool
wrapper

A tool wrapper is a script that frames and embeds a tool within the pipeline.
It enables execution of the tool through communication with the pipeline soft-
ware, from which it receives the tools’ parameter settings (for example, which
BLAST database to use). It translates in- and outgoing data from the pipeline
in the format required by the tool.

Job A job is a single execution of an analysis. For example, a single gene prediction
performed on a DNA sequence loaded into the pipeline.

Object Objects are created by the analysis tools and represent the (smallest) units
of analysis traversing a pipeline. Examples of objects are a DNA sequence, a
predicted exon or a protein motif.

Stream A stream connects two nodes and describes the data-flow between those nodes.
To allow complex pipelines any node can define multiple in- and output streams.

3.2 Implementation

For a detailed description of the structural design and operation of the Cyrille2

system several key terms must be defined. Table 3.1 provides the definitions of

the most important terms used. Hereafter, we will first give a general overview

of the Cyrille2 design followed by an explanation of how the data-flow through

the system is standardized. The next section will explain how the system

standardizes communication with external tools. Then the operation of a node

will be explained. A node is the functional core of the system and embodies

most of the application logic conceived. The last section combines all previous

information and describes how a complete pipeline manages execution.

3.2.1 System overview

The Cyrille2 software is written in Python [140] and uses amongst others:

an Apache2 web server [6], a MySQL database [122] and mod python [119].

Software and database management run on a Linux server and make use

of a Rocks Linux cluster [150] to distribute computational analyses. The

system architecture is composed of multiple layers (Figure 3.2). The functional
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components (Layer 1) consist of the graphical user interface (GUI ), used by

the pipeline operator and administrator, the Scheduler, and the Executor.

These three core components make extensive use of the well-documented,

modular, application programming interface (API) (Layer 2). The API allows

unified access of the system databases (Layer 3). The biological database and

end user interface are third party systems and adopted by the Cyrille2 system

(Layer 4).

To allow easy tracking and debugging of a pipeline run, an advanced status

and logging system is implemented. This provides a pipeline operator access

to detailed information on the status of a pipeline run and errors that might

have occurred.

A pipeline system needs to manage and store large amounts of diverse in-

formation. To keep different types of data separated, the system employs

four databases (Figure 3.2, Layer 3 & 4): (1) a pipeline database stores data

on defined pipeline structures, node settings and parameters associated with

wrapped tools; (2) a status database stores the state of execution of a pipeline

at any given time, keeping track of jobs waiting to be executed or that have

run successfully, and logging messages; (3) a biological database that stores

and provides access to the results of all analyses that the end-users are in-

terested in, and; (4) a failover database that, automatically and in a generic

fashion, parses and stores temporary objects that do not need to be stored in

the biological database. This database is not strictly required by the system

but it relieves developers from writing specific code for intermediate object

types and so ensures data persistence.

Consider, as an illustration, the “gene prediction” node (no. 3) from the

example pipeline in Figure 3.1. The pipeline database stores the information

that defines node 3 as a gene prediction node and instructs the gene prediction

tool to run an analysis on each of the input DNA sequences from the preceding

“Load sequence” node (node 1). The pipeline database stores parameters

specific for the gene prediction tool, for example, which gene model to use.

The status database stores information on which of the sequences the gene

prediction has been completed, what genes have been predicted and keeps

track of all objects held in the biological database by storing a unique identifier

for each object.



High throughput analysis with Cyrille2 47

Figure 3.2: A schematic representation of the Cyrille2 system. See the text for an in depth
description

Equivalent to the functional division of the databases, the software can be di-

vided into three distinct functional parts: the Graphical User Interface (GUI ),

the Scheduler and the Executor (Figure 3.2). The GUI allows pipeline op-

erators and administrators to create, adapt, start and stop pipeline runs and

fine-tune pipeline and tool settings (Figure 3.3). The Scheduler represents

the core of the Cyrille2 system. Using a pipeline from the pipeline database,

it schedules all jobs to be executed in the correct order, accounting for de-

pendencies among analysis. Scheduler operation is described in more detail in

a later section. The Executor loops through the status database and passes

scheduled jobs and associated data on to compute nodes for execution. The

final results of a job execution are stored in the biological database and tracked

in the status database. As large amounts of analyses need to be distributed

over one or more computing clusters to keep total computing time in bounds,

the Executor runs on a computer cluster and acts as a broker between the

Cyrille2 system and standard cluster scheduling software such as for example

Sun Grid Engine [184]. It is possible to employ multiple clusters, of different

type, by running multiple instances of the Executor.
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Figure 3.3: An image of a pipeline as generated by Cyrille2 Graphical User Interface (adapted
to optimize space usage) showing a simple genome annotation pipeline consisting of four gene
prediction analyses (GlimmerHMM, Genscan, GeneID and SNAP), a intron-exon splice-site
prediction (GeneSplicer), a tRNA analysis (tRNAscan-SE), a MAR element scan (Marscan),
a repeat analysis (Tandem Repeat Finder) and a BLASTX analysis. The predicted genes
(stored as coordinates on the original sequence; GFFCds) are converted into a sequence object
(GenericTranscriptSequence) and subsequently subjected to a BLASTX analysis against the
NCBI NT database.

3.2.2 Nodes

From a functional point of view, the Cyrille2 pipeline software is comprised of

three separate parts, the GUI, Scheduler and Executor. From the point of view

of software implementation, however, most of the fundamental application

logic of Cyrille2 is implemented in so called “node classes”. A “node class”

is a class as defined in object oriented programming, which means that all

functionality that is semantically attributed to a node is implemented in the

node class. For example, the node class has a function called “schedule” and

“execute”. Both the Scheduler and Executor employ node classes for their

functionality.

The system distinguishes between several different node types (Figure 3.4),

each of which is implemented as a separate class. The creation of a new

node type is possible by inheriting from an existing node class. By choosing

an existing node class that resembles the required functionality, the new class

needs only to implement those features that differ from the parent class.
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3.2.3 Job scheduling

The various tools used in an analysis pipeline require different arrangements of

incoming data. For example, in node 2 in Figure 3.1, in which a blast database

is to be created, all sequences retrieved in node 1 need to be combined in

a single input file whereas in node 4 the sequences from the same set are

processed one by one. This is further illustrated in Figure 3.4, in which for the

same pipeline shown in Figure 3.1 detailed information is provided on what

objects are created and what jobs are scheduled. A node of the type “single”

(Figure 3.4, node 3) schedules a computational job for each of the incoming

objects separately, whereas a node of type “all” (Figure 3.4, node 2) takes all

incoming objects together and schedules these for a single computational job.

The modular implementation of a node allows many more, arbitrarily complex,

scheduling strategies.

3.2.4 Data flow

A major challenge for any pipeline system is to devise a robust and fast way

to conduct data through a pipeline. This is not trivial, given that even a

pipeline for a relatively simple analysis of a single DNA sequence (Figure 3.3)

may actually encompass many thousands of separate jobs that need to be

scheduled and executed correctly, resulting in possibly millions of predicted

objects.

Without uniform data management, implementation of this pipeline would be

very difficult. Each different node would have to analyze the incoming data

stream separately and in a different manner for each data type traversing the

pipeline. Standardized identification of an object, on the other hand, allows

generic implementation of different node types, description of interfaces and

facilitates uniform tracking of data between nodes.

An appropriate data exchange format identifies and communicates objects in

a uniform and unambiguous manner. Such a format must have a unique data

type identifier and classification (for example, an object is of type “cDNA

sequence”). The format must also be extensible to accommodate future in-

corporation of novel data types. An important additional feature of a commu-

nication standard is interoperability with third party servers offering specialized
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Figure 3.4: Detailed illustration of the data flow and scheduling strategies of the node types
from the pipeline shown in Figure 3.1. Node types are indicated in the top left of each node.
In this example, three DNA sequences are uploaded into the system (s1, s2 and s3) which
are subsequently processed by the different nodes. The white circles in-between the nodes
indicate objects traversing the pipeline. The white boxes inside the nodes represent the jobs
that are scheduled. For example; sequences uploaded (s1, s2 and s3) are, amongst others,
scheduled by node 4 for a BLASTN analysis against the NT database. This BLAST analysis
results in the BLAST-hits indicated by objects hA-hF. See text for more details.

analysis tools and computational facilities . In the current era distributed com-

puting, the ability to communicate with systems worldwide is becoming ever

more important (see also chapter 2.4).

Several data exchange formats, with varying scope, have been devised and

proposed for the handling and communication of biomolecular data, including

XML-based formats such as GAME (used by Apollo [98]) and BioMOBY [199,

200, chapter 2.4.2] and flat-file formats such as GFF [57]. We have chosen

to implement BioMOBY [199, 200], which is emerging as the most promising

and widely used standard in bioinformatics and has already been implemented

in systems like Taverna [124] and MOWserv [123]. Another motivation for

opting for BioMOBY in Cyrille2 is that it was chosen as the data interchange

format for the worldwide Solanaceae sequencing project [121] in which our

group participates and for which we will employ the Cyrille2 system for genome

annotation.
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Figure 3.5: Relationship between the status and the biological database. The status database
employs BioMOBY identification (“id”, “articlename” and “namespace”) and holds infor-
mation on the biological database in which the object is stored. The biological database is
accessed through a database specific wrapper that provides a generic interface to retrieve an
object based on the information in the schedule database. The database wrapper is accessed
through a wrapper script (number 1 & 3 in Figure 3.6).

The XML-based BioMOBY standard contains a specification how to describe

data and web services. BioMOBY is a meta-data format, which does not

attempt to describe data but defines how to describe data. It employs a

method of object identification and classification, in which controlled vocabu-

laries are used to define each BioMOBY object with an (1) identification string

(“id”), (2) an object type (called “articlename”) and (3) a “namespace”. The

Cyrille2 system adheres to both the specifications of data format and web

services. To reduce computational overhead, the service provider specification

is implemented, but not used for local execution of analysis tools

3.2.5 Data storage

Standardized object identification can also be used in standardized data stor-

age. If a BioMOBY object is properly stored with a unique “id”, “articlename”

and “namespace”, this information is sufficient to uniquely retrieve the object

from a database. Because the Cyrille2 system is designed to allow for the use

of different databases to ensure flexibility, a Cyrille2 database wrapper func-

tions as an intermediate between uniform, BioMOBY, object identification and

database specific storage of these objects (Figure 3.5). The database wrapper

contains specific instructions to store and retrieve each different object type

in the biological database. This solution combines unique identification of any

object with the freedom to use any database required.
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Another important feature of the Cyrille2 system is data persistence. All inter-

mediate data is stored in a database. This procedure is particularly important

for a high-throughput system in which a pipeline may be running for extended

periods of time and therefore requires a mechanism to restore execution after

a system failure. With no intermediate data stored, the only solution would

be to rerun the complete pipeline. A further advantage of intermediate data

storage is that expansion of a pipeline with additional nodes or partial recalcu-

lations can easily be performed, for example, re-execution of a BLAST analysis

with an updated database. Data persistence is guaranteed by the “failover”

database. If an object cannot be stored in the biological database, it is au-

tomatically stored in the failover database. An object may not be stored in

the biological database for two reasons: firstly, when it concerns an interme-

diate object of no importance to the end-user or, secondly, when the database

wrapper to the biological database fails to store the object for an unexpected

reason. In either case no data is lost and stored as raw BioMOBY XML.

3.2.6 Tool wrappers

A tool wrapper is responsible for execution of external applications and generic

interaction with the Cyrille2 system. Tool wrappers are implemented in such

a way that they can easily run standalone, be deployed as a BioMOBY web

service or function as components of the Cyrille2 system. A tool wrapper

is equivalent to a “Runnable” in the Ensembl system [138]. Upon execution,

the tool wrapper receives input data and parameter settings of the application.

The tool wrapper starts with conversion of the incoming BioMOBY data into a

format required by the tool. It then executes the application. Operation of the

tool wrapper is finalized by reading of the output of the application, converting

this output back to BioMOBY and subsequently returning it to the system. For

example, upon execution, a BLASTP tool wrapper will receive the sequence

to be analyzed and the parameters applying to the BLASTP run, including

which BLAST protein database and expectation value to use. The sequence

is extracted from the BioMOBY XML and temporarily saved as a FASTA file.

Subsequently, BLASTP is executed and upon completion the output is read

by the wrapper and converted into a BioMOBY XML representation.
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A further task of the tool wrapper is to register itself in the Cyrille2 system.

Registration implies that the tool becomes available through the GUI, allowing

a pipeline operator to integrate it in a pipeline and the Scheduler to correctly

schedule jobs for that tool. The process communicates what objects are re-

quired as input (e.g. protein sequences for BLASTP), what parameters are

accepted (e.g. specification of a BLASTP database) and with what node type

it must be associated. This is implemented in a generic registration method

where the wrapper registers all required information in the pipeline database.

In a rapidly evolving field like bioinformatics, it is of great importance that new

tools can be implemented quickly. In the Cyrille2 system this requirement is

met by a generic design method in which programming is facilitated through

a base tool wrapper class from which novel tool wrappers inherit their code

(as in object oriented programming) and most of the required functionality.

In brief, implementation of a novel tool in the Cyrille2 system involves the

following steps: (1) installation and configuration of the new tool on the

execution cluster; (2) writing of the BioMOBY-compatible tool wrapper; (3)

definition of new BioMOBY objects if required by the tool; (4) confirmation

of compatibility between object types and the biological database in use, and

(5) registration of the tool in the pipeline database.

3.2.7 Pipeline execution

Execution of a pipeline can be considered at two levels: execution of a sin-

gle job and that of the entire pipeline. A single job is executed by running

three scripts (Figure 3.6): (1) data is retrieved from the database; (2) the

tool is executed, and; (3) the results are stored back in the database. Com-

munication with the database is handled by the database connection scripts

(“database get” and “database store”), which are equivalent to the Ensembl

“RunnableDB” [138]) These two scripts access the database wrapper from

Figure 3.5 and provide generic communication with any database of choice.

The data flow in the execution of a single tool wrapper starts with sending the

object identifiers describing what objects are to be retrieved from the database

as input for this specific job (A). The “database get” script retrieves this data

from the biological database (B), converts it to BioMOBY format (C) and
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Figure 3.6: The standardized execution and data flow of single job within a node in the
Cyrille2 system. See the text for an in depth description.

sends it to the tool wrapper. The tool wrapper prepares the data for the tool

(D), executes the tool, interprets its output (E) and converts it to BioMOBY

(F). The “database store” script stores the data in the biological database (G)

and returns the newly created object identifiers (H) back to the system.

A complete pipeline operates iteratively by iteratively running the Scheduler

and Executor. Results produced by a tool under control of the Executor will

result in more jobs to be scheduled by the next Scheduler run. If there are

no more jobs to be executed for a node and its parents, it is flagged as “fin-

ished”. A complete pipeline is finished if all nodes are in the “finished” state.

Pipeline iteration can be resumed after new data is uploaded into the pipeline,

a database has been updated or the pipeline has changed. Resumption is

accomplished by unflagging the “finished” state of one or more nodes in a

pipeline. This is either done manually (through the GUI ) or automatically, for

example after a BLAST database update.

3.3 Results

Our local implementation of the Cyrille2 system runs on a dedicated server

(dual AMD Opteron 850, 4 Gb memory, 300 Gb disk) and has a 26 node SGE

[184] based Linux cluster at its disposal. The tools currently wrapped in the

Cyrille2 system are listed in Table 3.2.
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Table 3.2: The tools wrapped for use inside Cyrille2 at the moment of writing this paper
Application Reference Application Reference
BLAST Altschul et al. [4] BLASTIF in house developed
Clustalw Thompson et al. [189] InterPRO Quevillon et al. [141]
Genscan Burge and Karlin [28] GlimmerHMM Majoros et al. [108]
GeneID Guig et al. [68] SNAP Korf [88]
GeneWise Birney and Durbin [19] Sim4 Florea et al. [50]
GeneSplicer Pertea et al. [134] Tandem Repeat Finder Benson [14]
tRNAscan-SE Lowe and Eddy [105] Marscan (Emboss) Rice et al. [148]
RNAfold Hofacker et al. [77] TribeMCL Enright et al. [43]
Inparanoid Remm et al. [144]

In a test run the Cyrille2 system analyzed 50 Arabidopsis BAC sequences

(4.8Mb) randomly downloaded from NCBI using the pipeline shown in Fig-

ure 3.3. The results of the analyses and the numbers of objects created are

summarized in Table 3.3. Measurement of the pipeline execution time is not

relevant as the bulk of execution time results from executing the actual tools.

As an illustration, however, the analysis of a single BAC as detailed in Table

3.3 typically takes a few hours on a further unoccupied linux cluster with 26

calculation nodes.

The Cyrille2 system is, parallel to the genome annotation project, successfully

employed in two other projects. A comparative genomics project aims at pre-

dicting orthologs between several fungal genomes and a second project predicts

miRNAs in several plant and animal genomes. Both projects successfully use

the Cyrille2 system to execute computationally demanding pipelines.

3.4 Discussion

The Cyrille2 system was developed with the aim of providing an easy to use, au-

tomated, high-throughput, and flexible and extensible bioinformatics pipeline

system. Among its most notable features are the implementation of a pow-

erful job scheduler module, storage of intermediate data, compatibility with

different database types for storage of biological data, a generic tool wrapper

module, and uniform data transport and data tracking.

Ease of use is achieved through implementation of an intuitive user interface

with two distinct layers of complexity. A pipeline administrator is fully au-

thorized to construct and fine-tune bioinformatics analysis pipelines while a
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Table 3.3: The results from a test run with the pipeline from Figure 3.3 with 50 Arabidopsis
BAC sequences (4.8Mb)

Node No jobs Object Type No Generated
Upload Fasta Dna 1 BAC 50

Genscan 50 Exon 6,342
PolyA 979
Promotor 926
Cds 995
Gene 995

GlimmerHMM 50 Exon 6,493
Cds 1346
Gene 1346

GeneId 50 Exon 5,521
Cds 1,096
Gene 1,096

SNAP 50 Exon 7,029
Cds 1,713
Gene 1,713

GeneSplicer 50 Donor site 59,541
Acceptor site 69,911

tRNAscan-SE 50 Exon 20
tRNA 19

MarScan 50 Mar 858

Tandem Repeats Finder 50 Repeat 1,036

BlastIf blastx 50 Blast Hsp 41,451
Blast hit 16,094
Raw blast output 50

GFFCds2Transcript 5,150 Transcript Seq 5,150

BlastIf blastx 5,150 Blast Hsp 279,295
Blast hit 218,978
Raw blast out 5,150

total 10,751 735,184

pipeline operator can select from a predefined set of pipelines and nodes to

perform complex data analysis tasks. Other pipeline management systems

either lack a user interface (Ensembl [138]) or have implemented complex in-

terfaces that can easily overwhelm the non-expert user with choices (Taverna

[124]).
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The Scheduler was designed for flexible and high throughput computational

operation. It assesses the pipeline status and determines which new jobs are to

be scheduled. In a high throughput data analysis environment it is important

to execute jobs in a parallel fashion to optimally use the computational facilities

and hence, make pipeline calculation time as short as possible. This requires

specific scheduling logic for different node types. In the Cyrille2 Scheduler,

we employ the “single” type node for analyses in which a job is scheduled

immediately after an input object becomes available, and the “all” type node

for analyses in which job scheduling requires completion of multiple parent

nodes. Each different node type can implement its own scheduling logic.

Most pipeline systems implement a scheduling engine able to schedule jobs

in parallel [54, 124, 138, 167, 186]. A distinguishing feature of the Cyrille2

system is the embedding of the scheduling logic in the Node class.

Parallel scheduling requires parallel execution, which is controlled by the Ex-

ecutor. There are many advanced solutions available for the distribution of

jobs over a calculation cluster, amongst others: Sun Grid Engine [SGE, 184],

Condor [33], OpenPBS [125] and LSF [106]. For the Cyrille2 Executor, we

have chosen to employ SGE for distribution of jobs over a cluster and a Con-

dor port is under development. We opted for SGE because it is a stable and

flexible system able to handle the high loads necessary. A Condor port is be-

ing developed to allow the Cyrille2 system to employ idle Windows desktops.

The use of a cluster solution within a pipeline system is a common solution,

Ensembl [138] makes use of LSF [106].

Another important aspect in high throughput pipeline analysis is the storage

of intermediate results. If this is implemented, the pipeline system will be

able to resume calculations close to the point where it may have stopped after

a system failure. This feature becomes important when a pipeline requires

a long execution time and hence, the chance of a failure, somewhere in the

system, increases.

If storage of intermediate data is undesirable, for example because of dispro-

portional usage of storage capacity, it is straightforward to either develop a

node-type which embeds two or more other nodes and directly transfers the

data between the nodes in a single executor run, or to develop a single tool
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wrapper which executes both steps and behaves as a single tool in the system.

In both cases, intermediate data storage is by-passed.

A further advantage of intermediate data storage is that each part of a pipeline

can be re-executed when necessary. This is essential when only part of a

pipeline needs to be repeated with either different parameter settings, after a

database update, or upon the addition of extra nodes to the pipeline. In the

current implementation of Cyrille2, the system will remove, prior to a rerun,

all data that is affected by the update from both the schedule and biological

databases and rerun the necessary analyses. For example, if a new version

of a BAC is uploaded, the system will delete all predictions associated with

that BAC and repeat the necessary analyses. A planned feature of Cyrille2 is

to further refine the update function. For example, if a gene prediction tool

is updated with a new gene model matrix, the system will repeat only the

analyses for those genes that have changed. This is opposed to a repeated

analysis for all genes as is the case in the current implementation.

In the rapidly evolving field of genome annotation, it is critical that a pipeline

management system is easily extensible. The Cyrille2 system was designed to

cope with possible future requirements of incorporating novel tools, data types,

or databases in a generic fashion. For example, for a present-day genome an-

notation project, it is mostly sufficient to store all relevant data in a biological

database such as the Generic Genome Browser database [180]. However, if one

would require the inclusion of data such as multiple alignments or 3D protein

structures, a different database is required. The Cyrille2 system is designed

to make the addition of a novel object type or the complete change of the

biological database as easy as possible. This is achieved by implementation

of the database wrapper as a separate module. Addition of a novel data type

can be done by adding a “get” and “store” function for this type of data to

the database module. To connect to a new database, a new module must be

written with a storage and retrieval function for each object type.

This mode of integration of a third party database with a pipeline system is

unique for the Cyrille2 system. Many alternative systems do not use a database

for storage of intermediate results (Taverna [124], GPIPE [54]and Wildfire

[186]) but either transport the output of one program directly to the next

program or store intermediate results as flat files. Such an approach has its
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drawback for a high throughput system, as a database is better suited to keep

track of many, possibly millions, of intermediate objects and better adapted

to distribute data in a heterogeneous environment. Other systems employ a

database for data storage (Ensembl [138], Pegasys [167] and MOWserv [123])

but these systems are strongly linked to one specific database, thus limiting

their flexibility. In our current implementation of Cyrille2, the Generic Genome

Browser database [180] is used for storage of the biological data and for viewing

by end users.

The use of BioMOBY as a communication standard combined with the storage

of standardized object identifiers by the Cyrille2 system ensures that any object

can be handled and tracked by the system, including binary objects such as

images [199, 200]. Other advantages of using BioMOBY are that it ensures

easy integration with the growing body of external BioMOBY web services

and optimal inter-connectivity between nodes. Several systems employ specific

embedded scripts to translate the output of one tool to the input of the next

(Wildfire [186], FIGENIX [63] and GPIPE [54]). Most analysis tools have a

unique in- and output format and thus the number of unique translation steps

grows quickly with the number of tools wrapped. This can be mitigated by

using uniform (BioMOBY) data transport as implemented in Cyrille2, Taverna

[124] and MOWserv [123]. The Ensembl system employs a uniform Perl data

structure to the same end [138, 175].

The Cyrille2 system has been developed to operate in a high throughput

sequencing facility with a need for robust, automated and high throughput

genome analysis, and easy creation, adaptation and running of pipelines by

non-expert users.

Most of the pipeline systems recently released are developed as a workbench

for bioinformaticians. Some systems excel in the way they allow for complex

pipelines to be built through a visually appealing but sometimes complex GUI

(Taverna). On the other hand, most systems are not suited for automated,

high throughput operation. Ensembl [138] is an obvious exception in this

respect, but it is very complex to deploy the system to other sites, it is far

from flexible, difficult to extend, strongly tied to the Ensembl database, and

it is difficult to adapt a pipeline for non-expert users.
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In view of the distinctive functionality and combination of features imple-

mented in the Cyrille2 system we believe that it is a valuable addition to the

array of pipeline systems available and particularly useful in environments that

require high throughput data analysis.
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Abstract

Visual exploration of DNA sequences and their multiple annotations is an important

help in assigning function to sequence. Both the increasing volume of sequence

data and the highly variable scale of annotation (from nucleotide to chromosome)

challenge the proper display of annotation data, especially when comparing different

annotations within or between genomes. In this context, the advances and advantages

of information visualization have to be investigated and implemented.

Several new methods for interactive and real-time visualization of DNA sequences

and their comparative genome annotations are presented in a software package called

DNAVis. Modern PC graphics hardware in combination with concepts and methods

of information visualization such as linked views, focus+context, perspective walls,
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semantic zooming and dot plot-like matrix views results in novel approaches for ob-

taining better insight in large datasets containing multiple and comparative genome

annotations.

The software is freely available at http://www.win.tue.nl/dnavis

4.1 Introduction

Genomics research is resulting in massive volumes of DNA and notably annota-

tion data is still rapidly expanding. The approximately 130 million nucleotides

of the Arabidopsis thaliana genome contain over 26000 separate genes in the

latest TIGR annotation [71], and a wealth of associated annotations, such as

splice sites, homologs and paralogs. More annotations will be added through

ongoing research, for example markers, expression, possible relationships with

miRNA, transcription factor binding sites and many more. The goal is to un-

derstand the function of DNA in action. Therefore, the analysis of annotation

should now be considering the individual nucleotide (the lowest level), up to

complete chromosome organization. The scale and size of current sequence

and annotation datasets require appropriate and novel tools to explore and

retrieve biological relevance from such data. Visual exploration tackles such a

challenge by presenting information interactively and in real-time, by appeal-

ing to the intuition of biologically skilled user and by exploiting man’s natural

abilities to build mental maps of visually presented data.

In continuous interactions between (plant) bio-informaticians, genome biolo-

gists and visualization specialists, we have defined [132] and further refined the

features that visual exploration of comparative annotation should offer. The

need to visualize different scales (nucleotide to chromosome), the increasingly

heterologous nature of annotations, as well as the need for comparisons of

such annotations is demanding. We have identified the visualization concepts

and technologies that we think are most appropriate for the implementation

of such desired features: semantic zooming, perspective walls, linked windows

and dot plot-like matrix views. Current genome viewers, such as the Generic

Genome Browser [180], Apollo [98], Artemis [152], Artemis Comparison Tool

[29], Ensembl [34], Entrez [188] or the Microbial Genome Viewer [83] can gen-

erate excellent visualization of genome data, but generally lack one or more
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of the features here defined as desirable. Viewers operating through a web

interface [79, 180, 188] do not offer smooth scrolling and zooming, but oper-

ate stepwise with distinct pauses between views when new data is downloaded

from their servers. Others offer continuous panning [98, 152], but lack con-

tinuous zooming. The display of comparative genomics data is, if possible,

a major challenge for all viewers. More advanced in this area is the Artemis

Comparison Tool [29] drawing colored areas depicting a similar area between

two linear representations of a sequence and its annotations.

We here present new approaches to the visualization of comparative genomics

data implemented in software called DNAVis. DNAVis implements new meth-

ods for improved, real-time interaction with and visualization of genomes for

the exploration and comparison of annotated DNA sequences. In Peeters et al.

[132] we have described a first version of this system and discussed it from

the point of view of information visualization. Meanwhile, we have extended

DNAVis with a number of additions and here we give an overview of the sys-

tem from the perspective of prospective users from the bioinformatics research

community.

4.2 Methods

4.2.1 Design issues

In visual genome exploration, continuous, real-time interaction with the data

is considered essential for getting a feel for the dataset at hand. It is nec-

essary to be able to view and relate multiple and different genomic regions

simultaneously using any measure of similarity. Moreover, the display of such

genomic regions should be connected in such a way that operations in one view

translate immediately to equivalent operations in other views. In all views it

should be an option to display context. Equally essential is high flexibility

of scale. It should be possible to evaluate complete chromosomes with an

arbitrary number of annotations and to explore them from the lowest scale

(individual nucleotide) to whole genomes. To meet these requirements, the

software uses modern graphics hardware to allow smooth and real-time inter-

action with datasets as large as complete genomes. Information visualization
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technology such as linked views [53], perspective walls [107] and semantic

zooming [133] supply the visual means to realize these requirements.

The ability to visually explore comparative annotations within or between

genomes was a particular challenge. Comparative genomics data can be dis-

played in several ways. A (multiple) sequence alignment [128, 189] is relatively

simple, but is essentially restricted in scale. Such sequence alignments do not

allow the addition of other annotations such as expression data. Also, it is

difficult to get an overview of large sets of aligned sequences. An improvement

over such alignments is the use of two or more bar-like representations of a

region of DNA with lines or colored areas between the bars indicating similar-

ity [29, 78, 98]. In such a visualization colors can distinguish several types of

comparative information but the view becomes chaotic when many similarities

are displayed. Another well-known method to compare genomic data is the

dot plot [173]. In a dot plot, two sequences are shown perpendicular to each

other and each similar attribute is shown in-between these sequences with a

dot. Even though a dot plot is restricted to two sequences, this approach

was developed into what we call the “matrix view”. We deem this is the

most powerful for the display of complex heterologous data in comparative

annotations.

4.2.2 Implementation, downloads and pre-computed datasets

DNAVis is written in C++ and employs the widely used OpenGL library for

visualization. The program runs on both Linux and Microsoft Windows oper-

ating systems and can be downloaded (http://www.win.tue.nl/dnavis).

A detailed manual describing how to operate the software is included with

the software download. To comfortably use the software, notably with larger

datasets, a computer with at least 512 Mb memory and modern accelerated 3D

graphics hardware is recommended. Sequence data should be in the FASTA

file format, annotation data require the GFF format [57].

Displaying a whole genome with comparative data in a dot plot-like matrix

is computationally not trivial. Therefore, comparative datasets were pre-

computed, except for the classical nucleotide versus nucleotide dot plot that

is generated on the fly. The use of pre-computed comparative data makes it
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easy for a user to decide what is being displayed since it allows one to create

and fine-tune private datasets. The user can define several datasets containing

a FASTA file and related GFF annotation files which the user can import in

DNAVis.

Several example datasets can be downloaded from the DNAVis website. All

data is based on the latest TIGR (Ath1-v5) annotation of Arabidopsis thaliana

[71]. The most basic dataset (not pre-computed but a direct translation)

describes the TIGR Ath1 annotation and is called “DvAth1”. The other

datasets are pre-computed and contain comparative information for matrix

views. The dataset named “DvBlast” contains similarity information de-

rived from a BLAST [4] analysis of all Arabidopsis genes against a database

with all Arabidopsis genes. All genes with a BLAST score over 200 are

recorded as similar and will in DNAVis result in a dot. The dataset named

“DvMPSS” contains similarity information about all genes co-expressing in

14 Arabidopsis MPSS libraries [116] as described by Ren et al. [145]. The

third set named “DvVMatch” contains the locations on the Arabidopsis chro-

mosomes which are exactly identical on a stretch of 200 nucleotides with

at most two mismatches or inserts. This dataset is generated by Vmatch

(http://www.vmatch.de). The scripts to generate these datasets are writ-

ten in Python and are available for download at the DNAVis website.

4.2.3 Details of the software

After having started the program, the first step is to load data. As many

datasets as desired can be loaded. After data import, DNAVis can display two

types of views, a bar view and a matrix view. Both are described in more detail

below. Different and multiple types of views can be displayed simultaneously

and any view of interest can be stored for later inspection.

The bar view

A bar view consists of a stack of bars. See Figure 4.1 for an example. Each bar

displays a sequential, linear representation of a DNA strand. This approach is

roughly equivalent to genome views as drawn by several other genome viewers
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Figure 4.1: The DNAVis interface shows four bar-views all displaying a part of chromosome
4 of the TIGR Ath1v5 annotation of Arabidopsis thaliana [71] at different zoom levels. The
main part of the interface is occupied by the four bar views (boxes 1 to 4). The views
are linked together and center on the same position on the chromosome. In all views, the
same annotations have the same colors. Genes are blue, parts that are similar (based on a
user defined criterion) are green for chromosome 4 and yellow for chromosome 5. Purple
annotations are RNA genes. The background color is blue for selected views, green for views
linked to the currently selected view and yellow for unselected views. The top part of each
view shows a histogram overview of annotation density of the complete chromosome. The
red highlighted part of this histogram is the part currently displayed with the lighter parts of
this being those parts displayed on the perspective walls. The top view shows a large part
(approximately 30%) of chromosome 4. At this zoom level it is possible to see that genes
are distributed over the chromosome with small fluctuations. Boxes 2 and 3 both show a
much smaller area (of approximately 20k). These two views zoom in on an area containing
5 genes and display several areas of similarity. The difference between box 2 and 3 is the
presence of perspective walls in box 2. Box 5 highlights the difference between a view with
and without perspective walls. The bottom bar view (box 4) shows the same area in close-
up, now showing nucleotides. The user interface offers possibilities to manage the display
of the bar views. The top right part (indicated with 6) allows management of the different
views, moving them around, creating new ones or deleting views. The two copy buttons
allow synchronization of linked interfaces. The two sliders below regulate scroll and zoom
speed. In 7 a tree will appear upon selection of an annotation describing the information
about that annotation. In the right lower part (8), several tab pages allow detailed control
of the currently selected view. Here it is possible, amongst other options, to turn annotation
types on or off to determine their position. A colour version of this image is included as an
insert.

(Hubbard et al. [78], Rutherford et al. [152], Stein et al. [180]), but several

improvements were implemented. In each bar, an annotation is shown as a

rectangular glyph aligned to a representation of a DNA strand to show its

position on the DNA. The orientation of the annotation is shown by a small
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transparent triangle. Gene annotations are displayed as a group of small boxes

(exons) connected by a thick line. Annotations have types, for example a

gene, an RNA gene or a microRNA. The visualization and layout in a bar view

are configurable per type, for example, the number and position of bars used,

the visibility and the color. The total number of bars is also configurable.

The coordinates at the top and the bottom of a bar view show the position

of the currently displayed area. The overview bar displayed on top shows in

red which area of the chromosome is displayed and a histogram which shows

the annotation density over the whole DNA sequence. The bar view can be

fluently panned by dragging it. More information is being displayed in the

user interface upon clicking an annotation. There can be multiple annotations

selected in case their glyphs overlap. Upon clicking on a name in the collapsed

tree, more information is revealed. Zooming in or out is done smoothly by

dragging the view vertically (Figure 4.2). Semantic zooming [133] determines

the visual appearance of glyphs depending on the zoom level. Gene structure,

gene names and ultimately nucleotides are shown when zooming in. Another

novel feature for genome visualization software is the application of perspective

walls [107] at both the right and the left side of the bar. These walls show the

neighboring areas (the context) of the currently displayed region (the focus).

These perspective walls are the implementation of a well-established concept in

information visualization called focus+context [174] that prevents users from

getting lost when examining a relatively small area of a much larger body of

information. The overview bar at the top of a bar view shows which areas are

visible on the perspective walls by a lighter shade of red.

In addition, it is possible to create an arbitrary number of views of the same

sequence, only limited by the size of the screen and the speed of the graphics

hardware. Each view can show different zoom levels and a user specified

selection of annotation types. Multiple bar views can be linked together so

that these views pan and zoom simultaneously [53]. This makes it easy to

examine for example the same area at different zoom levels or to compare

orthologous areas of chromosomes in different organisms. Linked bar views

can be synchronized on location and zoom level.
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Figure 4.2: An illustration of zooming capabilities of the DNAVis linear view. From the
top to the bottom are six views (1-6) of chromosome 4 of Arabidopsis, displaying different
levels of detail. Each view displays two features, RNA coding genes (dark grey) in the top
bar and protein coding genes (light grey) in the bottom bar. The top view shows ±50% of
the chromosome whereas the bottom view is zoomed in to 23 bases at the start of a gene.
Semantic zooming reveals the names of displayed genes only in the bottom three views where
there is sufficient display space.

The matrix view

In the classical dot plot [59, 173] the axes represent the sequences compared

and the dot in between these axes represents the shared feature (often that

is identity). In DNAVis, comparative genomics information is displayed in a

dot plot-like matrix view. This view consists of two axes of perpendicularly

placed bar views as described above that define the dot plot-like matrix area.

All features described above for a bar view apply to both axes in the dot plot-

like matrix view. Annotations defining two areas as similar are displayed as a

rectangle in the matrix area. The definition of what is similar is fully defined

by the user. DNAVis allows multiple similarity datasets to be displayed in the

same matrix in different and configurable colors. For example, it is possible to

visualize gene similarity (the DvBlast dataset) in red and gene co-expression

score (the DvMPSS dataset) in the same matrix in green (Figure 4.3). Fluent

zooming and scrolling is also possible in a matrix view. The two bar views

in the matrix view can be linked with each other or with other bar views

(for example, to have a very detailed bar view of a part of the matrix view)

as described above. Data on the user-defined similarity of annotations must

be pre-computed and supplied in the GFF file format. Zooming in to the
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Figure 4.3: The DNAVis interface displays three dot-plot-like matrix views as generated by
the DNAVis software package. All data is derived from the ATH1v5 Arabidopsis thaliana
annotation of TIGR [71]. Red blocks represent an area designated to be similar based on a
BLASTP [4] analysis of the predicted proteins (data set name: DvBlast; see accompanying
website http://www.win.tue.nl/dnavis). Each pair of genes that generated a hit with
a score of at least 150 results in a red block. Dark blue dots represent pairs of genes that
have a Pearson correlation coefficient of more than 0.98 in the MPSS expression data (data
set name: DvMpss [115]), purple areas show strong similarity on chromosome DNA level
as calculated by Vmatch (dataset name: DvVmatch, [196]). The green lines are dot plots
generated on the fly, that show any window of 7 nucleotides that is similar to another area
on the other axis, with one mismatch allowed. Part 1 shows a close-up of a self-comparison
of chromosome 4 with only the matrix view shown. The rest of the user interface is omitted
as it is equivalent to Figure 4.1. Two linear views are visible to the top and left part of
the image. In this case, the linear views only show annotated genes (in blue) and a bar
representing nucleotides (designated by color). In the center there are three annotations
visible, a large purple block from the DvVmatch data set showing a large area that is almost
perfectly similar (1 mismatch every 200 nucleotides allowed). The red block marks the two
genes in the top and left bar as having a blast score over 200 against each other. The small
green lines are a dot plot that verifies the purple perfect hit block and shows further that blast
similarity between these two genes is likely to reflect the perfect hit, because the dot-plot
shows not much similarity in the rest of the gene. It also does not seem to follow intron/exon
boundaries. Part 2 shows a much larger comparison of chromosome 4 with chromosome 5.
The view shows approximately 70% of both chromosomes. The view clearly hints at several
ancient duplications in red (box 4), showing the regions α21 and α22 as described by Bowers
et al. [23]. The area with highly similar repeated elements depicted as purple dots shows the
centromere (box 5). Part 3 is a close-up of a so-called quadruplet (box 6) of co-expressing
genes (with a cutoff of 0.70) as described by Ren et al. [145]. A colour version of this image
is included as an insert.

lowest scale of the individual nucleotide yields classical dot plots for nucleotide

comparison. Such dot plots are generated on-the-fly and it is possible to

configure color, window size and mismatch tolerance.
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4.3 Discussion

To get a good feel for and therefore a proper analysis of a genomics dataset

continuity and real-time behavior of the visualization are considered to be

very important. DNAVis uses advanced methods for visualization depending

on modern PC graphics hardware. The advanced technology results in smooth

and real-time interaction with datasets as large as complete chromosomes with

large numbers of different annotations. With semantic zooming, it is possible

to seamlessly zoom from annotations on the nucleotide scale to annotations on

the chromosome and whole genome level. To see where the currently viewed

area is on the genome, the current position is highlighted. If so desired, views

can be linked to scroll and zoom together. Perspective walls provide context

for the current area of interest and help a user to place any detailed analysis

in the context of information from a substantially larger area. For exploring

heterologous annotations within or between genomes or genomic regions, a

dot plot-like matrix view offers all possibilities of the linear view in two dimen-

sions. For the current implementation of DNAVis several improvements are

conceivable. Improvements could include interactive database connections and

the possibility to edit annotations in a view, more extensive search facilities

and/or more freedom in glyph shapes.

The addition of a third dimension in our visualization would result in more

space to display data. This could be of use with yet larger or more dimen-

sional datasets. However, 3D visualizations inherently introduce occlusion and

consequently require (interactive) definitions of appropriate view points. The

associated problems with interpretation for a user add to the complexity of

using 3D in genome visualization. In view of the way DNAVis manages to vi-

sualize large datasets without the drawbacks of 3D, it has been our deliberate

choice not to implement any 3D visualization.

The future of the visualization of genome information is likely to focus on

the display of comparative heterologous data. Both heterologous data and

the desire to compare multiple datasets create additional challenges. The dot

plot-like matrix view offers a comparison of not more than two sequences.

We have demonstrated that an integrated display of multiple heterologous

datasets is feasible in such a matrix. Future applications will have to invent
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ways to display heterologous comparative information for many more genomes.

For example the ability to interactively and in real-time compute and visualize

complex relationships between multiple annotations will be a major challenge

for the future of genome visualization. This is likely to lead to new insights

in genome structure and organization. The careful consideration and use of

information visualization technology has already resulted in an efficient and

effective approach for modern genome exploration. The team involved in

creating this novel approach has recognized that in retrospect it was rather

surprising how little of the standard techniques of visualization science had yet

found a place in genome visualization. This opens up many future promises

for comparative display and exploration of genomes.
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Abstract

Micro-RNAs (miRNAs) constitute a new level in the circuitry of gene regulation. The

numbers of active miRNAs in plants and the scope of miRNA-based gene regulation

are currently an issue of debate. We here present an in silico analysis of the miRNA

potential of the Arabidopsis thaliana genome. We have identified all genomic se-

quences able to form a predefined hairpin structure as potential miRNA precursors

with the help of the repeat-finder program REPuter. The stem sequences identified

were subsequently used in low-stringency gapped BLAST analyses to identify poten-

tial target genes. MiRNA candidates are those hairpin forming structures that have

a putative target gene. In this way, we predict no less than 2,427 possibly biological

relevant miRNA candidates in the Arabidopsis genome. Out of seven randomly picked

predicted miRNA candidates, five showed the presence of small RNA in vivo. This

laboratory confirmation indicates that a major part of the set of predicted miRNA

candidates is likely to exist in vivo and may have biological relevance. These results
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indicate that many more miRNAs are likely to be present in the Arabidopsis genome

than predictions of numbers implied by current genomics studies.

5.1 Introduction

The discovery that small, ∼22 nucleotide (nt) short RNA species, known as

microRNAs (miRNAs), are involved in gene regulation, expands the role of

RNA beyond the regulatory role of other types of RNA, such as tRNA, snRNA

and snoRNA [73, 209, 210]. Well over 700 miRNAs have now been identified

in 8 plant species of which 117 in Arabidopsis and over 2,500 in 27 animal

species (miRBase [67]). MiRNAs act through complementary pairing with an

mRNA. If the miRNA binds with high complementarity the mRNA is degraded.

If the hybridization is less specific, mRNA will not be degraded but translation

is inhibited. The former is the usual mode of operation in plants, the latter in

animal systems, but neither appears exclusive [48, 84]. The miRNA biogenesis

starts with transcription of a pri-miRNA which is digested into the precursor

miRNA (pre-miRNA). The pre-miRNA has the characteristic hairpin that is

digested by the enzyme Dicer (animals) or a Dicer-Like enzyme (DCL, in

plants) into the mature ∼22 nucleotide miRNA. The process is illustrated in

Figure 5.1, for a more in-depth description see Kim [84], Millar and Waterhouse

[118] or Filipowicz [48]. MiRNAs share at least part of their biosynthesis

pathway with small RNAs involved in gene silencing, known as siRNAs. Both

are small RNA molecules of ∼22 nucleotides, generated by the activity of the

ribonuclease complex known as DICER-LIKE1 [80, 160] and their function can

be interchanged [37].

An indication of miRNA function can be inferred from discovery of its target.

This can be done by identifying a position on a mRNA complementary to the

miRNA [147]. Candidate targets are easier to detect in plants than in animals

due to strict miRNA-mRNA paring [84]. More extensive proof of miRNA

presence is necessary with as a first, good, indication the observation of the

mature miRNA in, for example, an RNA blot. The few miRNAs that have been

studied in more detail in animals and plants (see Table 5.1 for some examples)

indicate their involvement in basal developmental processes. For example, the

‘archetype’ miRNA, let7 from Caenorhabditis elegans is involved in regulation
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Figure 5.1: A schematic representation of the miRNA generation pathway in plants. In the
nucleus the pri-miRNA is transcribed which is digested by DCL1 (DiCer Like, step 1) into the
precursor miRNA. In animal systems this step is performed by DROSHA. The precursor is the
digested by DCL1 into the mature miRNA (step 2). One of the strand of the hairpin stem
will become the miRNA. The other strand, called miRNA* will be degraded. The miRNA is
transported to the cytoplasm (step 3) where it is incorporated into the RISC (step 4). In the
RISC complex the miRNA binds to a complementary mRNA which is subsequently cleaved
by the complex (step 5). Figure adapted from Millar and Waterhouse [118].

of early embryonic development [96, 142]. It is still the question if all miRNAs

are involved in such basal and conserved processes. The majority of predicted

miRNAs have been found through a comparative approach and it has long

been assumed that all miRNAs were conserved among species (for example,

Reinhart et al. [143]). Recent research clarified that many miRNAs may be

unique to a single species [15, 101].

A major challenge in whole genome annotation nowadays is thus to determine

how many miRNAs are hidden in a given genome and what their function is.

The structural characteristics of known miRNAs allows the in silico prediction

of potential miRNA molecules. Several analyses [1, 93, 99–101] present a

variety of approaches. Most methods rely heavily on an evolutionary approach

which will obviously fail to recognize species-specific miRNAs. In this paper

we opt for a single genome approach using the repeat finder program REPuter

[90]. The use of REPuter allows ignoring of complex RNA folding patterns and

helps to focus on short-spaced hairpin structures. Analysis of a single genome

generates insight in the complete miRNA potential of the genome and may

indicate to what extent miRNAs could be involved in gene regulation.
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Table 5.1: A selection of miRNA of which the function is known.
miRNA Organism Target gene(s) Involved in
lin-4 CE lin-14&lin-28 Early development
let-7 CE lin-41&hbl-1 Early development
lsy-6 CE cog-1 Chemoreceptor expression
bantam DM hid Apoptosis and growth control
miR-14 DM unknown Apoptosis and fat metabolism
miR-181 MM unknown Hematopoietic differentiation
miR165/166 AT REV Axial meristem initiation and leaf development
miR172 AT AP2 Flower development
miR-JAW AT TCP4 Leaf development, embryonic patterning
miR159 AT MYB33 Leaf development

This table is derived from Bartel [10] and references therein. The organism
abbreviations are: CE - Caenorhabditis elegans, DM : Drosophila melanogaster,
MM : Mus musculus and AT : Arabidopsis thaliana

Any approach will identify false positives as relatively short hairpin structures

can occur randomly. To improve the relevance of the prediction, the predic-

tion of potential precursors is followed by a low-stringency gapped BLASTN

[4] of the stem sequence against all known coding sequences of Arabidopsis

from the May 2002 MIPS annotation [163]. Each potential miRNA precursor

of which the stem sequence has at least one potential target gene is scored

as a predicted miRNA candidate. In this way, no less than 2,427 predicted

miRNA candidates are identified. To validate this prediction experimentally,

from seven randomly chosen predicted miRNA candidates, five were confirmed

to generate small RNA of the predicted size in a total RNA fraction of wild-

type Arabidopsis. This implies that the number of active miRNA molecules

in Arabidopsis might be 1,733 or higher and is with 95% confidence higher

than 828. Based on various biological considerations and additional data, the

latter is likely to be a lower estimate. These analyses support previous sug-

gestions [101, 103, 153] that the number of miRNA/target gene combinations

present in (plant) genomes may be much larger than hitherto shown. If so,

miRNA-mediated gene regulation may represent an even more widespread and

important mechanism for gene regulation than is now assumed.
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5.2 Materials and Methods

5.2.1 In silico identification of potential miRNA precursors

The full MIPS Arabidopsis annotation from May 11, 2002 [111, 163] was

stored in an object-oriented database (ZODB [212]) build to contain vari-

ous indices for easy searching and retrieval as well as a web-based front-end

(in Python [140]) for visualization of annotated genome parts (up to whole

chromosomes). This local database was used for all subsequent analyses.

Palindromic repeats, defined as repeats in reverse complement, were detected

with the repeat-detecting software REPuter [90]. The parameter settings used

were: only palindromic repeats, allmax on, length 20, error rate 10% (i.e. two

mismatches, gaps or deletions allowed in a string of 20 nucleotides). For per-

formance reasons, the Arabidopsis genome was analyzed in sliding windows

of 10 kb with an overlap of 500 bp. Under these conditions, a genome-wide

analysis required approximately three hours CPU time on a dual processor ma-

chine running Linux. Scripts in Python subsequently parsed the output list of

repeats generated to identify and discard duplicated repeats due to the overlap

in the sliding windows. Potential miRNA precursors were then selected on the

basis of a maximal length of 100, 200 or 350 nucleotides (including repeats)

of the miRNA precursor molecule. All resulting potential miRNA precursors

were stored in a separate MySQL [122] database.

5.2.2 In silico prediction of miRNA targets

To identify the putative target genes of the potential miRNA candidates, all

Arabidopsis coding sequences (CDS) plus 250 bases 5’ and 3’ untranslated re-

gion (UTR) were extracted from the database to create a second, CDS/UTR

database. Each potential miRNA precursor sequence identified was blasted

against the CDS/UTR database, using a stand-alone version of the NCBI im-

plementation of BLASTN. BLASTN parameter settings used were: gapped,

mismatch -1 (compared to the default value of -3), low complexity filter off.

Potential target genes were defined as those genes with a high scoring seg-

ment pair (HSP) of minimal 20 nucleotides with maximal 20% (four out of
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Table 5.2: Number of potential miRNA precursors identified in the Arabidopsis genome.
Maximal precursor length

Chromosome Length 106 nta 100 nt 200 nt 350 nt
1 30.15 674 1,482 2,288
2 19.84 520 1,123 1,842
3 23.77 469 1,122 1,858
4 17.79 429 953 1,573
5 26.99 585 1,396 2,309
Chloroplast 0.15 16 28 29
Mitochondrion 0.36 0 0 3

Total 2,693 6,105 9,902
ant: nucleotides

twenty) mismatches with a potential miRNA precursor molecule. All resulting

candidate target genes were stored in the MySQL database as well.

5.2.3 Hybridization with small RNA in Arabidopsis total RNA

preparations.

Total RNA was isolated from flowers, leaves, stems, and siliques of Arabidopsis

using the TRIZOL reagens according to the instructions of the manufacturer

(Invitrogen). The RNA was quantified and separated on 8% polyacrylamide

gels as described [81] previously. For each chosen predicted miRNA candi-

date, primers were designed to generate a 200 to 300 nucleotide fragment

from Arabidopsis genomic DNA by PCR containing the full miRNA precursor

and some neighboring DNA. This PCR fragment was labelled by random prime

labeling and used for RNA blot hybridization at 50◦C as described [81]. When

hybridization with small, 21-24 nucleotides short RNA was obtained, the pre-

diction was considered validated. In individual cases, primers were designed

on both strands of the predicted stem-loop sequence. These were end-labeled

with polynucleotide kinase and [-32P] ATP (3,000 Ci/mmol, Amersham) and

used for RNA blot hybridization at 42◦C in formaldehyde buffer. Washing was

done as for the PCR probes, but at 42◦C. Each blot was checked for RNA

loading by subsequent hybridization with a 100 bp PCR fragment carrying the

DNA sequence of the 90 nt U6 snRNA from Arabidopsis. Autoradiographs

were visualized on a BASReader 2000 and analyzed with TINA software.
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Figure 5.2: Two predicted miRNA candidates; mi1193 and mi1460. A) The predicted
precursor hairpins and B) The alignments of these candidates with one of their hypothetical
target genes. mi1193 targets 21 genes of which At1g66880.1 was selected, a member of
the serine/threonine protein kinase family. mi1460 targets 15 genes, of these the reverse
transcriptase (At3g32130) described in the text is shown.

5.3 Results

The program REPuter [90] was used to analyze the May 2002 MIPS annota-

tion of the Arabidopsis genome [163] for the presence of potential miRNA pre-

cursors. The presence of a palindromic, i.e. reverse complementary repeated,

sequence of 20 nucleotides or longer with a maximum of two errors (either mis-

matches and/or gaps) was taken as selection criterium for the identification of

such potential miRNA precursors. This configuration is able to form the hair-

pin characteristic for the precursor of active miRNA species [153]. The total

length allowed for the palindromic sequence and interrupting spacer was varied

between 100, 200 and 350 nucleotides. The results obtained are given in Table

5.2 and two predicted hairpins are shown in Figure 5.2. Depending on the total

length allowed, large numbers of potential miRNA precursors are identified,

up 9,902 in case of the 350 nucleotides length setting (Table 5.2). Potential
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Table 5.3: The miRNAs in miRBase [66] corresponding to the ones identified in this study.

miRBase id this study miRBase id this study
ath-MIR156a mi1051 ath-MIR390a mi1145
ath-MIR156b mi2045 ath-MIR390b mi2642
ath-MIR156c mi2049 ath-MIR400 mi184
ath-MIR156d mi2137 ath-MIR403 mi1190
ath-MIR156e mi2140 ath-MIR404 mi169
ath-MIR156f mi2217 ath-MIR405a mi1019
ath-MIR156h mi2633 ath-MIR405b mi2593
ath-MIR158a mi1214 ath-MIR405d mi1747
ath-MIR172a mi1081 ath-MIR407 mi1111
ath-MIR172c mi1219

miRNA precursors also occur in the genomes of chloroplasts and mitochon-

dria (Table 5.2). Although plant miRNAs precursors may be longer in length

than 100 nucleotides [143], we will present all subsequent analyses for the set

with a maximal length of 100 nucleotides. This will generate a lower limit

estimate for the actual number of potential miRNA precursors present in the

Arabidopsis genome. Given the size class of 100 nucleotides, a total of 2,693

potential miRNA precursors are present in the Arabidopsis genome, including

sixteen in the chloroplast genome, but none in the mitochondrial genome (Ta-

ble 5.2). Determining the chance occurrence of a potential miRNA precursor

with the configuration as defined here is not trivial. The chance occurrence of

two inverted repeats on a given distance with possibilities of inserts, deletions

and mismatches cannot be calculated exactly, but was approached by repeated

sampling [91]. In a randomized genome of the size and composition of Ara-

bidopsis, the chance occurrence of potential miRNA candidates is estimated

to be about 80 (binomial distribution; Kurtz and Myers [91]). The occurrence

of 2,693 potential miRNA precursors therefore indicates that the Arabidopsis

genome has a much higher propensity to generate and/or maintain potential

miRNA candidates than to be expected by chance alone (standard Chi-square

test, P¡0.001). The set of 2,693 miRNA precursors contains 19 of the 117

Arabidopsis miRNAs in miRBase (Table 5.3, Griffiths-Jones [66]).

Detailed analyses of the characteristics of the potential miRNA precursors

reveal a range of 20 (the lower limit set in the analysis) to 45 nucleotides for

the stem-loop length. The spacer size ranges between zero to 60 nucleotides

(the upper limit set by the 100 nt total length criterion). The class of putative
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Figure 5.3: Distribution of the identified potential miRNA precursors over the five Arabidopsis
chromosomes and organelle genomes. Each vertical bar represents a potential miRNA precur-
sor (total: 2,693). Each black dot depicts the centromere region (where generally sequences
are lacking). The horizontal bars labelled 1 to 5 represent the respective chromosomes, the
bars marked C and M give the chloroplast and mitochondrial genome, respectively.

miRNA precursors with a palindromic repeat of just 20 nucleotides is the

largest class with 825 members. The distribution of all 2,693 potential miRNA

candidates over the Arabidopsis chromosomes and chloroplast genome is given

in Figure 5.3. Apart from still missing sequences in the centromeric regions

(given as dot in the bar), the different chromosomes show that areas more

rich in potential miRNA precursors than other areas tend to be closer to the

centromeres. More detailed inspection of all potential precursors shows that

the set identified does not contain very simple repeats or micro-satellites. For

example, only four percent contains the stretch [AT]4 (data not shown).

Obviously, the set of 2,693 potential miRNA precursors identified may con-

tain families and/or duplicates. To assess the amount of relatedness in the

2,693 potential precursor set, the sequences were analyzed using the assembly

software Gap4 [22]. Sequences were considered related if they had at least

95% similarity over a stretch of at least 15 nucleotides. In Figure 5.4, the

resulting family distribution of the set of potential miRNA precursors is given.

The 2,693 potential miRNA precursors establish 1,928 families, that vary in

size from 1 to 39 members. Of all families, there are 1,721 unique miRNAs in

one-member families. As relatedness appears not to be a major issue, further

analyses were carried out on the basis of the complete set of 2,693 poten-

tial miRNA precursors. When the genomic position of these potential miRNA

precursors was analyzed in relationship to the position of all annotated genes

in the Arabidopsis genome, only 117 showed an overlap of five nucleotides or
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Figure 5.4: Distribution of potential miRNA precursors in families. The 2,693 potential
miRNA precursors were assembled with Gap4 [22] with a setting of 95% similarity in a
stretch of 15 nucleotides. The number of one-member families, identifying 1,721 unique
potential miRNA precursors, is given in the graph.

more with an annotated gene. All of these 117 potential miRNA precursors

overlapped at least partly with an annotated intron and none was fully con-

tained within an intron. Only 11 precursors (partly) overlapped with an exon

sequence (data not shown).

To remove putative false positives from the potential precursor set and to begin

to classify these precursors, we investigated the precursors that target genes in

the Arabidopsis genome. Coding sequences and 250 nucleotides of the 5’ and

3’ untranslated region were extracted from the MIPS-annotated Arabidopsis

genome sequence. Putative miRNA target genes were identified by gapped

BLASTN analysis of the stem-loop sequence with low stringency parameter

settings. This approach allows for gaps between miRNA and target sequence

and is equivalent to previous attempts to predict plant miRNA targets [147].

Figure 5.2 presents two examples. Each gene with at least 80% similarity to

at least 20 nucleotides of the palindromic stem-loop sequence of a potential

miRNA precursor was classified as a putative target gene for the miRNA. The

combined likelihood of a potential miRNA precursor with a putative target

sequence in the Arabidopsis genome is taken to indicate potential biological

relevance and regulatory function in that genome. In this way, no less than

12,729 genes were classified as putative miRNA target genes. Each potential

miRNA precursor with at least one putative target gene was subsequently

classified as a predicted miRNA candidate. Using this criterion 2,427 of the

2,693 potential miRNA precursors (90%) has one or more putative target genes
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Table 5.4: Number of potential miRNA precursors with at least one putative target gene in
the Arabidopsis genome for different selections from all annotated genes in the Arabidopsis
genome.
Coding 3’ UTRa 5’ UTR 80% similarityb 90% similarityc

+ - - 2,056 516
+ + - 2,369 Δ = 313d 1,201 Δ = 685
+ - + 2,114 Δ = 58 692 Δ = 176
+ + + 2,427 Δ = 371 1,377 Δ = 861

aUTR: UnTranslated Region. b80% setting of gapped BLASTN. c90% setting of gapped
BLASTN. dΔ increase in the number of predicted miRNA candidates relative to the
coding sequence.

in the Arabidopsis genome (Table 5.4). When the target sequence is limited to

only the coding region, the analysis results in 2,056 predicted miRNAs (Table

5.4). In 313 cases, the similarity is based on similarity to the 3’ untranslated

region (UTR) of a gene only. The 80% similarity criterion is chosen arbitrarily.

When the similarity between the stem-loop sequence of the potential miRNA

precursor and putative target gene is raised to 90% of at least 20 nucleotides,

the number of predicted miRNA candidates reduces to 1,377 (Table 5.4).

Assuming biological relevance of the set of potential miRNA precursors by the

presence of a putative target gene, depending on the similarity score used,

the number of predicted miRNA candidates is therefore well over one to two-

thousand.

With the 80% similarity criterion, the total number of target genes putatively

subject to miRNA regulation is no less than 12,729, close to half of all the

currently annotated genes in the Arabidopsis genome. This is much higher

than we anticipated. Given 2,427 predicted miRNA candidates and 12,729

putative target genes, multiple predicted miRNA candidates will target a given

gene (Figure 5.5A), whereas also given miRNA candidates can target multiple

genes (Figure 5.5B). There are only 64 predicted miRNA candidates that

target a single gene in the Arabidopsis genome (Figure 5.5B), whereas 140

predicted miRNA candidates each target 7 different genes (Figure 5.5B). Vice

versa, genes can be (putative) target for multiple, either related or independent

predicted miRNA candidates. Whereas the majority of the putative target

genes (7,019) are the target for a single miRNA, the remaining 5,710 genes

are targets for more than one miRNA (Figure 5.5A). In an intriguing case,

a single gene is the putative target for as many as 274 predicted miRNA
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Figure 5.5: Relationships between predicted miRNA candidates and identified putative target
genes. (A) The number of predicted miRNA candidates that target a given gene. The
graph shows on the left that 7,019 genes are potential target for a single predicted miRNA
candidate. Multiple miRNA candidates can also target a single gene. The graph shows as
extreme a single gene that is targeted by 274 different predicted miRNA candidates (see
also text). (B) The number of genes targeted by a single miRNA candidate. A predicted
miRNA candidate can target multiple genes. The graph shows on the left that there are
only 64 predicted miRNAs that target a single gene in the Arabidopis genome; on the right
that 58 predicted miRNA candidates target 50 genes. The extreme is 140 predicted miRNA
candidates each targeting seven different genes.

candidates. This gene is annotated as a putative non-LTR reverse transcriptase

(At3g32130). Alignment of all the 274 predicted miRNA candidates targeting

this gene reveals two hot-spots for potential interaction, one in the 3’ UTR of

the gene and one in the 5’ part of the coding sequence (Figure 5.6).

Using the MIPS ontology for gene classification [52, 163], only 2,546 (20%) of

the 12,729 putative target genes are classified, showing that the genes poten-

tially regulated by miRNAs are for a major part in the functionally unknown

categories. The classification of the known genes that are putative miRNA

targets shows that basically all classes of genes in the MIPS ontology classi-

fication have members that may be target for a miRNA. When the numbers

are compared to the classification of all annotated Arabidopsis genes, notably

the class of genes encoding transposable elements, viral and plasmid proteins

is more represented in the set of putative miRNA target genes here identified.

A requirement for any predicted miRNA candidate to be valid is the actual

presence of a small RNA of 21-24 nt length in a total RNA fraction of Ara-

bidopsis. Seven randomly chosen predicted miRNA candidates were taken

for laboratory validation (Table 5.5): mi248, mi381, mi445, mi1022, mi1193,
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Figure 5.6: One gene can be target for multiple miRNA candidates. At3g32130 is a putative
non-LTR reverse transcriptase gene that is target for 274 different predicted miRNA candi-
dates. The thick black bar represents the coding sequence of the gene. The grey parts of
the bar are the introns and untranslated regions. The potential positions of the predicted
miRNA candidates in this target sequence are given as lines below the bar, grey depicts a
predicted miRNA in forward orientation, black in reverse orientation. The predicted miRNA
candidates target this gene most notably in the 3’ untranslated region.

mi1460 and mi2512. Of these, mi1460 is among the 274 predicted miRNA

candidates putatively targeting the non-LTR reverse transcriptase (At3g32130;

Figure 5.6). The number of putative target genes for these predicted miRNA

candidates ranges from 1 (mi381) to 21 (mi1193) (Table 5.5). Total Arabidop-

sis RNA from flowers was analyzed for the presence of small RNA hybridizing

to the predicted miRNA candidate by the method described previously [81].

The analysis was first performed by hybridizing an RNA blot with a 250 bp

PCR fragment containing the complete predicted miRNA precursor. If the

PCR fragment gave a positive result, the prediction was considered validated.

The results of these hybridizations are summarized in Table 5.5. In five out

of seven cases (mi381, mi1022, mi1193, mi1460, mi2512), a small RNA of

approximately 21 nt could be detected with a labelled PCR probe. The other

two miRNAs (mi248, mi445) may be wrongly predicted, occur in tissues or

cells not sampled, or occur in levels below detection limits. In three cases
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Table 5.5: Characteristics of seven randomly selected predicted miRNA candidates. Summary
of the number of putative target genes for each selected candidate, as well as results of all
hybridization experiments. Probes are either PCR fragments or labeled oligonucleotides.
miRNA No Hybridization probes on small RNA blots

target PCR Oligonucleotide
genes Forward Reverse

Fla Fl Leb Stc Sid Fl Le St Si
mi248 20 - NAe NA NA NA NA NA NA NA
mi381 1 + + - NDf ND - - ND ND
mi445 9 - NA NA NA NA NA NA NA NA
mi1022 14 + ND ND ND ND ND ND ND ND
mi1193 21 + - - - - + + + ++
mi1460 15 + ND ND ND ND ND ND ND ND
mi2512 17 + + + + ND - - - ND

aFl: Flower,bLe: Leaf,cSt: Stem,dSi: Silique,eNA: not applicable,f ND: not determined

(mi381, mi1193 and mi2512), a small RNA blot with different total RNA

preparations (flowers, leaves, stems, and siliques) was hybridized with an end-

labeled oligonucleotide representing either strand of the stem-loop structure

of the predicted miRNA candidate. In all three cases, hybridization showed

that only one of the two oligonucleotides of the stem-loop sequence could be

detected in the small RNA fraction (Table 5.5). It is furthermore notewor-

thy that the expression patterns differ between the different miRNAs (Table

5.5). All three miRNA probes hybridize to small RNA in flowers. mi381 is

not hybridizing to small RNA in leaves, whereas mi2512 is hybridizing to small

RNA in leaves and stems. In addition, mi1193 is detecting small RNA in all

four tissues analyzed, but the amount of small RNA is notably enhanced in

siliques (Figure 5.7). The oligonucleotide specificity as well as the differences

in tissue-specific presence of these predicted miRNA candidates both support

the potential biological relevance of these predicted miRNA candidates. Five

positives out of seven randomly chosen candidates from a total population

of 2,427 predicted miRNA candidates indicate that a major fraction of the

whole population of potential miRNA candidates may generate small RNAs.

The 95% lower confidence limit of the expected number of predicted miRNA

candidates can be calculated with the appropriate binomial statistics [91, 211].

This shows that there are at least 828 potentially active miRNA candidates in

the Arabidopsis genome.
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Figure 5.7: Tissue specific occurrence of mi1193 in Arabidopsis total RNA. (Top) Autora-
diograph of an RNA blot hybridized with the end-labeled reverse oligonucleotide of the
stem-loop sequence of predicted miRNA candidate mi1193. The lane labeled O+ contains
50ng of the forward oligonucleotide and serves as positive control for hybridization. The
lane labeled O- contains 50ng of the reverse oligonucleotide used as a probe on this blot
and is a negative control for (cross)hybridization. The lanes labeled Fl (flower), Le (leaf),
and St (stem) contain approximately 80 μg of total RNA isolated from the tissues indicated.
The lane labeled Si (silique) contains less RNA. (Bottom) Autoradiograph of the same RNA
blot hybridized with the Arabidopsis snRNA U6. After the first hybridization the blot was
re-hybridized without stripping with a probe encoding the Arabidopsis small nuclear RNA U6
to confirm the actual amount of RNA applied to the gel. The result shows that silique RNA
was underrepresented on this blot, which is in agreement with our laboratory observations
that RNA from siliques is more difficult to isolate and comes out less clean. The software
package TINA was used to calculate the ratio of the hybridizing signal by comparing the
mi1193 hybridization with the U6 hybridization. For the four tissues represented on this
RNA blot, the mi1193/U6 ratios are: flowers 0.01, leaves and stems 0.02 and siliques 0.22.
Relative to U6 RNA, silique total RNA thus shows a tenfold increase in amount of the small
RNA hybridizing to the mi1193 miRNA candidate compared to the other three tissues.

5.4 Discussion

A whole-genome analysis for the presence of potential miRNA precursors based

on the distinguishing structural features of miRNA-generating DNA indicates

the presence of 2,693 potential miRNA precursors. By chance one would ex-

pect only 80 candidates (see results), showing that the Arabidopsis genome

contains considerably higher numbers of potential miRNA precursors than ex-
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pected on the basis of chance alone. This may indicate the high functional

importance of the class of potential miRNA precursors. The approach here

taken for identification of potential miRNA precursors differs from previous

analyses in setup and software used for identifying palindromic repeats in the

Arabidopsis genome. Additional assumptions based on conservation of miR-

NAs over multiple genomes [93, 99, 100] and miRNA/mRNA pairing restric-

tions [178] could be useful in further classifying and ranking of the predicted

miRNA precursors. However such assumptions are based on a relatively small

set of known miRNAs and may cause an underestimation of the number of

miRNAs in Arabidopsis.

To single out false positives, the presence of a putative target gene in the

same genome was taken as additional criterion. The identification of puta-

tive target genes by low stringency gapped BLASTN with a small segment

high scoring pair (HSP) of minimal 20 nucleotides is difficult, due to the high

chance that a miRNA targets a gene [147, 178]. This does however not mean

that the candidates upon transcription are not biologically relevant [82]. The

combined presence of a potential miRNA precursor and putative target gene

thus increases credibility to the miRNA predictions, in a way similar to com-

parative genomics approaches [64, 100]. In total, 12,729 genes may be target

for miRNA regulation. This is a major part of the currently known genes in the

Arabidopsis genome. Only 20% of the potential target genes now identified

are classified in the ontology used [52]. Therefore, the genes potentially reg-

ulated by miRNAs reside for a major part in the functionally unknown genes.

Given that putative target genes distribute evenly over all functional categories,

miRNA-mediated regulation may be broader than previously suggested. It will

be highly interesting to see what future functional gene analyses will reveal for

the function of these genes and their regulation.

Single miRNAs may target different genes, and, vice versa, a single gene

may be targeted by different, not necessarily sequence related, miRNAs. The

extreme case identified is a putative reverse transcriptase that may be target

for 274 different miRNAs of which one was shown to exist in vivo. Such

a transcriptase is likely to be associated with transposon activity. It seems

reasonable to assume that the more miRNAs target a given gene, the lower

the likelihood that the gene escapes miRNA mediated (down) regulation. The
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large number of predicted miRNA might therefore indicate that the Arabidopsis

genome exerts a great effort for down regulating this reverse transcriptase.

The combined criteria of palindromic sequence and putative target gene re-

sults in the presence of 2,427 predicted miRNA candidates in the Arabidop-

sis genome. This set does not contain micro-satellites or abundantly repet-

itive palindromic elements. In this population families of apparently related

predicted miRNA candidates can be identified. The Arabidopsis genome is

characterized by no less than 1,928 families of distinct predicted miRNA can-

didates. The analysis indicates that also the chloroplast genome contains

predicted miRNA candidates (Table 5.2). The presence of miRNA candidates

in the chloroplast genome is also indicated in other laboratory experiments

[110].

Our in silico prediction of large numbers of miRNA candidates was further val-

idated in the laboratory by small-scale sampling and detection of the predicted

small RNA in a total RNA fraction of Arabidopsis. Five out of seven randomly

chosen potential miRNA candidates hybridize to small RNA in the small, 21-

24 nucleotide fraction of flower RNA (see Table 5.5 and Figure 5.7). This

result does not necessarily disqualify the two negative cases: these may exist

in concentrations below detection levels and/or in tissues/cells not sampled

such as the root or the highly specialized microspore mother cell. In the three

cases fully evaluated, only one of the two strands forming the hairpin is hy-

bridizing to small RNA in the total RNA fraction, as is observed in other cases

[80]. Moreover, the small RNA molecules detected by hybridization shows

tissue specific expression. One of the mi1193 oligonucleotides hybridizes to

small RNA in all tissue samples analyzed, but the hybridization in siliques

relative to U6 RNA is markedly stronger (Figure 5.7). The random set se-

lected out of a much larger set of predicted miRNA candidates shows all the

signs of genuine and possibly regulatory miRNAs, although determination of

a precise biological function of these miRNAs requires more analyses. In the

framework of a genome-wide inventory of the miRNA potential of the Ara-

bidopsis genome, the five randomly chosen candidates in a sample of seven

from a population of 2,427 are likely to represent active miRNAs. This sam-

pling result indicates the presence of an average of 1,733 miRNA candidates

in Arabidopsis. The lower (95%) confidence limit of the number of miRNA
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candidates in the Arabidopsis genome is 828. It is noteworthy to point out,

however, that this may be a severe underestimation. The number of predicted

miRNA candidates presented is limited by the size exclusion limit of 100 nt for

the miRNA precursor molecule, and a relatively simple stem-loop structure.

Both assumptions may be overly conservative in case of plants [103, 143].

Among our set of 2,427 predicted miRNA candidates, 19 miRNAs are also in

miRBase (Table 5.3; Griffiths-Jones [66]). This shows that the criteria used

in this paper are restrictive and the actual number of miRNAs could be much

higher. Additional miRNA candidates have either a larger precursor structure

or fewer constraints in the secondary structure of the miRNA precursor. The

sequence characteristics for the identification of potential miRNA precursors

used here is stricter. Therefore, the estimates given should be interpreted as

a lower estimate of the true miRNA potential of the Arabidopsis genome.

Yet, even the lower estimates given suggest a much higher miRNA potential

than concluded in previous studies. The upper limit of the number of miR-

NAs in the Arabidopsis genome [1, 101] was suggested to be 600 at most.

Our predictions do not rely on the assumption that miRNAs should be con-

served in evolution. Species-specific mRNAs shows that such conservation is

an unnecessarily limiting assumption [1, 15, 101]. Moreover, much more of

the genome is transcribed than indicated by the current genome annotations

[71, 163]. Many small RNAs are identified in intergenic regions [103]. The

MPSS Arabidopsis database identifies numerous tags (class 3&4) outside of

the current annotations [115] . This supports the likelihood that many of

the predicted miRNA precursors are transcribed and may have a biological

function.

More research will be necessary to decide on the true miRNA potential of the

Arabidopsis genome. Possibly co-evolution of miRNA and target gene may be

as good as, if not a better, criterion for miRNA identification and classification.

It may therefore be a valuable exercise to repeat the approach here presented

for the human, rice or Caenorhabditis elegans genome. Such future studies

may allow to investigate whether plants differ from human and/or invertebrates

in the numbers and/or extent of miRNA-based gene regulation.
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Abstract

AllermatchTM http://allermatch.org is a novel webtool for the efficient and stan-

dardized prediction of potential allergenicity of proteins according to the current rec-

ommendations of the FAO/WHO Expert Consultation, as outlined in the Codex ali-

mentarius. A query amino acid sequence is compared against the Allermatch Allergen

database based on current SwissProt and WHO-IUIS allergen lists. The webtool uses

a sliding window to identify stretches of 80 amino acids with more than 35% similarity,

or identical small stretches of at least six amino acids. The outcome of the analyses

is presented in a concise format. Allermatch is likely to contribute to improved, trans-

parent and more consistent analyses of potential allergenicity of genetically modified

food prior to market release. In the future, the FAO/WHO guidelines may be im-

proved upon. Different methods that could enhance the predictive value of allergen

prediction are discussed.
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6.1 Introduction

The safety of genetically modified foods must be assessed before authorities

in most nations will consider granting market approval. An important issue

in the food safety assessment is the evaluation of the potential allergenicity

of food derived from biotechnology. Food allergy is an immunogobulin E me-

diated response to food components and is part of a wider group of adverse

reactions to food termed ”food sensitivity”. Food allergy may have symptoms

that vary from itching, vomiting, diarrhea to life threatening anaphylaxis. As

all known food allergens are proteins, the introduction of a new (”foreign”)

protein in food by genetic engineering can cause allergic reactions in a ”worst

case” scenario. Potential allergenicity of a protein is a complex issue and var-

ious tests are used to predict potential allergenicity, including bioinformatics,

in vitro digestibility of the protein, and binding to antisera of allergic patients

[46, 181] The FAO/WHO’s Codex alimentarius and an Expert Consultation

group have established guidelines to assess potential allergenicity of proteins

with bioinformatics in a step-by-step procedure [45, 46]. Eventually, these

guidelines will have to be incorporated into law by all FAO/WHO member

states. The guidelines aim to assess whether a given primary protein sequence

is sufficiently similar to sequences of known allergenic proteins to cause rea-

son for concern. The recommended procedure to establish the potential for

allergenicity is as follows [45]:

1. Obtain the amino acids sequences of known allergens in public protein

databases in FASTA-format (using the amino acids from the mature

proteins only, disregarding the leader sequences, if any are annotated)

2. Prepare a complete set of 80-amino acid length sequences derived from

the expressed protein (again disregarding the leader sequence, if any).

3. Compare each of the sequences of (2) with all sequences of (1), using the

program FASTA [130] with default settings for gap penalty and width.

According to the Codex alimentarius potential allergenicity should be consid-

ered [46], when there is
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Figure 6.1: Venn diagram showing the relationship between the two databases used by
Allermatch

a. More than 35% similarity over a window of 80 amino acids in the amino

acid sequence of the query protein (without the leader sequence, if any)

with an entry known as allergen or

b. A stretch of identity of 6 to 8 contiguous amino acids.

If either analysis points to possible allergenicity, the allergenicity of the protein

should be verified using serum-binding tests and/or in vivo methods such as

patient panels, skin prick tests or animal exposure tests [181]

6.2 Features of the Allermatch webtool

The Allermatch webtool complies with the FAO/WHO criteria given above.

The first step was to create databases for the analysis. These databases

were established in three steps. First, a SwissProt allergen database was

created by extracting all 334 proteins from SwissProt [20] annotated as an

allergen [102, SwissProt version 44.1, July 5 2004]. Leader sequences were,

if annotated, trimmed and the mature protein sequences were stored in the

Allermatch SwissProt allergen database. Secondly, all 632 entries (excluding

some duplicates) from the WHO-IUIS allergen list [85] were extracted from



94 Chapter 6

Figure 6.2: Schematic representation of the AllermatchTMwebtool.

the public databases SwissProt, PIR [203] and GenPept [58]. It should be

noted that the WHO-IUIS list contains SwissProt sequences which are not

on the SwissProt allergen list and that the SwissProt allergen list contains

sequences which are not on the WHO-IUIS list. Annotated leader sequences

were trimmed and the sequences were stored in the Allermatch WHO/IUIS

allergen database. Joining the above databases and removing redundancies

created the Allermatch combined allergen database. The combined SwissProt

and WHO-IUIS allergen databases contained 236 duplicate sequences (Figure

6.1). The resulting non-redundant Allermatch allergen database contains 730

allergen sequences. The current version of the Allermatch webtool allows

analysis of a given query protein with any of the three databases created but

uses the combined database per default. In the future, it will be possible to

upload local sequences to be used as database.

For protein sequence alignment, Allermatch uses the FASTA program [130]

version 3.4t2 with default settings (ktup = 2, matrix = Blosum50, Gap open

= -10, Gap extend = -2). All other software is written in Python and runs on

a Suse Linux Enterprise Server 8 using mod python and an Apache webserver

(version 1.3.26). Allermatch provides three different search modes to assess

and visualize the potential allergenicity of proteins (Figure 6.2). These three

search modes are described in the next paragraphs.
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Figure 6.3: Screenshot of a results screen of an 80 amino acid alignment. This figure shows
an overview of all matches found with the 80 amino acid sliding window method on an pollen
allergen sequence from Zea mays (Zea m 14). The columns represent: 1) The number of
the hit, sorted on column 4. 2) The database from which the sequences was derived. 3)
The allergen identifier. 4) The best 80 amino acid similarity of all matched windows. 5 and
6) The number and percentage of windows with a similarity above 35%. 7) The percentage
similarity and the number of similar amino-acids in a full alignment of the query sequence
with this database allergen. 8) The SwissProt identifier and a link to the SwissProt website.
9) The species name from which the allergen sequence derives and 10) a link to a page with
more details on this specific hit.

6.2.1 Mode 1, 80 amino acids sliding window

The query protein sequence is divided into windows of 80 amino acids using

a sliding window with steps of a single amino acid. Each of these windows is

compared with all sequences in the Allermatch allergen database. All database

entries showing a similarity higher than a given threshold percentage (default

is 35%; a user can adjust the threshold percentage if desired) to any of all

80 amino acids query sequence windows, are identified. Upon completion of

the analysis, a table is generated that shows all database entries identified

(Figure 6.3). For each database entry, the highest similarity score is given, as

well as the number of 80 amino acids windows having a similarity above the
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Figure 6.4: Screenshot of a detailed view of a single wordmatch analysis on the same se-
quence as used for figure 6.3. The image shows detailed information on the sequence from
the AllermatchTMallergen database matched. Below two alignments can be seen, the first
alignment shows which parts of the input sequence have a 6 amino acid exact match with
the database sequence (marked with #). The second alignment displays the same for the
allergen database sequence.

cut-off percentage. For each entry identified, more detailed information can

be retrieved on the similarity between the allergen and query sequence. For

example, the areas of both proteins within all 80 amino acids windows that

score above the threshold percentage.

If the similarity score calculated by FASTA applies to stretches smaller than

80 amino acids, Allermatch converts such a similarity score to an 80 amino

acids window in a linear fashion. For example, a 40% similarity on a stretch

of 40 amino acids, converts to 20% similarity in an 80 amino acids window.
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This criterion implies that sequences shorter than 80 amino acids need to have

higher similarity in order to be identified as a potential allergen.

6.2.2 Mode 2, Wordmatch

The second method looks for short sub-sequences (words) that have a perfect

match with a database entry. The wordsize is configurable (default is 6 amino

acids). The resulting output is similar to the output given by Mode 1. All

database entries with at least one hit are listed and for each entry more detailed

information can be retrieved upon request (Figure 6.4).

6.2.3 Mode 3, Full alignment

The Allermatch webtool offers the full alignment of the query sequence with

the Allermatch allergen database entries. A FASTA alignment of the entire

input protein allows one to obtain a global view of the query’s protein sim-

ilarities with a known allergen and may help to position regions of potential

allergenicity in the primary structure of the protein. Upon parsing of the

FASTA output, information from the Allermatch Allergen database is added

and presented. This full alignment is not part of the recommendations of

the FAO/WHO guidelines. It is added as an additional useful tool for further

research.

6.3 Validation of the Allermatch webtool

A major issue in the prediction of potential allergenicity of a protein from a

biosafety point of view is the likelihood of error. The algorithms used for

prediction should be as accurate as possible and have as low an error rate as

possible. One can identify two types of errors: a query protein that is identified

as a potential allergen, while in fact it is not (i.e., a false positive) and a query

protein that is excluded from the possibility of being an allergen, while in fact

it is (i.e., a false negative). Both error types are estimated for each of the

three databases evaluated. For the sliding window approach an 80 amino acid
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Table 6.1: Prediction quality of the FAO/WHO methods. The number and percentage
of false negative and false positive hits is shown here for all FAO/WHO recommended
method/database combinations. Result set 1 describes the number of false negative hits
observed in a leave-one-out method. The next result set (2) shows the same results but cor-
rected for those sequences that were not able to generate a hit against itself due to the short
length of the sequence. The last (3) result set shows the observed number of false positives
when testing 12 non-allergenic sequences (see table 2) against the AllermatchTMwebtool.
Each of the result sets consists of two columns; the first column shows the number of false
hits and the total number of sequences in this set. The second column shows the percentage
of false hits.

Database Method ws Result Set 1 Result Set 2 Result Set 3
1 False negatives False Negatives

(corrected)
False Positives

Number % Number % Number %
SwissProt Window n.a. 71/334 21.3 57/320 17.8 3/12 25.0

Wordmatch 6 54/334 16.2 n.a. n.a. 7/12 58.3
7 69/334 20.7 n.a. n.a. 6/12 50.0
8 78/334 23.4 n.a. n.a. 3/12 25.0

WHO-IUIS Window n.a. 99/632 15.7 78/611 12.8 4/12 33.3
Wordmatch 6 58/632 9.2 n.a. n.a. 9/12 75.0

7 98/632 15.5 n.a. n.a. 8/12 66.7
8 117/632 18.5 n.a. n.a. 3/12 25.0

Both Window n.a. 101/730 13.8 77/706 10.9 5/12 41.7
Wordmatch 6 55/730 7.5 n.a. n.a. 9/12 75.0

7 95/730 13.0 n.a. n.a. 8/12 66.7
8 115/730 15.8 n.a. n.a. 3/12 25.0

window with a 35% similarity cutoff is used and for the wordmatch approach

6, 7 and 8 amino acids word sizes are tested.

6.3.1 Estimation of the error rate of false negatives

It is not easy to investigate the tion rate of false negatives by the algorithms

employed in the Allermatch webtool, as there are no proteins known as allergen

while they are not represented in the databases used (as there should be none).

As an estimation we have determined the number of “orphan” entries in the

Allermatch Allergen database. An orphan entry is an entry that, according to

the Allermatch analysis, is not predicted to be an allergen by similarity to any

other entry in the database except itself. Such an orphan entry would represent

a false negative relative to that database if this sequence were not present in

this database. This approach is also called ”jackknifing”. The number of

orphan entries in a database is an approximation of the false negative rate.

The results of performing this analysis on all three databases and using the

first two analysis methods are summarized in Table 6.1.

In examining the false negative results, various sequences were observed that

did not produce a hit against itself (data not shown). On closer inspection,
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this was found to be due to the short length of these protein sequences. If

a sequence is shorter than 28 amino acids, even 100% similarity will convert

the similarity to less than 35% after conversion to an 80 amino acid window.

This may overestimate the error rate. Therefore, we also determined the false

negative rates with those sequences not able to generate a hit against itself

excluded. Even after this correction the wordmatch method, with a 6 amino

acids word length, gives a lower percentage of false negatives than the sliding

window approach.

6.3.2 Estimation of the error rate of false positives

The second control examines 12 proven non-allergenic sequences against the

Allermatch databases. Non-allergenicity can, for example, be based on non-

reactivity of these proteins towards IgE-sera of allergy patients or the inability

to cause IgE-responses in experimental animals (see Table 6.2). It should be

noted that such data exists only for a limited number of proteins, which also

accounts for the size of this dataset. A non-allergenic sequence is not supposed

to generate a hit; therefore we consider each hit a false positive. Results are

summarized in Table 6.1, result set 3.

6.4 Discussion

Prediction of allergenicity can broadly be done in two ways: one can look

for linear or conformational epitopes [24]. The first method tries to assess

whether two proteins share similarities in the primary sequence, whereas the

second method looks at similarities in 3D structure. The Codex guidelines

recommend a combination of both approaches. Short exact word-matches

and positive hits in the sliding 80-amino acid window may indicate potential

linear epitopes and similar 3D structures, respectively.

Examination of the false negative rate (see table 6.1, result set 1) shows

a link between the database size and the false negative hit rate. This is

to be expected because a larger database increases the probability that a

similar allergen present. Another possible part of the explanation is that a

larger database is likely to have more isoallergen families (a group of allergens
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Table 6.2: Sequences used for the negative control.
Protein Host organism Evidence for non-allergenicity Accession Reference
Amaranth
seed
albumin

Amaranthus
hypochon-
driacus

IgG-response, but no raised IgE-levels, after ad-
ministration (intranasal and intraperitoneal) of
amaranth seed albumin to mice

GenPept
CAA77664

[30]

T1 Catharanthus
roseus

No reaction of recombinant T1 in IgE-sera
binding, basophile histamine release, and skin
prick testing using patients allergic to the re-
lated birch pollen allergen Bet v 1

Not applica-
ble

[92]

Mite fer-
ritin heavy
chain

Dermato-
phagoides
pteronyssinus

Reaction of mite ferritin with IgG, but not with
IgE, of sera from patients allergic to house dust
mite

GenPept
AAG02250

[44]

Maltose
binding
protein

Escherichia coli No reaction with IgE-sera from patients allergic
to natural rubber latex (maltose binding pro-
tein used as part of fusion proteins with latex
allergens)

SwissProt
P02928

[149]

Human
serum
albumin

Homo sapiens No reaction of human serum albumin with IgE-
sera of patients allergic to cat- and porcine-
serum albumin

SwissProt
P02768

[75]

Human
heat shock
protein 70

Homo sapiens No reaction of human heat shock protein 70
with IgE-sera of patients allergic to heat shock
protein 70 from Echinococcus granulosus

SwissProt
P08107

[126]

Human
beta-2-
glycoprotein
I

Homo sapiens Presence of IgM antibodies, but not of
IgE antibodies, directed against human
beta-2-glycoprotein I in sera from atopic
eczema/dermatitis patients

SwissProt
P02749

[185]

Guayule
rubber
particle
protein

Parthenium ar-
gentatum

No cross-reactivity between proteins from
guayule and latex using IgE-sera from patients
allergic to latex

SwissProt
Q40778

[168]

Purle acid
phos-
phatase
1

Solanum
tuberosum

Stimulation of IgG-, but no or only low stimula-
tion of IgE-antibodies following administration
of potato acid phosphatase to mice (oral and
intraperitoneal)

TrEMBL
Q6J5M7

[35]

Purle acid
phos-
phatase
2

Solanum
tuberosum

See above TrEMBL
Q6J5M9

[35]

Purle acid
phos-
phatase
3

Solanum
tuberosum

See above TrEMBL
Q6J5M8

[35]

Potato
lectin

Solanum
tuberosum

Stimulation of IgG-, but no or only low stimula-
tion of IgE-antibodies following administration
of potato lectin to mice (intraperitoneal)

TrEMBL
Q9S8M0

[36]

with minor sequence differences) present. This diminishes the chance of false

negatives since fewer sequences will be an ”orphan”. A third factor influencing

the false negative hit rate is bad protein annotation. Signal peptides still

present in the database might generated a positive hit for an orphan protein.

When evaluating the false positive hits we see a similar trend; the number of

false positives grows with the database size, as is to also be expected since

the chance of a random hit increases with a larger database. In contrast to

the false negative hit rates however, the sliding window method gives a lower

percentage of erroneous hits here. The results of this test might overestimate

the number of false positives, since a number of these non-allergens are related

to and display similarities with their allergenic counterparts, i.e. T1 is related

to Bet v 1 [92], human serum albumin is related to animal serum albumins

[75] and human heat shock protein 70 is similar to heat shock proteins from
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fungi and other allergens [126] (Table 6.2). A true selection of unrelated,

non-allergenic proteins is therefore likely to give a lower false positive rate.

These results show that by choosing a database and algorithm one can influ-

ence the error rates towards either a higher rate of false positives or towards

more false negatives. A too high detection rate of false positives would gen-

erate an unnecessary and undesirable burden of additional testing of proteins

used in genetic engineering. On the other hand, a too high detection rate of

false negatives would generate undesirable potential health risks for consumers.

Either error is undesirable, but because this bioinformatics analysis identifies

proteins for further testing of true allergenicity, a ”better safe than sorry” strat-

egy could be opted for. Such a strategy would obviously strive to minimize the

detection rate of false negatives by using the results of both the sliding window

and the six amino acid wordmatch against the largest Allermatch combined

allergen database. Positive results from these analyses should first be analyzed

in depth by checking medical literature on these proteins. Ultimately all valid

predictions will, as suggested by FAO/WHO, have to be tested further with

methods as skin prick tests or animal models. Even after these tests there

is no absolute certainty that the protein in question will never elicit an aller-

genic reaction. In time, people might still become sensitized to the protein

as a novel allergen, or only a very small part of the population is sensitive to

cross-reacting allergens, too small to have been noticed in the tests.

In general, one should keep in mind that performance of these algorithms is far

from perfect. This is in agreement with other literature where similar results

for the FAO/WHO methods are shown and other algorithms proven to give

better results KP02,SZG+04,ZGH02. These supplementary methods include,

for example, advanced motif discovery methods where a complete allergen

database is scanned for highly represented motifs. These motifs are then

used to identify possible allergenicity [177]. In addition, a machine-learning

approach was described using FASTA and a neural network to compare query

proteins with allergens [213].

In the public domain, several other websites have emerged that assess potential

allergenicity of proteins based on their primary sequence. For example:

� SDAP: http://fermi.utmb.edu/SDAP/
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� FARRP: www.allergenonline.com

� AllerPredict: research.i2r.a-star.edu.sg/Templar/DB/Allergen/

These websites are also able to perform complete FASTA alignments (SDAP,

Farrp), 80 amino acids sliding window (SDAP, AllerPredict) and 6 to 8 amino

acids exact matches (SDAP, AllerPredict).

Allermatch will greatly enhance and improve the prediction of allergenicity

according to current guidelines in the Codex by combining all recommended

algorithms in a single website. In the future, the Allermatch webtool will stay

updated with the public allergen databases on a regular basis and the require-

ments by law on assessing allergenicity. To increase the predictive power,

supplementary bioinformatics facilities will be added. Such additional facilities

may include, among others, the possibility to do batch analyses, to upload

users’ own databases, and to use supplementary tools such as the examples

described above. Feedback from users will help us to identify particular issues

that address their needs.
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General discussion

This thesis describes a broad scope of topics with respect to the application

of bioinformatics in genome annotation. Nowadays, for only a relatively small

part of genomes known, appropriate biological functions have been assigned

to genomic sequences. In future research, the role of bioinformatics in guiding

biological interpretation and integration of existing data will have to grow to

reach the ultimate goal of genome annotation: to describe the function of

every nucleotide in every cell, tissue and stage of development, under every

condition during reproduction and entire life span of the organism in question.

Current bioinformatics involves large scale computational integration (Chap-

ter 3) and intuitive data visualization (Chapter 4) to achieve high quality

predictions of individual features in genomes, such as microRNAs (Chapter

5) and allergenicity of proteins (Chapter 6). Yet, the future challenges of

all bioinformatics approaches in genome annotation undertaken in this thesis

are related to two issues most researchers will not immediately associate with

bioinformatics: communication and the assessment of quality.

Communication in bioinformatics needs to be improved on at least three levels:

communication between computers, communication between computer and

researcher and communication between researchers. The continued special-

ization of biological research motivates the continued development of specific

databases where specialists remain in control of data and updated annota-

tions. Such databases must be able to communicate. A major challenge in

the development of an automated system for genome annotation (Chapter 3)
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has been the communication between separate steps of genome annotation.

The use of BioMOBY [200, chapter 2.4.2] as a standard allows uniform de-

scription of data for communication. However, BioMOBY allows easy creation

of data types and services, with as result a labyrinth of (partly) overlapping

data types and services. Therefore, future developments should aim at either

unifying or interlinking these data types and services. The first option requires

an ontology based approach that forces BioMOBY users to adhere to a prede-

fined set of objects and service types. The second approach is probably easier

to achieve and ensures a greater flexibility of the system. An example of the

latter approach is the promising semantic MOBY project [162].

Improvement of the communication between computer and researcher has

much to do with intuitive use and attractive presentation. Biologists can im-

prove the interpretation of biological data by increasing their knowledge of

computer assisted data analysis. A dot-plot [173], for example, takes some

training to understand, but is, once mastered, a very powerful tool to visualize

and explore the relationship between two sequences. Bioinformaticians must

continue to develop novel ways of data presentation that facilitate analysis,

interpretation and mining of genome data (Chapter 4). Visualization is one of

the most powerful methods to allow easy access to large and inherently com-

plex datasets. In communication with visualization scientists to develop the

tool described in Chapter 4, it was surprising to discover that what was new and

exciting for biologists and bioinformaticians, was considered almost outdated

by visualization scientists. This implies that new visualization approaches may

further appeal to the desires and needs of genome annotation. The more

multi-dimensional and more comparative genome data will become, the more

need there will be for advanced and interactive visualization. A crucial factor

in achieving such developments will be the communication between biologist,

bioinformatician and visualization scientist. Inital development should aim on

an application able to display data produced by all current omics technologies

and their mutual relationships. Such an application should be extensible, easy

to use and run on a researchers desktop. The latter criterium is important as

it lowers the treshold for a researcher to “play” with the data and hence, start

to understand it.
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For the further development of the bioinformatics approaches as investigated

in this thesis, improved communication between researchers in the various dis-

ciplines should be considered the most important of all. Genome annotation

is about giving biological relevance to the biological molecule DNA. Close co-

operation with experimental biologists is required to give useful and applicable

results that can be translated in new experiments and improved annotations.

Yet another topic of communication that is currently underestimated is the

second issue identified during the preparation of this thesis: communication

of the quality of data and the consequences thereof. Experimental biologists

often complain that the annotations delivered by bioinformatics are not very

precise (or plain wrong), because their laboratory experiments do not comply

with the results predicted from annotations. Bioinformatics would be better off

when admitting (and warning) clearly that this is unavoidable, due to various

reasons, among which the presence of biological variability will appeal best

to the laboratory researcher. All stakeholders involved need to become more

aware of the methods and limitations of the methods that bioinformatics is

using and developing for annotation.

Good annotation is no easy task. Whatever algorithm is chosen, it is an ap-

proximation that has assumptions and requirements that may not be met in

all cases considered. For example, the annotation of protein coding genes is

still far from satisfactory [26, 108, Chapter 2] although it has been a sub-

ject of research for well over two decades [see for example 47]. Therefore,

it is generally considered a valid approach to use algorithms based on differ-

ent computational principles and consider predictions that different algorithms

share as the better predictions.

Biological variation is a major issue in the accuracy of predictions. Even

within a species sequence variation is considerable. The hapmap consortium

has shown that two individual human beings are likely to differ no less than

1 nucleotide per 279 [5], implying a much larger source of variation in the

human genome than previously thought.

Most methods in bioinformatics depend on “learning algorithms” where known

annotations are used to train the prediction algorithm. Such an algorithm is

usually trained with data from one individual and is therefore biased towards

that individual. This is generally unknown to the experimental biologist. It
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should be explained better that all learning depends on input and when sup-

plied with biased or unrepresentative input data, output will be equally biased.

More attention for the accuracy of computational predictions is warranted in

annotation and communication on annotation.

Equally essential for a good annotation is good data. An algorithm cannot

be better than the data it gets. Unfortunately, there are many sources of

error conceivable in the data used for annotation. Older sequences may be

less reliable than sequences determined with later-generation equipment and

approaches. Assembly may also give rise to errors, notably in the case of

highly repeated sequences. New approaches are still developed to improve

this [136]. The overall error rate in genome sequences may approach 0.01% (1

nucleotide per 10 thousand), but this is an average that may fail on individual

areas of sequence. A more hidden source of error in annotation is the process

of annotation itself. As outlined in Chapter 2, many methods in genome

annotation rely on previous annotations. Gene function is usually assigned

based on similarity with known genes, a notoriously difficult task [151]. It is

not uncommon that a gene is assigned a function based on similarity with

a gene that also was assigned a function based on similarity. This way, the

process of annotation is recursive and prone to error propagation [60]. Such

error propagation is a serious and underestimated issue in current biological

databases.

Several initiatives are put in place to try to prevent error propagation in auto-

mated annotation. An example of such precaution is the use of highly curated

databases, such as SwissProt [20]. Manual curation of data is a good way to

reduce errors in annotation, but it is intrinsically slow and expensive. As a re-

sult, the contents of curated databases are lagging behind considerably. Also,

curated databases are inherently conservative and may refuse and therefore

miss new developments for quite a while. A lot of biological insight and inno-

vation has come from exceptions to rules [137] that were only accepted hesi-

tantly, such as for example gene silencing [137] and microRNA genes (Chapter

4). In general, a combination of both curated and not-curated databases is

recommended to have access to the latest information and data for an anno-

tation, provided the quality of the annotation is given as well. More attention
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should be given to systems and methods that allow assessing the quality of an

annotation in an easy and intuitive way.

The Gene Ontology consortium [8] employs the system of so called “evidence

codes” to indicate how an annotation is obtained, This system allows clear

distinction between, for example, an annotation based on laboratory evidence

as opposed to a BLAST analysis. This system is a good beginning and de-

serves to be extended beyond the assignment of protein function. A uniform

scoring system to allow quick and intuitive insight in the quality of an anno-

tation will be essential for future bioinformatics and laboratory biology. Such

a system should be able to handle recursive annotation. A BLAST hit against

a gene given a function based on laboratory data should score better than a

BLAST hit against a gene given a function on the basis of a previous BLAST

analysis. Obviously, also laboratory data can be erroneous and possibly also

the quality and number of independent confirmations should be included in

the assessment. A Bayesian approach that implements prior knowledge in as-

signing confidence appears well suited to this task and will generate a quality

score that can be easily interpreted and used in database searching.

It is anticipated that the issues and needs identified above will become more im-

portant in the near future. Data production speed will continue to go up, while

costs per nucleotide will continue to go down. Current developments in se-

quencing technology [31, 109, 166] bring the $1000 genome in sight. With the

rise of sequence data of individuals, the importance of comparative genomics

in assessing differences between genomes and assigning biological function will

grow tremendously. As already indicated by the human hapmap project [5],

this is likely to show much more variability than assumed. Future genome

annotation should be able to contribute to and incorporate such variation.

It is also becoming increasingly clear that next to the DNA code there exist

an informative epigenetic code [65]. This epi-code, consisting of methylation

and histone modifications, is influencing expression and regulation of expres-

sion. and should obviously be incorporated in future annotations. Moreover,

biological phenomena are triggered and regulated by large complexes. Such

units consist of multiple proteins, protein-DNA complexes, protein-RNA com-

plexes and/or complexes with non-protein metabolites. Unraveling the result-

ing “interactome” presents on of the next challenges of genome annotation.



Ultimately, understanding of the genome helps in understanding the function

of a cell and an organism. This is the aim of the emerging field of systems

biology of which genome annotation will be a pillar. Given all challenges and

developments ahead, genome annotation will stay one of the most exciting

fields of research for decades to come. In view of such future foreseen, it is

unavoidable that this thesis will be outdated relatively soon.
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Summary

Large amounts of genome sequence data are available and much more will

become available in the near future. A DNA sequence alone has, however,

limited use. Genome annotation is required to assign biological interpretation

to the DNA sequence. The aim of genome annotation is to describe the bio-

logical function of every single nucleotide during the life span of an organism.

This requires the help of bioinformatics. Bioinformatics is a multidisciplinary

approach that combines several areas of expertise in the automated analysis

of bio-molecular data. To achieve the goal of proper annotation of a genome,

close cooperation between bioinformaticians and (genome) biologists is re-

quired at several levels.

This thesis describes a variety of research topics for bioinformatics in the

context of genome annotation. A review of the various topics and issues

in the science of genome annotation is given in Chapter 2. The research

performed has focused on large scale computational efforts in Chapters 3 and

4 and focuses on the prediction of detailed features of genomes in Chapters 5

and 6.

Chapter 3 describes the development of an extensive system for automated

genome annotation, called Cyrille2. The major challenges encountered dur-

ing development of this system have been the extensibility with desired fea-

tures and the necessary communication between calculation nodes and the

databases. Extensibility of the system was achieved by a highly modular

structure which allows easy implementation of new analytical approaches and

features. Communication between the separate analyses steps of genome an-

notation is performed with the help of BioMOBY. BioMOBY is an emerging

XML standard allowing flexible and uniform description of data and web ser-
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vices. The resulting genome annotation system is a flexible, user friendly and

high-throughput system able to annotate large amounts of data.

Chapter 4 focuses on visualization of different types of annotation data. Visu-

alization is one of the more powerful methods to evaluate large datasets such

as annotated genomes. The research has resulted in the development of a

software package, called DNAvis, which applies modern visualization concepts

and know-how to forward bioinformatics. DNAvis implements for example

fluent zooming and panning to help biologists in the exploration of annotated

genomes.

Chapter 5 describes new approaches for the prediction of potential micro-RNAs

(miRNAs) in a plant genome. A miRNA is a small RNA gene that downreg-

ulates gene expression via pairing with an mRNA that results in degradation

or inhibition of translation of that mRNA. A miRNA candidate is identified by

its characteristic hairpin shaped precursor and its ability to target an mRNA.

This research investigates the complete miRNA potential of the Arabidopsis

genome. The results indicate that there are likely to be more miRNAs and

more affected mRNAs than predicted.

Chapter 6 of this thesis focuses on proteins and the prediction of a particu-

lar protein feature, allergenicity. This has resulted in a novel webtool, called

Allermatch, for the prediction of protein allergenicity according to the current

guidelines from the World Health Organization (WHO) and the Food and

Agriculture Organization of the United Nations (FAO). The potential aller-

genicity is predicted by comparing the sequence of the protein of interest to a

database of known allergens. The tool implements three methods of compar-

ing: a sliding window approach, a wordmatch approach and a full sequence

alignment.

The overall scope of this thesis is fairly broad and many of the challenges

for bioinformatics in relationship to genome annotation are encountered. The

primary challenges are reviewed in the final discussion of this thesis in Chap-

ter 7. It is concluded that these challenges fall into two main categories:

communication and quality.

Communication in bioinformatics for genome annotation is a major challenge

on several levels: communication between computers and communication be-



Summary 131

tween researchers are both at stake, as well as the communication between

computers and human beings. The global bioinformatics community is moving

towards a (web) service-based infrastructure. Therefore, communication be-

tween computers must be uniform and standardized as discussed in more detail

in Chapter 3 of this thesis. Communication between researchers is far from

trivial, especially in a multidisciplinary field as bioinformatics. This was partic-

ularly an issue during the development of the visualization tool of Chapter 4

that was accomplished in close cooperation between biologists, bioinformati-

cians and visualization scientists. Visualization also deals with the communi-

cation between computers and human beings to communicate the results of

genome annotation.

The second major issue in bioinformatics and genome annotation is the quality

of annotation data, as is discussed in Chapter 2 of this thesis. Most annotation

depends in some way or another on previous annotations. For example, infer-

ence of gene function is often done by comparing a new gene to a database of

known genes. Obviously the quality of such prediction relies on the quality of

the underlying data. The issue of error propagation is an important issue in

the field of genome annotation and needs much future attention. Ample room

and importance should be given to proper validation and experimentation in

the laboratory to back up any annotation based on bioinformatics. An easy

quality indication system that covers the type and number of data behind any

annotation would seem essential for the future of genome annotation.

Current developments in notably sequencing technology indicate dramatic in-

creases in data production speed for genomics and related ’omics’ areas in the

near future. A major challenge of that future will be to manage and anno-

tate the growing data stream. It should be made sure that more data help

to improve the quality of data and help to improve the quality of genome

annotations.

Currently only a small percentage of any genome is understood. To reach the

goal of genome annotation and correctly describe the function of every single

nucleotide, a lot of work remains to be done. This is by itself a major challenge.

It is not unlikely that along the way evidence for new mechanisms of gene reg-

ulation and organization will be discovered. Genome annotation will therefore
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remain one of the more exciting and challenging fields of bioinformatics for

decades to come.



Samenvatting

De basenvolgorde (sequentie) van een enorme hoeveelheid DNA is beschikbaar

en op korte termijn zal nog veel meer ter beschikking komen. De DNA sequen-

tie van een genoom (alle unieke chromosomen van een organisme bij elkaar) is

op zichzelf beperkt bruikbaar. Genoomannotatie is het proces dat een interpre-

tatie (annotatie) toekent aan een (deel van een) genoomsequentie. Het doel

van genoomannotatie is het beschrijven van de biologische functie van iedere

nucleotide op ieder moment van de levensduur van een organisme. Dit doel

vereis de hulp van bio-informatica. Bio-informatica verenigt een aantal weten-

schappelijke disciplines in zich om biomoleculaire informatie automatisch te

analyseren. Succesvolle genoomannotatie is afhankelijk van nauwe samenwer-

king, op verscheidene niveaus, tussen (bio-)informatici en (genoom)biologen.

Dit proefschrift beschrijft verschillende onderwerpen binnen de bioinformatica

die zijn gericht op genoomannotatie. Een samenvatting van het vakgebied is te

vinden in hoofdstuk 2. Het onderzoek beschreven in de rest van het proefschrift

varieert van genoombrede,grootschalige analyses in de hoofdstukken 3 en 4, tot

de voorspelling van specifieke elementen in de hoofdstukken 5 en 6. Tenslotte

wordt de toekomst van het vakgebied besproken in hoofdstuk 7.

Hoofdstuk 3 beschrijft de ontwikkeling van een uitgebreid systeem, Cyrille2 ge-

naamd, om genoomannotatie te automatiseren. De belangrijkste uitdagingen

in de ontwikkeling van een dergelijk systeem liggen op het gebied van uit-

breidbaarheid en communicatie. Uitbreidbaarheid is noodzakelijk in een snel

ontwikkelend veld als genoomannotatie. Het is gewaarborgd door een mo-

dulaire structuur, waardoor snelle implementatie van nieuwe eigenschappen

mogelijk is. Voor de communicatie tussen de individuele stappen van het an-

notatieproces wordt gebruik gemaakt van BioMOBY. BioMOBY is een recente
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XML standaard die een flexibele, uniforme en automatiseerbare beschrijving

van informatie en analyses (eventueel over internet) mogelijk maakt. Het re-

sulterende genoomannotatiesysteem is flexibel, gebruikersvriendelijk en heeft

de capaciteit om grote hoeveelheden informatie (tegelijkertijd) te verwerken.

Hoofdstuk 4 behandelt de visualisatie van verschillende soorten annotaties. Vi-

sualisatie is een van de meest krachtige hulpmiddelen om grote hoeveelheden

informatie te interpreteren en evalueren. Onderzoek beschreven in dit hoofd-

stuk heeft geresulteerd in de ontwikkeling van een software pakket, genaamd

DNAvis, dat moderne visualisatieconcepten en -kennis toepast op genooman-

notatie. DNAvis gebruikt bij voorbeeld vloeiend “scrollen” en “zoomen” ter

ondersteuning van het onderzoek van een geannoteerd genoom.

Het volgende hoofdstuk (5) beschrijft een nieuwe aanpak voor de voorspelling

van micro-RNAs (miRNAs) in een plantengenoom. Een miRNA is een klein

RNA molecule dat de expressie van een gen kan remmen door te plakken aan

het messenger-RNA (mRNA, boodschapper RNA) van dat gen. Een miRNA

kandidaat kan herkend worden aan de typische haarspeldstructuur waaruit het

miRNA gevormd wordt, gekoppeld aan de mogelijkheid om te plakken aan een

mRNA. De resultaten beschreven in dit hoofdstuk maken het aannemelijk dat

het totale aantal miRNAs en in het Arabidopsis thaliana genoom vele malen

groter is dan tot nu toe werd aangenomen.

Hoofdstuk 6 van dit proefschrift richt zich op de annotatie van een specifieke

eigenschap van eiwitten, namelijk allergeniciteit. Allergeniciteit is het vermo-

gen van een eiwit om een allergische reactie te veroorzaken. Dit hoofdstuk

beschrijft de ontwikkeling van een webgebaseerde applicatie, Allermatch, die

allergeniciteit voorspelt op basis van de criteria opgesteld door de Wereld-

gezondheidsorganisatie (WHO) en de “Food and Agriculture Organization”

(FAO) van de Verenigde Naties. Potentiële allergeniciteit wordt voorspeld door

de sequentie van een te onderzoeken eiwit te vergelijken met een database van

bekende allergenen (eiwitten die een allergische reactie kunnen veroorzaken).

Allermatch gebruikt hiervoor drie methoden: (1) volledige sequentievergelij-

king, (2) het flexibelvergelijken van alle sequentiefragmenten van een bepaalde

lengte en (3) de stringente vergelijking van hele korte stukjes van de sequentie

(zogenaamde woorden).
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Dit proefschrift beschrijft een breed scala aan onderwerpen en veel van de

huidige uitdagingen in de bioinformatica zijn onderwerp van discussie in dit

proefschrift. De belangrijkste kwesties worden besproken in hoofdstuk 7. De

conclusie is dat de belangrijkste uitdagingen in twee categorieën uiteenvallen:

communicatie en kwaliteit.

Communicatie in de bioinformatica voor genoomannotatie is een uitdaging op

onderscheidbare niveaus: communicatie tussen computers onderling en tussen

onderzoekers onderling is van belang, evenals communicatie tussen computers

en onderzoekers. De bioinformatica gemeenschap beweegt richting een op in-

ternetdiensten (webservices) gebaseerde infrastructuur. Dit vereist een gestan-

daardiseerde communicatie tussen computers, zoals besproken in hoofdstuk 3.

De ontwikkeling van het visualisatiepakket uit hoofdstuk 4 is het resultaat van

een nauwe samenwerking tussen biologen, bioinformatici en visualisatiedes-

kundigen. Tijdens dit project bleek het belang van een goede communicatie

tussen onderzoekers. Visualisatie is eveneens een belangrijk hulpmiddel in de

communicatie tussen computers en onderzoekers.

Het tweede belangrijke struikelblok in de bioinformatica voor genoomannotatie

is de kwaliteit van annotaties. Dit wordt onder andere besproken in hoofdstuk

2 van het proefschrift. Het annoteren van een eigenschap van een deel van het

genoom is in bijna alle gevallen direct afhankelijk van eerdere annotaties. Het

toekennen van een genfunctie wordt bijvoorbeeld vaak gedaan door het nieuwe

gen te vergelijken met een set genen waarvan de functie bekend is. De kwaliteit

van dergelijke annotaties is daarom direct afhankelijk van de kwaliteit van de

onderliggende dataset en/of annotaties. Het propageren van fouten is een

belangrijk onderwerp binnen genoomannotatie en dient in de toekomst verder

onderzocht te worden. Veel meer aandacht dan nu gebruikelijk zal moeten

worden besteed aan bevestiging van de voorspellingen in het laboratorium

om de door de bioinformatica voorspelde annotaties te ondersteunen en te

verbeteren. Een eenduidig indicatiesysteem voor de kwaliteit van een annotatie

dat ook de onderliggende informatie van een annotatie omvat, lijkt essentieel

voor de toekomst van genoomannotatie.

De huidige ontwikkelingen in onder andere sequentietechnologie wijzen op een

dramatische stijging in de productiesnelheid van informatie binnen de genomica

en gerelateerde “omics” vakgebieden in de zeer nabije toekomst. De uitdaging
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is om die informatie in goede banen te leiden en goed te annoteren. Het is

eveneens van belang deze datastroom in te zetten om de kwaliteit de bestaande

van genoomannotaties te verbeteren.

Momenteel wordt de biologische betekenis van slechts een klein percenta-

ge van een genoom begrepen. Het uiteindelijke doel van genoomannotatie,

het beschrijven van de biologische functie van iedere nucleotide op ieder mo-

ment van de levensduur van een organisme, is nog lang niet bereikt. Het is

waarschijnlijk dat aanwijzingen voor nieuwe mechanismen van genregulatie en

organisatie ontdekt zullen worden. Genoomannotatie zal daardoor een van de

meest spannende en uitdagende vakgebieden van de bio-informatica blijven

voor de komende decennia.
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ACAGAGCGACGCTGGTCTCCCMIRTEGTTGCTAGAAGAAGACGGCGTCGACGTCTGACTG

GACTCGCGGCGACTTACCTTTCAGTCGTGCGCTCCTGATCCGGCGCTCGGAATTTGTCCC

CGGCTTCAGGGCTGCGGGGCCTEPCOGGAGGCGTATOMAGGCGGCTCGAAAACGATCCAG

GGGAGCCGAGGCGCTCCTCTTGTCATCCCACTCAGCGCCATGTCCTGGATGTTCAAGAGG

GATCCAGTTJEANNETACTTGCAGACJOOSTAGTATGGAGTTCATGGAAATRICHARDGC

CTCTCATATCCAACTTTCTTTCCACGTTTTGAATTCCAAGATGTTATCCCTCCAGATGAC

TTTCTAACTAGTGATGAAGAAGTAGATTCCLIESBETHTGGAAGTIMGAGAGGTCATGTG

GTTGGACTACGJUDITHCACGGGAGTAGTTAATAATAATGAAATGELLENATTACAACGA

GATCCTAATAACCCTTTOMATAAGAATGCAATTAAAGTROELANDGTGAATADAAATCAA

GTTGGCCATTTAAAGAAAGAGCDAPHNEGTGCTTTGGCCTATATCATGGACAACAAATTG

GCACVELITCHKAGGGTAGTTCCTTTTGGTGCAAACAATGCTTTTACCATGCCTCTGCAT

ATGACTTTTTGGXINYINGAAGAAAATAGAAAAGCGGSANDERATCAGTTGAAGAAACAT

GGATTTAAATTGGGTCCTGCACCAAAAACTTTAGGATTCAATTTGGAAAGTGGTTGGGGC

TCTGGAAGAGCTGGACRENSKEATAGTATGCCAGCGCATGCTGCAGTKOOSATGACAACT

GAACPACTTAAAACAGACGGTGACAAATTGTTTGAAGATTTAAAAGAAGATGATAAAACC

CATGAAATJANACCAGCTGAGMAICOTGAAACACCACTGCTTMAAIKECAAAAACAAGCT

CTAGCTTGGATGGTGTCACGGGAAAACAGCAAAGATETTCCACCATTCTGGGAACAGCGA

AATGACTTATACTATTCGCAAATAACAAATTTTTCTGAGAAGGACCGACCAGAAAATGTC

CATGGATHEOTTTTAGCTOSCARTATGGWILLEMGTAAAACTCTTACAGCCATTGCAGTA

ATCCTTACCAACTTCCATGATGGCAGACCTCTTCCTATTGAAAGAGTTAAGIJSAATCTA

CTGAAGAAGGAATGTAATGTTAACGATGASASKIAGAAACHUUBAGGAAACAATACCAGT

GAAAAGGCJONNAGACTAAGCAAAGAAGCATCTEDOUARDGTGAACAACCCAGTATTTCA

GATATCAAGGAGAAGAGTAAGTTTCGCATGTCAGAATTGJANAGCTCCCGCCCCAAAAGA

AGAAAAACTGCTGTCFERRYCATAGAAAGCAGTGATTCAGAGGAAATTGAAACAAGTGAA

TTGCCGCAGAAAATGAAAGGCAAACTGAAAAATGTACCYRILLEAACTAAAGGCAGGGCG

AAAGCAGGMARIONTAAGGTEZRIGAAGATGTGGCATTTGCAJPTGCATTLUDMILATCC

GTTCCTACAACAAAAAAGAAAATGTTGAAAAAGGGAGCTTGTGCAGTGGAGGGGTCAAAG

AAAACTGATERWINGGAGAGACCBASAACAACACTGATCATCTGTCCBERLINDATGTTA

AGCAACTGGATTGACCAGTTTGGACAACATATAAAAHERMANGTACACTTGAATTTTTAT

GTTTATTATBARTCTGATJACKTTAGAGAACCGGCCTTACTTTCAAAACAGGATATTGTT

TTGACTHANSATAATATTTTAACTCATGACTATGGAACTAAAGGAD&DERSCCATTACAT

AGCATAVIOLETTACAGAGTGATCCTGGDAANAGGACATGCCPAULGAAATCCAAATGCT

CATGAAATGGAACCAGCTGAGGCTATTGAAACACCACTGCTTCCACATCAAAAACAAGCT

AATGACTTATACTATAACACAATAACAAATTTTTCTGAGAAGGACCGACCAGAAAATGTC
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