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Abstract 

This paper investigates the welfare effect of adverse weather through changes in the speed of 

individuals’ car commuting trips in the entire Netherlands. Weather measurements are local 

and time specific (hourly basis). As most commuters travel twice a day between home and 

work, we are able to estimate the effect of adverse weather employing panel data techniques, 

which is novel in this context. We find that for most commuters the welfare effects of adverse 

weather conditions are negative but small. However, the commuters’ welfare costs due to rain 

are rather substantial during rush hours in congested areas (and up to 15 percent of the overall 

commuting costs). 
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1. Introduction 

 Climate change will affect weather patterns all over the world, albeit differently for 

different regions, and pose important challenges to the world economy (IPCC, 2007). 

Moreover, the impacts of climate change will vary substantially from sector to sector. A 

sector that has been largely ignored up till now, but that may be severely affected, is the 

transport sector. For instance, it is plausible that changing weather patterns will affect 

infrastructure cost of roads, for example, more frequent rain and higher temperatures may 

increase maintenance cost of roads (Carmichael et al., 2004). Changes in weather patterns 

may also have substantial effects on the number and severity of traffic accidents and 

congestion on roads and airports.  

The anticipated change in weather patterns, and in particular the changes in 

precipitation, have direct implications for the welfare of transport users. Specifically, adverse 

weather conditions may bring about delays in trips and an increase in traffic accidents. 

Weather changes may affect transport activities and therefore the welfare of the population in 

two main ways: (1) it may affect demand for an activity (for example, sunbathing on the 

beach) and therefore the derived demand for transport directly (for example, going to the 

beach) and (2) it may affect the welfare of transport users. In the current paper, we are 

interested in the latter effect. 

We will focus on the effect of adverse weather on the travel speed of commuting trips. 

In the literature it is common to focus on traffic speed measured at the road or road segment 

level (see, for example, Ibrahim and Hall, 1994), implying that only part of the trip is 

analysed. This approach is less insightful because it is perfectly possible that weather-induced 

delays on certain parts of the trip are partially or even completely compensated by higher 

average speed levels on other parts of the trip. An advantage of this paper is that our 



3 
 

observations are at the trip level, implying that we focus on the average speed of the whole 

trip instead of only part of the trip. Furthermore, a focus on commuting is useful, because, in 

general, demand for employment and therefore demand for commuting hardly depends on 

weather conditions. The welfare loss associated with a reduction in derived demand is 

therefore negligible, implying we can focus on the welfare effect of transport users. This most 

probably does not hold for trips related to other activities, for example, demand for 

recreational and leisure trips is likely negatively affected by adverse weather conditions. One 

of the other methodological advantages of focusing on commuting trips is that one can apply 

panel techniques as for most commuters two trips on the same day are observed. In addition, 

welfare effects of adverse weather for non-car users are not so much caused by a delay in 

trips, but more by the inconvenience of adverse weather itself.1 For car commuters, the main 

welfare effects of weather will occur through changes in trip speed, changes in the number 

and severity of traffic accidents, and changes in travel time reliability. The main objective of 

the current paper is to analyse welfare effects of adverse weather associated with changes in 

speed of car commuting trips. For reasons explained later on, the methodological framework 

used allows for the calculation of welfare effects for this group of travellers. In this paper we 

will largely ignore the possible welfare effects of adverse weather through changes in travel 

time reliability. We leave this issue for further research. 

 Most of the literature available on the effects of weather on road transport focuses on 

traffic accidents and traffic speed. Empirical studies on the impact of rain and snow on the 

frequency and severity of road accidents are abundant. Most of the evidence shows an 

increasing effect of precipitation on the frequency of accidents (see, for example, Eisenberg, 

2004; Shankar et al., 2004; Edwards, 1996). The impact on accident severity appears to be not 

                                                 
1 In the Netherlands the main alternative to car is biking (25 percent of commuters) and walking (9 
percent of commuters) and only about 6 percent of commuters use public transport (Statistics 
Netherlands). 
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as pronounced. For instance, using US traffic accident data between 1975 and 2000, 

Eisenberg and Warner (2005) find that snow days had more nonfatal-injury crashes and 

property-damage-only crashes, but fewer fatal crashes than dry days. Similarly, Khattak et al. 

(1998) use an extensive dataset with single-vehicle and two-vehicle traffic accidents in North 

Carolina in the period 1990 to 1995. They find that adverse weather (rain, snow, sleet, fog) 

has a statistically significant but small negative impact on accident severity, that is, accidents 

are less severe in adverse weather. The effects of a wet and a snowy or icy road surface are 

much larger, however. The mediating effect in the observed pattern is likely that precipitation, 

and adverse weather in general, reduces traffic speed, thereby reducing the severity of an 

accident when it occurs.2 

 Similarly, some studies analyse the impact of weather on traffic speed. For instance, 

Maze et al. (2006) use a dataset including four years of traffic data from the freeway system 

in the Minneapolis/St. Paul metropolitan area and weather data from three weather stations 

nearby the freeway network. They show that adverse weather causes clear reductions in traffic 

speed; up to 6% for rain, up to 13% for snow, and up to 12% for reduced visibility. Similarly, 

Ibrahim and Hall (1994) analyse the effects of adverse weather on the speed-flow and flow-

occupancy relationships for Canadian travellers (see also Brilon and Ponzlet, 1996; Hall and 

Barrow, 1988). They find a small but statistically significant effect of light rain and light 

snow on the free-flow speed. The effect of heavy rain and heavy snow are much larger, 

causing a reduction in the free-flow speed of 5-10 km/hour and 38-50 km/hour, respectively. 

To estimate the welfare effect of weather through changes in traffic speed, we use 

information on the average value of travel time (see, for example, Small and Verhoef, 2007). 

Based on a meta-analysis of 56 value-of-time estimates from 14 different countries, Waters 

(1996) finds an average ratio of value of time equal to 48 percent of gross wage rate and a 

                                                 
2 Plausibly, car drivers reduce the risk of accidents by adjusting their speed level, so the effect of 
weather on speed will indirectly affect costs associated with traffic accidents. 



5 
 

median ratio of 42 percent for commuting trips made by automobile. In another review, 

Wardman (1998) finds similar values. In the Netherlands, gross hourly wage rates for car 

commuters are about 16 €, suggesting a value of time of about 8 € per hour.3 

In this paper we add to the literature in a number of ways. First, we use weather data 

that are local and measured on an hourly basis. Second, we make use of panel data techniques, 

which have not been used in this context, thereby avoiding confounding effects. Third, we 

derive welfare effects related to changes in traffic speed caused by weather condition 

variations. Finally, our observations are at the trip level, allowing us to focus on the effects of 

adverse weather on the average speed of the whole trip, instead of only part of the trip as is 

common in the literature (see Ibrahim and Hall, 1994). 

 The remainder of this paper is organised as follows. Section 2 discusses the empirical 

model and the econometric methodology to derive welfare effects of weather through changes 

in commuting speed. Section 3 discusses the data as well as the explanatory variables 

included in the model. Section 4 provides the empirical results and discusses the welfare 

effects of adverse weather conditions for the Netherlands. Finally, Section 5 concludes. 

2. Theory and estimation method  

2.1 Theoretical background 

 Our empirical analysis is based on standard micro-economic theory such as used in Van 

Ommeren and Dargay (2006), who derive a structural model for commuting speed and then 

use that model for Great Britain. This model is also used in Fosgerau (2005) who applies it to 

                                                 
3 This has been calculated using Dutch National Household Survey of household including employees 
who commute by car.  



6 
 

Denmark.4 It is assumed that utility is a concave function of speed and that increasing speed is 

costly (for example, due to higher risk of accidents, fines, etc). Further, it is assumed that the 

cost function is a convex function of speed. It can then be shown, quite intuitively, that the 

optimal speed is chosen such that the marginal benefits of speed (a reduction in travel time 

given the distance) equals the marginal costs of speed.5 Given the assumption that the 

monetary costs are a power function of speed, it can be shown that the double-log model is 

the preferred statistical model. 

Now suppose that weather conditions deteriorate (for example, an increase in rain), 

leading to an increase in the marginal costs of speed (for example, due to more accidents). 

The commuter will decrease his or her speed level, which induces a loss in travel time. Due to 

rain the commuter will therefore not only experience a reduction in welfare through a loss in 

travel time but may also experience loss in welfare due to higher marginal costs of speed (for 

example, due to the increased risk of accidents).6 Hence, adverse weather conditions will not 

only induce increases in travel time, but will also affect other (difficult to observe) costs. So, 

in general, the welfare effect of adverse weather conditions will differ from the welfare loss 

associated with the time increase. We will focus on the effect through time losses only. 

Van Ommeren and Dargay (2006) show that the marginal effect of an exogenous 

environmental characteristic, such as weather, on the logarithm of speed can be interpreted as 

the marginal effect of this characteristic on the logarithm of the commuter’s total commuting 

costs (the sum of travel time costs and other costs that vary with speed). Given an estimate of 

average commuter value of time, it is meaningful to estimate the welfare consequences of a 

                                                 
4 We improve on the statistical analyses of Fosgerau (2005) and Van Ommeren and Dargay (2006) by 
explicitly taking the time dimension of the moment of travel (in time of days, hours) into account as 
well as unobserved heterogeneity of commuters. 
5 Another consequence of the Van Ommeren and Dargay (2006) model is that the logarithm of 
distance and income affect the logarithm of speed. We follow this specification. 
6 Intuitively, in the new equilibrium, the marginal accident cost must be higher as the marginal 
benefits of speed are also higher. 
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loss in travel time. In the current study we use a value of 8 € per hour, which is about 50 

percent of the gross hourly wage in the Netherlands, in line with the literature. For our 

empirical analyses we will use the following logarithmic specification, which is in line with 

the theoretical considerations above: 

 ( ) ( ) ( )0 1 2 3 4 5log log logitd itd itd i i td itdS W D y X F= β +β +β +β +β +β + ξ   (1) 

where subscript i represents individuals, t represents hour of departure and d represents day of 

the year. Furthermore, S is speed, W is a vector of individual-specific time-varying variables 

(including weather variables), D denotes the distance travelled, y is the income of individuals, 

X is a vector of individual variables (including gender, age, etc), and F refers to time-specific 

characteristics such as degree of urbanisation, hour of travel, day of the year and seasonal 

variation. Finally, the β ‘s are parameters to be estimated by the model and ξ  denotes an 

unobserved error term. 

2.2 Assumptions regarding conditions of error terms  

 In order to analyse the impact of weather on the speed of commuting trips we use 

different econometric models. The models estimated make different assumptions about the 

unobserved error term ξ  and therefore have different interpretations. The first model is the 

OLS model, with the standard assumption that the errors are independent. This implies that if 

a person makes two trips on the same day then the errors of both trips are assumed to be 

independent. This is a strong assumption which most likely does not hold in the current case. 

As a result, OLS generates inefficient estimates (Wooldridge, 2003). Therefore, random 

effects panel data models that control for the correlation between errors are employed. In 

addition, OLS does not control for unobserved differences in preferences among individuals 

and other unobserved features of individuals (such as the exact location of the individual). 
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Likely these unobserved features are correlated to some of the weather variables. Clearly, 

weather itself is not correlated to any unobserved individual specific variable, but the 

interaction of weather with other explanatory variables (such as region) is likely correlated to 

unobserved individual-specific variables. Since we are interested in the interaction effect of 

adverse weather with congestion variables this poses a problem. For this reason we include 

individual specific fixed-effects, which also controls for selection effects that may occur since 

we have a selected sample of car commuters.7 

 For the same reasons as discussed above it may be relevant to control for day-specific 

and hour-specific random and fixed effects. For instance, it is plausible that all commuters are 

affected by a common factor on the same day (apart from weather), which is correlated with 

weather (for example, summer holidays reduce traffic). Similarly, it is plausible that all 

commuters are affected by a common factor during the same hours, which is correlated with 

weather patterns (for example, temperature tends to be higher during the day than during the 

evening rush hour). Ultimately, we estimate fixed and random effects panel data models with 

day-specific, individual-specific and hour-specific effects.8 Fixed effects models include a 

dummy variable for each observation in the same group (where a group refers to either an 

individual, a day or an hour), whereas random effects allow for correlation between the 

observations in the same group. 

                                                 
7 Individual fixed effects may pick up differences between individuals that are actually caused by 
adverse weather. For example, when an individual commutes twice and both times in rainy conditions, 
and another also commutes twice but under dry conditions, the differences in speed between these two 
individuals are fully picked up by the fixed effects and not by the rain dummy. Note that this does not 
affect the consistency, but only the efficiency of the estimated coefficients. 
8 Note that some commuters have two different distances on the same day, which allows us to identify 
the effect of distance using individual fixed-effects.  
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3. Data and model specification 

 The data used in this paper are taken from two sources. We make use of the National 

Transport Survey provided by Statistics Netherlands for 1996.9 Over the course of an entire 

year, more than 150,000 individuals were asked to fill out a questionnaire containing 77 

different questions about their travel behaviour (all trips) during a single day and about 

important individual and household characteristics. The dataset contains more than 628,000 

reported trips. For most commuters we observe two commuting trips a day. For some 

commuters we only observe one commuting trip (predominantly due to underreporting of one 

of the trips) while for others we observe more than two commuting trips (for example, for 

workers with multiple jobs or who go home for lunch). 

The second data source is a weather database available from the Royal Netherlands 

Meteorological Institute (KNMI) for 1996. It contains weather conditions on a hourly basis 

for 32 weather stations spread all over the Netherlands. We use the weather conditions from 

the weather stations which are nearest to commuters’ places of departure (in almost all cases). 

The average distance to a weather station is about 12 to 13 km, which means that our 

measurement of weather conditions is very local.10 This is particularly important as the 

incidence of rain, which as we will see is the most important weather determinant of 

commuting speed, is known to be local especially during the summer months. The weather 

conditions refer to temperature (we distinguish between temperatures above and below zero), 

wind speed (wind strengths exceeding 6 Beaufort), rain and snow.11 Hence, by combining 

                                                 
9 We used the year 1996 for our analysis (and not a more recent year) because for this year we have 
more detailed information about weather conditions. 
10 We have estimated the average distance as follows: The total land area of the Netherlands is 33,889 
km2. Given the assumption that stations are homogenously spread over the country and each weather 
station covers a circle, the maximum distance is 18.78 km. The average distance of a circle is 2/3 of 
the maximum distance, so the average distance to a station is 12.52 km. 
11 Snow is measured as the interaction effect of rain and temperature equal to or below 0o C. 
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these two data sources, we are able to measure for each commuting trip the local weather 

conditions of the hour in which the trip took place. 

As alluded to in the introduction, we select only car commuting trips for our analyses. 

This has a number of economic and statistical reasons. First, and most importantly, we select 

commuting trips because the demand for commuting is derived from the demand for labour, 

which does not directly depend on weather, whereas the derived demand for other trips (in 

particular, leisure trips) are affected by adverse weather. Hence, for commuting trips, 

interpretation of the welfare effect of weather is more straightforward. Second, commuting 

distance can be instrumented avoiding problems with the endogeneity of distance to speed, 

whereas this may be more difficult for other travel purposes (Van Ommeren and Dargay, 

2006). Third, we select car trips because for other modes, and in particular cycling, which is 

the main alternative for car use in the Netherlands, the welfare of commuting is directly 

affected by the weather and not so much through its effects on traffic speed. A possible 

critique on our sample selection is that it may generate biased estimates (for example, 

Wooldridge, 2003). However, by using panel data estimation techniques we are able to deal 

with this issue. 

Given these restrictions, our sample contains 42,534 car commuting trips made by 

17,248 commuters. Average trip distance is 20 km, average speed is 43.9 km/h and average 

commuting time is 24.5 minutes. The means and standard deviations of other explanatory 

variables are provided in Appendix A. Most explanatory variables included in the model are 

self-explanatory and are included to control for differences in ‘demand’ for speed (for 

example, gender) as well as for environmental characteristics (for example, degree of 

urbanisation). Some variables need some additional explanation. Van Ommeren and Dargay 

(2006) use the wage rate in the specification of their theoretical speed model but, because of 

lack of data on wages, they use individual income for their empirical analysis. We will also 
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use individual income instead of the wage rate for the same reason. Further, we control for 

rush hours (morning and evening rush hours) to capture congestion effects.12 Furthermore, 

adverse weather may have stronger effects on speed during rush hours. The interaction of 

(morning and evening) rush hours and rain are therefore included in the model.13 

We also control for speed differences in congested areas by distinguishing between trips 

towards and from the Randstad.14 Furthermore, we interact the congestion variable with rush 

hour as well as with a rain dummy, as one may expect that rain may have stronger negative 

effects during rush hours on congested roads. In order to control for carpooling effects, we 

control for the number of people in the vehicle (Rietveld et al., 1999). Seasonal effects are 

captured by seasonal dummy variables. 

4. Results 

 The results of the various model estimations are provided in Tables 1 and 2. In Table 1 

we provide the results for a specification where the weather variables are not interacted with 

any other variable. This specification provides the main effects of the weather variables. Table 

2 provides the results of a similar model with two weather-variable interaction effects. In 

general, the results are robust with respect to model specification and the type of model 

                                                 
12 In a separate analysis, we distinguish between morning and evening rush hours. The results are 
almost identical and can be provided on request. Morning rush hours are defined as trips between 
05:00 and 09:00 and evening rush hours between 15:00 and 18:00.  
13 In the results produced here, we include interaction effects for the rain variable but not for 
temperature and wind, because the main effects of these variables are small. In addition, inclusion of 
more interaction effects makes interpretation of the effects cumbersome. 
14 The Randstad consists of a ring of four largest cities of the Netherlands (Amsterdam, Utrecht, 
Rotterdam and the Hauge) and their surrounding areas. The population of the Randstad is over seven 
million inhabitants which is almost 50 percent of total population of the country. The Randstad 
contains the main centre of employment and business activities, so in the morning, congestion occurs 
on roads towards the Randstad and in the afternoon on roads from the Randstad. 
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estimated.15 The signs and magnitudes of the effects are comparable across the models with 

few exceptions.16 

 

<<< Table 1 around here >>> 

 

The results in Table 1 suggest that on average adverse weather conditions have a rather 

limited impact on car commuting speed. A notable exception is the occurrence of snow, 

which reduces speed by about 7 percent. There appears to be no relationship between 

temperature and speed. Commuting trips made during strong winds, that is, wind strengths 

higher than 6 Beaufort (bft), are on average about 3 percent slower. Similarly, the rain 

coefficient suggests a minor reduction in traffic speed in rainy conditions. Hence, although 

there appear to be negative welfare consequences of adverse weather conditions, in general 

the welfare costs are close to negligible except for snow. To estimate the welfare costs we 

focus on the average commuter. For this commuter the average commuting time is 0.39 hour 

(see Appendix A). Therefore, the welfare effect of snow through time loss is about 22 

eurocent (.39 x .07 x 8 €) per commuting trip. 

Some interesting patterns can be observed for the estimated effects of other explanatory 

variables. It appears that carpooling has a strong negative effect on speed in the order of about 

                                                 
15 In particular, we have focused on heteroskedasticity. Adverse weather may not only affect average 
speed but also speed variation. In the log linear model the estimated standard error of residuals has a 
direct effect on estimated expected traffic speed, which implies that adverse weather may also have an 
effect through the standard error of residuals. In order to analyse whether this is the case we allow the 
variance of the error term to vary with weather and several other variables in the model with 
individual-specific fixed effects. This exercise shows that adverse weather has only a small and 
statistically insignificant effect on the standard error of residuals. Consequently, our estimates are 
robust with respect to the specification of the variance. 
16 At the bottom of both tables the correlation between group-specific error terms are provided for the 
random effects models. The strong correlation observed for the individual-specific and hour-specific 
random effects models indicates that correlation between errors is potentially a more important 
statistical issue for these models then that for day-specific random effects model. 
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six percent, which suggests that carpooling is an important determinant of car commuting 

speed due to the implied waiting or detours. Furthermore, the degree of urbanisation strongly 

reduces trip speed, with a more than 16 percent speed reduction in very urbanised areas (see 

also Van Ommeren and Dargay, 2006). The effects imply up to 16 percent speed reductions in 

urbanised areas. This result is plausible, as trips made in urban areas experience more 

congestion, more road signals, crossing points, etc. as compared to trips made in rural areas. 

Trips made during rush hours are 3 to 7 percent slower and older people drive slower. Males 

commute 3.5 percent faster than females, which is consistent with the literature (Rietveld et 

al., 1999; Van Ommeren and Dargay, 2006). The trips made during weekends are faster as 

compared with working days. In contrast to Fosgerau (2005), who also focuses on car 

commuting trips, we failed to find a statistically significant positive effect of income on 

speed. Furthermore, we find that the distance elasticity is around .40 to .44 (in line with Van 

Ommeren and Dargay, 2006). 

 
<<< Table 2 around here >>> 

 
The interaction effects of rain and rush hours are negative but statistically significant 

only in the hour-specific random effects model, which shows a 2.3 percent reduction in 

speed.17 This finding seems in line with our previous finding that rain has only a small 

negative welfare effect on speed. One of the most interesting findings is that commuting trips 

made during rush hours in congested areas are substantially and negatively influenced by 

rain.18 The impact of rain on speed reduction for these trips ranges between 10 to 15 percent. 

Hence, the welfare loss of rain when commuters face congested roads turns out to be 

                                                 
17 In the hour-specific effects model with interaction effects, one may not identify the rush hour 
variable as it is an hour-specific variable. 
18 Recall that congestion is defined for trips made during morning rush hours toward the Randstad and 
for trips made during evening rush hours out of the Randstad. This refers to 3.3 percent of all trips. 
Likely, more refined measures of congestion would have generated more pronounced effects of the 
interaction of rain and congestion. 
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substantial and between 10 to 15 percent of total commuting costs. Note that the average 

commuting time of trips in congested areas during rush hour is .73 hours (see Appendix A). 

This means that the average welfare loss related to increases in travel time due to rain is about 

88 eurocent (.73 x 8 € x .15) per commuting trip in congested areas during rush hour, which 

we consider to be substantial.19 

 It may be argued that the distance variable included in the model is endogenous since 

the distance travelled may depend on speed (Van Ommeren and Dargay, 2006). In order to 

address this problem the model has been re-estimated by instrumental variables (IV), using 

the education of commuters as an instrument of distance. The results of OLS and IV are 

almost identical, so the IV estimates are not reported here.20 We have also investigated other 

weather variables (such as sunlight) but did not find any effect. Furthermore, our results are 

robust by selecting sub-samples (such as the selection of commuters that are observed exactly 

twice). 

                                                 
19 One may argue that our estimates of the effect of bad weather on welfare is an underestimate of the 
real welfare effect, because we have ignored the welfare effects of increased unreliability and arrival 
times at work due to bad weather. To test for the presence of unreliability, we have estimated a linear 
speed model with heteroskedasticity due to adverse weather. These analyses show that rain during 
peak hour strongly increases the variance, but this effect largely disappears for the fixed-effects model. 
These results suggest that adverse weather increases between-day unreliability but does not increases 
within-day unreliability. We have attempted to estimate the welfare losses of increased unreliability, 
making use of the conceptual framework of Small (1982). According to this model, increased 
unreliability in travel times implies that workers leave earlier from home in order to be at work in 
time. To address this issue, we have estimated the effect of the weather variables on the morning 
departure time of the car drivers (after six o’clock and before 12 o’clock). Hence, the dependent 
variable is a duration variable. The explanatory variables included are the individual (including 
commuting distance) and household variables (including the urbanisation degree of the region of 
residence) that were included in the previous analyses, as well as the weather variables which are 
allowed to vary by hour. Clearly, the hazard rate of departing time varies strongly by hour. We have 
therefore estimated semi-parametric duration models using a partial likelihood approach, as these 
models do not require any parametric assumptions on the effect of hour time on the departure time 
(see Lancaster, 1990). Our estimates do not show any evidence that bad weather makes people depart 
earlier for work. In fact, we even find a small positive effect of snow on the departure time (workers 
leave about five minutes later). This finding is consistent with the studies by Arnott et al. (1991, 1999) 
as well as De Palma and Lindsey (1998) which analyse a stochastic bottleneck model. 
20 The IV estimates can be received upon request. 
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5. Conclusions 

 In this paper we analyse the effects of weather on the speed of car commuting trips for 

the Netherlands. We use micro data at the trip level based on the national transportation 

survey and detailed local time-specific weather conditions for the Netherlands for the year 

1996. We estimate a standard OLS regression model as well as panel data models with fixed 

and random effects. We use a large number of explanatory variables in our models such as 

distance travelled, age, gender, degree of urbanisation, income, and hour of the day. Our main 

interest, however, is in the effect of weather variables such as temperature, rain, snow, and 

wind strength. We also include interaction effects of the weather variables with congestion 

specific variables. We have taken the potential endogeneity of distance into account.  

In general the results are robust with respect to model specification and type of model 

estimated. The estimates show that wind strength negatively affects the speed of car 

commuting trips. Compared to normal wind conditions, strong winds reduce traffic speed by 

about 3 percent on average. Snow has a more substantial negative effect of around 7 percent. 

We are not able to identify any effect of temperature. Although the average effect of rain 

appears to be small, rain does have a strong negative effect on trip speed during rush hours in 

congested areas. The welfare effect of rain for these trips ranges between 10 to 15 percent of 

total commuting costs and amounts to at least 88 eurocent per commuting trip.  
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Table 1. Analysis of logarithm of speed of car commuting trips (without interaction effects) a,b 
 OLS Day Specific Individual Specific Hour Specific 

 Fixed Effects Random Effects Fixed Effects Random Effects Fixed Effects Random Effects   
  Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. 
Weather Variables               
Strong Wind  −.026 .012 −.024 .014 −.024 .013 −.008 .018 −.023 .013 −.027 .012 −.026 .011 
Temperature <= 0 °C  .008 .007 .007 .011 .007 .011 .019 .011 .014 .007 .005 .006 .005 .006 
Rain  −.004 .007 −.006 .008 −.006 .008 −.003 .008 −.005 .007 −.004 .006 −.004 .006 
Snow −.074 .033 −.064 .036 −.064 .034 .015 .043 −.044 .031 −.073 .033 −.073 .029 
Rush Hour х Rain – – – – – – – – – – – – – – 
Congestion х Rain – – – – – – – – – – – – – – 
Other Explanatory variables               
Rush Hour −.073 .004 −.071 .004 −.071 .004 −.035 .005 −.053 .004 – – −.066 .084 
Distance travelled (Log) .411 .002 .411 .002 .411 .002 .436 .003 .419 .002 .412 .002 .411 .002 
Carpooling −.064 .006 −.063 .006 −.063 .006 −.050 .010 −.066 .006 −.067 .006 −.067 .005 
Congestion  −.066 .011 −.066 .011 −.066 .011 −.094 .018 −.070 .011 −.064 .011 −.064 .010 
Income (Log) .001 .004 .002 .004 .002 .004 – – −.002 .004 .002 .004 −.002 .003 
Gender (Males) .035 .005 .035 .005 .035 .004 – – .028 .006 .039 .005 .039 .004 
Age between 30 and 40 years −.006 .005 −.006 .005 −.006 .005 – – −.004 .006 −.007 .005 −.007 .005 
Age between 40 and 65 years −.034 .005 −.034 .005 −.034 .005 – – −.032 .006 −.034 .005 −.034 .005 
Age greater than 65 years −.157 .027 −.152 .027 −.154 .026 – – −.132 .032 −.156 .027 −.156 .024 
Very Urbanised  −.166 .009 −.168 .009 −.168 .009 – – −.168 .011 −.165 .009 −.165 .008 
Urbanised  −.143 .006 −.144 .006 −.144 .006 – – −.140 .007 −.144 .006 −.144 .005 
Moderately Urbanised  −.101 .006 −.101 .006 −.102 .006 – – −.105 .007 −.103 .006 −.103 .005 
Little Urbanised  −.036 .005 −.036 .005 −.036 .005 – – −.039 .007 −.036 .053 −.036 .005 
Weekends  .052 .007 – – .046 .013 – – .065 .009 .052 .007 .052 .007 
Summer  .026 .006 – – .020 .016 – – .023 .007 .026 .006 .026 .005 
Autumn  −.008 .005 – – −.015 .015 – – −.010 .006 −.008 .005 −.008 .005 
Winter  −.013 .006 – – −.015 .016 – – −.020 .007 −.011 .006 −.011 .006 
Constant  2.730 .011 – – 2.720 .036 – – 2.703 .016 – – 2.709 .056 
R2 .573 .580 – .884 – .576 – 
Standard deviation .403 .401 – .301 – .402 – 
Number of groups – 366 366 17,248 17,248 24 24 
Variance of random error – – .153 – .083 – .132 
Variance of group specific error – – .009 – .079 – .032 
Correlation between error terms – – .054 – .487 – .193 
a Bold coefficients are statistically significant at 5%, italic coefficients are statistically significant at 10%. 
b The reference categories for temperature, urbanisation, age, and seasonal variables, are temperature greater then 0o C, rural, age between 18 and 30 years, and spring, respectively. 
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Table 2. Analysis of logarithm of speed of car commuting trips (with interaction effects) a,b 
 OLS Day Specific Individual Specific Hour Specific 

 Fixed Effects Random Effects Fixed Effects Random Effects Fixed Effects Random Effects   
  Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E. 
Weather Variables               
Strong Wind  −.026 .013 −.024 .014 −.024 .014 −.008 .018 −.023 .013 −.026 .013 −.026 .009 
Temperature <= 0 °C  .009 .007 .006 .011 −.007 .010 .019 .012 .014 .007 −.005 .007 −.005 .004 
Rain  −.015 .012 .013 .012 −.012 .013 .011 .013 .010 .011 .014 .012 .014 .080 
Snow −.077 .033 −.065 .036 −.067 .035 .014 .043 −.046 .031 −.075 .033 −.075 .022 
Rush Hour х Rain −.023 .014 −.024 .015 −.023 .014 −.012 .016 −.015 .013 −.023 .015 −.023 .010 
Congestion х Rain −.087 .038 −.092 .038 −.092 .037 −.153 .046 −.109 .034 −.087 .038 −.087 .025 
Other Explanatory variables               
Rush Hour −.071 .004 −.068 .004 −.069 .004 −.033 .005 −.052 .004 – – – – 
Distance travelled (Log) .411 .002 .411 .002 .411 .002 .436 .003 .419 .002 .412 .002 .411 .001 
Carpooling −.064 .006 −.063 .006 −.063 .006 −.050 .010 −.066 .006 −.068 .006 −.068 .004 
Congestion  −.058 .012 −.058 .011 −.058 .011 −.081 .019 −.060 .012 −.056 .012 −.056 .008 
Income (Log) .001 .004 .002 .004 .002 .004 – – .002 .005 .002 .004 −.002 .003 
Gender (Males) .035 .005 .035 .005 .035 .004 – – .028 .006 .039 .005 .039 .003 
Age between 30 and 40 years −.006 .005 −.006 .005 −.006 .005 – – −.004 .006 −.008 .005 −.008 .004 
Age between 40 and 65 years −.034 .005 −.034 .005 −.034 .005 – – −.032 .006 −.034 .005 −.034 .003 
Age greater than 65 years −.156 .027 −.151 .027 −.154 .026 – – −.131 .032 −.155 .027 −.156 .018 
Very Urbanised  −.166 .009 −.168 .009 −.168 .009 – – −.164 .011 −.165 .009 −.165 .006 
Urbanised  −.143 .006 −.144 .006 −.143 .006 – – −.140 .007 −.144 .006 −.144 .004 
Moderately Urbanised  −.102 .006 −.101 .006 −.101 .006 – – −.104 .007 −.103 .006 −.103 .004 
Little Urbanised  −.036 .005 −.035 .005 −.036 .005 – – −.038 .007 −.036 .005 −.036 .004 
Weekends  .052 .007 – – .046 .013 – – .065 .009 .052 .007 .052 .005 
Summer  .026 .006 – – .020 .016 – – .024 .007 .026 .006 .026 .004 
Autumn  −.007 .005 – – −.015 .015 – – −.009 .006 −.008 .005 −.008 .004 
Winter  −.013 .006 – – −.015 .016 – – −.020 .007 −.012 .006 −.012 .004 
Constant  2.729 .011 – – 2.718 .036 – – 2.712 .042 – – 2.688 .066 
R2 .573 .580 – .884 – .576 – 
Standard deviation .403 .401 – .300 – .402 – 
Number of groups – 366 366 17,248 17,248 24 24 
Variance of random error – – .153 – .083 – .071 
Variance of group specific error – – .009 – .079 – .918 
Correlation between error terms – – .055 – .488 – .564 
a Bold coefficients are statistically significant at 5%, italic coefficients are statistically significant at 10%. 
b The reference categories for temperature, urbanisation, age, and seasonal variables, are temperature greater then 0o C, rural, age between 18 and 30 years, and spring, respectively. 
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Appendix A 
 
Table A.1. Descriptive statistics of variables used in the empirical model 
 Mean S.D. 
Continuous Variables   
Speed (km/hour) 43.9 31.9 
Income (in 000’s Euro) 14.2 5.04 
Income (log) 2.65 1.62 
Distance (in km) 20.1 25.5 
Distance (log) 2.41 1.14 
Commuting time (in hours) .409 .376 
Commuting time, non-congested roads (in hours) .39 .36 
Commuting time, congested roads, rush hours (in hours) .73 .46 
Dummy variables   
Strong Wind .024  
Temperature <= 0o C .166  
Rain .091  
Snow .004  
Congestion .033  
Rush hour .660  
Carpooling  .114  
Males .699  
Age between 18 and 30 years .242  
Age between 30 and 40 years .299  
Age between 40 and 65 years .448  
Age greater than 65 years .005  
Very Urbanised .058  
Urbanised .190  
Moderately Urbanised .224  
Little Urbanised .277  
Rural .251  
Weekends .077  
Spring .262  
Summer .215  
Autumn .253  
Winter .270  
Rush Hour x Rain .062  
Congestion x Rain .003  

 


