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Abstract 
Up-to-date and reliable land cover information is vital for many decision-making processes. 

Though the developments of satellite remote sensing greatly improved land cover 

information acquisition, there are still unaddressed problems to achieve the intended 

accuracy level. One of such problems is the mixed pixel. Soft-classification techniques were 

introduced to address the problem; but they do not show the spatial location of the classes’ 

proportions in a pixel. Sub-pixel mapping techniques that transform the soft-classification 

results into hard-class maps at sub-pixel scale were introduced to address the drawbacks of 

soft-classifications. In this thesis, an artificial neural network (ANN), specifically the 

feedforward backpropagating neural network (FFBPNN) was used for sub-pixel mapping.  

To prepare the input fraction images, which are to be treated as soft-classification results, the 

LGN5 database was thematically aggregated into 2, 4 and 8 thematic classes. Then, these 

thematically aggregated data were spatially aggregated into three spatial resolution sizes, 

namely, 75m, 150m, and 300m. The three chosen thematic classes and three spatial 

resolutions end up in 9 different combinations that are considered as study cases in this thesis 

work. The fraction images were used to train several FFBPNN. After training and selecting 

the best network, each case was simulated using the fraction image of two small sites to 

reconstruct the 25mx25m sub-pixel hard-class map. These sites were selected from the 

Southwest and Southeast of the Netherlands to examine the effect of the land cover 

heterogeneity. The overall accuracies obtained revealed that the response of the network was 

highly influenced by the spatial frequency, shape and size of the different land covers. 

Moreover, it revealed that most of the errors are on class boundaries where highly mixed 

pixels are expected. The accuracies achieved had a wide range depending on the complexity 

of the cases. In general, the overall accuracies ranged from 38.05 % (complex cases) to 98.97 

% while the Kappa coefficients ranged from 0.14 to 0.97. Although it was not possible to 

exhaustively explore all network architectures for the various case studies, the results 

achieved demonstrated the potential of the FFBPNN for sub-pixel mapping. 

Keywords: Sub-pixel, land cover, neural networks, class fraction, target  
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Chapter 1 
INTRODUCTION 

1.1 Background 

Remotely sensed images are an important source of information for land cover mapping at 

local, regional and global scales. The advent of satellite remote sensing, coupled with other 

parallel developments in computer technology and processing techniques, has enhanced and 

diversified the potential application of satellite remote sensing to extract land cover 

information. However, due to hardware and cost limitations, imaging systems often provide 

us with multiple low resolution images (Molina et al. 2003). 

 

Remote sensing images usually exhibit either high spectral resolution and low spatial 

resolution, or low spectral resolution (broadband) and high spatial resolution, but not both 

(Ranchin et al. 2003). There is a growing effort to combine such different qualities of 

sensors. This requires appropriate and advanced processing techniques to match the spectral 

and spatial tradeoff (Tatem et al. 2003) and extract maximum information from it. Amongst 

these processing techniques, sub-pixel mapping using class proportion fractions obtained 

from a sub-pixel classification, is becoming one of the subjects of research. Without solving 

the problem of mixed pixels, it is likely that the full potential of remote sensing as a source of 

land cover information will remain unrealized (Foody 2004).  

 

Sometimes, conversion of data from coarse to fine resolution or vise-versa is a necessary step 

in order to match and integrate different data with different resolution and application scale 

requirements. But coarse spatial resolution data may be dominated by mixed pixels (e.g. 

Figure 1.1); and these mixed pixels are often a source of error as pure pixels are often 

assumed (Atkinson et al. 1997; Foody 1997; 2004). Though the mixed pixel problem is 

relatively small in images with high spatial resolution, acquiring such data has limitations 

such as cost, temporal resolution and high volume of data. Sub-pixel mapping from classes 
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proportion fractions (typically from soft classification) is one of the newly introduced 

techniques to overcome mixed pixel problems in low spatial resolution images. 

 

 

Figure 1.1  Four causes of mixed pixels  (Fisher 1997) 

 Sub-pixel mapping enables to locate the class proportions at sub-pixel level and minimizes 

such information loss. Some researches on this technique proved the possibility of creating a 

super resolution map from a coarse resolution map. Tatem et al. (2001a; 2001b; 2001c; 2002; 

2003), for instance, introduced a Hopfield Neural Network (HNN) for sub-pixel mapping and 

demonstrated its potential for various land cover applications. Determining sub-pixel 

information is considered as down scaling (Liang 2004).  

 

The focus of this thesis is to examine the potentials and limitations of artificial neural 

networks, specifically feedforward backpropagating neural networks (FFBPNN), for sub-

pixel mapping. The backpropagating method, presented in 1986 by Rumelhart et al. is one of 

the most commonly used neural networks (Paola and Schowengerdt 1995). Though the 

fraction images used in this case are from existing land cover maps, the demonstration is 

supposed to be applicable also to sub-pixel mapping from soft-classification results of 

remotely sensed images. 

1.2 Problem definition 

1.2.1 General Problem – mixed pixels  

Spatial scaling is an important aspect in remote sensing and GIS analysis. For integrating and 

matching various data obtained at local, regional or global scale, re-scaling is a fundamental 

step. Remotely sensed imagery with moderate and coarse spatial resolutions is ideal for 

 2
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regional and global scales since large contiguous regions are completely covered and data are 

provided synoptically; however, such a coarse resolution images have mixed pixels 

(Atkinson et al, 1997). Soft classification algorithms may be more appropriate than the per-

pixel classifiers for classification of images dominated by mixed pixels (Xu et al. 2005).  

 

Moreover, aggregating of images to coarser spatial resolutions often causes a mixed pixel 

problem. Most images acquired from remote sensing satellites also have a mixed pixel 

problem. Occurrence of mixed pixels in remote sensing images is a major problem 

particularly at coarse spatial resolutions (Foody 1997; Kasetkasem et al. 2005).  

1.2.2 Specific problem: sub-pixel mapping 

The solution to the mixed pixel problem centers on sub-pixel classification, which may be 

used to predict the proportion of each class within each pixel (Tatem et al. 2001d; 2003). 

Sub-pixel classification techniques can only provide the estimates of class compositions of a 

pixel. Locating class proportions within each pixel is among the limitations of sub-pixel 

classification. It does not show the exact distribution of these class components within each 

pixel. Therefore, the resultant prediction still contains uncertainty (Tatem et al. 2003). 

Moreover, Tatem et al. (2003) and Foody (2004) stated that the complexity of the datasets 

produced from soft classification may be large and more difficult to interpret and this puts 

many GIS users off using soft classification techniques since users typically want easy to use 

map products. To overcome such drawbacks, sub-pixel mapping techniques are suggested by 

many authors. Atkinson (1997) introduced this concept of sub-pixel mapping (Mertens et al. 

2004). The key problem of sub-pixel mapping is determining the most likely locations of the 

fractions of each land cover class within the pixel (Verhoeye and De Wulf 2002). Sub-pixel 

mapping, which is the topic of this thesis, is clearly distinct from sub-pixel classification: 

sub-pixel mapping uses fractions (e.g. resulting from sub-pixel classification) in order to 

retrieve an appropriate spatial location and transform into a finer scaled hard classification 

(Mertens et al. 2004).  
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To overcome the limitation of soft-classification in a mixed pixel problem, researchers have 

developed different techniques. Sub-pixel mapping using a neural network and particularly 

the Hopfield Neural Network introduced by Tatem et al. (2001a) is one of those promising 

techniques. The solution for sub-pixel mapping problems is mainly based on an assumption 

of spatial dependency within and between pixels; i.e., objects close together should be more 

alike than those further apart (Atkinson et al. 1997; Tatem et al. 2001a; Verhoeye and De 

Wulf 2002; Mertens et al. 2003)( see Figure 1.2).  

 

 

Figure 1.2.a) a 3x3 grid with class fractions is discretised into 5x5 grids, (b) and (c) without and with 

considering spatial dependency (Verhoeye and De Wulf, 2000 & 2002, After Atkinson, 1997).

 

Since sub-pixel mapping is a relatively recent technique, the possibilities and limitations of 

the various sub-pixel mapping techniques are not exhaustively studied yet. Studies on the 

application of ANN for sub-pixel mapping are very limited. Although the potential of sub-

pixel mapping using ANN is acknowledged by some studies, researches using real data are 

not exhaustively explored. Existing studies are conducted mostly based on a very small area 

and/or very few classes. This does not exhaustively show possibilities and limitations of 

ANN for sub-pixel mapping. The performance also may depend on the study area (difference 

in spatial frequency). Therefore, this study will try to explore the performance of FFBPNN in 

a relatively large study area; and see the influence of changing the number of classes using a 

real land use database in the context of Netherlands’ land cover.    

 4
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1.3 Study area 

For this study, training samples were extracted from the land cover data of the entire 

Netherlands and two subset locations were used for simulation (real implementation of sub-

pixel mapping) purposes. The trained neural network was presented (simulated) with two 

new data sets that cover a small part of the country. The two locations that have relatively 

heterogeneous land cover were selected from the Southwest and Southeast part of the country 

(Figure 1.3).   

 

The geographic location of site 1 is 51°46’3’’N-51°59’17’’ N and 4°1’58’’E-4°23’19’’E. 

Site 2 is located between 51°11’38’’N-51°24’55’’N and 5°40’29’’E-6°1’52’’E. The two sites 

have 993x993, 984x984, and 972x972 pixels for the study cases with 75mx75m, 150x150m 

and 300m low resolution images, respectively. 

 
Figure 1.3 Location map of the study area 
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1.4 Objectives 

The main objective of this thesis work is to explore the possibilities and limitations of 

artificial neural networks (ANN) for sub-pixel mapping with a specific application to the 

land use database of The Netherlands (LGN). The performance of feedforward 

backpropagating neural networks (FFBPNN) in predicting locations of class proportions 

within each pixel and the accuracy of the resulting super-resolution map will be assessed at 

various levels (the response with change of degradation cell size and number of classes). It 

will mainly focus on the interrelated techniques of sub-pixel mapping and deriving a super-

resolution land cover map from up-scaled (degraded) images. Sub-objectives are: 

 
• To assess the effect of change in spatial resolution and number of thematic classes on 

the performance of the FFBPNN for sub-pixel mapping; 

• to demonstrate the approach on sub-pixel mapping using a neural network for multi-

resolution and multi-class data; 

• to see the effect of varying spatial and thematic aggregation levels for sub-pixel 

mapping using FFBPNN with respect to shape, size and spatial frequency. 

 

1.5 Research questions 

Aforementioned objectives will enable to answer questions like: 

 

• What are the overall limitations and possibilities of the FFBPNN for sub-pixel 

mapping?  

• How is the capability of the FFBPNN for pattern/location prediction of sub-pixels 

within a pixel at the different spatial and thematic aggregation levels?  

• Is there a change in accuracy with change in spatial frequency, shape and size of the 

cover types (e.g. urban and agriculture)? 
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1.6 Set-up of the thesis report 

This thesis report consists of five chapters including this one. The second chapter deals with 

the general concepts and review of related works focusing on sub-pixel mapping and 

artificial neural networks.  

 

The third chapter covers the materials and methods employed. This includes data preparation 

(thematic and spatial aggregation, training, testing and validation sample selection), ANN 

implementation (neural network training and evaluation) and accuracy assessment.   

 

The fourth chapter presents and discusses the results and findings of this thesis work. Finally, 

the fifth chapter presents the conclusions and recommendations of this thesis work.  



 

 8 

Chapter 2 
GENERAL CONCEPTS AND REVIEW OF LITERATURES 

2.1 Neural networks 

2.1.1 Main concepts 

The history of artificial neural networks (ANN) is described by various authors. According to 

Martin et al (1997), the modern view of neural networks began in the 1940s with the work of 

Warren McCulloch and Walter Pitts who showed that networks of artificial neurons could, in 

principle, compute any arithmetic or logical function and their work is often acknowledged 

as the origin of the neural network field. Researchers, inspired by the biological neuron, were 

putting efforts to mimic the complex human brains. Even though ANNs do not approach the 

complexity of the brain, there are, however, two key similarities between biological and 

ANNs; first, the building blocks of both networks are simple computational devices 

(although artificial neurons are much simpler) that are highly interconnected; second, the 

connections between neurons determine the function of the network (Martin et al 1997). 

 

Haykin (1994) defined a neural network as a massively parallel distributed processor that has 

a natural tendency for storing empirical knowledge and making it available for use. The 

author further stated that it resembles the brain in the following two respects:  

• The network acquires knowledge from its environment using a learning process 

(algorithm) 

• Synaptic weights, which are interneuron connection strengths, are used to store the 

learned information. 

 

Artificial neural network techniques are being used for wide varieties of disciplines including 

remote sensing and GIS. Despite its wide application and popularity, ANNs have still many 

limitations. Verbeke et al. (2004) enumerated some of the common limitations and the 

corresponding efforts to tackle these drawbacks. Some of the limitations are: 
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• ANNs are black-box models of poor semantic quality:  information learned is coded 

into weight values that are hard to interpret; 

• before training, the network architecture, input/output representation, learning 

algorithms and parameters have to be selected; literature provides only rules of thumb 

that are often contradictory; 

•  training an ANN is a time-consuming trial and error process; 

• it is not possible to reuse trained neural networks when new (although analogous) 

problems are encountered; 

• incorporating prior knowledge is difficult; 

• the unpredictable network behavior after random weight initialization.  

   

 
Figure 2.1 The basic features of biological neuron 

Source: Fraser (1998) 

 
Figure 2.2 A simple structure of an ANN neuron 

 

In addition, Paola and Schowengerdt (1995)  have enumerated some of the advantages and 

disadvantages of neural network methods over traditional classifiers. These advantages are its 

 9
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non-parametric nature, arbitrary decision boundary capabilities, easy adaptation to different 

types of data and input structures, fuzzy output values that can enhance classification, and 

good generalization for use with multiple images. The disadvantages of the method are slow 

training time, inconsistent results due to random initial weights, and the requirement of 

obscure initialization values (e.g. learning rate and hidden layer size) (Paola and 

Schowengerdt 1995).   

 

2.1.2 Feedforward backpropagating neural network 

Among the many varieties of neural network architectures, the feedforward backpropagating 

neural networks (FFBPNN) are considered as the most popular algorithms (Kavzoglu and 

Mather 2003). As this particular algorithm is employed in this thesis work, it is briefly 

described. The FFBPNN is one of the widely used methods in remote sensing and GIS. A 

feedforward neural network belongs to the supervised training category in which inputs and 

desired outputs (target) are provided for the network. It consists of an input layer of non 

computational units, one or more hidden layers of computational units and an output layer of 

computational units (Kavzoglu and Mather 2003; Foody 2004)(see Figure 2.3).  The size of 

the input layer is defined by the size of the input feature vectors and the output layer size is 

determined by the number of classes; however, no formula exists for determining the number 

of hidden nodes, although several heuristics have been proposed (Logar et al. 1994). 

 

In FFBPNN, an input is presented to the network and passed forward. The output of the ANN 

is compared with the desired output/target and then the error is transferred backward through 

the network until it stops with an acceptable error level or other stopping criteria of network 

training. The neural network implementation has the following general steps: 

• Initialize the weights 

• Present input and the desired output vectors to the network 

• Propagate these inputs forward through the network 

• Calculate the error between the network output and the target 

• Propagate the error back through the network 
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• Adjust the weights to minimize errors  

• Repeat steps starting from 2 through 6 until the error level is within the acceptable 

range. 

 

 
Figure 2.3 A typical four layer feedforward neural network 

2.1.3 Selecting neural network architecture 

The architecture of a neural network depends on a number of factors mainly depending on 

the nature of the problem and the available data. Most of the parameters to define neural 

network architecture are set based on a series of try and error experiments. Several researches 

have been done to minimize such time consuming trial runs and to improve the 

generalization performance of ANNs. Current research mostly concentrates on the optimal 

setting of initial weights, optimal learning rates and momentum, finding optimal ANN 

architectures using pruning techniques and construction techniques, sophisticated 

optimization techniques, and adaptive activation functions (Engelbrecht 2001).   

 

A comprehensive study and review on selecting and designing a proper ANN architecture 

relevant to geo-information particularly to remote sensing is done  by Paola and 

Schowengerdt (1995), Kavzoglu and Mather (2003) and Kanellopoulos and Wilkinson 

(1997). These authors reviewed various previous studies and experimented on various 

settings of important neural network definitions for remote sensing, and provided a kind of 

guideline for similar studies. Some of the issues discussed include number of input, hidden 

 11
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and output nodes, learning rate and momentum, initial weight range, number of training 

samples, stopping criterion, output encoding and validating.  

2.1.3.1 Input and output layer nodes 

The first layer in a neural network is the input layer that is responsible for distributing the 

input data values to the first hidden layer. Unlike the hidden and output layer nodes, the input 

layer nodes are non-computing. The number of input layer nodes generally corresponds to 

the number of input data. This number also depends on the input encoding technique used 

(Kavzoglu and Mather 2003). The size of the input and output layer nodes is determined by 

the size of input and output vectors, respectively.   

 

2.1.3.2 Number of hidden layers and nodes  

The number of hidden layers and nodes determine the generalization capacity of the network. 

The optimum structure depends on a number of factors such as the number of input nodes, 

output nodes and training sample size. A feedforward neural network often has one input 

layer, one or more hidden layers and one output layer. The structure of the first and the last 

layer of the neural network are controlled by external factors. The optimum number of 

hidden layers and their size must be determined experimentally depending on the problem at 

hand (Paola and Schowengerdt 1995). 

. 

The processing elements in neural networks in various literatures are called nodes, units or 

neurons. One of the challenging jobs in neural network designing is to determine the number 

of hidden layers and the number of nodes in each hidden layer. Although the generalization 

of a network depends on many factors, like training sample size, number of iterations, etc, 

determining the optimum size of the hidden layer is an important aspect that determines the 

learning and generalization capability of the network. The number of hidden nodes as stated 

in many literatures is dependent on the training sample size and on the number of input and 

output nodes.  
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Generally, one single hidden layer can solve most classification and information extraction 

problems (Paola and Schowengerdt 1995; Kanellopoulos and Wilkinson 1997; Han et al. 

2003), but if samples are comparatively complex, a two-hidden-layer neural network can be 

adopted (Han et al. 2003). The number of nodes in the hidden layer(s) should be large 

enough for more flexibility in partitioning the decision space (Paola and Schowengerdt 1995) 

and for the correct representation of the problem, but at the same time, should be low enough 

to have adequate generalization capabilities (Kavzoglu and Mather 2003). However, 

networks that are too small or too large will likely encounter underfitting or overfitting 

problems, respectively (Paola and Schowengerdt 1995; Foody and Boyd 1999; Mathworks 

2005; and Kanellopoulos and Wilkinson 1997).  Kanellopoulos and Wilkinson (1997) 

suggested the number of hidden layer nodes should be at least equal to double of the number 

of inputs and perhaps four times as many to be safe (see Table 2-1). Atkinson et al. (1997), in 

their study on mapping sub-pixel proportional land cover, concluded that increasing the 

number of nodes in the hidden layer did not affect performance. Unfortunately, there are no 

specific theoretical guidelines for the size of the hidden layer (Paola and Schowengerdt 

1995).  

 

Concerning the number of hidden layer nodes, as can be seen in Table 2-1, a number of 

alternative formula suggested by various authors are reviewed in  Kavzoglu and Mather 

(2003). For details on the different heuristics suggested by different authors, readers are 

referred to this source too. For this thesis work, formula 3.3 indicated in chapter 3 was used 

with some modification of Ripley’s formula listed in Table 2-1. 

Table 2-1 Heuristics proposed to compute the optimum number of hidden layer nodes. (Source: 

Kavzoglu and Mather, 2003) 

Heuristic Source 
2Ni or 3Ni
 
3Ni
2Ni +1 
2Ni/3 
(Ni +No)/2 
Np/[r(Ni + No)] 
(2+No x Ni +1/2No (Ni

2 +Ni)-3)/ (Ni + No) 

Kanellopoulos and  
Wilkinson (1997) 
Hush (1989) 
Hecht-Nielsen (1987) 
Wang (1994b) 
Ripley (1993) 
Garson (1998) 
Paola (1994) 
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Where Ni, No, Nh, Nf, and Np are number input, outputs, and hidden layer nodes, node factor and the 

number of training samples, respectively 

2.1.3.3 Training algorithms, transfer and error functions 

There are many varieties of ANN architectures, and many possible learning rules, or 

strategies (Atkinson et al. 1997). Each training algorithm has its own weakness and strength 

that makes it preferable for a particular application or not. The weakness and strength of the 

various training algorithms are provided in Mathworks (2005). 

 

For this thesis, the Scaled Conjugate Gradient training algorithm (SCG), introduced by 

Moller (1993), was used. It is a fully automated, very good, general purpose training 

algorithm, including no user dependent parameters and avoids the time consuming line-

search process (Mathworks 2005). SCG does not contain any user-dependent parameters 

whose values are crucial for the success of SCG (Moller 1993). Some sources also 

recommend using the SCG training algorithm for complex cases where memory and speed of 

convergence is a problem. For complex neural networks, the SCG training algorithm is 

suggested by Moller (1993), Mathworks (2005) and others. SCG is also one of the algorithms 

that work well for trainings that employ early stopping techniques (Mathworks 2005). Datta 

and Banerjee (2004) in their training exercise found out that SCG gives the best training 

result among resilient backpropagation (RP), Levenberg-Marquardt (LM), Fletcher-reeves 

Conjugate Gradient, and quasi-Newton training algorithms. 

 

A detailed description of the algorithm can be found in Moller (1993). Taking into account 

these and other advantages of SCG over the rest of the algorithms available in the MATLAB 

software package, SCG (TRAINSCG) was employed in most of the training undertakings of 

this thesis work (see Table 4-1 and Appendix B). 

 

Transfer functions 

One of the major components of an artificial neuron is the transfer function (sometimes 

called activation function). It is a function that maps a neurons (or layer’s) net output (n) to 
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its actual output (Mathworks 2005). Among the various transfer functions, the most common 

is the sigmoid transfer function (Paola and Schowengerdt 1995). In this thesis, hyperbolic 

tangent sigmoid (TANSIG) and linear (PURELIN) transfer functions were used in the hidden 

and output layers, respectively. Sigmoid is a  monotonic S-shaped function mapping numbers 

in the interval (-∞,∞) to a finite interval such as  (-1 to 1) or (0 to 1) whereas a linear transfer 

function produces its input as its output (Mathworks 2005). TANSIG and LOGSIG transfer 

functions map the input to the interval (-1, 1) and (0, 1), respectively.  

Error functions 

In a neural network training process the difference between the ANN output and the desired 

output are computed using an error function (performance function) and the errors are 

backpropagated to the previous layer. There exist various types of error functions. One of 

these is the mean square error (MSE). It measures the network’s performance according to 

the mean of squared errors (Mathworks 2005). This performance function was used for this 

thesis work.  

2.1.4 Training Data 

Neural network training requires a set of training data. This training dataset should consist of 

carefully selected input and the corresponding target output (if supervised training is used). 

As many authors agree, there is not a clear rule of thumb to use as a guide for an optimum 

network architecture and definition of many of the input parameters. Likewise, the nature of 

samples and the sample size is a subject that needs experimentation. 

2.1.4.1 Sampling and size 

 Although the size of the training dataset is very important, the characteristics and the 

distribution of the data as well as the sampling strategy used can affect the result (Kavzoglu 

and Mather 2003).  The ANN training sample should be split into training, testing and 

validation sets. This sample partitioning into training, testing and validation set is also an 

important aspect that needs appropriate selection and partitioning. Some sources (e.g. 

Mathworks (2005)) suggest a partitioning of the total sample into ½ for training, ¼ for testing 

and the rest ¼ for validation. Kavzoglu and Mather (2003) reviewed several heuristics 

proposed by various authors for the computation of the optimum number of training samples.  
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Paola and Schowengerdt (1995) in their review stated that the samples must be representative 

of the classes. According to the authors, a study conducted using 22000 and 4200 samples 

did not show a difference in classification accuracy. 

 

Kavzoglu and Mather (2003) recommend using a validation dataset around 50 to 100 

samples per class to terminate the training process. In this thesis work, both the training, 

validation and testing data were employed partitioning them as suggested in (Mathworks 

2005). Validation data are used to stop training early if the network performance on the 

validation data fails to improve, or remains the same for some iterations; whereas test data 

are used as a further check that the network is generalizing well, but do not have any effect 

on training (Mathworks 2005). Since use of the validation and testing sets is optional, some 

researchers use only training and testing datasets for the training process. 

 

2.1.4.2 Input and output encoding 

Like several analysis techniques, neural network training needs data preprocessing. One of 

them is encoding of inputs and outputs. This preprocessing step depends on the nature of the 

problem, input data and the intended output. Moreover, this task also depends on the 

activation function to be employed. Therefore, selection of the appropriate encoding is 

crucial for both the network convergence speed and meeting the error goal. Paola and 

Schowengerdt (1995) described the various input and output encoding options being used in 

a neural network training process.  

 

The encoding types commonly employed are binary, one-of-N, 0 to 1, and -1 to 1 range. It is 

advised, in many literatures (e.g. Paola and Schowengerdt 1995), to normalize the input data 

to the 0 and 1 range or -1 to 1 range to ease neural network training. For some neural 

networks, the -1 to 1 range is favored. For instance, Tatem et al. (2001a; 2001b; 2001c; 

2001d; 2002; 2003) used this range. The other recommended encoding technique is 

commonly called one-of-N encoding. In such encoding the value of the output node 

corresponding to a specific class will be assigned 1 and others assigned 0. For example, in a 

three class case the first, second and the third classes will be represented in a 100, 010 and 
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001 scheme of output classes, respectively. This technique is one of the most popular 

methods of encoding. Kavzoglu and Mather (2003) also recommend this encoding scheme. 

But one of the limitations of this encoding technique is that the network size will increase 

with the number of classes making the training process more difficult since it becomes 

computationally demanding. This is also true for binary encoding. For instance, a binary 

encoding of four layer (band) data needs 32 nodes, which is an eight-fold increment.   

2.1.5 Early Stopping 

One of the challenging tasks in neural network training is to decide when to stop training to 

avoid the so called overfitting problem in neural networks. Overfitting will occur as training 

continues and  the network tends to fit to the noise rather than the data structure (Kavzoglu 

and Mather 2003). Overtraining is a common problem of backpropagating algorithms and 

setting up of an appropriate condition for the termination of the training session is very 

important (Bhattacharya and Parui 1997).  

 

In some literatures, the terms testing and validation set are used interchangeable; i.e. there are 

confusions on the technique on dividing and using the datasets into three subsets; namely 

training, testing and validation data. Some authors use a three subset and others use a training 

and test set (validation set in the three subset definitions). More commonly, the whole set of 

available data for training is split into 1) the training-set that is used for computing the 

gradient and updating the network weights and biases; 2) the validation set used to stop 

training when the validation error increases for a specified number of iterations;  3) testing 

set used to verify the performance of the network.  

 

The training process can stop using different mechanisms to avoid overtraining. ANN 

training is commonly done by splitting the input data into training, testing and validation sets. 

In a training process using validation datasets, if the neural network starts overfitting, even if 

the training error is decreasing, the error on the validation set will start to increase. When the 

validation error continues increasing up to a user specified number of iterations, the network 

training will stop and deliver the results, even if it may not reach the final error goal. The 

training set is used to update the weights and biases whereas the validation dataset is used to 
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stop training to avoid overfitting. The testing set can also be included in the training process 

to evaluate the network performance. 

 

ANN training stops when any of these conditions occur (Mathworks 2005): 

• The maximum number of epochs (repetitions) is reached; 

• The maximum amount of time has been exceeded; 

• Performance has been minimized to the error goal; 

• The performance gradient falls below mingrad.(minimum performance gradient); 

• Validation performance has increased more than max_fail (maximum validation 

failures) times since the last time it decreased (when using validation). 

 

2.2 Sub-pixel Mapping 

2.2.1 Land cover mapping  

Though providing a review on this topic is, somehow, beyond the scope of this thesis, it is 

worthwhile to point out some of the links between remote sensing  and land cover mapping. 

Land cover is a fundamental variable that supports much scientific research. Developments 

in satellite remote sensing, GIS and advances in image analysis have extensively improved 

the availability and accessibility of land cover information (Comber et al. 2005).  Despite 

their importance, much of the land cover data currently being used are of inadequate   quality 

(incomplete spatially, out-of-date or inaccurate) and expensive (Atkinson 2005). In addition 

to the care on the data quality, Comber et al. (2005) urged the need for users to understand 

the wider meaning of the data concepts. The realization of the full potential of remote sensing 

as a source of land cover data is, however, restricted by factors such as the  problem of the 

presence of mixed pixels, which cannot be appropriately accommodated in conventional 

image classification techniques (Foody 2000).  

 

Despite the high contribution of remote sensing as the most important source for land cover 

mapping, according to Townshed (1992), after Foody (2004) it is, in practice, a difficult task 

to accurately map land cover from remote sensing data. Foody (2004) argues that those 
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studies that have succeeded in accurately mapping land cover have also been based on small 

test sites often with ideal conditions such as large and relatively homogenous parcels, 

insignificant topographic variability, etc and using carefully selected and processed imagery. 

 

To address the various limitations of remote sensing for land cover mapping and other areas 

of applications, so far, researchers introduced various advanced image processing techniques 

to extract accurate and maximum information. The existence of the mixed pixel problem, for 

instance, led to the development of sub-pixel classification (Atkinson 2005); whereas the 

shortcomings of sub-pixel classification in addressing the spatial location of class fractions in 

a pixel led to the introduction of sub-pixel mapping.  

  

2.2.2 The need for sub-pixel mapping  

As pointed out in the previous sections, locating class proportions within each pixel is among 

the limitations of sub-pixel classification. The solution to the mixed pixel problem as 

suggested by many authors is the soft-classification, which used to predict the proportion of 

each class within each pixel. However, a soft-classification technique has still limitations 

since it does not show the exact distribution of these class components within each pixel. 

Therefore, the resultant prediction still contains uncertainty (Tatem et al. 2003). Moreover, 

Tatem et al. (2003) stated that the complexity of the datasets produced from soft 

classification puts many GIS users off using soft-classification techniques. Foody (2004)  

stated that map users typically want easy to use map products, like standard hard-

classification, but the result of soft-classification may be large and more difficult to interpret 

and integrate with other datasets. Various sub-pixel mapping techniques are suggested by 

various authors to overcome such drawbacks. The subject of transforming multi-spectral 

(multivariate) data into spatial (univariate) data is referred to as sub-pixel mapping (Atkinson 

2005). The key problem of sub-pixel mapping is determining the most likely locations of the 

fractions of each land cover class within the pixel (Verhoeye and De Wulf 2002).  

 

 According to Mertens et al. (2004), the concept of sub-pixel mapping was first introduced 

by Atkinson (1997).  Although studies on sub-pixel mapping are still very limited, various 



                                                                                         GENERAL CONCEPTS AND REVIEW OF LITERATURES 

 20

researchers attempted to introduce different sub-pixel mapping techniques. The following 

section highlights some of the related works on sub-pixel mapping.  

2.2.3 Overview of previous studies on sub-pixel mapping 

Efforts to develop better techniques to improve spatial representation are one of the research 

focuses. Sub-pixel classification and sub-pixel mapping are among those research interest 

areas that are getting greater attention. Sub-pixel mapping has great potential as a step 

beyond sub-pixel classification (Verhoeye and De Wulf 2002). Possible applications of sub-

pixel mapping are expanding and already range from use in raster to vector conversion to 

refinement of estimates of ground control point location (Mertens et al. 2003). According to 

Tatem et al. (2001a), sub-pixel scale studies are based on either direct processing of a raw 

image or the pre-processed (e.g. soft-classified) images. This review will mainly focus on 

studies that demonstrated sub-pixel or super resolution mapping based on a soft-classified 

image since it is the center of the research problem in this thesis. 

 

A limited amount of work has been reported in the literature that considers the spatial 

distribution of class proportions within and between pixels in order to produce land cover 

maps at sub-pixel scale (Kasetkasem et al. 2005). Various names are being used to this task 

by various authors that are being used interchangeably in various literatures. Some of these 

alternative terms being used are sub-pixel mapping (Verhoeye and De Wulf 2002; Tatem et 

al. 2004), super-resolution mapping (Tatem et al. 2001a; 2001c; 2002; Kasetkasem et al. 

2005; Nguyen et al. 2005), and sub-pixel sharpening (Mertens et al. 2004). 

 

According to Nguyen et al. (2005), super-resolution mapping is a set of techniques to obtain 

a sub-pixel map from land cover proportion images produced by soft-classification. A super-

resolution map is a map that is derived at a spatial resolution finer than the size of the pixel 

of the coarse spatial resolution image being classified (Kasetkasem et al. 2005) . 
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In the following section, a brief description on some of the related previous works will be 

provided. For the sake of presentation convenience, the reviews are categorized as neural 

network approaches and optimization approaches (other than neural networks). 

 

2.2.3.1 Neural networks approaches for sub-pixel mapping 

Artificial neural networks (ANN) are being widely used in various remote sensing 

application areas such as hydrology (Islam and Kothari 2000), agriculture (Tatem et al. 

2003), estimation of air temperatures (Jang et al. 2004) land cover mapping (Atkinson et al. 

1997; Tatem et al. 2001a; 2002; Kavzoglu and Mather 2003; Verbeke et al. 2004). Some of 

the applications of ANNs in remote sensing are supervised and unsupervised classification, 

image segmentation, geometric correction, image compression, model inversion or variable 

estimation, and multi-source data analysis (Foody 2004). 

 

Despite the potential application of ANNs for remote sensing and promising reports by some 

researchers on the potential application for sub-pixel mapping, researches in the area of sub-

pixel mapping are still very few. As pointed out in the preceding section, a relatively 

comprehensive study on sub-pixel mapping was made by Tatem et al. (2001a; 2001b; 2001c; 

2001d; 2002; 2003). Even though Hopfield Neural Network (HNN) application to remote 

sensing and other pattern recognition issues were demonstrated in several studies, Tatem et 

al. was the one who introduced HNN for sub-pixel mapping. The authors employed Hopfield 

neural networks for sub-pixel mapping and super-resolution target identification for different 

study cases. The second study that used ANN is made by  Mertens et al. (2003) that used 

wavelets and artificial neural networks for sub-pixel mapping and sub-pixel sharpening. 

 

Tatem et al. used a Hopfield neural network and tried to explore the different approaches and 

applications by demonstrating each study and extending to a further and advanced research. 

The Hopfield neural network technique has been used to estimate the location of the class 

proportions within pixels to produce a land cover target map of sub-pixel accuracy from 

Landsat-TM images. Tatem et al. (2001c), as a continuation of their previous works, used 

HNN for multiple class land cover mapping at the sub-pixel scale. In this study, the authors 
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showed, from a simulated remote sensing image, an accurate prediction suggesting the 

potential of HNN to predict land cover at sub-pixel scale from satellite images.  

 

Tatem et al. (2002) extended their earlier studies of super-resolution mapping of land cover 

features larger than a pixel, to sub-pixel land cover pattern prediction at sub-pixel scale 

features. In their study, a Hopfield neural network was used. Besides their effort to predict 

features at sub-pixel scale, they incorporated another approach different from their earlier 

(spatial clustering) approach described in Tatem et al. (2001c) that used spatial order and 

class area proportions as a goal and constraint, respectively. This additional approach, which 

is an extension to the spatial clustering method, used the semi-variance as an objective (goal) 

function in the energy minimization (the mathematical formulation is provided in Tatem et 

al. (2002)). The network converges to a minimum of an energy function defined as a goal 

and several constraints and prior information on the typical spatial arrangement of the 

particular land cover types is incorporated into the energy function as a semi-variance 

constraint (Tatem et al. 2002). The technique was applied to synthetic and simulated Landsat 

Thematic Mapper (TM) images and compared to the existing super-resolution land cover 

map. The applications and advantages of these techniques over those earlier ones is 

elaborated in Tatem et al.( 2002). 

 

A more practical application of the Hopfield neural network was demonstrated in Tatem et 

al. (2003). The earlier studies of Tatem et al. were based on synthetic data and simulated 

satellite images. In this study, still an extension of the earlier studies stated above, they tried 

to increase the spatial resolution of agricultural land cover maps from a real Landsat TM 

image using a reasonably large number of classes.  

 

The strong side of the techniques Tatem et al. employed is that there is no need for a 

reference image to train the network. In many classifications, the network is trained on a part 

of the image, but the one proposed by e.g. Tatem et al. (2001b)  and Verhoeye and De Wulf 

(2002) did not require any additional information about the problem to be solved i.e. the 
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networks were trained on other data than the source imagery, as the finer scaled version of 

the source image is not available in real situations (Mertens et al. 2004). 

 

A recent study that used a HNN for sub-pixel mapping is described by Nguyen et al. (2005). 

They use the elevation data from a light detection and ranging (LIDAR) instrument as an 

additional source of information for super-resolution mapping using the HNN to generate a 

super-resolution map.   

 

Another study that used an ANN for sub-pixel mapping other than  the HNN is demonstrated 

by Mertens et al. (2004). This study makes use of wavelets and feedforward backpropagating 

artificial neural networks for sub-pixel mapping and sub-pixel sharpening through estimation 

of the detail wavelet coefficients with neural networks. 

 

2.2.3.2 Optimization approaches for sub-pixel mapping 

Besides ANN, various researchers introduced different techniques of sub-pixel mapping. One 

of such studies was by Verhoeye and De Wulf (2002). In this study the authors used linear 

optimization techniques for sub-pixel mapping of Sahelian wetlands using ERS2-ATSR 

images (Verhoeye and De Wulf 2000) and land cover mapping at sub-pixel level from 

SPOT-Vegetation images (Verhoeye and De Wulf 2002). The authors attempted to generate 

a sub-pixel map with various spatial resolutions at 500m, 200m and 100m and demonstrated 

a corresponding decline in accuracy in the attempt to generate a finer resolution sub-pixel 

scale map. One of the constraints, as the authors pointed out, that prevented further research 

into finer resolutions was the computational limitation due to the increased number of 

variables that the mathematical model contained (Verhoeye and De Wulf 2000). These 

studies were based on the assumption of spatial dependence and the application of linear 

optimization techniques using synthetic and real satellite images classified into three classes.  
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Mertens et al. (2003) tried to solve the sub-pixel mapping problem using Genetic algorithms 

together with the assumption of spatial dependency. The authors performed their study using 

both synthetic and degraded real images with 2 and 3 classes, respectively. 

 

Aplin and Atkinson (2001) have attempted to transform a soft land cover classification result 

into sub-pixel scale hard classes based on field boundaries and per field hard classification. 

However, Tatem et al. (2001a) argue on this approach since accurate vector data in most 

cases will rarely be available.  

 

Recent studies  on sub-pixel mapping are the works of Kasetkasem et al. (2005) and 

Atkinson (2005). Kasetkasem et al. (2005) used Markov Random Field Models for sub-pixel 

and super resolution mapping of land cover. Using this technique the authors assert that their 

results show a significant increase in the accuracy of land cover maps at fine spatial 

resolution over that obtained from a linear optimization approach suggested by Verhoeye and 

De Wulf (2002). Atkinson (2005) implemented a simple pixel swapping algorithm as an 

alternative to the HNN for sub-pixel target mapping from soft classified satellite imagery. 

For this research, the author used a very small image, 256 by 256 pixels subset images, from 

IKONOS with only 2 classes (woodland and non woodlands). From this small size of data, it 

is hard to deduce the applicability of the technique for practical or extensive work (large 

image plus more classes). The author also states the limitations of this technique. 

 

In most of the studies covered in this literature review, the studies are based on a small 

number of classes and a small size of synthetic and/or real images. Further studies with a 

large number of classes and size of image should be conducted to assess the feasibility of the 

introduced different techniques and move forward to a real application beyond experiments. 

The writer of this thesis did not find any work that used either of the aforementioned 

techniques for any practical and real problems solving cases. Despite the reported potential 

contribution of the technique in reducing land cover map information loss, very few people, 

mostly developers of the techniques, are being involved/appear in such works. This could be 

partly due to lack of software tools that implemented the technique.  
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2.2.4 Accuracy assessment of sub-pixel mapping 

Accuracy assessment is a crucial task in geo-information analysis and extraction processes. 

Lillesand and Kiefer (2000) expressed the need for accuracy assessment as ‘’A classification 

is not complete until its accuracy is assessed’’. There are many alternative measures of 

accuracy in geo-information processing particularly for classification assessment. The most 

widely used measures of classification accuracy are derived from a classification confusion 

or error matrix which shows the  predicted and actual class label for a set of pixels sampled 

from the classification; but they are only appropriate for ‘hard’ classifications and are 

inappropriate for fuzzy classification (Foody et al. 1996). For accuracy assessment of sub-

pixel mapping, Tatem et al. (2001a; 2001b; 2001c; 2002; 2003) used the area error 

proportion (AEP), correlation coefficients and closeness and root mean square error (RMSE) 

techniques.   Mertens et al. (2003) stated that there is no predefined standard yet for assessing 

the accuracy of sub-pixel mapping, but the author used the kappa coefficient, the overall 

accuracy and the root mean square error (RMSE) to evaluate the accuracy of the sub-pixel 

mapping algorithms. Moreover, Mertens et al. (2003) introduced an adjusted kappa 

coefficient to calculate the kappa coefficient only for the mixed pixels. Kappa coefficient is a 

measure of difference between the actual agreement between reference data and an 

automated classifier and the chance agreement between the reference data and random 

classifier (Lillesand and Kiefer 2000; Kavzoglu and Mather 2003).  
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Chapter 3 
MATERIALS AND METHODS 

3.1 Materials 

3.1.1 Data 

For this thesis work, the latest Dutch land use database (LGN5) is used. The LGN land use 

data is based on a multi-temporal classification of satellite imagery and integration with 

ancillary data (Clevers et al. 2004). This data, which is a grid structure with cell size of 

25mx25m, was degraded to various pixel/grid sizes in a way that class mixtures of various 

proportions are created at a coarse resolution. Moreover, it was thematically aggregated into 

relatively few classes to reduce the number of classes to be used. Training, validation and 

testing sets for neural network training were extracted randomly from the aggregated LGN 

data of the entire country.   

 

For the actual sub-pixel mapping implementation, small subset sites from Southeast and 

Southwest parts of the country were used (see Figure 1.3, Table 3-1). The selection of site 1 is 

with the intention of including significant proportion of water body that is particularly 

important to see the performance of the two-class cases. The second site is more diverse and 

heterogeneous than the first location that has more mixed pixels while aggregated and is 

helpful to test the performance of the neural network for mapping of these fraction images at 

sub-pixel level. 
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Table 3-1 Area of the two sites used for simulation 

Site 1 Site 2 Classes 
Area(pixel) % Area(pixel) % 

2 
cl

as
se

s 
Land 
Water 

782,625 
203,424

79.37 
20.63

943,013 
25,243 

97.39 
2.61 

4 
cl

as
se

s Vegetation 
Arable land 
Built-up  
Water 

312,317 
222,711 
247,597 
203,424 

31.67 
22.59 
25.11 
20.63

468,706 
349,662 
141,034 

26,647 

47.53 
35.46 
14.30 

2.70 

8 
cl

as
se

s 

Grassland 
Arable land 
Built-up 
Deciduous forest 
Coniferous forest 
Water 
Bare soil 
Natural vegetation 

267,514 
222,711 
238,578 

31,032 
5,618 

203,424 
9,019 
8,153 

27.13 
22.59 
24.20 

3.15 
0.57 

20.63 
0.92 
0.83

317,007 
349,662 
139,905 

54,056 
76,624 
26,647 
1,129 

21,019 

32.15 
35.46 
14.19 

5.48 
7.77 
2.70 
0.11 
2.13 

 

3.1.2 Hardware and software 

A Pentium IV processor, 1.7 GHz, 512Mb RAM computer was used. The MATLAB neural 

network Toolbox was used for the neural network implementation. Moreover, the data 

processing tasks were done mostly using MATLAB version 7.1 software. For the spatial 

aggregation, a program developed in the department for such purpose was used. The program 

enables to extract class fraction proportion images that will be used for sub-pixel mapping 

from the hard class land cover map. ENVI software package version 4.1/2, Arcview and 

ArcGIS were used for some data preprocessing and presentation activities like evaluating and 

subset the results of the aggregation, attribute updating and for accuracy assessments. 

3.2 Methods 

In this study, the possibilities and limitations of an artificial neural network (ANN) for sub-

pixel mapping particularly for land cover application is assessed. The cases considered to 

assess capabilities of an ANN are aggregation cell size (75m x 75m, 150m x 150m and 300m 

x300m) and thematic classes (2, 4 and 8). Initially, the ANN sub-pixel mapping performance 

was assessed based on only two classes (water and land) having a 75m x 75m grid size. 

Following the same procedure, the activity was also extended to the rest of the parameter 
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combinations stated above by varying the combination of the spatial aggregation level 

(degradation) and thematic aggregation (increasing the number of classes).  

In this thesis work, there were three main categories of activities: 1) data preparation; 2) 

implementation that includes selection, designing, training & testing the neural network and 

running the trained ANN using data of  the study areas; and 3) assessing the accuracy of the 

resulting images. The workflow diagram showing the overall procedure followed in this 

thesis work is found at the end of this chapter (Figure 3.9). The neural network to be used for 

the sub-pixel mapping is the feedforward backpropagating neural network (FFBPNN).   

3.2.1 Preprocessing 

The input data for this thesis work were derived by thematically and spatially aggregating the 

existing LGN data into 3 different thematic classes and three spatial resolution sizes. The 

input data required for the sub-pixel mapping are the class proportion fraction images derived 

through spatial aggregation using a special program made for this purpose. To prepare the 

input fraction images, which are to be treated as soft-classification results, the LGN5 

database was thematically aggregated into 2, 4 and 8 thematic classes using the MATLAB 

software package. Then, these thematically aggregated data were spatially aggregated into 

three spatial resolution sizes, namely, 75m, 150m, and 300m. The three chosen thematic 

classes and three spatial resolutions end up in 9 different combinations (Figure 3.1) that are 

considered as study cases in this thesis work to assess the potentials of neural networks for 

sub-pixel mapping.  

 
Figure 3.1 Schematic presentation of the 9 study cases 

 28
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3.2.1.1 Thematic Aggregation 

Though the original LGN5 data has 39 classes, in this thesis 9 class aggregated data was used 

for further aggregation into the 3 levels of thematic aggregations (see Table 3-2). The 25m x 

25m and 9-class dataset was thematically aggregated into the following three cases. 

 

Table 3-2  Thematically aggregated classes 

2 classes 4 classes 8 classes old 
code 

Input class name 
New 
code

New 
name 

New 
code 

New name New 
code 

New name 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Grassland 
Arable land 
Greenhouses 
Deciduous forest 
Coniferous forest 
Water 
Built-up 
Bare soil 
Natural vegetation 

1 
1 
1 
1 
1 
2 
1 
1 
1 

Land 
Land 
Land 
Land 
Land 
Water 
Land 
Land 
Land 

1 
2 
3 
1 
1 
4 
3 
3 
1 

Vegetation 
Arable land 
Built-up 
Vegetation 
Vegetation 
Water 
Built-up 
Built-up 
Vegetation 

1 
2 
3 
4 
5 
6 
3 
7 
8 

Grassland 
Arable land 
Built-up 
Deciduous forest 
Coniferous forest 
Water 
Built-up 
Bare soil 
Natural Vegetation 

 

Two-classes: This class contains only land and water. All features other than water are 

reclassified as land whereas water was kept as it was (see Figure 3.2 and Table 3-3).  

Table 3-3 Area of the 2 classes 

                       

Classes Area(sq.km) 
Land  33755.32 

Water 7771.41 

Total 41526.72 

 
Figure 3.2 LGN data thematically aggregated to 2 classes 

 

Four classes: For this case, grassland, deciduous forest, coniferous forest and natural 

vegetation classes were assigned to vegetation; greenhouses, bare soil and built-up were 

 29
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classified as built-up; water and arable land were unchanged (remain as water and arable 

land, respectively)(see Figure 3.3). The total area of each class is provided in Table 3-4. 

Table 3-4 Area of the 4 classes 

                           

Classes Area(Sq.km) 
Vegetation 
Arable land 
Built-up  

18767.43 
9594.61 
5393.27 

Water  7771.41 
Total 41526.72 

Figure 3.3 LGN data thematically aggregated to 4 classes 

 

Eight classes: Only greenhouses and built-up classes are merged. The rest of the classes are 

kept as the original 9 class data. The new classes in this case are Grassland, Arable land, 

Built-up, Deciduous forest, Coniferous forest, Water, Bare soil, and Natural vegetation (                         

Table 3-5 and Figure 3.4). 

 
                                                                          Table 3-5 Area of the 8 classes 

 

Classes Area(Sq.km) 
Grassland:     
Arable land:    
Built-up:            
Deciduous forest:  
Coniferous forest:  
Water:   
Bare soil:   
Natural vegetation 

14406.77 
9594.61 
5079.27 
1653.60 
2020.50 
7771.41 
314.00 
686.56 

Total 41526.72 

Figure 3.4 LGN data thematically aggregated to 8 classes 
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3.2.1.2 Spatial aggregation 

The spatial aggregation was undertaken on the three thematically aggregated datasets (2, 4 

and 8 classes). The spatial aggregation levels chosen are 3 levels having aggregation scale 

factor (Sf) of 3, 6 and 12 with respect to the 25mx25m dataset. The aggregation scale factors 

3, 6 and 12 are used to degrade the 25mx25m LGN5 dataset to 75mx75m, 150mx150m and 

300mx300m, respectively.   

The spatial aggregation was performed using a small program that aggregates based on the 

majority rule. This program aggregates the original image and generates various layers. The 

outputs of this program include class fraction layers and the main spatially aggregated image. 

    

The Class Fraction images 

In the spatial aggregation procedure, besides deriving the aggregated low resolution hard 

map, class fraction images to be used as soft classification result were derived. Like any soft 

classification procedure, it enables to derive class proportion images that show the level of 

class mixture. These class fraction images are produced by degrading the high resolution 

image (25m) to the low resolution images (75m, 150m, and 300m).  

 

The outputs of the spatial aggregation procedure are fraction image layers, which are equal to 

the number of classes, and each fraction image layer contains the proportion of a particular 

land cover class within a pixel. The individual layers contain values ranging from 0 to 1 

reflecting the membership to a class. The sum of all class fraction layers of every pixel is 1 

except those pixels mixed with the background at the border of the image. The class area 

proportion fractions of each land cover class within each pixel of the coarse resolution image 

were computed. Hence, it is this product together with the corresponding thematically 

aggregated high resolution (25m) data that is used to train the neural network and 

consequently to reconstruct the 25m resolution image.    
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3.2.2 Neural network design and training 

3.2.2.1 Neural network input data preparation and sampling 

Samples for the neural network training, testing and validation were taken through a stratified 

random sampling approach. For stratified sampling, the fraction images were clustered into 

limited number of classes using kmeans classification. Then, using this image as strata, 

random sampling within each stratum was applied. The sampling was done simultaneously 

from the input fraction images and the target image.  

N minus 1 

In all cases, since a pixel is a composition of all classes that sum 1, one layer of the fraction 

image in the training process was excluded; i.e. one minus the summation of all other classes 

will be the fraction value of the one excluded. For instance, for the eight-class cases, 

whichever class fraction comes last, it was excluded and 7 layers were used in the training 

process with the above assumption. This was done with the intent to minimize the training 

load that limits the computer time and memory. This procedure was particularly crucial for 

those cases with a large number of classes and low spatial resolution.  

3x3 window neighbor inputs 

To incorporate the aspects of spatial dependency/order; the neighboring pixels from each of 

the fraction (the coarse resolution) images was also taken into account in the training process. 

This has the advantage of introducing texture information into the training procedure, but 

results in greatly increased training time per-cycle because of the nine-fold increase in input 

pixels (Paola and Schowengerdt1995). Though not applied in this work, another approach as 

a compromise for this problem is to use a 3x3 window in one band and only the center pixel 

in the rest of the bands (Paola and Schowengerdt 1995). The window size considered in this 

thesis work too is a 3 by 3 pixels (8 neighbors for the central pixel) (see Figure 3.5). Samples 

mixed with background were excluded from the training process to avoid the possible 

influence on the network performance. The samples without full (3x3) neighbors were also 

excluded to maintain consistency with the proportion of class fraction in every sample and to 

avoid the possible influence on the training performance.  
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Figure 3.5 A simple three layer backpropagating neural network structure when presented with a 3x3 

window (adapted from Paola and Schowengerdt 1995)

To facilitate the sampling process, various functions were used. Using the MATLAB 

functions, training samples from both the high-resolution (25m) and low resolution images 

(75m, 150m, or 300m) were extracted from the same location. In this study, a single pixel in 

the low resolution image is counted as one sample. To elaborate it more, a sample from 75m, 

150 and 300m will have 3x3 (9 pixels), 6x6(36) and 12x12(144) pixels, respectively, in the 

high-resolution (25m) image. In short, for n number of samples in the low resolution image, 

we have n x scalefactor^2 pixels in the high-resolution image that correspond to n samples 

(Figure 3.6). 

 
                   a                                     b 

Figure 3.6 Schematic representation of a sample from the 2 class case (the central pixel with its 8 

neighbors at 150m pixel size (a) and the corresponding sample of the high resolution 6x6 pixel)(b). 

 

Since the network has to be trained and tested with selected datasets, for which the actual 

output is known (Arora et al. 2004), the network training, testing and validation datasets were 
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extracted from the entire LGN data. The training, testing and validation datasets were 

extracted from both the fraction (low resolution) image and the target (high resolution) 

images. The selected samples were again split into 3 groups: 

• ½ for training the neural network; 

• ¼ for testing the performance of the trained network and  

• ¼ for validation and for early stopping the neural network to avoided overfitting.   

The sample size is also an important aspect that needs to be determined by the user. There is 

no clear guideline on the optimum size of samples. But for this thesis work, formula 3.2 was 

used as a modification of formula 3.1 of Hush (1989) cited in Kavzoglu and Mather(2003). 

  .......................   3-1 

.............................................. 3-2 

Where:  Ni is the number of input nodes and Sr is a sample range factor.  

Sr is used to define a variable sample size by changing the value of Sr for each test case. The 

recommended range is between 30 and 60, which are used to define the least, and the 

optimum sample size limits (formula 3.1). But in this work, a bit wider ranges (10 to 80) 

were employed depending on the complexity of the cases.  

 

Thus, cases with a large number of classes together with a large scale factor will need a 

significantly large number of samples. But, in this thesis, it was not possible strictly to follow 

the formula with the recommended range (30 to 60). Since the spatial coverage of cases with 

large Sf is large, there will be a risk/possibility of overlapping the training and simulation 

samples.  For instance, if an Sr of 60 is used to define the sample size in cases with Sf of 12, 

about 24% of the simulation data will also be included in the training samples. So, this is also 

another restricting condition to limit the sample size. Moreover, it will be too much for the 

training process as such an amount of samples needs large computer memory. Since these 

cases also need a corresponding large amount of input, hidden and output nodes, limiting the 

sample size and the number of hidden nodes was indispensable for this work.   

 34
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No input and target normalization was implemented in most of the tests undertaken in this 

work, i.e., the fraction inputs and the target class codes were used without adjustment. The 

reason for this was due to concern that it might disrupt the relationship between the input 

fractions and the target classes. But, for few test cases, normalization of the input and target 

to (-1, 1) range was employed (e.g. case 9). 

3.2.2.2 Selection and designing of neural network architecture 

Neural network architecture 

In this thesis, a feedforward backpropagating neural network, also called a multi-layer 

perceptron (MLP), is used. In most cases a three or four layers backpropagating neural 

network is used. These layers are 1 input layer, 1 or 2 hidden layer(s), and 1 output layer. In 

some literatures, the input layer is disregarded in network layer counting. The number of 

nodes in the input layer in this work is dependent on the study cases; i.e. their size depends 

on the number of classes being used.  

 

The number of input nodes (Ni) in the input layer is equal to: 9*(Number of classes-1). 

Number of classes in this case refers to the number of fraction images. The numbers -1 and 9 

in the formula refer to the fraction image to be excluded in the training process and the 3 by 3 

neighbor inputs, respectively (see section 3.2.2.1). Therefore, the input layer with 2, 4, and 8 

class cases will have 9, 27 and 63 input nodes, respectively. 

 

The number of nodes in the output layer (Ni) is equal to Sf². Where Sf is a scale factor that 

corresponds to 3, 6 or 12 for the 75m, 150m or 300m resolutions, respectively. Hence, based 

on the above expression, the number of output layer nodes of the 75m, 150m and 300m 

resolution input data would have 9, 36 and 144 nodes, respectively.  

Number of hidden layers and nodes 

One of the big challenges in neural network use is determining the optimum number of 

hidden layers and hidden layer nodes. In most cases, this is defined through trial and error. 
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But in this case, since such approach is time consuming, formula 3-3 (modified from the 

formula of Ripley indicated in Table 2-1) was used as a general guide to start with defining 

the size of the hidden nodes. 

......................3-3 

Where Nh is the number of hidden nodes, Ni is the number of input nodes (the Ni is 

equivalent to the number of elements in the input data vector), No number of output nodes 

(corresponds to the number of target pixels which is equal to the Sf^2), and Nf is a node 

factor (a fraction used to vary the number of nodes for different cases). The Nf is a constant 

and the recommended Nf ranges from ½ to ⅔. But for this case, a range from 0.30 to 0.95 

was used based on the complexity of the case. Whenever 2 hidden layer test cases were 

made, each layer was assigned with a number of nodes half of the Nh. The number of hidden 

layer nodes is highly varying depending on the complexity of the study cases.  

 

In general, the numbers of hidden layer nodes need to be large as a large number of classes 

and a large Sf is used. Though this was the intent, it was not possible to use a corresponding 

large number of hidden nodes due to computational complexity. The large number of inputs 

and output nodes plus the required large number of hidden nodes and the corresponding 

connection weights makes the training process unmanageable. Moreover, the cases with large 

Sf will have large spatial coverage per-sample (more heterogeneous spatial coverage) 

whereas those with small Sf will have small spatial coverage per sample (less heterogeneous). 

The more heterogeneous cases, generally, need more hidden nodes to discriminate the 

different patterns. But, besides the computational limitation, there is still another limiting 

condition. In most literatures, it is stated that the number of hidden nodes is also determined 

by the training sample size.  

 

Training algorithm and transfer functions 

The MATLAB neural networks toolbox supports several alternative training and learning 

algorithms. Among these training algorithms, the performance of some algorithms was 

assessed (though not exhaustive) using the less complex cases. These less complex cases in 
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this context are those with a small number of classes and scale factor that need a 

corresponding small number of samples and nodes. These training algorithms were 

Levenberg-Marquardt (TRAINLM), BFGS Quasi-Newton (TRAINBFG), Resilient 

Backpropagation (TRAINRP), Scaled Conjugate Gradient (TRAINSCG) and One-step 

Secant (OSS) algorithms. Some of the training algorithms were found not suitable for large 

and complex cases. Due to the complexity of the different cases, most of the popular 

algorithms were not convenient to use for this case mainly due to memory requirement and 

speed of convergence. Due to such computational limitations further investigation on the 

effect of the different alternative parameters (number of nodes, number of layers, sample 

size, weight and bias, training algorithms, transfer functions, output formats, etc) was 

difficult. Considering all these constraints, the Scaled Conjugate Gradient (SCG) 

backpropagation algorithm was identified to be suitable to use for this particular case study 

(see section 2.1.3.3).  

 

The performance function used for this thesis work was the mean squared error (MSE) (see 

section 2.1.3.3).  For neurons in the hidden layer(s), a non-linear hyperbolic tangent sigmoid 

(TANSIG) transfer functions was used. A linear transfer function (PURELIN) was used in 

the output layer (see also section 2.1.3.3).  

 
Figure 3.7 Schematic representation of the inputs and the neural network implementation 

3.2.3 Simulating network response with the new input data 

Among the several trial runs, the network architectures indicated in Table 3-6 and Figure 3.8 

are those networks performing relatively better. These architectures were selected by 
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assessing the error using the training data and the simulation data. The details will be 

provided in chapter 4. In all the networks listed in Table 3-6, sigmoid (TANSIG) and linear 

(PURELIN) transfer functions were used in the hidden and output layers respectively (see 

section 2.1.3.3). Moreover, the training function used in all chosen networks is the Scaled 

conjugate gradient decent function (TRAINSCG). Though other training functions also gave 

comparable results, emphasis was given to SCG and more test cases were run. The reasons 

why emphasis was on this algorithm have been stated in section 2.1.3.3.   

 

Table 3-6 List of final selected neural network architecture 

Case 
no 

Cases Structure hidden 
layers 

Sample 
factor 

Node 
factor 

1 

2 

3 

4 

5 

6 

7 

8 

9 

2 classes & 75m resolution 

2 classes & 150m resolution 

2 classes & 300m resolution 

4 classes & 75m resolution 

4 classes & 150m resolution 

4 classes & 300m resolution 

8 classes & 75m resolution 

8 classes & 150m resolution 

8 classes & 300m resolution 

9-9-9 

9-31-36 

9-54-54-144 

27-25-9 

27-32-36 

27-86-144 

63-68-9 

63-25-25-36 

7-23-23-144 

1 

1 

2 

1 

1 

1 

1 

2 

2 

60 

60 

60 

60 

30 

30 

30 

30 

10 

0.50 

0.70 

0.70 

0.70 

0.50 

0.50 

0.95 

0.50 

0.30 
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For 2 class  75m case 
 

For 2-class  150m case 

 
For 2-class  300m case 

 
For 4-class  75m case 

For  4-class  150m  case 
 

For 4-class  300m case 

For 8-class  75m case For 8-class  150m case 

 

 
For 8-class  300m case  

Figure 3.8 The selected neural network architectures 

3.2.4 Accuracy assessment 

For the accuracy assessment, a matching reference dataset was used from LGN5 data with 

thematic aggregation and compared to the corresponding predicted result. Kappa coefficient, 

per-class and overall accuracy and area error proportion (AEP) were calculated to assess the 

difference between the network result and the reference data. Moreover, the performance of 

the network result was assessed by visually inspecting and comparing the sub-pixel map 

resulting from the ANN with the original high resolution image. The AEP was calculated 

using formula 3-4 below (Tatem et al. 2001c). 

 39
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  ..........3-4  

Where j is the class,  tj  and yj  are total areas(in pixel) of class j in the target and ANN output 

images, respectively. 

 

Since the mean square error (MSE) shows the training performance on the training dataset 

but does not show the performance on new data, it was appropriate to assess the performance 

of the various trained networks on unseen data prior to the selection of the network for the 

final sub-pixel mapping.  To choose the trained neural network with the highest accuracy, an 

overall accuracy and Kappa coefficient was evaluated for the various trained networks. 

To assess if there is effect of some extraneous features, a majority filtering using 3x3 

windows was applied to the ANN output. Then overall accuracy and Kappa coefficients were 

calculated for the majority analysis results.  

 

Since a large proportion of the image is covered with pure pixels, the overall accuracy and 

kappa coefficient do not exactly show to what extent the mixed pixel problem is being 

addressed. To evaluate the accuracy of only the mixed pixels, an alternative accuracy 

assessment approach was adopted. This is done on a per-pixel basis by increasing the number 

of classes per pixel of the respective spatially aggregated low resolution image. In every 

successive computation of the mixed pixel accuracies, the less heterogeneous pixels are 

disregarded. For instance, if the aim is to calculate the accuracy of the neural network output 

for pixels having more than 3 types of classes, all pixels composed of 1 and 2 classes are 

excluded from the computation and only pixels composed of 3 and 4 classes (indicated as 

>=3) are considered for the specific case. Then overall accuracy assessment results were 

obtained through averaging the per-pixel overall accuracies.

 40
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Figure 3.9  Work-flow diagram of the steps followed 
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Chapter 4 

RESULTS AND DISCUSSION 

4.1  Neural network training results 

 

In this thesis, a number of neural network training tests were done by alternating several 

possible parameter combinations. Among several alternative network parameters, sample 

size, number of hidden layers and number of hidden layer nodes, training algorithms, weight 

initialization, input and output encoding/normalization and early stopping strategy were 

emphasized. Only the best trained networks (listed in Table 4-1) were selected for the final 

sub-pixel mapping exercise (see Appendix A-2 for more details on the different NN that were 

tested). In the subsequent discussion of this chapter, the different case studies will be referred 

using the case numbers indicated in Table 4-1.  

 

Though an early stopping with the validation dataset was employed in most of the training 

exercises, some tests were executed without validation and testing data. In some test cases, 

some networks did well by stopping with user-defined epochs (iteration) and/or time (e.g. 

study case 6 in Table 4-1). In some cases particularly small networks, defining a small goal 

(the desired MSE error set by the user) resulted in an improved performance. In most test 

cases, the goal was set to 0.01, but for case 1, an error goal of less than 0.01 was used to see 

the effect on the performance of the network. For case 1, setting a low error goal (0.005) and 

letting to stop with the validation data showed a better performance than the 0.01 error goal 

which was stopping with the maximum error goal. However, larger networks stopped with 

the validation sets before reaching the goal. 

 

In Table 4-1, the networks that have a small MSE on the training, validation and testing set 

are those with a small number of classes and a small scale factor (Sf) which generally needs a 

relatively small network. However, the errors increase steadily as the network gets larger. As 
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indicated in the simulation results for each network, this property (error) is also reflected in 

the accuracy assessment results (kappa coefficient and overall accuracy).  

 

Table 4-1 Training results of the selected neural networks of the different study cases 

Performance(MSE)  
Case 
 N°

 
N° 
classes 

 
 
Sf

 
 
Structure 

 
 
Epochs 

Training 
set 

Validation 
set  

Testing 
set 

1 2 3 9-9-9 216 0.007 0.007 0.007

2 2 6 9-31-36 566 0.012 0.001 0.010

3 2 12 9-54-54-144 1213 0.014 0.015 0.015

4 4 3 27-25-9 772 0.114 0.115 0.116

5 4 6 27-32-36 928 0.199 0.202 0.203

6* 4 12 27-86-144 2000 0.292 n/a n/a

7 8 3 63-68-9 610 0.473 0.472 0.475

8 8 6 63-25-25-36 1297 0.458 0.458 0.461

9** 8 12 7-23-23-144 933 1.334 n/a n/a

*trained with no testing and validation dataset(stopped with epochs)  
** trained with no neighbor,  no testing and validation dataset(stopped with time) 
Sf  is scale factor, structure: indicates the  N° of input, hidden and output  nodes and layers 

 

Except case number 6 and 9, all the training cases were stopped by the validation set. 

 

In general, the two-class cases were the easiest and fastest to train. The overall accuracy 

levels achieved for almost all tests were above 90%. However, the training and simulation 

performance of case 3 was relatively poor. For case number 1, the 9-9-9 network structure 

provided better training and simulation performance than the rest of the network structures. 

Despite the general rule that the number of hidden nodes should be significantly larger than 

the number of inputs, the 9-9-9 structure gave a better result. The network was stopped by the 

validation after running for 216 iterations.   

 

The 4-class cases are intermediate between the 2 and 8-class cases in complexity for training. 

The number of test cases carried out for the 4-class cases are fewer than for the 2-class cases. 
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The test cases were few due to the long time it takes to train a single network. Though the 

goal was set to a MSE of 0.01, none of the 4-class cases reached the error goal. The training 

process was stopped by the validation set with the exception of case number 6 which was 

stopped with a user defined maximum epochs (iterations) of 2000.  

 

The 8-class cases were the most difficult cases to train due to the large volume of inputs 

required. Hence, only two tests per case were executed. Particularly case number 9 was 

difficult to execute due to computational constraints. It was nearly impossible to train this 

case using the machine mentioned in section 3.1.2. After a number of trials, it was possible to 

carry out by minimizing the different inputs (excluding validation and testing dataset, using 

very small sample range factor (Sr) and small node factor (Nf)). The following were the 

values used for network training of case 9:  

• Minimum sample size (Sr = 10) and relatively small number of hidden nodes 

(Nf=0.3).  

•  no validation and testing data were used 

• A 3x3 window neighboring input was not applied. Instead, only the central pixel was 

input to the network.  

•  initial weight range was set to  -0.25- 0.25 ranges 

• Normalization of the input and target to -1,1 ranges 

• The training process was stopped by setting length of time to train (3 days).  

 

The error graphs of two extreme cases, case number 1 and 9 are shown below to demonstrate 

the general trend (Figure 4.1). In all cases, the 3 error graphs are very close to each other 

making it difficult to see the performance of each error graph per iteration. The graphs of 

those cases not included here also followed the same trend.  
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   a      b    

Figure 4.1 Training, validation and testing error graph for case 1 (a) and training error for case 9 

(b) 

4.2 Simulation results 

4.2.1  General 

The selected networks were applied to the fraction images of the two sites (see section 1.3) 

which are supposed to have a large proportion of mixed pixels. The simulation was run for 

all the trained networks for sites 1 and 2. In this section, the potentials and limitation of the 

feedforward backpropagating neural network for sub-pixel mapping will be demonstrated 

based on: 

• Overall accuracy and kappa coefficient  statistics; 

• looking into the performance of the network with respect to shape and size and 
orientation of objects/features; 

• Pixel heterogeneity; 

• Area heterogeneity (comparing the two sites); 

• The effect of a  change in scale factor and number of classes; 

• The effect of a majority filtering. 

From Table 4-2 to Table 4-13 and Appendix A-1 to Appendix A-9, various accuracy 

assessment results of all the cases and sites are provided. The kappa coefficient and overall 

accuracies in bracket are values obtained after applying majority filtering using 3x3 

windows.  
 45
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To help the comparison of the various results in the consecutive discussions, the area 

(number of pixels) of each class used in the simulation for the three thematic classes is 

provided in Table 3-1. Note also that the term target in this thesis refers to the 25mx25m 

thematically aggregated data whereas ANN output refers to the ANN simulation results 

having 25mx25m resolution. 

4.2.2  Results of two-class cases 

4.2.2.1 Case 1: Two-classes with 75m spatial resolution 

 

Figure 4.2 Comparison of the two-class target, ANN output and the degraded 75m resolution images 

of sites 1 (left) and 2 (right) 

Table 4-2 Accuracy assessment of two classes with 75m spatial resolution 

 Site 1 Site 2 

Class PROD.  

ACC.(%) 

USER  

ACC.(%) 

AEP PROD.  

ACC.% 

USER  

ACC.(%) 

AEP 

Land 99.12 -0.0032        99.45 99.30 -0.0015     

Water 94.44 

98.56 

96.58 0.0122    74.75 79.12 0.0553 

Kappa coefficient   

Overall Accuracy 

0.969(0.971) 

98.97%(99.04% )    

0.7625(0.7646 ) 

98.78%(98.82% ) 
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The results shown in Figure 4.2 and Table 4-2 are obtained by simulation of the 9-9-9 

network structure as indicated in Table 4-1. This network was simulated using two classes 

with a fraction image at 75m to reconstruct the 25m hard sub-pixel map. In this case, the 

overall accuracy is comparable for both sites. However, the kappa coefficient of site 2 is 

considerably lower than that of site 1. The producers and users accuracies of land are high in 

both cases (over 99%). The Area Error Proportion (AEP) also highlights that a large 

proportion of water is omitted. The user’s accuracy of water in site 1 is also higher than in 

site 2. The low accuracy level of water contributed to the low kappa coefficient of the site 2. 

Water is the least accurate in site 2 (74.75%) when compared with site 1 (94.44%). The 

reason for this difference could be that the proportion of water at site 2 is very small (2.61%) 

when compared with land (97.39%).  

 

In addition, the shape and size of the water body in site 2 are dominated by narrow and 

linear/elongated shapes. In most cases, it is observed that the network failed to learn 

accurately classes with such linear and elongated shapes, and such classes are susceptible to 

be removed. However, in site 1, the water body is relatively large (see Table 3-1) and 

dominated by elongated, wide and contiguous areas. Moreover, the orientation of the feature 

has also influence on the reconstructing of the feature. Though it is difficult to compare every 

detail from Figure 4.2, it is possible to see and compare the overall patterns generated by the 

neural network in order to simulate the target. Both images do not have an easily noticeable 

major difference. 
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4.2.2.2 Case 2: Two classes with 150m spatial resolution 

 

Figure 4.3 Comparison of the two classes target, ANN output and the degraded 150m resolution images of 

sites 1 (left) and 2 (right) 

 

Table 4-3 Accuracy assessment of two classes with 150m spatial resolution 

 Site 1 Site 2 

Class PROD.  

ACC. (%) 

USER  

ACC. (%) 

AEP PROD. 

ACC.(%) 

USER 

ACC. (%) 

AEP

 Land 99.12 98.39 -0.0074

 Water 93.74 96.51 0.0288

99.56 

61.28

98.97 

78.74 

 -0.0059  

0.2217

Kappa coefficient  

Overall Accuracy 

0.939  (0.940) 

98.02%  (98.05% ) 

 0.682 (0.683 ) 

98.56 %( 98.57%)   

 

Table 4-3  and Figure 4.3  highlight the simulation results of the 9-31-36 network structure 

indicated in Table 4-1. This network was simulated using two classes with a fraction image at 

150m to create the 25m hard sub-pixel map. In this case, too, the overall accuracy gave a 

comparable result for both sites. Like case number 1, the kappa coefficient of site 2 is 

significantly lower than that of site 1. The accuracy of water is still the lowest. The accuracy 
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of land is significantly high in both cases which are over 99%. The Area Error Proportion 

(AEP) also shows that a large proportion of water is omitted (converted to land). It is 

possible to see some easily noticeable features and compare the overall patterns generated by 

the neural network to simulate the target. As can be seen in Figure 4.3 for both sites, narrow 

linear features (for instance indicated with arrows) are missing in the neural network output. 

Despite the high accuracy obtained, it was unable to learn very tiny and narrow linear 

features. The overall accuracy and kappa coefficient are still high because of the high 

proportion of pure pixels. Since the number of classes is small, the images are relatively 

homogenous with a small proportion of mixed pixels. One important difference that can be 

observed between the degraded map and the ANN output is that the boundaries in the 

degraded images are blocky and rough whereas the ANN output boundaries are finer and 

more or less the same as the target images. Though it is not possible to identify features from 

the figure, there are situations where the neural network was able to reconstruct features that 

disappeared in the aggregated map (see also Figure 4.12).   

4.2.2.3 Case 3: Two classes with 300m spatial resolution 

 

Figure 4.4 Comparison of the two classes target, ANN output and the degraded 300m resolution image of 

sites 1 (left) and 2 (right) 
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Table 4-4 Accuracy assessment of two classes with 300m spatial resolution 

 Site 1 Site 2 

  

Classes 

PROD. 

ACC.(%) 

USER  

ACC.(%) 

AEP PROD. 

ACC.(%) 

USER 

ACC.(%) 

AEP

Land 

Water 

97.87 

88.61 

97.05 

91.64 

-0.0084     

0.0343 

99.35 

42.73 

98.52 

63.20 

-0.0084

0.3248

Kappa coefficient  

Overall Accuracy 

0.875  (0.882  ) 

95.96%  (96.18% ) 

0.500 (0.502) 

97.92% (97.93%)   

 

Case number 3 is the least accurate one from the two-class cases. The training performance 

was also relatively poor (see Table 4-1). This case was a simulation result of a network 

trained with the 9-54-54-144 network structure. From case number 1 to 3, the effect of the 

scale factor (S ) can be noticed. The accuracy is decreasing steadily as the S is increasing. 

This case has an S of 12 which is very large when compared with case number 1 which has 

an S  of 3. In the input-output structure adopted in this study, this large S  needs 144 output 

nodes to represent each sub-pixel in the output. This factor aggravated the complexity of the 

problem when compared with the earlier cases. 

f f   

f 

f f

As can be seen in Table 4-4, the overall 

accuracy follows a similar trend as the earlier cases, i.e. a relatively low accuracy in water 

class and an overall low accuracy in site 2 in comparison to site 1. In site 2, a large 

proportion of water is confused with land (Appendix A-3). Particularly the class accuracy of 

water in site 2 is low. Moreover, the AEP is large which shows that a large proportion of the 

water is classified as land. In Figure 4.4, sites are visible that enable to pinpoint differences 

from the three images and somehow evaluate the potential and limitations of the ANN.  In 

general, site 2 is not suitable for evaluating the two-class cases since the proportion of water 

is small. Such a disproportional class may lead to a wrong conclusion. Site 2 was meant for 

representing more diversified and heterogeneous conditions. The following sections (4 class 

and 8 class cases) will demonstrate how the performance of the network really varies with 

change in site heterogeneity. 
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4.2.3 Results of four-class cases 

4.2.3.1 Case 4: Four classes with 75m spatial resolution 

 

Figure 4.5 Comparison of the four classes target, ANN output and the degraded 75m resolution 

images of sites 1 (left) and 2 (right) 

Table 4-5 Accuracy assessment of four classes with 75m spatial resolution 

 Site 1 Site 2 

Class PROD. 

ACC.(%) 

USER 

ACC.(%) 

AEP PROD. 

ACC.(%) 

USER 

ACC.(%) 

AEP 

Vegetation  

Arable land  

Built-up        

Water         

85.22  

97.32  

83.36  

93.64  

97.44 

74.15 

90.52 

 98.95 

0.125 

 -0.312  

0.079 

0.054

83.78 

89.21 

60.80 

64.89

90.08 

74.65 

76.43 

86.50 

0.070 

 -0.1950 

0.205 

0.251  

Kappa coefficient  

Overall Accuracy 

0.856 (0.870) 

89.22%  (90.26% )  

0.710 (0.720)  

81.91% ( 82.61% )  

 

Table 4-5 and Figure 4.5 show the ANN output and the accuracy assessment results of case 4 

after simulation with a network trained in a 27-25-9 network structure (see Table 4-1). From 

case number 1 to 3, the effect of the scale factor (S ) is noticed. In this and the following f
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sections, in addition to the S , it is possible to notice the effect of the number of classes. The 

overall accuracy dropped below 90%. But the kappa coefficient is still good, particularly the 

kappa coefficient of site 2 in case 4 is better than that of case 2 and 3. 

f

In this case, in addition 

to water, built-up was the least accurate. In both sites, the class arable land is the most 

accurate in terms of producer’s accuracy. However, in site 2, still the AEP for water is large 

which indicates that a large proportion of it is converted into other classes (built-up) (see 

Appendix A-4.1 and A-4.2). Despite the high class accuracy of arable land in both sites, the 

negative AEP evidences that more classes are transformed to this class. This class is largely 

confused with vegetation and built-up classes.    
 

4.2.3.2 Case 5: Four classes with 150m spatial resolution 

 

Figure 4.6 Comparison of the four classes target, ANN output and the degraded 150m resolution 

images of sites 1(left) and 2(right) 
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Table 4-6 Accuracy assessment of four classes with 150m spatial resolution 
         Site 1 Site 2 
 Class PROD. 

ACC.(%) 
USER  
ACC.(%) 

AEP PROD. 
ACC.(%) 

USER 
ACC.(%) 

AEP 

Vegetation 

Arable land 

Built-up 

Water 

74.07 

96.48 

73.45 

88.81 

94.39 

63.07 

84.29 

98.31 

0.2153    

-0.5297     

0.1286     

0.0990 

75.64 

87.16 

47.53 

44.54 

86.54 

64.76 

73.43 

85.98 

0.1259 

-0.3458 

0.3528 

0.4833     

Kappa coefficient  

Overall Accuracy 

0.762 (0.763) 

82.03% (82.23% )    

0.594 (0.596) 

74.92%  (75.04%  ) 

 

Case number 5 is a case trained with the network structure of 27-32-36 (see Table 4-1). The 

decrease in accuracy is getting pronounced in this case. Both the statistical and visual 

comparison from Table 4-6 and Figure 4.6 showed the progressive decline in the accuracy. 

The general trend is the same as for case 4 above, except a difference in magnitude (i.e. low 

overall accuracy and kappa coefficient). The class confusion, for instance, doubled in 

comparison to case 4 in all classes (See also the confusion matrix in Appendix A-5.1 and A-

5.2). The exaggerated class confusion with the nearest class code is also apparent in this case.  

4.2.3.3   Case 6: Four classes with 300m spatial resolution 

 
Figure 4.7 Comparison of the four classes target, ANN output and the degraded 300m resolution 

images of sites 1(left) and 2(right) 
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Table 4-7 Accuracy assessment of four classes with 300m spatial resolution 

 Site 1 Site 2 
 

Class 
PROD. 

ACC. (%) 
USER  

ACC. (%) 
AEP PROD.  

ACC. (%) 
USER 

ACC. (%) 
AEP 

Vegetation 60.07 90.24 0.3343 59.34 76.18 0.2211    

Arable land 94.17 53.88 -0.7478  79.10 51.98 -0.5218     

Built-up 66.09 72.85 0.0929  35.86 63.09 0.4316     

Water 78.72 96.57 0.1884 20.67 77.36 0.7334 

Kappa coefficient  

Overall Accuracy 

0.643 (0.644)  

73.08%  (73.16% ) 

0.3866 (0.3876)  

62.04%(62.11% )   

 

The network architecture selected for case number 6 is the 27-86-144 network structure.  The 

number of hidden nodes in this case is larger when compared to the earlier cases. Since this 

case has a large scale factor like that of case number 3, it was more complex to reconstruct 

the fraction images of the 4 classes to the 144 sub-pixels per pixel of the low resolution 

image. The accuracy considerably dropped when compared with case 4. Table 4-7, Appendix 

A-6.1 and A-6.2 show the accuracy analysis results of case 6. This case also shows that the 

scale factor is decisive as factor in the obtained performance. In this case, larger and intact 

features are easily recognizable; mostly linear and small size features are not reconstructed.  
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4.2.4  Results of eight-class cases 

4.2.4.1 Case 7: Eight classes with 75m spatial resolution 

 

Figure 4.8 Comparison of the eight classes target, ANN output and the degraded 75m resolution 

images of sites 1(left) and 2(right) 

Table 4-8 Accuracy assessment of eight classes with 75m spatial resolution 

Class Site 1 Site 2 

 

 

PROD.  

ACC. (%) 

USER  

ACC. (%) 

AEP PROD.  

ACC. (%) 

USER  

ACC. (%) 

AEP 

Grassland 

Arable land 

Built-up 

Deciduous forest 

Coniferous forest 

Water 

Bare soil 

Natural vegetation 

82.02 

97.01 

83.40 

77.27 

27.13 

91.44 

86.82 

68.70

97.23 

76.68 

90.58 

63.40 

10.93 

99.08 

66.76 

91.91

0.2853 

-0.4467  

0.0987  

-0.4194 

-4.0976 

0.1800 

-0.3888  

0.4758

76.42 

83.54 

62.91 

60.64 

76.11 

60.19 

23.24 

79.27

80.77 

82.91 

70.65 

60.36 

78.12 

65.18 

1.58 

52.17 

0.0588

 -0.0030  

0.1177  

0.0072

0.0318  

0.0886  

-13.034  

-0.4540

Kappa coefficient  

Overall Accuracy 

0.835  (0.862) 

87.16%  (89.3% ) 

0.675( 0.723) 

75.72% (79.50% ) 
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The results in Table 4-8 and Figure 4.8 are obtained by simulation of the 63-68-9 network 

structure indicated in Table 4-1. In this case, despite the large MSE of 0.473, when compared 

with case 6 with a MSE of 0.292 and the large number of classes, it performed better than 

that of case 6. This also signifies the contribution of the scale factor in limiting the 

performance. From this case, one more thing is noticed, i.e. MSE may not necessarily 

guarantee the network performance for new data. In fact, as S gets larger and larger, it is 

obvious that the possibility of creating a more mixed pixel will increase. Since the major 

source of error is from those mixed pixels, it is not a surprise to get a lower accuracy for 

cases with a larger S  Although the original area of bare soil is insignificant (0.11%) (

f  

f. Table 

3-1), a large proportion of deciduous forest and water was transformed to bare soil (see 

Appendix A-7.1 and A-7.2) and that is why the AEP is so large. This occurred in all 8-class 

cases.

 

4.2.4.2 Case 8: Eight classes with 150m spatial resolution 

 

Figure 4.9 Comparison of the eight classes target, ANN output and the degraded 150m resolution 

images of sites 1(left) and 2(right) 
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Table 4-9 Accuracy assessment of eight classes with 150m spatial resolution 

 Site 1 Site 2 

Class PROD. 

ACC. (%) 

USER 

 ACC. (%) 

AEP PROD. 

ACC. (%) 

USER  

ACC. (%) 

AEP 

Grassland 

Arable land 

Built-up 

Deciduous forest 

Coniferous forest 

Water 

Bare soil 

Natural vegetation 

68.34 

95.26 

72.85 

57.05 

8.30 

82.67 

73.45 

49.37 

93.54 

65.62 

82.50 

42.92 

1.82 

97.93 

54.77 

82.64 

0.2694   

-0.4518    

0.1169   

-0.3292   

-3.5515    

0.1557 

-0.3404 

0.4072 

61.10 

85.05 

49.04 

40.90 

57.84 

40.29 

5.66 

60.74 

81.28 

64.60 

52.99 

38.42 

73.43 

60.36 

0.78 

92.21 

0.2483   

-0.3167   

0.0745 

-0.0644 

0.2123    

0.3324 

-6.2255 

0.3447    

Kappa coefficient  

Overall Accuracy 

0.715  (0.724 ) 

77.68% (78.40%) 

0.532(0.537 ) 

65.92%  (66.29% )   

In this case, large proportions of the classes are misclassified. As it can be observed from  
Table 4-9, there is a large area error proportion in both sites. From the table, it is possible 

to observe also the nature of the AEP. The signs (+/-) of the AEP per class are the same 

in both sites. In both site, grassland, built-up, water and natural vegetation show a 

decrease in area, while arable land, deciduous forest and bare soil show an increase in 

area (see Appendix A-8.1 and A-8.2). This network showed similar characteristics per 

class in both sites even though there is a variation in magnitude of the errors. This shows 

how the network behaves with respect to the land cover pattern. Due to the large 

proportion of area error, the overall accuracy and kappa coefficient are very low. In the 4-

class and 8-class cases, the area error in water and built-up is high (high omission), 

whereas arable land has the highest negative values evidencing the high commission. The 

land cover pattern of the arable land is relatively intact; this might be the one that 

contributed the highest class accuracy.  
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4.2.4.3 Case 9: Eight classes with 300m spatial resolution 

 

Figure 4.10 Comparison of the eight classes target, ANN output and the degraded 300m resolution 

images of sites 1(left) and 2(right) 

Table 4-10 Accuracy assessment of eight classes with 300m spatial resolution 

Class Site 1 Site 2 

 PROD. 

ACC. (%) 

USER 

ACC. (%) 

AEP PROD 

 ACC. (%) 

USER 

ACC. (%) 

AEP 

Grassland 

Arable land 

Built-up 

Deciduous  forest   

Coniferous forest 

Water 

Bare soil 

Natural vegetation 

28.14   

89.53   

46.97   

54.05   

2.43   

49.94   

47.43   

0.54 

79.00 

48.17 

55.97 

19.48 

0.19 

91.58 

42.99   

10.83 

0.6438  

-0.8588  

0.1608  

-1.7750  

-11.8568  

0.4547 

0.1033  

0.9506

9.87 

78.32 

28.14 

22.25 

19.33 

12.95 

0.00 

0.00 

50.37 

43.30 

22.03 

18.06 

40.95 

36.70 

0.00 

0.00 

0.804

 -0.809

   -0.278 

-0.232

0.528

0.648

0.890

0.997

Kappa coefficient  

Overall Accuracy  

0.398 (0.399)  

51.56%(51.69% ) 

0.138 (0.139 )  

38.05%(38.18% ) 
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This case was simulated using the 7-23-23-144 network structure indicated in Table 4-1.  

Though it was trained with the parameters specified in section 4.1, it was not possible to 

make an extra test experiment by altering the different factors since it is computationally 

demanding. So, the results shown in Table 4-10, Figure 4.10, Appendix A-9.1 and A-9.2 are 

presented here only to demonstrate the performance of the network using the settings 

described earlier. The results also demonstrated the effect of this limitation (the minimum 

network parameters). But, it should not be necessarily considered that training large networks 

is impossible. This could be resolved using a high capacity computer and/or another data 

input structure.   

4.2.5 Accuracy assessment only for mixed pixels  

The results of the mixed pixel accuracy are presented in Table 4-11  to Table 4-13 and Figure 

4.11. The overall accuracy assessment results were obtained through averaging the per-pixel 

overall accuracies having above the specified number of classes per pixel.  In all cases, the 

overall accuracy declined as the number of classes per pixel increased. All followed nearly a 

similar pattern with the exception of case 9. Case number 9 showed an odd performance for 

pixels with >=7 classes. Moreover, the network for case number 7 in site 2 was not able to 

learn the corresponding targets for pixels having >=7 classes. The reason for this may be due 

to the area of class 7 and 8 which are only 0.11% and 2.13% in site 2 (Table 3-1). Since the 

pixel size is relatively small (3x3), the probability of getting a pixel with 7 and/or 8 classes in 

the 9 sub-pixels is very low. This means the probability of getting >=7 classes in a pixel will 

be very low. Another reason that the networks for case 8 and 9, particularly case 8 detected 

more (>=7) classes, could be attributed to the number of hidden layers. The network for case 

7 has 1 hidden layer whereas cases 8 and 9 are 2 hidden layer networks (see Figure 3.8 and 

Table 3-6). 
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Table 4-11 Change in overall accuracy with change in pixel heterogeneity for the two sites and 2-

class cases 

 Number of classes per low 
resolution pixel(site 1) 

Number of classes per low 
resolution pixel(site 2) 

 >=1 2 >=1 2 
Case 1 

Case 2 

Case 3 

0.990 

0.980 

0.959 

  0.845 

0.864 

0.856 

0.988 

0.986 

0.873  

0.661 

0.786 

0.832 

 

Table 4-12  Change in overall accuracy with change in pixel heterogeneity for  the two sites  and 4-

class cases 

Number of classes per low resolution 
pixel(site 1) 

Number of classes per low resolution 
pixel(site 2) 

4 class 
cases 

>=1 >=2 >=3 4 >=1 >=2 >=3 4 
case 4 0.8921 0.6463 0.5154 0.5225 0.8180 0.6121 0.4440 0.3872

Case 5 0.8199 0.6732 0.5128 0.4487 0.7491 0.6546 0.5197 0.3708

Case 6 0.7301 0.6574 0.5344 0.4327 0.6204 0.5909 0.5253 0.3759

 

Table 4-13 Change in overall accuracy of the ANN output with change in number of classes per 

pixel (pixel heterogeneity) in the two sites for 8-class cases 

Number of classes per low resolution pixel Sites 8 class 
cases >=1 >=2 >=3 >=4 >=5 >=6 >=7 8
case 7 0.8714 0.6173 0.4773 0.4149 0.3895 0.3620 0.3056 0.3333
Case 8 0.6591 0.6129 0.4608 0.3516 0.3489 0.3448 0.3454 0.3377

 1 

Case 9 0.5151 0.4212 0.3579 0.2652 0.2353 0.1241 0.0139 0.000
case 7 0.7520 0.5428 0.3633 0.2605 0.1856 0.1628 0.000 0.000
Case 8 0.6491 0.5804 0.4494 0.3231 0.2868 0.2787 0.2536 0.2163

2 

Case 9 0.3805 0.3705 0.3442 0.2640 0.2885 0.1808 0.4039 0.0000
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   a      b 

Figure 4.11 Change in overall accuracy of the ANN output with change in number of classes per pixel 

(pixel heterogeneity) in the two sites for 4-class cases (a) and for 8-class cases (b) 

4.2.6 Shape and size effect 

This section is intended to show the performance of the network with respect to the nature of 

various shapes and sizes. The images in Figure 4.12, Table 4-14 and Table 4-15  are a 

magnified view of a certain location from study site 1. Figure 4.12 illustrates the performance 

of the neural network with regard to various shapes and sizes. Visual comparison of the 75m 

aggregated image, the neural network output and the target image revealed that the neural 

network created an intermediate result between the aggregated and the target image with 

good improvement of the blocky structure that is created during the aggregation. The 

following results also show the capability and limitation of the network in predicting such 

features. In this demonstration, we can see situations where features disappeared in the 

aggregated image and in some cases are recovered in the neural network output; but with 

some distortion of shape. It also demonstrates situations where features vanished in both the 

ANN output and the aggregated map (indicated in circle mark). Below are some shape 

comparisons with the three maps (Aggregated, ANN output and the target images).  
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Figure 4.12 Demonstration for two-class case with 75m spatial resolution  

In Figure 4.12, on the aggregated map (a), ANN output (b) and target (c) images, a 

progressive change in shape, boundary roughness and location distortion can be observed. In 

this figure, the area of the water body on the target image (f) is 12 pixels; but on the 

aggregated image (d) and ANN output (e), the area diminished to 0 and 7 pixels, 

respectively. This shows that the neural network somewhat reconstructed the water body that 

disappeared in the aggregated image based on the fractional proportion of the different 

classes of the mixed pixels. Even though it is still far to reach the target area, it is a promising 

indication on the potential of the FFBPNN in predicting locations of class fractions for sub-

pixel mapping to minimize information losses. There are also situations where the 

information (object) has disappeared in both the ANN output and the aggregated map. The 

small sized feature on the target (i) indicated with circle, is lost in both the aggregated (g) and 

the ANN output (h). From this image, it can be observed that the ANN output boundaries are 

much finer than that of the aggregated. 
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Table 4-14 Demonstrations on the effect of size and shape of objects for 4 class cases 

cases 4-class cases 

Ta
rg

et
(2

5m
) 

 

This image consists of various shapes (a triangle, rectangle, 

nearly circular, irregular and linear shapes). The progressive 

change can be observed in the following consecutive images 

of the ANN output.  

A
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N
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ut
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5m

) f
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ac
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es
 

 

From this image: 

• water body is changed to various classes (mainly to arable 
land and built-up) 

• only a small area of water remained (but in 8 class 75m 
case, it is totally lost) 

• triangular, square and nearly circular shapes are 
maintained 

• linear features dissected (changed to patches) and 
sometimes changed to other adjacent class type. 
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15
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From this image it can be observed 

• all the linear features and small features vanished and  

• highly generalized result 

• rounding of shapes (e.g. feature labeled a and b) 

• change in size (built-up feature e.g. at the bottom left 

decreased) 

• 3 classes remained: water bodies are totally lost 

A
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In this image: 

• we can see how it is generalized. 

• all linear, elongated and small sized features are 

eliminated.   

• The remaining vegetation classes labeled b & c are 

connected  

• Vegetation class (labeled as d) is changed to round shape 
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Table 4-15 Demonstrations on the effect of size and shape of objects for 8 class cases  

cases 8-class cases 
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In this image the following can be observed: 

• water is totally lost; 

• only a small patch remained from the road labeled with 

f  and other roads are fragmented; 

• The compact shapes (e, b and a) and elongated shapes(c 

and d) are almost maintained; 

• a shift of classes (water changed to road).  
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From this image it can be observed that 

• all the linear features are vanished;  
• generalization; 
• rounding of shape (e.g. feature labeled a and b); 
• change in size (built-up feature e.g. at the bottom left 

increased). 
Shape change (rounding effect) is also reported by Tatem et 

al.( 2001a). This effect according to Tatem et al. (2001a) is 

due  to the use of spatial order as the basis that means the 

network converges to curved rather than sharp corners. 

This network generalized all classes at the location to arable 

land except a few pixels representing grassland are 

remaining  around the upper left side of the image. 
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The following issues are general observations that are more or less common problems in all 
the cases considered in this thesis work.  

 

Effect of rounding off the values of ANN output to the nearest integer: this resulted in 

some shift of classes to the nearest class code despite the spatial adjacency. To elaborate on 

this: if we have a 4 class case, a neural network output of e.g., 2.4 will be rounded to the 

nearest integer (to a class code of 2); but it might be class 3. Therefore, this shift to the 

adjacent class code is encountered in many of the cases and this is the main factor that 

contributed a lot to degrading the output of the ANN. This effect can also be observed in the 

confusion matrix. In most cases, classes are largely confused with their adjacent class code(s) 

(i.e. to the immediate upper or lower class code(s)). For instance, the code used for arable 

land was 2. In the confusion matrix, it showed that the largest confusions occurred with 

vegetation (code 1) and/or built-up (code 3), but relatively few or none with water (code 4). 

However, water (4) is confused with built-up (3), which has the nearest class code to water 

(Figure 4.13). On the target image, arable land was not present, but appeared on the ANN 

output image in the surroundings of the water due to the above-mentioned problem. In 

addition, unclassified pixels were found in many of the ANN output. The unclassified areas 

vary with the complexity of the cases (see Appendix A). However, this problem is minimum 

in case number 9. This could be the effect of the normalization that was employed. Such 

confusion problem may be resolved by using another output encoding technique, such as 

binary or one-of-N output if computational capacity is not limiting.   

 

Figure 4.13 Effect of adjacent class codes on the neighboring class assignment (case 5) 

Size and contiguity: From a visual assessment and comparison of both images, it is revealed 

that isolated objects of small size often disappeared even in the ANN output. Narrow linear 

features are also changed to a discontinuous and patchy structure. In most cases, these small 
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sized features are changing to the surrounding class type. In most cases, classes with a 

relatively fragmented land cover pattern are more affected than intact land cover patterns. 

4.2.7 Effect of applying majority filtering 

Some isolated pixels were observed within large classes in the ANN output. To assess the 

effect of these isolated irrelevant classes, a majority filtering using 3x3 windows was applied 

to the ANN output. Applying majority analysis on the ANN output slightly improved the 

accuracy. The results are included in Table 4-2 to Table 4-10 (indicated in brackets). The 

statistical (overall accuracy and kappa coefficient) and visual comparisons indicated the 

improvement in all the 9 cases. This shows, somehow, that isolated features were created on 

the ANN output image. Kasetkasem et al. (2005) also reported that applying a filter improved 

the accuracy of the sub-pixel mapping outputs.  

4.2.8 Summary 

The accuracy of the neural network output showed a clear decline with an increase in scale 

factor (or aggregation cell size) and number of classes. In addition, the results showed that 

the more heterogeneous a pixel is the less its accuracy will be. The result also showed a 

considerable change in accuracy of the ANN output with change in site heterogeneity. The 

ANN performance was very low for the relatively heterogeneous site. The result also 

demonstrated that the accuracy is affected by the shape, size and adjacency of the different 

features to be mapped. Compact and large size features are easily detectable whereas linear 

and narrow elongated features are difficult to detect (depending on the scale factor). The 

main problem that is affecting the ANN output in this work is the class confusion with the 

nearest (adjacent) class code even if there is no spatial adjacency. Using one-of-N or binary 

encoding may solve this problem since rounding off the ANN output is not necessary.   

 

The following summary table (Table 4-16) is convenient to compare the overall accuracies 

and kappa coefficients obtained for all the study cases and sites. In addition, the graph in 

Figure 4.14  shows the kappa coefficients for all cases and sites. From the figure, the effect of 

the different factors can be easily seen. It shows the change in accuracy (Z axis) with change 

in number of classes (X axis), and change in site and spatial resolution (Y axis). In general, 
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the networks performance was poorer in site 2 (since it is more heterogeneous) than site 1. 

The accuracy shows a clear decline as the number of classes and the scale factor increases.  

Table 4-16 Summary of the accuracy assessment results 

Spatial resolution classes 

75m 150m 300m 

cl
as

se
s 

K1 K2 OA1 OA2 K1 K2 OA1 OA2 K1 K2 OA1 OA2 

2 0.969 0.763 98.97 98.78 0.939 0.682 98.02 98.56 0.875 0.500 95.96 97.92

4 0.856 0.710 89.22 81.91 0.762 0.594 82.03 74.92 0.643 0.387 73.08 62.04

8 0.835 0.675 87.16 75.72 0.715 0.532 77.68 65.92 0.398 0.138 51.56 38.05

K1 & K2 are Kappa coefficients for site 1 &2; OA1 & OA2 are overall accuracies for sites 1 and 2 

 

 
Figure 4.14 Comparison of accuracy (kappa coefficients) of the study cases for the two sites 
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Chapter 5 
CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

In this thesis, the application of a feedforward backpropagating neural network (FFBPNN) 

for sub-pixel mapping was assessed. In general, FFBPNN implementation is said to be 

relatively easy. Its successful application can be an important alternative for sub-pixel 

mapping techniques. This thesis work gave some insights to understand the behavior of the 

FFBPNN for sub-pixel mapping applications.  

 

Although it was not possible to exhaustively explore all neural network architectures for the 

various case studies, the results achieved were in line with the 1st (main) research question: 

‘What are the overall possibilities and limitation of a FFBPNN for sub-pixel mapping?’ The 

results suggest that, with further refinement work, the FFBPNN can have potential 

application for sub-pixel mapping of land cover as a real soft-classification result of satellite 

images. The potentials and limitations varied with the complexity of the cases as explained in 

the following paragraphs.  

 

This work was also intended to answer the following two research questions. 

The second research question was: How is the capability of the FFBPNN for pattern/location 

predictions of sub-pixels within a pixel at the different spatial and thematic aggregation 

levels? Relevant to this research question, it has been found that the accuracy of the neural 

network outputs showed a clear decline with an increase in scale factor (or aggregation cell 

size) and number of input classes. The effect of scale factor was very considerable since it 

has influences on the number of mixed pixels and output nodes.  

 

The per-pixel and per-site accuracy assessment result confirmed that the network 

performance noticeably decreased with an increase in pixel heterogeneity and site (location) 

heterogeneity (spatial frequency). Moreover, the results obtained revealed that the response 
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of the network in reconstructing the sub-pixel map is highly influenced by the shape and size 

distribution of the different land cover features. Compact and large-sized features are easily 

detectable whereas linear and narrow, elongated features were difficult for the network to 

learn accurately. This result was pertinent to the third research question: Is there a change in 

accuracy with change in spatial frequency, shape and size of the cover types?  

 

In general, the accuracies achieved have a wide range depending on the complexity of the 

cases. The overall accuracies ranged from 38.05% (complex cases) to 98.97% (simple cases) 

and the corresponding kappa coefficients range from 0.14 to 0.97. Most of the errors 

occurred on class boundaries where highly mixed pixels were expected. The errors on the 

boundaries were those which did not reach to either of the target classes. This was the main 

problem that was introducing large class confusions with the adjacent class codes, even if 

there is no spatial adjacency. Using one-of-N or binary output encoding is expected to 

overcome this problem since rounding off the ANN output to the nearest integer is not 

necessary.   

 

5.2 Recommendations 

Though this study showed, to some extent, the possibilities and limitations of FFBPNN for 

sub-pixel mapping, a further study to determine the best network setting for better result is 

recommended. Due to computational constraints and as many things need to be tested, the 

effect of different parameters (including those mentioned below) were not exhaustively 

explored. The main bottlenecks in this thesis work that hindered a detailed work were 

training convergence speed and computer memory. The other main problem was the classes’ 

confusion with the adjacent class code. A further detailed work by alternatively testing one or 

more of the following factors may provide a better result.   

• Exploring if adding more hidden layers (if no computational limitation) improves class 

separability; 
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• Node and weight pruning algorithms may help to resolve the convergence, 

computational speed and memory problems, since the less important nodes and weight 

connections can be removed using this technique; 

• Binary or one-of-N output encoding can be an alternative to overcome the adjacent 

class code confusion problem; 

• investigating the effect of the neighboring pixels: using 3x3 window neighbors as input 

from all layers; only in one of the layers; or only using the central pixel for all layers 

(no neighbors); 

• Exploring the effect of using the entire input fraction layers or disregarding the last 

input fraction layer (N-1);  

• Exploring the initial weight and various early stopping strategies; 

  

Since there are many factors that influence a neural network performance, the 

recommendations suggested in this section for further research should not be considered as 

exhaustive. 
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Appendix A 

Confusion Matrices  

Appendix A-1:  Confusion matrix for case 1(2 classes & 75m) 
Reference (Pixels) 

Site 2 Site 1 
 Ann  

output 
No data Land Water Total   No data Land Water Total  

 No data 0 68 1 69  0 20 104 124  
 Land 0 775756 11300 787056  0 956136 10844 966980  
 Water 0 6800 192095 198895  0 3236 15699 18935  
  Total 0 782624 203396 986020  0 959392 26647 986039  

 

Appendix A-2: Confusion matrix for case 2(2 classes & 150m)   
Reference (Pixels) 

Site 2 Site  

ANN 
 output 

No 
data 

Land Water Total No 
data 

Land Water Total 

No data 0 0 0 0  0 0 0 0  
Land 0 771678 12621 784299  0 938836 9773 948609  
Water 0 6825 188976 195801  0 4177 15470 19647  
Total 0 778503 201597 980100  0 943013 25243 968256  

     
  

Appendix A-3: Confusion matrix for case 3(2 classes & 300m) 
Reference (Pixels) 

Site 2 Site 1 
      
ANN 
 output No 

data 
Land Water Total   No 

data 
Land Water Total   

No data 0 118 16 134  0 0 0 0  
 Land 0 733147 22254 755401  0 914842 13711 928553 
Water 0 15806 173182 188988  0 5958 10232 16190 
Total 0 749071 195452 944523  0  920800 23943 944743  

   

Appendix A-4.1: Confusion matrix for case 4(4 classes & 75m) site 1 
Reference (Pixels) ANN 

 output No data Vegetation    Arable land Built-up Water   Total   
0 95 0 1 0   96  
0 266158 2231 4591 173   273153  
0 38396 216738 34759 2395   292288  
0 7509 3739 206394 10362   228004  

No data 
Vegetation 
Arable land 
Built-up 
Water 0 159 3 1852 190371 192385  
Total 0 312317 222711 247597 203301 985926  

 
 
 
 
 
 



  

 75

 

Appendix A-4.2: Confusion matrix for case 4(4 classes & 75m) site 2 
Reference (Pixels) ANN 

 output No data Vegetation  Arable land Built-up Water   Total   

No data 0 87 4 1 1   93  
Vegetation 0 392653 28196 13553 1499   435901  
Arable land 0 62540 311935 40758 2615   417848  
Built-up 0 11909 9308 85752 5228   112197  
Water 0 1505 219 970 17267   19961  
Total 0 468694 349662 141034 26610   986000   

 

Appendix A-5.1: Confusion matrix for case 5(4 classes & 150m) site 1 
Reference (Pixels)   ANN 

 output No Data Vegetation Arable land Built-up Water Total 

0 115 0 0 0    115   
0 230216 5053 7859 758    243886   
0 64727 214530 54919 5957    340133   
0 15040 2758 180222 15781  213801   

 No data 
Vegetation 
Arable land 
 Built-up 
Water 0 690 11 2362 178573   181636   
Total 0 310788 222352 245362 201069    979571   

   

Appendix A-5.2: Confusion matrix for case 5(4 classes & 150m) site 2 
 Reference (Pixels)  ANN 

 output No data Vegetation Arable land Built-
up 

Water Total 

No data 0 17 0 0   1 18  
Vegetation 0 349016 38109 14467 1725   403317  
Arable land 0 100946 299564 57349 4685   462544  
Built-up 0 10234 5932 65549 7555   89270  
Water 0 1177 95 557 11214   13043  
Total 0 461390 343700 137922 25180   968192  

 

Appendix A-6.1: Confusion matrix for case 6 (4 classes & 300m) site 1 
Reference (Pixels) ANN 

 output No data Vegetation Arable land Built-up Water  Total   

No data 0 239 0 3 0       242   
Vegetation 0 180550 9138 9388 1012      200088  
Arable land 0 93388 199297 66567 10648      369900  
Built-up 0 25319 3192 156546 29817    214874   
Water 0 1055 16 4374 153398   158843   
Total 0 300551 211643 236878 194875   943947   

 

Appendix A-6.2: Confusion matrix for Case 6 (4 classes & 300m) site 2 
 Reference (Pixels)  ANN 

 output No data Vegetation Arable land Built-up Water Total 
No data 0 41 10 8 0   59  
Vegetation 0 267528 63126 17522 3011   351187  
Arable land 0 168259 265464 68469 8548   510740  
Built-up 0 13970 6781 48162 7421   76334  
Water 0 1065 237 145 4945   6392  
Total 0 450863 335618 134306 23925   944712  
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Appendix A-7.1: Confusion matrix for case 7(8 classes & 75m) site 1 

 
ANN 
 output 

Reference (Pixels) 

 Grass  
land 

Arable  
land 

Built-up Deciduous 
   

Coniferous   Water   Bare soil Natural  
veget 

Total 

No data 1588 5   8 3 2 5  0  0 1611   
Grassland 219400 2030 3872 226 59 57 1 2 225647 
Arable land 34458 216055 29248 1161 361 474  8 5 281770 
Built-up 9684 4311 198967 3513 1394 1744 24 17 219654 
Deciduous 1791 285 5420 23977 2204 3990  68 81 37816   
Coniferous 489 24 892 1591 1524 8963 186  279 13948   
Water 92 1 134 385 68 186004  480 562 187726 
Bare soil 7 0 26 159 6 153 7825 1545 11721   
Natural veget 0 0 11 16 0  33  421 5468 5949   
Total 267509 222711 238578 31031 5618 203423 9013 7959 985842

   
 Appendix A-7.2:Confusion matrix for Case 7 (8 classes & 75m) site 2 

  Reference (Pixels)     ANN 
 output Grassland 

 
Arable  
land 

Built-up Deciduous 
  

Coniferous 
 

 water   Bare 
soil 

Natural  
veget  

   Total  

No data            5926 444 697 284 253 363 25 12 8004 
 Grassland 240985 29355 18120 5038 3061 1516 138 146 298359 
 Arable land 33472 290769 18920 4239 2264 766 169 116 350715 
Built-up 15538 14579 87212 2930 2007 1025 97 57 123445 
Deciduous  6372 4247 5156 32393 4322 900 60 218 53668 
Coniferous  3793 2020 1906 5076 57954 2127 78 1231 74185 
Water 2385 1008 1038 692 2520 15831 107 706 24287 
Bare soil 3517 2724 2588 1010 1482 2588 251 1684 15844 
Natural veget 3337 2915 2990 1753 2280 1187 155 15944 30561 
 Total 315325 348061 138627 53415 76143 26303 1080 20114 979068 

 
   
 

Appendix A-8.1: Confusion matrix for case 8(8 classes & 150m) site 1 
 

  Reference (Pixels)       NN 
 output    Grass 

land 
Arable 
 land 

Built-up Deciduous   Coniferous  Water Bare soil Natural  
veget 

Total 

No data 578 4 2 1 0 4  0 0 589 
Grassland 181906 5558 6119 437  123 310    2  2 194459 
 Arable land 58293 211821 47560 2594  690 1802    26  26 322804 
Built-up 18869 4744 172540 5949 2587 4338     67    67 09135 
Deciduous  4432 183 8403 17639  1685 8385    237    237  41099 
Coniferous  1752 38 1929 3169 465 17140 694    694  25502 
Water 300 4 237 852 48 166669  1031    1031 170200 
Bare soil 28 0 32 260 4 2835  2015    2015    11440 
Natural veget 1 0 6 19 1 114  3970    3970     4804 
Total 266159 222352 236828 30920 5603 201597  8042    8042   980032 
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Appendix A-8.2: Confusion matrix for case 8(8 classes & 150m) site 2 
 

  Reference (Pixels)     ANN  

output     Grass 
land 

Arable  
land 

Built-up Deciduous  
 

Coniferous  
 

    Water   Bare  
soil 

Natural  
veget  

   Total  

No data            194 9 0 3 8 4 0 11 229 
 Grassland 190615 28912 11018 2490 889 482 29 70 234505 
Arable land 92913 292326 51762 10111 3574 1518 168 167 452539 
Built-up 17821 17431 67112 14075 7262 2516 253 190 126660 
Deciduous  6877 4063 5254 21762 14342 3801 250 292 56641 
Coniferous  2784 799 1584 4355 43737 5338 189 777 59563 
Water 595 111 117 293 3373 10171 109 2082 16851 
Bare soil 125 38 14 97 1707 1164 60 4454 7659 
Natural  veget 41 11 1 25 722 249 2 12442 13493 
Total 311965 343700 136862 53211 75614 25243 1060 20485 968140 

 
 

Appendix A-9.1: Confusion matrix for Case 9 (8 classes & 300m) site 1 
 

  ANN  
output 

    Reference     

 Grass 
land 

Arable 
land 

Built-up
 

Deciduous
 

Coniferous Water Bare 
soil 

Natural 
veget 

Total 

No data      0 0 0 0 0 0 0 0 0 
Grassland 72470 8633 8734 40 61 1512 4 279 91733 
Arable land 109853 189486 79813 2500 1077 9461 92 1118 393400 

Built-up 43585 10292 107776 9373 3350 16763 267 1170 192576 
Deciduous  17476 2749 19276 15958 779 22388 1014 2284 81924 
Coniferous 10138 459 10860 1131  132 44585 873 1673 69851 
Water 3700 24 2802 422  34 97740 1406 596 106724 
Bare soil 318 0 204 97 0 3173 3516 871 8179 
Natural  veget 23 0 1 1 0 88 241 43 397 
Total 257563 211643 229466 29522    5433 195710 7413 8034 944784 

 

Appendix A-9.2: Confusion matrix for Case 9 (4 classes & 300m) site 2 
Reference    ANN  

output Grass 
land 

Arable 
land 

Built-up Deciduous  
 

Coniferous  
 

Water Bare 
soil 

Natural  
veget 

Total 

no data 
Grassland 
Arable land 
Built-up 
Deciduous     
Coniferous  
Water 
Bare soil 
Natural veget 

0 
30097 

210675 
44710 
14419 
4441 
694 

1 
0 

0
21758

262844
38258
10773
1879
107

0
0

2
5681

84149
37529
4914
913
169

1
0

2 
474 

18052 
20471 
11526 
1174 

72 
20 
9

3
924

21250
20201
15871
14356
1585

69
28

4
60

5665
6580
4536
3672
3099

13
4

4 
10 

291 
361 
182 
78 
4 
0 
0 

0 
443 
159 
253 

1598 
8541 
713 

0 
0 

15 
59747 

607085 
170363 
63819 
35054 
8443 
104 

41
Total 305037 335619 133358 51800 74287 23933 930 19707 944671

 
 



 

Appendix B 
Lists of neural network training test cases 

Case 1: Two-class 75m 

  Test 
 Code 

Train 
algor 

Structure Nhl,  Sr Nf Training 
set 

Validation 
 set 

Testing 
set 

MSE  Epochs Site 1  
OAA 

 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nhl: number of hidden layers,  Sr: sample range factor, Nf: node factor, MSE: Mean Squared Error, OAA: Overall Accuracy 

SCG: Scaled conjugate gradient, RP: Resilience propagation, OSS: One step scant,   

Site 2 
OAA 

1 1_13 SCG 9-13-9 1 60 0.7 5400 2700 2700 <0.01 63 0.9815   0.9867
2 1_14 BFG 9-16-9 1 60 0.9 5400 2700 2700 <0.01 46 0.9811 0.9878
3 1_15 OSS 9-16-9 1 60 0.9 5400 2700 2700 <0.01 71   0.9805   0.9875
4 1_16 SCG 9-16-9 1 60 0.9 5400 2700 2700 <0.01 46  0.9778 0.9862
5 1_17 RP 9-13-9 1 60 0.7 7200 3600 3600 <0.01 130 0.9800 0.9855
6 1_18 RP 9-16-9 1 60 0.9 5400 2700 2700 <0.01 181 0.9795 0.9847
7 1_18 SCG 9-16-9 1 60 0.9 5400 2700 2700 <0.01 63 0.9815 0.9875
8 1_19 SCG 9-13-9 1 80 0.7 7200 3600 3600 <0.01 51 0.9792
9 1_20 SCG 9-13-9 1 60 0.7 2700 1350 1350 <0.01 32 0.9808 0.98736

10 1_21 OSS 9-16-9 1 60 0.9 2700 1350 1350 <0.01 71 0.9805   0.9875
11 1_25 SCG 9-13-9 1 80 0.7 2700 1350 1350 <0.01 51 0.9792 0.9847
12 1_27 SCG 9-9-9 1 30 0.5 2700 1350 1350 0.0069 198  0.9866
13 1_29 SCG 9-9-9 1 30 0.5 2700 1350 1350 0.00654 216 0.9897 0.98785
14 1_31 SCG 9-5-5-9 2 30 0.5 5400 2700 2700 0.00808 321 0.9821
15 1_33 SCG 9-5-5-9 2 30 0.5 5400 2700 2700 0.00775 189 0.9829
16 1_34 SCG 9-5-5-9 2 30 0.5 5400 2700 2700 0.00950 16 0.98376
17 1_35 SCG 9-13-9 1 60 0.7 5400 2700 2700 0.00950 33

   18    1_36   SCG   9-3-3-9 2 60 0.7 5400 2700 2700 0.00741 213   
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Case 2: Two classes and 150m 

 Test 
code 

Train. 
algor 

Structure Nhl, Sr Nf Training 
set 

Validation 
set 

Testing 
set 

MSE epoch OAA 
SITE 1 

OAA 
SITE 2 

1 2_1 SCG 9-23-36 1 30 0.5 2700 1350 1350 <0.01 234 0.9770 0.9849
2 2_2 SCG 9-23-36 1 60 0.5 5400 2700 2700 <0.01 529  0.9797 0.9852
3 2_5 SCG 9-23-36 1 30 0.5 2700 1350 1350 <0.01 172 0.9742  0.9845
4 2-7 SCG 9-14-14-36 2 80 0.6 7200 3600 3600 <0.01 0.9754 0.9848
5 2_9 SCG 9-31-36 1 60 0.7 5400 2700 2700 val 567 0.9802 0.9856
6 2_10 SCG 9-12-12-36 2 30 0.5 2700 1350 1350 val 330 0.9734 0.9846
7 2_11 BFG 9-12-12-36 2 60 0.5 5400 2700 2700 0.010667 688 0.97968
9 2_13 BFG 9-12-12-36 2 60 0.5 5400 2700 2700 0.010119 197 0.96905

10 2_14 BFG 9-12-1236 2 60 0.5 5400 2700 2700 0.00962 448 0.97916
11 2_15 SCG 9-23-36 1 30 0.5 2700 1350 1350 0.009 335 0.9796 0.9853
12 2_17 SCG 9-23-36 1 30 0.5 2700 1350 1350 0.01012 504 0.96944 0.9856
13 2_19 SCG 9-12-12-36 2 30 0.5 2700 1350 1350 0.011854 251 0.97487
14 2_20 SCG 9-12-12-36 2 30 0.5 2700 1350 1350 0.010595 533 0.9802
17 2_24 SCG 9-31-36 1 60 0.7 5400 2700 2700 0.00865 2000 0.9801
18 2_25 SCG 9-19-36 1 30 0.5 2700 1350 1350 0.01061 2000 0.9642

 

 

 

 

 

 

 

 

 

 



                                                                                       

Case 3: Two-class and 300m 

 

 

 

 

 

 

 

 

 

Case 4: 4 classes & 75 
 TEST TRAIN 

Nhl, Sr Nf Training  
Set  

Validation 
 Set 

Testing  
Set 

MSE Epoch OAA 
Site 1 

  Structure OAA 
Site 2 

1 SCG 9-77-144 1 30 0.5 2700 1350 1350 0.012413 772 0.9580    0.9786
2 SCG 9-54-54-144 2 60 0.7 5400 2700 2700 0.014396 1213 0.9593   0.9791
3 SCG 9-77-144 1 60 0.7 5400 2700 2700 0.015822 n/a 0.9559 0.9787
4 SCG 9-77-144 1   60 0.7 5400 2700 2700 0.015491 131 0.9574 0.9787
5 SCG 9-77-144 1   60 0.7 5400 2700 2700 0.015293 n/a 0.9591 0.9788
6 SCG 9-31-144 1 20 0.2 1800 900 900 0.013939 207 0.9562 0.9791
7 SCG 9-77-144 1 030 0.5 2700 1350 1350 0.01395 539 0.95042 0.9787
8 SCG 9-77-144 1 030 0.5 2700 1350 1350 0.013152 804 0.94255
9 SCG 9-77-144 1 030 0.5 2700 1350 1350 0.011089 2000   0.9584

10 SCG 9-77-144 1 030 0.5 2700 1350 1350 0.015468 493 0.95324
11 SCG 9-77-144 1 030 0.5 2700 1350 1350 0.011394 2500 0.9318
12 SCG 9-77-144 1 030 0.5 2700 1350 1350 0.014192 4630 0.9420
13 SCG 9-27-27-144 2 60 N/A 5400 2700 2700 0.014079 1475
14 SCG 9-107-144 1 60 0.7 5400 2700 2700 0.014934 168
15 SCG 9-54-54-144 2 60 0.7 5400 2700 2700 0.016891 1197

STRUCTURE Nhl, Sr Nf Training 
Set 

Validation 
Set 

Testing 
Set 

EPOCJH OAA 
SITE 1 

OAA 
ALDG. SITE 2 

1 4_1 SCG 27-25-9 1 60 0.7 45360 22680 22680 772 0.8921 0.8190
2 4_2 SCG 27-32-9 1 40 0.9 30240 15120 15120 1021 0.8899 0.8172
3 4_4 SCG 27-25-9 1 60 0.7 45360 22680 22680 559 0.8530
4 4_5 BFG 27-25-9 1 60 0.7 45360 22680 22680 422   0.8937 0.8194
5 4_6 BFG 27-13-13-9 2 60 0.7 45360 22680 22680 574 0.8858
6 4_7 SCG 27-13-13-9 2 60 0.7 45360 22680 22680 832   0.8529

 

 

 

 80



                                                                                   

81

Case 5: 4 Classes & 150 
 Test 

Code 
Training 

Algor 
Structure Nhl, Sr Nf Training 

Set 
Validation 

Set 
Testing 

Set 
MSE Epoch OAA 

Site 1 
OAA 
Site 2 

1 5_1 SCG 27-32-36 1 30 0.5 22680 11340 11340 0.19837 928 0.8199  0.7491 
2 5_2 SCG 27-32-36 1 30 0.5 22680 11340 11340 0.20226 1084 0.8112  0.7434 
3 5_3 SCG 27-38-36 1 50 0.6 37800 18900 18900 0.20172 986 0.8148  0.7464 
4 5_4 SCG 27-13-36 1     7 n/a 5292 2646 2646 0.21339 294 0.7899 0.7348 
5 5_5 SCG 27-27-36 1     7 0.5 5292 2646 2646 0.20316 255 0.8102  0.7452 
6 5_6 SCG 27-5--36 1 7 0.2 5292 2646 2646 0.21898 422 0.7862 0.7322 
7 5_7 SCG 27-7-7-36 2 30 0.5 22680 11340 11340 0.21028 1670 0.7999 0.7399 
8 5_8 SCG 27-32-36 1 50 0.5 37800 18900 18900 0.20436 1028 0.8171
9 5_9 SCG 27-16-16-36 2 50 0.5 37800 18900 18900   0.8166

 
Case 6: 4 classes & 300 

 Test code Train 
Algor 

Structure Nhl,    Sr Nf Train Vald Test MSE Epochs OAA Site 1 OAA Site 2 

1 6_1 SCG 27-86-144 1 30 0.5 45360 22680 22680 0.299 383 0.7113 0.6155 
2 6_2 OSS 27-86-144 1 30 0.5 30240 15120 15120 0.2955 672 0.7217  0.6210 
3 6_3 RP 27-86-144 1 30 0.5 45360 22680 22680 0.29748 1001 0.7110 0.6161 
4 6_4 SCG 27-86-144 1 30 0.5 45360 22680 22680 0.29664 1097 0.7136 0.6166 
5 6_5 SCG 27-86-144 1 30 0.5 45360 22680 22680 0.29184 2000  .7301 0.6204 
6 6_10 SCG 27-26-26-144 2 30 0.6 45360 22680 22680 0.29531 1034 0.7257 0.6210 
7 6_11 BFG 27-9-9-144 2 30 0.6 45360 22680 22680 0.32712 328  .6933 n/a 

  

 

 

   

 

8-class cases 
 Train Alg Train alg Structure Nhl,     Sr Nf Train Vald Test MSE Epochs OAA Site 1 OAA Site 2 
Case 7 8 classes & 75m 
1 7_1 SCG 63-68-9 1 30 0.95 120960 60480 60480 0.47313 610   0.8714 75.72 
Case 8: 8 classes & 150 
1 8_1 SCG 63-66-36 1 35 0.67 141120 70560 70560     
2 8_4 SCG 63-25-25-36 2 30 0.5 120960 60480 60480 0.458 1297 0.777 0.6592 
Case 9: 8 classes & 300 
1 9_1 SCG 63-93-144 1 22 0.45 88704 44352 44352   0.0186  

1.3342 0.3 45794 n/a n/a 1027-23-23-144 SCG 2 9_2 933 0.5151 0.381 
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Appendix C 
Thematically and spatially aggregated maps 
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Appendix D 
Class fraction images 

 Class fraction  75mx 75m(Sf=3 ) 150m x 150m(Sf=6) 300m x 300m(Sf=12) 
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