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Abstract— Climate change is expected to increase pressures on water use between different 
sectors (e.g. agriculture, energy, industry, domestic uses) and ecosystems. While climate 
change impacts on water availability have been studied widely, less work has been done to 
assess impacts on water quality. This study proposes a modelling framework to incorporate 
water quality in analyses of cross‐sectoral conflicts for water between human uses and 
ecosystems under climate change and socio‐economic changes. We illustrate this with an 
example that shows that increasing river temperatures and declines in summer low flow 
under climate change are likely to increase environmental restrictions on cooling water use, 
with substantial reductions in power plant capacities in Europe and the US. Hence, conflicts 
between environmental objectives and electricity supply are expected to increase due to both 
changes in water availability and water quality (water temperature) under climate change. A 
new impact modelling framework is proposed, which integrates relations between water 
availability, water quality and cross‐sectoral water uses, including water requirements for 
ecosystems. This could provide improved understanding of how climate change and socio‐
economic developments will affect the ‘water‐energy‐food‐ecosystem nexus’. 

Index Terms—river flow, water temperature, water quality, climate change, socio‐economic 
developments, human water use, ecosystems  

———————————————————— 

1 Introduction 

Climate  change  in  combination with other anthropogenic  changes  is expected  to  contribute  to an  in‐

creasing pressure on water between human water use sectors (e.g. agriculture, energy, industry, domes‐

tic uses) and ecosystems (Alcamo et al., 2003). In addition, water demand is expected to increase with a 

growing and more prosperous global population  (Vörösmarty et al., 2000). Sufficient water of suitable 

quality to guarantee human uses and ecosystem health could therefore become a main challenge in the 

next decades.  

The  increasing  awareness  that  climate  change may  affect water  resources has  greatly  stimulated  the 

study of  the hydrological  impacts of  a  changing  climate. While  impacts on water quantity have been 

studied widely on different scales, varying  from catchment    (e.g. van Roosmalen et al., 2009) to conti‐

nents (e.g. Feyen and Dankers, 2009) and the world (e.g. Döll and Müller Schmied, 2012), considerably 

less work has been done to assess climate change  impacts on water quality. However, most sectors re‐

quire not only sufficient water availability (quantity), but also suitable water quality. For instance, water 

temperature is a critical parameter for cooling water use in the energy and industrial sector, while salini‐
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ty and nutrient concentrations are  important  for agricultural and drinking water uses. The need to ex‐

pand hydrological impact assessments to incorporate water quality issues has therefore been increasing‐

ly recognized (Kundzewicz and Krysanova, 2010; Whitehead et al., 2009). 

In this paper, we propose a modelling framework to incorporate water quality, in addition to water avail‐

ability,  in studies of cross‐sectoral water stress under global change. We  illustrate  the need  to  include 

water quality by focussing on water temperature, which is most directly affected by climate change. Wa‐

ter temperatue also influences several other water quality parameters, such as dissolved oxygen and nu‐

trient concentrations and toxicity of heavy metals (Ducharne, 2008; Murdoch et al., 2000). Water tem‐

perature and river flow are also major parameters that characterize the physical conditions of freshwater 

habitats (Carpenter et al., 1992; Rahel et al., 1996), and are of economic  importance for cooling water 

use for thermoelectric power production and manufacturing (Manoha et al., 2008). We highlight cross‐

sectoral conflicts for water availability and quality, by focussing on impacts of changes in river flow and 

water temperature on cooling water use in the energy sector and freshwater ecosystem health. 

2 Modelling of conflicts for water availability and water temperature between 
energy sector and freshwater ecosystems  

To simulate large‐scale conflicts for water between cooling water use in the energy sector and freshwa‐

ter ecosystems, we worked on the development of a  large‐scale water temperature module  linked to a 

macro‐scale  hydrological model. We  used  a  physically‐based modelling  framework,  consisting  of  the 

stream temperature River Basin Model (RBM)  (Yearsley, 2009; Yearsley, 2012) and the Variable  Infiltra‐

tion Capacity (VIC) macro‐scale hydrological model (Liang et al., 1994). RBM was further developed for 

applications to  large rivers worldwide,  including human  impacts of thermal pollution and reservoir  im‐

pacts on water temperature (van Vliet et al., 2012a). The resulting framework simulated observed condi‐

tions realistically (van Vliet et al., 2012a). It was then forced with an ensemble of bias‐corrected general 

circulation model (GCM) output for the 21st century (Hagemann et al., 2011) provided within the EU FP6 

WATCH project. Overall, water  temperature sensitivities are exacerbated by projected declines  in  low‐

flows, resulting in a reduced thermal capacity (van Vliet et al., 2011). Strong increases in water tempera‐

ture and reductions in low flows are mainly projected in the south‐eastern United States, southern and 

central Europe and eastern China (van Vliet et al., 2013) (Fig. 1). These regions could therefore be poten‐

tially affected by  increased deterioration of water quality and  freshwater habitats, and reduced poten‐

tials for human water uses under future climate.  
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Fig. 1: Impact of climate change on low river flows (10‐percentile daily flow)(a) and mean water temperatures (b) 
for  2031‐2060  relative  to  1971‐2000  using  the  GCM  ensemble mean  simulations  for  SRES  A2.  The  results  are 
masked (hatched areas) for regions with very low (<1 m3s‐1) river flow. 

 

Impacts of projected changes  in  river  flow and water  temperature on cooling water use  in the energy 

sector and  freshwater ecosystems  (i.e.  fish habitats) were assessed  in more detail. The  frequency and 

magnitude of exceeding maximum temperature tolerance values of several fish species increased signifi‐

cantly for considerable areas of current suitable habitats (van Vliet et al., in revision). This could, in com‐

bination with changes in flow regime, affect the distributions of freshwater species. To maintain and pro‐

tect current freshwater ecosystems, environmental standards are defined with regard to the volume and 

temperature of water  for cooling water use  (European Water Framework Directive and Fish Directive, 

and U.S. Clean Water Act).  In Europe and the U.S., most electricity  (91% and 78%, respectively)  is cur‐

rently produced by thermoelectric power plants depending on cooling water, and large fractions of water 

for cooling are extracted from rivers. Projected increases in river temperatures and declines in low sum‐

mer flow for both regions are expected to increase environmental restrictions on cooling water use. This 

could result in substantial reductions in summer mean usable capacity of 6–19% for Europe and 4–16% 

for the US (depending on cooling system type and climate scenario for 2031‐2060 relative to 1971‐2000) 

(van Vliet et al., 2012b) (Fig. 2). Conflicts between environmental objectives and economic consequences 

of reduced electricity production are thus expected to increase in both regions due to the combination of 

increases in water temperatures and declines in summer low flow under climate change.  
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Fig. 2: Changes in summer mean usable capacity of thermoelectric power plants in the U.S. and Europe for SRES A2 
emission scenario for 2031‐2060 relative to 1971‐2000 assuming current environmental regulations to protect eco‐
systems (figure panel of van Vliet et al. (2012b), with permission of Nature Climate Change) (a). Histograms present 
the regional average changes in usable power plant capacity for power plants with once‐through and combination 
cooling systems and power plants with recirculation (tower) cooling systems for both the SRES A2 and B1 scenario 
(b). For more results see van Vliet et al. (2012b).  

3 Conceptual modelling framework including water quality impacts 

Most of the modeling frameworks that are currently used for climate change impacts analyses on water 

resources focus on water quanity and ignore water quality.  Global water stress was commonly estimated 

by calculating the withdrawals‐to‐availability ratio (e.g. Alcamo et al., 2007; Arnell et al., 2011) using only 

river discharge and water withdrawal simulations. However, most water use sectors require not only suf‐

ficient water availability (quantity), but also suitable water quality.  

The proposed modelling framework (Fig. 3) consists of a multi‐model ensemble of both climate change 

scenarios (based on representative concentration pathways (RCPs) (Moss et al., 2010) and shared socio‐

economic pathways (SSPs) (Kriegler et al., 2012). These climate and socio‐economic scenarios are used in 

global hydrological models with  linked water quality modules and sectoral water use modules. To  inte‐

grate relations between water availability, water quality and cross‐sectoral water uses, both surface wa‐

ter availability and water quality will be simulated. In addition, water demand for different sectors and 

water  requirements  for  freshwater ecoystems will be calculated with  regard  to both water availability 

and water quality.  

Water quality parameters that are relevant for agriculture, domestic uses and ecosystem health are for 

instance salinity, nutrients, heavy metals and PAHs  (polycyclic aromatic hydrocarbon). Water  tempera‐

ture is mainly important for energy and industrial uses, and also for human health (drinking water) and 

ecosystem functioning. For most of these water uses, specific threshold values that reflect a deteriora‐
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tion or reduction  in water usage potential are defined. For  instance, for drinking water production, the 

World Health Organization (WHO, 2011) defined water quality standards,  like the 25°C water tempera‐

ture limit for which thermophilic pathogens (e.g. Legionella Campylobacter and Vibrio cholerae) in sur‐

face waters with  low  residual concentrations of chlorine proliferate. The  focus should  therefore be on 

the availability of water of suitable water quality for each water use function. In addition, water quality 

can also influence water demand and these impacts could also be included in water stress analyses. For 

instance, the water demand for thermoelectric power strongly increases when water temperature rises 

(van Vliet et al., 2012b). Changes in thermoelectric water demands and water stress under future climate 

could  therefore be underestimated  if  impacts of water  temperature  increases are  ignored. Davies and 

Simonovic  (2011) also  showed  that  inclusion of dilution capacity  for pollutants  in water demands has 

large  impacts on calculated water stress  levels. Future changes  in water quality under climate change 

and socio‐economic changes would therefore be  important to consider. The use of simulations of river 

flow, water quality and water demand (with regard to both availability and quality),  is therefore highly 

recommended to improve the assessment of water stress under global change. 

 
 

 
Fig. 3: Proposed modelling  framework  to  integrate  relations between water availability, water quality and cross‐
sectoral water uses under climate change and socio‐economic developments.  
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4 Conclusions  

Most water use sectors  require not only sufficient water availability  (quantity) but also suitable water 

quality. As pointed out  in Section 2,  the pressure on water between  cooling water use  in  the energy 

sector and freshwater ecosystems in Europe and the U.S. will increase under climate change, because of 

changes in both summer flow and water temperature. Ignoring water temperature increases could result 

in an underestimation of the pressure on water between the energy sector and freshwater ecosystems.  

For assessments of water stress and cross‐sectoral conflicts  for water under  future climate and  socio‐

economic changes, we  therefore propose a modelling  framework  that  includes both water availability 

and water quality. 

Although the focus of our study has been limited to climate change impacts on global river flow and wa‐

ter  temperature,  the hydrological  ‐  stream  temperature modelling  framework  (VIC‐RBM) used  in  this 

study has potential to include other water quality parameters (van Vliet et al., 2013; Yearsley, 2009). An 

extension of the modelling framework to other water quality parameters affected by water temperature 

(e.g. dissolved oxygen), streamflow (e.g. conservative substainces) or both (nutrients, pathogens) could 

be a next step. Analysis of the competition for water between different water use sectors and freshwater 

ecosystems  including water quality  impacts, could contribute  to  improved understanding of  the devel‐

opments of the ‘water‐energy‐food‐ecosystem nexus’ in the 21st century. 
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