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"Only If We 

Can Understand 

Can We Care, 

Only If We Care 

Will We Help, 

Only If We Help 

Shall All Be Saved" 
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solo si ayudamos 

podremos salvarnos” 

 

(Jane Goodall) 



iv 

 

ACKNOWLEDGEMENTS 

I would like to thank all the people that have contributed to this thesis. 

The first persons I would like to thank are my supervisors: Lammert Kooistra and 

Michael Schaepman. They encouraged and made scientific my way with support and 

advices. Sometimes even making me think I had good ideas. 

I also would like to thank the people from the department of Geo-Information 

Sciences that when needed offered some minutes of their time to assist me. 

Partners (and friends) from the master (Javi, Ana, Maria, Philipp, Silvia, 

Monica…and many many others) made my life easy sharing not only courses and 

lectures but also our living in Wageningen. I cannot forget Elisa, who helped me a lot 

from The Netherlands and from Spain. Rogier and Dieter helped me with my English 

or with smart tips. They, together with other friends like “Los bajos de Dijkgraaf” 

have been my family these years and made me “disconnect” sometimes and come 

back to reality. 

My friends from Spain have always been there, even when I did not have time to call 

or write them. I promise they will have a reward for all this time. 

Last but not least, I would like to thank my family. Without them, nothing would have 

been possible. 



v 

 

ABSTRACT 

 

River floodplains are heterogeneous areas with high biodiversity and natural value. 

Nevertheless, they are constrained by river management. Biomass mapping is needed 

for ecological monitoring as well as input for the river management to assess 

hydraulic resistance of the vegetation in case of flooding. 

This case study is aiming at assessing the possibilities of biomass mapping in a river 

floodplain using imaging spectroscopy. To achieve that, statistical methods using 

vegetation indices and radiative transfer modelling inversion (PROSPECT/SAIL 

coupled model) were used. 

Due to the heterogeneity of the area the methodology applied is plant functional type-

dependent. Statistical approaches can give satisfactory results but do not give globally 

applicable expressions. The biomass best-correlated indices were the Soil Adjusted 

Vegetation Index (SAVI) and the Weighted Difference Vegetation Index (WDVI). 

Radiative transfer modelling on the other hand can be up-scaled or applied in other 

areas. The inversion of the PROSPECT/SAIL model was carried out by means of 

look-up-tables. The results were satisfactory in herbaceous dominated vegetation 

areas accounting for four species assumed to be present. 
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1 INTRODUCTION 

1.1 BACKGROUND 

The management of landscapes requires knowledge and understanding of their 

characteristics e.g. biomass quantity. Productivity, species richness and biodiversity 

are valuable input for monitoring of changes by nature managers (Cramer, 1999). 

Therefore, vegetation biomass is an indicator of environmental conditions and should 

be well recognised and mapped. For this purpose, models predicting biomass have 

been developed as a method to retrieve biomass estimates from field or remotely 

sensed data. Biomass models (e.g. Biome3, Global Production Efficiency Model 

(GLO PEM), Simulateur mulTIdisciplinaire pour le Cultures Standard (STICS)) are 

tools to estimate vegetation biomass. They aim not only at the knowledge about 

carbon cycle fluxes (Cramer, 1999); to assure their preservation in time natural areas 

or reserves also require monitoring in which these models can assist. Moreover, the 

biomass frequency distribution can be used as input for modelling issues dependent 

on vegetation in river flood models (Trémolieres et al., 1998). 

There are different methods for estimating biomass. In general, we can classify them 

as using traditional destructive methods, such as “cuts and weights” (Paruelo et al., 

2000; Di Bella, 2004), “double sampling methods”, developed from visual or digital 

image estimations (Paruelo et al., 2000) and “crop simulation models” (Di Bella, 

2004). 

Biomass cut constitute a simple method to estimate biomass production (e.g. Sims et 

al., 1978; Sala et al., 1988) but this technique is limited by its slowness, cost and 

especially by the number of necessary measurements to produce reliable information 

(Di Bella, 2004). 

“Double sample methods” or “Statistical approaches” involve the development of 

regression equations between biomass and variables easy to measure (Paruelo et al., 

2000). 

“Crop simulation models” (Kanemasu, 1990; Field et al., 1995) have now gained 

broad acceptance for translating ecological hypotheses, derived from local 
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observations, into estimates of regional, continental or even global outcomes of 

ecosystem processes (Cramer, 1999). 

The last decades, Remote Sensing has offered new perspectives to complete the work 

in progress, taking advantage of the different spatial and temporal resolutions 

provided by different sensors (Prevot et al., 1998). Remote Sensing is a technological 

tool to assess actual vegetation conditions (Hunt Jr. et al., 2005). Remote Sensing 

provides a spatially continuous data set resulting in a continuous output; this means 

that additional extrapolation techniques are not needed. The number of samples is also 

reduced, so the sampling is not as expensive and time consuming. Furthermore, 

Remote Sensing permits the use of study areas on inaccessible environments 

(Zagajewski, 2004).  

Biomass can be estimated from remote sensing data by means of statistical methods 

based on vegetation indices (Foody et al., 2003; Zheng et al., 2004; Rahman et al., 

2005) or by means of models that use a set of spatially continuous inputs (Ruimy et 

al., 1999). The biomass estimation models that use remote sensing data have also 

been used by several authors in different field applications: in cereals (Su et al., 1997; 

Daughtry et al., 2000; Olioso et al., 2002; Hunt Jr. et al., 2005), in grazed-grasslands 

(Wylie et al., 2002; Di Bella, 2004; Di Bella et al., 2005), in forest (Schlerf et al., 

2005), and in heterogenous areas (Paruelo et al., 2000; Zheng et al., 2004). 

In this study, imaging spectroscopy is used to achieve a biomass estimation using 

Radiative Transfer Models (RTM) and statistical approaches. RTM are physically 

based canopy reflectance models that link canopy properties with sensor-measured 

radiance (Liang, 2004). Since these canopy reflectance models formalize physical 

knowledge, they can deal, in principle, more easily with different measurement 

conditions (Atzberger, 2004). 

In this case study imaging spectroscopy is used as input, but there are other 

possibilities as Light detection ranging sensors (Lidar) images that provide more 

information from the canopy structure and a higher spatial accuracy (Lim and Treitz, 

2004). 

The estimation of biomass from images obtained with Lidar yields in the correlation 

between laser height metrics and above-ground biomass (Drake et al., 2002). 
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Lidar sensors send a laser pulse with a footprint size between <1 to 40 m, record x 

and y coordinates, and elevation within 10-15 cm. Small footprint lidar can also 

provide high spatial resolution data on the physical structure of the forests. 

These sensors provide high-resolution data on forest height, canopy topography, 

vegetation volume and gap size; and provide estimates on number of strata in a forest, 

succession status of forest and above-ground biomass (Gillespie et al., 2004).  

Although the majority of the studies have been, in general, successful in estimating 

biomass, commonalities between reported predictor variables used in model 

development are rare. Consequently, studies are study- and site-specific and unable to 

be generalized to other vegetation types and site conditions (Lim and  Treitz, 2004). 
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1.2 PROBLEM DESCRIPTION 

Rivers in The Netherlands are kept within narrow courses demarcated by dikes and 

dams. This system of river management curbs the rivers’ power to allow human 

habitation and agriculture in areas otherwise subjected to seasonal flooding (Geerling, 

2005). 

The river regulation measures, agriculture boom and industry establishment on the 

floodplains are causing loss of biodiversity. When the damages on riverside 

vegetation in recent years became clear, nature development projects were realized in 

order to compensate these losses (Geerling, 2005). 

Economically speaking, both objectives about flood risk management and nature 

development management are important. Flood risk management projects keep the 

investments in the area safe. On the other hand, functional floodplains with high 

species diversity and habitat heterogeneity also provide economic benefits in the form 

of natural flood control and natural water purification (Trémolieres et al., 1998). 

Moreover, nature values are always profitable by means of recreational activities and 

ecosystem services, such as food, pasture, fuel, timber and fibres, medicine and 

chemical production (De Groot et al., 2002). 

Initiatives have already started with the aim of preserving the sustainability of 

floodplains at the same time controlling flooding risks. One example is Freude am 

Fluss to find a solution to the “safety-versus-nature dilemma” (Web 1). In Figure 25, 

appendix 1, a map with the area influenced by the Freude am Fluss project can be 

found. 

The assessment of the sustainability of floodplain rejuvenation is input for flood risk 

management and nature restoration strategies. Specialists state that the amount of 

vegetation in the river floodplains has increased in the last ten years in The 

Netherlands. In a non-disturbed situation, the river would regulate the amount of 

vegetation in a natural way by means of a cyclic rejuvenation. In regulated river 

systems, man-made rejuvenation is needed as natural rejuvenation is not possible in 

the river bed restricted by dikes (Web 2). 
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To make a decision about the measures and where to reduce biomass, spatial explicit 

information on the vegetation biomass in river floodplains in the Netherlands is 

needed. 

In order to have a successful management on the riverside lands of the River Rhine, a 

good database about vegetation development of the area is needed. Not only the 

nature management projects but also the flooding risk managements use vegetation as 

input in their models as stated before in this chapter. 

The approach of this study consists on retrieving the spatial distribution of the 

biomass values in the study area of the floodplain Millingerwaard as a case study 

(quantitative surface values of each biomass level). The hypothesis is that nature 

management is directed towards a horizontal distribution of biomass frequency. If the 

distribution approaches a constant horizontal line (Figure 1), all PFTs are equally 

represented in the area so biodiversity is preserved and the heterogeneous landscape is 

kept. With this approach, succession and species richness can be monitored better. 

As a conclusion, the study of the biomass distribution curve could be used as input in 

both nature and water management approaches.  

 

 

 

 

 

Figure 1. .... Spatial frequency distribution of biomass measured in terms of PFTs. 

Frequency 
distribution 
of biomass 

PFT
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1.3 RESEARCH OBJECTIVES 

The main research objective is to estimate the biomass frequency distribution in the 

floodplain Millingerwaard using remote sensing techniques. Biomass in the scope of 

this research is considered as being dry weight of fresh vegetation per surface unit 

(gr.cm-2). The management of this nature area can then be improved by taking into 

account ecological and flood prevention objectives. The Millingerwaard area is 

characterized by its significant heterogeneity in plant functional types (grass/herbs, 

shrubs and forest) and its regional scale. For this purpose, imaging spectroscopy data 

are available as well as other field samples that can be used for validation. 

The main research question is: 

- What is the actual biomass frequency distribution in the floodplain 

Millingerwaard? 

The research sub questions can be stated as follows: 

- What are the results for estimating the spatial biomass distribution with 

statistical models from vegetation indices? 

- How can we use imaging spectroscopy for the estimation of biomass by means 

of the use of Radiative Transfer Models in the Millingerwaard? 

The thesis work consists of: (1) Estimation of biomass (gr.cm-2) using statistical 

methods from different vegetation indices derived from imaging spectroscopy data 

and comparison between the different estimations by means of the correlation 

coefficient. (2) Estimation of biomass in Millingerwaard using RTM, concretely the 

SAIL-PROSPECT model. (3) Validation of the results coming from the application of 

RTM with the biomass values from the field. (4) Plotting distribution of biomass and 

analysis of the results. (5) Find out some recommendations for up-scaling results to 

other similar areas with the possibility of using other input data as for example 

Landsat images. 
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1.4 STRUCTURE OF THE REPORT 

The first introductory chapter (1. Introduction) of this report explains the background 

of the case study, problem definition and objectives. In the second chapter (2. 

Literature review) the main concepts are defined in the scope of the research. The 

third chapter (3. Materials and methods) consist of the description of the study area, 

data collection and availability and procedures applied in the research. The fourth 

chapter (4. Results) presents the output from the methodology of the previous chapter. 

Chapter 5 is a discussion of the results and the last chapter (Chapter 6. Conclusions 

and recommendations) explains the final conclusions and some recommendations for 

future research to be performed in this field.
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2 LITERATURE REVIEW 

2.1 DEFINITION OF BIOMASS 

According to the Australian State on the Environment report, biomass is the “quantity 

of organic materials within an ecosystem usually expressed in dry weight per unit area 

or volume” (Hamblin, 2001). This term is related to the Net Primary Productivity 

(NPP) that is defined by the same source as being “the ratio of all biomass 

accumulation and biomass losses in units of carbon, weight or energy, per 

land/surface unit, over a set time interval” (Hamblin, 2001). Net Primary Productivity 

is then an important variable in the carbon cycle as it determines the rate of absorption 

of atmospheric carbon by land vegetation. (Ruimy et al., 1999). Moreover, as NPP is 

calculated as a rate of biomass, estimating biomass is essential for understanding the 

dynamics of sources and sinks of atmospheric carbon (Rahman et al., 2005). 

Both, biomass and NPP are used to monitor the carbon fluxes, study productivities, 

nutrient allocation and fuel accumulation in terrestrial ecosystems (Zheng et al., 

2004). 

2.2 PLANT FUNCTIONAL TYPES AND HYDRAULIC RESISTANCE 

In a floodplain area like Millingerwaard, the river managers worry about the riverside 

natural vegetation and its influence in the discharge capacity of the river. Their 

management can be improved by studying the presence of the different vegetation 

types and their hydraulic resistance (van den Bosch, 2003). The hydraulic resistance is 

the magnitude of the turbulence resulting from water in laminar regime passing 

through an obstacle (Figure 2). Its value affects the velocity of the regime and 

depends on the shape and characteristics of the obstacle. Figure 3 shows examples of 

the hydraulic resistance values of different Plant Functional Types used by the water 

authority. 
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Figure 2. .... Typical vertical profile of horizontal flow velocity for submerged vegetation, h is water 
depth; k is vegetation height (Keijzer et al., 2005). 

Determinant for the hydraulic resistance of the vegetation is the area of contact, which 

first of all depends on the water level and the height of vegetation (Figure 2). The 

vegetation structure plays a role through the height, diameter and density of stems, the 

height branches shoot, the density of branches and the surface area of leaves.  

The Nikuradse equivalent roughness (K) constant is one of the possible expressions of 

hydraulic resistance. In Figure 3 we can see an example of the values this constant has 

for different plant functional types (Geerling, 2005). 

Figure 3 shows that bushes have the highest hydraulic resistance of the presented 

plant functional types. The plant functional types are classified according to the River 

Ecotope System (RES) as described by Rademakers and Wolfert (Rademacher and  

Wolfert, 1994). 

 

 

 

 

 

 

Figure 3. .... Hydraulic resistance per Plant Functional Type in the river floodplain measured in terms of 
Nikuradse equivalent roughness (m) (Geerling, 2005). 
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The hydraulic resistance of shrubs is high because they have dense structure 

beginning at the soil level. Forest areas leave more freedom to the water as the 

ramification starts at a higher level. Herbaceous vegetation and grasslands are the 

plant functional types that are almost not obstacle for the water to run. 

 “Plant functional type” is a term used by several authors to define cluster of species 

with similar morphology and phenology (Paruelo and Lauenroth, 1996; Laurent et al., 

2004). 

Flood risk (defined as flooding probability and potential damage) along the river 

Rhine is expected to increase in the coming decades. The two main reasons are 

(Hooijer, 2002): 

- Climate change will cause a significant increase in the probability of extreme 

floods, and 

- Increasing level of investments in areas at risk doubles every three decades. 

This promotes the potential damage of floods. 

That is why flood risk management strategies and measures should be developed in 

anticipation of higher peak discharges in the future (Hooijer, 2002). 

2.3 REMOTE SENSING METHODS FOR ESTIMATING BIOMASS 

There are essentially three ways of estimating vegetation biomass from remote 

sensing data according to Cramer (1999): (1) Using Production Efficiency Models 

(PEMs); (2) By means of biomass-vegetation indices correlation; or (3) Using Soil-

Vegetation-Atmosphere-Transfer Models (SVAT). (1) and (3) are Crop simulation 

models and (2) are Double sampling methods (Section 1.1 in this report). 

2.3.1 PRODUCTION EFFICIENCY MODELS (PEMs) 

These models are also called “diagnostic models”. They are based on the Kumar & 

Monteith (1981) approach. The fraction of solar radiation absorbed is calculated from 

remote sensing data and then derived into production. They use the concept of Light 
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Use Efficiency (LUT) for the conversion of Absorbed Photosynthetically Active 

Radiation (APAR) to biomass (Cramer et al., 1999). 

2.3.2 STATISTICAL APPROACHES ESTIMATING BIOMASS 

The statistical methods are based on correlation relationships of land surface variables 

with remotely sensed data. They are easy to develop and effective for summarizing 

local data (Liang, 2004). 

The feasibility of using multispectral reflectance data for estimating dry vegetation 

biomass production was addressed by (Aase and Siddoway, 1981) who developed 

regression equations between canopy spectral reflectance and total dry vegetation 

biomass of wheat. 

Recent literature has shown that the narrow bands may be crucial for providing 

additional information with significant improvements over broad bands in quantifying 

biophysical characteristics of vegetation (Thenkabail et al., 2000). 

In local estimations, the use of empirical-statistical approaches can give satisfactory 

results (Aztberger et al, 2003; Prince and Bausch, 1995). However, since canopy 

reflectance depends on a number of factors, no unique relationship between the 

spectral signature and the canopy variables can be expected to be applicable 

everywhere and all the time, even for a particular sensor. Consequently, empirical-

statistical relationships are highly site- and sensor-specific and unsuitable for large 

areas or in different seasons. (e.g., Curran, 1994; Gobron et al., 1997). 

There are previous studies that have applied statistical approaches to estimate biomass 

in grasslands and forest. In tables 1 and 2 some of them are showed. 

Table 1. Literature review of biomass estimations from vegetation indices with different sensors for 
grasslands 

Vegetation 
Index Sensor R2 Source 

Hypersp. 1m 0.39  (Mirik et al., 2005) 

Landsat TM 0.95, 0.81 
 (Wylie et al., 2002; Reeves et al., 
2006)

NDVI 

ASTER 0.82  (Reeves et al., 2006) 
SRTVI Hypersp. 1m 0.39  (Mirik et al., 2005) 
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Table 2. Literature review about biomass estimations of vegetation indices with different sensors for 
forest 

Vegetation 
Index Sensor R2 Source 

Hypersp. 1m 0.66  (Mirik et al., 2005) NDVI 
Landsat TM 0.82  (Rahman et al., 2005) 

Hypersp. 1m 0.66  (Mirik et al., 2005) SRTVI 
Landsat TM 0.82  (Zheng et al., 2004) 

SAVI Landsat TM 0.046  (Rahman et al., 2005) 
TVI Landsat TM 0.229  (Rahman et al., 2005) 

In grasslands only NDVI and SRTVI have been applied. Good correlation coefficients 

were obtained when correlating NDVI derived from Landsat and Aster with biomass. 

In the last years indices related with the water content in the leaves have been created 

(Ceccato et al., 2002). These indices minimise perturbing geophysical and 

atmospheric effects. The relationship of those indices with the dry matter on the one 

hand and the wet matter on the other hand can be a further study. 

Although local statistical estimations can not be applied directly to other areas, local 

methods can be up-scaled and extrapolated. In this case study, statistically based 

estimations are done to complete results from radiative transfer models. 
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2.3.3 RADIATIVE TRANSFER MODELS 

Radiative Transfer models are physically based canopy reflectance models that link 

canopy properties with sensor-measured radiance (Liang, 2004). At the top of the 

canopy, the interaction of radiation within the vegetation depends on the contribution 

of several components such as leaves, stems, soil background as well as the 

illumination and view geometries. Canopy reflectance will thus depend on the optical 

properties of each canopy element, as well as on their number, area, orientation, and 

position in space (Goel and Thompson, 2000; Koetz et al., 2005). 

The PROSPECT model (Jacquemoud and  Baret, 1990) is used to describe leaf optical 

properties (Figure 4). PROSPECT simulates leaf reflectance and transmittance spectra 

as a function of leaf biochemical contents and leaf structure. 

The input parameters for the PROSPECT model are a structure parameter (N), 

Chlorophyll a and b content Cab (μg./cm2), Equivalent water thickness Cw (cm), dry 

matter content in the leaves Cm (g./cm2) and brown pigment concentration in the 

leaves Cb. The output is an ASCII file with the modelled reflectance and transmittance 

in the leaves of the canopy. 

Jacquemoud and Baret (1990) concluded after the creation of PROSPECT model that 

there are uncertainties in it. Those uncertainties come from the assumptions made. It 

is assumed the uniformity in the distribution of water, pigments and structure inside 

the leaf. The absorption coefficient is influenced by the difficulty of discriminating 

between different pigments inside the leaf. And finally, the angle which represents the 

surface roughness was supposed to be constant(Jacquemoud et al., 1995). 

 

 

 

 

Figure 4. .... Schematic representation of Prospect model. The leaf is represented as a pile of absorbing 
plates with rough surfaces. 
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An often used model for simulating canopy reflectance is the SAIL model (Scattering 

from Arbitrarily Inclined Leaves) (Verhoef, 1984). It describes the canopy structure in 

a fairly simple way while producing nevertheless realistic results as reported by 

several authors for different crops. Goel and Thompson (1984) studied the difference 

between planophyle and erectophile crops and independently in soybean; Jacquemoud 

in 1995 in sugar beet (Jacquemoud et al., 1995) and in 2000 in soybean and corn 

(Jacquemoud et al., 2000). 

The input parameters for SAIL model are the Leaf Area Index (LAI), Average Leaf 

Angle (ALA) (degrees), hot spot parameter, view zenith angle (radians), sun zenith 

angle (radians), diffuse fraction, soil background spectra (%) and leaf spectra (%). 

A combination of the two models described above is available, namely 

SAIL/PROSPECT Radiative Transfer Model (Figure 5). The coupled model 

SAIL/PROSPECT use the PROSPECT leaf reflectance output as input in the SAIL 

model to estimate the total canopy reflectance. 

 

 

 

 

 

 

 

 

Figure 5. .... Coupled SAIL/PROSPECT radiative transfer model for plant canopies. The entire 
wavelength range (400mm-2500mm) is modelled using only a few parameters (Jacquemoud, 1993). 
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Model inversion 

When Jacquemoud and Baret (1990) created the Prospect model, they gave already 

the idea of using it in combination with canopy reflectance models. Moreover, they 

also suggested the possibility of inverting the model to get biophysical variables from 

the canopy in a non-destructive way. 

Nevertheless, the model inversion does not assure a certain quality retrieval of 

parameters. There are two main reasons according to Atzberger (2004) why the 

inversion of canopy reflectance models is an ill-posed problem: 

- Different model parameterization may yield almost identical spectra. 

- There are uncertainties in the model and in the reflectance measurements (e.g. 

assumptions in the model and sensor noise in the reflectance data collection). 

According to Goel and Thompson (1984), two conditions are necessary for estimating 

canopy variables from spectral signatures of vegetation: an accurate model and the 

choice of an appropriate inversion procedure. 

There are three main techniques to invert physically based models. Iterative methods 

require long computational time (Liang, 2004) while Look-up-tables and Artificial 

Neural Network are not inherently designed to be easily generalized to any view-sun 

configurations (Gastellu-Etchegorry et al., 2003). 

In this case study the inversion was done by means of look-up-tables. The look-up-

table is one of the simplest techniques used to invert models (Weiss et al., 2000). This 

technique consists of generating a table “m × n” where “m” is the number of 

combinations of input variables simulated with the model and “n” is the number of 

bands extracted from the simulated spectra. In the application phase, for a given 

reflectance measurements in the n bands, the elements of the reflectance that are the 

closest to the measurement are selected, and the corresponding set of input variables 

in the table represents the solution of the problem. 

In this study, the distance criterion that corresponds to the cost function in 

optimization techniques was defined as the relative root mean square error (RMSE) 

between the measured reflectance r and the estimated reflectance r’ found in the look-

up-table (Weiss et al., 2000). 
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Where: 

r= Measured reflectance 

r’= Simulated reflectance 

n= number of considered bands in the look-up-table 

 

The heterogeneity of the study area adds a difficulty to the accuracy of the model 

inversion. The look-up-tables are created for fixed values of the input parameters, so 

each pixel in which the inversion is carried out is considered homogeneous. Different 

look-up-tables can be created based on different species but still it is assumed that 

only one species is present per pixel. 

There are studies done on heterogeneous areas in which a detailed sub-pixel technique 

is applied in the inversion procedure (Weiss et al., 2000). This was achieved by 

dividing the data sets in three subsets corresponding to low, medium and high values 

of the biophysical variable considered. The reflectance and corresponding biophysical 

variables of these three subsets were linearly combined to simulate a larger range of 

heterogeneity for the mixed pixels. 

 

 

 

 

 

 

Figure 6. .... Overview of the general model inversion procedure (Verhoef and Bach, 
2003). 
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2.4 THE USE OF LANDSAT IMAGES ESTIMATING BIOMASS 

Mapping of continuous biophysical variables from high-resolution imaginary such as 

Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper Plus (ETM+) has 

largely depended on modelling empirical relationships derived from vegetation 

indices (Cohen et al., 2003). Table 3 gives an overview of the different Landsat bands 

and their relevant characteristics. 

Although Landsat multi-spectral information can provide useful indices to estimate 

biophysical variables, relationships for one site may not be applied at other sites due 

to variation in range and soil conditions (Merrill et al., 1993). 

The approach of estimating biomass using Landsat TM images has been carried out 

by different authors for grasslands (Merrill et al., 1993; Todd et al., 1998; Schino et 

al., 2003; Samimi and Kraus, 2004), in crop areas (Lobell et al., 2003; Thenkabail, 

2003; Calvao and Palmeirim, 2004), in forest (Lu, 2005) and in heterogeneous natural 

areas (Shoshany, 2000). All the authors cited before used statistical methods based on 

biomass correlations with band combinations. 

Table 3. Landsat bands spectral range, EM regions, and applications details. 

Band 
Number 

Spectral Range 
(in Microns) 

EM Region Generalised Application Details 

1 0.45 - 0.52 Visible Blue Coastal water mapping, differentiation 
of vegetation from soils 

2 0.52 - 0.60 Visible Green Assessment of vegetation vigour 

3 0.63 - 0.69 Visible Red Chlorophyll absorption for vegetation 
differentiation 

4 0.76 - 0.90 Near Infrared Biomass surveys and delineation of 
water bodies 

5 1.55 - 1.75 Middle 
Infrared 

Vegetation and soil moisture 
measurements; differentiation between 
snow and cloud 

6 10.40- 12.50 Thermal 
Infrared 

Thermal mapping, soil moisture 
studies and plant heat stress 
measurement 

7 2.08 - 2.35  Middle 
Infrared 

Hydrothermal mapping 
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In the case of grasslands areas, the best biomass-correlated indices derived from 

Landsat were ratios combining bands 1, 2, 5 and 7 (Samimi and  Kraus, 2004). In 

forest areas bands 4, 5 and 7 were used to be individually correlated with biomass 

samples from the field (Lu, 2005). In natural areas with vegetation species 

heterogeneity, first a classification in PFTs is recommended (Shoshany, 2000). In a 

next step biomass can be estimated for each PFT. Table 4 gives an overview of the 

vegetation indices and Landsat TM bands used to estimate biomass in previous 

studies. 

About the PFT classification, there are different ideas from previous studies. Grignetti 

(1997) concluded that the most suitable Landsat bands to use as input in a PFTs 

classification were bands 3, 4, 5 and 7 (Grignetti et al., 1997). Smith (1990) 

recommended the utilization of unmixing techniques in heterogeneous areas with low 

spatial resolution sensors as Landsat (Smith et al., 1990). 

Table 4. Vegetation indices (VI) and bands used to estimate biomass by statistical approaches with 
Landsat images, vegetation type, correlation coefficient, kind of relation and source. 

VI 
Vegetation 
type r2 Source Relation 

0.95 (Wylie et al., 2002) Linear Grasslands 
0.81 (Reeves et al., 2006) Linear 
0.128 (Mallinis et al., 2004) Linear Forest 
0.82 (Rahman et al., 2005) Linear 

NDVI 

Forest (pine) 0.86 (Zheng et al., 2004) Sigmoidal 
SAVI Forest 0.046 (Rahman et al., 2005) Linear 
TVI Forest 0.229 (Rahman et al., 2005) Linear 

TM Bands 
Vegetation 
type r2 Source Relation 

TM2/TM1 0.83 
(Samimi and  Kraus, 
2004) 2nd order 

TM7/TM1 0.79 
(Samimi and  Kraus, 
2004) 2nd order 

TM2xTM5/TM3 

Grasslands 

0.76 
(Samimi and  Kraus, 
2004) 2nd order 

TM2/TM1 0.81 
(Samimi and  Kraus, 
2004) 2nd order 

TM7/TM1 0.75 
(Samimi and  Kraus, 
2004) 2nd order 

TM2xTM5/TM3 

Heterogeneous 

0.76 
(Samimi and  Kraus, 
2004) 2nd order 

TM1, TM7 0.35 (Mallinis et al., 2004) Linear 
TM2, TM3, TM7 0.309 (Mallinis et al., 2004) Linear 
TM2, TM3, TM5, 
TM7 

Forest 

0.334 (Mallinis et al., 2004) Linear 
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3 MATERIALS AND METHODS 

3.1 INTRODUCTION 

The general procedure of this case study can be divided into two main parts. Both of 

them are methods to estimate biomass from remote sensing data. 

The first approach uses statistics as basis. Figure 7 summarizes the statistical 

procedure carried out. 

From the Hymap image, the vegetation indices are derived. Then, the vegetation 

indices are compared in the sample locations with the biomass values from the field. 

Finally, the biomass map is prepared using the best VI-Biomass relationships applied 

per plant functional types. 

In the second approach the PROSPECT/SAIL coupled model is used, in Figure 8 the 

steps are presented. The PROSPECT/SAIL inversion to estimate biomass was carried 

out using look-up-tables (LUT). These look-up-tables are built with outputs of the 

model simulations. 

 

 

 

 

 

 

 

 

Figure 7. .... Flowchart of the Statistical approach for estimating vegetation biomass from vegetation 
indices derived from a Hymap image. 
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From the inversion, leaf area index (LAI) and dry matter content in the leaves (Cm) 

are obtained as output. The estimated dry biomass of the canopy leaves is calculated 

multiplying LAI and Cm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. .... Flowchart of the Radiative Transfer Models approach for estimating vegetation biomass 
from remotely sensed data. 
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3.2 STUDY AREA 

The floodplain Millingerwaard is located to the east of Nijmegen along one branch of 

the river Rhine. It belongs to the natural reserve Gelderse Poort, a large floodplain 

area of 1200 ha along the river Rhine, close to the Dutch-German border. This 

location belongs to the nature-safety dilemma research area along the Rhine River (in 

the appendix 1 (Figure 25) a map of the area affected by the project Freude am Fluss 

is included). In Freude am Fluss, a total of eleven authorities, research institutions, 

and companies in three countries: the Netherlands, Germany, and France participate. 

An integral management plan for the area was published in 2000 under the lead of the 

Ministry of Transport, Public Works and Water Management. This planning included 

developing river related nature (SDF, 2003). 

Nature rehabilitation means that step by step, individual floodplains are taken out of 

agricultural production and are allowed to undergo their natural succession. This has 

resulted for the Millingerwaard in a heterogeneous landscape with river dunes along 

the river, a large softwood forest in the eastern part along the winter dike and in the 

intermediate area in a mosaic pattern of different succession stages (pioneer, 

grassland, shrubs). In addition, several man-made lakes, e.g., old clay pits, are 

present. Nature management (e.g., grazing) within the floodplain is aiming at 

improvement of the typical biodiversity of the floodplains. However, the discharge 

capacity of the river should be above the critical safety levels during flooding events 

(Kooistra, 2005). 

The vegetation in the area can be divided into four main Plant Functional Types (PFT) 

in the scope of this study: “Grazed Grasslands”, “Mixed Herbs”, “Shrubs” and 

“Forest”. This division is made according to their canopy height and structure. A 

more elaborate explanation of the PFT classification of the study area is given in 

section 3.5.2 of the report. 
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3.3 AIRBORNE IMAGING SPECTROSCOPY DATA 

Imaging spectroscopy data for the Millingerwaard were acquired on the 28th of July 

and the 2nd of August of 2004 with the Hymap instrument (Kooistra, 2005). An 

overview of the complete Image Spectroscopy acquisition can be seen in Table 5. 

The presented results in this paper are based on the first flight line for HyMap 

acquisition on 28th of July 2004. A complete spectrum over the range of 450-2480 nm 

is recorded with a bandwidth of 15-20 nm by 4 spectrographic modules. Each module 

provides 32 spectral channels giving a total of 128 spectral measurements for each 

pixel. However, the delivered data contains 126 bands because the first and last band 

of the first spectrometer is deleted during pre-processing. Ground resolution of the 

images is 5 m (Kooistra, 2005). 

Table 5. Overview of the Image Spectroscopy campaign in Millingerwaard 

Image spectrometry HyMap (5 m) 2 flight-lines  Specifications 

Acquisition time  28/7  13:30 2/8 10:30 126 bands 

Quality flight line 1  Okay cloud cover (not used) 450-2480 nm 

Quality flight line 2  cloud cover (partly used) okay bandwidth 15-20 nm 

Table 6. Overview of the operational equipment during the two Hymap image acquisition dates of 28th 
of July and 2nd of August 2004 in the Millingerwaard. 

 Instrument #Locations Date Variables 

atmospheric conditions Sunphotometer 1 2/8 2004 aerosol optical thickness 

radiometric correction Fieldspec FR 19 (5x5 m) 28/7 and 2/8 2004 VNIR spectra (sand, clay, 
asphalt, water) 

radiometric vegetation Fieldspec FR 21 (5x5 m) 28/7 2004 top-of-canopy and leaf spectra 
(VNIR) 

canopy structure hemispherical camera 13 (20x20 m) 28/7 – 6/8 2004 LAI, gap fraction, leaf angle 
distribution 

vegetation description Braun-Blanquet method 21 (2x2 m) 13-16/8 2004 structure, species composition 

sampling vegetation laboratory analysis 21 (0.5x0.5 m) 13-16/8 2004 biomass, N and P 
concentration 

surface characteristics theta probe, temperature 
gun 

86 28/7 2004 soil moisture and temperature 
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Figure 9. ....  Overview of the total area acquired with the Hymap instrument, Millingerwaard in the 
line 1. 

The flight line was oriented close to the solar principal plane to minimize directional 

effects. The Hymap images were geo-atmospherically processed to obtain geo-coded 

top-of-canopy reflectance data. Visibility was estimated by combining sun photometer 

measurements (Table 6) with Modtran4 radiative transfer simulation. 

Visibility during the flight of 2nd of August was 15 km. An image quality assessment 

revealed that 9 of the 126 bands should be used with caution, due to significant spatial 

noise (Kooistra, 2005). Not the whole acquired image was used in this study. A 

masking operation was carried out to select the vegetated areas. As in previous studies 

in the area (Kooistra, 2005), pure vegetation pixels selection was done by applying a 

mask based on a NDVI minimum threshold of 0.2 and a maximum reflectance at the 

wavelength of 665 nm (Band 13) of 7.4%. These procedures were carried out in ENVI 

software before applying further analysis techniques to the image. 
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3.4 FIELD DATA 

In the field campaign, the members of the “HyEco’04” project team took ground 

measurements. The 21 sampling locations (Figure 10) were selected based on an 

available vegetation map of the study area (2002) and a preliminary survey. In each 

location, a plot 2 x 2 meters was selected with a relatively homogeneous vegetation 

cover. Three biomass samples of subplots measuring 0.5 x 0.5 m were taken per plot 

at 0.5 cm above the ground level. The collected material was stored in paper bags; air-

dried, first for 5 days at room temperature in open bags, and subsequently for 24 h at 

70ºC, and weighed to obtain the dry biomass (g). 

Dry biomass values of each subplot were stored in weight/area units. The dry biomass 

per plot was calculated by means of the average between the dry biomass of the 

corresponding subplots. Final values are expressed in gr/m2 units. 

Table 20 is showing the most dominant specie in each sampling plot, its coverage 

percentage and the average height. From this information the PFT is defined. The 

plots where this information is missing are classified according to the pictures taken 

in the field campaign. 

In the two-week period after the image acquisition, vegetation descriptions were made 

for the 21 locations according to the method of Braun-Blanquet (Braun-Blanquet, 

1951). Abundance per species was estimated optically as percentage soil covered by 

living biomass in vertical projection, and scored in a nine-point scale. 

Table 7. Statistical values of the field samples (gr.cm-2) 

  All Grazed-grasslands Mixed-herbs 
Mean 516.823 304.143 623.163 
Standard Error 55.84 69.08 59.032 
Median 572.44 258.68 634.58 
Standard Deviation 255.891 182.769 220.878 
Sample Variance 65480.168 33404.368 48787.15 
Range 1037.32 445.12 922.76 
Minimum 127.32 127.32 241.88 
Maximum 1164.64 572.44 1164.64 
Sum 10853.28 2129 8724.28 
Count 21 7 14 
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Figure 10. .. Sampling locations in the campaign HyEco’04. The biomass samples correspond to the 
vegetation sample points. 

A description of the vegetation was made for the 21 plots (2 x 2 m) that were also 

radiometrically characterized. Locations of the plots are shown in Figure 10. The 

vegetation descriptions were made according to the method of Braun-Blanquet 

(1951). 

3.5 PLANT FUNCTIONAL TYPES 

3.5.1 Definition 

As there were not biomass samples in forested neither shrubs areas, the samples were 

then divided in two main plant functional types: Grazed-Grassland (7 samples) and 

Mixed-herbaceous (14 samples) where herbaceous species are present and only one 

shrub species dominates some samples, namely Rubus caesius. In figure 10 the 

sampling points in the field campaign are represented. 

The division in PFT was based on the vegetation description that was made during the 

field work (section 3.4). The parameters used for the classification were “height of the 

crop” “management” and “species composition”. The intervals considered for herbs 

and shrubs respectively were the ones in Table 8. 
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Table 8. Height ranges considered in the division in PFT in the study for the division, the parameters 
¨height ranges¨ and “dominant species” were taken into account. 

Height ranges (cm) 

 PFT Minimum Maximum Management Dominant species 

Grazed-
Grasslands 0 40 Grazing 

Trifolium repens, Potentilla reptans, 
Cynodon dactylon 

Mixed-
Herbs 40 120 No 

Rubus caesius, Calamagrostis epigejos, 
Urtica dioica 

Table 9. Percentage of proportional coverage of Trifolium repens, Calamagrostis epigejos, Urtica 
dioica and Rubus caesius in the 2 PFT sampling plot groups. 

 Grazed-grasslands Mixed-herbs 
Trifolium repens 25.71% 0% 
Urtica dioica 0.57% 6.57% 
Calamagrostis epigejos 2.14% 16% 
Rubus caesius 0% 34.93% 

 

 

 

 

 

Figure 11. .. Example of the two main PFT in Millingerwaard. In the picture of the left, plot number 2 
belonging to the Grazed-Grasslands plant functional type, on the right, plot number 12 from Mixed-
herbs plant functional type. 

Then, the samples without height information were included in one group or the other 

based on information from photographs taken during the field work. In the pictures in 

Figure 11, there is one example of each plant functional type. 

Moreover, managed and non-managed plots were also separated to get a more 

accurate relationship between biomass and the different vegetation indices. The 

management can influence the age of the vegetation. In this case, the managed areas 

corresponded to the samples considered Grazed-grassland. 
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3.5.2 Classification using Mixture Tuned Match Filtering 

After a classification of the samples in plant functional types, a classification map of 

the area was done. The difficulties of getting a good classification were the high 

heterogeneity of the area and the high number of species per PFT. Then, to find the 

technique that better fits the research area, two classification methods were tested: 

Linear Spectral Unmixing and Mixture Tuned Match Filtering (Boardman, 1998). 

Moreover, to simplify the image and avoid noisy spectral bands, a selection of eight 

bands was done and the classification process was carried out again. 

Summing up, two classification methods were used with the whole spectrum and with 

a selection of 8 bands. The resulting maps were analyzed with the knowledge about 

the area and checked in the sample points. 

The Mixture Tuned Matched Filtering (MTMF) method was chosen to make the 

classification of the Millingerwaard in PFT because other authors (Williams and Hunt 

Jr., 2002; Mundt et al., 2005) had used this classification method in previous studies 

in areas with a relatively high vegetation heterogeneity (e.g. prairie sites mixed with 

woody areas). The classification procedures were carried out in ENVI software. 

The MTMF is based on a previous transformation known as Maximum Noise Fraction 

(MNF) which was defined to be as a substitute of Principal Component Analysis 

(PCA) transformation (Green et al., 1988). This tool is a method for ordering 

components in terms of image quality and was created based on the poor performance 

of the PCA for example with ATM simulator data. MNF is identical with the standard 

principal components transformation when the noise variances in all bands are equal. 

When noise is in one band only, multiple linear regression is applied so this band is 

not taken into account (Green et al., 1988). 

MTMF is a partial unmixing algorithm that is capable of determining target 

abundance within a pixel (Boardman, 1998). It has in common with the Linear 

Spectral Unmixing (LSU) the constraints about the sum of the classes per pixel equal 

to 1 and the use of values between 0 and 1. Moreover, none of the two methods in 

ENVI software can be fully constrained applied. On the other hand, using MTMF, 

information about all the present end-members spectra is not needed, what makes 
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MTMF different from LSU and more similar to Matched Filtered models (Boardman, 

1998). 

The selection of the spectral bands was done, in the case of the Linear Spectral 

Unmixing Classification, based on the representative bands of the spectra of the 

endmembers (table 10 and Figure 12).  

 

 

 

 

 

 

 

 

Figure 12. .. Bands selected to make the LSU classification, correspond to the wavelengths 550, 650, 
900, 1100, 1470, 1650, 1900 and 2230 nm. 

Table 10. Wavelength, spectral region, dominating factor controlling reflectance and absorption 
properties of the bands used in the Linear Spectral Unmixing Classification 

Primary 
absorption 
bands 

Dominating factor 
controlling leaf 
reflectance Spectral region Wavelength (nm) 

Hymap Band 
(/126) 

  Leaf pigments Green (VIS) 550 10 
Chlorophyll 
absorption Leaf pigments Red (VIS) 650 15 

  Cell structure Near InfraRed 900 32 

  Cell structure Near InfraRed 1100 45 
Water 
absorption Water content Shortwave InfraRed 1 1470 68 

  Water content Shortwave InfraRed 1 1650 82 
Water 
absorption Water content Shortwave InfraRed 2 1900 95 

  Water content Shortwave InfraRed 2 2230 110 
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In the case of Mixture Tuned Match Filtering the band selection is done automatically 

getting the Minimum Noise Fraction eigenvalues. The graph in Figure 13 shows the 

relevance of the 126 eigenvectors created from the Minimum Noise Fraction process. 

According to ENVI online help, eigenvalues greater than 1 contain data meanwhile 

eigenvalues smaller than 1 contain noise (ENVI, 2003). In this study, only 

eigenvalues greater than 5 were used, as the curve was reaching the asymptote at that 

point. Then, the first 8 bands were chosen to make the MTMF classification. 

The end-member collection to make the classification was done from the field 

samples pixels in the case of grasslands and mixed herbs; and manually in the map for 

the rest of the end-members (soil, shrubs, forest and agricultural crops). This manual 

collection was helped by knowledge about the area and aerial pictures. 

Because of the heterogeneity of the area and the overlap of spectral signatures of 

different PFTs (Figure 14), the classification did not performed in a totally constraint 

way. Masks were applied to avoid values of the output classes below 0 and over 1 per 

pixel. 

 

 

 

 

Figure 13. .. Eigenvalues correspondent to the Minimum Noise Fraction analysis. 

 

 

 

 

 

Figure 14. .. Mean spectra of the six end-members used in the plant functional type’s classification. 
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A test of the error was carried out, checking if non-possible values (above 1 and 

below 0) were spread all over the image or were PFT-related. As the affected pixels 

were present all over the area and in a low percentage, the error was attributed to the 

difficulty of the classification. 

To check the reliability of the two classification methods, the 21 plots from the field 

work were analyzed. 

3.6 STATISTICAL APPROACHES ESTIMATING BIOMASS 

The first part of the methodology applied in this case study evaluates the performance 

of the statistical approaches estimating biomass in the study area. Four vegetation 

indices were selected to be later related with measured vegetation biomass in 

Millingerwaard. The four indices derived from the 2004 Hymap image were the 

Normalized Difference Vegetation Index (NDVI), the Soil Adjusted Vegetation Index 

(SAVI), the Weighted Difference Vegetation Index (WDVI) and the Simple Ratio 

(RSR). The selection of these four vegetation indices was done based on literature 

review about similar researches and studies carried out previously in the area. The 

NDVI has been related with biomass by several authors before (Foody et al., 2003; 

Zheng et al., 2004; Rahman et al., 2005). The SAVI and the WDVI correct for the 

soil background, what can be important in this area because although being of a high 

fractional vegetation coverage bears mostly short species. The gaps between the 

vegetation could influence the signal with the soil reflectance. The LAI was 

calculated in the forested part of the area derived from RSR index (Chen et al., 2002) 

getting high accurate results (Mengesha, 2005), so RSR was used to check its possible 

relationship with the biomass in the low-vegetation part. 

The four vegetation indices were obtained for each sample location and compared to 

the dry biomass weight from the aboveground vegetation collected in the same 

location in the field. 

The coordinates from the field samples where first converted from the Dutch Rijks 

Driehoek (RD) coordinate system into WGS-84 projection system. The field samples 

were then overlaid on the Hymap image to get the values of the vegetation indices 

corresponding to each sampling coordinate. Some uncertainties were found as the 
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location of each sample point was not the central point of a pixel. The maximum 

deviation between the sampling coordinates and the respective pixel centre is 2.91 

meters. Complete information about the pixel and sampling centres differences can be 

found in Appendix 2 (Table 21). 

In the regression analysis, evidence about the dependence of the biomass with the 

plant functional type and the managing methods (e.g. grazing) was found. This 

evidence was checked to be present also in the results of the image of the following 

year (2005) to demonstrate its consistency. In previous studies this differentiation 

between grasslands species and other herbaceous species has been done (Nichol and 

Lee, 2005). 

The process to get the relationship between the four vegetation indices and biomass 

was done using a cross-validation technique in which an equation is got from the VI-

biomass relationship of 20 samples while validating with the 21st. This process is done 

per PFT with all the samples. The Root Mean Square Error of the Cross Validation 

(RMSECV) and the Root Mean Square Error of Prediction (RMSEP) were calculated. 

 

 

 

Where: 

r= Measured biomass in the field. 

r’= Corresponding biomass according to the regression line. 

n= Number of biomass samples included in the analysis. 

The RMSECV analyses the difference in between the value of a sample and the 

predicted value at that point depending on the rest of the samples. Then, the validation 

is independent in this case from the field sampling in each point. 
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Where: 

r= Measured biomass in the field. 

r’= Corresponding biomass according to the regression line calculated from the rest of 

the measurements from the field. 

n= Number of biomass samples included in the analysis. 

The bands used to calculate the different vegetation indices were chosen because their 

reliability in the quality assessment of the image carried on in previous studies (Liras-

Laita, 2005; Mengesha, 2005). Table 11 gives an overview of the used bands. 

Table 11. Hymap bands and wavelength used in the calculation of the vegetation indices 

 Wavelength (nm) Hymap band (total 
126) 

Green (G) 497 5 

Blue (B) 573 10 

Red ( R) 650 15 

Near Infra-Red (NIR) 846 28 

Short-Wave Infra-Red (SWIR) 1661 82 
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3.6.1 NDVI analysis 

The formula used for calculating the Normalized Difference Vegetation Index 

(NDVI) was: 

 

(Rouse, 1974) 

3.6.2 WDVI Analysis 

The Weighted Difference Vegetation Index (WDVI): 

 

(Clevers, 1989) 

Where is the ratio of NIR to Red in the soil, it was calculated from a bare soil pixel 

in the research area and its value corresponds to 1,928. The bare soil reflectance curve 

can be found in Figure 26 (Appendix 3). It is hard to find a bare soil pixel inside the 

study area because of the high vegetation coverage; the spectrum corresponds to a 

pixel from a crossing path. 

3.6.3 SAVI Analysis 

The Soil Adjustment Vegetation Index (SAVI) was calculated according to: 

Where is the soil adjustment factor 

(Huete, 1988) 

From literature is known that the most common value used for  that has been used is 

0, 5 so that was the value considered in this study as well. 
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3.6.4 RSR Analysis 

The Reduced Simple Ratio (RSR) was taken from Chen et al. in 2002 

 

(Chen et al., 2002) 

The SWIR (Short Wave Infra-Red band) is considered to be band 82 corresponding to 

1661 nm; the SWIR (band 82) minimum and maximum reflectance values in the 

vegetated area respectively are 0 and 0.4051. 

The regression analysis was done for three sample sets (See Figure 26 in Appendix 3): 

- Whole dataset (n=21). 

- Grazed-grassland (n=7). 

- Herbaceous vegetation (n=14) 

Linear (y= ax + b) and exponential (y= a . e bx) or logarithmic (y= a.Ln(x) + b) 

relationships were considered as in previous studies it is demonstrated these are the 

ones explaining the relationship between vegetation indices and quantitative variables 

(Clevers, 1989). 

For every relationship R2, RMSEP and RMSECV were calculated to evaluate the 

strength of the relationship. 

3.6.5 Biomass map 

The biomass map was constructed with the results of the regression analysis applying 

the best relationship proportionally per coverage of PFT per pixel. The general 

formula applied was: 

B = Best.relation(GR) × (%grasslands)[ ]+ Best.relation(MH) × (%mixed − herbs)[ ] 

In the formula the best relationships VI-Biomass from previous step are used. The 

biomass estimated value was compared with the measured biomass from the field. 
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3.7 RADIATIVE TRANSFER MODELS 

The coupled model PROSPECT-SAIL (Jacquemoud, 1993) (Section 2.3.3) was used 

as a second approach to estimate biomass in the research area. The version of the 

model used is implemented in Interactive Data Language (IDL) with a user interface. 

In Table 12 and Table 13 an overview of the input parameters of the two models is 

presented. 

General average values from the main species per PFT were taken from literature 

review (Haselwimmer, 2005; Liras-Laita, 2005). The input parameters are highly 

species specific and the information available about the values is limited. Therefore, 

assumptions had to be made while applying these models in heterogeneous areas as 

there is no information available about the input parameters of all the species present. 

Table 12. Overview of the input parameters for Prospect model, their units and description. 

Table 13. Overview of the input parameters for Sail model, their units and description. 

Sail model 
Parameters Units Description 

Leaf Area Index (LAI) dimensionless Total one-sided leaf area per unit 
layer area 

ALA degrees Average leaf angle 
HS dimensionless Hot Spot parameter 
VZ radians View Zenith angle 
SZ radians Sun zenith angle 
Az radians Azimuth angle 
Soil spectrum %reflectance Background soil spectrum 

Leaf spectrum %reflectance Spectrum of a leaf corresponding 
to the simulated canopy 

Prospect model 
Parameters Units Description 

Structural parameter (N) dimensionless 

Number of compact layers 
specifying the average number of 
air / cell walls interfaces within 
the mesophyll 

Chlorophyll a and b content (Cab) mg/cm2 Concentration of Chlorophyll a 
and b in the leaves 

Leaf water content (Cw) cm 
Water content in the leafs in units 
of thickness of layer of water per 
surface area 

Leaf dry mass content (Cm) g/cm2 
Dry matter (protein+ 
cellulose+hemicellulose + sugar 
+ starch + lignin) per unit area 

Leaf brown pigment content (Cb) relat.units Brown pigment concentration 
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The first assumption made deals with the number of species considered in the model 

inversion. In this case study, four species where taken into account: Calamagrostis 

epigejos, Urtica dioica, Rubus caesius and Trifolium repens. The election of the 

species is based on the input data values available from literature. The rest of the 

species present are assumed to be represented by one of the four species used in the 

analysis. In the case of the Grazed-grasslands, they are all represented by Trifolium 

repens; Calamagrostis epigejos and Urtica dioica represent the herbaceous species 

and Rubus caesius is the shrub species used. 

The second assumption made is that each single pixel is considered homogeneous. 

Then, the output from the model inversion will be a combination of input parameters 

correspondent to one species. 

The two input parameters Dry matter content from the leaf level-Prospect model and 

the LAI from the canopy level-Sail model are directly related to biomass content in the 

canopy. 

A sensitivity analysis of the model was performed for these two input parameters 

(LAI and Dry matter content) towards checking if the models answered to variations 

in those inputs. Moreover, the relationship between this inputs and the vegetation 

indices coming from the simulated spectra were also studied. 

3.7.1 SENSITIVITY ANALYSIS 

The sensitivity analysis was carried out with the following steps: 

- Investigation of the common values of the studied variable. 

- The other input variables in the models are set in fixed values per species. 

- The value of the studied variable is changed each time the model is run. 

- With the resulting spectra, variations depending on the studied variable are 

checked and VI are calculated and also compared with the variable changed. 

- When the sensitivity analysis shows a variation of the output with a change in 

a variable, it means the model is sensitive to the magnitude of such change n 

the variable independently from the others.  
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LEAF AREA INDEX 

The sensitivity analysis was done for four species, namely Calamagrostis epigejos, 

Urtica dioica, Rubus caesius and Trifolium repens. The first three species were 

classified as belonging to mixed-herbs PFT while the fourth is grassland species. 

The Prospect model was first run for them, having as output the estimated reflection 

of the leaves in each case out of average input values. Then, SAIL model was carried 

out six times per specie with different values of LAI: 0.3, 1, 2, 3, 4 and 5. An 

overview of the input values used in the LAI sensitivity analysis is given in Table 14. 

Table 14. Parameters used for the LAI sensitivity analysis 

 

 Calamagrostis 
epigejos 

Urtica 
dioica 

Rubus 
caesius 

Trifolium 
repens 

N 1.4 1.5 1.5 1.875 

Cab (mg/cm2) 30 70 75 46.7 

Cw (cm) 0.008 0.008 0.01 0.01 

Cm (g/cm2) 0.003 0.002 0.005 0.003014 

Pr
os

pe
ct

 

Cb 0.05 0.1 0.1 0.05 

LAI 0.3, 1, 2, 3, 4, 
5 

0.3, 1, 2, 3, 
4, 5 

0.3, 1, 2, 3, 
4, 5 

0.3, 1, 2, 3, 
4, 5 

ALA (deg) 30 30 30 30 

HS 0.0125 0.0125 0.00319 0.0125 

VZ (rad) 0 0 0 0 

SZ (rad) 0.574 0.574 0.574 0.574 

Az (rad) 0 0 0 0 

Sa
il 

DF 0 0 0 0 
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DRY MATTER CONTENT 

Another sensitivity analysis was carried out to see how changes in the dry matter 

content in the leaves affect the canopy reflectance. In this case it is an input of the 

Prospect model the one that is studied but at the canopy level (Sail model). Five 

different values of Dry matter content (Prospect input) were used and the values of 

Sail model were fixed in average ones. 

The average values for all the inputs and the values used for Cm (Dry matter content in 

the leaves) are resumed in Table 15. 

With the results of the sensitivity analysis, a correlation study between the variables 

LAI and Dry matter content with the VI was done. The vegetation indices were 

calculated from the spectra got from the model for each simulation input parameters. 

Table 15. Input parameters for Dry matter content sensitivity analysis 

 

 Calamagrostis 
epigejos 

Urtica dioica Rubus caesius Trifolium repens 

N 1.4 1.5 1.5 1.875 

Cab 
(mg/cm2) 

30 70 75 46.7 

Cw (cm) 0.008 0.008 0.01 0.01 

Cm (g/cm2) 0.001, 0.002, 
0.003, 0.004, 
0.005 

0.001, 0.002, 
0.003, 0.004, 
0.005 

0.001, 0.002, 
0.003, 0.004, 
0.005 

0.001, 0.002, 
0.003, 0.004, 
0.005 

Pr
os

pe
ct

 

Cb 0.05 0.1 0.1 0.05 

LAI 3 3 3 3 

ALA (deg) 30 30 30 30 

HS 0.0125 0.0125 0.00319 0.0125 

VZ (rad) 0 0 0 0 

SZ (rad) 0.574 0.574 0.574 0.574 

Az (rad) 0 0 0 0 

Sa
il 

DF 0 0 0 0 

 



Chapter 3: Materials and Methods 

39 

3.7.2 MODEL INVERSION USING LOOK UP TABLES 

The way of getting biophysical variables from radiative transfer models is using 

modelling inversion (Atzberger, 2004). In this case the variables to get from the 

inversion are Cm and LAI. The inversion method that is applied in this case study is 

based on look-up-tables (Section 2.4 “model inversion” of this report gives an 

introduction) because of its simplicity at the same time it performs well (Weiss et al., 

2000). In this case, the inversion procedure was done only for the field work sample 

points. The aim of doing this inversion was to know if the technique could be used to 

estimate biophysical variables in a heterogeneous area as Millingerwaard. Four look 

up tables were prepared, each of them corresponding to one of the main four species 

in the area: Trifolium repens, Urtica dioica, Calamagrostis epigejos and Rubus 

caesius. 

The procedure followed to generate the look-up-tables was (Figure 15): 

- Set fixed values for all the input parameters but Cm and LAI per species. 

- Find out the most common values of Cm and LAI respectively per species. The 

number of simulations will depend on the number of values considered per Cm 

and LAI. The possibilities of simulating the image spectra increase with the 

number of simulations done. 

- Run the PROSPECT/SAIL model with each possible combination of Cm and 

LAI coming from the previous step. 

- Extract from each simulated spectrum the eight bands chosen for the inversion 

corresponding to the wavelengths: 550, 650. 900, 1100, 1470, 1650, 1900 and 

2230 nm. These bands have been chosen as representative of the crop spectra 

in the study area with the same criterion as the selection for the LSU 

classification procedure. The results of the inversion will directly depend on 

these bands. 

- Build a table in which each row gathers the eight bands reflectance values 

coming from the simulated spectrum of each combination of Cm and LAI. 
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Figure 15. .. Look-up-table generation scheme. n→n means all the members of the first rectangle were 
related independently with all the members of the second. n→1 means all the combinations were plot 
in a single LUT. 

The look-up-tables gather the spectra coming from simulations with Prospect-Sail 

model for different values of Leaf Area Index and Dry matter content. A total of 30 

simulations were done for Trifolium repens, Urtica dioica and Calamagrostis 

epigejos respectively and 42 for Rubus caesius. 

Every sample plot spectrum was compared with each of the 132 simulation spectra 

and the Root mean square error of prediction (RMSEP) calculated for each 

comparison. The minimum RMSEP correspond to the minimum distance between the 

measured and the simulated spectra. Then, the Cm and LAI values used for such 

simulation are supposed to be the correspondents with the measured spectra. 

After getting the simulated values of Cm and LAI per plot, the estimated leaf dry 

biomass of the plots is calculated by multiplying LAI * Cm. This estimated biomass is 

then compared with the measured biomass from the field. Estimated biomass is the 

dry biomass from the leaves. The measured biomass is both leaves and woody part 

dry biomass. Then, they cannot be directly compared. Nevertheless, they should be 

correlated as the measured biomass in the field is the biomass of the leaves plus the 

biomass of the stems and woody part. 

 

* Only in the case of Rubus caesius 

LAI= 5

LAI= 4

LAI= 3

LAI= 2

LAI= 1

LAI= 0.3Cm= 0.001 

Cm= 0.002 

Cm= 0.005 

Cm= 0.004 

Cm= 0.003 

Cm=0.006* 

Cm=0.007* 

 

LUT 
n→n n→1
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4 RESULTS 

4.1 PFT Classification 

The resulting maps after applying the MTMF and LSU classification techniques for 

the PFT are presented in Figure 16. The classification maps show that using the whole 

spectrum does not mean the classification performs better. In the classification done 

using 8 bands (maps 1 and 3), there is more patchiness of classes than in the 

classification done with all the bands in the spectra. This difference can be due to the 

use of noisy bands of the spectrum. According to the classification technique, LSU 

overestimate forest (in blue) that is confined to the eastern part in the reality. Mixed-

herbs are underestimated on the other hand. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. .. Linear Spectral Unmixing (1 and 2) and Mixture Tuned Match Filtering (3 and 4) 
comparison. In the figure, grasslands are represented in green, mixed-herbs in red and forest in blue. 
1 and 3 were classified with 8 bands and 2 and 4 with whole spectrum. Validation of the 
classification of the sample plots with MTMF and LSU respectively 
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Table 16. Estimated fractional coverage of Grasslands and Mixed-herbs from MTMF 
classification and LSU classification in the sample points. 

MTMF LSU 

GRASSLANDS  GRASSLANDS 

Location Class-grasslands Class-mixed-herbs Location Class-grasslands Class-mixed-herbs 

2 0.9185 1 2 0.5514 0 

5 0.6481 0.6318 5 0.7062 0 

13 1 0 13 1 0.8567 

14 0.9293 0 14 1 0 

15 0.5202 0.5875 15 0.3114 0 

19 0 1 19 0.9331 0 

21 0.8172 0.8425 21 0.6263 0 

MIXED-HERBS MIXED-HERBS 

Location Class-grasslands Class-mixed-herbs Location Class-grasslands Class-mixed-herbs 

3 0.8926 1 3 0.5185 0.1958 

4 0.7601 1 4 0.3601 0.0468 

6 0.5136 0.7022 6 0.3182 0.2227 

7 0.4433 1 7 0 0.3911 

8 0.7129 1 8 0.0251 0 

9 0.9156 1 9 0.1069 0 

10 0.8143 1 10 0.0457 0 

11 0.7727 1 11 0 0 

12 0.1863 0.9786 12 0 0.0199 

16 0 1 16 0 1 

17 0.4435 0.525 17 0.2065 0 

18 1 0 18 1 0.7414 

20 0.3921 0.2884 20 0.381 0 

22 0.6389 0.4712 22 0.6657 0 

 

Table 16 compares the results of the classification with the real classes in each sample 

point. The values 1 and 0 correspond to the set values after masking above 1 and 

negative values respectively. The values in bold correspond to points not classified as 
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grasslands or mixed-herbs with LSU method. Plots 8, 12 and 17 were classified as 

forest, plots 9, 10 and 11 as shrubs and plot 7 as agricultural area. With MTMF 

method, all the sample points were classified as grasslands or mixed-herbs. 

The validation shows how the endmembers were not spectrally independent enough to 

be properly classified. Frequency distribution plots were prepared for both grazed-

grasslands and mixed-herbs (Figure 17). They represent how mixed-herbs have been 

classified as more abundant in general. The picks in values 0 and 1 show the amount 

of pixels that had to be masked out because of having negative or above 1 values after 

the classification. 

 

 

 

 

 

 

 

 

Figure 17. .. Frequency distribution of Grazed-Grasslands and Mixed herbs from MTMF classification. 
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4.2 STATISTICAL ANALYSIS 

4.2.1 VEGETATION INDICES MAPS 

The maps coming from the calculations of the four vegetation indices are shown in 

Figure 18 and the minimum and maximum values of each vegetation index in the 

Millingerwaard are summarized in table 17. 

Table 17. Maximum and minimum value of each vegetation index. 

Index Minimum Maximum Mean Stdev 
NDVI 0 0.8913 0.0498 0.1837 
WDVI -4.147 5.5687 0.6289 1.3438 
SAVI -0.0163 0.1572 0.0059 0.0221 
RSR 0 11.826 0.3534 1.3592 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. .. Vegetation index’ maps calculated for the study area. 
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In general, in the vegetation index maps (Figure 18), we can see how the agricultural 

areas as the ones in the north with the shape of a rectangle and a triangle show the 

highest value (lightest). The forest, on the other hand, has the lowest values as can be 

seen in the eastern part of the area. The western area is where more grasslands and 

mixed-herbs are present; they have high NDVI, WDVI and SAVI. In the case of the 

RSR, nevertheless, the values are similar to the ones of the forest. 

4.2.2 STATISTICAL PART: Correlation VI-Biomass 

After correlating the values of the vegetation indices of the sample pixels with the 

measured biomass values of the sampling locations, VI-Biomass relationships were 

derived. The results of the correlation analysis with linear regression are presented in 

Table 18. The values for exponential and logarithmic regression can be found in 

Table 19. 

Table 18. Vegetation indices-biomass correlation analysis overview. Linear regression 
(y=ax+b). r2=correlation coefficient, SEP=Square Error of Prediction, SECV=Square Error of the 
Cross-Validation. 

LINEAR REGRESSION     
VI PFT n a B r2 SEP SECV 

Grazed-Grasslands 7 -0.0001 0.7796 0.0577 164.26 280.55 

Mixed-herbs 14 0.0003 0.5338 0.4321 160.39 178.75 
NDVI 

All 21 0.0002 0.6638 0.1381 231.84 251.53 

Grazed-Grasslands 7 -0.0026 39,414 0.2452 147.01 201.31 

Mixed-herbs 14 0.0035 10,125 0.559 141.34 163.41 
WDVI 

All 21 0.0014 24,814 0.127 233.33 262 

Grazed-Grasslands 7 0.00007 0.1231 0.3702 134.28 189.4 

Mixed-herbs 14 0.00008 0.0558 0.5713 139.36 163.32 
SAVI 

All 21 0.00005 0.0889 0.1091 235.71 266.51 

Grazed-Grasslands 7 -0.0023 41,702 0.0706 163.13 281.23 

Mixed-herbs 14 0.0033 19,737 0.2338 186.31 211.88 
RSR 

All 21 0.0019 28,722 0.0998 236.93 257.27 
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Table 19. Vegetation indices-biomass correlation analysis overview. Exponential and 
logarithmic regression. In red, the best correlations found for mixed-herbs and grasslands 
respectively are shown. These correlations will be later used to calculate the biomass map. 

EXP-LOG REGRESSION     

VI PFT n TYPE a b r2 SEP SECV 

Grazed-Grasslands 7 EXP 0.7704 -0.0002 0.0438 171.82 341.78

Mixed-herbs 14 LOG 0.2367 -0.729 0.62 163.08 179.62
NDVI 

All 21 LOG 0.058 0.392 0.1063 242.21 264.98

Grazed-Grasslands 7 EXP 39,019 -0.0008 0.249 153.11 215.37

Mixed-herbs 14 LOG 22,679 -11,236 0.7046 150.02 173.77
WDVI 

All 21 LOG 0.398 0.7674 0.0608 245.55 283.13

Grazed-Grasslands 7 EXP 0.1237 -0.0007 0.4057 135.4 177.03

Mixed-herbs 14 LOG 0.0477 -0.2008 0.6879 149.5 175.88
SAVI 

All 21 LOG 0.0068 0.0618 0.0386 248.36 287.21

Grazed-Grasslands 7 LOG 0.4854 61,628 0.038 170.97 368.96

Mixed-herbs 14 LOG 24,504 -11,589 0.3965 198.32 223.74
RSR 

All 21 LOG 0.7565 -0.07741 0.0939 248.08 271.13

 

The best correlation found for grazed-grasslands was the exponential with SAVI. The 

biomass of the mixed-herbs, nevertheless, was better correlated by a logarithmic 

relationship with WDVI (Table 19). That means the soil background is important in 

the total reflectance of the area, as these two indices are the ones that have it into 

account. 
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4.2.3 BIOMASS MAP 

The biomass map was calculated (Figure 19) using for the Grazed-grasslands the 

relationship SAVI-Biomass and for the Mixed-herbs the relationship WDVI-Biomass. 

The formula applied per pixel to get the final map of biomass was: 

( ) ( )[ ] ( ) ( )[ ]herbsmixedegrasslandsSAVILnB WDVI −××+×−×−= × %51.215%2.108618.616 3107.0

 

This map shows the biomass corresponding to the grassland and herbaceous 

vegetation in the area. The lightest parts are where the biomass of grasslands and 

mixed-herbs plant functional types is higher and the darkest parts show were the 

biomass of the formers is low. Indeed, the darkest areas in the map correspond to the 

forested area, because the analysed plant functional types are less abundant. 

In the corresponding frequency distribution (Figure 19), we can see the highest 

occurrence correspond to a biomass around 300 gr/cm2. 

A table with the comparison between estimated and field biomass values can be found 

in the appendix 3 (Table 22). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. .. Biomass map obtained for Grazed-grasslands and Mixed-herbs’ PFT. On the right, the 
corresponding frequency distribution. 
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Figure 20. .. Comparison between estimated biomass with statistical methods and measured biomass in 
the field. 

 

Figure 20 shows the comparison of the estimated biomass values with the measured 

values from the field. Estimated values have no correlation with the measured ones.  

The correlation between estimated biomass with statistical approaches and measured 

biomass in the field can be improved increasing the number of sampling plots. If the 

number of sampling plots is higher, the vegetation is better represented so the 

correlation relationships are probably more stable. 
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4.3 RADIATIVE TRANSFER MODELS ANALYSIS 

4.3.1 SENSITIVITY ANALYSIS 

The PROSPECT/SAIL models were used to carry out a sensitivity analysis for four 

species. Figure 21 shows the variation in the spectra of the canopy depending on the 

LAI value. Figure 22 shows the same approach with the Dry matter content in the 

leaves. 

 

 

 

 

 

 

 

Figure 21. .. LAI Sensitivity analysis for Urtica dioica, Trifolium repens, Calamagrostis epigejos and 
Rubus caesius. 

 

 

 

 

 

 

 

Figure 22. .. Dry matter sensitivity analysis results 
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From Figure 21, we can say the spectra of the canopy vary depending on the variation 

of LAI, what means the model is sensitive to this parameter. On the other hand, in 

Figure 22, the variation in between spectra of different Dry matter content is hardly 

visible. 

From the simulated spectra, values for the vegetation indices were calculated and 

compared to LAI and Dry matter content (Figure 29, Appendix 4). 

The vegetation indices grow exponentially with the increase of the LAI until reaching 

saturation. NDVI shows the lowest saturation level at a LAI=2 approximately. RSR is 

the vegetation index that shows more sensitivity to the variation of LAI. On the other 

hand, the vegetation indices decrease in a linear trend with the increase of the dry 

matter content in the leaves. In this case, we can see how the species Urtica dioica 

and Rubus caesius spectra are generally overlapping each other, probably due to their 

structural similarities. WDVI in this case show less sensitivity to the change in dry 

matter in the leaves than the rest of the vegetation indices studied. WDVI is more 

sensitive to the change in the NIR part of the spectrum than the rest of the indices. 

The NIR part of the spectrum reflects the multiple-scattering effects due to the 

structure of the vegetation. Thus, WDVI is more sensitive to variables in the canopy 

level than variables in the leaf level where no multiple-scattering is occurring. 

4.3.2 RTM inversion 

After creating the look-up-tables, each RMSEP was calculated per plot with all the 

different simulation spectra from the model. A table with the minimum RMSEPs per 

plot per LUT can be found in the appendix 4 (Tables 23 and 24). 

 

 

 

 

Figure 23. .. Correlation between estimated leaf biomass values and radiative transfer models and total 
measured biomass values in the field. 

Mixed-herbs
R2 = 0.5106

0

50

100

150
200

250

300

350

400

0 200 400 600 800 1000 1200 1400

measured total biomass

es
tim

at
ed

 le
av

es
 b

io
m

as
s

Grazed-grasslands

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600 700

measured total biomass

es
tim

at
ed

 le
av

es
 b

io
m

as
s



Chapter 4: Results 

51 

The grazed-grasslands field sample plots achieved the lowest value of RMSE with 

Rubus caesius simulations (Table 23). Nevertheless, in Figure 23, the graph 

corresponding to grazed-grasslands compares the measured biomass in the field and 

the estimated biomass assuming Trifolium repens is the only species present. 

The inversion of the herbaceous plots resulted in all the plots estimated as Rubus 

caesius but one (plot number 16). Plots number 16 and 18 correspond to samples on 

the beach area with total vegetation coverage of 15% and 30% respectively. The 

estimated LAIs correspond to 1 what means the inversion performs in a realistic way. 

The comparison of estimated biomass from the model inversion and measured 

biomass in the field was done by plotting the values in a graph per plant functional 

type. In figure 23, the two graphs for grasslands and mixed-herbs are shown. 

For grasslands, no correlation was found. For mixed-herbs it looks the predicted 

values are correlated with the measured values (R2= 0.5106). 

Estimates of LAI in the study area were done in previous studies (Schmidt, 2005) 

derived from RSR (Chen et al., 2002) with an empirical correlation RSR-LAI in the 

forest. In Figure 24, previous estimations of LAI in the area are compared with the 

estimations from this case study. 

 

 

 

 

 

 

 

Figure 24. .. Comparison between LAI estimates of previous studies in the area with LAI estimates in 
this case study 
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5 DISCUSSION 

5.1 STATISTICAL APPROACHES ESTIMATING BIOMASS 

5.1.1 Vegetation index maps 

The maps resulting from the vegetation indices calculation (Figure 18) give already 

an idea about the indices that best can estimate biomass in the research area. Having 

into account the high vegetation heterogeneity of the Millingerwaard, we can check if 

such heterogeneity can be detected in the maps. At a first glance, differentiation 

between different plant functional types (with the help of knowledge about the spatial 

distribution of such plant functional types in the area), can be detected in the four 

vegetation indices maps (Figure 18). Both the NDVI and the RSR maps look more 

homogeneous than the other two: WDVI and SAVI. This is a first overview of the 

performance of the different vegetation indices estimating biomass. 

5.1.2 VI-Biomass relationship 

Several authors suggest on theoretical and empirical grounds that the simple ratio is 

best related with LAI (Steinmetz, 1990) while others have supported the use of NDVI 

(Gallo et al., 1993). In Figure 29 (Appendix 4), nevertheless we can see how NDVI is 

the index that reaches the saturation point at a lower LAI. The estimation of LAI is 

directly related with the estimation of biomass as both are quantitative biophysical 

variables. 

In this case, the image used is a hyperspectral narrow-band image. From literature it is 

known that the narrow band combinations respond differently to a variation in 

biomass. (Mutanga, 2004). This can be due to the uncertainty in the determination of 

the Red band. In the case of the NIR band, as there is a plateau in typical vegetation 

spectra, there should be no problem. 

Huete (1985) stated that the sensitivity of vegetation indices to the soil background is 

greatest with intermediate levels of vegetation cover (Huete et al., 1985). At very high 

densities there is not enough soil signal emerging from the canopy to be of 
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significance (Huete, 1988). In the case of this study, although the coverage percentage 

is high, the dominant species in the area are short, so the soil reflectance has a higher 

influence than in the case of higher vegetation species as for example in forest areas. 

This could explain the good results with SAVI and WDVI in herbaceous vegetation. 

In the cases of soil lines not substantially different from the normal assumed in the 

ratio indices SR (in which RSR is based) and NDVI, these indices give better results. 

On the contrary, in the cases in which the soil spectrum plays an important role, SAVI 

has given better results (Lawrence and Ripple, 1998). Analogously, WDVI is also 

supposed to be a good estimator like SAVI because it takes the soil background into 

consideration as well. 

In the results of this research, the NDVI index was not good at predicting biomass in 

the area. Already in the map (Figure 18) is visible how there is no clear differentiation 

of features. The reason of this fact can be the lower saturation point of LAI for NDVI. 

In dense vegetated areas where the coverage is high, the variation of biomass is only 

reflected in the NIR part of the spectrum. In high vegetation covered areas, the 

variation in biomass is only dependant on the quantitative variables as canopy height. 

These variables can only be detected by the scattering that at the same time is only 

detected by the NIR part of the spectra. Then, indices as the NDVI are not able to 

differentiate quantitative variables and tend to reach an asymptote in their relationship 

with such variables (in Figure 29 NDVI is the index with the lowest saturation LAI 

value around 2). The quantitative variables estimations in these areas would be helped 

with techniques as Lidar (Ni-Meister et al., 2001). 

Clevers already in 1989 and other authors later explained how the vegetation indices 

reached a saturation level in their relation with biophysical variables. This means they 

become insensitive to the increase of such variables at a certain point (Clevers, 1989; 

Thenkabail et al., 2000). Given this limitation, there is a need to develop or improve 

techniques that can accurately estimate biomass in more densely vegetated areas. That 

is why radiative transfer models are being lately inverted to get biomass from other 

source different from vegetation indices. 

The relationship in the case of WDVI and SAVI is far better than the one with NDVI 

(Table 19), that means that possibly the soil influence in the area is high. In the case 
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of the grasslands, where the relationship biomass-VI is quite weak, the soil influence 

can be important as the vegetation is short. Moreover, WDVI and SAVI are sensitive 

to the variation in the NIR part of the spectrum and the multiple-scattering 

phenomenon is only detected in this part of the spectrum. So in high vegetated areas, 

WDVI and SAVI are expected to estimate better quantitative variables. 

The RSR index is considered to be directly related with the biophysical variable Leaf 

Area Index (LAI) (Chen et al., 2002). In this case, the relationship of this index with 

biomass is not good (Tables 18 and 19). 

The dependency of VI-biomass relation with the plant functional types can be 

justified by differences in plant and leaf structures. Herbs are non-woody vegetation 

so the dry weight is far smaller in comparison to shrubs. Furthermore, the vegetation 

indices give information about the vegetation health, so young healthy herbs would 

have high vegetation indices and very low biomass and woody not that healthy shrubs 

would have the contrary. Therefore, the relation between biomass and vegetation 

indices was derived per PFT. 

The calculated biomass map using statistical approaches (Figure 19) looks like 

realistic. However, the biomass in the sample points is not well-estimated (Figure 20 

and Table 22). This can be solved getting more accurate relationships what can be 

done by increasing the number of sample points in the field. 
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5.2 RADIATIVE TRANSFER MODELS 

A simple approach was carried out to get biomass by inverting radiative transfer 

models. The main aim of this approach was to find out if it was suitable to retrieve 

quantitative biophysical variables in a heterogeneous area like Millingerwaard. 

The sensitivity analysis showed the study species were similar in spectral 

characteristics and their reflectance curves overlapped (Figures 21 and 22). The 

models are more sensitive to LAI (input for the canopy level-model Sail) than to dry 

matter in the leaves (input for the leaf level-model Prospect). 

The LUT were prepared only for four of the species present in the area. This decision 

was taken because of the lack of input information for other species. All the 

grasslands species were assumed to have identical spectrum as Trifolium repens. All 

the mixed-herbs were assumed to behave as one of those 3 species: Urtica dioica, 

Calamagrostis epigejos and Rubus caesius. In the inversion procedure, each pixel of 

the image was assumed to behave as if it was homogeneous in one of the four species 

considered. 

As all the grassland plots were assumed to behave as if they were homogeneously 

covered by Trifolium repens, the estimated biomass from the inversion was not well 

correlated with the measured biomass in the field (Figure 26). This fact can also be 

seen in Table 23 (Appendix 4) where the grazed-grasslands plots do not achieve the 

lowest RMSEP with a simulated spectra coming from Trifolium repens. Indeed, 

Trifolium repens has an average fractional cover of 25.71% (Table 9) in the grazed-

grasslands sample plots. Then, it can be concluded Trifolium repens is not 

representative enough of the grasslands PFT. The statistical results already showed it 

was difficult to well-estimate biomass for grasslands’ PFT (Tables 18 and 19), and the 

PFT classification also achieved worse results for this PFT (Table 16). 

The mixed-herbs biomass was better predicted (Figure 23). A first reason for this is 

that, this PFT was better represented as three species spectra were simulated. 

Secondly, Rubus caesius has a proportional fractional coverage of 34.93% and 

together with Urtica dioica and Calamagrostis epigejos, 57.5%. Moreover, more 
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simulations were included in the Rubus caesius LUT as the Cm values from literature 

had a bigger range (0.001-0.007 for Rubus caesius compared to 0.001-0.005 for the 

rest of the species). 

5.3 PLANT FUNCTIONAL TYPES & HYDRAULIC RESISTANCE 

5.3.1 PFT behaviour 

It is source of further study the different sign in the VI-Biomass regression lines 

depending on the plant functional type. In the case of the Grazed-Grasslands the VI 

are inversely correlated with biomass (Figure 27). This inverse correlation was 

unexpected but at the same time consistent having into account the results of the 

sensitivity analysis of Dry Matter content with the PROSPECT-SAIL coupled model 

(Figure 22). 

With the information of the resulting biomass map (Figure 19) and the Nikuradse 

value per PFT (Figure 3), an overall idea about the hydraulic resistance can be drawn. 

The lightest areas in the biomass map correspond to the highest biomass values. As 

the biomass map has been calculated only for grasslands and mixed-herbs, the highest 

values correspond to mixed-herbs (do not forget also the dominant species of shrubs 

Rubus caesius is included). According to Figure 3 (Section 2.2), the thorn-shrubs-

subtype is the one with the highest hydraulic resistance. Rubus caesius is a thorn 

shrub, so the areas dominated by Rubus caesius then, have a high hydraulic 

resistance. 

Looking at the map of Figure 19, we can say in the west-northern part of the image 

where the biomass is the highest (leaving apart the triangular agriculture field), the 

hydraulic resistance could also be relatively high. Meanwhile in the forested areas 

(dark areas) the hydraulic resistance is intermediate according to the values in Figure 

3. The rest of the image in which biomass is low due to be dominated by grasslands, 

there must be almost not resistance to flooding. 
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5.4 Possibilities of up-scaling the methodology with Landsat images 

The use of radiative transfer models for estimating biomass using Landsat images has 

not being assess by any author before. Nevertheless, its possibility is matter of future 

studies. 

The methodology used in this thesis can be tried to be applied with Landsat images 

using unmixing classification techniques as suggested by Smith (1990) and sub-pixel 

model inversion as suggested by Weiss (2000). 

In that way, the problem of the higher spatial resolution of Landsat images (30x30 m) 

compared with Hymap can be dealed by applying sub-pixel techniques. 
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6 CONCLUSIONS AND RECOMMENDATIONS 

From this study we can conclude statistical approaches estimating biomass in a 

heterogeneous area are highly dependent on the presence of different plant functional 

types. The vegetation indices do not have comparable values between different 

vegetation types, and then there is no single absolute relationship applicable to the 

whole area. 

The result applying statistical approaches estimating biomass looks realistic. 

Nevertheless, the estimated biomass values differ highly from the measured values in 

the field. The indices that had the best correlation with biomass were the Weight 

Difference Vegetation Index (WDVI) and the Soil Adjust Vegetation Index (SAVI). 

Radiative transfer modelling inversion is a promising technique that needs large 

species-specific information. On the other hand is not site specific so there could be a 

possibility of up-scaling or applying this methodology to other similar vegetated 

areas. 

Hydraulic resistance, as dependant on PFT can be spatially monitored. The spatial 

distribution of plant functional types can be an estimation of the spatial distribution of 

biomass. Moreover, in the cases in which a plant functional type’s map is available, 

the biomass distribution can give information about the density of such PFT. Higher 

vegetation densities (understood as Biomass/volume) would mean higher hydraulic 

resistance. 

Furthermore, when floodplains belong to nature areas and the ecological value is tried 

to be preserved, biomass mapping is a tool to quantify the environmental impact of 

the river management process (e.g. side channels). 

The application of statistical approaches estimating biomass using Landsat images has 

been done in previous studies (Section 2.4). The recommendation in the case of 

heterogeneous natural areas is doing a previous PFT’s classification. 

Radiative transfer modelling has not been done with Landsat images yet. The main 

differences between Landsat and Hymap images are the spatial resolution (30x30 m 

in the case of Landsat and 5x5 m in the case f Hymap) and the availability of spectral 
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bands. To deal with the problem of spatial resolution, an unmixing classification and a 

subpixel-inversion technique can be applied. 

Possible further applications with this research methodology 

One possible application of the methodology applied in this case study is getting 

temporal biomass maps. In this way, monitoring land degradation in the area by 

means of loss of productivity can be assessed. Moreover, it can be studied such 

degradation depending on each plant functional type. 

In a similar way, further study can be done concerning relative growth and the impact 

of different external factors in such growth. By these external factors is meant not 

only climate conditions but also physical conditions as soil type or contamination, 

slope, water availability etc. 

The hydraulic resistance analysis can be an approach suitable for erosion-affected 

areas, for example Mediterranean countries; so it would be possible to fight against 

violent flooding and consequent loss of soil structure. 

Some recommendations for similar future studies 

In relation with the field sampling design, it should be done assuring enough 

representation of all the plant functional types present. 

Before biomass cutting, spectral measurements of the sampled area should be made. 

In this way, the vegetation indices derived from these spectral signatures would be 

better correlated with the biomass samples. Then, heterogeneous sampling plots 

would not give problems of representation of the biomass samples. 

Moreover, if samples are weighted in wet and dry conditions, further studies about 

influences of water content in vegetation indices could be done (Ceccato et al., 2002). 

Weighting homogeneous species samples separating woody part from leaves, would 

provide leaves/total biomass relationship. If the former relationship is available, the 

biomass mapping by inversion of radiative transfer models could be done in terms of 

total biomass instead of leaves biomass. 
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A sub-pixel model inversion can be tried so the assumption of treating each pixel as 

species-homogeneous would not need to be taken (Weiss, 1990).
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Figure 25. .. Map of the area affected by the project Freude am Fluss
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Table 20. Height, coverage and dominant species per sampling plot 

Samples Height 
(cm) 

Most common specie Coverage 
(%) 

PFT 

2 2-4 Trifolium repens 100 Grazed-
Grasslands 

3 110-
120 

Rubus caesius 100 Mixed Herbs 

4 130 Rubus caesius 100 Mixed Herbs 

5 3-20 Poa annua 100 Grazed-
Grasslands 

6 100 Rubus caesius 95 Mixed Herbs 

7 120 Lythrum salycaria 100 Mixed Herbs 

8 100 Epilobium 
tetragonum 

95 Mixed Herbs 

9   Rubus caesius 100 Mixed Herbs 

10 100 Calamagrostis 
epigejos 

100 Mixed Herbs 

11 80 Rubus caesius 100 Mixed Herbs 

12 130 Rubus caesius 100 Mixed Herbs 

13 5 Potentilla reptans 95 Grazed-
Grasslands 

14 35 Potentilla reptans 90 Grazed-
Grasslands 

15   Cynodon dactylon 100 Grazed-
Grasslands 

16 80 Cirsium arvense 15 Mixed Herbs 

17   Calamagrostis 
epigejos 

70 Mixed Herbs 

18 30-60 Saponaria 
officinalis 

30 Mixed Herbs 

19 35 Festuca rubra 80 Grazed-
Grasslands 

20   Calamagrostis 
epigejos 

90 Mixed Herbs 

21 10 Trifolium repens 95 Grazed-
Grasslands 

22 100 Urtica dioica 80 Mixed Herbs 
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Figure 26. .. Spectral curves of the 21 sample plots 
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Table 21. Sample coordinates and the pixel centre in which they are located. The highlighted 
numbers show the differences higher than 2 metres in the Northing and Easting coordinates values. 
The last column corresponds to the total distance between sampling and pixel centres. 

plot 
nr Field samples coordinates Pixel location Deviation 

Centres 
deviation 

  Northing (N) Easting (E) Northing (N) Easting (E) N deviation E deviation   

2 5750403.686 706161.885 5750402.5 706162.5004 1.186 -0.6154 1.336156113 

3 5750405.912 706149.765 5750407.5 706147.5004 -1.588 2.2646 2.765891748 

4 5750447.425 706129.26 5750447.5 706127.5004 -0.075 1.7596 1.761197649 

5 5750453.35 706151.535 5750452.5 706152.5004 0.85 -0.9654 1.286272584 

6 5750543.614 706194.569 5750542.5 706192.5004 1.114 2.0686 2.349489723 

7 5750559.715 706235.616 5750557.5 706237.5004 2.215 -1.8844 2.908124543 

8 5750583.878 706230.492 5750582.5 706232.5004 1.378 -2.0084 2.435683592 

9 5750685.955 706178.455 5750687.5 706177.5004 -1.545 0.9546 1.816118432 

10 5750836.457 706090.153 5750837.5 706092.5004 -1.043 -2.3474 2.568683663 

11 5750851.326 706112.493 5750852.5 706112.5004 -1.174 -0.0074 1.174023321 

12 5750990.334 706080.374 5750992.5 706082.5004 -2.166 -2.1264 3.03531431 

13 5751016.619 706027.505 5751017.5 706027.5004 -0.881 0.0046 0.881012009 

14 5750813.683 705962.661 5750812.5 705962.5004 1.183 0.1606 1.193851482 

15 5750732.783 705967.92 5750732.5 705967.5004 0.283 0.4196 0.506115757 

16 5750591.248 705833.25 5750592.5 705832.5004 -1.252 0.7496 1.459247807 

17 5750550.535 705843.106 5750552.5 705842.5004 -1.965 0.6056 2.056204357 

18 5750475.527 705818.08 5750477.5 705817.5004 -1.973 0.5796 2.056371844 

19 5750485.242 705891.859 5750487.5 705892.5004 -2.258 -0.6414 2.347329964 

20 5750504.121 705919.147 5750502.5 705917.5004 1.621 1.6466 2.310613027 

21 5750310.889 705867.027 5750312.5 705867.5004 -1.611 -0.4734 1.67911541 

22 5750110.272 705705.724 5750112.5 705707.5004 -2.228 -1.7764 2.849487842 
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Figure 27....Relationship VI-Biomass per PFT
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Figure 28. .. Spectrum of the bare soil considered to calculate the a parameter for WDVI. 

Table 22. Comparison between estimated biomass with statistical methods and measured 
biomass in the field. 

 Grazed-grasslands 
 Plot# Field Estimated 
 2 142.88 1485.29
 5 142.08 601.1284
 13 127.32 1949.868
 14 572.44 479.787
 15 395.96 516.6091
 19 489.64 379.7194
 21 258.68 760.2605

 

 

 

 

 

 

 

 

 

 

 

Mixed-herbs 
Plot# Field Estimated 

3 623.08 1361.92 
4 715.68 984.3438 
6 580.8 589.7888 
7 602.36 1128.922 
8 709.72 1083.408 
9 714.48 1332.929 

10 736.56 1126.22 
11 1164.64 1200.339 
12 741.24 645.891 
16 368.24 340.5791 
17 646.08 444.8405 
18 241.88 1676.441 
20 508.52 303.2381 

22 371 546.3275 
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Figure 29. .. Influence of Dry matter content and LAI in the vegetation indices.
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Table 23. Radiative transfer models inversion results for grazed-grasslands plots. RMSE: Root Mean Square Error, Cm: Dry matter content in the leaves, LAI: Leaf 
area index. The values in bold represent the lowest RMSE achieved per plot. 

Sample plots   2 3 4 5 6 7 8 9 10 11 
RMSE 0.090774 0.089281 0.09008 0.091942 0.09633 0.084267 0.087649 0.08908 0.089776 0.088694 
Cm 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

Trifolium 
repens 

LAI 3 3 2 2 2 3 3 3 2 3 
RMSE 0.090809 0.08946 0.08889 0.091916 0.094441 0.083201 0.086354 0.088862 0.087771 0.088459 
Cm 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

Calamagrostis 
epigejos 

LAI 4 4 3 2 2 3 3 3 3 3 
RMSE 0.090805 0.089245 0.088922 0.091584 0.093806 0.08315 0.087788 0.089889 0.089064 0.089745 
Cm 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 Urtica dioica 
LAI 4 4 3 2 2 3 3 3 3 3 
RMSE 0.086338 0.084667 0.078881 0.080772 0.080225 0.07319 0.080686 0.08493 0.081367 0.084884 
Cm 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 Rubus caesius 
LAI 5 5 3 3 2 4 4 4 3 4 

Table 24. Radiative transfer models results for mixed-herbs plots. RMSE: Root Mean Square Error, Cm: Dry matter content in the leaves, LAI: Leaf area index. The 
values in bold represent the lowest RMSE achieved per plot. 

Sample plots   3 4 6 7 8 9 10 11 12 16 17 18 20 22 
RMSE 0.089281 0.09008 0.09633 0.084267 0.087649 0.08908 0.089776 0.088694 0.089437 0.108623 0.097058 0.117384 0.099795 0.129294 
Cm 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

Trifolium 
repens 

LAI 3 2 2 3 3 3 2 3 2 1 2 1 2 2 
RMSE 0.08946 0.08889 0.094441 0.083201 0.086354 0.088862 0.087771 0.088459 0.088266 0.106354 0.094329 0.116913 0.097085 0.123582 
Cm 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

Calamagrostis 
epigejos 

LAI 4 3 2 3 3 3 3 3 2 1 2 2 2 2 
RMSE 0.089245 0.088922 0.093806 0.08315 0.087788 0.089889 0.089064 0.089745 0.089675 0.109768 0.095919 0.120704 0.097485 0.124947 
Cm 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 Urtica dioica 
LAI 4 3 2 3 3 3 3 3 2 1 2 1 2 2 
RMSE 0.084667 0.078881 0.080225 0.07319 0.080686 0.08493 0.081367 0.084884 0.076813 0.108315 0.082712 0.113236 0.084145 0.108294 
Cm 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 Rubus caesius 
LAI 5 3 2 4 4 4 3 4 3 1 2 1 2 2 
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