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“Sélo si podemos entender
nos puede importar,

sOlo si nos importa
ayudaremos,

solo si ayudamos

podremos salvarnos”

(Jane Goodall)

11

"Only If We
Can Understand
Can We Care,
Only If We Care
Will We Help,
Only If We Help

Shall All Be Saved"

(Jane Goodall)
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ABSTRACT

River floodplains are heterogeneous areas with high biodiversity and natural value.
Nevertheless, they are constrained by river management. Biomass mapping is needed
for ecological monitoring as well as input for the river management to assess

hydraulic resistance of the vegetation in case of flooding.

This case study is aiming at assessing the possibilities of biomass mapping in a river
floodplain using imaging spectroscopy. To achieve that, statistical methods using
vegetation indices and radiative transfer modelling inversion (PROSPECT/SAIL

coupled model) were used.

Due to the heterogeneity of the area the methodology applied is plant functional type-
dependent. Statistical approaches can give satisfactory results but do not give globally
applicable expressions. The biomass best-correlated indices were the Soil Adjusted

Vegetation Index (SAVI) and the Weighted Difference Vegetation Index (WDVI).

Radiative transfer modelling on the other hand can be up-scaled or applied in other
areas. The inversion of the PROSPECT/SAIL model was carried out by means of
look-up-tables. The results were satisfactory in herbaceous dominated vegetation

areas accounting for four species assumed to be present.
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Chapter 1. Introduction

1 INTRODUCTION

1.1 BACKGROUND

The management of landscapes requires knowledge and understanding of their
characteristics e.g. biomass quantity. Productivity, species richness and biodiversity
are valuable input for monitoring of changes by nature managers (Cramer, 1999).
Therefore, vegetation biomass is an indicator of environmental conditions and should
be well recognised and mapped. For this purpose, models predicting biomass have
been developed as a method to retrieve biomass estimates from field or remotely
sensed data. Biomass models (e.g. Biome3, Global Production Efficiency Model
(GLO PEM), Simulateur mulTIdisciplinaire pour le Cultures Standard (STICS)) are
tools to estimate vegetation biomass. They aim not only at the knowledge about
carbon cycle fluxes (Cramer, 1999); to assure their preservation in time natural areas
or reserves also require monitoring in which these models can assist. Moreover, the
biomass frequency distribution can be used as input for modelling issues dependent

on vegetation in river flood models (Trémolieres et al., 1998).

There are different methods for estimating biomass. In general, we can classify them
as using traditional destructive methods, such as “cuts and weights” (Paruelo et al.,
2000; Di Bella, 2004), “double sampling methods”, developed from visual or digital
image estimations (Paruelo et al., 2000) and “crop simulation models” (Di Bella,
2004).

Biomass cut constitute a simple method to estimate biomass production (e.g. Sims et
al., 1978; Sala et al., 1988) but this technique is limited by its slowness, cost and
especially by the number of necessary measurements to produce reliable information

(Di Bella, 2004).

“Double sample methods™” or “Statistical approaches” involve the development of
regression equations between biomass and variables easy to measure (Paruelo et al.,

2000).

“Crop simulation models” (Kanemasu, 1990; Field et al., 1995) have now gained

broad acceptance for translating ecological hypotheses, derived from local
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observations, into estimates of regional, continental or even global outcomes of

ecosystem processes (Cramer, 1999).

The last decades, Remote Sensing has offered new perspectives to complete the work
in progress, taking advantage of the different spatial and temporal resolutions
provided by different sensors (Prevot et al., 1998). Remote Sensing is a technological
tool to assess actual vegetation conditions (Hunt Jr. et al., 2005). Remote Sensing
provides a spatially continuous data set resulting in a continuous output; this means
that additional extrapolation techniques are not needed. The number of samples is also
reduced, so the sampling is not as expensive and time consuming. Furthermore,
Remote Sensing permits the use of study areas on inaccessible environments

(Zagajewski, 2004).

Biomass can be estimated from remote sensing data by means of statistical methods
based on vegetation indices (Foody et al., 2003; Zheng et al., 2004; Rahman et al.,
2005) or by means of models that use a set of spatially continuous inputs (Ruimy et
al., 1999). The biomass estimation models that use remote sensing data have also
been used by several authors in different field applications: in cereals (Su et al., 1997,
Daughtry et al., 2000; Olioso et al., 2002; Hunt Jr. et al., 2005), in grazed-grasslands
(Wylie et al., 2002; Di Bella, 2004; Di Bella et al., 2005), in forest (Schlerf et al.,
2005), and in heterogenous areas (Paruelo et al., 2000; Zheng et al., 2004).

In this study, imaging spectroscopy is used to achieve a biomass estimation using
Radiative Transfer Models (RTM) and statistical approaches. RTM are physically
based canopy reflectance models that link canopy properties with sensor-measured
radiance (Liang, 2004). Since these canopy reflectance models formalize physical
knowledge, they can deal, in principle, more easily with different measurement

conditions (Atzberger, 2004).

In this case study imaging spectroscopy is used as input, but there are other
possibilities as Light detection ranging sensors (Lidar) images that provide more
information from the canopy structure and a higher spatial accuracy (Lim and Treitz,

2004).

The estimation of biomass from images obtained with Lidar yields in the correlation

between laser height metrics and above-ground biomass (Drake et al., 2002).
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Lidar sensors send a laser pulse with a footprint size between <1 to 40 m, record x
and y coordinates, and elevation within 10-15 cm. Small footprint lidar can also

provide high spatial resolution data on the physical structure of the forests.

These sensors provide high-resolution data on forest height, canopy topography,
vegetation volume and gap size; and provide estimates on number of strata in a forest,

succession status of forest and above-ground biomass (Gillespie et al., 2004).

Although the majority of the studies have been, in general, successful in estimating
biomass, commonalities between reported predictor variables used in model
development are rare. Consequently, studies are study- and site-specific and unable to

be generalized to other vegetation types and site conditions (Lim and Treitz, 2004).
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1.2 PROBLEM DESCRIPTION

Rivers in The Netherlands are kept within narrow courses demarcated by dikes and
dams. This system of river management curbs the rivers’ power to allow human
habitation and agriculture in areas otherwise subjected to seasonal flooding (Geerling,

2005).

The river regulation measures, agriculture boom and industry establishment on the
floodplains are causing loss of biodiversity. When the damages on riverside
vegetation in recent years became clear, nature development projects were realized in

order to compensate these losses (Geerling, 2005).

Economically speaking, both objectives about flood risk management and nature
development management are important. Flood risk management projects keep the
investments in the area safe. On the other hand, functional floodplains with high
species diversity and habitat heterogeneity also provide economic benefits in the form
of natural flood control and natural water purification (Trémolieres et al., 1998).
Moreover, nature values are always profitable by means of recreational activities and
ecosystem services, such as food, pasture, fuel, timber and fibres, medicine and

chemical production (De Groot et al., 2002).

Initiatives have already started with the aim of preserving the sustainability of
floodplains at the same time controlling flooding risks. One example is Freude am
Fluss to find a solution to the “safety-versus-nature dilemma” (Web 1). In Figure 25,
appendix 1, a map with the area influenced by the Freude am Fluss project can be

found.

The assessment of the sustainability of floodplain rejuvenation is input for flood risk
management and nature restoration strategies. Specialists state that the amount of
vegetation in the river floodplains has increased in the last ten years in The
Netherlands. In a non-disturbed situation, the river would regulate the amount of
vegetation in a natural way by means of a cyclic rejuvenation. In regulated river
systems, man-made rejuvenation is needed as natural rejuvenation is not possible in

the river bed restricted by dikes (Web 2).
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To make a decision about the measures and where to reduce biomass, spatial explicit
information on the vegetation biomass in river floodplains in the Netherlands is

needed.

In order to have a successful management on the riverside lands of the River Rhine, a
good database about vegetation development of the area is needed. Not only the
nature management projects but also the flooding risk managements use vegetation as

input in their models as stated before in this chapter.

The approach of this study consists on retrieving the spatial distribution of the
biomass values in the study area of the floodplain Millingerwaard as a case study
(quantitative surface values of each biomass level). The hypothesis is that nature
management is directed towards a horizontal distribution of biomass frequency. If the
distribution approaches a constant horizontal line (Figure 1), all PFTs are equally
represented in the area so biodiversity is preserved and the heterogeneous landscape is

kept. With this approach, succession and species richness can be monitored better.

As a conclusion, the study of the biomass distribution curve could be used as input in

both nature and water management approaches.

Frequency
distribution
of biomass
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Figure 1..... Spatial frequency distribution of biomass measured in terms of PFTs.
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1.3 RESEARCH OBJECTIVES

The main research objective is to estimate the biomass frequency distribution in the
floodplain Millingerwaard using remote sensing techniques. Biomass in the scope of
this research is considered as being dry weight of fresh vegetation per surface unit
(gr.cm™). The management of this nature area can then be improved by taking into
account ecological and flood prevention objectives. The Millingerwaard area is
characterized by its significant heterogeneity in plant functional types (grass/herbs,
shrubs and forest) and its regional scale. For this purpose, imaging spectroscopy data

are available as well as other field samples that can be used for validation.
The main research question is:

- What is the actual biomass frequency distribution in the floodplain

Millingerwaard?
The research sub questions can be stated as follows:

- What are the results for estimating the spatial biomass distribution with

statistical models from vegetation indices?

- How can we use imaging spectroscopy for the estimation of biomass by means

of the use of Radiative Transfer Models in the Millingerwaard?

The thesis work consists of: (1) Estimation of biomass (gr.cm?) using statistical
methods from different vegetation indices derived from imaging spectroscopy data
and comparison between the different estimations by means of the correlation
coefficient. (2) Estimation of biomass in Millingerwaard using RTM, concretely the
SAIL-PROSPECT model. (3) Validation of the results coming from the application of
RTM with the biomass values from the field. (4) Plotting distribution of biomass and
analysis of the results. (5) Find out some recommendations for up-scaling results to
other similar areas with the possibility of using other input data as for example

Landsat images.
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1.4 STRUCTURE OF THE REPORT

The first introductory chapter (1. Introduction) of this report explains the background
of the case study, problem definition and objectives. In the second chapter (2.
Literature review) the main concepts are defined in the scope of the research. The
third chapter (3. Materials and methods) consist of the description of the study area,
data collection and availability and procedures applied in the research. The fourth
chapter (4. Results) presents the output from the methodology of the previous chapter.
Chapter 5 is a discussion of the results and the last chapter (Chapter 6. Conclusions
and recommendations) explains the final conclusions and some recommendations for

future research to be performed in this field.



Chapter 2: Literature Review

2 LITERATURE REVIEW

2.1 DEFINITION OF BIOMASS

According to the Australian State on the Environment report, biomass is the “quantity
of organic materials within an ecosystem usually expressed in dry weight per unit area
or volume” (Hamblin, 2001). This term is related to the Net Primary Productivity
(NPP) that is defined by the same source as being “the ratio of all biomass
accumulation and biomass losses in units of carbon, weight or energy, per
land/surface unit, over a set time interval” (Hamblin, 2001). Net Primary Productivity
is then an important variable in the carbon cycle as it determines the rate of absorption
of atmospheric carbon by land vegetation. (Ruimy et al., 1999). Moreover, as NPP is
calculated as a rate of biomass, estimating biomass is essential for understanding the

dynamics of sources and sinks of atmospheric carbon (Rahman et al., 2005).

Both, biomass and NPP are used to monitor the carbon fluxes, study productivities,
nutrient allocation and fuel accumulation in terrestrial ecosystems (Zheng et al.,

2004).

2.2 PLANT FUNCTIONAL TYPES AND HYDRAULIC RESISTANCE

In a floodplain area like Millingerwaard, the river managers worry about the riverside
natural vegetation and its influence in the discharge capacity of the river. Their
management can be improved by studying the presence of the different vegetation
types and their hydraulic resistance (van den Bosch, 2003). The hydraulic resistance is
the magnitude of the turbulence resulting from water in laminar regime passing
through an obstacle (Figure 2). Its value affects the velocity of the regime and
depends on the shape and characteristics of the obstacle. Figure 3 shows examples of
the hydraulic resistance values of different Plant Functional Types used by the water

authority.



Chapter 2: Literature Review
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Figure 2..... Typical vertical profile of horizontal flow velocity for submerged vegetation, h is water
depth; k is vegetation height (Keijzer et al., 2005).

z=0

Determinant for the hydraulic resistance of the vegetation is the area of contact, which
first of all depends on the water level and the height of vegetation (Figure 2). The
vegetation structure plays a role through the height, diameter and density of stems, the

height branches shoot, the density of branches and the surface area of leaves.

The Nikuradse equivalent roughness (K) constant is one of the possible expressions of
hydraulic resistance. In Figure 3 we can see an example of the values this constant has

for different plant functional types (Geerling, 2005).

Figure 3 shows that bushes have the highest hydraulic resistance of the presented
plant functional types. The plant functional types are classified according to the River
Ecotope System (RES) as described by Rademakers and Wolfert (Rademacher and
Wolfert, 1994).

Grasslands Herbaceous vegetation 36
1

Nikuradse equivalent roughness
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Figure 3..... Hydraulic resistance per Plant Functional Type in the river floodplain measured in terms of
Nikuradse equivalent roughness (m) (Geerling, 2005).
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The hydraulic resistance of shrubs is high because they have dense structure
beginning at the soil level. Forest areas leave more freedom to the water as the
ramification starts at a higher level. Herbaceous vegetation and grasslands are the

plant functional types that are almost not obstacle for the water to run.

“Plant functional type” is a term used by several authors to define cluster of species
with similar morphology and phenology (Paruelo and Lauenroth, 1996; Laurent et al.,
2004).

Flood risk (defined as flooding probability and potential damage) along the river
Rhine is expected to increase in the coming decades. The two main reasons are

(Hooijer, 2002):

- Climate change will cause a significant increase in the probability of extreme

floods, and

- Increasing level of investments in areas at risk doubles every three decades.

This promotes the potential damage of floods.

That is why flood risk management strategies and measures should be developed in

anticipation of higher peak discharges in the future (Hooijer, 2002).

2.3 REMOTE SENSING METHODS FOR ESTIMATING BIOMASS

There are essentially three ways of estimating vegetation biomass from remote
sensing data according to Cramer (1999): (1) Using Production Efficiency Models
(PEMs); (2) By means of biomass-vegetation indices correlation; or (3) Using Soil-
Vegetation-Atmosphere-Transfer Models (SVAT). (1) and (3) are Crop simulation
models and (2) are Double sampling methods (Section 1.1 in this report).

2.3.1 PRODUCTION EFFICIENCY MODELS (PEMs)

These models are also called “diagnostic models”. They are based on the Kumar &
Monteith (1981) approach. The fraction of solar radiation absorbed is calculated from

remote sensing data and then derived into production. They use the concept of Light

10
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Use Efficiency (LUT) for the conversion of Absorbed Photosynthetically Active
Radiation (APAR) to biomass (Cramer et al., 1999).

2.3.2 STATISTICAL APPROACHES ESTIMATING BIOMASS

The statistical methods are based on correlation relationships of land surface variables
with remotely sensed data. They are easy to develop and effective for summarizing

local data (Liang, 2004).

The feasibility of using multispectral reflectance data for estimating dry vegetation
biomass production was addressed by (Aase and Siddoway, 1981) who developed
regression equations between canopy spectral reflectance and total dry vegetation

biomass of wheat.

Recent literature has shown that the narrow bands may be crucial for providing
additional information with significant improvements over broad bands in quantifying

biophysical characteristics of vegetation (Thenkabail et al., 2000).

In local estimations, the use of empirical-statistical approaches can give satisfactory
results (Aztberger et al, 2003; Prince and Bausch, 1995). However, since canopy
reflectance depends on a number of factors, no unique relationship between the
spectral signature and the canopy variables can be expected to be applicable
everywhere and all the time, even for a particular sensor. Consequently, empirical-
statistical relationships are highly site- and sensor-specific and unsuitable for large

areas or in different seasons. (e.g., Curran, 1994; Gobron et al., 1997).

There are previous studies that have applied statistical approaches to estimate biomass

in grasslands and forest. In tables 1 and 2 some of them are showed.

Table 1. Literature review of biomass estimations from vegetation indices with different sensors for
grasslands

Vegetation
Index Sensor R’ | Source
Hypersp. Im 0.39 | (Mirik et al., 2005)
NDVI (Wylie et al., 2002; Reeves et al.,
Landsat TM 0.95, 0.81 | 2006)
ASTER 0.82 | (Reeves et al., 2006)
SRTVI Hypersp. 1m 0.39 | (Mirik et al., 2005)

11
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Table 2. Literature review about biomass estimations of vegetation indices with different sensors for
forest

Vegetation
Index Sensor R’ | Source
NDVI Hypersp. Im 0.66 | (Mirik et al., 2005)
Landsat TM 0.82 | (Rahman et al., 2005)
SRTVI Hypersp. Im 0.66 | (Mirik et al., 2005)
Landsat TM 0.82 | (Zheng et al., 2004)
SAVI Landsat TM 0.046 | (Rahman et al., 2005)
TVI Landsat TM 0.229 | (Rahman et al., 2005)

In grasslands only NDVI and SRTVI have been applied. Good correlation coefficients

were obtained when correlating NDVI derived from Landsat and Aster with biomass.

In the last years indices related with the water content in the leaves have been created
(Ceccato et al., 2002). These indices minimise perturbing geophysical and
atmospheric effects. The relationship of those indices with the dry matter on the one

hand and the wet matter on the other hand can be a further study.

Although local statistical estimations can not be applied directly to other areas, local
methods can be up-scaled and extrapolated. In this case study, statistically based

estimations are done to complete results from radiative transfer models.
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2.3.3 RADIATIVE TRANSFER MODELS

Radiative Transfer models are physically based canopy reflectance models that link
canopy properties with sensor-measured radiance (Liang, 2004). At the top of the
canopy, the interaction of radiation within the vegetation depends on the contribution
of several components such as leaves, stems, soil background as well as the
illumination and view geometries. Canopy reflectance will thus depend on the optical
properties of each canopy element, as well as on their number, area, orientation, and

position in space (Goel and Thompson, 2000; Koetz et al., 2005).

The PROSPECT model (Jacquemoud and Baret, 1990) is used to describe leaf optical
properties (Figure 4). PROSPECT simulates leaf reflectance and transmittance spectra

as a function of leaf biochemical contents and leaf structure.

The input parameters for the PROSPECT model are a structure parameter (N),
Chlorophyll a and b content Cy, (ng./cm®), Equivalent water thickness Cy (cm), dry
matter content in the leaves Cp (g./cm’) and brown pigment concentration in the
leaves Cp. The output is an ASCII file with the modelled reflectance and transmittance

in the leaves of the canopy.

Jacquemoud and Baret (1990) concluded after the creation of PROSPECT model that
there are uncertainties in it. Those uncertainties come from the assumptions made. It
is assumed the uniformity in the distribution of water, pigments and structure inside
the leaf. The absorption coefficient is influenced by the difficulty of discriminating
between different pigments inside the leaf. And finally, the angle which represents the

surface roughness was supposed to be constant(Jacquemoud et al., 1995).
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Figure 4..... Schematic representation of Prospect model. The leaf is represented as a pile of absorbing
plates with rough surfaces.
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An often used model for simulating canopy reflectance is the SAIL model (Scattering
from Arbitrarily Inclined Leaves) (Verhoef, 1984). It describes the canopy structure in
a fairly simple way while producing nevertheless realistic results as reported by
several authors for different crops. Goel and Thompson (1984) studied the difference
between planophyle and erectophile crops and independently in soybean; Jacquemoud
in 1995 in sugar beet (Jacquemoud et al., 1995) and in 2000 in soybean and corn
(Jacquemoud et al., 2000).

The input parameters for SAIL model are the Leaf Area Index (LAI), Average Leaf
Angle (ALA) (degrees), hot spot parameter, view zenith angle (radians), sun zenith

angle (radians), diffuse fraction, soil background spectra (%) and leaf spectra (%).

A combination of the two models described above is available, namely
SAIL/PROSPECT Radiative Transfer Model (Figure 5). The coupled model
SAIL/PROSPECT use the PROSPECT leaf reflectance output as input in the SAIL

model to estimate the total canopy reflectance.
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Figure 5..... Coupled SAIL/PROSPECT radiative transfer model for plant canopies. The entire
wavelength range (400mm-2500mm) is modelled using only a few parameters (Jacquemoud, 1993).
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Model inversion

When Jacquemoud and Baret (1990) created the Prospect model, they gave already
the idea of using it in combination with canopy reflectance models. Moreover, they
also suggested the possibility of inverting the model to get biophysical variables from

the canopy in a non-destructive way.

Nevertheless, the model inversion does not assure a certain quality retrieval of
parameters. There are two main reasons according to Atzberger (2004) why the

inversion of canopy reflectance models is an ill-posed problem:

- Different model parameterization may yield almost identical spectra.
- There are uncertainties in the model and in the reflectance measurements (e.g.
assumptions in the model and sensor noise in the reflectance data collection).
According to Goel and Thompson (1984), two conditions are necessary for estimating
canopy variables from spectral signatures of vegetation: an accurate model and the

choice of an appropriate inversion procedure.

There are three main techniques to invert physically based models. Iterative methods
require long computational time (Liang, 2004) while Look-up-tables and Artificial
Neural Network are not inherently designed to be easily generalized to any view-sun

configurations (Gastellu-Etchegorry et al., 2003).

In this case study the inversion was done by means of look-up-tables. The look-up-
table is one of the simplest techniques used to invert models (Weiss et al., 2000). This
technique consists of generating a table “m x n” where “m” is the number of
combinations of input variables simulated with the model and “n” is the number of
bands extracted from the simulated spectra. In the application phase, for a given
reflectance measurements in the n bands, the elements of the reflectance that are the
closest to the measurement are selected, and the corresponding set of input variables

in the table represents the solution of the problem.

In this study, the distance criterion that corresponds to the cost function in
optimization techniques was defined as the relative root mean square error (RMSE)
between the measured reflectance r and the estimated reflectance r’ found in the look-

up-table (Weiss et al., 2000).
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Where:
r= Measured reflectance
r’= Simulated reflectance

n= number of considered bands in the look-up-table

The heterogeneity of the study area adds a difficulty to the accuracy of the model
inversion. The look-up-tables are created for fixed values of the input parameters, so
each pixel in which the inversion is carried out is considered homogeneous. Different
look-up-tables can be created based on different species but still it is assumed that

only one species is present per pixel.

There are studies done on heterogeneous areas in which a detailed sub-pixel technique
is applied in the inversion procedure (Weiss et al., 2000). This was achieved by
dividing the data sets in three subsets corresponding to low, medium and high values
of the biophysical variable considered. The reflectance and corresponding biophysical
variables of these three subsets were linearly combined to simulate a larger range of

heterogeneity for the mixed pixels.

measured

INVERSION
@ STRATEGY
i
—— Output:
MODE parameters
modelled

Figure 6.....Overview of the general model inversion procedure (Verhoef and Bach,
2003).
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2.4 THE USE OF LANDSAT IMAGES ESTIMATING BIOMASS

Mapping of continuous biophysical variables from high-resolution imaginary such as
Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper Plus (ETM+) has
largely depended on modelling empirical relationships derived from vegetation
indices (Cohen et al., 2003). Table 3 gives an overview of the different Landsat bands

and their relevant characteristics.

Although Landsat multi-spectral information can provide useful indices to estimate
biophysical variables, relationships for one site may not be applied at other sites due

to variation in range and soil conditions (Merrill et al., 1993).

The approach of estimating biomass using Landsat TM images has been carried out
by different authors for grasslands (Merrill et al., 1993; Todd et al., 1998; Schino et
al., 2003; Samimi and Kraus, 2004), in crop areas (Lobell et al., 2003; Thenkabail,
2003; Calvao and Palmeirim, 2004), in forest (Lu, 2005) and in heterogeneous natural
areas (Shoshany, 2000). All the authors cited before used statistical methods based on

biomass correlations with band combinations.

Table 3. Landsat bands spectral range, EM regions, and applications details.

Band Spectral Range |EM Region Generalised Application Details
Number (in Microns)
1 0.45-0.52 Visible Blue Coastal water mapping, differentiation
of vegetation from soils
2 0.52-0.60 Visible Green Assessment of vegetation vigour
3 0.63-0.69 Visible Red Chlorophyll absorption for vegetation
differentiation
4 0.76 - 0.90 Near Infrared Biomass surveys and delineation of
water bodies
5 1.55-1.75 Middle Vegetation and soil moisture
Infrared measurements; differentiation between
snow and cloud
6 10.40- 12.50 Thermal Thermal mapping, soil moisture
Infrared studies and plant heat stress
measurement
7 2.08-2.35 Middle Hydrothermal mapping
Infrared
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In the case of grasslands areas, the best biomass-correlated indices derived from
Landsat were ratios combining bands 1, 2, 5 and 7 (Samimi and Kraus, 2004). In
forest areas bands 4, 5 and 7 were used to be individually correlated with biomass
samples from the field (Lu, 2005). In natural areas with vegetation species
heterogeneity, first a classification in PFTs is recommended (Shoshany, 2000). In a
next step biomass can be estimated for each PFT. Table 4 gives an overview of the
vegetation indices and Landsat TM bands used to estimate biomass in previous

studies.

About the PFT classification, there are different ideas from previous studies. Grignetti
(1997) concluded that the most suitable Landsat bands to use as input in a PFTs
classification were bands 3, 4, 5 and 7 (Grignetti et al., 1997). Smith (1990)
recommended the utilization of unmixing techniques in heterogeneous areas with low
spatial resolution sensors as Landsat (Smith et al., 1990).

Table 4. Vegetation indices (VI) and bands used to estimate biomass by statistical approaches with
Landsat images, vegetation type, correlation coefficient, kind of relation and source.

Vegetation
VI type r? Source Relation
Grasslands 0.95 (Wylie et al., 2002) L?near
0.81 (Reeves et al., 2006) | Linear
NDVI Forest 0.128 (Mallinis et al., 2004) | Linear
0.82 (Rahman et al., 2005) |Linear
Forest (pine) 0.86 (Zheng et al., 2004) Sigmoidal
SAVI Forest 0.046 (Rahman et al., 2005) | Linear
TVI Forest 0.229 (Rahman et al., 2005) | Linear
Vegetation
TM Bands type r® Source Relation
(Samimi and Kraus,
TM2/TM1 0.83 2004) 2" order
Samimi and Kraus,
TM7/TM1 Grasslands 0.79 (2004) 2" order
(Samimi and Kraus,
TM2XTM5/TM3 0.76 2004) 2" order
(Samimi and Kraus,
TM2/TM1 0.81 2004) 2" order
Samimi and Kraus,
TM7/TM1 Heterogeneous |, 75 (2004) 2" order
(Samimi and Kraus,
TM2XTM5/TM3 0.76 2004) 2" order
TM1, TM7 0.35 (Mallinis et al., 2004) Linear
TM2, TM3, TM7 Forest 0.309 (Mallinis et al., 2004) | Linear
TM2, TM3, TM5,
TM7 0.334 (Mallinis et al., 2004) Linear
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3 MATERIALS AND METHODS

3.1 INTRODUCTION

The general procedure of this case study can be divided into two main parts. Both of

them are methods to estimate biomass from remote sensing data.

The first approach uses statistics as basis. Figure 7 summarizes the statistical

procedure carried out.

From the Hymap image, the vegetation indices are derived. Then, the vegetation
indices are compared in the sample locations with the biomass values from the field.
Finally, the biomass map is prepared using the best VI-Biomass relationships applied

per plant functional types.

In the second approach the PROSPECT/SAIL coupled model is used, in Figure § the
steps are presented. The PROSPECT/SAIL inversion to estimate biomass was carried
out using look-up-tables (LUT). These look-up-tables are built with outputs of the

model simulations.

hymap image biomass
samples

relationship PFT
VlI-biomass Classification

1

best VI-
biomass
relationship

Y

Biomass
map

————————————validation— Conclusions

Figure 7..... Flowchart of the Statistical approach for estimating vegetation biomass from vegetation
indices derived from a Hymap image.
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From the inversion, leaf area index (LAI) and dry matter content in the leaves (Cm)
are obtained as output. The estimated dry biomass of the canopy leaves is calculated

multiplying LAI and Cm.

Field species
composition UmERAUIRE

E LAI PROSPECT- Simulation

ALA SAIL spectrum
Min.

difference

Cab|
c
w Eg (PROSPECT Image
ALA -SAILY L spectrum
Cm LAI
BIOMASS

Analysis of
results

Biomass
samples

——Vatidation

Figure 8..... Flowchart of the Radiative Transfer Models approach for estimating vegetation biomass
from remotely sensed data.
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3.2 STUDY AREA

The floodplain Millingerwaard is located to the east of Nijmegen along one branch of
the river Rhine. It belongs to the natural reserve Gelderse Poort, a large floodplain
area of 1200 ha along the river Rhine, close to the Dutch-German border. This
location belongs to the nature-safety dilemma research area along the Rhine River (in
the appendix 1 (Figure 25) a map of the area affected by the project Freude am Fluss
is included). In Freude am Fluss, a total of eleven authorities, research institutions,
and companies in three countries: the Netherlands, Germany, and France participate.
An integral management plan for the area was published in 2000 under the lead of the
Ministry of Transport, Public Works and Water Management. This planning included
developing river related nature (SDF, 2003).

Nature rehabilitation means that step by step, individual floodplains are taken out of
agricultural production and are allowed to undergo their natural succession. This has
resulted for the Millingerwaard in a heterogeneous landscape with river dunes along
the river, a large softwood forest in the eastern part along the winter dike and in the
intermediate area in a mosaic pattern of different succession stages (pioneer,
grassland, shrubs). In addition, several man-made lakes, e.g., old clay pits, are
present. Nature management (e.g., grazing) within the floodplain is aiming at
improvement of the typical biodiversity of the floodplains. However, the discharge
capacity of the river should be above the critical safety levels during flooding events

(Kooistra, 2005).

The vegetation in the area can be divided into four main Plant Functional Types (PFT)
in the scope of this study: “Grazed Grasslands”, “Mixed Herbs”, “Shrubs” and
“Forest”. This division is made according to their canopy height and structure. A
more elaborate explanation of the PFT classification of the study area is given in

section 3.5.2 of the report.
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3.3 AIRBORNE IMAGING SPECTROSCOPY DATA

Imaging spectroscopy data for the Millingerwaard were acquired on the 28™ of July

and the 2™ of August of 2004 with the Hymap instrument (Kooistra, 2005). An

overview of the complete Image Spectroscopy acquisition can be seen in Table 5.

The presented results in this paper are based on the first flight line for HyMap

acquisition on 28" of July 2004. A complete spectrum over the range of 450-2480 nm

is recorded with a bandwidth of 15-20 nm by 4 spectrographic modules. Each module

provides 32 spectral channels giving a total of 128 spectral measurements for each

pixel. However, the delivered data contains 126 bands because the first and last band

of the first spectrometer is deleted during pre-processing. Ground resolution of the

images is 5 m (Kooistra, 2005).

Table 5. Overview of the Image Spectroscopy campaign in Millingerwaard

Image spectrometry | HyMap (5 m) | 2 flight-lines Specifications
Acquisition time 28/7 13:30 2/8 10:30 126 bands
Quality flight line 1 Okay cloud cover (not used) | 450-2480 nm

Quality flight line 2

cloud cover (partly used)

okay

bandwidth 15-20 nm

Table 6. Overview of the operational equipment during the two Hymap image acquisition dates of 28"
of July and 2™ of August 2004 in the Millingerwaard.

Instrument #Locations Date Variables
atmospheric conditions Sunphotometer 1 2/8 2004 aerosol optical thickness
radiometric correction Fieldspec FR 19 (5x5 m) 28/7 and 2/8 2004 | VNIR spectra (sand, clay,
asphalt, water)
radiometric vegetation Fieldspec FR 21 (5x5 m) 28/7 2004 top-of-canopy and leaf spectra

(VNIR)

canopy structure

hemispherical camera

13 (20x20 m)

28/7 - 6/8 2004

LAIL gap fraction, leaf angle
distribution

vegetation description

Braun-Blanquet method

21 (2x2 m)

13-16/8 2004

structure, species composition

sampling vegetation

laboratory analysis

21 (0.5%0.5 m)

13-16/8 2004

biomass, N and P
concentration

surface characteristics

theta probe, temperature | 86

gun

28/7 2004

soil moisture and temperature
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[ Mitingerwaard Fioodpiain

== Flight line 1 | Flight line 1 area
=== Flight line 2 Flight line 2 area

Figure 9..... Overview of the total area acquired with the Hymap instrument, Millingerwaard in the
line 1.

The flight line was oriented close to the solar principal plane to minimize directional
effects. The Hymap images were geo-atmospherically processed to obtain geo-coded
top-of-canopy reflectance data. Visibility was estimated by combining sun photometer

measurements (Table 6) with Modtran4 radiative transfer simulation.

Visibility during the flight of 2" of August was 15 km. An image quality assessment
revealed that 9 of the 126 bands should be used with caution, due to significant spatial
noise (Kooistra, 2005). Not the whole acquired image was used in this study. A
masking operation was carried out to select the vegetated areas. As in previous studies
in the area (Kooistra, 2005), pure vegetation pixels selection was done by applying a
mask based on a NDVI minimum threshold of 0.2 and a maximum reflectance at the
wavelength of 665 nm (Band 13) of 7.4%. These procedures were carried out in ENVI

software before applying further analysis techniques to the image.
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3.4 FIELD DATA

In the field campaign, the members of the “HyEco’04” project team took ground
measurements. The 21 sampling locations (Figure 10) were selected based on an
available vegetation map of the study area (2002) and a preliminary survey. In each
location, a plot 2 x 2 meters was selected with a relatively homogeneous vegetation
cover. Three biomass samples of subplots measuring 0.5 x 0.5 m were taken per plot
at 0.5 cm above the ground level. The collected material was stored in paper bags; air-
dried, first for 5 days at room temperature in open bags, and subsequently for 24 h at

70°C, and weighed to obtain the dry biomass (g).

Dry biomass values of each subplot were stored in weight/area units. The dry biomass
per plot was calculated by means of the average between the dry biomass of the

corresponding subplots. Final values are expressed in gr/m” units.

Table 20 is showing the most dominant specie in each sampling plot, its coverage
percentage and the average height. From this information the PFT is defined. The
plots where this information is missing are classified according to the pictures taken

in the field campaign.

In the two-week period after the image acquisition, vegetation descriptions were made
for the 21 locations according to the method of Braun-Blanquet (Braun-Blanquet,
1951). Abundance per species was estimated optically as percentage soil covered by

living biomass in vertical projection, and scored in a nine-point scale.

Table 7. Statistical values of the field samples (gr.cm™)

All Grazed-grasslands Mixed-herbs
Mean 516.823 304.143 623.163
Standard Error 55.84 69.08 59.032
Median 572.44 258.68 634.58
Standard Deviation 255.891 182.769 220.878
Sample Variance 65480.168 33404.368 48787.15
Range 1037.32 445.12 922.76
Minimum 127.32 127.32 241.88
Maximum 1164.64 572.44 1164.64
Sum 10853.28 2129 8724.28
Count 21 7 14
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Figure 10. .. Sampling locations in the campaign HyEco’04. The biomass samples correspond to the
vegetation sample points.

A description of the vegetation was made for the 21 plots (2 x 2 m) that were also
radiometrically characterized. Locations of the plots are shown in Figure 10. The
vegetation descriptions were made according to the method of Braun-Blanquet

(1951).

3.5 PLANT FUNCTIONAL TYPES

3.5.1 Definition

As there were not biomass samples in forested neither shrubs areas, the samples were
then divided in two main plant functional types: Grazed-Grassland (7 samples) and
Mixed-herbaceous (14 samples) where herbaceous species are present and only one
shrub species dominates some samples, namely Rubus caesius. In figure 10 the

sampling points in the field campaign are represented.

The division in PFT was based on the vegetation description that was made during the
field work (section 3.4). The parameters used for the classification were “height of the

crop” “management” and “species composition”. The intervals considered for herbs

and shrubs respectively were the ones in Table 8.
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Table 8. Height ranges considered in the division in PFT in the study for the division, the parameters

“height ranges™ and “dominant species” were taken into account.

Height ranges (cm)

PFT Minimum | Maximum Management | Dominant species

Grazed- Trifolium repens, Potentilla reptans,
Grasslands | 0 40 Grazing Cynodon dactylon

Mixed- Rubus caesius, Calamagrostis epigejos,
Herbs 40 120 No Urtica dioica

Table 9. Percentage of proportional coverage of Trifolium repens, Calamagrostis epigejos, Urtica
dioica and Rubus caesius in the 2 PFT sampling plot groups.

Grazed-grasslands Mixed-herbs
Trifolium repens 25.71% 0%
Urtica dioica 0.57% 6.57%
Calamagrostis epigejos 2.14% 16%
Rubus caesius 0% 34.93%

Figure 11... Example of the two main PFT in Millingerwaard. In the picture of the left, plot number 2
belonging to the Grazed-Grasslands plant functional type, on the right, plot number 12 from Mixed-
herbs plant functional type.

Then, the samples without height information were included in one group or the other

based on information from photographs taken during the field work. In the pictures in

Figure 11, there is one example of each plant functional type.

Moreover, managed and non-managed plots were also separated to get a more

accurate relationship between biomass and the different vegetation indices. The

management can influence the age of the vegetation. In this case, the managed areas

corresponded to the samples considered Grazed-grassland.
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3.5.2 Classification using Mixture Tuned Match Filtering

After a classification of the samples in plant functional types, a classification map of
the area was done. The difficulties of getting a good classification were the high
heterogeneity of the area and the high number of species per PFT. Then, to find the
technique that better fits the research area, two classification methods were tested:
Linear Spectral Unmixing and Mixture Tuned Match Filtering (Boardman, 1998).
Moreover, to simplify the image and avoid noisy spectral bands, a selection of eight

bands was done and the classification process was carried out again.

Summing up, two classification methods were used with the whole spectrum and with
a selection of 8 bands. The resulting maps were analyzed with the knowledge about

the area and checked in the sample points.

The Mixture Tuned Matched Filtering (MTMF) method was chosen to make the
classification of the Millingerwaard in PFT because other authors (Williams and Hunt
Jr., 2002; Mundt et al., 2005) had used this classification method in previous studies
in areas with a relatively high vegetation heterogeneity (e.g. prairie sites mixed with

woody areas). The classification procedures were carried out in ENVI software.

The MTMEF is based on a previous transformation known as Maximum Noise Fraction
(MNF) which was defined to be as a substitute of Principal Component Analysis
(PCA) transformation (Green et al., 1988). This tool is a method for ordering
components in terms of image quality and was created based on the poor performance
of the PCA for example with ATM simulator data. MNF is identical with the standard
principal components transformation when the noise variances in all bands are equal.
When noise is in one band only, multiple linear regression is applied so this band is

not taken into account (Green et al., 1988).

MTMF is a partial unmixing algorithm that is capable of determining target
abundance within a pixel (Boardman, 1998). It has in common with the Linear
Spectral Unmixing (LSU) the constraints about the sum of the classes per pixel equal
to 1 and the use of values between 0 and 1. Moreover, none of the two methods in
ENVI software can be fully constrained applied. On the other hand, using MTMF,

information about all the present end-members spectra is not needed, what makes
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MTMEF different from LSU and more similar to Matched Filtered models (Boardman,

1998).

The selection of the spectral bands was done, in the case of the Linear Spectral

Unmixing Classification, based on the representative bands of the spectra of the

endmembers (table 10 and Figure 12).

1.5 2.
wavelength [zem]

Figure 12... Bands selected to make the LSU classification, correspond to the wavelengths 550, 650,
900, 1100, 1470, 1650, 1900 and 2230 nm.

Table 10.

Wavelength, spectral region, dominating factor controlling reflectance and absorption
properties of the bands used in the Linear Spectral Unmixing Classification

Dominating factor | Primary
Hymap Band controlling leaf absorption
(/126) Wavelength (nm) | Spectral region reflectance bands
10 550 | Green (VIS) Leaf pigments
Chlorophyll
15 650 | Red (VIS) Leaf pigments absorption
32 900 [ Near InfraRed Cell structure
45 1100 | Near InfraRed Cell structure
Water
68 1470 | Shortwave InfraRed 1 Water content absorption
82 1650 | Shortwave InfraRed 1 Water content
Water
95 1900 | Shortwave InfraRed 2 Water content absorption
110 2230 | Shortwave InfraRed 2 Water content
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In the case of Mixture Tuned Match Filtering the band selection is done automatically
getting the Minimum Noise Fraction eigenvalues. The graph in Figure 13 shows the
relevance of the 126 eigenvectors created from the Minimum Noise Fraction process.
According to ENVI online help, eigenvalues greater than 1 contain data meanwhile
eigenvalues smaller than 1 contain noise (ENVI, 2003). In this study, only
eigenvalues greater than 5 were used, as the curve was reaching the asymptote at that

point. Then, the first 8 bands were chosen to make the MTMF classification.

The end-member collection to make the classification was done from the field
samples pixels in the case of grasslands and mixed herbs; and manually in the map for
the rest of the end-members (soil, shrubs, forest and agricultural crops). This manual

collection was helped by knowledge about the area and aerial pictures.

Because of the heterogeneity of the area and the overlap of spectral signatures of
different PFTs (Figure 14), the classification did not performed in a totally constraint
way. Masks were applied to avoid values of the output classes below 0 and over 1 per

pixel.

MMF File: millingerwaard

40 4 a0 100 1 ,'_
Eigenvalue Mumber

Figure 13. .. Eigenvalues correspondent to the Minimum Noise Fraction analysis.

6000

—=— Grazed-
5000 grasslands
W Mixed-herbs

[ &
4000 - 4 "

" ‘6 Shrubs
3000 f . pd —x— Forest
2000 Zf ] ", —e— Agricultural

3 crops
o ’

1 12 23 34 45 56 67 78 89 100 111 122

Figure 14. .. Mean spectra of the six end-members used in the plant functional type’s classification.
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A test of the error was carried out, checking if non-possible values (above 1 and
below 0) were spread all over the image or were PFT-related. As the affected pixels
were present all over the area and in a low percentage, the error was attributed to the

difficulty of the classification.

To check the reliability of the two classification methods, the 21 plots from the field

work were analyzed.

3.6 STATISTICAL APPROACHES ESTIMATING BIOMASS

The first part of the methodology applied in this case study evaluates the performance
of the statistical approaches estimating biomass in the study area. Four vegetation
indices were selected to be later related with measured vegetation biomass in
Millingerwaard. The four indices derived from the 2004 Hymap image were the
Normalized Difference Vegetation Index (NDVI), the Soil Adjusted Vegetation Index
(SAVI), the Weighted Difference Vegetation Index (WDVI) and the Simple Ratio
(RSR). The selection of these four vegetation indices was done based on literature
review about similar researches and studies carried out previously in the area. The
NDVI has been related with biomass by several authors before (Foody et al., 2003;
Zheng et al., 2004; Rahman et al., 2005). The SAVI and the WDVI correct for the
soil background, what can be important in this area because although being of a high
fractional vegetation coverage bears mostly short species. The gaps between the
vegetation could influence the signal with the soil reflectance. The LAI was
calculated in the forested part of the area derived from RSR index (Chen et al., 2002)
getting high accurate results (Mengesha, 2005), so RSR was used to check its possible

relationship with the biomass in the low-vegetation part.

The four vegetation indices were obtained for each sample location and compared to
the dry biomass weight from the aboveground vegetation collected in the same

location in the field.

The coordinates from the field samples where first converted from the Dutch Rijks
Driehoek (RD) coordinate system into WGS-84 projection system. The field samples
were then overlaid on the Hymap image to get the values of the vegetation indices

corresponding to each sampling coordinate. Some uncertainties were found as the
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location of each sample point was not the central point of a pixel. The maximum
deviation between the sampling coordinates and the respective pixel centre is 2.91
meters. Complete information about the pixel and sampling centres differences can be

found in Appendix 2 (Table 21).

In the regression analysis, evidence about the dependence of the biomass with the
plant functional type and the managing methods (e.g. grazing) was found. This
evidence was checked to be present also in the results of the image of the following
year (2005) to demonstrate its consistency. In previous studies this differentiation
between grasslands species and other herbaceous species has been done (Nichol and

Lee, 2005).

The process to get the relationship between the four vegetation indices and biomass
was done using a cross-validation technique in which an equation is got from the VI-
biomass relationship of 20 samples while validating with the 21*. This process is done
per PFT with all the samples. The Root Mean Square Error of the Cross Validation
(RMSECYV) and the Root Mean Square Error of Prediction (RMSEP) were calculated.

RMSEP =

Where:

r= Measured biomass in the field.

r’= Corresponding biomass according to the regression line.
n= Number of biomass samples included in the analysis.

The RMSECV analyses the difference in between the value of a sample and the
predicted value at that point depending on the rest of the samples. Then, the validation

is independent in this case from the field sampling in each point.
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RMSECV =

Where:
r= Measured biomass in the field.

r’= Corresponding biomass according to the regression line calculated from the rest of

the measurements from the field.
n= Number of biomass samples included in the analysis.

The bands used to calculate the different vegetation indices were chosen because their
reliability in the quality assessment of the image carried on in previous studies (Liras-

Laita, 2005; Mengesha, 2005). Table 11 gives an overview of the used bands.

Table 11. Hymap bands and wavelength used in the calculation of the vegetation indices
Wavelength (nm) Hymap band (total
126)
Green (G) 497 5
Blue (B) 573 10
Red (R) 650 15
Near Infra-Red (NIR) 846 28
Short-Wave Infra-Red (SWIR) 1661 82
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3.6.1 NDVI analysis

The formula used for calculating the Normalized Difference Vegetation Index

(NDVI) was:

NIR — Red

NDVI =
NIR + Red (Rouse, 1974)

3.6.2 WDVI Analysis

The Weighted Difference Vegetation Index (WDVI):

WDVI = NIR — a = Red.
(Clevers, 1989)

Where a is the ratio of NIR to Red in the soil, it was calculated from a bare soil pixel
in the research area and its value corresponds to 1,928. The bare soil reflectance curve
can be found in Figure 26 (Appendix 3). It is hard to find a bare soil pixel inside the
study area because of the high vegetation coverage; the spectrum corresponds to a

pixel from a crossing path.

3.6.3 SAVI Analysis
The Soil Adjustment Vegetation Index (SAVI) was calculated according to:

Where L is the soil adjustment factor
gay] - NR—Red .

AV T NIRt Rea L T
(Huete, 1988)

From literature is known that the most common value used for L that has been used is

0, 5 so that was the value considered in this study as well.
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3.6.4 RSR Analysis

The Reduced Simple Ratio (RSR) was taken from Chen et al. in 2002

VIR |'1_ OSTFIR — oSTWIR min |
PRED\  pSWIRmax— oSWIRmun )

HSR =

(Chen et al., 2002)

The SWIR (Short Wave Infra-Red band) is considered to be band 82 corresponding to
1661 nm; the SWIR (band 82) minimum and maximum reflectance values in the

vegetated area respectively are 0 and 0.4051.

The regression analysis was done for three sample sets (See Figure 26 in Appendix 3):
- Whole dataset (n=21).
- Grazed-grassland (n=7).
- Herbaceous vegetation (n=14)

Linear (y= ax + b) and exponential (y= a . e ™) or logarithmic (y= a.Ln(x) + b)
relationships were considered as in previous studies it is demonstrated these are the
ones explaining the relationship between vegetation indices and quantitative variables

(Clevers, 1989).

For every relationship R?, RMSEP and RMSECV were calculated to evaluate the
strength of the relationship.

3.6.5 Biomass map

The biomass map was constructed with the results of the regression analysis applying
the best relationship proportionally per coverage of PFT per pixel. The general

formula applied was:
B = [Best.relation(GR) x (%grasslands) ] + [Best.relation(MH) x (%mixed — herbs)]

In the formula the best relationships VI-Biomass from previous step are used. The

biomass estimated value was compared with the measured biomass from the field.
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3.7 RADIATIVE TRANSFER MODELS

The coupled model PROSPECT-SAIL (Jacquemoud, 1993) (Section 2.3.3) was used
as a second approach to estimate biomass in the research area. The version of the
model used is implemented in Interactive Data Language (IDL) with a user interface.
In Table 12 and Table 13 an overview of the input parameters of the two models is

presented.

General average values from the main species per PFT were taken from literature
review (Haselwimmer, 2005; Liras-Laita, 2005). The input parameters are highly
species specific and the information available about the values is limited. Therefore,
assumptions had to be made while applying these models in heterogeneous areas as

there is no information available about the input parameters of all the species present.

Table 12. Overview of the input parameters for Prospect model, their units and description.

Prospect model
Parameters Units Description
Number of compact layers
specifying the average number of
air / cell walls interfaces within
the mesophyll
Concentration of Chlorophyll a
and b in the leaves
Water content in the leafs in units
Leaf water content (Cw) cm of thickness of layer of water per
surface area
Dry matter (protein+
Leaf dry mass content (Cm) g/cm?2 cellulose+hemicellulose + sugar
+ starch + lignin) per unit area

Structural parameter (N) dimensionless

Chlorophyll a and b content (Cab) mg/cm?2

Leaf brown pigment content (Cb) relat.units Brown pigment concentration
Table 13. Overview of the input parameters for Sail model, their units and description.
Sail model

Parameters Units Description

Leaf Area Index (LAI) dimensionless Total one-sided leaf area per unit
layer area

ALA degrees Average leaf angle

HS dimensionless Hot Spot parameter

\/4 radians View Zenith angle

SZ radians Sun zenith angle

Az radians Azimuth angle

Soil spectrum Yoreflectance Background soil spectrum

Leaf spectrum o4 reflectance Spectrqm of a leaf corresponding
to the simulated canopy
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The first assumption made deals with the number of species considered in the model
inversion. In this case study, four species where taken into account: Calamagrostis
epigejos, Urtica dioica, Rubus caesius and Trifolium repens. The election of the
species is based on the input data values available from literature. The rest of the
species present are assumed to be represented by one of the four species used in the
analysis. In the case of the Grazed-grasslands, they are all represented by Trifolium
repens; Calamagrostis epigejos and Urtica dioica represent the herbaceous species

and Rubus caesius is the shrub species used.

The second assumption made is that each single pixel is considered homogeneous.
Then, the output from the model inversion will be a combination of input parameters

correspondent to one species.

The two input parameters Dry matter content from the leaf level-Prospect model and
the LAI from the canopy level-Sail model are directly related to biomass content in the

canopy.

A sensitivity analysis of the model was performed for these two input parameters
(LAI and Dry matter content) towards checking if the models answered to variations
in those inputs. Moreover, the relationship between this inputs and the vegetation

indices coming from the simulated spectra were also studied.

3.7.1 SENSITIVITY ANALYSIS

The sensitivity analysis was carried out with the following steps:
- Investigation of the common values of the studied variable.
- The other input variables in the models are set in fixed values per species.
- The value of the studied variable is changed each time the model is run.

- With the resulting spectra, variations depending on the studied variable are

checked and VI are calculated and also compared with the variable changed.

- When the sensitivity analysis shows a variation of the output with a change in
a variable, it means the model is sensitive to the magnitude of such change n

the variable independently from the others.
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LEAF AREA INDEX

The sensitivity analysis was done for four species, namely Calamagrostis epigejos,
Urtica dioica, Rubus caesius and Trifolium repens. The first three species were

classified as belonging to mixed-herbs PFT while the fourth is grassland species.

The Prospect model was first run for them, having as output the estimated reflection
of the leaves in each case out of average input values. Then, SAIL model was carried
out six times per specie with different values of LAI: 0.3, 1, 2, 3, 4 and 5. An

overview of the input values used in the LAI sensitivity analysis is given in Table 14.

Table 14. Parameters used for the LAI sensitivity analysis
Calamagrostis Urtica Rubus Trifolium
epigejos dioica caesius repens
N 1.4 1.5 1.5 1.875
Cab (mg/cm2) 30 70 75 46.7
| Cw(cm) 0.008 0.008 0.01 0.01
g Cm (g/cm2) 0.003 0.002 0.005 0.003014
E Cb 0.05 0.1 0.1 0.05
LAI 03,1,2,3,4, 03,1,2,3, 03,1,2,3, 03,1,2,3,
5 4,5 4,5 4,5
ALA (deg) 30 30 30 30
HS 0.0125 0.0125 0.00319 0.0125
VZ (rad) 0 0 0 0
SZ (rad) 0.574 0.574 0.574 0.574
Az (rad) 0 0 0 0
E DF 0 0 0 0
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DRY MATTER CONTENT

Another sensitivity analysis was carried out to see how changes in the dry matter

content in the leaves affect the canopy reflectance. In this case it is an input of the

Prospect model the one that is studied but at the canopy level (Sail model). Five

different values of Dry matter content (Prospect input) were used and the values of

Sail model were fixed in average ones.

The average values for all the inputs and the values used for C, (Dry matter content in

the leaves) are resumed in Table 15.

With the results of the sensitivity analysis, a correlation study between the variables

LAl and Dry matter content with the VI was done. The vegetation indices were

calculated from the spectra got from the model for each simulation input parameters.

Table 15. Input parameters for Dry matter content sensitivity analysis
Calamagrostis Urtica dioica Rubus caesius Trifolium repens
epigejos
N 1.4 1.5 1.5 1.875
Cab 30 70 75 46.7
(mg/cm?)
Cw (cm) 0.008 0.008 0.01 0.01
- Cm (g/cm?) | 0.001, 0.002, 0.001, 0.002, 0.001, 0.002, 0.001, 0.002,
2 0.003, 0.004, 0.003, 0.004, 0.003, 0.004, 0.003, 0.004,
2‘ 0.005 0.005 0.005 0.005
& Cb 0.05 0.1 0.1 0.05
LAI 3 3 3 3
ALA (deg) | 30 30 30 30
HS 0.0125 0.0125 0.00319 0.0125
VZ (rad) 0 0 0 0
SZ (rad) 0.574 0.574 0.574 0.574
Az (rad) 0 0 0 0
2 | DF 0 0 0 0
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3.7.2 MODEL INVERSION USING LOOK UP TABLES

The way of getting biophysical variables from radiative transfer models is using
modelling inversion (Atzberger, 2004). In this case the variables to get from the
inversion are Cp and LAI. The inversion method that is applied in this case study is
based on look-up-tables (Section 2.4 “model inversion” of this report gives an
introduction) because of its simplicity at the same time it performs well (Weiss et al.,
2000). In this case, the inversion procedure was done only for the field work sample
points. The aim of doing this inversion was to know if the technique could be used to
estimate biophysical variables in a heterogeneous area as Millingerwaard. Four look
up tables were prepared, each of them corresponding to one of the main four species
in the area: Trifolium repens, Urtica dioica, Calamagrostis epigejos and Rubus

caesius.
The procedure followed to generate the look-up-tables was (Figure 15):
- Set fixed values for all the input parameters but Cr,, and LAI per species.

- Find out the most common values of Cr, and LAI respectively per species. The
number of simulations will depend on the number of values considered per Cp,
and LAIl. The possibilities of simulating the image spectra increase with the

number of simulations done.

- Run the PROSPECT/SAIL model with each possible combination of C,, and

LAl coming from the previous step.

- Extract from each simulated spectrum the eight bands chosen for the inversion
corresponding to the wavelengths: 550, 650. 900, 1100, 1470, 1650, 1900 and
2230 nm. These bands have been chosen as representative of the crop spectra
in the study area with the same criterion as the selection for the LSU
classification procedure. The results of the inversion will directly depend on

these bands.

- Build a table in which each row gathers the eight bands reflectance values

coming from the simulated spectrum of each combination of C, and LAI.
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Cm=0.001 LAI=03
LUT [ o
Cm= 0.003 n—n LAI=2 n—1
_ > —
Cm= 0.004 LA 3 |
Cm=0.005 LA 4 e
Cm=0.007* * Only in the case of Rubus caesius

Figure 15... Look-up-table generation scheme. n—n means all the members of the first rectangle were
related independently with all the members of the second. n—1 means all the combinations were plot
in a single LUT.

The look-up-tables gather the spectra coming from simulations with Prospect-Sail
model for different values of Leaf Area Index and Dry matter content. A total of 30
simulations were done for Trifolium repens, Urtica dioica and Calamagrostis

epigejos respectively and 42 for Rubus caesius.

Every sample plot spectrum was compared with each of the 132 simulation spectra
and the Root mean square error of prediction (RMSEP) calculated for each
comparison. The minimum RMSEP correspond to the minimum distance between the
measured and the simulated spectra. Then, the Cy and LAl values used for such

simulation are supposed to be the correspondents with the measured spectra.

After getting the simulated values of Cp, and LAI per plot, the estimated leaf dry
biomass of the plots is calculated by multiplying LAl * Cy,. This estimated biomass is
then compared with the measured biomass from the field. Estimated biomass is the
dry biomass from the leaves. The measured biomass is both leaves and woody part
dry biomass. Then, they cannot be directly compared. Nevertheless, they should be
correlated as the measured biomass in the field is the biomass of the leaves plus the

biomass of the stems and woody part.
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4 RESULTS

4.1 PFT Classification

The resulting maps after applying the MTMF and LSU classification techniques for
the PFT are presented in Figure 16. The classification maps show that using the whole
spectrum does not mean the classification performs better. In the classification done
using 8 bands (maps 1 and 3), there is more patchiness of classes than in the
classification done with all the bands in the spectra. This difference can be due to the
use of noisy bands of the spectrum. According to the classification technique, LSU
overestimate forest (in blue) that is confined to the eastern part in the reality. Mixed-

herbs are underestimated on the other hand.

|
LSU
8 Bands ; 126 Bands

MTMF
126 Bands

MTMF
8 Bands

Figure 16. .. Linear Spectral Unmixing (1 and 2) and Mixture Tuned Match Filtering (3 and 4)
comparison. In the figure, grasslands are represented in green, mixed-herbs in red and forest in blue.
1 and 3 were classified with 8 bands and 2 and 4 with whole spectrum. Validation of the
classification of the sample plots with MTMF and LSU respectively
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Table 16. Estimated fractional coverage of Grasslands and Mixed-herbs from MTMF
classification and LSU classification in the sample points.

MTMF LSU
GRASSLANDS GRASSLANDS
Location Class-grasslands Class-mixed-herbs Location | Class-grasslands Class-mixed-herbs
2 0.9185 1 2 0.5514 0
5 0.6481 0.6318 5 0.7062 0
13 1 0 13 1 0.8567
14 0.9293 0 14 1 0
15 0.5202 0.5875 15 03114 0
19 0 1 19 0.9331 0
21 0.8172 0.8425 21 0.6263 0
MIXED-HERBS MIXED-HERBS
Location Class-grasslands Class-mixed-herbs Location | Class-grasslands Class-mixed-herbs
3 0.8926 1 3 0.5185 0.1958
4 0.7601 1 4 0.3601 0.0468
6 0.5136 0.7022 6 0.3182 0.2227
7 0.4433 1 7 0 0.3911
8 0.7129 1 8 0.0251 0
9 0.9156 1 9 0.1069 0
10 0.8143 1 10 0.0457 0
11 0.7727 1 11 0 0
12 0.1863 0.9786 12 0 0.0199
16 0 1 16 0 1
17 0.4435 0.525 17 0.2065 0
18 1 0 18 1 0.7414
20 0.3921 0.2884 20 0.381 0
22 0.6389 0.4712 22 0.6657 0

Table 16 compares the results of the classification with the real classes in each sample

point. The values 1 and 0 correspond to the set values after masking above 1 and

negative values respectively. The values in bold correspond to points not classified as

42




Chapter 4: Results

grasslands or mixed-herbs with LSU method. Plots 8, 12 and 17 were classified as
forest, plots 9, 10 and 11 as shrubs and plot 7 as agricultural area. With MTMF

method, all the sample points were classified as grasslands or mixed-herbs.

The validation shows how the endmembers were not spectrally independent enough to
be properly classified. Frequency distribution plots were prepared for both grazed-
grasslands and mixed-herbs (Figure 17). They represent how mixed-herbs have been
classified as more abundant in general. The picks in values 0 and 1 show the amount
of pixels that had to be masked out because of having negative or above 1 values after

the classification.
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Figure 17... Frequency distribution of Grazed-Grasslands and Mixed herbs from MTMF classification.
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4.2 STATISTICAL ANALYSIS

4.2.1 VEGETATION INDICES MAPS

The maps coming from the calculations of the four vegetation indices are shown in
Figure 18 and the minimum and maximum values of each vegetation index in the

Millingerwaard are summarized in table 17.

Table 17. Maximum and minimum value of each vegetation index.
Index Minimum Maximum | Mean Stdev
NDVI 0 0.8913 0.0498 0.1837
WDVI -4.147 5.5687 0.6289 1.3438
SAVI -0.0163 0.1572 0.0059 0.0221
RSR 0 11.826 0.3534 1.3592

-Maximum

-Minimum

Figure 18. .. Vegetation index’ maps calculated for the study area.
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In general, in the vegetation index maps (Figure 18), we can see how the agricultural
areas as the ones in the north with the shape of a rectangle and a triangle show the
highest value (lightest). The forest, on the other hand, has the lowest values as can be
seen in the eastern part of the area. The western area is where more grasslands and
mixed-herbs are present; they have high NDVI, WDVI and SAVI. In the case of the

RSR, nevertheless, the values are similar to the ones of the forest.

4.2.2 STATISTICAL PART: Correlation VI-Biomass

After correlating the values of the vegetation indices of the sample pixels with the
measured biomass values of the sampling locations, VI-Biomass relationships were
derived. The results of the correlation analysis with linear regression are presented in
Table 18. The values for exponential and logarithmic regression can be found in

Table 19.

Table 18. Vegetation indices-biomass correlation analysis overview. Linear regression
(y=ax+b). r’=correlation coefficient, SEP=Square Error of Prediction, SECV=Square Error of the
Cross-Validation.

LINEAR REGRESSION
VI PFT n a B r’ SEP SECV
Grazed-Grasslands | 7 -0.0001 0.7796 | 0.0577 | 164.26 280.55
NDVI
Mixed-herbs 14 0.0003 0.5338 | 0.4321 160.39 178.75
All 21 0.0002 0.6638 | 0.1381 | 231.84 251.53
Grazed-Grasslands | 7 -0.0026 39,414 | 0.2452 147.01 201.31
WDVI
Mixed-herbs 14 0.0035 10,125 | 0.559 141.34 163.41
All 21 0.0014 24,814 | 0.127 233.33 262
Grazed-Grasslands | 7 0.00007 | 0.1231 | 0.3702 134.28 189.4
SAVI
Mixed-herbs 14 0.00008 | 0.0558 | 0.5713 | 139.36 163.32
All 21 0.00005 | 0.0889 | 0.1091 | 235.71 266.51
Grazed-Grasslands | 7 -0.0023 41,702 | 0.0706 | 163.13 281.23
RSR
Mixed-herbs 14 0.0033 19,737 | 0.2338 | 186.31 211.88
All 21 0.0019 28,722 | 0.0998 | 236.93 257.27
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Table 19. Vegetation indices-biomass correlation analysis overview. Exponential and
logarithmic regression. In red, the best correlations found for mixed-herbs and grasslands
respectively are shown. These correlations will be later used to calculate the biomass map.

EXP-LOG REGRESSION
VI PFT n TYPE | a b r’ SEP SECV
Grazed-Grasslands | 7 EXP 0.7704 -0.0002 0.0438 171.82 | 341.78
NDVI
Mixed-herbs 14 LOG 0.2367 -0.729 0.62 163.08 | 179.62
All 21 LOG 0.058 0.392 0.1063 24221 | 264.98
Grazed-Grasslands | 7 EXP 39,019 -0.0008 0.249 153.11 | 215.37
WDVI
Mixed-herbs 14 LOG 22,679 -11,236 0.7046 150.02 | 173.77
All 21 LOG 0.398 0.7674 0.0608 245.55 | 283.13
Grazed-Grasslands | 7 EXP 0.1237 -0.0007 0.4057 1354 | 177.03
SAVI
Mixed-herbs 14 LOG 0.0477 -0.2008 0.6879 149.5 | 175.88
All 21 LOG 0.0068 0.0618 0.0386 248.36 | 287.21
Grazed-Grasslands | 7 LOG 0.4854 61,628 0.038 17097 | 368.96
RSR .
Mixed-herbs 14 LOG 24,504 -11,589 0.3965 198.32 | 223.74
All 21 LOG 0.7565 -0.07741 | 0.0939 248.08 | 271.13

The best correlation found for grazed-grasslands was the exponential with SAVI. The
biomass of the mixed-herbs, nevertheless, was better correlated by a logarithmic
relationship with WDVI (Table 19). That means the soil background is important in
the total reflectance of the area, as these two indices are the ones that have it into

account.
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4.2.3 BIOMASS MAP

The biomass map was calculated (Figure 19) using for the Grazed-grasslands the
relationship SAVI-Biomass and for the Mixed-herbs the relationship WDVI-Biomass.

The formula applied per pixel to get the final map of biomass was:

B = [~ 616.18x Ln(SAVI —1086.2)x (%grasslands )]+ [215.51 x e "oV (o4 mixed — herbs))|

This map shows the biomass corresponding to the grassland and herbaceous
vegetation in the area. The lightest parts are where the biomass of grasslands and
mixed-herbs plant functional types is higher and the darkest parts show were the
biomass of the formers is low. Indeed, the darkest areas in the map correspond to the

forested area, because the analysed plant functional types are less abundant.
In the corresponding frequency distribution (Figure 19), we can see the highest

- 2
occurrence correspond to a biomass around 300 gr/cm”.

A table with the comparison between estimated and field biomass values can be found

in the appendix 3 (Table 22).

1400

1200

Figure 19... Biomass map obtained for Grazed-grasslands and Mixed-herbs’ PFT. On the right, the
corresponding frequency distribution.
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Figure 20... Comparison between estimated biomass with statistical methods and measured biomass in
the field.

Figure 20 shows the comparison of the estimated biomass values with the measured

values from the field. Estimated values have no correlation with the measured ones.

The correlation between estimated biomass with statistical approaches and measured

biomass in the field can be improved increasing the number of sampling plots. If the

number of sampling plots is higher, the vegetation is better represented so the

correlation relationships are probably more stable.
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4.3 RADIATIVE TRANSFER MODELS ANALYSIS

4.3.1 SENSITIVITY ANALYSIS

The PROSPECT/SAIL models were used to carry out a sensitivity analysis for four
species. Figure 21 shows the variation in the spectra of the canopy depending on the

LAI value. Figure 22 shows the same approach with the Dry matter content in the

leaves.
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Figure 21... LAI Sensitivity analysis for Urtica dioica, Trifolium repens, Calamagrostis epigejos and
Rubus caesius.
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Figure 22. .. Dry matter sensitivity analysis results
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From Figure 21, we can say the spectra of the canopy vary depending on the variation
of LAI, what means the model is sensitive to this parameter. On the other hand, in
Figure 22, the variation in between spectra of different Dry matter content is hardly

visible.

From the simulated spectra, values for the vegetation indices were calculated and

compared to LAI and Dry matter content (Figure 29, Appendix 4).

The vegetation indices grow exponentially with the increase of the LAI until reaching
saturation. NDVI shows the lowest saturation level at a LAI=2 approximately. RSR is
the vegetation index that shows more sensitivity to the variation of LAI. On the other
hand, the vegetation indices decrease in a linear trend with the increase of the dry
matter content in the leaves. In this case, we can see how the species Urtica dioica
and Rubus caesius spectra are generally overlapping each other, probably due to their
structural similarities. WDVI in this case show less sensitivity to the change in dry
matter in the leaves than the rest of the vegetation indices studied. WDVI is more
sensitive to the change in the NIR part of the spectrum than the rest of the indices.
The NIR part of the spectrum reflects the multiple-scattering effects due to the
structure of the vegetation. Thus, WDVI is more sensitive to variables in the canopy

level than variables in the leaf level where no multiple-scattering is occurring.

4.3.2 RTM inversion

After creating the look-up-tables, each RMSEP was calculated per plot with all the
different simulation spectra from the model. A table with the minimum RMSEPs per

plot per LUT can be found in the appendix 4 (Tables 23 and 24).
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Figure 23. .. Correlation between estimated leaf biomass values and radiative transfer models and total
measured biomass values in the field.
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The grazed-grasslands field sample plots achieved the lowest value of RMSE with
Rubus caesius simulations (Table 23). Nevertheless, in Figure 23, the graph
corresponding to grazed-grasslands compares the measured biomass in the field and

the estimated biomass assuming Trifolium repens is the only species present.

The inversion of the herbaceous plots resulted in all the plots estimated as Rubus
caesius but one (plot number 16). Plots number 16 and 18 correspond to samples on
the beach area with total vegetation coverage of 15% and 30% respectively. The

estimated LAIs correspond to 1 what means the inversion performs in a realistic way.

The comparison of estimated biomass from the model inversion and measured
biomass in the field was done by plotting the values in a graph per plant functional

type. In figure 23, the two graphs for grasslands and mixed-herbs are shown.

For grasslands, no correlation was found. For mixed-herbs it looks the predicted

values are correlated with the measured values (R*= 0.5106).

Estimates of LAI in the study area were done in previous studies (Schmidt, 2005)
derived from RSR (Chen et al., 2002) with an empirical correlation RSR-LAI in the
forest. In Figure 24, previous estimations of LAI in the area are compared with the

estimations from this case study.
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Figure 24... Comparison between LAI estimates of previous studies in the area with LAI estimates in
this case study
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5 DISCUSSION

5.1 STATISTICAL APPROACHES ESTIMATING BIOMASS

5.1.1 Vegetation index maps

The maps resulting from the vegetation indices calculation (Figure 18) give already
an idea about the indices that best can estimate biomass in the research area. Having
into account the high vegetation heterogeneity of the Millingerwaard, we can check if
such heterogeneity can be detected in the maps. At a first glance, differentiation
between different plant functional types (with the help of knowledge about the spatial
distribution of such plant functional types in the area), can be detected in the four
vegetation indices maps (Figure 18). Both the NDVI and the RSR maps look more
homogeneous than the other two: WDVI and SAVI. This is a first overview of the

performance of the different vegetation indices estimating biomass.

5.1.2 VI-Biomass relationship

Several authors suggest on theoretical and empirical grounds that the simple ratio is
best related with LAI (Steinmetz, 1990) while others have supported the use of NDVI
(Gallo et al., 1993). In Figure 29 (Appendix 4), nevertheless we can see how NDVI is
the index that reaches the saturation point at a lower LAI. The estimation of LAI is
directly related with the estimation of biomass as both are quantitative biophysical

variables.

In this case, the image used is a hyperspectral narrow-band image. From literature it is
known that the narrow band combinations respond differently to a variation in
biomass. (Mutanga, 2004). This can be due to the uncertainty in the determination of
the Red band. In the case of the NIR band, as there is a plateau in typical vegetation

spectra, there should be no problem.

Huete (1985) stated that the sensitivity of vegetation indices to the soil background is
greatest with intermediate levels of vegetation cover (Huete et al., 1985). At very high

densities there is not enough soil signal emerging from the canopy to be of
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significance (Huete, 1988). In the case of this study, although the coverage percentage
is high, the dominant species in the area are short, so the soil reflectance has a higher
influence than in the case of higher vegetation species as for example in forest areas.

This could explain the good results with SAVI and WDVTI in herbaceous vegetation.

In the cases of soil lines not substantially different from the normal assumed in the
ratio indices SR (in which RSR is based) and NDVI, these indices give better results.
On the contrary, in the cases in which the soil spectrum plays an important role, SAVI
has given better results (Lawrence and Ripple, 1998). Analogously, WDVI is also
supposed to be a good estimator like SAVI because it takes the soil background into

consideration as well.

In the results of this research, the NDVI index was not good at predicting biomass in
the area. Already in the map (Figure 18) is visible how there is no clear differentiation

of features. The reason of this fact can be the lower saturation point of LAI for NDVI.

In dense vegetated areas where the coverage is high, the variation of biomass is only
reflected in the NIR part of the spectrum. In high vegetation covered areas, the
variation in biomass is only dependant on the quantitative variables as canopy height.
These variables can only be detected by the scattering that at the same time is only
detected by the NIR part of the spectra. Then, indices as the NDVI are not able to
differentiate quantitative variables and tend to reach an asymptote in their relationship
with such variables (in Figure 29 NDVI is the index with the lowest saturation LAI
value around 2). The quantitative variables estimations in these areas would be helped

with techniques as Lidar (Ni-Meister et al., 2001).

Clevers already in 1989 and other authors later explained how the vegetation indices
reached a saturation level in their relation with biophysical variables. This means they
become insensitive to the increase of such variables at a certain point (Clevers, 1989;
Thenkabail et al., 2000). Given this limitation, there is a need to develop or improve
techniques that can accurately estimate biomass in more densely vegetated areas. That
is why radiative transfer models are being lately inverted to get biomass from other

source different from vegetation indices.

The relationship in the case of WDVI and SAVI is far better than the one with NDVI
(Table 19), that means that possibly the soil influence in the area is high. In the case
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of the grasslands, where the relationship biomass-VI is quite weak, the soil influence
can be important as the vegetation is short. Moreover, WDVI and SAVI are sensitive
to the variation in the NIR part of the spectrum and the multiple-scattering
phenomenon is only detected in this part of the spectrum. So in high vegetated areas,

WDVI and SAVI are expected to estimate better quantitative variables.

The RSR index is considered to be directly related with the biophysical variable Leaf
Area Index (LAI) (Chen et al., 2002). In this case, the relationship of this index with
biomass is not good (Tables 18 and 19).

The dependency of VI-biomass relation with the plant functional types can be
justified by differences in plant and leaf structures. Herbs are non-woody vegetation
so the dry weight is far smaller in comparison to shrubs. Furthermore, the vegetation
indices give information about the vegetation health, so young healthy herbs would
have high vegetation indices and very low biomass and woody not that healthy shrubs
would have the contrary. Therefore, the relation between biomass and vegetation

indices was derived per PFT.

The calculated biomass map using statistical approaches (Figure 19) looks like
realistic. However, the biomass in the sample points is not well-estimated (Figure 20
and Table 22). This can be solved getting more accurate relationships what can be

done by increasing the number of sample points in the field.
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5.2 RADIATIVE TRANSFER MODELS

A simple approach was carried out to get biomass by inverting radiative transfer
models. The main aim of this approach was to find out if it was suitable to retrieve

quantitative biophysical variables in a heterogeneous area like Millingerwaard.

The sensitivity analysis showed the study species were similar in spectral
characteristics and their reflectance curves overlapped (Figures 21 and 22). The
models are more sensitive to LAI (input for the canopy level-model Sail) than to dry

matter in the leaves (input for the leaf level-model Prospect).

The LUT were prepared only for four of the species present in the area. This decision
was taken because of the lack of input information for other species. All the
grasslands species were assumed to have identical spectrum as Trifolium repens. All
the mixed-herbs were assumed to behave as one of those 3 species: Urtica dioica,
Calamagrostis epigejos and Rubus caesius. In the inversion procedure, each pixel of
the image was assumed to behave as if it was homogeneous in one of the four species

considered.

As all the grassland plots were assumed to behave as if they were homogeneously
covered by Trifolium repens, the estimated biomass from the inversion was not well
correlated with the measured biomass in the field (Figure 26). This fact can also be
seen in Table 23 (Appendix 4) where the grazed-grasslands plots do not achieve the
lowest RMSEP with a simulated spectra coming from Trifolium repens. Indeed,
Trifolium repens has an average fractional cover of 25.71% (Table 9) in the grazed-
grasslands sample plots. Then, it can be concluded Trifolium repens is not
representative enough of the grasslands PFT. The statistical results already showed it
was difficult to well-estimate biomass for grasslands’ PFT (Tables 18 and 19), and the
PFT classification also achieved worse results for this PFT (Table 16).

The mixed-herbs biomass was better predicted (Figure 23). A first reason for this is
that, this PFT was better represented as three species spectra were simulated.
Secondly, Rubus caesius has a proportional fractional coverage of 34.93% and

together with Urtica dioica and Calamagrostis epigejos, 57.5%. Moreover, more
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simulations were included in the Rubus caesius LUT as the Cy, values from literature
had a bigger range (0.001-0.007 for Rubus caesius compared to 0.001-0.005 for the

rest of the species).

5.3 PLANT FUNCTIONAL TYPES & HYDRAULIC RESISTANCE

5.3.1 PFT behaviour

It is source of further study the different sign in the VI-Biomass regression lines
depending on the plant functional type. In the case of the Grazed-Grasslands the VI
are inversely correlated with biomass (Figure 27). This inverse correlation was
unexpected but at the same time consistent having into account the results of the
sensitivity analysis of Dry Matter content with the PROSPECT-SAIL coupled model
(Figure 22).

With the information of the resulting biomass map (Figure 19) and the Nikuradse
value per PFT (Figure 3), an overall idea about the hydraulic resistance can be drawn.
The lightest areas in the biomass map correspond to the highest biomass values. As
the biomass map has been calculated only for grasslands and mixed-herbs, the highest
values correspond to mixed-herbs (do not forget also the dominant species of shrubs
Rubus caesius is included). According to Figure 3 (Section 2.2), the thorn-shrubs-
subtype is the one with the highest hydraulic resistance. Rubus caesius is a thorn
shrub, so the areas dominated by Rubus caesius then, have a high hydraulic

resistance.

Looking at the map of Figure 19, we can say in the west-northern part of the image
where the biomass is the highest (leaving apart the triangular agriculture field), the
hydraulic resistance could also be relatively high. Meanwhile in the forested areas
(dark areas) the hydraulic resistance is intermediate according to the values in Figure
3. The rest of the image in which biomass is low due to be dominated by grasslands,

there must be almost not resistance to flooding.
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5.4 Possibilities of up-scaling the methodology with Landsat images

The use of radiative transfer models for estimating biomass using Landsat images has
not being assess by any author before. Nevertheless, its possibility is matter of future

studies.

The methodology used in this thesis can be tried to be applied with Landsat images
using unmixing classification techniques as suggested by Smith (1990) and sub-pixel

model inversion as suggested by Weiss (2000).

In that way, the problem of the higher spatial resolution of Landsat images (30x30 m)
compared with Hymap can be dealed by applying sub-pixel techniques.
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6 CONCLUSIONS AND RECOMMENDATIONS

From this study we can conclude statistical approaches estimating biomass in a
heterogeneous area are highly dependent on the presence of different plant functional
types. The vegetation indices do not have comparable values between different
vegetation types, and then there is no single absolute relationship applicable to the

whole area.

The result applying statistical approaches estimating biomass looks realistic.
Nevertheless, the estimated biomass values differ highly from the measured values in
the field. The indices that had the best correlation with biomass were the Weight
Difference Vegetation Index (WDVI) and the Soil Adjust Vegetation Index (SAVI).

Radiative transfer modelling inversion is a promising technique that needs large
species-specific information. On the other hand is not site specific so there could be a
possibility of up-scaling or applying this methodology to other similar vegetated

arcas.

Hydraulic resistance, as dependant on PFT can be spatially monitored. The spatial
distribution of plant functional types can be an estimation of the spatial distribution of
biomass. Moreover, in the cases in which a plant functional type’s map is available,
the biomass distribution can give information about the density of such PFT. Higher
vegetation densities (understood as Biomass/volume) would mean higher hydraulic

resistance.

Furthermore, when floodplains belong to nature areas and the ecological value is tried
to be preserved, biomass mapping is a tool to quantify the environmental impact of

the river management process (e.g. side channels).

The application of statistical approaches estimating biomass using Landsat images has
been done in previous studies (Section 2.4). The recommendation in the case of

heterogeneous natural areas is doing a previous PFT’s classification.

Radiative transfer modelling has not been done with Landsat images yet. The main
differences between Landsat and Hymap images are the spatial resolution (30x30 m

in the case of Landsat and 5x5 m in the case f Hymap) and the availability of spectral
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bands. To deal with the problem of spatial resolution, an unmixing classification and a

subpixel-inversion technique can be applied.
Possible further applications with this research methodology

One possible application of the methodology applied in this case study is getting
temporal biomass maps. In this way, monitoring land degradation in the area by
means of loss of productivity can be assessed. Moreover, it can be studied such

degradation depending on each plant functional type.

In a similar way, further study can be done concerning relative growth and the impact
of different external factors in such growth. By these external factors is meant not
only climate conditions but also physical conditions as soil type or contamination,

slope, water availability etc.

The hydraulic resistance analysis can be an approach suitable for erosion-affected
areas, for example Mediterranean countries; so it would be possible to fight against

violent flooding and consequent loss of soil structure.

Some recommendations for similar future studies

In relation with the field sampling design, it should be done assuring enough

representation of all the plant functional types present.

Before biomass cutting, spectral measurements of the sampled area should be made.
In this way, the vegetation indices derived from these spectral signatures would be
better correlated with the biomass samples. Then, heterogeneous sampling plots

would not give problems of representation of the biomass samples.

Moreover, if samples are weighted in wet and dry conditions, further studies about
influences of water content in vegetation indices could be done (Ceccato et al., 2002).
Weighting homogeneous species samples separating woody part from leaves, would
provide leaves/total biomass relationship. If the former relationship is available, the
biomass mapping by inversion of radiative transfer models could be done in terms of

total biomass instead of leaves biomass.
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A sub-pixel model inversion can be tried so the assumption of treating each pixel as

species-homogeneous would not need to be taken (Weiss, 1990).
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Figure 25. .. Map of the area affected by the project Freude am Fluss

I



Appendix 2: Field work

APPENDIX 2. FIELD WORK
Table 20. Height, coverage and dominant species per sampling plot
Samples | Height Most common specie Coverage PFT
(cm) (o)
2 2-4 Trifolium repens 100 Grazed-
Grasslands
3 110- Rubus caesius 100 Mixed Herbs
120
4 130 Rubus caesius 100 Mixed Herbs
5 3-20 Poa annua 100 Grazed-
Grasslands
6 100 Rubus caesius 95 Mixed Herbs
7 120 Lythrum salycaria 100 Mixed Herbs
8 100 Epilobium 95 Mixed Herbs
tetragonum
9 Rubus caesius 100 Mixed Herbs
10 100 Calamagrostis 100 Mixed Herbs
epigejos
11 80 Rubus caesius 100 Mixed Herbs
12 130 Rubus caesius 100 Mixed Herbs
13 5 Potentilla reptans 95 Grazed-
Grasslands
14 35 Potentilla reptans 90 Grazed-
Grasslands
15 Cynodon dactylon 100 Grazed-
Grasslands
16 80 Cirsium arvense 15 Mixed Herbs
17 Calamagrostis 70 Mixed Herbs
epigejos
18 30-60 Saponaria 30 Mixed Herbs
officinalis
19 35 Festuca rubra 80 Grazed-
Grasslands
20 Calamagrostis 90 Mixed Herbs
epigejos
21 10 Trifolium repens 95 Grazed-
Grasslands
22 100 Urtica dioica 80 Mixed Herbs
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Appendix 2: Field work

Table 21.

Sample coordinates and the pixel centre in which they are located. The highlighted
numbers show the differences higher than 2 metres in the Northing and Easting coordinates values.
The last column corresponds to the total distance between sampling and pixel centres.

plot Centres
nr Field samples coordinates Pixel location Deviation deviation
Northing (N) | Easting (E) Northing (N) | Easting (E) N deviation | E deviation
2 5750403.686 | 706161.885 | 5750402.5 706162.5004 1.186 -0.6154 1.336156113
3 5750405.912 | 706149.765 | 5750407.5 706147.5004 | -1.588 2.2646 2.765891748
4 5750447.425 | 706129.26 5750447.5 706127.5004 | -0.075 1.7596 1.761197649
5 5750453.35 | 706151.535 | 5750452.5 706152.5004 [ 0.85 -0.9654 1.286272584
6 5750543.614 | 706194.569 | 5750542.5 706192.5004 1.114 2.0686 2.349489723
7 5750559.715 | 706235.616 | 5750557.5 706237.5004 | 2.215 -1.8844 2.908124543
8 5750583.878 | 706230.492 | 5750582.5 706232.5004 1.378 -2.0084 2.435683592
9 5750685.955 | 706178.455 | 5750687.5 706177.5004 | -1.545 0.9546 1.816118432
10 5750836.457 | 706090.153 | 5750837.5 706092.5004 | -1.043 -2.3474 2.568683663
11 5750851.326 | 706112.493 | 5750852.5 706112.5004 | -1.174 -0.0074 1.174023321
12 5750990.334 | 706080.374 | 5750992.5 706082.5004 | -2.166 -2.1264 3.03531431
13 5751016.619 | 706027.505 | 5751017.5 706027.5004 | -0.881 0.0046 0.881012009
14 5750813.683 | 705962.661 | 5750812.5 705962.5004 1.183 0.1606 1.193851482
15 5750732.783 | 705967.92 5750732.5 705967.5004 | 0.283 0.4196 0.506115757
16 5750591.248 | 705833.25 5750592.5 705832.5004 | -1.252 0.7496 1.459247807
17 5750550.535 | 705843.106 | 5750552.5 705842.5004 | -1.965 0.6056 2.056204357
18 5750475.527 | 705818.08 5750477.5 705817.5004 [ -1.973 0.5796 2.056371844
19 5750485.242 | 705891.859 | 5750487.5 705892.5004 | -2.258 -0.6414 2.347329964
20 5750504.121 | 705919.147 | 5750502.5 705917.5004 1.621 1.6466 2.310613027
21 5750310.889 | 705867.027 | 5750312.5 705867.5004 | -1.611 -0.4734 1.67911541
22 5750110.272 | 705705.724 | 5750112.5 705707.5004 | -2.228 -1.7764 2.849487842
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APPENDIX 3. VEGETATION INDICES
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Bare soil curve
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Figure 28. .. Spectrum of the bare soil considered to calculate the a parameter for WDVI.

Comparison between estimated biomass with statistical methods and measured

Table 22.
biomass in the field.
Grazed-grasslands
Plot# | Field Estimated
2| 142.88 1485.29
5| 142.08 601.1284
13 | 127.32 1949.868
14 | 572.44 479.787
15 | 395.96 516.6091]
19 | 489.64 379.7194
21 | 258.68 760.2605

Mixed-herbs
Plot# | Field Estimated
3 623.08 1361.92
4 715.68 984.3438
6 580.8 589.7888
7 602.36 1128.922
8 709.72 1083.408
9 714.48 1332.929
10 736.56 1126.22
11| 1164.64 1200.339
12 741.24 645.891
16 368.24 340.5791
17 646.08 444 8405
18 241.88 1676.441
20 508.52 303.2381
22 371 546.3275

VI




Appendix 4: Model inversion

APPENDIX 4: MODEL INVERSION
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Table 23. Radiative transfer models inversion results for grazed-grasslands plots. RMSE: Root Mean Square Error, Cm: Dry matter content in the leaves, LAI: Leaf
area index. The values in bold represent the lowest RMSE achieved per plot.

Sample plots 2 3 4 5 6 7 8 9 10 11
Trifolium RMSE 0.090774 0.089281 0.09008 0.091942 0.09633 0.084267 0.087649 0.08908 0.089776 0.088694
repens Cm 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
LAI 3 3 2 2 2 3 3 3 2 3
Calamagrostis RMSE 0.090809 0.08946 0.08889 0.091916 0.094441 0.083201 0.086354 0.088862 0.087771 0.088459
epigejos cm 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
LAI 4 4 3 2 2 3 3 3 3 3
RMSE 0.090805 0.089245 0.088922 0.091584 0.093806 0.08315 0.087788 0.089889 0.089064 0.089745
Urtica dioica cm 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
LAl 4 4 3 2 2 3 3 3 3 3
RMSE 0.086338 0.084667 0.078881 0.080772 0.080225 0.07319 0.080686 0.08493 0.081367 0.084884
Rubus caesius | cm 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
LAl 5 5 3 3 2 4 4 4 3 4

Table 24. Radiative transfer models results for mixed-herbs plots. RMSE: Root Mean Square Error, Cm: Dry matter content in the leaves, LAI: Leaf area index. The

values in bold represent the lowest RMSE achieved per plot.

Sample plots 3 4 6 7 8 9 10 11 12 16 17 18 20 22
Trifolium RMSE | 0.089281 0.09008 0.09633 | 0.084267 | 0.087649 0.08908 | 0.089776 | 0.088694 | 0.089437 | 0.108623 | 0.097058 | 0.117384 | 0.099795 | 0.129294
repens Cm 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

LAI 3 2 2 3 3 3 2 3 2 1 2 1 2 2
Calamagrostis RMSE 0.08946 0.08889 | 0.094441 | 0.083201 | 0.086354 | 0.088862 | 0.087771 | 0.088459 | 0.088266 | 0.106354 | 0.094329 | 0.116913 | 0.097085 | 0.123582
epigejos Cm 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
LAI 4 3 2 3 3 3 3 3 2 1 2 2 2 2
RMSE | 0.089245 | 0.088922 | 0.093806 0.08315 | 0.087788 | 0.089889 | 0.089064 | 0.089745 | 0.089675 | 0.109768 | 0.095919 | 0.120704 | 0.097485 | 0.124947
Urtica dioica cm 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
LAI 4 3 2 3 3 3 3 3 2 1 2 1 2 2
RMSE | 0.084667 | 0.078881 | 0.080225 0.07319 | 0.080686 0.08493 | 0.081367 | 0.084884 | 0.076813 | 0.108315 | 0.082712 | 0.113236 | 0.084145 | 0.108294
Rubus caesius | cm 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
LAI 5 3 2 4 4 4 3 4 3 1 2 1 2 2
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