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Abstract 
 

A priority research in Europe is mapping and monitoring of land use and land cover 
(LUC). Actual and reliable information on LUC is needed both for agricultural and 
environmental applications. In The Netherlands was decided in 1987 to produce a 
national land cover/ use database (‘LGN data base’) using satellites images (Landsat 
TM and SPOT) and ancillary data. This database has been frequently used for different 
purposes in the fields of environmental protections, water management, nature 
conservation and physical planning on regional and national scales. The use of ancillary 
data supposes a time consuming and expensive task. Thus, the aim of this work was to 
study the possibility to reduce the necessity of extra information by using a fused image. 
The fusion was made by using images from high spatial resolution sensor, Landsat TM, 
25m as pixel size and 6 bands and from high spectral resolution sensor, MERIS, 300m 
as pixel size and 15 bands.  
 
 Previously to obtain the fused image, the optimal spatial resolution between 25 
and 300 m for detection the changes in land cover in The Netherlands was tested. A 
graph showing how the local variance of a digital image for a scene changes as the 
resolution-cell size varies and the use of landscape indices were the two approaches 
applied for the first objective of this study. Both studies showed the necessity of study 
the subpixel level in a MERIS image. 
  
 The performance of the fusion between images was made by a method proposed 
by Zhukov et al. (1999). The method is based on the classification of the high spatial 
resolution image succeeds in showing class boundaries clearly, afterward both images 
are overlapped and the different classes inside of a MERIS pixel can be unmixed. The 
unmix-algorithm is applied in the high spectral resolution image by using a sliding 
window. Parameters like the size of this window or the number of classes in which the 
high spatial resolution images should be classified were optimized. Statistical 
parameters and a quantitative index were used to check the quality of the fused image. 
Finally a supervised classification of the fused image resulted in a land cover map. 
 
 In summary, the proposed method performed well the fusion between Landsat 
TM and MERIS images. And a fused image obtained with parameters correctly 
optimized can be successful for a land cover classification.  
  
     
 
 
 
 
 
 
 
 
 
Keywords: data fusion, remote sensing, MERIS, LGN, land cover mapping, subpixel 
level, optimal scale. 
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1. Introduction 

1.1 Background 
 
The last few centuries have been characterized by rapid rates of change in chemical 
composition of the atmosphere, ground water and soils. An increasing awareness of 
these issues and the fear of serious consequences for the welfare and survival of 
humanity have prompted the scientific community to establish major efforts to 
understand the causes and implications of these changes (Verstraete et al., 1999). Both 
national and international mechanisms have been established to protect the environment 
and to ensure sustainable use of natural resources, some of them are the International 
Geosphere-Biosphere Programme (IGBP) which began in 1986 or Kyoto protocol 
(1997) (Clevers et al., 2005;Verstraete et al., 1999). Information about land cover and 
land use is a very important component for environmental planning and it is in this 
context that remote sensing (RS) is able to contribute (Treitz and Rogan, 2004). 
 
In this research the case of The Netherlands has been studied; the population density of 
this country has increased very much during the last decades, the environment is being 
clearly affected and therefore land cover and land use are being continuously modified. 
Information about these man induced changes is required to support environmental 
policy and physical planning purposes (Thunnissen and De Wit, 2000). 
The sources of data for obtaining and updating this information have undergone 
changes and have improved during the last decades. Until the end of the 1980s, 
information on land cover/use was usually obtained from land-use statistics and 
topographical maps. These sources were having some problems such as land use 
statistics could not be obtained for areas with deviating boundaries, for example river 
basins, or topographical maps did not include all land cover/ use and they were not 
available in digital form. To overcome these problems, in 1987 it was decided to 
produce a land-cover database of The Netherlands in a raster format using satellite 
images. This is the so-called “LGN-database” (see chapter 3.1.3). Nowadays five 
versions of LGN are available. The last two versions, LGN4 and LGN5 are based on the 
following information:  
 

- TOP10-vector, 1:10000 digital topographic vector map used as a geometric base 
reference. 

- Landsat-TM imagery, and if these images are not available; IRS-LISS3 and 
ERS2-SAR provided the information (De Wit and Clevers, 2004) 

- Ancillary data: 
 The PIPO system; is an administrative system that has been 

developed to check all acreage-based applications for subsidies. 
 Agricultural Statistics; the General Census of Agriculture which 

provides information of the acreage of crops grown. 
 
Many sources of information are required and because of that the updating of the LGN 
is an expensive and time-consuming task. To facilitate this effort, it could be interesting 
to complement Landsat information with the information of other satellites providing 
more spectral information or high te,poral resolution. 
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The MERIS sensor was primarily designed for ocean applications but many researches 
have shown the possibility of this sensor for land applications (Clevers et al., 2004a; 
Clevers et al., 2002; Van Der Meer et al., 2000; Verstraete et al., 1999). However the 
use of MERIS directly for land cover mapping is not possible, because of its medium 
spatial resolution. The Netherlands is highly fragmented; it does not have large areas 
with the same land cover. If the target size is smaller than the ground sampling distance 
it is necessary to study at subpixel levels (Chang et al., 2004). For these studies, there 
are some research methods and techniques that have been proposed in the remote 
sensing literature. One of these methods is Linear Spectral Unmixing (LSU). It 
estimates the fractional contribution of the detected endmembers to each pixel in the 
image (Grana and D'Anjou, 2004), but sometimes the studies with this technique have 
turned out inaccurate. One of the causes of this inaccuracy has been that LSU considers 
the reflectance obtained from a surface including many land cover types to be a linear 
combination of the reflectance of these land cover types. But there are multiple 
reflections and transmissions between the leaf layer and soil, so it is not a linear 
combination of the reflectance (Borel and Gerstl, 1994; Ray and Murray, 1996). 
Another possibility to extract subpixel information is Data Fusion. This method has the 
advantage, with regard to the previous one, which the geo-location of the different 
proportions of each land cover/ use within a pixel can be obtained. Image fusion refers 
to the synergetic combination of different sources of sensor information into one 
representational format; this single image contains a more accurate description of the 
scene than any individual source image (Bretschneider and Kao, 2000; Simone et al., 
2002). 
 
Different Data Fusion procedures have been developed during the last decades. Some of 
the most important data fusion procedures will be briefly described in the chapter 2.2. 
 
 

1.2 Problem definition 
 
Actual and reliable information on land use and land cover is needed both for 
agricultural and environmental applications. So, making a map with this type of 
information would be very useful for many planning and management activities 
concerned with the surface of the earth. 
Nowadays, Landsat TM images and ancillary data are used for mapping and monitoring  
land cover/use in The Netherlands. An alternative (possibly better) source of 
information could be to make such a map with a combination of images from different 
sensors, so making a fused image. This multisource information can improve the 
interpretation and classification of satellites images (Amarsaikhan and Douglas, 2004). 
Landsat TM information is very useful, but it has some features that could be completed 
with another source of information. For example: 
 

− The frequency of capturing data. 
The frequency of capturing data of Landsat-TM is 16 days. The Netherlands is usually 
covered by clouds, which supposes the satellite image is not very useful these days. 
Because of this, one might not obtain images in a period of one or two months. 
 
MERIS has the capability to measure each 2-3 days. This high revisit frequency could 
be very convenient to solve the cloud cover problem. MERIS high temporal resolution 
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is also very useful for monitoring vegetation development during a year, like for 
phenology studies. It can avoid spectral confusion, because different land use types can 
reflect similar radiation in a determined season but we may distinguish them easier at 
other moments. 
 

− The spatial resolution. 
The landscape of The Netherlands is fragmented, agricultural crops cover the half of the 
country (Van Oort et al., 2004) and it does not have large areas with the same land 
cover. Therefore, a satellite with a low resolution like NOAA-AVHRR (pixel size 
1.1Km) is not very suited for mapping land cover types in the Netherlands. However, 
the NOAA-AVHRR images cover a large area and therefore the mosaic effect that is 
created when using Landsat-TM images can be avoided. 
Medium resolution satellite data, like MERIS data, may be very important in filling the 
gap between the low resolution satellite data and the high resolution satellite data. 
 
A main research objective, therefore, must be to find the appropriate scale at which the 
changes that we want to observe occur. Considerable improvements in the image 
interpretation accuracy could be achieved if there is prior knowledge about the optimal 
spatial resolution for remote sensing based inventory (Hyppänen, 1996). 
 

− The spectral resolution. 
Landsat TM has 6 spectral bands located in the visible, near and middle infrared, and 
although MERIS spectral resolution consists of 15 spectral bands, they do not measure 
in the middle infrared. They are located in the visible and near-infrared and in some 
case they provide similar information. Thus, bands 3 till 8, in the visible, are strongly 
correlated. Also bands 10 till 14, in the NIR, are correlated. Band 9 takes an 
intermediate position, making it a particularly interesting band of the MERIS sensor 
(Clevers et al., 2004b).The location of this band is in red edge region and it can provide 
very useful information about studying the chlorophyll content and other biophysical 
variables as a measure of plant condition.  
 
Taking into account these considerations, it can be concluded that producing an image 
with the spatial features of Landsat-TM and the appropriated characteristic of MERIS 
would be very useful for getting an accurate land cover database. Minghelli-Roman et 
al. (2001) showed that Landsat TM images are useful for enhancing MERIS images.  
 
 

1.3 Research objectives 
 
The aim of this research is to develop a methodology to get land cover mapping over 
The Netherlands by integrating multi-sensor remote sensing data. More specifically, an 
unmixing based data fusion method (Zhukov et al., 1999) has been tested in this study. 
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1.4 Research questions 
 
This main issue led us to investigate the following questions: 
 

1. Which scale gives the best visualization of the study area? 
2. Can one use landscape fragmentation indices to define the best scale to map land 

cover types in The Netherlands? 
3. What are the advantages of using a fused Landsat-TM and MERIS image for 

over Landsat-TM image when mapping and monitoring land cover? 
4. Which indicators can be used to assess the quality of the fused image? 

 

1.5 Outline of the report 
 
This document is articulated in 5 chapters. The first one deals with a general 
introduction and the presentation of the project which supports this study. Chapter 2 
describes the fundamental topics that have been treated in this research. Chapter 3 deals 
about materials, the characteristic of two needed images to do the fusion between them, 
and the LGN which is a land cover of The Netherlands whose process of elaboration is 
trying to be optimized. In chapter 4 the most appropriate scale to fuse the image is 
calculated. In chapter 5 the process of data fusion is carried out and some conclusions 
and recommendations for possible improvements in the research are commented. 
Finally chapter 6 summaries conclusions of the research answering questions proposed 
in this chapter. 
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2. Literature review 
 

2.1 Remote sensing and land cover mapping 
 
Land cover and land use are continuously changing. Environmental researches have 
shown up the importance of updating and reliable information on land use and land 
cover (Clevers et al., 2004a; Mucher et al., 2000). The knowledge on these variables is 
required in many aspects of land use planning and policy development, as a prerequisite 
for monitoring and modelling land use and environmental change (Billah and Rahman, 
2004). However, the comprehensive information on the types and rates of land-cover 
and land-use change, and the less evidence on the causes, distributions, rates and 
consequences of those changes, make that the ability to obtain this information a tricky 
task. Remote sensing is presented like a powerful tool capable of providing timely and 
cost effective information. 
    
Remote sensing is the science of acquiring information about the Earth’s surface by 
sensing and recording reflected or emitted energy and processing, analyzing, and 
applying that information. The process involves an interaction between incident 
radiation and the targets of interest. In the last three decades, the technologies and 
methods of remote sensing have evolved to include a suite of sensors operating at a 
wide range of imaging scales with potential interest and importance to planners and land 
managers. The initiation of significant research activities in remote sensing technology, 
data analysis and applications was in 1972 with the launch of Landsat-1. In 1984, with 
the launch of the Landsat Thematic Mapper (TM) it was produced a new remote sensing 
data source that provided higher spectral, spatial, and radiometric resolution data, which 
allowed research to be conducted with greater precision, over large areas (Rogan and 
Chen, 2004). Since then, many other satellites have been launched and new airborne 
sensors have become operational. Specifically, the sensor that has been studied in this 
research, MERIS, was launched in 2002. It is on board of ENVISAT, which is the 
largest Earth Observation spacecraft ever built (www2). It carries ten sophisticated 
optical and radar instruments to provide continuous observation and monitoring of the 
Earth’s land, atmosphere, oceans and ice caps. And although MERIS primary mission 
was the measurement of sea colour in oceans and coastal areas, many studies are 
showing its use for land and atmospheric monitoring (see Chapter 3.1.2)  
 
Following the availability of the new sensors, many projects began to employ image 
fusion techniques, fundamentally using panchromatic and multispectral information for 
improved land-cover and land-use monitoring (e.g. (Pellemans et al., 1993)). Data 
fusion was presented as a new process in order to obtain accurate detail of an area by 
using different sources of information. Different techniques of Data Fusion are 
expounded in the next section. 
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2.2 Data Fusion 
 
Earth observation satellites provide data covering different portions of the 
electromagnetic spectrum at different spatial, temporal and spectral resolutions. Every 
remotely sensed image has a specific limit of its own spectral and spatial resolution and 
there is no ideal sensor that is highly sensitive to all wavelengths and yields spatially 
detailed data. Nevertheless an image taken with a sensor can be complemented for 
images from other sensors, thus a fused image is created (Park and Kang, 2004). Fused 
images may provide increased interpretation capabilities and more reliable results since 
data with different characteristic are combined (Pohl and Van Genderen, 1998). On the 
one hand, the high spatial resolution is necessary for an accurate description of the 
shapes, features and structures. On the other hand, depending on the application and the 
level of complexity of the observed scene, the different objects are better identified if 
high spectral resolution images are used. To integrate different data in order to get more 
information than can be derived from each of the single sensors alone is the aim of 
image fusion. 
These images should be as close as possible to reality and should simulate what would 
be observed by a sensor with the same modalities but the highest spatial resolution. 
Lucien Wald, in his book “Data Fusion. Definitions and architectures. Fusion of 
images of different spatial resolutions”, defines three properties that the synthetic 
images must respect: 
 

1. Any synthetic image once degraded to its original resolution, should be as 
identical as possible to the original image. 

2. Any synthetic image should be as identical as possible to the image that the 
corresponding sensor would observe with the highest spatial resolution if 
existent. 

3. The multispectral set of synthetic images should be as identical as possible to the 
multispectral set of images that the corresponding sensor would observe with the 
highest spatial resolution if existent (Wald, 2002). 

 
In this research, Landsat TM and MERIS images are going to be fused. The fused image 
will have the spatial resolution of Landsat TM (25m) and the spectral information of 
MERIS, 15 spectral bands. To check the quality of the fused images, some indicators 
have been used (see chapter 4 for a better description). 
Several methods of data fusion are available in RS literature. Table 1 presents a brief 
review of the most important ones. 
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Table 1: Data fusion methods 
 

 
 
 
The next flowcharts show the basic concept of some of the methods commented 
previously:  

Data Fusion 
Method Description Implicate Reference 

IHS 

 
Three multispectral bands R, G and B 
of low resolution image are 
transformed to IHS colour space. 
Replacing I with the panchromatic 
high resolution image information 
and performing an inverse 
transformation from IHS back to the 
original RGB space, the fusion image 
is obtained. 

PCA 

 
PC1 is replaced by the panchromatic 
image and retransformed back into 
original RGB space.  

 
·These methods substitute 
panchromatic data by I or PC-1 
directly; and not always 
produce the best final products 
if both images have little 
correlation. 
 
·All spectral components except 
for the substituted one are left 
in the original low resolution. 
 
·Distorting the spectral   
characteristic. 
 

(Lillesand and Keifer, 
2000) 
(Chavez et al., 1991) 
(Zhukov et al., 1999) 

Arithmetic 
combinations 
(BroveyTransform, 
SVR, RE) 

 

Pan
Multi
Multi

Fusion
sum

i
i ×=  

 
 With i=1…n, and 
Multisum=Multi 1 +…+ Multi n 
 

 
·They were developed to 
visually increase contrast in the 
low and high ends of the 
histogram of an image. 
 
·They should not be used if we 
want to preserve the original 
radiometry information. 
 

(Zhang, 2002) 

Wavelet 
decomposition 
(LaplacianPyramid, 
FourierDecomposition) 

 
The discrete wavelet transform 
(DWT) allows the image 
decomposition in different kinds of 
coefficients keeping the image 
information. Combining properly the 
different image coefficients, and 
through the inverse discrete wavelets 
transform (IDWT), the final fused 
image is achieved. 

 
·They transfer high resolution 
information from a high spatial 
resolution image to the entire 
low spatial resolution spectral 
band.  
 
·These techniques use the high 
frequency information directly, 
and may cause spectral 
distortion. 
 
·They use big amount of data, 
sometimes they are out of 
physical domain. 
 

(Pajares and de la 
Cruz, 2004) 
(www4) 
(Park and Kang, 
2004) 

·They normally use only one 
band of high spatial resolution 
image. 
 

Methods using 
adaptative windows 

They apply nonlinear relationships 
between the images. 
 

 
·Zhukov´s method with the 
general case that the highest 
spatial resolution image may be 
multispectral. 
 

(Moran, 1990) 
(Hill 1999) 
(Park and Kang, 
2004) 
(Price, 1999) 
(Tapiador and 
Casanova, 2002) 
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Figure 1:Schematic flowchart of IHS (left) and PCA (right) image fusion (Zhang, 
2002) 
 
 

 
Figure 2: Concept of data fusion for resolution enhancement (Hill 1999) 
 

 
 
 
Figure 3: Fusion of two multispectral images (Minghelli-Roman et al., 2001) 
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Very well known techniques are IHS (intensity, hue, saturation), PCA (Principal 
components analysis), arithmetic combination based fusion and wavelet based fusion. 
However, a common problem associated with these techniques is the colour distortion 
of the fused image and that the fusion quality is operator and data dependent (Zhang, 
2002, 2004). These techniques have been applied to the Pan image of the SPOT and IRS 
sensors, but they do not obtain an accurate quality in the image for new satellite images 
like Landsat-TM, IKONOS or Quickbird (Zhang, 1999). The techniques based on 
adaptive windows try to preserve the original spectral information. Especially Zhukov’s 
methodology, the followed method in this research, presents the advantage with regards 
to the others that we can get information for all bands in the high spectral resolution 
image. It is not necessary to match bands belonging to the higher spatial resolution 
satellite with bands from higher spectral resolution satellite that cover a same spectral 
range. 
This technique is proposed for unmixing the data of a lower resolution “measuring 
instrument” by its combined processing with the data of a higher-resolution “classifying 
instrument”. It allows to classify the data and to map the classes with the resolution of 
the classifying instrument and to retrieve the mean signatures of the classes, 
corresponding to the measuring instrument (Zhukov et al., 1995).    
 

2.3 Spectral unmixing 
 
A satellite image consists of a two dimensional array of individual picture elements 
called pixels. Each pixel represents an area on the Earth’s surface and has an intensity 
value, represented by a digital number. This value is normally an average of the whole 
ground area covered by the pixel. Resolution of an image is constrained by the pixel 
size and this pixel size is determined by the instantaneous field of view (IFOV) of the 
sensor’s optical system. IFOV is a measure of the ground area viewed by a single 
detector element for a given moment in time. A large IFOV implies, therefore, that the 
ground area represented in each pixel is more likely to contain a mixture of materials of 
interest. The resultant spectra are a mixture and are referred to as “mixed pixels”. 
A mixed pixel in an image can be the consequence of any of the following situations on 
the ground (Fisher, 1997): 
 

- Boundaries between two or more mapping units (e.g. field-woodland boundary) 
- The intergrade between the central concepts of the mappable phenomena 

(ecotone) 
- Linear sub-pixel objects (e.g. a narrow road) 
- Small sub-pixel objects (e.g. house or tree) 
 
These situations are shown in figure 4. 
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Figure 4: Four cases of mixed pixels (Fisher, 1997) 
 

The presence of mixed pixels in applications such as performing a classification is a 
problem, since in conventional classification procedures the pixel is considered as an 
elementary unit for the analysis. Consequently, the subpixel level has to be studied. The 
mixed pixels require to be separated into individual constituents, called endmembers, 
whose radiances contribute to the single mixed-pixel value (Robinson et al., 2000). To 
transform the digital count of mixed-pixels into the digital count of the individual 
materials in that area of the scene is the purpose of the present study. The percentage of 
the individual material in the studied area is given by the higher spatial resolution image 
and the spectral signature of the classes present in a MERIS image will be obtained. 
 
A method proposed by Zhukov et al. (1999) is used in this research to make the 
unmixing. This method applies the unmixing-algorithm in the high spectral resolution 
image by using a sliding window. The main steps followed in this method are: 
 

 
 Georeferenced Landsat-TM images, with 25 x 25 m2 as pixel size, are 

available from different dates. The first step is to make an unsupervised 
classification of these images. The unsupervised classification rule applied to 
these images was ISODATA. 

 
Isodata unsupervised classification calculates class means evenly distributed in 
the data space and then iteratively clusters the remaining pixels using minimum 
distance techniques. Each iteration recalculates means and reclassifies pixels 
with respect to the new means. The number of iterations has been 50 and no 
distance threshold or standard deviation has been specified. Then all pixels are 
classified to the nearest class. This process continues until a number of 100 
pixels in each class is reached (ENVI, 2004). The images were classified in 10, 
20, 40, 60 and 80 classes. Afterwards, this number was optimized. 
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 The MERIS image was geometrically co-registered with the TM image. The 
pixel size of Landsat is 25 m and MERIS’ pixel size 300m; therefore a 
MERIS pixel is matched to 12 by 12 Landsat-TM pixels (300/25=12).  

 
 
                            
 
 

 
   Figure 5: 12x12 Landsat pixels                                         Figure 6: MERIS pixel 
 

In general, there are more images from MERIS than from Landsat-TM; so more 
than one MERIS image will be co-registered with the same Landsat-TM image. 
Thus, multitemporal information of data fusion has been studied. The 
consequences of adding temporal information to the data fusion process have 
been evaluated in terms of overall classification accuracy. 

 
 Using the classified Landsat-TM images as a reference, the proportion of 

each class at 25m will be calculated for each MERIS full resolution pixel 
(300m), in a window. The size of this sliding window will be optimized by 
testing different window sizes. 

 
 Subsequently, the following algebraic system will be applied per pixel in the 

window to unmix the MERIS signal: 
 
 

∑
=

+⋅=
cN

K

i
KK

i LCS
1

ε     with    i =1,2,…,nbMERIS 

 
   Equation 1: System of linear mixture equations 
 

 
      C         vector containing the proportion of each class within a MERIS pixel. 

 
 Si         radiance value of the ith MERIS spectral band. 

 
 Nc        total number of classes. 
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 Li        unknown vector containing the spectral radiance of each class in the                
        ith MERIS spectral band. 

 
 nbMERIS         number of MERIS spectral bands. 
 

Thus the unmixing is done for each band. In each band this equation is applied MERIS 
window by MERIS window to all pixels in the image. The restoration of the unmixed 
MERIS image is performed by assigning the estimated mean class signal to 
corresponding high-resolutions pixels of the classification maps, but the assignment is 
performed in each window only within the area of its central MERIS pixel. This is 
illustrated in the figure 7. We can distinguish 5 different classes in the window, in the 
first pixel appear two classes, to its right, the second pixel three classes, in the central 
pixel 4 classes. Once the equation is applied to each pixel, the signal of the five classes 
is obtained, but only the signal of the four classes corresponding to the central MERIS 
pixel will be assigned to the high-resolution pixels of the classifications maps in that 
area.  
 
  
 
 

 
 
 
                                                                                                   
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Applying equation 1 
 
In the case that the number of classes in the window is higher than the number of pixels 
in the window there will not be enough equations for obtaining the unknown 
endmembers. Then, a bigger window should be used. The maximum number of classes 
in a MERIS window will be calculated, thus the window size can be optimized.  
 
To avoid the effect of a frame when a window is used, the image will be padded with 
zeros. The size of this frame depends on the size of the window, being:  
frame = (window size-1)/2. 
  
The aim of this project is to get a fused image with Landsat TM and MERIS data, and to 
check if the land cover map obtained when that image is classified is more useful than a 
Landsat TM image. 

MERIS window 
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3. Materials 
 

3.1 Description of the available data sets 

3.1.1 Landsat TM 
 
For over 30 years, the Landsat platforms have been providing scientists with high-
resolution satellite imagery. Landsat began the land mapping in the early 1970s with a 
series of 3 MSS (multispectral scanner) satellites that mapped using the three visible 
channels along with a near infrared band. In the early 1980s the next generation of 
Landsat satellites began offering what is known as the Thematic Mapper, which added 
two more infrared bands and a thermal long-wave infrared band, and doubles the 
resolution capabilities of the multispectral bands. The TM sensor is an advanced Earth 
resources sensor designed to achieve higher image resolution, sharper spectral 
separation, improved geometric fidelity, and greater radiometric accuracy and resolution 
than the MSS sensor. The TM data are scanned simultaneously in seven spectral bands. 
Band 6 scans thermal infrared radiation (www8). Spectral range of bands and spatial 
resolution for the TM sensor are given in table 2. 
 
Table 2: Landsat TM resolutions 

 
 
 
 
 
 
 
 
 
 
 

 
The primary objective of the Landsat project is to ensure a collection of consistently 
calibrated Earth imagery. Landsat’s Global Survey Mission is to establish and execute a 
data acquisition strategy that ensures repetitive acquisition of observations over the 
Earth’s land mass, coastal boundaries, and to ensure the data acquired are of utility in 
supporting the scientific objectives of monitoring changes in the Earth’s land surface 
and associated environment (www9).  
 
 
 
 
 
 
 
 
 
 

Bands Range bands (nm) Spatial 
resolution(m) 

1 45-52 30 
2 52-60 30 
3 63-69 30 
4 76-90 30 
5 155-175 30 
6 1040-1250 120 
7 208-235 30 
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3.1.2 MERIS  
 
MERIS (Medium Resolution Imaging Spectrometer) is a fine spectral and medium 
spatial resolution satellite sensor. MERIS is one of the core instrument payloads of 
Envisat, the European Space Agency’s (ESA) environmental research satellite, launched 
in March 2002. MERIS operates in the solar reflective spectral range. It has 15 spectral 
programmable bands (capability of changing the band position and bandwidths 
throughout its lifetime) designed to acquire data at variable bandwidth between 1.25 and 
30 nm over the spectral range 390nm to 1040 nm. Table 3 lists the current default 
bandset including variables that determined the final selection of band centre 
wavelengths and bandwidths. 
 
Table 3: MERIS bands (Curran and Steele, 2005) 
 
 Band 
Number Centre (nm) Width (nm) Environmental variables 

1 412.5 10 Yellow substance, turbidity 
2 442.5 10 Chlorophyll absorption 
3 490 10 Chlorophyll, other pigments 
4 510 10 Turbidity, suspended sediment, red tides 
5 560 10 Chlorophyll reference, suspended sediment 
6 620 10 suspended sediment 
7 665 10 Chlorophyll absorption 
8 681.25 7.5 Chlorophyll fluorescence 
9 708.75 10 Atmospheric correction 
10 753.75 7.5 Oxygen absorption reference 
11 760.625 3.75 Oxygen absorption R-branch 
12 778.75 15 Aerosols, vegetation 
13 865 20 Aerosols correction over ocean 
14 885 10 Water vapour absorption reference 
15 900 10 Water vapour absorption, vegetation 

 
 
The instrument scans the Earth’s surface by the so called “push broom” method. CCD 
arrays provide spatial sampling in the across track direction, while the satellite’s motion 
provides scanning in the along-track direction. It is designed so that it can acquire data 
over the Earth whenever illumination conditions are suitable. The instrument has a 68.5º 
field of view around nadir, covering a swath width of 1150 Km with a spatial resolution 
of 300m at nadir. MERIS allows global coverage in 3 days. 
The data are provided at 3 differents levels of processing- Level 0, Level 1 and Level 2 
at two different resolutions- Full and reduced. The instrument always takes 
measurements with full resolution and onboard averaging generates the RR images 
(www2). 
  

· Level 1, these products are images holding top of atmosphere radiances 
measured in the 15 MERIS bands. 

· Level 2, they are provided with geophysical quantities varying according to 
the underlying surface identified (land, ocean or clouds). 

 
Both products contain geometric information to locate the image on the Earth’s surface; 
data describing the sun and viewing geometry; additional annotation data such as 
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coastline information; terrain height; meteorological data; scaling factors to decode the 
data from numerical geophysical meaningful values and flags that address the quality 
and the validity of the image. 
 
MERIS was primarily designed for ocean and coastal zone remote sensing. However 
nowadays much broader environmental issues are addressed covering also land and 
atmospheric applications. The earlier objectives in 1987 of MERIS were: 
 
Table 4: Earlier objectives of MERIS (Curran and Steele, 2005) 
 
Ocean Land 
Scientifics and application oriented objectives 

1. Chlorophyll concentration/ suspended 
sediment 

2. Water quality/ dissolved organics 
3. Shallow water depth/ bottom classification 
4. Relationship between sea water optical 

properties and biophysical properties 
5. Time series of biological and physical 

processes 
6. Global radiation absorption by turbid 

water 
7. Global and regional primary production  
8. Pollution monitoring/ coastal processes 

Possible extensions to land applications 
1. Synoptical monitoring of vegetation 

indicators 
2. Inland water bodies monitoring  
3. Large scale (area) mapping 

 

 
The MERIS Scientific Advisory Group (SAG) was composed principally of scientists 
with interest in ocean remote sensing and in the early 1990s more land and atmospheric 
scientists joined the group. Nevertheless, the ocean group was most involved in 
designing MERIS´s technical specifications and as a result these details were guided by 
ocean applications.  
 
Land applications form only a modest contribution to the mission goal; nevertheless 
several researches have shown that MERIS has large potential for operational 
investigations over land areas (e.g.(Clevers et al., 2004a; Clevers et al., 2004b; Van Der 
Meer et al., 2000)). Its fine spectral and moderate spatial resolution could increase the 
capability to monitor terrestrial environments at regional to global scales, and fills the 
resolution gap between NOAA-like data and Landsat/SPOT-type data (Van Der Meer et 
al., 2000). These features joined to the repetitive acquisitions of such measurements 
should allow:  
 

 Description of the dynamics of ecosystems. 
 The quantification of deforestation and desertification processes. 
 The monitoring of biomass burning and agricultural production. 
 The documentation of land cover changes (Verstraete et al., 1999). 
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3.1.3 LGN 
 
LGN is a spatial database that provides an overview of the crops that have been growing 
during a period in The Netherlands. It consists of raster cells of 25m by 25 m which 
cover the entire Netherlands, and for each cell land cover is determined. The first 
version was created in 1987 and since then four versions more have been produced, the 
most recent, LGN5, in July 2005. They are based on satellite images from 1986-2004. 
The database is widely used by national and regional government agencies for water 
management, hydrological modelling, land-use planning and environmental 
management (www1). For each update, the overall accuracy increased: LGN1 60% 
overall accuracy, LGN2 75% and LGN3 85% overall accuracy, 75% accuracy for 
individual classes. LGN1 and LGN2 were experimental databases with a limited 
accuracy and important shortcomings. In the third version those problems were quite 
solved and the use of LGN for ecological and environmental applications was strongly 
improved (De Wit and Clevers, 2004).  
LGN4´s creation was realised by a methodology of classification that allowed to reduce 
costs, but to support high classification accuracy. A distinct advantage was the use of 
the 1:10000 digital topographic vector database of The Netherlands. The nomenclature 
of the LGN4 database contains 39 classes covering urban areas, water, forest, various 
agricultural crops and ecological classes and the accuracy requirement was similar to 
the LGN3 (85% overall accuracy, 75% accuracy for individual classes) (De Wit, 2003). 
The production of LGN5 is comparable with LGN4. Legend and production process has 
been equal, offering the LGN5 database the possibility to monitor the changes for the 
period 1999-2004, since for this last update of the database satellite images of 2003 and 
2004 have been used. 
Both LGN4 and LGN5 aggregated into nine main land cover classes have been used in 
this study. These classes are: grassland, arable land, greenhouses, deciduous forest, 
coniferous forest, water, built-up areas, bare soil (including sand dunes), and natural 
vegetation. 
 
For getting these nine classes, the LGN was resampled from 25 to 300m to match the 
MERIS FR pixel size. The aggregation method was based on using a majority filter with 
a kernel of 12 pixels (25m*12=300 m). The land use with highest abundance in the 12 
by 12 kernel was used to label the new land use type (Zurita Milla et al., 2005).  
 

3.2 Pre-processing data 
 
A set of three Landsat TM and six MERIS images have been used in this research and 
for obtaining the final images the next steps have been followed. 

3.2.1 Landsat images 
 
The sensor Landsat, images from platforms five and seven have been used in the present 
study. The steps carried out have been: 
 

 Change of format: They were acquired as ERDAS Imagine format comprised, 
they were decompressed and after converted to ENVI format. (To decompress 
the information the image was multiplied by 1.0 in ERDAS_MODELER).  
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 Geo-referencing: In addition to the change of format, the image was reprojected 
into the Dutch National reference coordinate system (RD). In The Netherlands 
all governmental offices concerned with spatial data use the national R.D. (Rijks 
Driehoek) coordinate system. It is stereographic map projection with its origin in 
Amersfoort (λ= 5º23’15.500’’, longitude to the centre of projection, and 
φ=52º9’22.178’’, latitude of the centre of projection) and the coordinates of the 
origin are shifted to X0=155000.000 m and Y0=463000.000 m. 

 
 Study area: By using LGN as mask, a data set only covering the part of The 

Netherlands represented in Landsat images was extracted. Later taking into 
account the MERIS images, a smaller study area was selected. 

 
Table 5: Landsat TM Acquisitions 
 
Date (dd/mm/year) 
28/03/2003 
10/07/2003 
11/08/2003 

 
 

This research is divided in two main parts, and although both use Landsat images, 
there are some differences in the data set and also in the studied area: 
 
(1) Justification subpixel level, where the optimal scale for the research is studied. 

- Only Landsat image from 28 March 2003 is used. 
- The size of the studied area is 1024 columns by 8096 rows pixels with 25 m 

of size.  
(2) Process of the data fusion. 

- Three Landsat images are used. 
- The size of the studied area is smaller than the previous one, since MERIS 

images are used here, and there are some clouds in the North part. For this 
reason the size of the studied area in this part is 984 columns by 5064 or 
4320 rows depending on the images. 

 

3.2.2 MERIS images 
 
For the research we were provided with a set of MERIS level 1 images. To fuse these 
images with the Landsat TM images, the dates should be as close as possible, thus the 
proximity between the dates and cloud free, were the main criterions to choose the 
MERIS image dates that we have used. 
For the final MERIS images, the part of The Netherlands presented in the images was 
cut applying the same mask as used for Landsat TM images. Previously to this step, the 
image to be visualized in ENVI format with coordinates, GCPs were exported. In order 
to do this; the software BEAM 3.2 is used (new version 3.3 is already available).  
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The process followed: 
 

1. In the software BEAM 3.2 
 
 - To import ENVISAT products (MERIS images) 
 - To obtain the geo-codes and export them as ENVI GCP. 
 
2. In ENVI 
 
 - The option Map ASCII Coordinate Conversion is chosen, where the next inputs  
         have to be given: input projection (geographic lat/lon) and output projection        
    (RD stelsel). 
 - Finally, to warp the GCPs: Image to map, where polynomial 3rd degree and      
    nearest neighbour were the selected options for obtaining the image with    
    coordinates. 
 

In this way the images could be overlapped and a common study area was chosen. The 
size of the final studied area is in Landsat image, 5076 rows by 984 samples, which is 
corresponding to 422 rows by 82 samples in the MERIS images. 
Accordingly to Zhukov, it is very important that the images are perfectly co-registered, 
the co-registration errors should not exceed 0.1-0.2 of the low-resolution pixel size 
(Zhukov et al., 1999). 
 
Another processing step was to transform the MERIS images from DN to radiances. For 
that the software EnviView has been used. EnviView is an application, which allows 
opening Envisat data file and examinees its contents. The information required is the 
value of the gains. The gains are used to optimise the sensor sensitivity, maximise the 
instrument resolution and prevent detectors saturation. There is a different value for 
each band. 

 
L=Gain*DN 
 
Equation 2: Transform DN into Radiance values 

 
 
Where: 
 
L: Radiance (mW/m2/sr/nm) 
DN: Radiometric value or digital number (0, 216) 

Gain= 16
minmax

2
LL −

 ;  
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Table 6: MERIS Acquisitions 
 

 
 
Another pre-processing that could be made to MERIS images by using the software 
BEAM is to correct the image for the smile effect. The BEAM Smile Correction 
Processor is aimed to enable the user to calculate smile corrected radiances from 
ENVISAT MERIS L1b products. 
The images were corrected, but it was not possible with the MERIS image from 18th 
February 2003 due to the input is an old version and do not contain some data necessary 
for this process. For this reason, it was decided to work with MERIS images without 
smile correction. Nevertheless, in case that this pre-processing was done. In a sequential 
order the smile correction should be done at the beginning, before masking and 
exporting GCP´s.   
 
Why the smile effect is produced? 
 
MERIS is measuring the reflected sun light using CCD (Charge-Coupled Device) 
technique. A CCD is measuring in one of its dimensions one image line, and in the 
other dimension the spectrally dispersed radiance for each pixel along the image line. 
The spectral measurements of each pixel along an image line are made by its own set of 
sensors of the CCD. This causes small variations of the spectral wavelength of each 
pixel along the image. This is called smile “effect”. 
Five cameras each equipped with its own CCD sensor compose the MERIS instrument 
(see fig.8).The variation of the wavelength per pixel is in the order of 1 nm from one 
camera to another, while they are in order of 0.1nm within one camera. In processing 
algorithms which require very precise measurements the correction of this effect is 
necessary. Therefore, the MERIS Level 2 processor corrects the smile effect. The level 
1b product is not smile corrected; this product provides the user exactly what the 
instrument is measuring (BEAM, 2005).  
 

Raw MERIS image Sensing Start 
date 

Procesed 
date 

MER_FR__1PNIPA20030218_101833_000000982014_00008_05072_0094.N1 18/02/2003 02/04/2003 
MER_FR__1PNUPA20030416_102705_000000982015_00323_05888_0177.N1 16/04/2003 19/07/2003 
MER_FR__1PNUPA20030606_102410_000000982017_00051_06618_0176.N1 06/06/2003 19/07/2003 
MER_FR__1PNEPA20030714_102918_000000982018_00094_07162_0139.N1 14/07/2003 05/08/2003 
MER_FR__1PNUPA20030806_100639_000000982018_00423_07491_0465.N1 06/08/2003 25/08/2003 
MER_FR__1PNEPA20030809_101258_000000982018_00466_07534_0279.N1 09/08/2003 29/08/2003 
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Figure 8: MERIS FOV, camera tracks, pixel enumeration and swath 
dimension(www2) 
 
 

3.2.3 LGN 
 
Five versions of LGN exist already. LGN4 aggregated into 9 classes (water, grassland, 
arable land, natural vegetation, deciduous forest, coniferous forest, greenhouses, built 
up and bare soil) has been the version used in the first part of the study because when 
this point of the analysis was being studied, in May 2005, LGN5 was not yet available. 
In the second part, for making the confusion matrices of the final classified images, 
LGN5 classified also in 9 classes was used as ground truth. 
 
Finally, table 7 summarises the data used in each part of the research, data for optimal 
scale will be used in chapter 4, and for data fusion in chapter 5.   
 
Table 7: Summary of images in the study 
 
 Landsat TM MERIS LGN (9 classes) 

 
Optimal scale 

 
March 28th - LGN4 

February 18th  1st set fused 
dates March 28th 

April 16th  
June 6th  2nd set fused 

dates July 10th July 14th  
August 6th  

Data 
Fusion 

3rd  set fused 
dates August 11th August 9th  

LGN5 
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4. Justification of subpixel level  
 
This chapter describes all the steps carried out to test which is the appropriate scale for 
observing most of the changes in land cover and land use and the reason why we can 
not use the information of MERIS FR directly. 
 
This study is composed of three phases addressing (1) Selection of study area (2) 
Application of a method using local variance and the use of landscape indices (3) 
Evaluation of the graphs obtained. 

4.1 Methodology 

4.1.1 Studied area 
 
The Landsat image does not cover the whole of The Netherlands, so the images LGN 
and Landsat TM (28th March 2003) were cut with the same shape and then a studied 
area was chosen following the next criteria: 

 
1. The studied area should be cloud free in the Landsat TM image. 
 
2. The studied area should contain the nine land covers in which The 

Netherlands’ landscape has been classified. 
 
3. The size should be taken into account for the analysis. 
 

The selected area covers approximately 25.6 Km by 202.4 Km, from 51º24’ to 53º13’ 
North latitude and 6º0’ to 6º 22’ East longitude. This is equivalent to 1024 rows by 8096 
columns pixels with 25 m of size. This area represents The Netherlands’ landscape; the 
nine representative classes appear in this zone and it is not covered by clouds. 
The size of the image is important since the method using local variance to select an 
optimal scale computes the local variance of the images at different spatial resolutions, 
while still having a reasonable number of pixels to estimate local variance, there are a 
limited number of times that an image can be degraded (Woodcock and Strahler, 1987). 
Figure 9 shows the selected area. 
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Figure 9: Studied area 
 
Table 8: Percentage of each class in the studied area for Woodcock  

 
Land cover % 

Grassland 43,76 
Arable land 19,32 
Greenhouses 0,06 
Deciduous forest 6,01 
Coniferous forest 10,84 
Water 4,40 
Built-up 11,78 
Bare soil 0,39 
Natural vegetation 3,43 

 

4.1.2 Optimal scale applying local variance method 
 
The methodology that has been followed is a technique developed by Woodcock and 
Strahler (1987). The local variance of the image is used as a criterion to know the 
appropriate spatial resolution which is needed for obtaining the information desired 
about the ground scene. Accordingly with the authors, if the spatial resolution is 
considerably finer than the objects in the scene, most of the measurements in the image 
will be highly correlated with their neighbours and a measure of local variance will be 
low. If the objects approximate the size of the resolution cells, then the likelihood of 
neighbours being similar decreases and the local variance rises.  
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A graph shows how the local variance of a digital image for a scene changes as function 
of the resolution cell size, and thus the spatial structure in the images is represented. 
To measure local variance at multiple resolutions, the image data are degraded to 
coarser spatial resolutions. A consequence of this is that the number of pixels decreases 
as resolutions become coarser; for this reason, Woodcock, as a rule of thumb, proposes 
that the minimum size of images used to measure local variance should be around 60 
pixels for have an adequate number of pixels to estimate local variance.  
 
To apply this method, a MATLAB® application has been programmed. This 
application follows the next steps:   
 

1. Choose the times that the scale of the original images is going to be 
degraded. Thus, if five steps are selected, the image will be degraded from 
25 to 50, 100, 200, 400 and 800 m pixel size. For computing the pixel value 
after the degradation the mean between the pixels has been used.   

    
2. The class to be examined is chosen. Each time that the program is executed, 

a graph for the relevant class previously selected is drawn.  
   

The mean local variance of an image is computed using a sliding window of size N. 
N=3 is the window size recommended by the authors. The standard deviation of the 
nine values is computed, and the mean of these values over the entire image is taken as 
an indication of the local variability in the image. The function that executes the local 
variance is mvarim_class. 
Firstly, the mean of the variance of the image without degradation is computed, 
afterward the original image is degraded and the successive local variances are 
obtained. Consequently the classified image, LGN, has to be degraded also; a function 
called majority_filter is used for this aim. This function makes a thematic aggregation 
of the classified image. 
As it has been said before, each time that the program is executed only one class is 
examined, so for selecting it, we take solely the pixels bellowing to the chosen land 
cover. 
 
The figure 10 shows the flowchart of this procedure. Two matrices are supposed to be 
the study area; the left one is LGN, each number corresponds with a land cover; to the 
right is the Landsat TM and the numbers are the DNs in each pixel. In this 
exemplification, the land cover named number 2 has been chosen, and only one step for 
the degradation has been represented. 
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Study area LGN4                                         Study area LandsatTM 
 

1 1 2 2 2 2 2 2 
1 3 3 2 2 2 6 6 
1 3 3 2 5 2 6 6   
3 3 3 2 5 5 6 6 
2 3 3 3 5 5 5 6 
2 4 4 4 5 5 5 6 

 
            majority_filter                                                                          blkproc(mean) 
                      

 
 
                                                                                            
 
 
                                                     
               

 
                                                                           
 
 
 
 
 
 
             
                  Mean of label 2 
 
 
      Local Variance 50m 
   
 
 
 Figure 10: Flowchart Woodcock_MEAN                                                                                                   
 

4.1.3 Optimal scale using landscape indices 
 
The fragmentation of The Netherlands’ landscape has been studied through landscape 
indices computed using “FRAGSTAT”. FRAGSTAT is a spatial pattern analysis 
program for categorical maps; it quantifies the area extent and spatial configuration of 
patches within a landscape. 
 
Our landscape consists of nine classes. For a given landscape mosaic, “Fragstats” 
computes several metrics at different levels: in each patch, in each class and in the 
landscape mosaic as a whole. 
We have studied this landscape in terms of classes and patches. Indicative indices of the 
scale at which these classes can be observed, have been chosen.  
  
Next the definition of these indices is given:   
 

15 15 23 23 24 24 22 23 

16 32 32 24 24 22 61 60 

14 33 32 26 53 22 62 62 
32 34 34 26 52 51 61 61 

24 32 32 34 53 52 51 60 
22 42 42 45 54 54 52 60 

1 2 2 2 

3 3 2 6 

2 3 5 
 

5 

19 25 23 41 

28 29 44 61 

30 38 53 56 

19 25 23 41 

28 29 44 61 

30 38 53 56 

 
LocalVariance 
25 m 

 

 

 

mean 

mvarim_class

mvarim_class 
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CA(ha); it is the total class area. It is equal to the sum of the areas of all patches of the 
corresponding patch type. This measure indicates how much of the landscape is 
comprised of a particular patch type. 
 
PLAND(%); it is the percentage of landscape covered by a certain class. It is equal to 
the percentage of landscape comprised of the corresponding patch type. Percentage of 
landscape quantifies the proportional abundance of each type in the landscape.  
 
NP; it is number of patches. It is the number of patches of the corresponding patch type. 
 
LSI; it is Landscape shape index. Landscape shape index equals the total length of 
perimeter involving the corresponding class, divided by the minimum length of class 
perimeter possible for a maximally aggregated class. This index provides a measure of 
class aggregation. 
  
LSI≥ 1, without limit 
LSI=1 when the landscape consists of a single square or maximally compact patch of 
the corresponding type; LSI increases without limit as the patch type becomes more 
disaggregated. 
 
The mentioned indexes have diferent relations with the level class. In the level of 
patches, the area of the patches has been computed. This index is very useful for the aim 
of this part of the research since we can see the number of patches with a determined 
area making up the studied landscape.  
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4.2 Results 

4.2.1 Local variance 
 

Nine classes comprising the landscape of The Netherlands were studied to check which 
the optimal scale for observing the different land covers is. The function programmed in 
MATLAB® was executed for each class. Graphs in figure 11 show the results obtained: 
   
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 11: Optimal scale for different land covers 
(X-axis: pixel size (m), Y-axis: local variance) 
 
At first glance, the graphs do not show a clear result; nevertheless some conclusion can 
be obtained by examining graph by graph. Together to the information in table 9, these 
conclusions are commented.  
Table 9 shows the pixel size where the local variance is maximum per band in the 
different classes. 
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Table 9: Pixel size where the local variance is maximum 

 
 
It was expected that the optimal resolution was land cover and wavelength dependent, 
but it has not been like this for many of the classes. 
 
Three reasons could explain the incoherence between the different bands:  
 

1) The spectral confusion between land covers in some bands. 
 
Taking into account the reasoning of the authors about the relationship between local 
variance and spatial resolution. It can be concluded that in bands where the local 
variance is very low and the maximum is reached in pixel size of 400 or 800 meters, 
there is spectral confusion between different land covers. 
For example in the case of arable land in the band 5, the maximum in the local variance 
is 800 m. This means that there is more than one class that has the same spectral 
behaviour in this band, since in a pixel of 800 by 800 it is highly probable that there 
exists more than one class mixed. 
 

2) Low number of pixels to compute local variance 
 
It was commented before that a minimum number of pixels to measure local variance 
should be 60. The size of the images decreases in the following way: 
 
 Table 10: Size of image 
 

25 50 100 200 400 600 800 
row col row Col row col row col Row col row Col row col 
8096 1024 4048 512 2024 256 1012 128 506 64 253 32 126,5 16 

          
We can see how for pixel size of 600 and 800 meters, the value of local variance can not 
be representative, since the number of pixels is lower than the recommended minimum. 
In fact, the land cover greenhouse for a pixel size of 400 meters can not compute local 
variance since this class disappears. Moreover, the proportion of this land cover in the 
scene is quite low; table 8 shows the percentage of each class in the selected area. 
 
 
 

 Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 
Grassland 800 800 100 100 200 100 
Arable land 800 800 800 100 800 100 
Greenhouses 50 50 50 100 50 200 
Deciduous 
forest 800 800 800 800 100 800 

Coniferous 
forest 800 800 800 800 400 400 

Water 800 800 800 800 800 800 
Built-up area 25 50 50 800 25 25 
Bare soil 200 200 200 200 200 200 
Natural 
vegetation 400 400 400 400 400 400 
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3) Reviews to the method. 
 
The spatial domain for mapping scale-specific structures of forest vegetation has been 
object of study in the Peder Klith PhD thesis (Klith Bøcher, 2003). Some aspects such 
as the size of the window used to calculate the single values of local variance or the way 
in which the pixels are aggregated to produce larger pixels in the process of constructing 
the ALV (Average local variance) graph of the method proposed by Woodcock are here 
criticized. 
Although some of the instructions given by Klith could have been applied adapting the 
function, this would need more time and this is not the main point of the scope of the 
present study.  
 
In spite of the graph not being as clear as was expected, we can see: 
In the cases of land covers grassland, arable land, bare soil mainly in bands 4 and 7, a 
clear maximum can be distinguished around 100 and 250 m as pixel size.  
For the water all bands indicate an optimum pixel size of 800m, obviously large mass of 
water are being considered, and not small rivers or lakes are detected with this method.  
The pixel size more restrictive is 25 m in the land cover built up. 
The obtained results showed that a MERIS pixel (300 by 300 m) will contain more than 
one class, thus the subpixel level should be studied.  

4.2.2 Landscape indices 
 
Features of the landscapes were studied by using some indices that show the 
fragmentation of the studied area. The same image analyzed in the previous section, 
Landsat TM image from 28th March 2003 have been used here. 

 
Table 11: Features of the landscape 

 
TYPE CA (ha) PLAND (%) NP LSI 

Deciduous forest 31147,87 6,01 13104 164,28
Coniferous forest 56152,62 10,84 11570 120,95
Built-up 61060,12 11,78 37792 248,00
Grassland 226726,12 43,76 22594 209,81
Water 22794,81 4,40 4674 77,62
Arable land 100114,00 19,32 7680 147,22
Bare soil 2019,56 0,39 1475 41,23
Natural vegetation 17800,06 3,43 2569 66,13
Greenhouses 328,56 0,06 433 26,05

 
Almost half of the studied area is grassland, it appears with 43.75%. Arable land, built 
up, coniferous and deciduous forest constitute the other 50 % of the landscape. The fact 
that the percentages in the landscape are distributed between the different classes, 
except in the case of the grassland, gives an idea of the fragmentation of the landscape. 
Even more meaningful of this fact is the index LSI and the comparison between the 
indices CA and PLAND with regard to NP. Although grassland covers more area its 
LSI is 209.81, indicating that its distributions is scattered and not aggregated in a big 
patch. Arable land is the second largest class and its LSI is around 150, so its 
distribution is also disaggregated. The class built-up covers less percentage, 11.78%; 
however is the class which more patches contain. Thus, it is indicated that the patches 
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are given out in all the study area and because of that it is the class with the highest 
value of LSI. In general the value of LSI is high with regard to the surface occupied by 
each land cover which means that the landscape is quite fragmented. Figure 12 supports 
this fact. 
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Figure 12: Histogram of size of patches 
 
 
Figure 12 represents the number of patches comprised in the landscape of the studied 
area in The Netherlands.  
This histogram represents clearly that the number of patches with an area of 0.0625 ha 
and 0.25 ha is quite higher than the rest; these areas correspond with a pixel size of 25 
and 50 m respectively. And no bars appear in pixel size for 400 and 800 m since only 
one or two patches appear with that size. 
This histogram explains also the necessity of studying subpixel level in the case of 
MERIS images. The information in a 300 by 300 pixel size is coming from more than 
one class.  
We can observe some differences in the results obtained with both approaches; an 
example is the land cover water. In the previous method where the local variance is 
plotted as function of the pixel size, the optimum scale for studying this land cover was 
800 m. It is obvious that in this result lakes or small rivers are not being taken into 
account; however in the histogram it is seen, that there are almost 1000 patches with an 
area of 0.0625 ha corresponding to water. So, it is other fact that indicates the necessity 
to search an appropriate scale to make the analysis.   
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4.3 Conclusions 
 
The most important goal of this chapter was to define the landscape that has been 
studied. Two approaches have been applied. Both of them show how for studying the 
different land covers of the landscape, we need to go to a scale around 25 m. MERIS FR 
has a pixel size of 300 m, thus the information has to be downscaled. Figure 11 and 12 
and table 11 support this idea. The class built up is the class more representative. Graph 
representing built up area in figure 11 shows a maximum local variance for a pixel size 
of 25 by 25 m. In figure 12 it is this class is which presents a higher number of patches 
with an area equivalent to this size of pixel. In table 11, it can be observed like built up 
area covering an 11.8% in the studied area, contains more patches than other classes, 
indicating the desegregation of this class. 
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5. Data Fusion. Adaptive window methodology 
  
After demonstrating the necessity of working at MERIS subpixel level, a process of 
data fusion has been followed. A set of three Landsat TM and six MERIS images were 
used in this research.  

5.1 Methodology 
 

This chapter describes all the steps carried out to test the feasibility of the algorithm 
proposed by Zhukov et al.(1999), with Landsat and MERIS images.  
The method is based on the classification of the high spatial resolution data which 
succeeds in showing class boundaries clearly, afterward both images are overlayed and 
the different classes inside of a MERIS pixel can be unmixed. 
In the case of Linear Spectral Unmixing, we have the information of the mixed pixel 
and also the spectral signatures of the individual materials that make up the mixed pixel; 
the unknown parameter is the percentage in which those materials appear in the scene. 
This method of Data Fusion presents the same equation, but the unknown parameter is 
the spectral signature that the endmembers composing the mixed pixel would have in an 
image with high spectral resolution, in our research MERIS. The percentage of the 
classes is given by the high spatial resolution image, providing also the position where 
the different classes in the mixed pixel are found. 
The fused image has the spatial information of Landsat and spectral information of 
MERIS. 
 
Previously to getting the fused images, the next parameters will be optimized: 
 

a. Number of classes in which the high spatial resolution image is classified.  
b. Size of window with which the algorithm is applied to the entire image. 
 

Different combinations of these parameters will be tested and the index ERGAS will be 
used to check the quality of the fused images.  
This indicator provides an accurate insight into the overall quality of a fused product 
and it is considered better than other quality parameters (Wald, 2002). It fulfils three 
requirements that a good indicator should have: 
 

1. It is independent of units. 
2. It is independent of the number of spectral bands under consideration. 
3. It is independent of the scales h and l (high and low resolution), making it 

possible to compare results obtained in different cases, with different 
resolutions. 

 
After this, a supervised classification of the fused image has resulted in a land cover 
map. The training areas have been selected based on the LGN5 and the Maximum 
likelihood classifier has been used to perform the classification. Finally, the error matrix 
has been used to asses the classification accuracy. Figure 13 shows a schematic 
overview of the procedure. 
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Figure 13: Schematic overview of the Data Fusion analysis 
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5.1.1 Process of data fusion 
 
The main steps that Zhukov proposed to develop the process of data fusion have been 
explained in section 2.3. This chapter shows how these steps have been carried out in 
this research and how the terms of equation 1 have been obtained. Figure 16 shows a 
schema where appear all the steps for obtaining the fused image. 
 
Proportion of each class (C) 
 
The first step in the process of data fusion was to search the proportion of each class in 
a MERIS pixel. It was explained previously that Zhukov applied the unmix-algorithm 
by using a sliding window. Each time that the algorithm is solved in a window, we 
obtain a matrix where the percentages of each class in a MERIS pixel are represented. 
This matrix will have as many rows as pixels in the MERIS window and as many 
columns as number of Landsat TM classes. In the case that the MERIS window is 5 by 
5 and the Landsat TM image is classified in 10 classes, the matrix fraction will have 25 
rows and 10 columns. Therefore, the first line will contain the percentage of each class 
inside the first MERIS pixel in the window. This matrix is called “C” in equation 1. 
This process was implemented in MATLAB® and for obtaining the final matrices two 
initial steps are needed. 
 
Firstly “Propor_maxclass”, this function has as inputs: the classified Landsat TM image, 
the number of classes in which the Landsat images were classified (10, 20, 40, 60 and 
80), the sizes of the window that were tested (5, 7, 9, 11 and 13) and ratio 
(ratio=TMpixel size/MERISpixel size). 
Two outputs are obtained; one of them is a matrix of proportions, “propor”; this matrix 
has the size of the MERIS image and it has as many bands as classes appear in the 
classified Landsat TM images. For instance, in a MERIS image with 422 rows and 82 
samples, and a classified Landsat image in 10 classes, the size will be 422 x 82 x 10. In 
each pixel the fractional percentage of each class in the correspondent MERIS pixel is 
stored. In the first pixel of the first band appears the fraction of class 1 in the first 
MERIS pixel. In the first pixel of second band, the fraction of class 2 in the first MERIS 
pixel appears and so forth. At the end five matrices of proportions are obtained for each 
Landsat TM date, since the Landsat TM image is classified in 10, 20, 40, 60 and 80 
classes (see fig.14). 
The other output is the maximum number of classes present in each window; each pixel 
of the window has the size of a MERIS pixel, because of that we call it a MERIS 
window. 
 
[propor,maxclasses] = Propor_maxclasses (XC,sw,ratio,I ) 

 
Equation 3: Expression of the function Propor_maxclass 
(Appendixes I, II, III: Propor_maxclasses and subfunctions). 
 
In a subsequent step this 3D matrix will be converted into a 2D matrix, being this matrix 
equivalent to the parameter “C” in equation 1. This is a matrix that contains the 
proportion of each class within a MERIS window.  
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Figure 14: Example of the function propor_maxclass. In this case it is supposed a 
landscape composed by 3 classes. 
 
Radiances MERIS (Si) 
 
The other known parameter in the equation 1, is the Radiances MERIS (Si). Pixel value 
is the name assigned to the value of each pixel in each MERIS channel. As it has been 
explained, the equation 1 is applied to all MERIS pixels in a window. Thus, we obtain 
as many pixel values as we have pixels in the window. For solving this equation, the 
radiances in the MERIS window are represented as a column vector with the values of 
the pixels in the MERIS window. 
The MERIS image is crossing by a sliding MERIS window, and each window is 
transformed to a column. 
 
 

                                                   

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

27
29
32
32
33
40
37
42
42

 

 Class 1 
 Class 2 
 Class 3 

42 42 37 
40 33 32 
32 29 27 

        MERIS image 

0.5 

0.3 

0.2 

 

Mixed pixel 

Matrix of proportions 

legend 



 35

 
The unknown parameter (L) 
  
The only term of the equation 1 that is unknown is L. L, the endmembers, are the new 
values of the classes in an image with 25 by 25 m as pixel size and 15 spectral bands. 
 
 
  Data fusion 
 
Once the terms are defined, the equation is solved. The process of image fusion is 
carried out by Zhukov_MMT, a function implemented in MATLAB ® (Appendix IV). 
The output of this function is finally the fused image. The main inputs of the fusion 
function are: the vector with sizes MERIS window (sw); the matrix maxclasses and 
proportions obtained previously; the vector with different number of classes (XC); the 
classified Landsat TM image (TM classified) and the method that is going to be used for 
obtaining the endmembers, the different methods are explained in the next section. 
 

5.1.2 Methods for unmixing 
 
To solve the equation system, two methods have been proposed. These methods search 
the best solution to solve the equation 3 in different ways. They could be subdivided in: 
 

- Classical methods: They try to minimize the error of the equation 1. 
- Current methods: They search the best solution, taking into account ill-posed 

problems of matrices. These methods are said to apply regularization. 
 

The results of equation 1 were restricted by a lower boundary and an upper boundary. 
Because we are interested that the rank of the values were 0 to Lsat. Table 12 shows the 
characteristics of these methods. 
In appendix VIII some mathematical useful concepts to understand this chapter are 
defined. 
 
 
Table 12: Methods for unmixing 
 

Method Meaning Characteristic 

Lsqlin 

Constrained linear least 
squares 

 To solve the least 
square problem: 

Min ( )2

2
**5.0 SLC −  

 From MATLAB toolbox 
optimization 

 Does not apply regularization 

NLCSmoothreg Non-linear constraint 
smooth regularization 

 From Michael Wendlandt 
 Applies regularization 

 
 
Some problems were found with the function NLCSmoothreg, but with the help of the 
author we have been able to apply it to solve our equations system. 
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The syntax of this function is as follows: 

 
Equation 4: Expression of NCLSmoothreg; MATLAB®´s application (Wendlandt, 
2005) 
 
The inputs of this function are: spectrum, in our case this input is the column vector 
where the values of radiances in each MERIS window are represented; kernel, is the 
matrix with the proportions of each class; the regularization parameter, lambda; the 
method of regularization, in our case Tikhonov; finally lb and ub meaning lower and 
upper boundary. The rest of the parameters are established by the author. The output gfit 
are the values of the endmembers.  
 
Michael Wendlandt in his manual used a function of the L-curve proposed by himself. 
However, using this function the shape of the curve was not similar to a “L”, thus it was 
decided to determine the regularization parameter λ with the application of the L-curve 
proposed by Per Christian Hansen in Regularization tools (Hansen, 2001). 
 
Another variable that has been included to test the best fused image is “aggregation”. 
Zhukov in one of his articles (Zhukov et al., 1997) once the Landsat image is classified 
suggests that the small classes of which the total area is less than 0.3 of the TM pixel 
area are combined with the spectrally closest cluster. This pre-processing has been taken 
into account in this research, and the fused images coming from classified Landsat TM 
with classes combined and coming from classified TM image without any post-
processing were compared. A threshold of 0.1 was considered. To do this, the 
application “aggregation_fraction” has been incorporated into a previous application 
where the matrix “C” was obtained. Doing the aggregation supposes that the vectors 
linearly dependents in that matrix will decrease consequently the conditional number 
will also decrease, reducing its ill-posed condition. The conditional number of matrix 
“C” will be computed to check if a method with regularization should be used. 
 
Therefore, the quality of the fused images will be checked to conclude on the optimal 
combination of these variables (combinations between methods with and without 
regularization, with and without aggregation and the parameters previously commented, 
number of classes and size of windows). Thus, we could give a conclusion about the 
optimum combination of these variables. The resulting studied cases are combinations 
of: 
 

gfit = NLCSmoothReg (spectrum, kernel ,lambda ,method ,guess ,tols ,tolg ,maxiter ,as ,lb ,ub) 



 37

 
 
Figure 15: Scheme of all tested combinations 
 

- Lsqlin with aggregation → No regularization and aggregation. 
- Lsqlin without aggregation → No regularization and no aggregation. 
- NCLSmoothreg with aggregation → Regularization and aggregation. 
- NCLSmoothreg without aggregation → Regularization and no aggregation 

 
The last step for getting the fused images once the equation is solved in the MERIS 
window is made with another application implemented in MATLAB® called 
Recomposed_fused_col. This function arranges the fused pixels that are going to be 
obtained when the equation 1 is applied in the MERIS window in each band. Finally, 
when the 15 layers are fused, they are stacked by means of an application made with 
DELPHI, Layerstack_stream.exe.  
 
Running the program of Zhukov needs a processing long time. For this reason, to 
choose the method to apply to all images and also to optimize the number of classes in 
the TM image and the window size to solve the unmixing was made using one TM 
image (28th March) and one MERIS image (18th February). With the decision made 
from these results, the rest of the images will be fused. 
 
 
What is Lsat? 
 
Lsat is the maximum value of radiance that a valid MERIS detector can reach for a 
given wavelength. A MERIS pixel may be affected by phenomena outside the range of 
useful measurements; for instance, sun light, cloud, bright land or snow/ice. When this 
has happened, the invalid value should be replaced by a good estimate (www2). 
Table 13 shows the values of Lsat per MERIS band; these values have been obtained 
from the handbook of MERIS in the web of ESA. Once these values were applied, the 
quality of some bands in the fused images turns out very poor. The reason is that the 
used values of Lsat correspond to a tuning of MERIS optimised for Ocean observation- 
MERIS´s primary mission. Claims from the land community that the InfraRed bands are 
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of great scientific interest for land targets lead the Science Advisory Group to change 
the MERIS settings significantly in order to accommodate for typical land targets 
without saturation. The actual values of the saturation radiance Lsat were derived from 
the measured calibration gains and the various parameters of the instrumental effects 
correction. These values appear in the third column of table 13. 
Although these values could solve the inaccuracy with these bands, the problem was 
detected once the results had been obtained; because of that the values of Lsat for ocean 
applications were used. Nevertheless, an improvement was tried. The program for doing 
the data fusion was modified, and the process of data fusion was repeated for the case 
that we considered providing the best results. The change in the program was to assign 
the highest value that the endmembers values can take to the maximum value per 
MERIS band instead of the values of Lsat found in the web of ESA. 
  
Table 13: Lsat values for ocean and land applications 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
     
 
 

Spectral  
band ID 

Lsat (ocean) 
(mW/m2/sr/nm)

Lsat (land) 
(mW/m2/sr/nm)

B1 251.5 615.865 
B2 268.3 689.226 
B3 260.8 752.982 
B4 240.1 695.869 
B5 232.7 606.407 
B6 214.2 532.228 
B7 240.3 445.125 
B8 199.2 450.968 
B9 39.0 410.083 
B10 383 563.201 
B11 377 576.742 
B12 30.0 236.120 
B13 186.3 231.032 
B14 26.0 369.742 
B15 124.4 352.986 
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Figure 16: Shematic overview of the process of data fusion 
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5.1.3 Quality of the fused images 
 
To validate the proposed method a quantitative analysis of the fused images was 
performed. Fused images should be as close as possible to reality and should simulate 
what would be observed by a sensor having the same features as MERIS but the highest 
spatial resolution (Wald, 2002). The increase in the use of different methods of data 
fusion in the last years has made that many remote sensing researchers worry about the 
quality of these fused images (Acerbi-Junior et al., 2005b; Beauchemin et al., ; Garguet-
Duport et al., 1996; Thomas and Wald, 2005). Many of them agree that to establish 
criteria to assess the quality of the fused images is not a simple task since the quality 
assessment relies on several factors; for instance the type of landscape and the 
resolution are decisive on the accuracy in the process of fusion (Thomas and Wald, 
2005). Some of the parameters proposed in the literature have been used to check the 
quality of our images. 
First of all, the resampling of the fused images down to the low resolution has been 
made, and the MERIS image was taken as reference. Any synthetic image once 
degraded to its original resolution, should be as identical as possible to the original 
image. 
Comparison of both images has been based on their spectral characteristic and was 
performed visually and quantitatively using statistical parameters and one quantitative 
index. 
The fused images were downscaled, using the mean, to the resolution of the MERIS 
images.  
In order to estimate the global spectral quality of the fused images we have used the 
ERGAS index. The ERGAS index is a relative dimensionless global error index of the 
fusion process. The error ERGAS exhibits a strong tendency to decrease as the quality 
increases. Thus, it is a good indicator of the quality and behaves correctly whatever the 
number of bands is because it uses for each band the RMSE relative to the mean of the 
band (Wald, 2002).  

 
The expression of this index is: 
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Equation 5: Formula of ERGAS index 
 
 

      ( )∑
=

−=
NP

k
iii kBkB

NP
BRMSE

1

2* )()(1)(  

 
Equation 6: Formula of RMSE 
 
Where: 
 
h, is the resolution of the TM images (h=25 m). 
l, is the resolution of MERIS images (l=300 m). 
N, is the number of spectral bands (Bi) involved in the fusion (N=15). 
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M, is the mean value of each spectral band of the MERIS image. 
RMSE, root mean square error. 
NP, is the number of pixels. 
B*, is the band of the downscaled fused image. 
 
To optimize the number of classes, the size of window and to decide which methods for 
solving the equation system provide the most accurate fused image, the ERGAS index 
was computed for all the obtained images. 
An optimum solution was not clearly found, thus we chose the combinations that had 
given the best three values of ERGAS, and the fusion for all the dates was made those 
combinations. 
 
Then, the mean, the standard deviation, the correlation coefficient and root mean square 
error (RMSE) were computed for the MERIS and the downscaled fused images. These 
parameters allow us to determine the difference in spectral information between each 
band of the fused image and the original image (González-Audícana et al., 2005). 
 

5.1.4 Classification 
 
Once we obtained the final fused image, the classification of them was performed by 
using maximum likelihood algorithm, as it is the most popular for classification of 
remote sensing imagery (Carvalho et al., 2004). This method is based on the assumption 
that the frequency distribution of the class membership can be approximated by the 
multivariate normal probability distribution. The probability P(x) that a pixel vector x of   
p elements is a member of class i is given by the multivariate normal density 
distribution (Mather, 2004): 
 

( )[ ]ySySxP i
p 15.05.0 `5.0exp2)( −−− −= π  

 
Where: 
 
P(x); likelihood of x belonging to class i 
.  denotes the determinant of the specified matrix 
Si is the sample variance-covariance matrix for the class i 

ixxy −=  

ix  is the multivariate mean of class I. 
 
Figure 17 shows the concept of the maximum likelihood method. 
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Figure 17: Maximum likelihood example 
 
To apply this algorithm it is necessary to have some training areas in the fused images, 
regions belonging to the different classes. This is data sampling. 
 
Data sampling 
 
Training data is required to classify the fused images. Taking as ground truth image the 
LGN5 aggregated to nine classes, some regions were marked of each class in the fused 
image. For that, LGN5 should contain the 9 classes in the selected studied area. 
However some classes appear in very low percentage, i.e. greenhouses and bare soil. 
The number of pixels that constitutes these training areas is shown in table 14. In table 
15 the percentages of each class in the studied area are listed. 
 
Table 14: Identified pixels per aggregated land use class constituting the training 
areas 
 
Land use Number of pixels 
Water 2415
Built up 270
Arable land 2027
Grassland 1076
Bare soil 467
Greenhouses 13
Natural vegetation 289
Deciduous forest 76
Coniferous forest 1316
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Table 15: Percentage of each class in the studied area for the process of data fusion 
 
Land use % 
Water 4.27 
Built up 14.47 
Arable land 22.69 
Grassland 35.42 
Bare soil 0.48 
Greenhouses 0.07 
Natural Vegetation 3.01 
Deciduous forest 6.43 
Coniferous forest 13.16 
 
(Table 11 and 15 show different perecentages since table 11 is refered to LGN4 and 
table15 to LGN5) 
 
Accuracy matrix 
 
Once the classification has been carried out we determined the degree of accuracy in the 
end product. The most commonly used method of representing the degree of accuracy 
of a classification is to build a k x k confusion matrix. The elements of the rows i of this 
matrix give the number of pixels which the operator has identified as being members of 
class i that have been allocated to class 1 to k by the classification procedure. Element i 
of row i (the ith diagonal element) contains the number of pixels identified by the 
operator as belonging to class i that have been correctly labeled by the classifier. The 
other elements of row i give the number and distribution of pixels that have been 
incorrectly labeled. The classification accuracy for class i is therefore the number of 
pixels in cell i divided by the total number of pixels identified by the operator from 
ground data as being class i pixels (Mather, 2004). Overall accuracy uses only the main 
diagonal elements of the matrix; it does not take into account the proportion agreement 
between data sets that is due to chance alone and because of this it tends to overestimate 
classification accuracy (Congalton and Mead, 1983). In order to compensate for this, the 
index Kappa or KHAT is used. 
This index ranges between 0 and 1 and expresses the proportionate reduction error 
achieved by a classifier as compared with the error of a completely random classifier 
(Lillesand and Keifer, 2000). The formula for computing the KHAT is: 
 
 

 
 
Equation 7: Formula for computing Kappa (Verbyla, 1995) 
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5.2. Results 
 

5.2.1 Conditional Number 
 
First of all, the conditional number of the matrices “C” was checked to observe if it 
would be advisable to apply regularization to solve the equations system. 
 
Two histograms showing the distribution of the conditional number in the classified 
Landsat TM image from 10th July 2003 for both cases, with and without aggregation, 
are presented in the figures 18 and 19. These values correspond to the conditional 
numbers of a matrix “C” obtained from a classified TM image in 20 classes and use of a 
sliding window of 7 by 7 pixels. 
Since we are working with a sliding window, as many matrices “C” as number of pixels 
in the MERIS images are created. . The original size of the MERIS image is 422 rows 
by 82 samples. When columns and rows affected by effect of the frame of zeros are 
removed, MERIS image is 416 rows by 76 columns. Thus, 31616 matrices are obtained.   
 
 
 

 
 
 Figure 18: Conditional number with aggregation (tm5_10072003) 
                    (axis X: Conditional Number; axis Y: Probability density) 
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 Figure 19: Conditional number without aggregation (tm5_10072003) 
                    (axis X: Conditional Number; axis Y: probability density) 
  
The histograms only represent conditional number in a rank from 0 till 250. The highest 
value was infinite and once the infinite was removed, the values continue being very 
high (table 16).  
 
 
Table 16: Data of Conditional numbers 
 
 Fractions_agg Fractions_noagg
Max Inf Inf  
Num.Elem whose CN<Inf 31353 31605 
Max (once removed Inf) 6,2013e+046 3,1977e+140 
Mean(once removed Inf) 1,9779e+042 1,0118e+136 
 
 
As it is indicated in table 16, the maximum conditional number is infinite. It can be 
observed that there are more infinites in aggregated matrices than in non aggregated. 
When the infinite values are eliminated, the number of fractions non aggregated whose 
conditional number is lower than infinite is higher than in the case of the fractions 
aggregated. This fact can happen when there are areas composed in majority by the 
same class. If the classes that appear in smaller proportion are combined, all the 
neighbors’ pixels in that area will present the same vector of proportions. Then the 
matrix will be ill-posed and will increase the conditional number.  
However, when the infinite values are removed, the maximum conditional number is 
smaller in aggregated matrices than in non aggregated. Also in the histograms, which 
show the lowest values of the conditional number, it can be seen how they are smaller 
once the matrices have been aggregated. The peak represents the conditional number 
that appears more frequently; in aggregated matrices is 18.1 and in the case of non-
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aggregated matrices is 58.24. The values of the conditional number in non aggregated 
matrices seem to be distributed along all the values; they do not appear with high 
frequency around one value. 
It can be concluded that the aggregation will improve the ill-posed condition of the 
matrices, and a better solution should be obtained. However, the conditional numbers 
continue being very high, consequently a method applying regularization should be 
used. Nevertheless both methods, with and without regularization, and also, with and 
without aggregation of the matrices, were tried for the Landsat TM image from 28th 
March and the MERIS image from 18th February 2003. This was done only for those 
dates, because to run the program to fuse the images takes a long time. 

5.2.2 Quality of the fused images using upper boundary Lsat 
Ocean 

 
Once all combinations were computed to fuse the Landsat TM from 28th March and 
MERIS from 18th February, the ERGAS index was computed as first approximation to 
decide the best way to fuse the images (table 18 and 19). The shadow cells are the cases 
in which there are a larger number of classes in the window than equations. Table 17 
shows the number of classes per window for the cases in which it is not possible to 
obtain a solution. 
 
Table 17: Cases with no solution 
 
 Number of classes 

Window 
size 

Number of 
equations 40 60 80 

5 25 40 60 79 
7 49 40 (possible) 60 79 

  
 
Table 18: ERGAS without applying regularization (Lsqlin) 
 
 Number of classes in Landsat TM image 
Window size 10 20 40 60 80 

3.247 2.970 5 3.458 3.530 
   

3.242 2.963 3.105 7 3.452 3.525 3.953 
  

3.238 3.571 3.380 3.214 3.089 9 3.447 3.524 3.952 4.701 Error** 
3.237 3.570 3.395 3.432 3.319 11 3.446 3.902 4 4.503 5.945 
3.234 3.834 3.699 3.581 3.482 13 3.445 3.901 4.002 4.507 5.964 
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Table 19: ERGAS applying regularization (NCLSmoothreg) 
 
 Number of classes in Landsat TM image 
Window size 10 20 40 60 80 

3.48 3.259 5 
3.846 Error** 

   

3.471 3.243 3.053 7 
3.835 3.902 4.076 

  

** 3.234 3.048 ** ** 9 3.829 3.893 4.070 6.071 10.014 
3.973 3.229 3.719 ** ** 11 3.823 4.027 4.068 4.523 5.884 
3.975 3.224 3.718 ** ** 13 3.821 4.025 4.102 4.528 5.901 

 
 
No aggregation The matrix fraction in not aggregated 
Aggregation The matrix fraction is aggregated 
 
**The incomplete data have mistakes while the program was running in the case of the 
errors or problem in the time for computing a band. It was decided not to continue with 
the fusion, because this was requiring almost eight hours per fused band.  
 
An ERGAS greater than 3 corresponds to fused products of low quality, while an 
ERGAS lower than three denotes a product of satisfactory quality or better (Aiazzi et 
al., 2004). 
As we can see, the values obtained do not follow a pattern; it is difficult to conclude 
which is the optimum number of classes and the window size to obtain the fused image. 
Even it is difficult to decide the method, since it has turned out that “lsqlin” provides the 
best results, which is the method that does not apply regularization. This fact was 
unexpected; a method applying regularization should give better results than the other 
since, like it was explained before, the purpose of regularization is to stabilize the ill-
posed problem and to single out a stable solution. Neither the aggregation has improved 
the results.  
In the case of the aggregation, the problem could be the threshold. We have checked a 
threshold of 0.1, when the proportion of a class in a MERIS pixel is lower than the 
threshold, a combination of this class with the rest of the class in the pixels was done. 
This threshold should depend on the number of classes in which the Landsat TM image 
is classified. For instance, the same threshold for a classified image in 10 classes will be 
lower than a classified image in 80 classes, since with the same constraint many classes 
can be lost in this second image. 
 
Since a clear conclusion could not be obtained, each data set of images was fused with 
the method, window size and number of classes that had given the smallest values of 
ERGAS. The best combinations were: 
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Method Number of classes Size of window 
20 7 No regularization,  

noaggregation → lsqlin_noagg 80 9 
Regularization, no aggregation→ 
NLCSmoothreg_noagg 40 9 

 
 
Once the fusion was made, the ERGAS index was computed and it showed values 
higher than 3 for the rest of the data set of images. Table 20 presents these results.  
 
Table 20: ERGAS for every date set of images  
 
 Lsqlin_noagg NLCSmooth_noagg 
TM dates MERIS dates class20 ws7 class80 ws9 class40 ws9 

18.02.03 3.092 2.860 3.306 28.03.03 
16.04.03 7.583 7.451 7.696 
06.06.03 9.395 9.333 9.458 10.07.03 
14.07.03 8.892 8.712 8.964 
06.08.03 8.193 8.113 8.229 11.08.03 
09.08.03 8.217 8.103 8.260 

 
The values for the MERIS image from 18th February are a bit different to tables 18 and 19 
because a mistake was detected after the fusion of all images. The values of the MERIS 
image had lost the decimals to be multiplied by the gains to transform the values in 
radiance. This error was corrected, and the final images have not this failure. 
 
This index fails in measuring the spectral distortion, and it does not consider the 
correlation coefficient (Aiazzi et al., 2004), thus some statistical parameters were 
computed, in order to check if the ERGAS values were being distorted. 
 
Figure 20 shows these parameters: 
 
*Graph 20.a. Bias. The bias is computed like the difference between the mean of fused 
image resampled to MERIS resolution and the mean of the original MERIS images. The 
ideal is bias 0. 
 
*Graph 20.b. Correlation coefficient. This measure indicates how well trends in the 
values from fused image resampled follow the trends of the real values form MERIS 
image. It is number between 0 and 1. A perfect fit gives a coefficient of 1. 
 
*Graph 20.c. Standard deviation. The deviation with regard to the mean is measured. In 
this graph the values from MERIS image are represented with (*) and the values from 
fused image resampled with (·), each color corresponds to a date. Thus there are two 
graphs of the same color for each date. The quality is better when both graphs are 
similar. 
 
 
 



 49

 
*Graph 20.d and e. RMSE absolute and normalized 
 

meanMERIS
RMSEizedRMSEnormal =

               
Equation 8: RMSE normalized 

 
Figure 20: a) Bias; b) Correlation coefficient; c) Standard deviation; 
d)RMSEabsolute; e)RMSEnormalized. Images from Lsqlin_noaggClass20ws7 

A

B 

C 

D 

E 
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The five statistical parameters indicate a poor quality in the bands 9, 12 and 14. The 
best values in these bands correspond to the fused image from 18th February (MERIS) 
and 28th March (TM), for this reason the ERGAS values were better. The values of 
ERGAS without taking into account these bands were computed and they improved 
remarkably. 
 
 
Table 21: ERGAS for 15 and 12 bands 
 
 
 Lsqlin_noagg NLCSmooth_noagg 

class20 ws7 class80 ws9 class40 ws9 TM 
dates 

MERIS 
dates ERGAS 

15bands 
ERGAS 
12bands 

ERGAS 
15bands 

ERGAS 
12bands 

ERGAS 
15bands 

ERGAS 
12bands 

18.02.03 3.092   2.403 2.860    2.042 3.306    2.678 28.03.03 
16.04.03 7.583   2.824 7.451     2.464 7.696 3.105 
06.06.03 9.395   1.935  9.333       1.593 9.459    2.209 10.07.03 
14.07.03 8.892  2.881 8.712     2.280 8.964 3.094 
06.08.03 8.193  1.904 8.113     1.543 8.229        2.058 11.08.03 
09.08.03 8.217     2.282 8.103     1.847 8.260      2.439 

 
 
Table 21 shows values quite similar between the different methods. To decide finally 
the best fused images, visual interpretation and comparisons between the spectral 
profiles of the classes was made in the different images. A method without 
regularization was decided to provide better results.  
 
Figure 21 shows the results for fused images from MERIS image 14 July 2003 and 
Landsat TM image 10 July 2003 and from MERIS image 28 March 2003 and Landsat 
TM image 16 April 2003. To the left of the array appear the original MERIS (first) and 
Landsat TM (second) images and to the right the three fused images obtained by the 
three chosen combinations. 
We can see how the images “3” present a dark frame corresponding to the padding 
made for being able to compute the equations of unmixing also in the pixels in the 
border. Also these dark pixels appear in some places in the images, they are indicated 
with a red ellipse and it is clearer in the figure 22. This last fact made us to decide for 
the method without regularization. 
Between the other images there are no considerable differences. The spectral profiles of 
some classes were compared (figure 23), but they were not decisive about the best 
classification and window size. 
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Figure 21: Fused image from (a) MERIS14july+TM10july (b) MERIS 16April+TM 
28March→Fused images (1) lsqlin_noagg_20_7 (2) lsqlin_noagg_80_9 (3) 
NLCSmoothreg_40_9  

a 

b
a

1
a

2
a

3
a

+ 
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      Figure 22: Zoom of dark pixels 
                                        
 
 
 
 
  
 
 
 
 
  
                            
                                                                           
 
 
 
 
 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
Figure 23: Spectral profiles of class arable land (1) Upper left; fused image class20 (2) 
Upper right; fused image class 80 (3) Middle; Original MERIS          
 (X: Bands; Y: Radiance(mW/m2 sr nm))  
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In figure 23, if band per band is checked, we can see the resemblance between the 
spectral profiles from fused images and from original MERIS image. All the bands 
show the same spectral signature as the original; only difference is found in the defaulty 
bands 12 and 14 (red circle). The rest of the classes present the same conclusions, but 
less for the land cover water, where the spectral profile of fused images as original 
MERIS image is very similar for all bands. 
 
Finally, the fused image obtained with a method not applying regularization, the 
Landsat TM image classified in 20 classes and a window size of 7 by 7, was chosen for 
making the supervised classification and later to obtain a map of land cover for The 
Netherlands. 
 
 Classification 
 
Maximum likelihood was the algorithm used to perform the classification of the image. 
First, training areas distributed over the 9 classes were selected based on the LGN5, 
constituting the regions of interest. The corresponding number of 25 by 25 m pixels 
constituting these areas and subsequently to derive the spectral signatures of the 
different endmembers is listed in table 14. 
 
The spectral signature of the endmembers for each of the nine classes was derived and 
later compared with the spectral signature obtained in a research carried out by Zurita 
Milla et al. (2005). In this research the spectral signatures of the nine classes were made 
from the image of 14th July, using locations identified in the LGN4, the spectral 
signatures from this study are belonging to the image of 14th July also (figure 24). 
In the plot obtained from the classified fused image, it can be observed how the spectral 
signature of the greenhouses appears quite mixed with the rest of the classes making 
this class with difficulty recognizable. Other difference between these two plots is found 
in the problematic mentioned bands. They present low values of radiance, like the 
absorbance peaks. These bands seem to be quite important to distinguish between land 
uses, like arable land, grassland and deciduous forest whose spectral signature in the 
visible part of the spectrum presents strong resemblance and they are better 
distinguished in that part of the Near Infrared.  
The classification results obtained are summarized in table 22. 
 
Table 22: Overall accuracy and kappa coefficient  
 
 Overall accuracy Kappa 
18 February 40.82% 0,3077 
16 April 41.23% 0,3355 
06 June 40.73% 0,2850 
14 July 42.36% 0,3005 
06 August 38,25% 0,1706 
09 August 36,13% 0,1008 
 
 
These percentages have been estimated without considering the land cover greenhouses. 
Greenhouses appear in quite a low percentage in this area of The Netherlands, only 
0.071 % (table15) and also quite distributed in the scene. It is possible that this 
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percentage was not enough to estimate the spectral signature of this land cover, and the 
spectral signature that we are obtaining does not belong to the pure endmember 
greenhouse, thus a bad classification of this land cover is obtained and because of that it 
is confused with the rest of the classes. If greenhouses were taken into account in the 
classification, many pixels were associated to this class. For this reason it was decided 
not to include them in the classification. The classification process depends on the 
spectral information and any error in the synthesis of the spectral content of the fused 
image will result in classification errors (Acerbi-Junior et al., 2005a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24: Endmember for the 14th July 2003. Up; derived from this study. Down; 
(Zurita Milla et al., 2005) 
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Once that the data were studied, it was concluded that the problem was the values of 
Lsat obtained in ESA web (table 13, Lsat ocean).  
The Lsat for these problematic bands is: 
 
Bands Lsat (mW/m2/sr/nm) 

9 39.0 
12 30.0 
14 26.0 

 
And the histogram obtained with the radiance values for bands 9 and 12 are: 
 

 
 
Figure 25: Histogram of the faulty bands 
 
We see that the value of Lsat is exceeded greatly in case of band 12, and in case of band 
9, most of the values are around Lsat. As it was explained in the previous chapter 
(sec.5.1.2), these values correspond to the Lsat required for ocean applications. To 
correct this problem a modification was made to the process of data fusion, and not the 
upper boundary of Lsat was used. The results obtained with this change are shown in 
the next section. 
 
 

5.2.3 Quality of the fused images with new upper boundary 
 
It was tried to optimize the classification by changing the upper boundary to the highest 
value of radiance per MERIS band. Unfortunately, we did not dispose enough time to 
repeat the process of fusion for all the possible combinations. As a consequence, the 
process was repeated only for the combination previously selected: No regularization, 
no aggregation, 20 classes and window size 7 by 7 pixels. Thus, the new fused images 
were obtained and the same analysis made for the previous data was followed. 
 
Now the ERGAS index, considering the 15 bands, has been improved, and also the 
statistic parameters, Bias, Correlation Coefficient, Standard Deviation and RMSE show 
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results very close to the ideal values that these parameters should have. Table 23 and 
figure 26 show these results. 
 
 Table 23: New values for ERGAS (Lsqlin_noagg,Class20,ws7) 
 
Fused images no Lsat ERGAS 
18 February 2,953 
16 April 3,366 
6 June 2,190 
14 July 3,263 
6 August 2,236 
9 August 2,647 
 
 
*Graph 26.a Bias. 
  
*Graph 26.b Correlation coefficient. 
 
*Graph 26.c Standard Deviation. As previously, each color is representing a date, the 
original MERIS is marked with (*) and the fused image resampled to the MERIS pixel 
size with (.). 
 
*Graph 26.d and e. RMSE absolute and normalized. 
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Figure 26: New values for a) Bias; b) Correlation coefficient; c) Standard deviation;  
d) RMSEabsolute; e) RMSEnormalized.  
 
 
Subsequently, the classification of the fused images was made. The spectral signatures 
have been again obtained (figure 27). In this case bands 1, 2, 11 and 15 have been 
omitted, since for these bands all classes are affected by external effects. Bands 1 (412 
nm) and 2 (442 nm) are affected by the atmosphere, band 11 (760 nm) by oxygen 
absorption and band 15 (900 nm) is influenced by water vapor absorption. Nevertheless, 
the overall accuracy of the new classified images has improved little with regard to the 
previous one. Neither the greenhouses have been included in this result, since when we 
have tried to classify them; the rest of the classes were confused with them. 
 
Table 24: Overall accuracy and Kappa coefficients 
 
Fused Overall accuracy Kappa Landsat Overall accuracy Kappa 
18 February 46.37% 0,3338 
16 April 47.96% 0,3538 28 March 60.69% 0,5136 

06 June 45.83% 0,3608 
14 July 48.33% 0,3257 10 July 61.76% 0,5208 

06 August 41.25% 0,2187 
09 August 38.01% 0,1995 11 August 55.44% 0,4470 

 
 
 
 

E

D 
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Figure 27: Spectral signature for the different dates. 
 
We can check how the spectral signature for the greenhouses is quite mixed with the 
rest of the classes, being in truth a class with a spectral answer completely different to 
the rest of the class. 
The first spectral profile, from 18th February, in this season of the year, the vegetation is 
not very vigorous, so it is normal that the spectral profile of many vegetation classes 
was quite similar to bare soil. In the case of images from 16th April and 14th July, the 
spectral profiles are more clear, classes as grassland, arable land or deciduous forest can 
be better distinguished. For this reason, the overall accuracy increases for these dates.  
The poorest classification is coming from 6th June, 6th and 9th August. In the case, of the 
image from June, it has some clouds in the image coming from MERIS, and in the other 
two cases it is the Landsat image which presents some clouds from planes.       
 

5.3 Conclusions and recommendations 
 
The main purpose of this study was to check if there are advantages with regard to use a 
fused Landsat-TM and MERIS image over Landsat-TM image when mapping and 
monitoring land cover in The Netherlands. Nowadays, the LGN is based on Landsat TM 
images and a high amount of auxiliary data, which is an expensive task. If an accurate 
classification could be obtained with less extra-information, the process of land cover 
mapping would be easier and cheaper. 
By checking the table 24, it is obvious that the best classification is given by Landsat 
TM images. However, some mistakes have been made during the research, and the 
initial parameters that were going to be optimized, have been chosen without the 
support of a solid criterion. How the data has been obtained and possible improvements 
will be commented next.  
 
The first checking has been to observe how the conditional number of matrix “C” was 
affected when the application for the aggregation was included in the pre-processing to 
obtain the classified Landsat images for the fusion. Although it was supposed that the 
application would improve the quality of the fused image, it has not resulted in this way.     
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This fact can be explained, because the threshold has not been established under any 
criterion, and some points should have been taken into account. This threshold should 
depend on: 
 
The number of classes in the classified image. 
The maximum number of classes in a MERIS pixel. 
 
A 10% of the MERIS pixel area is equivalent to 14.4 TM pixels (1 MERISpixel=144 
TM pixels). When the TM image is classified in 80 classes, the maximum number of 
classes in a MERIS pixel is 57 for the Landsat image of 10th July (table 25). This 
means that there are around 3 pixels per class (144/57=2.53); thus with a threshold of 10 
% many classes are being lost. 
 
Table 25: Maximum number of classes per MERIS pixel 

 
 
Therefore the threshold should be lower. 
 
The ERGAS values showed also, that a method without regularization gives better 
results than one applying regularization. A reason that could explain it is that the 
application “lsqlin” is a function that belongs to the “Optimization toolbox” of 
MATLAB®. This fact ensures us, that we are obtaining the best mathematical solution. 
However “NLCSmoothreg”, the application proposed by Michael Wendlandt, maybe 
not a general application for all cases of ill-posed problems. Some reasons, why it could 
be failing, are: 
 

- The input “guess”: this parameter gives a first estimation for the values that the 
endmembers should have. A rough guess of the solution is being given with this 
parameter; however we do not know the solutions that can be obtained. 

- It is not sure that the retrieval of parameter lambda was suitable. 
 
Subsequently, to optimize the parameters in the method, the number of classes in the 
high spatial resolution image and the size of the window where the algorithm is applied 
was chosen by checking all the combinations with a MERIS and Landsat image. The 
chosen images were from 18th February (MERIS) and 28th March (Landsat TM). In this 
season of the year, classes like arable land, deciduous forest or grassland do not show a 
representative spectral profile of the vegetation, since they are mainly bare soil. It would 
have been more appropriate, to optimize these parameters with dates where the classes 
were better defined. 
 

Tm7_280303 Tm5_100703 Tm5_110803 
Number class. 
in the image 

Max class.  
in the pixel 

Number class. 
in the image 

Max class.  
in the pixel 

Number class. 
in the image 

Max class. 
 in the pixel 

10 10 10 10 10 10 
20 19 20 20 20 20 
30 28 30 28 30 28 
40 32 40 35 40 33 
60 41 60 48 60 48 
80 49 80 57 80 52 
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Also the problem with the values of Lsat has brought about that these parameters had 
not been optimized correctly. Only one combination was tested with a correct upper 
boundary, but it was not clear that it was the best combination to get the fused images. 
 
Therefore it can not be stated that a fused image is not useful to map land cover since 
those variables were not correctly optimized. If the previous comments are taken into 
account for next researches, it could be possible to improve the obtained classifications.  
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6. Overall conclusions 
 
 This chapter summarizes the main conclusions of the two previous ones i.e. the 
justification of studying subpixel level and the process of data fusion. 
  
 Two methods have been tested to search the scale that gives the best 
visualization of the study area. To give a specific answer for this question is difficult 
since not all land covers present the same features and to find a appropriate common 
scale for all classes is not possible. But, the clear conclusion obtained is that the MERIS 
information has to be downscaled. An area of 300 by 300 m2 is made up of many 
classes. The more restrictive scale was given by the class built up. Finally it was 
decided to downscale the MERIS information to the scale of Landsat TM, 25 m. 
The indices CA, PLAND, NP and LSI have been used as indicative of the features of 
the landscape. CA and PLAND give information of abundance of each class in a 
specific landscape. The number of patches (NP) with regard to these indices and LSI 
show the distribution of each class, whether the class appears to be spread over the 
landscape or grouped in big patches. 
 
 Subsequently, a data fusion technique was applied between Landsat TM and 
MERIS image and some indices were computed to check the quality of these images. 
The main goal of this research was to check the accuracy that a classified fused image 
presents with regard to the classified image from a Landsat TM. The fused image has 
the spatial information of Landsat (25 m) and spectral information of MERIS (15 
bands), so the fused image should contribute to improve the information that each 
individual image gives. However, the final results do not support this hypothesis. But, 
as it has been explained in the previous chapter, some problems were had during the 
analysis and the fused image has not been obtained with all the parameters correctly 
optimized. 
One of the mistakes was the values of Lsat. When this values were changed the results 
obtained with regard to the previous one improved. The overall accuracy of the new 
classified images increases a 6 %. Therefore it is probably to get better fused images if 
the parameters are successfully optimized. 
The quality of the fused images was checked with ERGAS and statistical parameters 
(i.e. correlation coefficient, standard deviation, bias). ERGAS is a good index, since it 
takes into account many measurements and presents good features that a quality index 
should have. However, it fails in measuring spectral distortion; for that reason the other 
statistical parameters were also computed. Visual analysis, although it can be 
subjective, is also useful in the quality assessment. When the fused images were 
visualized, dark pixels in one of the images made us to decide to choose a method 
without regularization. 
To complement this research, some studys could be made in this area. For instance, 
studying multitemporal classification. Also to check if adding the middle infrared band 
(MIB) from Landsat to the fused image could improve the classification. Because, 
MERIS although has high spectral resolution, their bands are highly correlated. 
 
After this discussion, we find that it is worthy to investigate the improvements that have 
been commented. If an accurate optimization is achieved, then the fused image can be a 
promising alternative for land cover mapping.         
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APPENDIX I: PROPOR_MAXCLASSES 
 
function [propor,maxclasses]=Propor_maxclasses(XC,sw,ratio,I) 
 
% The output of this function are propor and maxclasses. 
% propor is a 3rD matrix of size MERIS image and such bands as number 
% of classes 
% maxclasses is a matrix of two columns where it is represented in the 
% first column the different size of window (MERIS pixel) and in the   
  second column the max number of classes in that window size. 
% XC is number of classes 
% sw is a vector with the different window sizes  
% ratio is pixelSizeMERIS/pixelSizeLandsat_TM 
% I is the classified Landsat image 
 
 
% classes per pixel and proportions 
[CL_pixel, propor,max_class_in_one_pixel]=ClassProportion(I,ratio,XC); 
 
propor=single(propor); 
 
clear I CL_pixel max_class_in_one_pixel 
 
for ii=1:length(sw) 
    % For processing with a sliding window of size sw*sw 
     
ws=(sw(ii)); 
     
% computing the cond number, number of classes in a sw*sw MERIS window 

      
[cond_number_matrix,number_classes_matrix]=Cond_numberclasses_nofractions(propor,ws); 

 
% compute max number of classes in a sw*sw MERIS window 
    maxclass=max(number_classes_matrix(:)); 
    maxclasses(ii,:)=[ws maxclass]; 
 
    clear number_classes_matrix cond_number_matrix 
end 
 
maxclasses 
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APPENDIX II: ClassProportion 
 

Function 
[CL_PIXEL,PROPORTIONS,MAXNUMCLASSES]=ClassProportion(I,WS,NumClasses) 

 
% This function has been created to get the proportion of the 
different 
% classes that there is when a MERIS pixel is overlaped on TM pixel 
% 
[CL_PIXEL,PROPORTIONS,MAXNUMCLASSES]=ClassProportion(I,WS,NumClasses) 
% 
% I is a classified TM image 
% WS is the window size (12*12)MERIS=300m ; TM=25m 
% WS is the sqrt of the number of TM pixels in a MERIS pixel 
% NumClasses is the number of classes in which TM has been classified 
% CL_PIXEL is a matrix where it is represented the amount of classes   
% into each MERIS pixel 
% PROPORTIONS is a multiband matrix where it is represented the  
% proportions of each class in each pixel. A band per class 
% MAXNUMCLASSES is the max number of classes there exist in a MERIS 
pixel 
 
 
% Size of TM image 
sizeI=size(I); 
 
% Size of the window 
n=WS; 
 
% Size of MERIS'image 
sizeML=[sizeI(1)/n sizeI(2)/n]; 
 
%number of classes 
c=NumClasses; 
 
% blok processing 
CL_PIXEL= blkproc(I,[n n],@histc_ml,n,c,sizeML); 
 
disp('loading the propotion file') 
 
load ML2file; 
PROPORTIONS=ML2; 
 
delete ('ML2file.mat') 
 
MAXNUMCLASSES=max(CL_PIXEL(:)); 
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APPENDIX III: Cond_number_nofractions 
 
function  
[cond_number_matrix,number_classes_matrix]=Cond_numberclasses_nofracti
ons(A,windowsize) 
 
 
% A is the matrix where each class fractions is stored in a band 
% The output will be FRACTIONS, matrices with pixels in lines and  
% proportions in columns, the condition number of these matrices and 
the % number of classes in each matrix. 
% windowsize: sliding window 
% nc is the number of classes of the classified image 
% Conditional number similar to 1 means that the matrix is singular, 
it % has linearly independent vector. 
% number_classes in the pixels of the window 
 
 
A; 
sw=windowsize; 
nc=size(A,3); % A is coming from ClassProportion.m and the number of 
bands is the number of classes 
a=(sw-1)/2; 
AA=zeros((size(A,1)+(2*a)),(size(A,2)+(2*a)),nc); 
AA((1+a):(size(AA,1)-a),(1+a):(size(AA,2)-a),:)=A; 
B=zeros(sw,sw,nc); %initialising output1 (it is the cube that will be 
transformed in a matrix) 
contar=0; % init the counter 
 
for i=1+a:size(AA,1)-a 
    for j=1+a:size(AA,2)-a 
        contar=contar+1; 
        B=AA(i-a:1:i+a,j-a:1:j+a,:); 
         
 % calling the function extract3rdD 
        C=extract3rdD(B); % C has (sw*sw) rows and (nc) cols 
         
        % To know the columns that are non-zero 
        C=C(:,any(C)); 
 % To compute conditional number 
        cond_number(contar)=cond(C); 
        number_classes(contar)=size(C,2); 
 
        % keep the C matrix (OUT OF MEMORY, because of that was 
decided      % to remove it) 
        % FRACTIONS=C; 
    end 
end 
 
% changing to a matrix format 
cond_number_matrix=reshape(cond_number,size(A,2),size(A,1))'; 
number_classes_matrix=reshape(number_classes,size(A,2),size(A,1))'; 
 
pack 
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APPENDIX IV: ZHUKOV_MMT 
 
function 
fused_image=Zhukov_MMT(sw,maxclasses,XC,propor,nbandMERIS,rootTM,rootM
ERIS,TM_classified,ratio,method) 
 
%fused_image=Zhukov_MMT(sw,maxclasses,XC,propor,nbandMERIS,rootTM,root
ME% RIS,TM_classified,ratio,method) 
 
% This function obtains a fused image aplying the methodology proposed  
% by Zhukov et al. 1999 
% 
% The algoritm is executed in each pixel of the MERIS image by sliding 
% window. 
% sw is a vector with different window sizes. 
% maxclasses is the maximum number of classes existing in the MERIS  
% window 
% XC is the number of classes in which the TM image has been 
classified 
% propor is a matrix coming of ClassProportion 
% ratio=pixelsizeTM/pixelsizeMERIS 
% method, four methods are proposed for solving the equation.Two of 
them % apply regularization. 
% 
% Mariluz Guillén Climent 
% 12-jul-2005 
% V.01 
 
% loop for each window size 
 
for ii=1:length(sw) 
     
% PS(possible solutios) is a matrix where is indicated the minimum 
size % window that can solved a number of classes 
   
  maxclass=maxclasses(ii,2); 
    PS=possible_solutions(maxclass,sw(ii)); 
    if PS==1 
        % padding of the proportions 
        nc=size(propor,3); % the number of bands is the number of 
classes 
        a=(sw-1)/2; % frame that is going to be pad 
    
% Cube of zeros   
propor_pad=zeros((size(propor,1)+(2*a)),(size(propor,2)+(2*a)),nc); 
% Matrix propr inside of the cube 
propor_pad((1+a):(size(propor_pad,1)-a),(1+a):(size(propor_pad,2)-
a),:)=propor; 
 
        % loop for each band of MERIS 
        for bb=1:nbandMERIS 
            %load the bb band of the MERIS image 
            subsetband={'band',bb}; 
            %for each cut MERIS image 
            dirMERIS=''; 
 
            [M]=multibandreadenvi2(fileMERIS,(subsetband)); 
            % getting the size of MERIS 
            [nfilM ncolM]=size(M); 
 
            % padding with NaN 
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            a=(sw-1)/2; % frame that is going to be pad 
            Mpadded=zeros((nfilM+2*a),(ncolM+2*a)); % padding with 
zeros 
            Mpadded=Mpadded./Mpadded; % changing zeros to NaN 
            warning off 
             
     % putting the band inside the NaN matrix 
            Mpadded((1+a):size(Mpadded,1)-a,(1+a):size(Mpadded,2)-
a)=M; 
             
     % finding the MERIS elements 
            mask=isfinite(Mpadded); %Real number is 1, NaN is 0. 
            indicesmeris=find(mask==1); 
            [filameris colmeris]=find(mask==1); 
 
            % checking that the mask is correct 
            if length(indicesmeris)== nfilM*ncolM %numel(M(:,:,bb)) 
 
                % init the output 
                fused_window=zeros(ratio,ratio,nfilM*ncolM); 
 
                % loop for all meris pixels 
 
                for iii=1:length(indicesmeris) 
                    clear endmembers indicesofclass 
% Pixel Value                    
PV=pixvalue(Mpadded,sw,colmeris(iii),filameris(iii));  
 %Files and columns are changed because the image has been                     
  transposed 
% Fractions                 
[F,nameclasses]=fractions_pad(propor_pad,sw,filameris(iii),colmeris(iii))
; 
                     
        if method==1;% no regularization no upper-lower boundaries 
                        endmembers=lsqnonneg(F,PV); 
        elseif method==2;% no regularization yes upper-lower 
boundaries 
                        indicesPV=find(isnan(PV)); 
                        PV(indicesPV)=0; 
                        lsat=max(max(M(:,:,bb); 
                        lb=zeros(length(PV),1); 
                        ub=ones(length(PV),1).*lsat; 
                        endmembers=lsqlin(F,PV,[],[],[],[],lb,ub); 
 
        elseif method==3;% yes regularization no upper-lower 
boundaries 
                        % regularisation Tikhonov 
                        [U,s] = csvd(F); 
                        reg_corner = l_curve(U,s,PV,'Tikh'); 
                        endmembers=maxent(F,PV,reg_corner); 
        elseif method==4;% yes regularization yes upper-lower 
boundaries 
                        [U,s] = csvd(F); 
                        reg_corner = l_curve(U,s,PV,'Tikh'); 
                        lb=zeros(size(F,2),1); 
                        ub=ones(size(F,2),1)*lsat(bb); 
                        guess=ones(size(F,2),1); 
                        tols=1e-7; 
                        tolg=1e-5; 
                        maxiter=100; 
                        indicesPV=find(isnan(PV)); 
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                        PV(indicesPV)=0; 
                       
[endmembers,rho,eta]=NLCSmoothReg(PV,F,reg_corner,'TIK',guess,1e-7,1e-
5,100,'off',lb,ub); 
                    end 
 
                   % Getting the TM pixels belonging to the central 
         % MERIS pixel 
  TM_window=window_blk_col(TM_classified, ratio, iii); 
                    % convert to double 
                    TM_window=double(TM_window); 
 
                    % putting each endmember in its place  
                    % number of classes MERIS for the central pixel of  
       % the kernel sw*sw 
                    
nameclasses_centralpixel=nameclasses(nameclasses>0); 
 
                    for jj=1:length(nameclasses_centralpixel) 
                        
indicesofclass=find(TM_window==nameclasses_centralpixel(jj)); 
                        TM_window(indicesofclass)=endmembers(jj); 
                    end 
 

                     
                    % storing all the fused windows of 12 by 12 by all 
                    % meris pixels 
                    % fused_window(:,:,iii)=TM_window_endmembers; 
 
                    fused_window(:,:,iii)=TM_window; 
 
                end 
        
         % recompose the fused image 
       fused_image(:,:)=recompose_fused_col(fused_window,[nfilM 
ncolM]); 
            else 
                disp('bad programmer!') 
            end % closing the if 
             
     workdir=pwd; 
            % directory where the results are going to be stored 
            newdir=''; 
            cd (newdir) 
            
eval(['writeenvi(fused_image,''fused_',num2str(bb),'_',rootTM,'',num2s
tr(XC),'_',num2str(sw(ii)),'_',rootMERIS,'.bsq'')']) 
             
      cd (workdir) 
    % free some memory 
             pack 
 
        end % clossing bands 
 
    else 
        disp('not enough equations!') 
    end % closing the if PS 
 
end % clossing sw 
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APPENDIX V: Pixelvalue and fractions 
 
function PV=pixvalue(Merispadded,windowsize,contadorfila,contadorcol) 
 
% PV=pixvalue(Merispadded,windowsize,contadorfila,contadorcol) 
% 
% Merispadded is a band of the MERIS image already padded for the ws 
% 
% contador is from the image MERIS 
 
% init the output in matrix format 
temp=zeros(windowsize,windowsize); 
 
 Merispadded=Merispadded'; 
 
a=(windowsize-1)/2; 
temp=Merispadded([contadorfila-a:1:contadorfila+a],[contadorcol-
a:1:contadorcol+a]); 
PV=temp(:); 
 
 

function 
[FRACTIONS nameclass]=fractions_pad(AA,windowsize,contadorfila,contadorcol) 

 
% AA is the matrix where each class fractions is stored in a band 
% (proportion matrix)  
% windowsize: size of the (MERIS) sliding window 
% 
% FRACTIONS is a matrix where the proportions of each class per pixel  
% are represented 
% the number of pixels of a MERIS window are in lines and the number 
of % classes in that window in columns 
% nameclass is a vector where are represented the classes exist in 
each % window  
 
%initialising output1 (it is the cube that will be transformed in a  
% matrix) 
sw=windowsize; 
nc=size(AA,3); 
a=(sw-1)/2; 
 
B=zeros(sw,sw,nc);  
%cutting AA according to the windowsize 
B=AA([contadorfila-a:1:contadorfila+a],[contadorcol-
a:1:contadorcol+a],:); 
% calling the function extract3rdD 
C=extract3rdD(B); % C has (sw*sw) rows and (nc) cols 
% removing cols full of zeros=the classes that are not present in 
% the C matrix 
classespresent=any(C);% Vector with 0 if the class does not exist in 
that MERIS window and 1 if the class exists 
nameclass=[(1:nc).*classespresent]; 
FRACTIONS=C(:,any(C)); 
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APPENDIX VI: QUALITY INDEXES function 
 
%Ergasv3 
% The index ERGAS is computed for each dates LandsatTM and MERIS with 
a 
% determinated number of classes and size window. 
 
%Cleaning 
ccc 
% Inputs 
pixelsizeMERIS=300; 
nbandMERIS=15; 
pixelsizeTM=25; 
ratio=pixelsizeMERIS/pixelsizeTM; 
%Number of classes 
classLandsat=[20]; 
%size windows 
MERISwindow=[7]; 
% method for resampling 
method='mean'; 
 
%common root for the fused image 
root_fused_bands='fused__'; 
 
% root of the different Classified Landsat images 
rootTM{1}='tm7_280303_Class'; 
rootTM{2}='tm7_280303_Class'; 
rootTM{3}='tm5_100703_Class'; 
rootTM{4}='tm5_100703_Class'; 
rootTM{5}='tm5_110803_Class'; 
rootTM{6}='tm5_110803_Class'; 
 
% directory where fused images are stored 
dirFused_band='F:\Fused_6images_20_7\'; 
 
% root of the different MERIS images 
rootMERIS{1}='M_rad_MER_20030218'; 
rootMERIS{2}='M_rad_MER_20030416'; 
rootMERIS{3}='M_rad_MER_20030606'; 
rootMERIS{4}='M_rad_MER_20030714'; 
rootMERIS{5}='M_rad_MER_20030806'; 
rootMERIS{6}='M_rad_MER_20030809'; 
 
% The bands 9,12 and 14 are usually distorted the ERGAS index 
%bands=[1 2 3 4 5 6 7 8 10 11 13 15]; 
% directory where MERIS images are stored 
dirMERIS='C:\Documents and Settings\Mª Luz\Mis 
documentos\MariLuz\WAGENINGEN\Imágenes\MERIS\MERIS_dec\'; 
 
%Initializing ERGAS. This column vector represents the index ERGAS for 
each 
%image in the diferent dates. 
ERGAS_fusedImage=zeros(length(rootTM),1); 
 
%Initializing the output. In each line is represented the RMSEnorm per 
band 
%of each LandsatTM and MERIS dates 
RMSEmatrix=zeros(length(rootTM),nbandMERIS); 
%RMSEmatrix=zeros(length(rootTM),length(bands)); %It is another option 
if the bands 9,12 and 14 aren´t taken into account. 
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CC_matrix=zeros(length(rootTM),nbandMERIS); 
 
countroots=0; 
for root=1:length(rootMERIS) %loop for each image 
    countroots=countroots+1; 
 
    CTM=num2str(classLandsat); 
 
    MW=num2str(MERISwindow); 
 
    % making sure that in the first moment this number is equal to 
zero 
    temp1=0; 
 
    counterbands=0; 
     
    for bb=1:nbandMERIS % loop for all bands 
   %for bb=1:length(bands) %loop for all bands unless 9,12 and 14 
        counterbands=counterbands+1; 
 
        % This is for load only a band of the fused image in each loop 
        subsetband={'band',bb}; 
        %subsetband={'band',bands(bb)}; 
         
        % load the fused image band 
        
fileFused_band=strcat(dirFused_band,root_fused_bands,rootTM{root},CTM,
'_',MW,'_',rootMERIS{root},'.bsq'); 
         
fused=multibandreadenvi2(fileFused_band,(subsetband)); 
 
        %removing the frame effect 
        fused=remove_frame(fused,MERISwindow,ratio); 
        fused=double(fused); 
 
        % fused image to MERIS pixel size 
        switch method 
            case 'bicubic'; 
                
fused_resampled=imresize(fused,1/(pixelsizeMERIS/pixelsizeTM),'bicubic
'); 
            case 'mean' 
                fused_resampled=blkproc(fused,[ratio ratio],@meanmv); 
        end 
 
        maxFR=max(fused_resampled(:)); 
        minFR=min(fused_resampled(:)); 
        meanFR=mean(fused_resampled(:)); 
        stdFR=std(fused_resampled(:)); 
 
        % load the MERIS image band 
        fileMERIS=strcat(dirMERIS,rootMERIS{root},'.bsq'); 
        MERIS=multibandreadenvi2(fileMERIS,(subsetband)); 
        % removing frame for checking with fused_resampled image 
        MERIS=remove_frame(MERIS,MERISwindow,1); 
        MERIS=double(MERIS); 
        max_MERIS=max(MERIS(:)); 
        min_MERIS=min(MERIS(:)); 
        mean_MERIS=mean(MERIS(:)); 
        std_MERIS=std(MERIS(:)); 
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        cc=corr2(fused_resampled,MERIS); 
         
                 
        %root mean square error(rmse) between MERIS and 
fused_resampled   
        %image 
        frmse=rmse_matrix(MERIS,fused_resampled); 
        frmse2=frmse^2; 
        mean_MERIS2=mean_MERIS^2; 
        temp1=temp1+(frmse2/mean_MERIS2); 
 
        % Checking if some band is distorting the ERGAS value 
        RMSEnorm(counterbands)=frmse/mean_MERIS; 
        RMSEabs(counterbands)=frmse; 
        CorrCoef(counterbands)=cc; 
        MEANBIAS(counterbands)=(mean_MERIS-meanFR); 
        STD(counterbands,:)=[std_MERIS stdFR]; 
         
    end %closing bands 
    
    %RMSE_matrix stores per line the RMSEnorm of the bands for the  
    %different fused images 
    RMSEmatrix(countroots,:)=RMSEnorm; 
    RMSEmatrixABS(countroots,:)=RMSEabs; 
    
    %Statistical parameters matrices store per line the statistic   
    %results per band 
    CC_matrix(countroots,:)=CorrCoef; 
    MEANBIAS_matrix(countroots,:)=MEANBIAS; 
    STD_matrix(:,countroots*2-1:countroots*2)=STD; 
     
    % Calculating ERGAS 
    
ERGAS=(100*(pixelsizeTM/pixelsizeMERIS))*sqrt((1/size(MERIS,3))*temp1)
; 
 
    % ERGAS_fusedImage stores the ERGAS for each dates of TM 
    % and MERIS image 
    ERGAS_fusedImage(countroots,1)=ERGAS; 
 
 
end %closing roots 
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APPENDIX VII: CONFUSION MATRICES 
Landsat image from 28 March 2003 

 
Overall accuracy = (3022053/4979391) = 60,69 %; Kappa Coefficient= 0,5136 
 
Landsat image from 10 July 2003 
 

Overall Accuracy = (3075391/4979391) = 61.76%; Kappa coefficient= 0.5208 
 
Landsat image from 11 August 2003 

Overall Accuracy = (2354685/4247416) = 55.4381% ; Kappa=0.4770 

Class Water 
% Arableland% Grassland% Baresoil% Natural 

vegetation% 
Deciduous 
forest% 

Coniferous 
forest% 

Built-
up% 

Total 
% 

Water % 72,81 0,01 0,17 1,27 0,02 0,08 0,05 0,15 3,21
Arable 
land % 1,31 38,44 4,48 10,59 1,05 0,64 0,27 5,42 11,31
Grassland 
% 2,84 18,5 67,11 4,08 0,76 9,74 1,04 10,29 30,4
Baresoil % 2,1 13,69 3,4 55,87 2,75 0,59 0,4 2,85 5,25
Natural 
Veg % 0,69 1,13 1,29 4,49 64,42 5,31 2,95 1,38 3,64
Deciduous 
Forest % 4,23 4,16 6,55 8,17 22,62 60,06 18,99 10,28 12,03
Coniferous 
Forest % 2,03 0,25 2,14 3,55 4,79 14,13 71,01 3,09 11,78
Built up % 14 23,81 14,86 12 3,59 9,45 5,27 66,56 22,38
Total % 100 100 100 100 100 100 100 100 100

Class Water 
% Arableland% Grassland% Baresoil% Natural 

vegetation% 
Deciduous 
forest% 

Coniferous 
forest% 

Built-
up% 

Total 
% 

Water % 67.91 0.01 0.08 0.40 0.05 0.03 0.05 0.04 2.95 
Arable 
land % 11.15 45.27 16.91 7.40 1.01 6.75 1.62 11.81 19.16 
Grassland 
% 2.57 26.80 62.10 4.46 3.46 9.77 1.20 7.05 30.14 
Baresoil % 0.94 2.72 1.48 61.57 2.55 0.11 0.36 2.87 2.02 
Natural 
Veg % 4.55 0.71 2.72 4.92 77.02 1.37 5.76 1.16 4.69 
Deciduous 
Forest % 1.07 13.54 4.21 1.94 1.90 67.43 15.27 1.98 11.31 
Coniferous 
Forest % 3.25 0.55 1.57 1.84 4.44 9.24 68.88 2.29 10.97 
Built up % 8.57 10.40 10.92 17.46 9.58 5.31 6.86 72.79 18.76 
Total % 100 100 100 100 100 100 100 100 100 

Class Water 
% Arableland% Grassland% Baresoil% Natural 

vegetation% 
Deciduous 
forest% 

Coniferous 
forest% 

Built-
up% 

Total 
% 

Water % 54.64 7.85 21.77 6.38 10.88 2.05 2.99 29.69 14.59
Arable 
land % 5.83 45.49 2.58 16.93 1.84 5.92 0.87 4.81 21.30
Grassland 
% 0.07 0.18 54.96 0.01 0.00 0.05 0.01 0.83 2.36
Baresoil % 26.84 35.92 8.46 64.21 19.01 16.89 4.64 25.51 32.70
Natural 
Veg % 2.50 2.14 1.33 0.71 58.28 1.59 7.81 2.55 4.35
Deciduous 
Forest % 2.65 4.25 3.17 9.29 1.26 54.44 13.57 2.10 9.52
Coniferous 
Forest % 7.33 4.05 7.42 2.42 8.52 19.06 70.04 5.85 14.94
Built up % 0.13 0.12 0.32 0.03 0.21 0.00 0.08 28.66 0.25
Total % 100 100 100 100 100 100 100 100 100
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Fused image from TM 28 March and MERIS 18 February 
 

 
Overall Accuracy = (2309773/4979391) = 46,39% ; Kappa Coefficient= 0,3338 
 
Fused image from TM 28 March and MERIS 16 April 

 
Overall Accuracy=(2388207/4979391)= 47,96%; Kappa Coefficient= 0,3538 
 
Fused image from TM 10 July and MERIS 6 June 
 

Overall Accuracy = (2282293/4979391)= 45,83% ; Kappa Coefficient=0.3068 .         

Class Water 
% Arableland% Grassland% Baresoil% Natural 

vegetation% 
Deciduous 
forest% 

Coniferous 
forest% 

Built-
up% 

Total 
% 

Water % 62,14 0,8 1,74 2,57 0,08 0,35 0,22 1,2 3,69
Arable 
land % 0,71 26,75 2,28 1,1 0,65 1,18 0,37 3,11 7,51
Grassland 
% 7,13 28,38 52,83 7,78 3,28 14,25 3,72 17,2 29,51
Baresoil % 1,97 3,11 2,89 35,29 3,96 3,05 3,24 2,41 3,07
Natural 
Veg % 0,69 0,68 1,45 3,23 46,32 9,85 14,1 1,62 4,84
Deciduous 
Forest % 0,56 0,84 1,12 1,51 7,82 16,56 10,5 2,9 3,73
Coniferous 
Forest % 0,35 0,13 0,95 1,24 5,44 7,18 46,5 1,21 7,31
Built up % 26,45 39,31 36,74 47,27 32,46 47,58 21,3 70,3 40,34
Total % 100 100 100 100 100 100 100 100 100

Class Water 
% Arableland% Grassland% Baresoil% Natural 

Vegetation% 
Deciduous 
forest% 

Coniferous 
forest% 

Built-
up% 

Total 
% 

Water % 63,24 0,9 2,38 3,55 0,21 0,83 0,24 1,76 4,11
Arable 
land % 0,82 30,18 3,5 7,85 2,6 1,72 0,82 2,79 8,86
Grassland 
% 7,26 25,26 53,27 3,29 1,35 14,76 2,08 15,32 28,42
Baresoil % 1,07 1,28 1,11 32,82 2,48 1,48 1,39 1,42 1,44
Natural 
Veg % 0,26 0,54 1,44 3,11 51,93 13,73 14,46 1,81 5,28
Deciduous 
Forest % 0,83 2,83 1,86 2,36 9,93 16,27 11,68 2,97 4,67
Coniferous 
Forest % 0,42 0,08 0,92 2,02 5,07 6,75 47,14 1,09 7,33
Built up % 26,09 38,92 35,52 45 26,42 44,46 22,19 72,85 39,89
Total % 100 100 100 100 100 100 100 100 100

Class Water 
% Arableland% Grassland% Baresoil% Natural 

Vegetation% 
Deciduous 
forest% 

Coniferous 
forest% 

Built-
up% 

Total 
% 

Water % 56,43 0,07 0,17 0,65 0 0,16 0,04 0,52 2,58
Arable 
land % 10,65 38,94 16,69 22,78 7,37 17,98 6,47 19,6 20,38
Grassland 
% 18,82 28,68 51,06 14,49 13,63 26,28 10,7 24,5 32,54
Baresoil % 0,01 0 0,06 28,66 0,42 0,01 0,63 0,03 0,26
Natural 
Veg % 0,05 0,07 0,87 3,06 56,6 1,7 7,47 0,72 3,25
Deciduous 
Forest % 0,34 1,53 2,04 0,82 2,32 20,21 12,4 1,53 4,31
Coniferous 
Forest % 0,24 0,08 0,86 1,27 7,79 5,43 44,1 1,03 6,88
Built up % 13,46 30,63 28,24 28,26 11,86 28,25 18,3 52,1 29,8
Total % 100 100 100 100 100 100 100 100 100
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Fused image from TM 10 July and 14 July  
 

 
Overall Accuracy= (2406506/4979391) = 48.3293; Kappa Coefficient= 0.3257; 
 
Fused image from TM 11 August and MERIS 6 August 

 
Overall Accuracy= (1752207/4247416) = 41.2535 %; Kappa Coefficient= 0.2187; 
 
 
Fused image from TM 11 August and MERIS 9 August 

 
Overall Accuracy=(1614593/4247416)= 38,01% ; Kappa Coefficient = 0,1995 

Class Water 
% Arableland% Grassland% Baresoil% Natural 

Vegetation% 
Deciduous 
forest% 

Coniferous 
forest% 

Built-
up% 

Total 
% 

Water % 54.32 0.05 0.24 0.68 0.00 0.02 0.01 0.20 2.45
Arable 
land % 18.13 48.71 29.98 31.74 11.89 33.33 11.54 33.00 31.41
Grassland 
% 15.80 41.24 55.22 8.15 5.80 20.79 6.81 19.51 34.88
Baresoil % 0.00 0.00 0.13 33.45 1.63 0.06 0.67 0.02 0.35
Natural 
Veg % 0.14 0.26 1.00 1.71 52.24 3.70 8.38 0.87 3.48
Deciduous 
Forest % 0.27 0.39 0.57 0.97 2.42 11.99 8.66 0.89 2.42
Coniferous 
Forest % 0.59 0.34 1.11 1.89 9.33 11.95 49.06 1.24 8.20
Built up % 10.74 9.01 11.75 21.42 16.69 18.16 14.86 44.27 16.82
Total % 100 100 100 100 100 100 100 100 100

Class Water 
% Arableland% Grassland% Baresoil% Natural 

Vegetation% 
Deciduous 
forest% 

Coniferous 
forest% 

Built-
up% 

Total 
% 

Water % 24,02 5,91 8,62 4,33 15,76 4,56 3,94 11,2 8,5
Arable 
land % 45,21 52,26 29,79 47,05 26,57 37,9 26,2 42 43,68
Grassland 
% 3,24 2,25 46,8 1,53 0,88 1,11 1,03 4,51 3,82
Baresoil % 23,18 36,4 13,77 45,42 11,63 30,3 13,1 23,2 30,64
Natural 
Veg % 0,19 0,24 0,09 0,1 20,87 1,42 3,08 0,28 1,3
Deciduous 
Forest % 0,38 0,32 0,05 0,26 1,48 3,35 3,15 1,12 0,95
Coniferous 
Forest % 2,8 1,9 0,46 0,77 19,79 20,9 48,1 4,64 10,15
Built up % 0,99 0,73 0,41 0,54 3,01 0,55 1,46 13,1 0,94
Total % 100 100 100 100 100 100 100 100 100

Class Water 
% Arableland% Grassland% Baresoil% Natural 

Vegetation% 
Deciduous 
forest% 

Coniferous 
forest% 

Built-
up% 

Total 
% 

Water % 25,55 4,08 7,85 2,96 3,42 2,8 3,39 3,86 7,17
Arable 
land % 31,48 41,84 22,34 38,33 18,26 27,4 11,7 19,1 32,62
Grassland 
% 1,78 1,48 47,09 0,85 0,64 0,63 0,61 1,98 3,09
Baresoil % 32,86 48,25 19,34 55,39 24,57 50,4 31,6 39,8 43,07
Natural 
Veg % 0,19 0,27 0,07 0,06 23,94 0,86 2,95 0,59 1,34
Deciduous 
Forest % 0,06 0,1 0,01 0,06 0,12 1,83 0,85 0,04 0,3
Coniferous 
Forest % 1,23 0,91 0,24 0,26 9,78 12,4 35,2 2,16 6,74
Built up % 6,83 3,07 3,07 2,08 19,27 3,71 13,7 32,5 5,66
Total % 100 100 100 100 100 100 100 100 100
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APPENDIX VIII: Mathematical concepts 
 
Singular value 
A matrix “A” can be decomposed into so-called eigenvalues and eigenvectors, being a 
special set of scalars and vectors associated with a linear system of equations 
respectively.   
 
A= P ·D ·P-1   
 
 Equation 9: Matrix diagonalization 
 
Where: 
P is a matrix composed of the eigenvectors of A and P-1 the inverse of  P. 
D is the diagonal matrix constructed by the eigenvalues. 
 
The square roots of the eigenvalues are the singular values. 
 
 Singular value decomposition 
Any m x n matrix A whose number of rows m is greater than or equal to its number of 
columns n, can be written as the product of an m x n orthogonal matrix U, an n x n 
diagonal matrix S whose elements are the singular values of the original matrix and the 
transpose of an n x n orthogonal matrix V. 
 
A=U ·s ·V’ 
    
Equation 10: Singular value decomposition 
 
Singular value decomposition is used in some occasion like a method for solving most 
linear least-squares problems (www5). 
 
 
 Conditional number 
The condition number of a matrix measures the sensitivity of the solution of a system of 
linear equations to errors in the data; it estimates the loss of precision in solving a linear 
system with that matrix. It is the ratio “C” of the largest to smallest singular value in the 
singular value decomposition of a matrix. 
A system is said to be singular if the condition number is infinite, and ill-conditioned if 
it is too large. Values of condition number near 1 indicate a well-conditioned matrix 
(www6). 
The large condition number implies that the columns of A are nearly linearly dependent 
(Hansen, 2001). One or more small singular  values implies that A is nearly rank 
deficient, and the vectors Vi associated with the small singular values are numerical 
null-vectors of A.  
 
 Regularization 
The term of regularization appears when we have problems with an ill-posed matrix. 
The ill-conditioning of the matrix does not mean that a meaningful approximate cannot 
be computed. Rather, it implies that standard methods in numerical linear algebra 
cannot be used in a straightforward manner to compute such a solution. Instead other 
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methods must to be applied in order to ensure the computation of a meaningful solution, 
and this is the goal of regularization methods. 
In our case, for solving the equation 1, four methods have been proposed and two of 
them apply regularization methods. The most common method of regularization is the 
one known as Thikonov regularization, where the regularized solution xλ is defined as 
the minimum of the following weighted combination of residual norm and the side 
constraint where the regularization parameter λ controls the weight given minimization 
of the side constraint relative to minimization of the residual norm. 
 
  { }2

2

*22

2
)(minarg xxLbAxx −+−= λλ   

 
Thus, the regularization parameter λ is a parameter which controls the properties of the 
regularized solution. For obtaining this parameter, a method called L-curve can be used 
(Hansen, 2001). 
 
The L-curve is a graphical tool for analysis of discrete ill-posed problems. It is a plot for 
all valid regularization parameter, of the (semi)norm 

2regLx  of the regularized solution 

versus the corresponding residual norm
2

bAxreg − . In this way the L curve displays 

the compromise between minimization of these two quantities, which is the main aim of 
the regularization methods.  

 
 
 Figure 28: The generic form of the L-curve 
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