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Emerging technologies for biobased aromatics 
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Renewable feed stocks; what is driving the demand? 

General driving forces for renewables/biobased chemicals: 

 

● Declining reserves of easily accessible fossil feed stocks 

● Societal need to become more independent with regard to 

feedstock supply 

● Potential for GHG savings 

● Potential for unique properties 

● Economical potential for rural regions 

● Potential for more environmentally friendly products 
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 Consists of over 40 projects in which biobased chemicals are one of the 
dominant aims 

● Confidential bilateral projects with international multinationals as well as SME’ s. 

● Public private sponsored projects 

 

● Comprises 3 focus areas: 

● Carbohydrate based chemicals: 

● Furan platform 

● Isohexide platform 

● Sugar biotechnology platform 

● Lignin based chemicals 

● Vegetable oil and algae oil based chemicals 

 

● Internationally cooperates with numerous universities and institutes  

● Internally intensively cooperates with the biorefinery and biobased materials 
programme  

● Approximately 30 coworkers involved 

 

Biobased Chemicals Programme WUR/FBR 
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Biorefinery 
Existing and future biorefineries will refine biomass into a 

spectrum of products 
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Usage of bulk (platform) chemicals 

Bulk chemicals are used as: 

● Solvents 

● Starting components for soaps, lubricants, additives (low 

molecular weight components) 

● Mostly as building blocks for polymers (high molecular weight 

components) 

Building blocks can be either aliphatic (flexible) or 
aromatic (rigid) nature 

C6, C7, C8 (B, T,
X)
C2

C3

C4

others (including
MTBE)

Up to 40% of basic chemicals produced in Port of 
Rotterdam is of aromatic nature 
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World production of plastics  

 Recent finished desk study requested by Dutch Ministery of Economic 
Affairs. Emphasis on biobased building blocks for polymer 
applications 
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Major thermoplastic polymer materials  

Consumption of thermoplastics in 

Western Europe

PE

PP

PVC

PS/EPS

PET

others

Total about 50.000.000 tonnes in 2014 

About one third of all (more high end) 

Polymers comprise aromatic building blocks 
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Increasing relevance biobased aromatics 
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 Terephthalic acid used to produce e.g. PET (bottle, fleece) or e.g. 
Aramid fibres 

 Terephthalic acid and its isomers are used in up to 70 million 
tonnes/year quantities  

 

 

 

 

 

 

 Furan dicarboxylic acid could be a bio based alternative to 
terephthalic acid 

 

 Should we go for the real stuff (drop-in) or its look alike (FDCA)? 

 

HOOC

O

COOH

2,5-FDA
COOH

COOH

terephthalic acid

    Furandicarboxylic acid (2,5 FDA or FDCA) vs. terephthalic acid 
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FDCA related research 

 Numerous knowledge institutes and companies in recent years have 

become involved in FDCA related research; 

● ADM, Ava Biochem, Eastman, DSM, Nuplex, Perstorp, BASF, 

Braskem,.... 

 The Netherlands is a major player in FDCA related research: 

● Avantium 

● Corbion/Bird Engineering 

● Cosun 

 FBR has over 10 projects dedicated to the development of FDCA and 

project based upon FDCA 

 Potential market is that huge that presumably more than one 

technology will be commercialised 
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Potential Routes to 2,5 FDCA 
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Compete on price 

PTA  
 
• Oil-based 
 
• Building block for PET 
• 50 million ton per year 
 
 
• Today’s price: €1200/ton  
 
 

• Price drivers: 

 Oil price  
 Supply/demand  

FDCA 
 
• Bio-based 
 
• Building block for PEF 
• Potential market > 100  
 million ton 
 

• Price at commercial scale: 
  <€ 1000 per ton 
 

• Price drivers: 

 Carbohydrate price  
 Economy of scale  

 
 

FDCA versus PTA; Avantium YXY technology 

Courtesy Ed de Jong, Avantium 

  

http://upload.wikimedia.org/wikipedia/commons/6/65/2,5-Furandicarboxylic_acid.png
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Compete on Performance 

PEF has the potential to beat PET 

● Better or similar properties compared to PET 

● Based on carbohydrates instead of oil 

● Recyclable 

 

PEF has great barrier properties 

● O2 barrier  > 6 times better than PET 

● CO2 barrier  > 2 times better than PET 

● H2O barrier  > 2 times better than PET 

 

 

 

 

 

 

Courtesy Dr. Ed de Jong, Avantium 
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EU Splash project; algae as an alternative source for FDCA 

precursors 

 Why algae: 

 To convert CO2 (e.g. from the atmosphere of capture in industrial processes) 

into high added-value products and biofuels 

 Alleviate food versus fuel conflicts  

 May become particularly advantageous  

    for regions with limited biomass availability 

    and land unusable for agriculture 
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Valorising sugarbeet pulp 

 Within EU annually approximately 25-30.106 tonnes  
     of sugarbeet pulp (SBP) are being produced 

 
 SBP is a byproduct of sugar refining (agricultural residue) 

 
 Cosun produces annually about 1 million tonnes of SBP 
    (25% dry matter) 

 
 SBP contains a mixture of components not suitable as 
     human food 

 
 Cosun is interested in valorising SBP towards non–food 
     applications 

 
 Cosun teams up with Wageningen UR/FBR and other  
     partners in valorising SBP 
 

 

  

Table 

Composition 

sugarbeet 

pulp (in %) 

ash 10 

protein 8 

fat 1 

cellulose  25 

pectinic 

sugars 23 

arabinanes 24 

other sugars 24 

lignin 5 

  100 
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Biorefining of sugar beet pulp 
 

 Number of projects awarded within Topsector Agri&Food 

 Overall aims of the projects 

 Continue developing biorefinery process for isolating monomeric sugars 

from sugarbeet pulp 

 Develop new catalytic technologies to produce high purity  building 

blocks for high performance polymers based on sugarbeet pulp as raw 

material  

 Develop new chemical technologies to produce these high performance 

polymers 

 Investigate the properties of these new materials, and compare to 

conventional materials 

 Obtain insight into the technical and economical viability of these new 

bio-based polymers 

 16 
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Potential Routes to 2,5 FDCA 
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• Focus on 
galacturonic acid 
route 

• Conversion of mucic 
acid to 2,5-FDCA 
already extensively 
explored 

• In the project focus 
has been  on 
oxidation of 
galacturonic acid 
(and other uronic 
acids and aldoses) 
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Oxidation of galacturonic acid 
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Second generation FDCA based upon SBP 

 Key; catalytic oxidation of pectin sugars 

 Mild conditions (room temperature) 

 High conversions (>99%) 

 High selectivity (>97%) 

 Short reaction times (<3h) 

 Environmentally benign: 

 Air can be used for the oxidation 

 Patent filed:  

● Catalytic oxidation of uronic acids to aldaric acids 

● Subsequent conversion aldaric acid into 2,5 FDCA 
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PEF synthesis and properties 

 Small scale synthesis of PEF 

● Glass, flat-flange reactor 

● 50-100 g scale 

● 2-stage melt polymerisation 

● 165°C, 16h 

● 225°C, 4h ambient pressure; 1 mbar, 2h; 1.10-1 

mbar, 2h. 

● Purification: crude product dissolved in CDCl3/TFA (6:1) 

and precipitated from MeOH (1,000 %  

 2 Liter polymerisation reactor installed 
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PEF synthesis and properties 

 TGA analysis of PEF sample; thermal stability (N2, air) 

 

 

Processing window: 220-270 °C 
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Results (MW after solid state polymerization) 

Molecular weight increment of PEF during 

SSP at 185°C over time.  The red star shows 

the molecular weight of bottle grade PET .  
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PEF synthesis and characterisation 

Conclusions 

 

 High molecular weight PEF can be prepared from FDCA derived from 

sugarbeet pulp 

 Galactaric acid derived FDCA is more easy to purify than HMF derived 

FDCA; beneficial in polymerisation reactions 

 Molecular weight allows for potential application in e.g. bottles 

 Further processing and characterisation (e.g. gas barrier properties) 

ongoing 
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Furan dicarboxylic acids based upon hemicellulose 

 

 

 Hemicellulose from agricultural side streams (e.g. sugarbeet pulp, wheat bran, 
bagasse) have huge potential to serve as source for the production of 
furandicarboxylic acids via C5 sugars        

Thiyagarajan, S.; Pukin, A.; van Haveren, J.; Lutz, M.; van Es, 

D. S. RSC Advances 2013, 3, 15678. 
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Polymer results with 2,4 FDCA 

 PEF TGA analysis 
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Going for the drop–in approach.... 

 How to derive biobased terephthalic acid or isophthalic acid? 
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Terephthalic acid via biotechnologically produced isobutanol 

 Gevo Inc. promotes biotechnologically produced isobutanol 

     as a platform chemical toward e.g. PTA; several patent applications on                      

genetically  modified organisms for production of isopropanol and isobutanol 

 

 Conclusions  Isobutanol platform Rotterdam; Current technology not yet mature; 

more research needed! 
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 Diels –Alder addition of furans with dienophyles is a powerful tool to generate 
 aromatic drop in chemicals from biomass 

 Reaction of substituted furans with acrylates gives access to isophthalic acid 
(comonomer in PET), reaction with maleic acid anhydride results in 
hemimellitic acid (potential comonomer in coating formulations).  
 

 Patent application to FBR and Avantium   

Biobased terephthalic acid 
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Lignin as a source for biobased aromatics 

Lignin is found in plants and  

trees and is a rest stream from:  

1. Established Pulp and Paper industry  

 (50 M t/y, 1 M t/y products) 

2. Novel Biorefinery industry (>20 M t/y) 

 

 Major aromatic resource in Biobased 

Economy 

 Complicated aromatic structure 

 Complexity and heterogeneity has 

limited its use in materials and for 
chemicals production 

(softwood lignin structure Brunow 2001) 
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Hydrothermal depolymerization of lignin 

 

 

 

 

 

 

 

 

 Turn lignin into high value aromatics (BTX) and building blocks (phenol) 

 Thermal decomposition of lignin (pyrolysis, super critical fluids) often accompanied by 

unwanted re-condensation of monomeric phenol species 

 Approach: Selective catalytic hydrothermal depolymerisation    

       Prevent re-condensation & no external use of hydrogen  

   

30 

 

 Aromatics and phenolics  Biorefinery lignins 
(commercial soda non-wood lignin) 

Biomass  

O H 
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Hydrothermal depolymerization of lignin 

 Limited set of monomeric phenols (9-12) obtained in 20 

mass% yield 

 Literature: 20-30 identifiable components, 10% yield 

 50% 1 component 

 Patent filed; publications in prep.  
RT: 4.00 - 23.00
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Conclusions 

 Biomass offers excellent opportunities for the synthesis of 

biobased chemicals, including aromatic chemicals 

 Both “drop-in” as well as biobased chemicals can be derived 

from biomass 

 Biobased chemicals with a unique structure can result in 

product with unique properties 

 Both lignin as well as carbohydrates offer huge opportunities 

for the synthesis of biobased aromatics 
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