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Abstract

A priority research in Europe is mapping and monitoring of land use and land cover
(LUC). Actual and reliable information on LUC is needed both for agricultural and
environmental applications. In The Netherlands was decided in 1987 to produce a
national land cover/ use database (‘LGN data base’) using satellites images (Landsat
TM and SPOT) and ancillary data. This database has been frequently used for different
purposes in the fields of environmental protections, water management, nature
conservation and physical planning on regional and national scales. The use of ancillary
data supposes a time consuming and expensive task. Thus, the aim of this work was to
study the possibility to reduce the necessity of extra information by using a fused image.
The fusion was made by using images from high spatial resolution sensor, Landsat TM,
25m as pixel size and 6 bands and from high spectral resolution sensor, MERIS, 300m
as pixel size and 15 bands.

Previously to obtain the fused image, the optimal spatial resolution between 25
and 300 m for detection the changes in land cover in The Netherlands was tested. A
graph showing how the local variance of a digital image for a scene changes as the
resolution-cell size varies and the use of landscape indices were the two approaches
applied for the first objective of this study. Both studies showed the necessity of study
the subpixel level in a MERIS image.

The performance of the fusion between images was made by a method proposed
by Zhukov et al. (1999). The method is based on the classification of the high spatial
resolution image succeeds in showing class boundaries clearly, afterward both images
are overlapped and the different classes inside of a MERIS pixel can be unmixed. The
unmix-algorithm is applied in the high spectral resolution image by using a sliding
window. Parameters like the size of this window or the number of classes in which the
high spatial resolution images should be classified were optimized. Statistical
parameters and a quantitative index were used to check the quality of the fused image.
Finally a supervised classification of the fused image resulted in a land cover map.

In summary, the proposed method performed well the fusion between Landsat

TM and MERIS images. And a fused image obtained with parameters correctly
optimized can be successful for a land cover classification.

Keywords: data fusion, remote sensing, MERIS, LGN, land cover mapping, subpixel
level, optimal scale.
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1. Introduction

1.1 Background

The last few centuries have been characterized by rapid rates of change in chemical
composition of the atmosphere, ground water and soils. An increasing awareness of
these issues and the fear of serious consequences for the welfare and survival of
humanity have prompted the scientific community to establish major efforts to
understand the causes and implications of these changes (Verstraete et al., 1999). Both
national and international mechanisms have been established to protect the environment
and to ensure sustainable use of natural resources, some of them are the International
Geosphere-Biosphere Programme (IGBP) which began in 1986 or Kyoto protocol
(1997) (Clevers et al., 2005;Verstraete et al., 1999). Information about land cover and
land use is a very important component for environmental planning and it is in this
context that remote sensing (RS) is able to contribute (Treitz and Rogan, 2004).

In this research the case of The Netherlands has been studied; the population density of
this country has increased very much during the last decades, the environment is being
clearly affected and therefore land cover and land use are being continuously modified.
Information about these man induced changes is required to support environmental
policy and physical planning purposes (Thunnissen and De Wit, 2000).

The sources of data for obtaining and updating this information have undergone
changes and have improved during the last decades. Until the end of the 1980s,
information on land cover/use was usually obtained from land-use statistics and
topographical maps. These sources were having some problems such as land use
statistics could not be obtained for areas with deviating boundaries, for example river
basins, or topographical maps did not include all land cover/ use and they were not
available in digital form. To overcome these problems, in 1987 it was decided to
produce a land-cover database of The Netherlands in a raster format using satellite
images. This is the so-called “LGN-database” (see chapter 3.1.3). Nowadays five
versions of LGN are available. The last two versions, LGN4 and LGN35 are based on the
following information:

- TOP10-vector, 1:10000 digital topographic vector map used as a geometric base
reference.
- Landsat-TM imagery, and if these images are not available; IRS-LISS3 and
ERS2-SAR provided the information (De Wit and Clevers, 2004)
- Ancillary data:
* The PIPO system; is an administrative system that has been
developed to check all acreage-based applications for subsidies.
» Agricultural Statistics; the General Census of Agriculture which
provides information of the acreage of crops grown.

Many sources of information are required and because of that the updating of the LGN
is an expensive and time-consuming task. To facilitate this effort, it could be interesting
to complement Landsat information with the information of other satellites providing
more spectral information or high te,poral resolution.



The MERIS sensor was primarily designed for ocean applications but many researches
have shown the possibility of this sensor for land applications (Clevers et al., 2004a;
Clevers et al., 2002; Van Der Meer et al., 2000; Verstraete et al., 1999). However the
use of MERIS directly for land cover mapping is not possible, because of its medium
spatial resolution. The Netherlands is highly fragmented; it does not have large areas
with the same land cover. If the target size is smaller than the ground sampling distance
it is necessary to study at subpixel levels (Chang et al., 2004). For these studies, there
are some research methods and techniques that have been proposed in the remote
sensing literature. One of these methods is Linear Spectral Unmixing (LSU). It
estimates the fractional contribution of the detected endmembers to each pixel in the
image (Grana and D'Anjou, 2004), but sometimes the studies with this technique have
turned out inaccurate. One of the causes of this inaccuracy has been that LSU considers
the reflectance obtained from a surface including many land cover types to be a linear
combination of the reflectance of these land cover types. But there are multiple
reflections and transmissions between the leaf layer and soil, so it is not a linear
combination of the reflectance (Borel and Gerstl, 1994; Ray and Murray, 1996).
Another possibility to extract subpixel information is Data Fusion. This method has the
advantage, with regard to the previous one, which the geo-location of the different
proportions of each land cover/ use within a pixel can be obtained. Image fusion refers
to the synergetic combination of different sources of sensor information into one
representational format; this single image contains a more accurate description of the
scene than any individual source image (Bretschneider and Kao, 2000; Simone et al.,
2002).

Different Data Fusion procedures have been developed during the last decades. Some of
the most important data fusion procedures will be briefly described in the chapter 2.2.

1.2 Problem definition

Actual and reliable information on land use and land cover is needed both for
agricultural and environmental applications. So, making a map with this type of
information would be very useful for many planning and management activities
concerned with the surface of the earth.

Nowadays, Landsat TM images and ancillary data are used for mapping and monitoring
land cover/use in The Netherlands. An alternative (possibly better) source of
information could be to make such a map with a combination of images from different
sensors, so making a fused image. This multisource information can improve the
interpretation and classification of satellites images (Amarsaikhan and Douglas, 2004).
Landsat TM information is very useful, but it has some features that could be completed
with another source of information. For example:

— The frequency of capturing data.
The frequency of capturing data of Landsat-TM is 16 days. The Netherlands is usually
covered by clouds, which supposes the satellite image is not very useful these days.
Because of this, one might not obtain images in a period of one or two months.

MERIS has the capability to measure each 2-3 days. This high revisit frequency could
be very convenient to solve the cloud cover problem. MERIS high temporal resolution



is also very useful for monitoring vegetation development during a year, like for
phenology studies. It can avoid spectral confusion, because different land use types can
reflect similar radiation in a determined season but we may distinguish them easier at
other moments.

— The spatial resolution.

The landscape of The Netherlands is fragmented, agricultural crops cover the half of the
country (Van Oort et al., 2004) and it does not have large arecas with the same land
cover. Therefore, a satellite with a low resolution like NOAA-AVHRR (pixel size
1.1Km) is not very suited for mapping land cover types in the Netherlands. However,
the NOAA-AVHRR images cover a large area and therefore the mosaic effect that is
created when using Landsat-TM images can be avoided.

Medium resolution satellite data, like MERIS data, may be very important in filling the
gap between the low resolution satellite data and the high resolution satellite data.

A main research objective, therefore, must be to find the appropriate scale at which the
changes that we want to observe occur. Considerable improvements in the image
interpretation accuracy could be achieved if there is prior knowledge about the optimal
spatial resolution for remote sensing based inventory (Hyppanen, 1996).

— The spectral resolution.

Landsat TM has 6 spectral bands located in the visible, near and middle infrared, and
although MERIS spectral resolution consists of 15 spectral bands, they do not measure
in the middle infrared. They are located in the visible and near-infrared and in some
case they provide similar information. Thus, bands 3 till 8, in the visible, are strongly
correlated. Also bands 10 till 14, in the NIR, are correlated. Band 9 takes an
intermediate position, making it a particularly interesting band of the MERIS sensor
(Clevers et al., 2004b).The location of this band is in red edge region and it can provide
very useful information about studying the chlorophyll content and other biophysical
variables as a measure of plant condition.

Taking into account these considerations, it can be concluded that producing an image
with the spatial features of Landsat-TM and the appropriated characteristic of MERIS
would be very useful for getting an accurate land cover database. Minghelli-Roman et
al. (2001) showed that Landsat TM images are useful for enhancing MERIS images.

1.3 Research objectives

The aim of this research is to develop a methodology to get land cover mapping over
The Netherlands by integrating multi-sensor remote sensing data. More specifically, an
unmixing based data fusion method (Zhukov et al., 1999) has been tested in this study.



1.4 Research questions

This main issue led us to investigate the following questions:

1. Which scale gives the best visualization of the study area?
Can one use landscape fragmentation indices to define the best scale to map land
cover types in The Netherlands?

3. What are the advantages of using a fused Landsat-TM and MERIS image for
over Landsat-TM image when mapping and monitoring land cover?

4. Which indicators can be used to assess the quality of the fused image?

1.5 Outline of the report

This document is articulated in 5 chapters. The first one deals with a general
introduction and the presentation of the project which supports this study. Chapter 2
describes the fundamental topics that have been treated in this research. Chapter 3 deals
about materials, the characteristic of two needed images to do the fusion between them,
and the LGN which is a land cover of The Netherlands whose process of elaboration is
trying to be optimized. In chapter 4 the most appropriate scale to fuse the image is
calculated. In chapter 5 the process of data fusion is carried out and some conclusions
and recommendations for possible improvements in the research are commented.
Finally chapter 6 summaries conclusions of the research answering questions proposed
in this chapter.



2. Literature review

2.1 Remote sensing and land cover mapping

Land cover and land use are continuously changing. Environmental researches have
shown up the importance of updating and reliable information on land use and land
cover (Clevers et al., 2004a; Mucher et al., 2000). The knowledge on these variables is
required in many aspects of land use planning and policy development, as a prerequisite
for monitoring and modelling land use and environmental change (Billah and Rahman,
2004). However, the comprehensive information on the types and rates of land-cover
and land-use change, and the less evidence on the causes, distributions, rates and
consequences of those changes, make that the ability to obtain this information a tricky
task. Remote sensing is presented like a powerful tool capable of providing timely and
cost effective information.

Remote sensing is the science of acquiring information about the Earth’s surface by
sensing and recording reflected or emitted energy and processing, analyzing, and
applying that information. The process involves an interaction between incident
radiation and the targets of interest. In the last three decades, the technologies and
methods of remote sensing have evolved to include a suite of sensors operating at a
wide range of imaging scales with potential interest and importance to planners and land
managers. The initiation of significant research activities in remote sensing technology,
data analysis and applications was in 1972 with the launch of Landsat-1. In 1984, with
the launch of the Landsat Thematic Mapper (TM) it was produced a new remote sensing
data source that provided higher spectral, spatial, and radiometric resolution data, which
allowed research to be conducted with greater precision, over large areas (Rogan and
Chen, 2004). Since then, many other satellites have been launched and new airborne
sensors have become operational. Specifically, the sensor that has been studied in this
research, MERIS, was launched in 2002. It is on board of ENVISAT, which is the
largest Earth Observation spacecraft ever built (www2). It carries ten sophisticated
optical and radar instruments to provide continuous observation and monitoring of the
Earth’s land, atmosphere, oceans and ice caps. And although MERIS primary mission
was the measurement of sea colour in oceans and coastal areas, many studies are
showing its use for land and atmospheric monitoring (see Chapter 3.1.2)

Following the availability of the new sensors, many projects began to employ image
fusion techniques, fundamentally using panchromatic and multispectral information for
improved land-cover and land-use monitoring (e.g. (Pellemans et al., 1993)). Data
fusion was presented as a new process in order to obtain accurate detail of an area by
using different sources of information. Different techniques of Data Fusion are
expounded in the next section.



2.2 Data Fusion

Earth observation satellites provide data covering different portions of the
electromagnetic spectrum at different spatial, temporal and spectral resolutions. Every
remotely sensed image has a specific limit of its own spectral and spatial resolution and
there is no ideal sensor that is highly sensitive to all wavelengths and yields spatially
detailed data. Nevertheless an image taken with a sensor can be complemented for
images from other sensors, thus a fused image is created (Park and Kang, 2004). Fused
images may provide increased interpretation capabilities and more reliable results since
data with different characteristic are combined (Pohl and Van Genderen, 1998). On the
one hand, the high spatial resolution is necessary for an accurate description of the
shapes, features and structures. On the other hand, depending on the application and the
level of complexity of the observed scene, the different objects are better identified if
high spectral resolution images are used. To integrate different data in order to get more
information than can be derived from each of the single sensors alone is the aim of
image fusion.

These images should be as close as possible to reality and should simulate what would
be observed by a sensor with the same modalities but the highest spatial resolution.
Lucien Wald, in his book “Data Fusion. Definitions and architectures. Fusion of
images of different spatial resolutions”, defines three properties that the synthetic
images must respect:

1. Any synthetic image once degraded to its original resolution, should be as
identical as possible to the original image.

2. Any synthetic image should be as identical as possible to the image that the
corresponding sensor would observe with the highest spatial resolution if
existent.

3. The multispectral set of synthetic images should be as identical as possible to the
multispectral set of images that the corresponding sensor would observe with the
highest spatial resolution if existent (Wald, 2002).

In this research, Landsat TM and MERIS images are going to be fused. The fused image
will have the spatial resolution of Landsat TM (25m) and the spectral information of
MERIS, 15 spectral bands. To check the quality of the fused images, some indicators
have been used (see chapter 4 for a better description).

Several methods of data fusion are available in RS literature. Table 1 presents a brief
review of the most important ones.



Table 1: Data fusion methods

Data Fusion

Method Description Implicate Reference
Three multispectral bands R, Gand B | -These = methods  substitute
of low resolution image are | panchromatic data by I or PC-1
transformed to IHS colour space. | directly; and not always
IHS Replacing I with the panchromatic | produce the best final products
high resolution image information | if both images have little (Lillesand and Keifer
and  performing an inverse | correlation. 2000) ?
transformation from IHS back to the (Chavez et al., 1991)
original RGB space, the fusion image | -All spectral components except (Zhukov et alA’ 1999)
is obtained. for the substituted one are left v
in the original low resolution.
PCl1 is replaced by the panchromatic
PCA image and retransformed back into | -Distorting the spectral
original RGB space. characteristic.
. ‘They were developed to
Arithmetic Fusi _ M, Mll‘ll. P visually increase contrast in the
X R usion; = Multi xran low and high ends of the
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transform (IDWT), the final fused
image is achieved.

‘They use big amount of data,
sometimes they are out of
physical domain.

Methods using
adaptative windows

They apply nonlinear relationships
between the images.

*They normally use only one
band of high spatial resolution
image.

-Zhukov’s method with the
general case that the highest
spatial resolution image may be
multispectral.

(Moran, 1990)
(Hill 1999)

(Park and Kang,
2004)

(Price, 1999)
(Tapiador and

Casanova, 2002)

The next flowcharts show the basic concept of some of the methods commented

previously:
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Very well known techniques are IHS (intensity, hue, saturation), PCA (Principal
components analysis), arithmetic combination based fusion and wavelet based fusion.
However, a common problem associated with these techniques is the colour distortion
of the fused image and that the fusion quality is operator and data dependent (Zhang,
2002, 2004). These techniques have been applied to the Pan image of the SPOT and IRS
sensors, but they do not obtain an accurate quality in the image for new satellite images
like Landsat-TM, IKONOS or Quickbird (Zhang, 1999). The techniques based on
adaptive windows try to preserve the original spectral information. Especially Zhukov’s
methodology, the followed method in this research, presents the advantage with regards
to the others that we can get information for all bands in the high spectral resolution
image. It is not necessary to match bands belonging to the higher spatial resolution
satellite with bands from higher spectral resolution satellite that cover a same spectral
range.

This technique is proposed for unmixing the data of a lower resolution “measuring
instrument” by its combined processing with the data of a higher-resolution “classifying
instrument”. It allows to classify the data and to map the classes with the resolution of
the classifying instrument and to retrieve the mean signatures of the classes,
corresponding to the measuring instrument (Zhukov et al., 1995).

2.3 Spectral unmixing

A satellite image consists of a two dimensional array of individual picture elements
called pixels. Each pixel represents an area on the Earth’s surface and has an intensity
value, represented by a digital number. This value is normally an average of the whole
ground area covered by the pixel. Resolution of an image is constrained by the pixel
size and this pixel size is determined by the instantaneous field of view (IFOV) of the
sensor’s optical system. IFOV is a measure of the ground area viewed by a single
detector element for a given moment in time. A large IFOV implies, therefore, that the
ground area represented in each pixel is more likely to contain a mixture of materials of
interest. The resultant spectra are a mixture and are referred to as “mixed pixels”.

A mixed pixel in an image can be the consequence of any of the following situations on
the ground (Fisher, 1997):

- Boundaries between two or more mapping units (e.g. field-woodland boundary)

- The intergrade between the central concepts of the mappable phenomena
(ecotone)

- Linear sub-pixel objects (e.g. a narrow road)

- Small sub-pixel objects (e.g. house or tree)

These situations are shown in figure 4.



Sub-pixel Boundary pixel

Intergrade Linear sub-pixel

Figure 4: Four cases of mixed pixels (Fisher, 1997)

The presence of mixed pixels in applications such as performing a classification is a
problem, since in conventional classification procedures the pixel is considered as an
elementary unit for the analysis. Consequently, the subpixel level has to be studied. The
mixed pixels require to be separated into individual constituents, called endmembers,
whose radiances contribute to the single mixed-pixel value (Robinson et al., 2000). To
transform the digital count of mixed-pixels into the digital count of the individual
materials in that area of the scene is the purpose of the present study. The percentage of
the individual material in the studied area is given by the higher spatial resolution image
and the spectral signature of the classes present in a MERIS image will be obtained.

A method proposed by Zhukov et al. (1999) is used in this research to make the
unmixing. This method applies the unmixing-algorithm in the high spectral resolution
image by using a sliding window. The main steps followed in this method are:

Georeferenced Landsat-TM images, with 25 x 25 m® as pixel size, are
available from different dates. The first step is to make an unsupervised
classification of these images. The unsupervised classification rule applied to
these images was ISODATA.

Isodata unsupervised classification calculates class means evenly distributed in
the data space and then iteratively clusters the remaining pixels using minimum
distance techniques. Each iteration recalculates means and reclassifies pixels
with respect to the new means. The number of iterations has been 50 and no
distance threshold or standard deviation has been specified. Then all pixels are
classified to the nearest class. This process continues until a number of 100
pixels in each class is reached (ENVI, 2004). The images were classified in 10,
20, 40, 60 and 80 classes. Afterwards, this number was optimized.
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The MERIS image was geometrically co-registered with the TM image. The
pixel size of Landsat is 25 m and MERIS’ pixel size 300m; therefore a
MERIS pixel is matched to 12 by 12 Landsat-TM pixels (300/25=12).

Figure 5: 12x12 Landsat pixels Figure 6: MERIS pixel

In general, there are more images from MERIS than from Landsat-TM; so more
than one MERIS image will be co-registered with the same Landsat-TM image.
Thus, multitemporal information of data fusion has been studied. The
consequences of adding temporal information to the data fusion process have
been evaluated in terms of overall classification accuracy.

Using the classified Landsat-TM images as a reference, the proportion of
each class at 25m will be calculated for each MERIS full resolution pixel
(300m), in a window. The size of this sliding window will be optimized by
testing different window sizes.

Subsequently, the following algebraic system will be applied per pixel in the
window to unmix the MERIS signal:

N, '
S ZZCK L +&  with 1=1,2,...,nbymEris

K=1

Equation 1: System of linear mixture equations

C vector containing the proportion of each class within a MERIS pixel.
S radiance value of the ith MERIS spectral band.
Ne total number of classes.
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L unknown vector containing the spectral radiance of each class in the
ith MERIS spectral band.

npmeris number of MERIS spectral bands.

Thus the unmixing is done for each band. In each band this equation is applied MERIS
window by MERIS window to all pixels in the image. The restoration of the unmixed
MERIS image is performed by assigning the estimated mean class signal to
corresponding high-resolutions pixels of the classification maps, but the assignment is
performed in each window only within the area of its central MERIS pixel. This is
illustrated in the figure 7. We can distinguish 5 different classes in the window, in the
first pixel appear two classes, to its right, the second pixel three classes, in the central
pixel 4 classes. Once the equation is applied to each pixel, the signal of the five classes
is obtained, but only the signal of the four classes corresponding to the central MERIS
pixel will be assigned to the high-resolution pixels of the classifications maps in that
area.

MERIS window

N\

Figure 7: Applying equation 1

In the case that the number of classes in the window is higher than the number of pixels
in the window there will not be enough equations for obtaining the unknown
endmembers. Then, a bigger window should be used. The maximum number of classes
in a MERIS window will be calculated, thus the window size can be optimized.

To avoid the effect of a frame when a window is used, the image will be padded with
zeros. The size of this frame depends on the size of the window, being:
frame = (window size-1)/2.

The aim of this project is to get a fused image with Landsat TM and MERIS data, and to

check if the land cover map obtained when that image is classified is more useful than a
Landsat TM image.
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3. Materials

3.1 Description of the available data sets

3.1.1 Landsat TM

For over 30 years, the Landsat platforms have been providing scientists with high-
resolution satellite imagery. Landsat began the land mapping in the early 1970s with a
series of 3 MSS (multispectral scanner) satellites that mapped using the three visible
channels along with a near infrared band. In the early 1980s the next generation of
Landsat satellites began offering what is known as the Thematic Mapper, which added
two more infrared bands and a thermal long-wave infrared band, and doubles the
resolution capabilities of the multispectral bands. The TM sensor is an advanced Earth
resources sensor designed to achieve higher image resolution, sharper spectral
separation, improved geometric fidelity, and greater radiometric accuracy and resolution
than the MSS sensor. The TM data are scanned simultaneously in seven spectral bands.
Band 6 scans thermal infrared radiation (www8). Spectral range of bands and spatial
resolution for the TM sensor are given in table 2.

Table 2: Landsat TM resolutions

Bands  Range bands (nm) resc)slﬂifézsll(m)
1 45-52 30
2 52-60 30
3 63-69 30
4 76-90 30
5 155-175 30
6 1040-1250 120
7 208-235 30

The primary objective of the Landsat project is to ensure a collection of consistently
calibrated Earth imagery. Landsat’s Global Survey Mission is to establish and execute a
data acquisition strategy that ensures repetitive acquisition of observations over the
Earth’s land mass, coastal boundaries, and to ensure the data acquired are of utility in
supporting the scientific objectives of monitoring changes in the Earth’s land surface
and associated environment (Www?9).
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3.1.2 MERIS

MERIS (Medium Resolution Imaging Spectrometer) is a fine spectral and medium
spatial resolution satellite sensor. MERIS is one of the core instrument payloads of
Envisat, the European Space Agency’s (ESA) environmental research satellite, launched
in March 2002. MERIS operates in the solar reflective spectral range. It has 15 spectral
programmable bands (capability of changing the band position and bandwidths
throughout its lifetime) designed to acquire data at variable bandwidth between 1.25 and
30 nm over the spectral range 390nm to 1040 nm. Table 3 lists the current default
bandset including variables that determined the final selection of band centre
wavelengths and bandwidths.

Table 3: MERIS bands (Curran and Steele, 2005)

Band
Number Centre (nm) Width (nm) Environmental variables
1 412.5 10 Yellow substance, turbidity
2 442.5 10 Chlorophyll absorption
3 490 10 Chlorophyll, other pigments
4 510 10 Turbidity, suspended sediment, red tides
5 560 10 Chlorophyll reference, suspended sediment
6 620 10 suspended sediment
7 665 10 Chlorophyll absorption
8 681.25 7.5 Chlorophyll fluorescence
9 708.75 10 Atmospheric correction
10 753.75 7.5 Oxygen absorption reference
11 760.625 3.75 Oxygen absorption R-branch
12 778.75 15 Aerosols, vegetation
13 865 20 Aerosols correction over ocean
14 885 10 Water vapour absorption reference
15 900 10 Water vapour absorption, vegetation

The instrument scans the Earth’s surface by the so called “push broom” method. CCD
arrays provide spatial sampling in the across track direction, while the satellite’s motion
provides scanning in the along-track direction. It is designed so that it can acquire data
over the Earth whenever illumination conditions are suitable. The instrument has a 68.5°
field of view around nadir, covering a swath width of 1150 Km with a spatial resolution
of 300m at nadir. MERIS allows global coverage in 3 days.

The data are provided at 3 differents levels of processing- Level 0, Level 1 and Level 2
at two different resolutions- Full and reduced. The instrument always takes
measurements with full resolution and onboard averaging generates the RR images
(Www2).

Level 1, these products are images holding top of atmosphere radiances
measured in the 15 MERIS bands.

Level 2, they are provided with geophysical quantities varying according to
the underlying surface identified (land, ocean or clouds).

Both products contain geometric information to locate the image on the Earth’s surface;
data describing the sun and viewing geometry; additional annotation data such as
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coastline information; terrain height; meteorological data; scaling factors to decode the
data from numerical geophysical meaningful values and flags that address the quality
and the validity of the image.

MERIS was primarily designed for ocean and coastal zone remote sensing. However
nowadays much broader environmental issues are addressed covering also land and
atmospheric applications. The earlier objectives in 1987 of MERIS were:

Table 4: Earlier objectives of MERIS (Curran and Steele, 2005)

Ocean Land
Scientifics and application oriented objectives Possible extensions to land applications
1. Chlorophyll concentration/ suspended 1. Synoptical monitoring of vegetation
sediment indicators
2. Water quality/ dissolved organics 2. Inland water bodies monitoring
3. Shallow water depth/ bottom classification 3. Large scale (area) mapping

4. Relationship between sea water optical
properties and biophysical properties

5. Time series of biological and physical
processes

6. Global radiation absorption by turbid
water

7. Global and regional primary production

8.  Pollution monitoring/ coastal processes

The MERIS Scientific Advisory Group (SAG) was composed principally of scientists
with interest in ocean remote sensing and in the early 1990s more land and atmospheric
scientists joined the group. Nevertheless, the ocean group was most involved in
designing MERIS’s technical specifications and as a result these details were guided by
ocean applications.

Land applications form only a modest contribution to the mission goal; nevertheless
several researches have shown that MERIS has large potential for operational
investigations over land areas (e.g.(Clevers et al., 2004a; Clevers et al., 2004b; Van Der
Meer et al., 2000)). Its fine spectral and moderate spatial resolution could increase the
capability to monitor terrestrial environments at regional to global scales, and fills the
resolution gap between NOAA-like data and Landsat/SPOT-type data (Van Der Meer et
al., 2000). These features joined to the repetitive acquisitions of such measurements
should allow:

Description of the dynamics of ecosystems.

The quantification of deforestation and desertification processes.
The monitoring of biomass burning and agricultural production.
The documentation of land cover changes (Verstraete et al., 1999).
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3.1.3 LGN

LGN is a spatial database that provides an overview of the crops that have been growing
during a period in The Netherlands. It consists of raster cells of 25m by 25 m which
cover the entire Netherlands, and for each cell land cover is determined. The first
version was created in 1987 and since then four versions more have been produced, the
most recent, LGNS, in July 2005. They are based on satellite images from 1986-2004.
The database is widely used by national and regional government agencies for water
management, hydrological modelling, land-use planning and environmental
management (wwwl). For each update, the overall accuracy increased: LGN1 60%
overall accuracy, LGN2 75% and LGN3 85% overall accuracy, 75% accuracy for
individual classes. LGN1 and LGN2 were experimental databases with a limited
accuracy and important shortcomings. In the third version those problems were quite
solved and the use of LGN for ecological and environmental applications was strongly
improved (De Wit and Clevers, 2004).

LGN4’s creation was realised by a methodology of classification that allowed to reduce
costs, but to support high classification accuracy. A distinct advantage was the use of
the 1:10000 digital topographic vector database of The Netherlands. The nomenclature
of the LGN4 database contains 39 classes covering urban areas, water, forest, various
agricultural crops and ecological classes and the accuracy requirement was similar to
the LGN3 (85% overall accuracy, 75% accuracy for individual classes) (De Wit, 2003).
The production of LGNS is comparable with LGN4. Legend and production process has
been equal, offering the LGNS database the possibility to monitor the changes for the
period 1999-2004, since for this last update of the database satellite images of 2003 and
2004 have been used.

Both LGN4 and LGNS aggregated into nine main land cover classes have been used in
this study. These classes are: grassland, arable land, greenhouses, deciduous forest,
coniferous forest, water, built-up areas, bare soil (including sand dunes), and natural
vegetation.

For getting these nine classes, the LGN was resampled from 25 to 300m to match the
MERIS FR pixel size. The aggregation method was based on using a majority filter with
a kernel of 12 pixels (25m*12=300 m). The land use with highest abundance in the 12
by 12 kernel was used to label the new land use type (Zurita Milla et al., 2005).

3.2 Pre-processing data

A set of three Landsat TM and six MERIS images have been used in this research and
for obtaining the final images the next steps have been followed.

3.2.1 Landsat images

The sensor Landsat, images from platforms five and seven have been used in the present
study. The steps carried out have been:

Change of format: They were acquired as ERDAS Imagine format comprised,

they were decompressed and after converted to ENVI format. (To decompress
the information the image was multiplied by 1.0 in ERDAS MODELER).
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Geo-referencing: In addition to the change of format, the image was reprojected
into the Dutch National reference coordinate system (RD). In The Netherlands
all governmental offices concerned with spatial data use the national R.D. (Rijks
Driehoek) coordinate system. It is stereographic map projection with its origin in
Amersfoort (A= 5°23’15.500°°, longitude to the centre of projection, and
¢=52°9°22.178", latitude of the centre of projection) and the coordinates of the
origin are shifted to Xy=155000.000 m and Y (=463000.000 m.

Study area: By using LGN as mask, a data set only covering the part of The
Netherlands represented in Landsat images was extracted. Later taking into

account the MERIS images, a smaller study area was selected.

Table 5: Landsat TM Acquisitions

Date (dd/mm/year)

28/03/2003

10/07/2003

11/08/2003

This research is divided in two main parts, and although both use Landsat images,
there are some differences in the data set and also in the studied area:

(1) Justification subpixel level, where the optimal scale for the research is studied.

- Only Landsat image from 28 March 2003 is used.

- The size of the studied area is 1024 columns by 8096 rows pixels with 25 m
of size.

(2) Process of the data fusion.

- Three Landsat images are used.

— The size of the studied area is smaller than the previous one, since MERIS
images are used here, and there are some clouds in the North part. For this
reason the size of the studied area in this part is 984 columns by 5064 or
4320 rows depending on the images.

3.2.2 MERIS images

For the research we were provided with a set of MERIS level 1 images. To fuse these
images with the Landsat TM images, the dates should be as close as possible, thus the
proximity between the dates and cloud free, were the main criterions to choose the
MERIS image dates that we have used.

For the final MERIS images, the part of The Netherlands presented in the images was
cut applying the same mask as used for Landsat TM images. Previously to this step, the
image to be visualized in ENVI format with coordinates, GCPs were exported. In order
to do this; the software BEAM 3.2 is used (new version 3.3 is already available).
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The process followed:
1. In the software BEAM 3.2

- To import ENVISAT products (MERIS images)
- To obtain the geo-codes and export them as ENVI GCP.

2. In ENVI

- The option Map ASCII Coordinate Conversion is chosen, where the next inputs
have to be given: input projection (geographic lat/lon) and output projection
(RD stelsel).

- Finally, to warp the GCPs: Image to map, where polynomial 3 degree and
nearest neighbour were the selected options for obtaining the image with
coordinates.

In this way the images could be overlapped and a common study area was chosen. The
size of the final studied area is in Landsat image, 5076 rows by 984 samples, which is
corresponding to 422 rows by 82 samples in the MERIS images.

Accordingly to Zhukov, it is very important that the images are perfectly co-registered,
the co-registration errors should not exceed 0.1-0.2 of the low-resolution pixel size
(Zhukov et al., 1999).

Another processing step was to transform the MERIS images from DN to radiances. For
that the software EnviView has been used. EnviView is an application, which allows
opening Envisat data file and examinees its contents. The information required is the
value of the gains. The gains are used to optimise the sensor sensitivity, maximise the
instrument resolution and prevent detectors saturation. There is a different value for
each band.

L=Gain*DN

Equation 2: Transform DN into Radiance values

Where:

L: Radiance (mW/m?/sr/nm)
DN: Radiometric value or digital number (0, 2'°)
ax L min

m: .
216 ’

Gain=
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Table 6: MERIS Acquisitions

Sensing Start Procesed

Raw MERIS image
date date

MER_FR__1PNIPA20030218 101833_000000982014 00008 05072 _0094.N1 18/02/2003 02/04/2003
MER _FR_ 1PNUPA20030416 102705 000000982015 00323 05888 0177.N1 16/04/2003 19/07/2003
MER _FR__1PNUPA20030606 102410 000000982017 00051 06618 0176.N1 06/06/2003 19/07/2003
MER FR_ 1PNEPA20030714 102918 000000982018 00094 07162 0139.N1 14/07/2003 05/08/2003
MER_FR__IPNUPA20030806 100639 000000982018 00423 07491 0465.N1 06/08/2003 25/08/2003
MER_FR__IPNEPA20030809 101258 000000982018 00466 07534 0279.N1 09/08/2003 29/08/2003

Another pre-processing that could be made to MERIS images by using the software
BEAM is to correct the image for the smile effect. The BEAM Smile Correction
Processor is aimed to enable the user to calculate smile corrected radiances from
ENVISAT MERIS L1b products.

The images were corrected, but it was not possible with the MERIS image from 18"
February 2003 due to the input is an old version and do not contain some data necessary
for this process. For this reason, it was decided to work with MERIS images without
smile correction. Nevertheless, in case that this pre-processing was done. In a sequential
order the smile correction should be done at the beginning, before masking and
exporting GCP’s.

Why the smile effect is produced?

MERIS is measuring the reflected sun light using CCD (Charge-Coupled Device)
technique. A CCD is measuring in one of its dimensions one image line, and in the
other dimension the spectrally dispersed radiance for each pixel along the image line.
The spectral measurements of each pixel along an image line are made by its own set of
sensors of the CCD. This causes small variations of the spectral wavelength of each
pixel along the image. This is called smile “effect”.

Five cameras each equipped with its own CCD sensor compose the MERIS instrument
(see fig.8).The variation of the wavelength per pixel is in the order of 1 nm from one
camera to another, while they are in order of 0.1nm within one camera. In processing
algorithms which require very precise measurements the correction of this effect is
necessary. Therefore, the MERIS Level 2 processor corrects the smile effect. The level
Ib product is not smile corrected; this product provides the user exactly what the
instrument is measuring (BEAM, 2005).
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3.2.3 LGN

Five versions of LGN exist already. LGN4 aggregated into 9 classes (water, grassland,
arable land, natural vegetation, deciduous forest, coniferous forest, greenhouses, built
up and bare soil) has been the version used in the first part of the study because when
this point of the analysis was being studied, in May 2005, LGNS was not yet available.
In the second part, for making the confusion matrices of the final classified images,
LGNS classified also in 9 classes was used as ground truth.

Finally, table 7 summarises the data used in each part of the research, data for optimal
scale will be used in chapter 4, and for data fusion in chapter 5.

Table 7: Summary of images in the study

Landsat TM MERIS LGN (9 classes)
Optimal scale March 28™ - LGN4
TR e [
e I
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4. Justification of subpixel level

This chapter describes all the steps carried out to test which is the appropriate scale for
observing most of the changes in land cover and land use and the reason why we can
not use the information of MERIS FR directly.

This study is composed of three phases addressing (1) Selection of study area (2)
Application of a method using local variance and the use of landscape indices (3)
Evaluation of the graphs obtained.

4.1 Methodology
4.1.1 Studied area

The Landsat image does not cover the whole of The Netherlands, so the images LGN
and Landsat TM (28" March 2003) were cut with the same shape and then a studied
area was chosen following the next criteria:

1. The studied area should be cloud free in the Landsat TM image.

2. The studied area should contain the nine land covers in which The
Netherlands’ landscape has been classified.

3. The size should be taken into account for the analysis.

The selected area covers approximately 25.6 Km by 202.4 Km, from 51°24° to 53°13’
North latitude and 6°0° to 6° 22° East longitude. This is equivalent to 1024 rows by 8096
columns pixels with 25 m of size. This area represents The Netherlands’ landscape; the
nine representative classes appear in this zone and it is not covered by clouds.

The size of the image is important since the method using local variance to select an
optimal scale computes the local variance of the images at different spatial resolutions,
while still having a reasonable number of pixels to estimate local variance, there are a
limited number of times that an image can be degraded (Woodcock and Strahler, 1987).
Figure 9 shows the selected area.
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Figure 9: Studied area

Table 8: Percentage of each class in the studied area for Woodcock

Land cover %
Grassland 43,76
Arable land 19,32
Greenhouses 0,06
Deciduous forest 6,01
Coniferous forest 10,84
Water 4,40
Built-up 11,78
Bare soil 0,39
Natural vegetation 3,43

4.1.2 Optimal scale applying local variance method

The methodology that has been followed is a technique developed by Woodcock and
Strahler (1987). The local variance of the image is used as a criterion to know the
appropriate spatial resolution which is needed for obtaining the information desired
about the ground scene. Accordingly with the authors, if the spatial resolution is
considerably finer than the objects in the scene, most of the measurements in the image
will be highly correlated with their neighbours and a measure of local variance will be
low. If the objects approximate the size of the resolution cells, then the likelihood of
neighbours being similar decreases and the local variance rises.
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A graph shows how the local variance of a digital image for a scene changes as function
of the resolution cell size, and thus the spatial structure in the images is represented.

To measure local variance at multiple resolutions, the image data are degraded to
coarser spatial resolutions. A consequence of this is that the number of pixels decreases
as resolutions become coarser; for this reason, Woodcock, as a rule of thumb, proposes
that the minimum size of images used to measure local variance should be around 60
pixels for have an adequate number of pixels to estimate local variance.

To apply this method, a MATLAB® application has been programmed. This
application follows the next steps:

1. Choose the times that the scale of the original images is going to be
degraded. Thus, if five steps are selected, the image will be degraded from
25 to 50, 100, 200, 400 and 800 m pixel size. For computing the pixel value
after the degradation the mean between the pixels has been used.

2. The class to be examined is chosen. Each time that the program is executed,
a graph for the relevant class previously selected is drawn.

The mean local variance of an image is computed using a sliding window of size N.
N=3 is the window size recommended by the authors. The standard deviation of the
nine values is computed, and the mean of these values over the entire image is taken as
an indication of the local variability in the image. The function that executes the local
variance is mvarim_class.

Firstly, the mean of the variance of the image without degradation is computed,
afterward the original image is degraded and the successive local variances are
obtained. Consequently the classified image, LGN, has to be degraded also; a function
called majority_filter is used for this aim. This function makes a thematic aggregation
of the classified image.

As it has been said before, each time that the program is executed only one class is
examined, so for selecting it, we take solely the pixels bellowing to the chosen land
cover.

The figure 10 shows the flowchart of this procedure. Two matrices are supposed to be
the study area; the left one is LGN, each number corresponds with a land cover; to the
right is the Landsat TM and the numbers are the DNs in each pixel. In this
exemplification, the land cover named number 2 has been chosen, and only one step for
the degradation has been represented.
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Figure 10: Flowchart Woodcock MEAN
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4.1.3 Optimal scale using landscape indices
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The fragmentation of The Netherlands’ landscape has been studied through landscape
indices computed using “FRAGSTAT”. FRAGSTAT is a spatial pattern analysis
program for categorical maps; it quantifies the area extent and spatial configuration of

patches within a landscape.

Our landscape consists of nine classes. For a given landscape mosaic, “Fragstats”
computes several metrics at different levels: in each patch, in each class and in the

landscape mosaic as a whole.

We have studied this landscape in terms of classes and patches. Indicative indices of the
scale at which these classes can be observed, have been chosen.

Next the definition of these indices is given:

24



CA(ha); it is the total class area. It is equal to the sum of the areas of all patches of the
corresponding patch type. This measure indicates how much of the landscape is
comprised of a particular patch type.

PLAND(%); it is the percentage of landscape covered by a certain class. It is equal to
the percentage of landscape comprised of the corresponding patch type. Percentage of
landscape quantifies the proportional abundance of each type in the landscape.

NP; it is number of patches. It is the number of patches of the corresponding patch type.

LSI; it is Landscape shape index. Landscape shape index equals the total length of
perimeter involving the corresponding class, divided by the minimum length of class
perimeter possible for a maximally aggregated class. This index provides a measure of
class aggregation.

LSI>1, without limit

LSI=1 when the landscape consists of a single square or maximally compact patch of
the corresponding type; LSI increases without limit as the patch type becomes more
disaggregated.

The mentioned indexes have diferent relations with the level class. In the level of
patches, the area of the patches has been computed. This index is very useful for the aim
of this part of the research since we can see the number of patches with a determined
area making up the studied landscape.
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4.2 Results

4.2.1 Local variance

Nine classes comprising the landscape of The Netherlands were studied to check which
the optimal scale for observing the different land covers is. The function programmed in
MATLAB® was executed for each class. Graphs in figure 11 show the results obtained:

Optimal scale by mean
graziand arable land
00 100
{ - == fv
! e
50 f‘:*t1 1] S~
B — AR
gL 0
0 500 1000 0 §00 1000 800

band 1 ------- band 2 — — band3 —-—- band4 —— band S —%— band ¥

Figure 11: Optimal scale for different land covers
(X-axis: pixel size (m), Y-axis: local variance)

At first glance, the graphs do not show a clear result; nevertheless some conclusion can
be obtained by examining graph by graph. Together to the information in table 9, these
conclusions are commented.

Table 9 shows the pixel size where the local variance is maximum per band in the
different classes.
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Table 9: Pixel size where the local variance is maximum

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6
Grassland 800 800 100 100 200 100
Arable land 800 800 800 100 800 100
Greenhouses 50 50 50 100 50 200
Deciduous
forest 800 800 800 800 100 800
Coniferous
forest 800 800 800 800 400 400
Water 800 800 800 800 800 800
Built-up area 25 50 50 800 25 25
Bare soil 200 200 200 200 200 200
Natural 400 400 400 400 400 400
vegetation

It was expected that the optimal resolution was land cover and wavelength dependent,
but it has not been like this for many of the classes.

Three reasons could explain the incoherence between the different bands:
1) The spectral confusion between land covers in some bands.

Taking into account the reasoning of the authors about the relationship between local
variance and spatial resolution. It can be concluded that in bands where the local
variance is very low and the maximum is reached in pixel size of 400 or 800 meters,
there is spectral confusion between different land covers.

For example in the case of arable land in the band 5, the maximum in the local variance
is 800 m. This means that there is more than one class that has the same spectral
behaviour in this band, since in a pixel of 800 by 800 it is highly probable that there
exists more than one class mixed.

2) Low number of pixels to compute local variance

It was commented before that a minimum number of pixels to measure local variance
should be 60. The size of the images decreases in the following way:

Table 10: Size of image

25 50 100 200 400 600 800

row col row | Col | row | col | row | col | Row | col | row | Col | row | col
8096 | 1024 | 4048 | 512 | 2024 | 256 | 1012 | 128 | 506 | 64 | 253 | 32 | 126,5 | 16

We can see how for pixel size of 600 and 800 meters, the value of local variance can not
be representative, since the number of pixels is lower than the recommended minimum.
In fact, the land cover greenhouse for a pixel size of 400 meters can not compute local
variance since this class disappears. Moreover, the proportion of this land cover in the
scene is quite low; table 8 shows the percentage of each class in the selected area.
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3) Reviews to the method.

The spatial domain for mapping scale-specific structures of forest vegetation has been
object of study in the Peder Klith PhD thesis (Klith Bacher, 2003). Some aspects such
as the size of the window used to calculate the single values of local variance or the way
in which the pixels are aggregated to produce larger pixels in the process of constructing
the ALV (Average local variance) graph of the method proposed by Woodcock are here
criticized.

Although some of the instructions given by Klith could have been applied adapting the
function, this would need more time and this is not the main point of the scope of the
present study.

In spite of the graph not being as clear as was expected, we can see:

In the cases of land covers grassland, arable land, bare soil mainly in bands 4 and 7, a
clear maximum can be distinguished around 100 and 250 m as pixel size.

For the water all bands indicate an optimum pixel size of 800m, obviously large mass of
water are being considered, and not small rivers or lakes are detected with this method.
The pixel size more restrictive is 25 m in the land cover built up.

The obtained results showed that a MERIS pixel (300 by 300 m) will contain more than
one class, thus the subpixel level should be studied.

4.2.2 Landscape indices

Features of the landscapes were studied by using some indices that show the
fragmentation of the studied area. The same image analyzed in the previous section,
Landsat TM image from 28" March 2003 have been used here.

Table 11: Features of the landscape

TYPE CA (ha) PLAND (%) NP LSI
Deciduous forest 31147,87 6,01 13104 164,28
Coniferous forest 56152,62 10,84 11570 120,95
Built-up 61060,12 11,78 37792 248,00
Grassland 226726,12 43,76 22594 209,81
Water 2279481 4,40 4674 77,62
Arable land 100114,00 19,32 7680 147,22
Bare soil 2019,56 0,39 1475 41,23
Natural vegetation 17800,06 3,43 2569 66,13
Greenhouses 328,56 0,06 433 26,05

Almost half of the studied area is grassland, it appears with 43.75%. Arable land, built
up, coniferous and deciduous forest constitute the other 50 % of the landscape. The fact
that the percentages in the landscape are distributed between the different classes,
except in the case of the grassland, gives an idea of the fragmentation of the landscape.
Even more meaningful of this fact is the index LSI and the comparison between the
indices CA and PLAND with regard to NP. Although grassland covers more area its
LSI is 209.81, indicating that its distributions is scattered and not aggregated in a big
patch. Arable land is the second largest class and its LSI is around 150, so its
distribution is also disaggregated. The class built-up covers less percentage, 11.78%;
however is the class which more patches contain. Thus, it is indicated that the patches
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are given out in all the study area and because of that it is the class with the highest
value of LSI. In general the value of LSI is high with regard to the surface occupied by
each land cover which means that the landscape is quite fragmented. Figure 12 supports
this fact.
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Figure 12: Histogram of size of patches

Figure 12 represents the number of patches comprised in the landscape of the studied
area in The Netherlands.

This histogram represents clearly that the number of patches with an area of 0.0625 ha
and 0.25 ha is quite higher than the rest; these areas correspond with a pixel size of 25
and 50 m respectively. And no bars appear in pixel size for 400 and 800 m since only
one or two patches appear with that size.

This histogram explains also the necessity of studying subpixel level in the case of
MERIS images. The information in a 300 by 300 pixel size is coming from more than
one class.

We can observe some differences in the results obtained with both approaches; an
example is the land cover water. In the previous method where the local variance is
plotted as function of the pixel size, the optimum scale for studying this land cover was
800 m. It is obvious that in this result lakes or small rivers are not being taken into
account; however in the histogram it is seen, that there are almost 1000 patches with an
area of 0.0625 ha corresponding to water. So, it is other fact that indicates the necessity
to search an appropriate scale to make the analysis.
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4.3 Conclusions

The most important goal of this chapter was to define the landscape that has been
studied. Two approaches have been applied. Both of them show how for studying the
different land covers of the landscape, we need to go to a scale around 25 m. MERIS FR
has a pixel size of 300 m, thus the information has to be downscaled. Figure 11 and 12
and table 11 support this idea. The class built up is the class more representative. Graph
representing built up area in figure 11 shows a maximum local variance for a pixel size
of 25 by 25 m. In figure 12 it is this class is which presents a higher number of patches
with an area equivalent to this size of pixel. In table 11, it can be observed like built up
area covering an 11.8% in the studied area, contains more patches than other classes,
indicating the desegregation of this class.
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5. Data Fusion. Adaptive window methodology

After demonstrating the necessity of working at MERIS subpixel level, a process of
data fusion has been followed. A set of three Landsat TM and six MERIS images were
used in this research.

5.1 Methodology

This chapter describes all the steps carried out to test the feasibility of the algorithm
proposed by Zhukov et al.(1999), with Landsat and MERIS images.

The method is based on the classification of the high spatial resolution data which
succeeds in showing class boundaries clearly, afterward both images are overlayed and
the different classes inside of a MERIS pixel can be unmixed.

In the case of Linear Spectral Unmixing, we have the information of the mixed pixel
and also the spectral signatures of the individual materials that make up the mixed pixel;
the unknown parameter is the percentage in which those materials appear in the scene.
This method of Data Fusion presents the same equation, but the unknown parameter is
the spectral signature that the endmembers composing the mixed pixel would have in an
image with high spectral resolution, in our research MERIS. The percentage of the
classes is given by the high spatial resolution image, providing also the position where
the different classes in the mixed pixel are found.

The fused image has the spatial information of Landsat and spectral information of
MERIS.

Previously to getting the fused images, the next parameters will be optimized:

a. Number of classes in which the high spatial resolution image is classified.
b. Size of window with which the algorithm is applied to the entire image.

Different combinations of these parameters will be tested and the index ERGAS will be
used to check the quality of the fused images.

This indicator provides an accurate insight into the overall quality of a fused product
and it is considered better than other quality parameters (Wald, 2002). It fulfils three
requirements that a good indicator should have:

1. Itis independent of units.
It is independent of the number of spectral bands under consideration.

3. It is independent of the scales h and | (high and low resolution), making it
possible to compare results obtained in different cases, with different
resolutions.

After this, a supervised classification of the fused image has resulted in a land cover
map. The training areas have been selected based on the LGNS and the Maximum
likelihood classifier has been used to perform the classification. Finally, the error matrix
has been used to asses the classification accuracy. Figure 13 shows a schematic
overview of the procedure.
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Figure 13: Schematic overview of the Data Fusion analysis
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5.1.1 Process of data fusion

The main steps that Zhukov proposed to develop the process of data fusion have been
explained in section 2.3. This chapter shows how these steps have been carried out in
this research and how the terms of equation 1 have been obtained. Figure 16 shows a
schema where appear all the steps for obtaining the fused image.

Proportion of each class (C)

The first step in the process of data fusion was to search the proportion of each class in
a MERIS pixel. It was explained previously that Zhukov applied the unmix-algorithm
by using a sliding window. Each time that the algorithm is solved in a window, we
obtain a matrix where the percentages of each class in a MERIS pixel are represented.
This matrix will have as many rows as pixels in the MERIS window and as many
columns as number of Landsat TM classes. In the case that the MERIS window is 5 by
5 and the Landsat TM image is classified in 10 classes, the matrix fraction will have 25
rows and 10 columns. Therefore, the first line will contain the percentage of each class
inside the first MERIS pixel in the window. This matrix is called “C” in equation 1.
This process was implemented in MATLAB® and for obtaining the final matrices two
initial steps are needed.

Firstly “Propor _maxclass”, this function has as inputs: the classified Landsat TM image,
the number of classes in which the Landsat images were classified (10, 20, 40, 60 and
80), the sizes of the window that were tested (5, 7, 9, 11 and 13) and ratio
(ratio=TMpixel size/MERISpixel size).

Two outputs are obtained; one of them is a matrix of proportions, “propor’’; this matrix
has the size of the MERIS image and it has as many bands as classes appear in the
classified Landsat TM images. For instance, in a MERIS image with 422 rows and 82
samples, and a classified Landsat image in 10 classes, the size will be 422 x 82 x 10. In
each pixel the fractional percentage of each class in the correspondent MERIS pixel is
stored. In the first pixel of the first band appears the fraction of class 1 in the first
MERIS pixel. In the first pixel of second band, the fraction of class 2 in the first MERIS
pixel appears and so forth. At the end five matrices of proportions are obtained for each
Landsat TM date, since the Landsat TM image is classified in 10, 20, 40, 60 and 80
classes (see fig.14).

The other output is the maximum number of classes present in each window; each pixel
of the window has the size of a MERIS pixel, because of that we call it a MERIS
window.

[propor,maxclasses] = Propor _maxclasses (XC,sw,ratio,l )

Equation 3: Expression of the function Propor_maxclass
(Appendixes I, II, III: Propor maxclasses and subfunctions).

In a subsequent step this 3D matrix will be converted into a 2D matrix, being this matrix

equivalent to the parameter “C” in equation 1. This is a matrix that contains the
proportion of each class within a MERIS window.
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Figure 14: Example of the function propor_maxclass. In this case it is supposed a
landscape composed by 3 classes.

Radiances MERIS (S))

The other known parameter in the equation 1, is the Radiances MERIS (S;). Pixel value
is the name assigned to the value of each pixel in each MERIS channel. As it has been
explained, the equation 1 is applied to all MERIS pixels in a window. Thus, we obtain
as many pixel values as we have pixels in the window. For solving this equation, the
radiances in the MERIS window are represented as a column vector with the values of
the pixels in the MERIS window.

The MERIS image is crossing by a sliding MERIS window, and each window is
transformed to a column.
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The unknown parameter (L)

The only term of the equation 1 that is unknown is L. L, the endmembers, are the new
values of the classes in an image with 25 by 25 m as pixel size and 15 spectral bands.

Data fusion

Once the terms are defined, the equation is solved. The process of image fusion is
carried out by Zhukov. MMT, a function implemented in MATLAB ® (Appendix IV).
The output of this function is finally the fused image. The main inputs of the fusion
function are: the vector with sizes MERIS window (sw); the matrix maxclasses and
proportions obtained previously; the vector with different number of classes (XC); the
classified Landsat TM image (TM classified) and the method that is going to be used for
obtaining the endmembers, the different methods are explained in the next section.

5.1.2 Methods for unmixing

To solve the equation system, two methods have been proposed. These methods search
the best solution to solve the equation 3 in different ways. They could be subdivided in:

- Classical methods: They try to minimize the error of the equation 1.
- Current methods: They search the best solution, taking into account ill-posed
problems of matrices. These methods are said to apply regularization.

The results of equation 1 were restricted by a lower boundary and an upper boundary.
Because we are interested that the rank of the values were 0 to Lsat. Table 12 shows the
characteristics of these methods.

In appendix VIII some mathematical useful concepts to understand this chapter are
defined.

Table 12: Methods for unmixing

Method Meaning Characteristic
Constrained linear least
Squares » From MATLAB toolbox
Lsqlin = To solve the least optimization
square problem: ) » Does not apply regularization
Min0.5*(lc* L - 5]’
Non-linear constraint » From Michael Wendlandt
NLCSmoothreg . . S
smooth regularization = Applies regularization

Some problems were found with the function NLCSmoothreg, but with the help of the
author we have been able to apply it to solve our equations system.
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The syntax of this function is as follows:

gfit = NLCSmoothReg (spectrum, kernel ,lambda ,method ,guess ,tols ,tolg ,maxiter ,as ,Ib ,ub)

Equation 4: Expression of NCLSmoothreg; MATLAB® s application (Wendlandt,
2005)

The inputs of this function are: spectrum, in our case this input is the column vector
where the values of radiances in each MERIS window are represented; kernel, is the
matrix with the proportions of each class; the regularization parameter, /ambda; the
method of regularization, in our case Tikhonov; finally /b and ub meaning lower and
upper boundary. The rest of the parameters are established by the author. The output gfit
are the values of the endmembers.

Michael Wendlandt in his manual used a function of the L-curve proposed by himself.
However, using this function the shape of the curve was not similar to a “L”, thus it was
decided to determine the regularization parameter A with the application of the L-curve
proposed by Per Christian Hansen in Regularization tools (Hansen, 2001).

Another variable that has been included to test the best fused image is “aggregation”.
Zhukov in one of his articles (Zhukov et al., 1997) once the Landsat image is classified
suggests that the small classes of which the total area is less than 0.3 of the TM pixel
area are combined with the spectrally closest cluster. This pre-processing has been taken
into account in this research, and the fused images coming from classified Landsat TM
with classes combined and coming from classified TM image without any post-
processing were compared. A threshold of 0.1 was considered. To do this, the
application “aggregation_fraction” has been incorporated into a previous application
where the matrix “C” was obtained. Doing the aggregation supposes that the vectors
linearly dependents in that matrix will decrease consequently the conditional number
will also decrease, reducing its ill-posed condition. The conditional number of matrix
“C” will be computed to check if a method with regularization should be used.

Therefore, the quality of the fused images will be checked to conclude on the optimal
combination of these variables (combinations between methods with and without
regularization, with and without aggregation and the parameters previously commented,
number of classes and size of windows). Thus, we could give a conclusion about the
optimum combination of these variables. The resulting studied cases are combinations
of:
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Figure 15: Scheme of all tested combinations

- Lsqlin with aggregation — No regularization and aggregation.

- Lsqlin without aggregation — No regularization and no aggregation.

- NCLSmoothreg with aggregation — Regularization and aggregation.

- NCLSmoothreg without aggregation — Regularization and no aggregation

The last step for getting the fused images once the equation is solved in the MERIS
window is made with another application implemented in MATLAB® called
Recomposed_fused_col. This function arranges the fused pixels that are going to be
obtained when the equation 1 is applied in the MERIS window in each band. Finally,
when the 15 layers are fused, they are stacked by means of an application made with
DELPHI, Layerstack_stream.exe.

Running the program of Zhukov needs a processing long time. For this reason, to
choose the method to apply to all images and also to optimize the number of classes in
the TM image and the window size to solve the unmixing was made using one TM
image (28" March) and one MERIS image (18" February). With the decision made
from these results, the rest of the images will be fused.

What is Lsat?

Lsat is the maximum value of radiance that a valid MERIS detector can reach for a
given wavelength. A MERIS pixel may be affected by phenomena outside the range of
useful measurements; for instance, sun light, cloud, bright land or snow/ice. When this
has happened, the invalid value should be replaced by a good estimate (www?2).

Table 13 shows the values of Lsat per MERIS band; these values have been obtained
from the handbook of MERIS in the web of ESA. Once these values were applied, the
quality of some bands in the fused images turns out very poor. The reason is that the
used values of Lsat correspond to a tuning of MERIS optimised for Ocean observation-
MERIS’s primary mission. Claims from the land community that the InfraRed bands are
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of great scientific interest for land targets lead the Science Advisory Group to change
the MERIS settings significantly in order to accommodate for typical land targets
without saturation. The actual values of the saturation radiance Lsat were derived from
the measured calibration gains and the various parameters of the instrumental effects
correction. These values appear in the third column of table 13.

Although these values could solve the inaccuracy with these bands, the problem was
detected once the results had been obtained; because of that the values of Lsat for ocean
applications were used. Nevertheless, an improvement was tried. The program for doing
the data fusion was modified, and the process of data fusion was repeated for the case
that we considered providing the best results. The change in the program was to assign
the highest value that the endmembers values can take to the maximum value per
MERIS band instead of the values of Lsat found in the web of ESA.

Table 13: Lsat values for ocean and land applications

Spectral | Lsat (ocean) Lsat (land)
band ID (mW/mz/sr/nm) (mW/m*/sr/nm)
Bl 251.5 615.865
B2 268.3 689.226
B3 260.8 752.982
B4 240.1 695.869
B5 232.7 606.407
B6 214.2 532.228
B7 240.3 445.125
B8 199.2 450.968
B9 39.0 410.083
B10 383 563.201
Bl1 377 576.742
B12 30.0 236.120
B13 186.3 231.032
B14 26.0 369.742
B15 124.4 352.986
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5.1.3 Quality of the fused images

To validate the proposed method a quantitative analysis of the fused images was
performed. Fused images should be as close as possible to reality and should simulate
what would be observed by a sensor having the same features as MERIS but the highest
spatial resolution (Wald, 2002). The increase in the use of different methods of data
fusion in the last years has made that many remote sensing researchers worry about the
quality of these fused images (Acerbi-Junior et al., 2005b; Beauchemin et al., ; Garguet-
Duport et al., 1996; Thomas and Wald, 2005). Many of them agree that to establish
criteria to assess the quality of the fused images is not a simple task since the quality
assessment relies on several factors; for instance the type of landscape and the
resolution are decisive on the accuracy in the process of fusion (Thomas and Wald,
2005). Some of the parameters proposed in the literature have been used to check the
quality of our images.

First of all, the resampling of the fused images down to the low resolution has been
made, and the MERIS image was taken as reference. Any synthetic image once
degraded to its original resolution, should be as identical as possible to the original
image.

Comparison of both images has been based on their spectral characteristic and was
performed visually and quantitatively using statistical parameters and one quantitative
index.

The fused images were downscaled, using the mean, to the resolution of the MERIS
images.

In order to estimate the global spectral quality of the fused images we have used the
ERGAS index. The ERGAS index is a relative dimensionless global error index of the
fusion process. The error ERGAS exhibits a strong tendency to decrease as the quality
increases. Thus, it is a good indicator of the quality and behaves correctly whatever the
number of bands is because it uses for each band the RMSE relative to the mean of the
band (Wald, 2002).

The expression of this index is:

h|lg 2 2
ERGAS =1007\/FZ(RMS (B,)/ M?)

i=1

Equation 5: Formula of ERGAS index

1 & - 2
RMSE(B,) = .| " (B,(k) - B} (k))
NP5
Equation 6: Formula of RMSE
Where:

h, is the resolution of the TM images (h=25 m).
[, is the resolution of MERIS images (=300 m).
N, is the number of spectral bands (B;) involved in the fusion (N=15).
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M, is the mean value of each spectral band of the MERIS image.
RMSE, root mean square error.

NP, is the number of pixels.

B’ is the band of the downscaled fused image.

To optimize the number of classes, the size of window and to decide which methods for
solving the equation system provide the most accurate fused image, the ERGAS index
was computed for all the obtained images.

An optimum solution was not clearly found, thus we chose the combinations that had
given the best three values of ERGAS, and the fusion for all the dates was made those
combinations.

Then, the mean, the standard deviation, the correlation coefficient and root mean square
error (RMSE) were computed for the MERIS and the downscaled fused images. These
parameters allow us to determine the difference in spectral information between each
band of the fused image and the original image (Gonzéalez-Audicana et al., 2005).

5.1.4 Classification

Once we obtained the final fused image, the classification of them was performed by
using maximum likelihood algorithm, as it is the most popular for classification of
remote sensing imagery (Carvalho et al., 2004). This method is based on the assumption
that the frequency distribution of the class membership can be approximated by the
multivariate normal probability distribution. The probability P(x) that a pixel vector x of

p elements is a member of class i is given by the multivariate normal density
distribution (Mather, 2004):

P(x)= 27["()'5”|LST|_0'5 exp[— O.S(y‘S_ly)]

1

Where:

P(x); likelihood of x belonging to class i
|| denotes the determinant of the specified matrix

Si is the sample variance-covariance matrix for the class i
y=Xx-x

x_,. is the multivariate mean of class 1.

Figure 17 shows the concept of the maximum likelihood method.
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Figure 17: Maximum likelihood example

To apply this algorithm it is necessary to have some training areas in the fused images,
regions belonging to the different classes. This is data sampling.

Data sampling

Training data is required to classify the fused images. Taking as ground truth image the
LGNS aggregated to nine classes, some regions were marked of each class in the fused
image. For that, LGNS should contain the 9 classes in the selected studied area.
However some classes appear in very low percentage, i.e. greenhouses and bare soil.
The number of pixels that constitutes these training areas is shown in table 14. In table
15 the percentages of each class in the studied area are listed.

Table 14: Identified pixels per aggregated land use class constituting the training
areas

Land use Number of pixels

Water 2415
Built up 270
Arable land 2027
Grassland 1076
Bare soil 467
Greenhouses 13
Natural vegetation 289
Deciduous forest 76
Coniferous forest 1316
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Table 15: Percentage of each class in the studied area for the process of data fusion

Land use %

Water 4.27
Built up 14.47
Arable land 22.69
Grassland 3542
Bare soil 0.48
Greenhouses 0.07
Natural Vegetation 3.01
Deciduous forest 6.43
Coniferous forest 13.16

(Table 11 and 15 show different perecentages since table 11 is refered to LGN4 and
tablel5 to LGNS)

Accuracy matrix

Once the classification has been carried out we determined the degree of accuracy in the
end product. The most commonly used method of representing the degree of accuracy
of a classification is to build a & x k£ confusion matrix. The elements of the rows 7 of this
matrix give the number of pixels which the operator has identified as being members of
class 7 that have been allocated to class 1 to k£ by the classification procedure. Element i
of row i (the ith diagonal element) contains the number of pixels identified by the
operator as belonging to class i that have been correctly labeled by the classifier. The
other elements of row i give the number and distribution of pixels that have been
incorrectly labeled. The classification accuracy for class i is therefore the number of
pixels in cell i divided by the total number of pixels identified by the operator from
ground data as being class i pixels (Mather, 2004). Overall accuracy uses only the main
diagonal elements of the matrix; it does not take into account the proportion agreement
between data sets that is due to chance alone and because of this it tends to overestimate
classification accuracy (Congalton and Mead, 1983). In order to compensate for this, the
index Kappa or KHAT is used.

This index ranges between 0 and 1 and expresses the proportionate reduction error
achieved by a classifier as compared with the error of a completely random classifier
(Lillesand and Keifer, 2000). The formula for computing the KHAT is:

Overall Classification Accuracy — Expected Classification Accuracy

| — Expected Classification Accuracy

Equation 7: Formula for computing Kappa (Verbyla, 1995)
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5.2. Results

5.2.1 Conditional Number

First of all, the conditional number of the matrices “C” was checked to observe if it
would be advisable to apply regularization to solve the equations system.

Two histograms showing the distribution of the conditional number in the classified
Landsat TM image from 10th July 2003 for both cases, with and without aggregation,
are presented in the figures 18 and 19. These values correspond to the conditional
numbers of a matrix “C” obtained from a classified TM image in 20 classes and use of a
sliding window of 7 by 7 pixels.

Since we are working with a sliding window, as many matrices “C” as number of pixels
in the MERIS images are created. . The original size of the MERIS image is 422 rows
by 82 samples. When columns and rows affected by effect of the frame of zeros are
removed, MERIS image is 416 rows by 76 columns. Thus, 31616 matrices are obtained.
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Figure 18: Conditional number with aggregation (tm5_10072003)
(axis X: Conditional Number; axis Y: Probability density)
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Figure 19: Conditional number without aggregation (tm5_10072003)
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The histograms only represent conditional number in a rank from 0 till 250. The highest

value was infinite and once the infinite was removed, the values continue being very
high (table 16).

Table 16: Data of Conditional numbers

Fractions_agg | Fractions_noagg

Max Inf Inf

Num.Elem whose CN<Inf | 31353 31605

Max (once removed Inf) 6,2013e+046 3,1977e+140

Mean(once removed Inf) 1,9779e+042 1,0118e+136

As it is indicated in table 16, the maximum conditional number is infinite. It can be
observed that there are more infinites in aggregated matrices than in non aggregated.
When the infinite values are eliminated, the number of fractions non aggregated whose
conditional number is lower than infinite is higher than in the case of the fractions
aggregated. This fact can happen when there are areas composed in majority by the
same class. If the classes that appear in smaller proportion are combined, all the
neighbors’ pixels in that area will present the same vector of proportions. Then the
matrix will be ill-posed and will increase the conditional number.

However, when the infinite values are removed, the maximum conditional number is
smaller in aggregated matrices than in non aggregated. Also in the histograms, which
show the lowest values of the conditional number, it can be seen how they are smaller
once the matrices have been aggregated. The peak represents the conditional number
that appears more frequently; in aggregated matrices is 18.1 and in the case of non-
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aggregated matrices is 58.24. The values of the conditional number in non aggregated
matrices seem to be distributed along all the values; they do not appear with high
frequency around one value.

It can be concluded that the aggregation will improve the ill-posed condition of the
matrices, and a better solution should be obtained. However, the conditional numbers
continue being very high, consequently a method applying regularization should be
used. Nevertheless both methods, with and without regularization, and also, with and
without aggregation of the matrices, were tried for the Landsat TM image from 28"
March and the MERIS image from 18" February 2003. This was done only for those
dates, because to run the program to fuse the images takes a long time.

5.2.2 Quality of the fused images using upper boundary Lsat
Ocean

Once all combinations were computed to fuse the Landsat TM from 28" March and
MERIS from 18" February, the ERGAS index was computed as first approximation to
decide the best way to fuse the images (table 18 and 19). The shadow cells are the cases
in which there are a larger number of classes in the window than equations. Table 17
shows the number of classes per window for the cases in which it is not possible to
obtain a solution.

Table 17: Cases with no solution

Number of classes
er_ldow Numbgr of 40 60 30
size equations
5 25 40 60 79
7 49 40 (possible) 60 79
Table 18: ERGAS without applying regularization (Lsqglin)
Number of classes in Landsat TM image
Window size 10 20 40 60 80
5 3.247 2.970
3.458 3.530
7 3.242 2.963 3.105
3.452 3.525 3.953
9 3.238 3.571 3.380 3.214 3.089
3.447 3.524 3.952 4.701 Error**
1 3.237 3.570 3.395 3.432 3.319
3.446 3.902 4 4.503 5.945
13 3.234 3.834 3.699 3.581 3.482
3.445 3.901 4.002 4.507 5.964
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Table 19: ERGAS applying regularization (NCLSmoothreg)

Number of classes in Landsat TM image
Window size 10 20 40 60 80
5 3.48 3.259
3.846 Error**
- 3.471 3.243 3.053
3.835 3.902 4.076
9 ko 3.234 3.048 * ok
3.829 3.893 4.070 6.071 10.014
1 3.973 3.229 3.719 ** **
3.823 4.027 4.068 4.523 5.884
13 3.975 3.224 3.718 * ok
3.821 4.025 4.102 4.528 5.901

No aggregation | The matrix fraction in not aggregated

Aggregation The matrix fraction is aggregated

**The incomplete data have mistakes while the program was running in the case of the
errors or problem in the time for computing a band. It was decided not to continue with
the fusion, because this was requiring almost eight hours per fused band.

An ERGAS greater than 3 corresponds to fused products of low quality, while an
ERGAS lower than three denotes a product of satisfactory quality or better (Aiazzi et
al., 2004).

As we can see, the values obtained do not follow a pattern; it is difficult to conclude
which is the optimum number of classes and the window size to obtain the fused image.
Even it is difficult to decide the method, since it has turned out that “Isqlin” provides the
best results, which is the method that does not apply regularization. This fact was
unexpected; a method applying regularization should give better results than the other
since, like it was explained before, the purpose of regularization is to stabilize the ill-
posed problem and to single out a stable solution. Neither the aggregation has improved
the results.

In the case of the aggregation, the problem could be the threshold. We have checked a
threshold of 0.1, when the proportion of a class in a MERIS pixel is lower than the
threshold, a combination of this class with the rest of the class in the pixels was done.
This threshold should depend on the number of classes in which the Landsat TM image
is classified. For instance, the same threshold for a classified image in 10 classes will be
lower than a classified image in 80 classes, since with the same constraint many classes
can be lost in this second image.

Since a clear conclusion could not be obtained, each data set of images was fused with

the method, window size and number of classes that had given the smallest values of
ERGAS. The best combinations were:
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Method Number of classes Size of window

No regularization, 20 7

noaggregation — Isqlin_noagg 80 9

Regularization, no aggregation— 40 9
NLCSmoothreg_noagg

Once the fusion was made, the ERGAS index was computed and it showed values
higher than 3 for the rest of the data set of images. Table 20 presents these results.

Table 20: ERGAS for every date set of images

Lsqlin_noagg NLCSmooth_noagg
TM dates | MERIS dates | class20 ws7 | class80 ws9 class40 ws9
bl T T I o6
D
L0803 |0 0m05 | w17 | w0 5260

The values for the MERIS image from 18" February are a bit different to tables 18 and 19
because a mistake was detected after the fusion of all images. The values of the MERIS
image had lost the decimals to be multiplied by the gains to transform the values in
radiance. This error was corrected, and the final images have not this failure.

This index fails in measuring the spectral distortion, and it does not consider the
correlation coefficient (Aiazzi et al., 2004), thus some statistical parameters were
computed, in order to check if the ERGAS values were being distorted.

Figure 20 shows these parameters:

*Graph 20.a. Bias. The bias is computed like the difference between the mean of fused
image resampled to MERIS resolution and the mean of the original MERIS images. The
ideal is bias 0.

*Graph 20.b. Correlation coefficient. This measure indicates how well trends in the
values from fused image resampled follow the trends of the real values form MERIS
image. It is number between 0 and 1. A perfect fit gives a coefficient of 1.

*Graph 20.c. Standard deviation. The deviation with regard to the mean is measured. In
this graph the values from MERIS image are represented with (*) and the values from
fused image resampled with (-), each color corresponds to a date. Thus there are two
graphs of the same color for each date. The quality is better when both graphs are
similar.
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*Graph 20.d and e. RMSE absolute and normalized
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Figure 20: a) Bias; b) Correlation coefficient; ¢) Standard deviation;
d)RMSEabsolute; e)RMSEnormalized. Images from Lsqlin_noaggClass20ws7
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The five statistical parameters indicate a poor quality in the bands 9, 12 and 14. The
best values in these bands correspond to the fused image from 18th February (MERIS)
and 28th March (TM), for this reason the ERGAS values were better. The values of
ERGAS without taking into account these bands were computed and they improved
remarkably.

Table 21: ERGAS for 15 and 12 bands

Lsqlin_noagg NLCSmooth_noagg
™ MERIS class20 ws7 class80 ws9 class40 ws9
dates dates ERGAS ERGAS ERGAS ERGAS ERGAS ERGAS
15bands 12bands 15bands 12bands 15bands 12bands
78.03.03 18.02.03 | 3.092 2403 | 2.860 2.042 | 3.306 2.678
16.04.03 | 7.583 2.824 | 7.451 2.464 | 7.696 3.105
10.07.03 06.06.03 | 9.395 1.935 |9.333 1.593 |9.459 2.209
14.07.03 | 8.892 2.881 | 8.712 2.280 | 8.964 3.094
11.08.03 06.08.03 | 8.193 1.904 | 8.113 1.543 | 8.229 2.058
09.08.03 | 8.217 2.282 | 8.103 1.847 | 8.260 2.439

Table 21 shows values quite similar between the different methods. To decide finally
the best fused images, visual interpretation and comparisons between the spectral
profiles of the classes was made in the different images. A method without
regularization was decided to provide better results.

Figure 21 shows the results for fused images from MERIS image 14 July 2003 and
Landsat TM image 10 July 2003 and from MERIS image 28 March 2003 and Landsat
TM image 16 April 2003. To the left of the array appear the original MERIS (first) and
Landsat TM (second) images and to the right the three fused images obtained by the
three chosen combinations.

We can see how the images “3” present a dark frame corresponding to the padding
made for being able to compute the equations of unmixing also in the pixels in the
border. Also these dark pixels appear in some places in the images, they are indicated
with a red ellipse and it is clearer in the figure 22. This last fact made us to decide for
the method without regularization.

Between the other images there are no considerable differences. The spectral profiles of
some classes were compared (figure 23), but they were not decisive about the best
classification and window size.
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s NS ) s
Figure 21: Fused image from (a) MERIS14july+TM10july (b) MERIS 16April+TM
28March—Fused images (1) Isqlin_noagg 20 7 (2) Isqlin_noagg 80 9 (3)
NLCSmoothreg 40 9
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In figure 23, if band per band is checked, we can see the resemblance between the
spectral profiles from fused images and from original MERIS image. All the bands
show the same spectral signature as the original; only difference is found in the defaulty
bands 12 and 14 (red circle). The rest of the classes present the same conclusions, but
less for the land cover water, where the spectral profile of fused images as original
MERIS image is very similar for all bands.

Finally, the fused image obtained with a method not applying regularization, the
Landsat TM image classified in 20 classes and a window size of 7 by 7, was chosen for
making the supervised classification and later to obtain a map of land cover for The
Netherlands.

Classification

Maximum likelihood was the algorithm used to perform the classification of the image.
First, training areas distributed over the 9 classes were selected based on the LGNS,
constituting the regions of interest. The corresponding number of 25 by 25 m pixels
constituting these areas and subsequently to derive the spectral signatures of the
different endmembers is listed in table 14.

The spectral signature of the endmembers for each of the nine classes was derived and
later compared with the spectral signature obtained in a research carried out by Zurita
Milla et al. (2005). In this research the spectral signatures of the nine classes were made
from the image of 14™ July, using locations identified in the LGN4, the spectral
signatures from this study are belonging to the image of 14™ July also (figure 24).

In the plot obtained from the classified fused image, it can be observed how the spectral
signature of the greenhouses appears quite mixed with the rest of the classes making
this class with difficulty recognizable. Other difference between these two plots is found
in the problematic mentioned bands. They present low values of radiance, like the
absorbance peaks. These bands seem to be quite important to distinguish between land
uses, like arable land, grassland and deciduous forest whose spectral signature in the
visible part of the spectrum presents strong resemblance and they are better
distinguished in that part of the Near Infrared.

The classification results obtained are summarized in table 22.

Table 22: Overall accuracy and kappa coefficient

Overall accuracy | Kappa
18 February | 40.82% 0,3077
16 April 41.23% 0,3355
06 June 40.73% 0,2850
14 July 42.36% 0,3005
06 August 38,25% 0,1706
09 August 36,13% 0,1008

These percentages have been estimated without considering the land cover greenhouses.
Greenhouses appear in quite a low percentage in this area of The Netherlands, only
0.071 % (tablel5) and also quite distributed in the scene. It is possible that this
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percentage was not enough to estimate the spectral signature of this land cover, and the
spectral signature that we are obtaining does not belong to the pure endmember
greenhouse, thus a bad classification of this land cover is obtained and because of that it
is confused with the rest of the classes. If greenhouses were taken into account in the
classification, many pixels were associated to this class. For this reason it was decided
not to include them in the classification. The classification process depends on the
spectral information and any error in the synthesis of the spectral content of the fused
image will result in classification errors (Acerbi-Junior et al., 2005a)
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Once that the data were studied, it was concluded that the problem was the values of
Lsat obtained in ESA web (table 13, Lsat ocean).
The Lsat for these problematic bands is:

Bands | Lsat (mW/m”/sr/nm)
9 39.0
12 30.0
14 26.0

And the histogram obtained with the radiance values for bands 9 and 12 are:
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Figure 25: Histogram of the faulty bands

We see that the value of Lsat is exceeded greatly in case of band 12, and in case of band
9, most of the values are around Lsat. As it was explained in the previous chapter
(sec.5.1.2), these values correspond to the Lsat required for ocean applications. To
correct this problem a modification was made to the process of data fusion, and not the
upper boundary of Lsat was used. The results obtained with this change are shown in
the next section.

5.2.3 Quality of the fused images with new upper boundary

It was tried to optimize the classification by changing the upper boundary to the highest
value of radiance per MERIS band. Unfortunately, we did not dispose enough time to
repeat the process of fusion for all the possible combinations. As a consequence, the
process was repeated only for the combination previously selected: No regularization,
no aggregation, 20 classes and window size 7 by 7 pixels. Thus, the new fused images
were obtained and the same analysis made for the previous data was followed.

Now the ERGAS index, considering the 15 bands, has been improved, and also the
statistic parameters, Bias, Correlation Coefficient, Standard Deviation and RMSE show
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results very close to the ideal values that these parameters should have. Table 23 and
figure 26 show these results.

Table 23: New values for ERGAS (Lsqlin_noagg,Class20,ws7)

Fused images no Lsat | ERGAS
18 February 2,953
16 April 3,366
6 June 2,190
14 July 3,263
6 August 2,236
9 August 2,647
*Graph 26.a Bias.

*Graph 26.b Correlation coefficient.

*Graph 26.c Standard Deviation. As previously, each color is representing a date, the
original MERIS is marked with (*) and the fused image resampled to the MERIS pixel

size with (.).

*Graph 26.d and e. RMSE absolute and normalized.
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Figure 26: New values for a) Bias; b) Correlation coefficient; ¢) Standard deviation;
d) RMSEabsolute; ¢) RMSEnormalized.

Subsequently, the classification of the fused images was made. The spectral signatures
have been again obtained (figure 27). In this case bands 1, 2, 11 and 15 have been
omitted, since for these bands all classes are affected by external effects. Bands 1 (412
nm) and 2 (442 nm) are affected by the atmosphere, band 11 (760 nm) by oxygen
absorption and band 15 (900 nm) is influenced by water vapor absorption. Nevertheless,
the overall accuracy of the new classified images has improved little with regard to the
previous one. Neither the greenhouses have been included in this result, since when we
have tried to classify them; the rest of the classes were confused with them.

Table 24: Overall accuracy and Kappa coefficients

Fused Overall accuracy | Kappa | Landsat | Overall accuracy | Kappa
}2 izbr?ary jg:;ggf; 8;?22 28 March 60.69% 0,5136
(1)461 ;E?ye 32;??32’ 8;223 10 July 61.76% 0,5208
88 ﬁﬁgﬁz g;:iﬁﬁ 8:?;3; 11 August 55.44% 0,4470
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Figure 27: Spectral signature for the different dates.

We can check how the spectral signature for the greenhouses is quite mixed with the
rest of the classes, being in truth a class with a spectral answer completely different to
the rest of the class.

The first spectral profile, from 18" February, in this season of the year, the vegetation is
not very vigorous, so it is normal that the spectral profile of many vegetation classes
was quite similar to bare soil. In the case of images from 16™ April and 14™ July, the
spectral profiles are more clear, classes as grassland, arable land or deciduous forest can
be better distinguished. For this reason, the overall accuracy increases for these dates.
The poorest classification is coming from 6™ June, 6™ and 9" August. In the case, of the
image from June, it has some clouds in the image coming from MERIS, and in the other
two cases it is the Landsat image which presents some clouds from planes.

5.3 Conclusions and recommendations

The main purpose of this study was to check if there are advantages with regard to use a
fused Landsat-TM and MERIS image over Landsat-TM image when mapping and
monitoring land cover in The Netherlands. Nowadays, the LGN is based on Landsat TM
images and a high amount of auxiliary data, which is an expensive task. If an accurate
classification could be obtained with less extra-information, the process of land cover
mapping would be easier and cheaper.

By checking the table 24, it is obvious that the best classification is given by Landsat
TM images. However, some mistakes have been made during the research, and the
initial parameters that were going to be optimized, have been chosen without the
support of a solid criterion. How the data has been obtained and possible improvements
will be commented next.

The first checking has been to observe how the conditional number of matrix “C” was
affected when the application for the aggregation was included in the pre-processing to
obtain the classified Landsat images for the fusion. Although it was supposed that the
application would improve the quality of the fused image, it has not resulted in this way.
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This fact can be explained, because the threshold has not been established under any
criterion, and some points should have been taken into account. This threshold should
depend on:

The number of classes in the classified image.
The maximum number of classes in a MERIS pixel.

A 10% of the MERIS pixel area is equivalent to 14.4 TM pixels (1 MERISpixel=144
TM pixels). When the TM image is classified in 80 classes, the maximum number of
classes in a MERIS pixel is 57 for the Landsat image of 10th July (table 25). This
means that there are around 3 pixels per class (144/57=2.53); thus with a threshold of 10
% many classes are being lost.

Table 25: Maximum number of classes per MERIS pixel

Tm?7 280303 Tm5 100703 Tm5 110803
Number class. | Max class. || Number class. | Max class. | Number class. | Max class.
in the image in the pixel | in the image in the pixel | in the image in the pixel

10 10 10 10 10 10
20 19 20 20 20 20
30 28 30 28 30 28
40 32 40 35 40 33
60 41 60 48 60 48
80 49 80 57 80 52

Therefore the threshold should be lower.

The ERGAS values showed also, that a method without regularization gives better
results than one applying regularization. A reason that could explain it is that the
application “Isqlin” is a function that belongs to the “Optimization toolbox™ of
MATLAB®. This fact ensures us, that we are obtaining the best mathematical solution.
However “NLCSmoothreg”, the application proposed by Michael Wendlandt, maybe
not a general application for all cases of ill-posed problems. Some reasons, why it could
be failing, are:

- The input “guess”: this parameter gives a first estimation for the values that the
endmembers should have. A rough guess of the solution is being given with this
parameter; however we do not know the solutions that can be obtained.

— It is not sure that the retrieval of parameter lambda was suitable.

Subsequently, to optimize the parameters in the method, the number of classes in the
high spatial resolution image and the size of the window where the algorithm is applied
was chosen by checking all the combinations with a MERIS and Landsat image. The
chosen images were from 18" February (MERIS) and 28™ March (Landsat TM). In this
season of the year, classes like arable land, deciduous forest or grassland do not show a
representative spectral profile of the vegetation, since they are mainly bare soil. It would
have been more appropriate, to optimize these parameters with dates where the classes
were better defined.
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Also the problem with the values of Lsat has brought about that these parameters had
not been optimized correctly. Only one combination was tested with a correct upper
boundary, but it was not clear that it was the best combination to get the fused images.

Therefore it can not be stated that a fused image is not useful to map land cover since

those variables were not correctly optimized. If the previous comments are taken into
account for next researches, it could be possible to improve the obtained classifications.
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6. Overall conclusions

This chapter summarizes the main conclusions of the two previous ones i.e. the
justification of studying subpixel level and the process of data fusion.

Two methods have been tested to search the scale that gives the best

visualization of the study area. To give a specific answer for this question is difficult
since not all land covers present the same features and to find a appropriate common
scale for all classes is not possible. But, the clear conclusion obtained is that the MERIS
information has to be downscaled. An area of 300 by 300 m’ is made up of many
classes. The more restrictive scale was given by the class built up. Finally it was
decided to downscale the MERIS information to the scale of Landsat TM, 25 m.
The indices CA, PLAND, NP and LSI have been used as indicative of the features of
the landscape. CA and PLAND give information of abundance of each class in a
specific landscape. The number of patches (NP) with regard to these indices and LSI
show the distribution of each class, whether the class appears to be spread over the
landscape or grouped in big patches.

Subsequently, a data fusion technique was applied between Landsat TM and
MERIS image and some indices were computed to check the quality of these images.
The main goal of this research was to check the accuracy that a classified fused image
presents with regard to the classified image from a Landsat TM. The fused image has
the spatial information of Landsat (25 m) and spectral information of MERIS (15
bands), so the fused image should contribute to improve the information that each
individual image gives. However, the final results do not support this hypothesis. But,
as it has been explained in the previous chapter, some problems were had during the
analysis and the fused image has not been obtained with all the parameters correctly
optimized.

One of the mistakes was the values of Lsat. When this values were changed the results
obtained with regard to the previous one improved. The overall accuracy of the new
classified images increases a 6 %. Therefore it is probably to get better fused images if
the parameters are successfully optimized.

The quality of the fused images was checked with ERGAS and statistical parameters
(i.e. correlation coefficient, standard deviation, bias). ERGAS is a good index, since it
takes into account many measurements and presents good features that a quality index
should have. However, it fails in measuring spectral distortion; for that reason the other
statistical parameters were also computed. Visual analysis, although it can be
subjective, is also useful in the quality assessment. When the fused images were
visualized, dark pixels in one of the images made us to decide to choose a method
without regularization.

To complement this research, some studys could be made in this area. For instance,
studying multitemporal classification. Also to check if adding the middle infrared band
(MIB) from Landsat to the fused image could improve the classification. Because,
MERIS although has high spectral resolution, their bands are highly correlated.

After this discussion, we find that it is worthy to investigate the improvements that have

been commented. If an accurate optimization is achieved, then the fused image can be a
promising alternative for land cover mapping.
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APPENDIX I: PROPOR_MAXCLASSES

function [propor,maxclasses]=Propor_maxclasses(XC,sw,ratio,l)

% The output of this function are propor and maxclasses.

% propor is a 3rD matrix of size MERIS image and such bands as number

% of classes

% maxclasses is a matrix of two columns where it is represented in the

% First column the different size of window (MERIS pixel) and in the
second column the max number of classes in that window size.

% XC #s number of classes

% sw Is a vector with the different window sizes

% ratio is pixelSizeMERIS/pixelSizeLandsat_TM

% I is the classified Landsat image

% classes per pixel and proportions

[CL _pixel, propor,max_class_in_one_pixel]=ClassProportion(l,ratio,XC);
propor=single(propor);

clear I CL_pixel max_class_in_one_pixel

for ii=1:length(sw)
% For processing with a sliding window of size sw*sw

ws=(sw(ii));
% computing the cond number, number of classes in a sw*sw MERIS window
[cond_number_matrix,number_classes_matrix]=Cond_numberclasses_nofractions(propor,ws);
% compute max number of classes in a sw*sw MERIS window
maxclass=max(number_classes _matrix(:));

maxclasses(ii, :)=[ws maxclass];

clear number_classes_matrix cond_number_matrix
end

maxclasses
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APPENDIX II: ClassProportion

Function
[CL_PIXEL,PROPORTIONS,MAXNUMCLASSES]=ClassProportion(l,WS,NumClasses)

% This Tfunction has been created to get the proportion of the
different

% classes that there is when a MERIS pixel is overlaped on TM pixel

%

[CL_PIXEL,PROPORTIONS,MAXNUMCLASSES]=ClassProportion(l,WS,NumClasses)
%

% I is a classified TM image

% WS is the window size (12*12)MERIS=300m ; TM=25m

% WS is the sqrt of the number of TM pixels in a MERIS pixel

% NumClasses is the number of classes in which TM has been classified
% CL_PIXEL is a matrix where it is represented the amount of classes

% into each MERIS pixel

% PROPORTIONS is a multiband matrix where it is represented the

% proportions of each class in each pixel. A band per class

% MAXNUMCLASSES is the max number of classes there exist in a MERIS
pixel

% Size of TM image
sizel=size(l);

% Size of the window
n=Ws;

% Size of MERIS"image
sizeML=[sizel (1)/n sizel(2)/n];

%number of classes
c=NumClasses;

% blok processing
CL_PIXEL= blkproc(l,[n n],@histc_ml,n,c,sizeML);

disp(“loading the propotion file")

load ML2file;
PROPORT IONS=ML2;

delete ("ML2file.mat")

MAXNUMCLASSES=max(CL_PIXEL(:)):
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APPENDIX Ill: Cond_number_nofractions

function
[cond_number_matrix,number_classes matrix]=Cond_numberclasses nofracti
ons(A,windowsize)

% A Is the matrix where each class fractions is stored in a band

% The output will be FRACTIONS, matrices with pixels in lines and

% proportions in columns, the condition number of these matrices and
the % number of classes iIn each matrix.

% windowsize: sliding window

% nc @s the number of classes of the classified image

% Conditional number similar to 1 means that the matrix is singular,
it % has linearly independent vector.

% number_classes in the pixels of the window

A;

sw=windowsize;

nc=size(A,3); % A is coming from ClassProportion.m and the number of
bands is the number of classes

a=(sw-1)/2;

AA=zeros((size(A,D)+(2*a)),(size(A,2)+(2*a)),nc);
AA((1+a):(size(AA,1)-a),(1+a):(size(AA,2)-a),:)=A;

B=zeros(sw,sw,nc); %initialising outputl (it is the cube that will be
transformed in a matrix)

contar=0; % init the counter

for i=l+a:size(AA,1)-a
for j=l+a:size(AA,2)-a
contar=contar+1;
B=AA(i-a:l:i+a,j-a:l:j+a,:);

% calling the function extract3rdD
C=extract3rdD(B); % C has (sw*sw) rows and (nc) cols

% To know the columns that are non-zero
C=C(:,any(C));

% To compute conditional number
cond_number(contar)=cond(C);
number_classes(contar)=size(C,2);

% keep the C matrix (OUT OF MEMORY, because of that was
decided % to remove it)
% FRACTIONS=C;
end
end

% changing to a matrix format
cond_number_matrix=reshape(cond_number,size(A,2),size(A,1))";
number_classes_matrix=reshape(number_classes,size(A,2),size(A,1))"

pack
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APPENDIX IV: ZHUKOV_MMT

function

fused_image=Zhukov_MMT(sw,maxclasses, XC,propor ,nbandMERIS, rootTM, rootM

ERIS,TM classified,ratio,method)

%Fused_image=Zhukov_MMT (sw,maxclasses, XC, propor ,nbandMERIS, rootTM, root

ME% RIS,TM classified, ratio,method)

% This function obtains a fused image aplying the methodology proposed

% by Zhukov et al. 1999
%

% The algoritm is executed in each pixel of the MERIS image by sliding

% window.

% sw Is a vector with different window sizes.

% maxclasses is the maximum number of classes existing in the MERIS
% window

% XC @s the number of classes in which the TM image has been
classified

% propor is a matrix coming of ClassProportion

% ratio=pixelsizeTM/pixelsizeMERIS

% method, four methods are proposed for solving the equation.Two of
them % apply regularization.

%

% Mariluz Guillén Climent

% 12-jul-2005

% V.01

% loop for each window size
for ii=1:length(sw)

% PS(possible solutios) is a matrix where is indicated the minimum
size % window that can solved a number of classes

maxclass=maxclasses(ii,2);
PS=possible_solutions(maxclass,sw(ii));
if PS==1
% padding of the proportions
nc=size(propor,3); % the number of bands is the number of
classes
a=(sw-1)/2; % frame that is going to be pad

% Cube of zeros

propor_pad=zeros((size(propor,1)+(2*a)), (size(propor,2)+(2*a)),nc);
% Matrix propr inside of the cube
propor_pad((1+a):(size(propor_pad,l)-a),(1+a):(size(propor_pad,2)-
a), I)=propor;

% loop for each band of MERIS

for bb=1:nbandMERIS
%load the bb band of the MERIS image
subsetband={"band" ,bb};
%for each cut MERIS image
dirMERIS="";

[M]=multibandreadenvi2(fileMERIS, (subsetband));
% getting the size of MERIS
[nFilM ncolM]=size(M);

% padding with NaN

71



a=(sw-1)/2; % frame that is going to be pad
Mpadded=zeros((nfiIM+2*a), (ncolM+2*a)); % padding with

zeros
Mpadded=Mpadded./Mpadded; % changing zeros to NaN
warning off
% putting the band inside the NaN matrix
Mpadded((1+a):size(Mpadded,1l)-a, (1+a):size(Mpadded,2)-
a)=M;

% finding the MERIS elements

mask=isfinite(Mpadded); %Real number is 1, NaN is O.
indicesmeris=find(mask==1);

[filameris colmeris]=fFind(mask==1);

% checking that the mask is correct
if length(indicesmeris)== nfilM*ncolM %numel(M(:, :,bb))

% init the output
fused_window=zeros(ratio, ratio,nfilM*ncolM);

% loop for all meris pixels

for iii=1l:length(indicesmeris)
clear endmembers indicesofclass
% Pixel Value
PV=pixvalue(Mpadded,sw,colmeris(iii),Ffilameris(iii));
%Files and columns are changed because the image has been
transposed
% Fractions
[F,nameclasses]=fractions_pad(propor_pad,sw,Filameris(iii),colmeris(iii))

if method==1;% no regularization no upper-lower boundaries
endmembers=1sgnonneg(F,PV);

elseif method==2;% no regularization yes upper-lower

boundaries

indicesPV=Find(isnan(PV));
PV(indicesPV)=0;
Isat=max(max(M(:,:,bb);
Ib=zeros(length(PV),1);
ub=ones(length(PV),1).*Isat;
endmembers=Isqlin(F,PV,[1.[1.[1.[1.1b,ub);

elseif method==3;% yes regularization no upper-lower
boundaries
% regularisation Tikhonov
[U,s] = csvd(F);
reg_corner = 1_curve(U,s,PV,"Tikh");
endmembers=maxent(F,PV,reg_corner);
elseif method==4;% yes regularization yes upper-lower
boundaries
[U,s] = csvd(F);
reg_corner = 1_curve(U,s,PV,"Tikh");
Ib=zeros(size(F,2),1);
ub=ones(size(F,2),1)*Isat(bb);
guess=ones(size(F,2),1);
tols=1le-7;
tolg=1le-5;
maxiter=100;
indicesPV=Find(isnan(PV));
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PV(indicesPV)=0;

[endmembers, rho,eta]=NLCSmoothReg(PV,F,reg_corner, "TIK" ,guess,le-7,le-
5,100, "off",1b,ub);
end

% Getting the TM pixels belonging to the central

% MERIS pixel
TM_window=window_blk col (TM_classified, ratio, i1ii);

% convert to double

TM_window=double(TM_window);

% putting each endmember in its place
% number of classes MERIS for the central pixel of
% the kernel sw*sw

nameclasses_centralpixel=nameclasses(nameclasses>0);
for jj=1:length(nameclasses_centralpixel)

indicesofclass=Find(TM_window==nameclasses_centralpixel(Jj));
TM_window(indicesofclass)=endmembers(jj);
end

% storing all the fused windows of 12 by 12 by all
% meris pixels
% fused_window(:,:,iii1)=TM window_endmembers;

fused_window(:,:,ii1)=TM_window;
end

% recompose the fused image
fused_image(:, :)=recompose_fused_col (fused_window, [nfilM
ncolM]);
else
disp("bad programmer!*®)
end % closing the if

workdir=pwd;

% directory where the results are going to be stored
newdir="";

cd (newdir)

eval ([ "writeenvi(fused_image, " "fused " ,num2str(bb)," ",rootTM,"",num2s
tr(XC)," ",num2str(sw(ii)),” ",rootMERIS,".bsq"") "D

cd (workdir)
% free some memory
pack
end % clossing bands
else
disp(“"not enough equations!*®)
end % closing the if PS

end % clossing sw
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APPENDIX V: Pixelvalue and fractions

function PV=pixvalue(Merispadded,windowsize,contadorfila,contadorcol)

% PV=pixvalue(Merispadded,windowsize,contadorfila,contadorcol)

%

% Merispadded is a band of the MERIS image already padded for the ws
%

% contador is from the image MERIS

% init the output in matrix format
temp=zeros(windowsize,windowsize);

Merispadded=Merispadded” ;

a=(windowsize-1)/2;
temp=Merispadded([contadorfila-a:1:contadorfila+a], [contadorcol-
a:l:contadorcol+a]);

PV=temp(:);

function
[FRACTIONS nameclass]=fractions_pad(AA,windowsize,contadorfila,contadorcol)

% AA 1s the matrix where each class fractions is stored in a band

% (proportion matrix)

% windowsize: size of the (MERIS) sliding window

%

% FRACTIONS is a matrix where the proportions of each class per pixel
% are represented

% the number of pixels of a MERIS window are in lines and the number
of % classes iIn that window in columns

% nameclass iIs a vector where are represented the classes exist in
each % window

%initialising outputl (it is the cube that will be transformed in a
% matrix)

sw=windowsize;

nc=size(AA,3);

a=(sw-1)/2;

B=zeros(sw,sw,nc);

%cutting AA according to the windowsize
B=AA([contadorfila-a:1:contadorfilat+a], [contadorcol-
a:1l:contadorcol+a],:);

% calling the function extract3rdD

C=extract3rdD(B); % C has (sw*sw) rows and (nc) cols

% removing cols full of zeros=the classes that are not present in
% the C matrix

classespresent=any(C);% Vector with O if the class does not exist in
that MERIS window and 1 if the class exists
nameclass=[(1:nc).*classespresent];

FRACTIONS=C(:,any(C));
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APPENDIX VI: QUALITY INDEXES function

%Ergasv3

% The index ERGAS is computed for each dates LandsatTM and MERIS with
a

% determinated number of classes and size window.

%Cleaning

ccc

% Inputs
pixelsizeMER1S=300;
nbandMER1S=15;
pixelsizeTM=25;
ratio=pixelsizeMERIS/pixelsizeTM;
%Number of classes
classLandsat=[20];
%size windows
MERISwindow=[7] ;

% method for resampling
method="mean" ;

%common root for the fused image

root_fused bands="fused_ ~;

% root of the different Classified Landsat images
rootTM{1}="tm7_280303 Class";
rootTM{2}="tm7_280303 Class";
rootTM{3}="tm5_ 100703 Class";
rootTM{4}="tm5_100703 Class";
rootTM{5}="tm5_110803 Class";
rootTM{6}="tm5 110803 Class";

% directory where fused images are stored
dirFused_band="F:\Fused_6images 20 7\~;

% root of the different MERIS images
rootMERIS{1}="M_rad_MER_20030218";
rootMERIS{2}="M_rad_MER_20030416";
rootMERIS{3}="M_rad_MER_20030606" ;
rootMER1S{4}="M_rad_MER_20030714";
rootMERIS{5}="M_rad_MER_20030806" ;
rootMERIS{6}="M_rad_MER_20030809" ;

% The bands 9,12 and 14 are usually distorted the ERGAS index
%bands=[1 2 3 456 7 8 10 11 13 15];

% directory where MERIS images are stored
dirMERIS="C:\Documents and Settings\M& Luz\Mis

documentos\Mar i LuzZ\WAGENINGEN\ Imagenes\MERIS\MERIS_dec\";

%Initializing ERGAS. This column vector represents the index ERGAS for
each

%image in the diferent dates.
ERGAS_fusedlImage=zeros(length(rootT™M),1);

%Initializing the output. In each line is represented the RMSEnorm per
band

%of each LandsatTM and MERIS dates

RMSEmatrix=zeros(length(rootTM) ,nbandMERIS) ;
%RMSEmatrix=zeros(length(rootTM), length(bands)); %It is another option
if the bands 9,12 and 14 aren”t taken into account.
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CC_matrix=zeros(length(rootTM),nbandMERIS) ;

countroots=0;
for root=1:length(rootMERIS) %loop for each image
countroots=countroots+1;

CTM=num2str(classLandsat);
MW=num2str (MERISwindow) ;

% making sure that in the first moment this number is equal to
zero
templ=0;

counterbands=0;

for bb=1:nbandMERIS % loop for all bands
%For bb=1:length(bands) %loop for all bands unless 9,12 and 14
counterbands=counterbands+1;

% This is for load only a band of the fused image in each loop
subsetband={"band" ,bb};
%subsetband={"band" ,bands(bb)};

% load the fused image band

fileFused band=strcat(dirFused_band,root fused bands,rootTM{root},CTM,
" "LMW, " ", rootMERIS{root}, " .bsq");

fused=multibandreadenvi2(fileFused_band, (subsetband));

%removing the frame effect
fused=remove_frame(fused,MERISwindow, ratio);
fused=double(fused);

% fused image to MERIS pixel size
switch method
case "bicubic”;

fused_resampled=imresize(fused,1/(pixelsizeMERIS/pixelsizeTM), "bicubic
");
case "mean”
fused_resampled=blkproc(fused, [ratio ratio],@meanmv);
end

maxFR=max(fused_resampled(:));
minFR=min(fused_resampled(:));
meanFR=mean(fused_resampled(:));
stdFR=std(fused_resampled(:));

% load the MERIS image band

fileMERIS=strcat(dirMERIS, rootMERIS{root}, " .bsq");
MERIS=multibandreadenvi2(fileMERIS, (subsetband));

% removing frame for checking with fused_resampled image
MERIS=remove_frame(MERIS,MERISwindow,1);
MERIS=double(MERIS) ;

max_MERI1S=max(MERIS(:));

min_MERIS=min(MERIS(:));

mean_MERIS=mean(MERIS(:));

std_MERIS=std(MERIS(:));
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cc=corr2(fused_resampled,MERIS);

%root mean square error(rmse) between MERIS and
fused_resampled

%image

frmse=rmse_matrix(MERIS, fused_resampled);

frmse2=Frmse”2;

mean_MERI1S2=mean_MERI1S"2;

templ=templ+(frmse2/mean_MERI1S2);

% Checking if some band is distorting the ERGAS value
RMSEnorm(counterbands)=frmse/mean_MERIS;
RMSEabs(counterbands)=frmse;
CorrCoef(counterbands)=cc;
MEANBIAS(counterbands)=(mean_MERIS-meanFR) ;
STD(counterbands, :)=[std_MERIS stdFR];

end %closing bands

%RMSE_matrix stores per line the RMSEnorm of the bands for the
%different fused images

RMSEmatrix(countroots, :)=RMSEnorm;

RMSEmatrixABS(countroots, :)=RMSEabs;

%Statistical parameters matrices store per line the statistic
%results per band

CC_matrix(countroots, :)=CorrCoef;

MEANBIAS_matrix(countroots, :)=MEANBIAS;
STD_matrix(:,countroots*2-1:countroots*2)=STD;

% Calculating ERGAS

ERGAS=(100*(pixelsizeTM/pixelsizeMERIS))*sqrt((1/size(MERIS,3))*templ)

% ERGAS_ fusedlmage stores the ERGAS for each dates of T™M
% and MERIS image
ERGAS_fusedlmage(countroots,1)=ERGAS;

end %closing roots
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APPENDIX VII: CONFUSION MATRICES
Landsat image from 28 March 2003

. . . Total
Class g//\:ater Arableland% Grassland% Baresoil% \';leaéléglﬁon% E)ercelsdtg/;)us fcc)?gggz)ous 5;')/': %
Water % 72,81 0,01 0,17 1,27 0,02 0,08 0,05 0,15 3,21
Arable
land % 1,31 38,44 4,48 10,59 1,05 0,64 0,27 5,42 11,31
Grassland
% 2,84 18,5 67,11 4,08 0,76 9,74 1,04 10,29 30,4
Baresoil % 2,1 13,69 3,4 55,87 2,75 0,59 0,4 285 5,25
Natural
Veg % 0,69 1,13 1,29 4,49 64,42 5,31 295 1,38 3,64
Deciduous
Forest % 4,23 4,16 6,55 8,17 22,62 60,06 18,99 10,28 12,03
Coniferous
Forest % 2,03 0,25 2,14 3,55 4,79 14,13 71,01 3,09 11,78
Built up % 14 23,81 14,86 12 3,59 9,45 5,27 66,56 22,38
Total % 100 100 100 100 100 100 100 100 100
Overall accuracy = (3022053/4979391) = 60,69 %; Kappa Coefficient= 0,5136
Landsat image from 10 July 2003
cl Water Arableland% Grassland% Baresoil% Natural Deciduous Coniferous  Built- Total
ass 0 0 ° vegetation% forest% forest% up% %
Water % 67.91 0.01 0.08 0.40 0.05 0.03 0.05 0.04 2.95
Arable
land % 11.15 45.27 16.91 7.40 1.01 6.75 1.62 11.81 19.16
Grassland
% 257 26.80 62.10 4.46 3.46 9.77 1.20 7.05 30.14
Baresoil % 0.94 2.72 1.48 61.57 2.55 0.11 0.36 2.87 2.02
Natural
Veg % 455 0.71 2.72 4.92 77.02 1.37 5.76 1.16 4.69
Deciduous
Forest% 1.07 13.54 4.21 1.94 1.90 67.43 15.27 1.98 11.31
Coniferous
Forest% 3.25 0.55 1.57 1.84 4.44 9.24 68.88 2.29 10.97
Builtup% 8.57 10.40 10.92 17.46 9.58 5.31 6.86 72.79 18.76
Total % 100 100 100 100 100 100 100 100 100
Overall Accuracy = (3075391/4979391) = 61.76%; Kappa coefficient= 0.5208
Landsat image from 11 August 2003
Water o o 10, Natural Deciduous Coniferous  Built- Total
Class % Arableland% Grassland% Baresoil% vegetation% forest% forest% up% %
Water % 54.64 7.85 21.77 6.38 10.88 2.05 2.99 29.69 14.59
Arable
land % 5.83 45.49 2.58 16.93 1.84 5.92 0.87 4.81 21.30
Grassland
% 0.07 0.18 54.96 0.01 0.00 0.05 0.01 0.83 2.36
Baresoil % 26.84 35.92 8.46 64.21 19.01 16.89 464 2551 32.70
Natural
Veg % 2.50 2.14 1.33 0.71 58.28 1.59 7.81 255 4.35
Deciduous
Forest % 2.65 4.25 3.17 9.29 1.26 54.44 13.57 2.10 9.52
Coniferous
Forest % 7.33 4.05 7.42 2.42 8.52 19.06 70.04 5.85 14.94
Built up % 0.13 0.12 0.32 0.03 0.21 0.00 0.08 28.66 0.25
Total % 100 100 100 100 100 100 100 100 100

Overall Accuracy = (2354685/4247416) = 55.4381% ; Kappa=0.4770
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Fused image from TM 28 March and MERIS 18 February

. . . Total
Water . Natural Deciduous Coniferous Built-

Class % Arableland% Grassland% Baresoil% vegetation% forest% forest% up% %
Water % 62,14 0,8 1,74 2,57 0,08 0,35 0,22 1,2 3,69
Arable
land % 0,71 26,75 2,28 1,1 0,65 1,18 0,37 3,11 7,51
Grassland
% 7,13 28,38 52,83 7,78 3,28 14,25 3,72 17,2 29,51
Baresoil % 1,97 3,11 2,89 35,29 3,96 3,05 3,24 2,41 3,07
Natural
Veg % 0,69 0,68 1,45 3,23 46,32 9,85 14,1 1,62 4,84
Deciduous
Forest % 0,56 0,84 1,12 1,51 7,82 16,56 10,5 29 3,73
Coniferous
Forest % 0,35 0,13 0,95 1,24 5,44 7,18 46,5 1,21 7,31
Builtup % 26,45 39,31 36,74 47,27 32,46 47,58 21,3 70,3 40,34
Total % 100 100 100 100 100 100 100 100 100
Overall Accuracy = (2309773/4979391) = 46,39% ; Kappa Coefficient= 0,3338
Fused image from TM 28 March and MERIS 16 April

cl Water Arableland% Grassland% Baresoil% Natural Deciduous Coniferous  Built- Total

ass % ? 0 ? Vegetation% forest% forest% up% %
Water % 63,24 0,9 2,38 3,55 0,21 0,83 0,24 176 4,11
Arable
land % 0,82 30,18 3,5 7,85 2,6 1,72 0,82 2,79 8,86
Grassland
% 7,26 25,26 53,27 3,29 1,35 14,76 2,08 15,32 28,42
Baresoil % 1,07 1,28 1,11 32,82 2,48 1,48 1,39 1,42 1,44
Natural
Veg % 0,26 0,54 1,44 3,11 51,93 13,73 1446 1,81 5,28
Deciduous
Forest % 0,83 2,83 1,86 2,36 9,93 16,27 11,68 2,97 4,67
Coniferous
Forest % 0,42 0,08 0,92 2,02 5,07 6,75 47,14 1,09 7,33
Builtup % 26,09 38,92 35,52 45 26,42 44,46 22,19 72,85 39,89
Total % 100 100 100 100 100 100 100 100 100
Overall Accuracy=(2388207/4979391)= 47,96%; Kappa Coefficient= 0,3538
Fused image from TM 10 July and MERIS 6 June
cl Water Arableland% Gr land% Bar i1 Natural Deciduous Coniferous Built- Total
ass ableland>  Grassiand® baresoll™ /o qetation% forest% forest% up% %
Water % 56,43 0,07 0,17 0,65 0 0,16 0,04 052 2,58
Arable
land % 10,65 38,94 16,69 22,78 7,37 17,98 6,47 19,6 20,38
Grassland
% 18,82 28,68 51,06 14,49 13,63 26,28 10,7 24,5 32,54
Baresoil % 0,01 0 0,06 28,66 0,42 0,01 0,63 0,03 0,26
Natural
Veg % 0,05 0,07 0,87 3,06 56,6 1,7 747 0,72 3,25
Deciduous
Forest % 0,34 1,53 2,04 0,82 2,32 20,21 12,4 153 4,31
Coniferous
Forest % 0,24 0,08 0,86 1,27 7,79 5,43 441 1,03 6,88
Builtup % 13,46 30,63 28,24 28,26 11,86 28,25 18,3 52,1 29,8
Total % 100 100 100 100 100 100 100 100 100

Overall Accuracy = (2282293/4979391)= 45,83% ; Kappa Coefficient=0.3068 .
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Fused image from TM 10 July and 14 July

. . . Total
Wat . Natural Decid Conif Built-

Class %a €' Arableland% Grassland% Baresoil% V:glJeEZtion% fo?'(;lstg/:,)us fo(?g'sﬁ,/roous u;LJJ‘;/o %
Water % 54.32 0.05 0.24 0.68 0.00 0.02 0.01 0.20 2.45
Arable
land % 18.13 48.71 29.98 31.74 11.89 33.33 11.54 33.00 31.41
Grassland
% 15.80 41.24 55.22 8.15 5.80 20.79 6.81 19.51 34.88
Baresoil % 0.00 0.00 0.13 33.45 1.63 0.06 0.67 0.02 0.35
Natural
Veg % 0.14 0.26 1.00 1.71 52.24 3.70 8.38 0.87 3.48
Deciduous
Forest % 0.27 0.39 0.57 0.97 2.42 11.99 8.66 089 242
Coniferous
Forest % 0.59 0.34 1.11 1.89 9.33 11.95 49.06 1.24 8.20
Builtup % 10.74 9.01 11.75 21.42 16.69 18.16 14.86 44.27 16.82
Total % 100 100 100 100 100 100 100 100 100
Overall Accuracy= (2406506/4979391) = 48.3293; Kappa Coefficient= 0.3257;
Fused image from TM 11 August and MERIS 6 August

cl Water Arableland% G land% B i1 Natural Deciduous Coniferous  Built- Total

ass % rablefandv rassiando  baresoriz Vegetation% forest% forest% up% %

Water % 24,02 591 8,62 4,33 15,76 4,56 3,94 11,2 8,5
Arable
land % 45,21 52,26 29,79 47,05 26,57 37,9 26,2 42 43,68
Grassland
% 3,24 2,25 46,8 1,53 0,88 1,11 1,083 451 3,82
Baresoil % 23,18 36,4 13,77 45,42 11,63 30,3 13,1 23,2 30,64
Natural
Veg % 0,19 0,24 0,09 0,1 20,87 1,42 3,08 0,28 1,3
Deciduous
Forest % 0,38 0,32 0,05 0,26 1,48 3,35 3,15 1,12 0,95
Coniferous
Forest % 2,8 1,9 0,46 0,77 19,79 20,9 48,1 4,64 10,15
Built up % 0,99 0,73 0,41 0,54 3,01 0,55 1,46 13,1 0,94
Total % 100 100 100 100 100 100 100 100 100
Overall Accuracy= (1752207/4247416) = 41.2535 %; Kappa Coefficient= 0.2187;
Fused image from TM 11 August and MERIS 9 August

cl Water Arableland% G land% B i1 Natural Deciduous Coniferous  Built- Total

ass % rapielandv Grasslandv baresoiv Vegetation% forest% forest% up% %

Water % 25,55 4,08 7,85 2,96 3,42 2,8 339 386 7,17
Arable
land % 31,48 41,84 22,34 38,33 18,26 27,4 11,7 19,1 32,62
Grassland
% 1,78 1,48 47,09 0,85 0,64 0,63 0,61 1,98 3,09
Baresoil % 32,86 48,25 19,34 55,39 24,57 50,4 31,6 39,8 43,07
Natural
Veg % 0,19 0,27 0,07 0,06 23,94 0,86 295 059 1,34
Deciduous
Forest % 0,06 0,1 0,01 0,06 0,12 1,83 0,85 0,04 0,3
Coniferous
Forest % 1,23 0,91 0,24 0,26 9,78 12,4 352 2,16 6,74
Built up % 6,83 3,07 3,07 2,08 19,27 3,71 13,7 32,5 5,66
Total % 100 100 100 100 100 100 100 100 100

Overall Accuracy=(1614593/4247416)= 38,01% ; Kappa Coefficient = 0,1995
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APPENDIX VIII: Mathematical concepts

Singular value

A matrix “A” can be decomposed into so-called eigenvalues and eigenvectors, being a
special set of scalars and vectors associated with a linear system of equations
respectively.

A=P-D-P’
Equation 9: Matrix diagonalization
Where:
P is a matrix composed of the eigenvectors of A and P the inverse of P.

D is the diagonal matrix constructed by the eigenvalues.

The square roots of the eigenvalues are the singular values.

Singular value decomposition

Any m x n matrix A whose number of rows m is greater than or equal to its number of
columns n, can be written as the product of an m x n orthogonal matrix U, an n x n
diagonal matrix S whose elements are the singular values of the original matrix and the
transpose of an n x n orthogonal matrix V.

A=U"-s -V’
Equation 10: Singular value decomposition

Singular value decomposition is used in some occasion like a method for solving most
linear least-squares problems (WwwwS5).

Conditional number

The condition number of a matrix measures the sensitivity of the solution of a system of
linear equations to errors in the data; it estimates the loss of precision in solving a linear
system with that matrix. It is the ratio “C” of the largest to smallest singular value in the
singular value decomposition of a matrix.

A system is said to be singular if the condition number is infinite, and ill-conditioned if
it is too large. Values of condition number near 1 indicate a well-conditioned matrix
(WWW6).

The large condition number implies that the columns of A are nearly linearly dependent
(Hansen, 2001). One or more small singular values implies that A is nearly rank
deficient, and the vectors V; associated with the small singular values are numerical
null-vectors of A.

Regularization

The term of regularization appears when we have problems with an ill-posed matrix.
The ill-conditioning of the matrix does not mean that a meaningful approximate cannot
be computed. Rather, it implies that standard methods in numerical linear algebra
cannot be used in a straightforward manner to compute such a solution. Instead other
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methods must to be applied in order to ensure the computation of a meaningful solution,
and this is the goal of regularization methods.

In our case, for solving the equation 1, four methods have been proposed and two of
them apply regularization methods. The most common method of regularization is the
one known as Thikonov regularization, where the regularized solution x; is defined as
the minimum of the following weighted combination of residual norm and the side
constraint where the regularization parameter A controls the weight given minimization
of the side constraint relative to minimization of the residual norm.

)

Thus, the regularization parameter A is a parameter which controls the properties of the
regularized solution. For obtaining this parameter, a method called L-curve can be used
(Hansen, 2001).

X, = arg min{|Ax —~ b||z + /7,2HL(x -x)

The L-curve is a graphical tool for analysis of discrete ill-posed problems. It is a plot for

all valid regularization parameter, of the (semi)norm HLx of the regularized solution

reg ||
versus the corresponding residual norm HAx,eg - b”z. In this way the L curve displays

the compromise between minimization of these two quantities, which is the main aim of
the regularization methods.
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Figure 28: The generic form of the L-curve
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